


Lecture Notes in Computer Science 4189
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Dieter Gollmann Jan Meier
Andrei Sabelfeld (Eds.)

Computer Security –
ESORICS 2006

11th European Symposium on
Research in Computer Security
Hamburg, Germany, September 18-20, 2006
Proceedings

13



Volume Editors

Dieter Gollmann
Jan Meier
TU Hamburg-Harburg
Harburger Schlossstr. 20, 21079 Hamburg-Harburg, Germany
E-mail: diego@tu-harburg.de, j.meier@tuhh.de

Andrei Sabelfeld
Chalmers University of Technology
Dept. of Computer Science and Engineering
EDIT Bldg., Rännvägen 6B, 41296 Gothenborg, Sweden
E-mail: andrei@cs.chalmers.se

Library of Congress Control Number: 2006932266

CR Subject Classification (1998): E.3, D.4.6, C.2.0, H.2.0, K.6.5, K.4.4

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-540-44601-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-44601-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11863908 06/3142 5 4 3 2 1 0



Foreword

These proceedings contain the papers selected for presentation at the 11th Euro-
pean Symposium on Research in Computer Security – ESORICS, held in Ham-
burg, Germany, September 18-20, 2006.

The 160 papers submitted to ESORICS were each reviewed by at least three
members of the program committee. A two-week discussion phase was then held
electronically, where committee members could comment on all papers and all
reviews. Finally, 32 papers were selected for presentation at ESORICS, giving
an acceptance rate of about 21%.

In 2005, three specialized security workshops were organized in affiliation with
ESORICS. This trend has continued. In addition to RAID, which is already a
well established event in its own right, there were four more workshops this year,
ESAS 2006, EuDiRights 06, STM 06, and FEE2, further strengthening the rôle
of ESORICS as the major European conference on security research.

There were many volunteers who offered their time and energy to put together
the symposium and who deserve our acknowledgment. We want to thank all the
members of the program committee and the external reviewers for their hard
work in evaluating and discussing the submissions. We are also very grateful to
all those people whose work ensured a smooth organization: Joachim Posegga,
who served as General Chair; Andreas Günter and his team at HITeC for tak-
ing on the conference management; Klaus-Peter Kossakowski for his efforts as
Sponsorship Chair; Jan Meier for managing the ESORICS Web site, and Joachim
Stehmann for the Web design; and Martin Johns for dealing with the growing
number of affiliated workshops.

Last, but certainly not least, our thanks go to all the authors who submitted
papers and all the attendees. We hope you found the program stimulating.

July 2006 Dieter Gollmann and Andrei Sabelfeld
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Muñoz Gallego, Steven Murdoch, Thanh Son Nguyen, Christoffer Rosenkilde
Nielsen, Satoshi Obana, Yutaka Oiwa, Joseph Pamula, Maura Paterson, Jean-
Christophe Pazzaglia, Thea Peacock, Van Hau Pham, François Pottier, Christian
W. Probst, Tony Ramard, Sankardas Roy, Pierangela Samarati, Thierry Sans,
Andreas Schaad, Ludwig Seitz, Fred Spiessens, Henning Sudbrock, Hongwei Sun,
Petr Svenda, Isamu Teranishi, Tachio Terauchi, Olivier Thonnard, Terkel K. Tol-
strup, Laurent Vigneron, Jan Vitek, Lingyu Wang, Stephen D. Wolthusen, Kon-
rad Wrona, Hirosuke Yamamoto, Yanjiang Yang, Chao Yao, Stefano Zanero, Ye
Zhang, Xibin Zhao, Hongbin Zhou, Anna Zych

Local Organization

Wiebke Frauen, Andreas Günter, Martin Johns (workshop chair), Klaus-Peter
Kossakowski (sponsorship chair), Jan Meier, Joachim Stehmann (Web design),
Margit Wichmann



Table of Contents

Finding Peer-to-Peer File-Sharing Using Coarse Network Behaviors . . . . . . 1
M.P. Collins, M.K. Reiter

Timing Analysis in Low-Latency Mix Networks:
Attacks and Defenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

V. Shmatikov, M.-H. Wang

TrustedPals: Secure Multiparty Computation Implemented
with Smart Cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

M. Fort, F. Freiling, L. Draque Penso, Z. Benenson, D. Kesdogan

Private Information Retrieval Using Trusted Hardware . . . . . . . . . . . . . . . . 49
S.H. Wang, X.H. Ding, R.H. Deng, F. Bao

Bridging the Gap Between Inter-communication Boundary and Internal
Trusted Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Y. Watanabe, S. Yoshihama, T. Mishina, M. Kudo, H. Maruyama

License Transfer in OMA-DRM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
C.N. Chong, S. Iacob, P. Koster, J. Montaner, R. van Buuren

Enhanced Security Architecture for Music Distribution on Mobile . . . . . . . 97
A. Benjelloun-Touimi, J.-B. Fischer, C. Fontaine, C. Giraud,
M. Milhau

A Formal Model of Access Control for Mobile Interactive Devices . . . . . . . 110
F. Besson, G. Dufay, T. Jensen

Discretionary Capability Confinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
P.W.L. Fong

Minimal Threshold Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
X.-B. Zhao, K.-Y. Lam, G. Luo, S.-L. Chung, M. Gu

Reducing the Dependence of SPKI/SDSI on PKI . . . . . . . . . . . . . . . . . . . . . . 156
H. Wang, S. Jha, T. Reps, S. Schwoon, S. Stubblebine

Delegation in Role-Based Access Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
J. Crampton, H. Khambhammettu



X Table of Contents

Applying a Security Requirements Engineering Process . . . . . . . . . . . . . . . . 192
D. Mellado, E. Fernández-Medina, M. Piattini

Modeling and Evaluating the Survivability of an Intrusion Tolerant
Database System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

H. Wang, P. Liu

A Formal Framework for Confidentiality-Preserving Refinement . . . . . . . . . 225
T. Santen

Timing-Sensitive Information Flow Analysis
for Synchronous Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
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Finding Peer-to-Peer File-Sharing
Using Coarse Network Behaviors�

Michael P. Collins1 and Michael K. Reiter2

1 CERT/Network Situational Awareness, Software Engineering Institute,
Carnegie Mellon University

mcollins@cert.org
2 Electrical & Computer Engineering Department, Computer Science Department,

and CyLab, Carnegie Mellon University
reiter@cmu.edu

Abstract. A user who wants to use a service forbidden by their site’s
usage policy can masquerade their packets in order to evade detection.
One masquerade technique sends prohibited traffic on TCP ports com-
monly used by permitted services, such as port 80. Users who hide their
traffic in this way pose a special challenge, since filtering by port number
risks interfering with legitimate services using the same port. We propose
a set of tests for identifying masqueraded peer-to-peer file-sharing based
on traffic summaries (flows). Our approach is based on the hypothesis
that these applications have observable behavior that can be differen-
tiated without relying on deep packet examination. We develop tests
for these behaviors that, when combined, provide an accurate method
for identifying these masqueraded services without relying on payload
or port number. We test this approach by demonstrating that our in-
tegrated detection mechanism can identify BitTorrent with a 72% true
positive rate and virtually no observed false positives in control services
(FTP-Data, HTTP, SMTP).

1 Introduction

Peer-to-peer file-sharing services are often constrained by organizations due to
their widespread use for disseminating copyrighted content illegally, their sig-
nificant bandwidth consumption for (typically) non-work-related uses, and/or
the risk that they may introduce new security vulnerabilities to the organiza-
tion. Karagiannis et al. [5] have shown that instead of obeying site bans on
file-sharing, however, users hide their file-sharing activity. Moreover, file-sharing
tools themselves are being updated to circumvent attempts to filter these ser-
vices; e.g., BitTorrent developers now incorporate encryption into their products
in order to evade traffic shaping.1

� This work was partially supported by NSF award CNS-0433540, and by KISA and
MIC of Korea.

1 “Encrypting BitTorrent to Take Out Traffic Shapers”, TorrentFreak Weblog, http:
//torrentfreak.com/encrypting-BitTorrent-to-take-out-traffic-shapers/

D. Gollmann, J. Meier, and A. Sabelfeld (Eds.): ESORICS 2006, LNCS 4189, pp. 1–17, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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While encryption makes filtering based on traffic content difficult, filtering
packets by port number (as would typically be implemented in router ACLs,
for example) remains an obstacle to peer-to-peer file-sharing. As such, common
hiding methods also involve changing the port number used by the service to
something that is not filtered. In networks that implement a “deny-than-allow”
policy, the service traffic may be sent on a common service port, in particular
80/TCP (HTTP).

In such cases, ports do not reliably convey the services using them, while
deep packet examination is viable only as long as packet payload is unencrypted.
Analysts therefore need alternative methods to characterize and filter traffic. In
this paper, we propose an alternative service detection and identification method
that characterizes services behaviorally. We hypothesize that TCP services have
quantifiable behaviors that can be used to identify them without relying on
payload or port numbers. For example, we expect that the majority of HTTP
sessions begin with a small initial request followed by a larger response, and then
terminate. If a presumed HTTP client and HTTP server were communicating
using symmetric short bursts of traffic in a single long-lived session, then we
would have reason to consider an alternative hypothesis, such as a chat service.

Within this paper, we focus on a specific problem that motivated this line of
research: demonstrating that a user who claims to be using a common service on
its standard port (such as HTTP) is using another service, specifically BitTor-
rent. To do so, we implement tests that characterize traffic and show how they
can be used together to effectively differentiate BitTorrent traffic from common
services. The goal of our research is a collection of tests which can be used by
analysts or automated systems to classify traffic. Given the increasing sophisti-
cation of evasion strategies, we seek to find behaviors that can be effective with
as few assumptions as possible. For example, these tests do not use deep packet
examination, and are therefore applicable to encrypted and unencrypted traffic.

We calibrate and validate our approach using logs of traffic crossing a large
network. From these logs, we select traffic records describing BitTorrent and
major services, specifically HTTP, FTP data channel and SMTP. The log data
consists of NetFlow, a traffic summarization standard developed by CISCO sys-
tems2. Flow data is a compact representation of an approximate TCP session,
but does not contain payload. In addition, we do not trust port numbers, mak-
ing our tests port- and payload-agnostic. Despite this, we show that by clas-
sifying flows based on several behaviors we can effectively differentiate source-
destination pairs engaged in BitTorrent communication from those involved in
HTTP, FTP or SMTP exchanges. Specifically, our integrated test identifies Bit-
Torrent with a 72% true positive rate and virtually no observed false positives
in control services (FTP-Data, HTTP, SMTP).

The rest of this paper is structured as follows. Section 2 describes previous
work done in service detection. Section 3 describes the behaviors with which we
characterize flows, and that we use to distinguish certain file-sharing traffic from

2 CISCO Corporation, Netflow Services and Applications, http://www.cisco.com/
warp/public/cc/pd/iosw/ioft/neflct/tech/nappswp.htm
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other types of traffic. Section 4 describes our experiments using these classifi-
cations both individually and in aggregate, to identify BitTorrent activity. We
conclude in Section 5.

2 Previous Work

Prior work in identifying file-sharing traffic varies primarily in the information
used to do so. Several file-sharing detection tools have analyzed packet payload
(e.g., [9,20]), a method which will not survive encryption of packet contents
or might simply be infeasible due to performance or other limitations. Other
approaches utilize aggregate packet attributes, such as interstitial arrival times or
the presence of specific packet sequences (e.g., [22,8,2,24,3,10,11,12]). However,
in sufficiently large and busy networks, even this degree of packet analysis can
be problematic.

As a result, flows are increasingly used for various types of security anal-
ysis (e.g., [18,13]). Flows were originally specified by Partridge [15] for traffic
summarization, and have since been adopted by CISCO for traffic reporting.
NetFlow, the CISCO standard, uses timeouts to approximate TCP sessions, an
approach originally developed by Claffy et al. [1]. Since flow records do not con-
tain payload information, they are generally used for large-scale and statistical
analysis. Notably, Soule et al. [21] developed a classification method to cluster
flows, though they stopped short of mapping them to existing applications (or
types of applications).

Since their development, peer-to-peer file-sharing systems have become tar-
gets of filtering and detection efforts. Karagiannis et al. [5] showed that peer-to-
peer users increasingly evade detection by moving their traffic to alternate port
numbers. Studies conducted on BitTorrent and other peer-to-peer file-sharing
applications have examined the behavior of individual nodes (e.g., [4,23,7]) and
application networks (e.g., [19,17]), but have not compared the behaviors ob-
served to the behavior of more traditional services. Ohzahata et al. [14] developed
a method for detecting hosts participating in the Winny file-sharing application
by inserting monitoring hosts within the file-sharing network itself. Karagiannis
et al. [6] developed a general method for identifying applications called Blinc,
which uses various heuristics and interconnection patterns exhibited by groups
of nodes to identify services. In contrast, we focus on the flow characteristics
between a pair of nodes in isolation to identify the service in which they are
participating, and as such our approach is complementary. Nevertheless, we be-
lieve there is potential in combining our point-to-point analyses with Blinc’s on
interconnection patterns, and hope to investigate this in future work.

3 Application Classification

In this section, we describe the behaviors used to differentiate BitTorrent traffic
from other services. In Section 3.1 we describe a classification tree that we will
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use to classify flows into different types, and in Section 3.2 we describe the
intuition and formulation of our tests.

3.1 Simple Taxonomy

Our analyses use flow records; a flow is a sequence of packets with the same
addressing information (source and destination addresses, source and destination
ports, and protocol) which occur within a short time of each other [1]. A flow
record is a summary consisting of addressing, size and timing information about
the flow, but no payload. We will refer to fields of a flow record f with “dot”
notation (e.g., f.duration or f.bytes).

We restrict our data to TCP flows. Flow collection systems such as CISCO
NetFlow record TCP flags by ORing the flags of every packet. As a result,
flag distributions cannot be derived from multi-packet flow records, and certain
behaviors—notably whether an endpoint is the initiator or responder of the TCP
connection of which the flow represents one direction—are not discernible.

We divide flows into three categories: Short Flows, comprising three packets
or less; Messages, which are 4–10 packets but less than 2 kB in size; and File
Transfers, which are any flows longer than a Message. Figure 1 represents our
taxonomy as a decision tree and the categories that this tree covers.

Fig. 1. Flow Classification Tree: The rules used on this tree assign each flow to a class

A Short Flow consists of three or fewer packets; since a complete TCP
session will require at least three packets, Short Flows indicate some error in
communication or anomaly in flow collection. Within Short Flows, we can acquire
more information by examining the TCP flags of the flow; we use the flags to
create three sub categories. A Failed Connection has a SYN flag and no ACKs.
A Keep-Alive has ACK flags only. Since flow recording is timeout-based, Keep-
Alives are recorded by the flow collector during long-lived sessions but currently
do not have any substantial impact on analysis. A Response consists of any
Short Flow whose flags imply a response from the TCP connection responder to
the initiator: a SYN-ACK, a RST-ACK or a RST. We do not consider the other
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TCP flags (e.g., PSH) significant in this analysis. As noted above, TCP flags are
OR’ed in flow records, and as a result we only use flags in the Short Flow case,
where the results are least ambiguous.

We define a Message as a flow consisting of 4–10 packets and with a total
size less than 2 kB. We assume that Messages represent the structured exchange
of service data between the source and destination. Example Messages include
HTTP requests and the control messages sent by BitTorrent. We assume that
Messages contain structured communication, as opposed to data intended for
the application’s users. Consequently, we expect that Messages will have fixed
sizes and that certain Messages (with specific sizes) will appear more often than
other ones.

We label any flow longer than 2 kB or 10 packets a File Transfer. We assume
that a File Transfer is the exchange of non-service-specific information between
two sites. We expect that certain services will tend to send shorter files than
others. For example, we expect that HTTP servers will transfer less data than
BitTorrent peers typically, since HTTP clients interact with users and therefore
need a rapid response time.

Table 1 is a log showing BitTorrent flows; in this log, we have labeled each flow
with its corresponding category. Of particular interest is the presence of repeated
Failed Connections (the 144-byte SYN-only packets) and the 276-byte Message
packets. Both of these behaviors will be used to construct tests in Section 3.2.

Table 1. Log of traffic and associated classification

Source Destination Packets Bytes Flags Start Time Class
Port Port F S A R
3584 6881 1637 1270926 x x 11/04/2005 21:09:33 File Transfer
3586 6881 5 276 x x x 11/04/2005 21:09:36 Message
3619 6881 5 276 x x x 11/04/2005 21:10:18 Message
3651 6881 5 276 x x x 11/04/2005 21:11:01 Message
3701 6881 5 276 x x x 11/04/2005 21:12:04 Message
1290 6881 3 144 x 11/04/2005 21:53:56 Failed Connection
2856 6881 5 636 x x 11/04/2005 22:33:11 Message
3916 6881 5 276 x x x 11/04/2005 23:03:44 Message
4178 6881 5 636 x x 11/04/2005 23:12:01 Message
4884 6881 3 144 x 11/04/2005 23:32:05 Failed Connection

3.2 Tests

In this section, we describe four tests for characterizing the flows generated by
various services. Each test is performed on a log of flow records bearing the same
source and destination, and hence are unidirectional. We rely on unidirectional
flows for three reasons. First, CISCO NetFlow is reported unidirectionally; i.e.,
each direction of a connection is reported in a different flow. Second, on a network
with multiple access points, there is no guarantee that entry and exit traffic



6 M.P. Collins and M.K. Reiter

passes through the same interface. As a result, determining the flows representing
both directions of a connection on a large network can be prohibitively difficult.
Finally, we wish to acquire results using as little information as possible.

Each test outlined in this section is characterized by function θ(x, F ). This
binary-valued function applies a particular threshold x to a measure calculated
on a flow log F , where F consists of flows all bearing the same source and
destination.

Failed Connections. We expect that, except for scanners, clients (respectively,
peers) open connections only to servers (respectively, other peers) of which they
have been informed by another party. For example, BitTorrent peers connect to
peers that they have been informed of by their trackers. We further expect that
when a client (peer) attempts to connect to a server (peer) that is not present,
we will see multiple connection attempts.

We thus expect that Failed Connections occur more frequently in traffic from
services with transient server/peer populations. We expect that BitTorrent peers
regularly disconnect and that other peers will try to communicate with them
after this. In contrast, we expect that the providers of HTTP and SMTP servers
will implement policies to ensure maximum uptime. Therefore, under normal
circumstances, we expect that the rate of Failed Connections for BitTorrent will
be higher than it would be for SMTP or HTTP, for example.

Table 2 summarizes Failed Connections in an hour of observed data from four
services: HTTP, FTP, SMTP and BitTorrent. From the observed flow records, we
count the number of unique source-destination pairs and then count the number
of pairs that have multiple Failed Connections. As the table shows, only SMTP
and BitTorrent have a significant rate of Failed Connections, and BitTorrent has
a somewhat higher rate of Failed Connections than SMTP does.

To evaluate connection failure as a detection method, we will use the following
threshold test, θc(x, F ):

θc(x, F ) =

{
0 if the percentage of Failed Connections in F is less than x

1 otherwise

Bandwidth. In most client-server applications, a single server communicates
with multiple clients; therefore, implementing faster transfers generally requires
purchasing a higher-bandwidth connection for the server. BitTorrent increases

Table 2. Failed Connections per service for sample data

Service Source-destination Pairs experiencing n Failed Connections
pairs n = 0 n = 1 n = 2 n > 2

HTTP 3089 2956 ( 96%) 78 ( 3%) 22 (1%) 33 ( 1%)
FTP 431 431 (100%) 0 ( 0%) 0 (0%) 0 ( 0%)

SMTP 18829 15352 ( 82%) 1789 (10%) 619 (3%) 1069 ( 6%)
BitTorrent 49 37 ( 76%) 1 ( 2%) 0 (0%) 11 (22%)
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the speed of a transfer by adding more peers to the BitTorrent “swarm”: each
peer transfers a fragment of the desired file, resulting in a high-bandwidth trans-
fer comprised of multiple low-bandwidth connections. We expect that most ded-
icated servers will transfer data at higher speeds than a peer in a BitTorrent
transfer will.

For flow logs of file transfer services (as opposed to a chat service, such as
AIM), we of course expect that many of the corresponding connections are used
for file transfers. The flow in the direction opposite the file transfer will consist
almost exclusively of 40-byte zero-payload packets. Calculating bandwidth by
counting the bytes in these packets will result in an artificially depressed value
for the bandwidth consumed by the connection that gave rise to this flow. To
compensate for this, we assume that the files transferred are considerably larger
than the standard 1500-byte MTU for Ethernet, and consequently fragmented
into MTU-length packets. We then estimate bandwidth for such flows by assum-
ing that all of the ACK packets are in response to 1500-byte packets, resulting
in the following formula:

b(f) =
1500 bytes/packet ∗ f.packets

max(f.duration, 1 second)

For bandwidth tests, our threshold function, θb, will be expressed as follows:

θb(x, F ) =

⎧⎪⎨⎪⎩
⊥ if there are no File Transfers in F

0 if there is a File Transfer f ∈ F such that b(f) ≥ x

1 otherwise

Note that θb(x, F ) is undefined if there are no File Transfers in F . A bandwidth
test cannot be meaningfully applied to a flow log with no File Transfers, since
flow durations are recorded with second precision (while Messages and Short
Flows typically take far less than a second).

Comparing Message Profiles. We expect that Messages will have fixed for-
mats specified by the service. For example, the first action taken by a BitTorrent
peer upon connecting to another peer is to send a 68-byte handshake containing
a characteristic hash for its target file.3 We therefore expect that a dispropor-
tionate number of BitTorrent Messages will have 68-byte payloads.

Comparative histograms for BitTorrent and HTTP Message sizes are shown
in Figure 2. As this example shows, BitTorrent traffic spikes at 76 bytes per
Message. This is most likely due to the 68 bytes necessary to send the BitTorrent
handshake, plus a common 8-byte set of TCP options [16].

We test this hypothesis by generating histograms for the Messages from
each major data set and then use the L1 distance as an indicator of similar-
ity. We define a histogram H on the Messages in a flow log F as a set of values
h0(F ) . . . hn(F ), such that hi(F ) is the observed probability that a Message in F

3 See http://wiki.theory.org/BitTorrentSpecification



8 M.P. Collins and M.K. Reiter

 0%

 2%

 4%

 6%

 8%

10%

12%

14%

 0  48  96  144  192  240  288  336  384  432  480

F
re

qu
en

cy
 (

P
er

ce
nt

ag
e 

of
 M

es
sa

ge
s)

Message Length (Bytes)

HTTP
BitTorrent
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has a payload between [k(i− 1), ki) bytes in size. In particular,
∑n

i=1 hi(F ) = 1.
Given a reference flow log FR and a test flow log FT , the L1 distance is defined as:

L1(FT , FR) =
n∑

i=0

|hi(FT )− hi(FR)|

Histogram calculation is complicated by TCP headers and TCP options. TCP
packets contain 40 bytes of header data above any payload. In addition, TCP
sessions specify TCP payload options in the first packet; these options will be
some multiple of 4 bytes and also affect the payload size. To compensate for the
headers, we calculate the payload size for a flow f as:

p(f) = f.bytes− (40 bytes/packet× f.packets)

We set k, the size of the bins used to calculate probabilities, to 12 bytes.
This bin size is larger than the sizes of the most common TCP option combi-
nations [16] and should therefore reduce profile mismatches caused by different
option combinations.

The threshold test is then:

θp(x, F ) =

⎧⎪⎨⎪⎩
⊥ if there are no Messages in F

0 if there exist Messages in F and L1(F, FR) ≥ x

1 otherwise

It is understood that the L1 distance is calculated only using the Messages in
F and FR. Note that θp(x, F ) is undefined if there are no Messages in F : Short
Flows should not have payload data, and we assume that File Transfers contain
unstructured (and so arbitrary-length) data.

Volume. Because HTTP files are immediately viewed by a user, we expect that
web pages are relatively small in order to ensure rapid transfer. Therefore, we



Finding Peer-to-Peer File-Sharing Using Coarse Network Behaviors 9

 0.01

 0.1

 1

 10

 100

 0  2  4  6  8  10

F
re

qu
en

cy
 (

P
er

ce
nt

ag
e 

of
 F

lo
w

s)

Common Log of Number of Packets

FTP

HTTP

SMTP

BitTorrent

Fig. 3. Distribution of File Transfer volume for major sources

expect that if a BitTorrent user transfers a file, the resulting TCP session will
transfer more bytes than a HTTP session would.

Figure 3 is a log plot of the frequency of flows; each flow is binned by the
common logarithm of its packet count. The results in Figure 3 satisfy our in-
tuition about file sizes: the majority of HTTP flows are relatively low-volume,
with the majority consisting of 20 packets or less. We note that, in contrast to
our original expectations, SMTP induces higher-volume flows than FTP.

For this behavior, the threshold function θt(x, F ), is defined as:

θt(x, F ) =

{
0 if ∀f ∈ F : f.packets ≤ x

1 otherwise

Similar to the bandwidth test, the presence of even a single large-volume flow is
an indicator.

4 Experiments

This section summarizes the tests conducted on the source data and their results.
Section 4.1 describes the source data, and Section 4.2 describes how we calibrate
the individual tests. Section 4.3 describes the integration and validation of these
tests into a combined test for BitTorrent, and evaluates its accuracy. Section 4.4
discusses what countermeasures a user can take to evade the tests.

4.1 Calibration Data

Calibration data is selected from a log of traffic at the border of a large edge
network. Since the flow logs do not contain payload information, we cannot
determine what service any flow describes via signatures. In order to acquire
calibration and validation data, we use a combination of approaches which are
described below.
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Each data set consists of FTP, SMTP, HTTP or BitTorrent flow records.
SMTP and HTTP were chosen because they comprise the majority of bytes
crossing the monitored network. The FTP data set is actually FTP-Data traffic
(i.e., port 20). We chose to use FTP-Data because we expected that it would
consist primarily of large File Transfers and thus be difficult to distinguish from
BitTorrent.

In the case of FTP, SMTP and HTTP, server names are used to validate ser-
vices. HTTP server names usually begin with a “www” prefix; similarly, SMTP
server names often begin with “mx” or “mail”. We restrict our flows to those
with destination addresses to which a name containing a relevant string resolves.
We assume that if a destination has an appropriate name and participates in
the flow on the relevant port, then it is providing the suggested service.

In each case, the flows are outgoing flows collected from the observed network,
i.e., flow sources are always inside the network and flow destinations are always
outside. The calibration data are detailed below:

– HTTP: The HTTP data set consists of flow records where the destination
port is port 80 and the source port is in the range 1024–5000, the ephemeral
port range for Windows. In addition, every destination address must be
that of an HTTP service (such as Akamai or Doubleclick) or have a name
including “www” or “web”.

– SMTP: The SMTP data set consists of flow records where the destination
port is 25 and the source port is ephemeral. Destination addresses must have
names containing the string “smtp”, “mail” or “mx”.

– FTP: The FTP data set consists of FTP-Data (port 20) flows; the corre-
sponding FTP-Control (port 21) information is not used in this analysis.
The FTP data set consists of flow records where the destination port is 20
and the source port is in the ephemeral range. Destination addresses must
have names that begin with the string “ftp”.

– BitTorrent: The BitTorrent data set consists of logs from hosts running Bit-
Torrent in the observed network; these hosts were identified using a banner
grabbing system configured to identify BitTorrent prefixes. While this system
can identify hosts running BitTorrent, it does not identify when BitTorrent
communication occurred. Therefore, when examining traffic logs to and from
a suspected host we assume that other applications do not masquerade as
BitTorrent, and so any interaction between two IP addresses (one of which
is suspected) where the source port is ephemeral and the destination port is
6881 is assumed to be BitTorrent.

All source data comes from the first week of November 2005; due to the frequency
with which particular services are used, each data set comprises a different period
of time. In particular, BitTorrent traffic was collected over 2 days, while the other
services were collected over several hours.

Table 3 summarizes the flows in the calibration data sets. Consider any in-
dividual “Service” column, e.g., the column “HTTP” that indicates the HTTP
data set. For each flow classification, the row marked “flows” shows the number
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Table 3. Classification of flow records in calibration data

Flow Classification Service
HTTP FTP SMTP BitTorrent

All flows 205702 (100%) 120144 (100%) 142643 (100%) 13617 (100%)
src-dst pairs 3088 (100%) 746 (100%) 18829 (100%) 2275 (100%)

Failed Connection flows 2427 ( 1%) 0 ( 0%) 13010 ( 9%) 9325 ( 68%)
src-dst pairs 132 ( 4%) 0 ( 0%) 3476 ( 18%) 1992 ( 88%)

Keep-Alive flows 5403 ( 3%) 1965 ( 2%) 31306 ( 22%) 1106 ( 8%)
src-dst pairs 409 ( 13%) 504 ( 68%) 2566 ( 14%) 135 ( 6%)

Response flows 18635 ( 9%) 23663 ( 20%) 12545 ( 9%) 199 ( 1%)
src-dst pairs 730 ( 24%) 314 ( 42%) 2959 ( 16%) 53 ( 2%)

Message flows 150937 ( 73%) 64558 ( 54%) 26271 ( 18%) 1615 ( 12%)
src-dst pairs 2880 ( 93%) 558 ( 75%) 4704 ( 25%) 270 ( 12%)

File Transfer flows 28300 ( 14%) 29958 ( 25%) 59511 ( 42%) 1372 ( 10%)
src-dst pairs 1504 ( 49%) 504 ( 68%) 13771 ( 73%) 199 ( 9%)

of flows of that type that appeared in that data set, and the approximate per-
centage of the total number of flows that these comprised. Ignoring the “All”
classification, the rest of the classifications are mutually exclusive and exhaus-
tive, and so the flows accounted for in these “flows” rows total to the number
of flows in the data set (indicated under the “All” classification). Similarly,
for each flow classification, the number of source-destination pairs for which at
least one flow of that type appeared in the data set is shown in the “src-dst
pairs” row. Since the same source-destination pair can be listed for multiple flow
classifications—if flows of each of those classifications were observed between
that source-destination pair—the sum of the source-destination pair counts for
the various flow types (excluding “All”) generally exceeds the number of source-
destination pairs in the data set. Note that FTP does not show any failed connec-
tions, presumably because FTP-Data connections are opened after FTP-Control
connections have succeeded.

4.2 Calibration

We have hypothesized that BitTorrent can be distinguished from other services
by examining bandwidth, volume, the profile of Messages and the rate of Failed
Connections. To evaluate this hypothesis, we now construct a series of tests,
one for each behavior. In each test, we specify the behavior as a parameterized
function and plot the results on a ROC (Receiver Operating Characteristic)
curve. The ROC curve is generated by using the appropriate θ-test against flow
logs selected from the data sets in Table 4. In each case, a control data set (either
HTTP, SMTP or FTP) is partitioned into flow logs C1 . . . C�, where � is the total
number of distinct source-destination pairs in the set and each Ci is log of all
flows between one source-destination pair. Similarly, the BitTorrent data set is
partitioned into flow logs T1 . . . Tm, each between one source-destination pair.
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Fig. 4. ROC curves generated from tests

The contents of Ci and Tj are then evaluated by the corresponding θ-function.
The false and true positive rates are calculated as follows, given a test function
θ(x, F ).

FP(x) =
∑

C∈C θ(x,C)
|C| where C = {Ci : θ(x,Ci) �= ⊥}

TP(x) =
∑

T∈T θ(x, T )
|T | where T = {Tj : θ(x, Tj) �= ⊥}

Figure 4(i) shows how effective Failed Connections are for detecting BitTor-
rent versus control data. As described in Section 3.2, BitTorrent has an usually
high number of Failed Connections: for 85% of the observed source-destination
pairs, at least 75% of their flow logs consist of Failed Connections. SMTP traffic
is the least distinguishable from BitTorrent; we believe that this is because both
BitTorrent and SMTP connections are opened as the application requires, while
HTTP and FTP connections are opened by user request. If an HTTP site is not
available, a user is likely to give up; conversely, an SMTP client will retry quickly.

While the Failed Connection test is highly distinctive on these data sets, we
note that our test data may be biased by the varying times used to collect
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data. While, as Table 1 shows, BitTorrent connections can fail over very short
periods of time, a better statistical model may produce more precise results over
homogeneous time periods.

Figure 4(ii) summarizes the results of our bandwidth tests. The operating
characteristic is the maximum observed bandwidth, estimated between 1 kB/s
and 20 kB/s using 1 kB/s increments. As this curve shows, the bandwidth cutoff
for BitTorrent is approximately 14 kB/s, which allows a 90% correct identifica-
tion for both HTTP and FTP traffic. SMTP traffic is less distinguishable, with
higher than a 35% false positive rate at the same value.

We note that the bandwidth estimates are low; e.g., according to Figure 4(ii),
roughly 30% of source-destination pairs for HTTP and SMTP had bandwidths
less than 14 kB/s. We conjecture that this is primarily a result of limitations
in using flow records to estimate bandwidth. For example, the available band-
width of a persistent HTTP connection is not fully utilized for the duration of
the connection; instead, content transfers on the connection are separated by
intervening idle periods. Consequently, the flows recorded for such connections
will have a deflated average bandwidth. Such effects could be rectified by using
alternative flow-like metrics; several are proposed by Moore et al. [12], but would
require modifying existing flow formats.

Figure 4(iii) summarizes the success rate for differentiating BitTorrent and
other traffic using a profile of Messages. Each point in this graph is a mean of
the results from 10 runs. In each such run, 20% of the source-destination pairs in
the BitTorrent data set are selected uniformly at random and used to generate
the profile. During the test, the remaining 80% are used to generate profiles
for comparison. As this curve shows, Message profile comparison worked well
for differentiating HTTP and SMTP traffic, but was considerably less accurate
when comparing FTP traffic. We note that due to the random selection used
during these tests, the resulting true positive rates vary for each data set; the
thresholds shown in Figure 4(iii) are approximate across the three data sets.

Figure 4(iv) shows the efficacy of the volume test. In this curve, the operating
characteristic ranges between 15 packets and 110 packets. We note that the true
positive rate for the curve is very high, and that 94% of the source-destination
flow logs observed for BitTorrent had one transfer of at least 110 packets, a
number far higher than anything sent by our example HTTP flow logs.

4.3 Integration and Validation

We now combine the tests in order to identify BitTorrent. To do so, we use
voting. For every source-destination pair in a data set consisting of mixed Bit-
Torrent and control traffic, each test is applied to the corresponding flow log
in order to determine whether the traffic is characteristic of BitTorrent. The
result of the test is recorded as a vote, where an undefined result is a 0-vote.
For each source-destination pair, the total number of votes is then used as the
operating characteristic on a ROC curve. For this curve, a false positive is a flow
log of control traffic that is identified as BitTorrent, and a false negative is a
flow log of BitTorrent traffic identified as control traffic. This voting method is
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intended to be a simple integration attempt; in future work we may opt for more
sophisticated methods.

The data sets used to validate these tests are summarized Table 4. These data
sets are taken from different sampling periods than the calibration data sets and
do not overlap them. Otherwise they are assembled using the same approach as
the calibration data.

False positives and false negatives are weighed equally for each test: The upper
left corner of a ROC curve represents perfect classification (i.e., no false positives
and perfect true positives), and so we choose the point from each calibration
curve that minimizes the distance from that corner. For the tests in Section 4.2,
this results in a threshold xopt

c for θc of 1%; for xopt
b of 14 kB/s; for xopt

p of 1.7;
and for xopt

t of 110 packets. Table 4 shows the results of each individual test
applied against the validation data sets; we note that unlike calibration, the θp

and θb tests are applied against all flow logs. As Table 4 shows, each behavior
was demonstrated by at least 50% of the BitTorrent source-destination pairs. In
comparison, none of the control services had a test which more than 30% of that
service’s flows passed.

Table 4. Validation data sets and individual test results

Data Set Flows Src-dst Pairs for which θ(xopt, F ) = 1
pairs θc θb θp θt

BitTorrent 9911 70 36 (51%) 51 (73%) 63 (90%) 51 (73%)
HTTP 42391 1205 27 ( 2%) 156 (13%) 5 ( 0%) 64 ( 5%)
SMTP 46146 4832 729 (15%) 1350 (28%) 105 ( 2%)1451 (30%)
FTP 47332 561 0 ( 0%) 15 ( 3%) 164 (29%) 158 (28%)

The integrated vote is plotted as a ROC curve in Figure 5. The integrated test
results in a 72% true positive rate if 3 or more tests agree, and a corresponding
false positive rate of 0% for all control services. None of the control source-
destination pairs received four affirmative votes, and only source-destination
pairs in the SMTP data set received three. HTTP was the most easily distin-
guished of the control services, with less than 1% of observed source-destination
pairs having two affirmative votes.

4.4 Evasion

As noted in Section 1, users now actively evade detection methods. As a result,
we must consider how the developers of a service can evade the tests discussed
in this paper.

The BitTorrent specification can be changed to evade Message profiling by
changing the sizes of the control Messages. If the Messages were randomly
padded, a size-based profiling method would be less reliable. This approach is
easy to implement.
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Fig. 5. Integrated ROC curve identifying BitTorrent

The volume test can be evaded by limiting the maximum amount of data
received from a single host. However, this approach means that BitTorrent peers
will have to communicate with a larger number of peers, at which point they are
increasingly vulnerable to host-counting strategies such as Blinc’s [6].

Tests based on Failed Connections can be evaded by increasing the time be-
tween connection attempts or by ensuring that a BitTorrent peer only commu-
nicates with peers that are known to be active, a function that is theoretically
already supported by the tracker. However, either change will increase download
time by increasing the time required to find an active host.

Evading bandwidth detection is more challenging: users must either purchase
additional bandwidth or use all their bandwidth to transfer data.

5 Conclusions

In this paper, we have demonstrated that services have well-defined behaviors
which can be used to identify masqueraded peer-to-peer file-sharing traffic with-
out relying on payload or port numbers. To do so, we have developed a collection
of tests based on service behavior and shown how BitTorrent differs from SMTP,
HTTP and FTP traffic. These results are used to demonstrate that BitTorrent is
characteristically different from these other services, and that these differences
can be detected by looking at gross flow-level attributes, without relying on
deeper packet examination than what is normally required to construct the flow.
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Abstract. Mix networks are a popular mechanism for anonymous In-
ternet communications. By routing IP traffic through an overlay chain of
mixes, they aim to hide the relationship between its origin and destina-
tion. Using a realistic model of interactive Internet traffic, we study the
problem of defending low-latency mix networks against attacks based on
correlating inter-packet intervals on two or more links of the mix chain.
We investigate several attack models, including an active attack which
involves adversarial modification of packet flows in order to “fingerprint”
them, and analyze the tradeoffs between the amount of cover traffic, extra
latency, and anonymity properties of the mix network. We demonstrate
that previously proposed defenses are either ineffective, or impose a pro-
hibitively large latency and/or bandwidth overhead on communicating
applications. We propose a new defense based on adaptive padding.

1 Introduction

Mix networks are a practical way to enable anonymous communications on public
networks. The goal is to hide the relationship between the origin of the traffic
(e.g., a Web browser) and the destination (e.g., a website). A mix, first proposed
by Chaum [6], can be thought of as a server that accepts incoming connections
and forwards them in such a way that an eavesdropper cannot easily determine
which outgoing connection corresponds to which incoming connection.

Because any given mix may be compromised, traffic is usually routed through
a chain of mixes. Intuitively, even if some mixes in the chain are malicious,
the other ones provide some anonymity for connections routed through them.
Many different architectures for mix networks have been proposed in litera-
ture [3,13,9,18,11]. We focus on low-latency mix networks, whose main purpose
is to protect privacy of interactive Internet communications, including popular
applications such as Web browsing. Empirical evidence indicates that low-latency
anonymity systems attract many more users than high-latency ones [12].

Like any anonymity system, a mix network can be attacked in a variety of
ways. Some of the mix routers may be compromised by the attacker; endpoints
of a repeatedly used chain may be linked by statistical analysis of message distri-
bution within the network [7,10]; statistical properties of randomly constructed
routes may be exploited to determine the likely route origin [32,26], and so on.
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In this paper, we assume that the attacker has direct access to packet streams
on some of the network links. Many mix networks are specifically intended to
provide anonymity against attackers who control the communication medium.
Traffic analysis is an especially serious threat for low-latency mix networks be-
cause it is very difficult to hide statistical characteristics of the packet stream and
satisfy the stringent latency requirements imposed by interactive applications.

Details of the route establishment protocol are not important for our analysis.
Once a route through the mix network has been constructed, all packets are usu-
ally encrypted and padded to hide payload size. Inter-packet time intervals are
usually not hidden because low latency requires that each packet be dispatched
as soon as it has been generated by the application. This can be exploited by
the attacker. By correlating inter-packet intervals on two links, he may be able
to determine with high probability that the links belong to the same route.

We will refer to this as the timing analysis attack. This attack is probabilistic,
and may suffer from false positives and false negatives. The standard measure
of success is the crossover error rate, at which the attacker’s false positive rate
is equal to his false negative rate. The lower the crossover error rate, the more
successful the attack. The conventional defense is to send cover traffic on each
link in order to hide actual packets in the stream of padding (dummy) packets.

Our contributions. We analyze resilience of low-latency mix networks to inter-
packet interval correlation attacks using a realistic traffic model based on HTTP
traces from National Laboratory for Applied Network Research (NLANR) [21].

We propose adaptive padding, a new defense against timing analysis. In our
scheme, intermediate mixes inject dummy packets into statistically unlikely gaps
in the packet flow, destroying timing “fingerprints” without adding any latency
to application traffic. We also present a version of our scheme which defends
against active attackers at the cost of relatively small extra latency.

The purpose of adaptive padding is to prevent the attacker from determining
which of the multiple simultaneous connections is being carried on a given net-
work link, not to hide whether a certain user or connection is currently active.
Constant-rate padding may provide better protection for the latter, although
variants such as defensive dropping [17] are trivially defeated by measuring
packet density because real and dummy packets are dropped at different rates.

We focus on short-lived connections, and do not aim to provide a compre-
hensive defense against long-term statistical disclosure attacks. It is not clear
whether this is at all achievable — in any real-world network, there will in-
evitably exist small statistical differences between packet flows which cannot be
completely hidden unless dummy traffic generators are perfectly synchronized.

Using simulated traffic, we quantify the basic tradeoff between the padding
ratio (average number of dummy packets per real packet) and protection against
timing analysis. We show that adaptive padding can defeat timing analysis with
relatively low padding ratios, e.g., 0.4 attacker’s crossover error rate can be
achieved with the 2 : 3 average ratio between dummy and real packets. (Max-
imum crossover error rate is 0.5, which corresponds to random guessing.) We
also investigate active attacks, in which artificial gaps and bursts are introduced
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into packet flows in order to “fingerprint” them. Adaptive padding provides sig-
nificant protection against active attacks at a relatively low extra latency cost.

We compare adaptive padding with defenses based on sender-originated,
constant-rate cover traffic and variants such as defensive dropping, showing that
they are not feasible for traffic exhibiting realistic statistical characteristics. To
defeat passive timing analysis with reasonable padding ratios, they require pro-
hibitively high extra latency. They also fail completely against an active attack.

Organization of the paper. We survey related work in section 2. Our model
and metrics are described in section 3, the adaptive padding scheme in section 4.
Simulation methodology and results are presented in section 5. In section 6, we
discuss active attacks; in section 7, we argue that constant-rate defenses are not
feasible. Deployment issues are in section 8, future directions in section 9.

2 Related Work

Traffic analysis attacks based on packet flow correlation [28,2,1,25] and statistical
characteristics of individual mixes [8] have been recognized as a serious threat
to low-latency mix networks, but few defenses have been proposed to date.

Venkatraman and Newman-Wolfe [22,31] presented a mathematical model for
passive traffic analysis attacks and proposed a defense that requires complete
knowledge of traffic on all links by a trustworthy entity.

Timmerman [29,30] proposed an adaptive “traffic masking” technique for
latency-insensitive applications such as email. Her S-DATM algorithm uses cover
traffic and artificial delays to ensure that traffic emerging from each user con-
forms to a certain profile. By contrast, we move the responsibility for traffic
shaping inside the mix network, and do not aim to precisely reproduce a partic-
ular traffic shape (as discussed below, this requires prohibitive latencies).

Berthold and Langos [4] also focus on high-latency networks, proposing that
intermediate mixes inject dummy traffic to hide whether a connection is active
or not. By contrast, our goal is to prevent the attacker from using fine-grained
timing characteristics of the packet stream to determine which of several simul-
taneous connections is carried by a given network link.

Rennhard et al. [24] present an adaptive technique for artificially delaying
packets from multiple connections at intermediate mixes in order to reduce the
amount of cover traffic. A similar technique without any cover traffic was pro-
posed by Zhu et al. [33]. With a realistic model of actual traffic, however, the
timing “fingerprints” of two flows are likely to be sufficiently different so that
the only effective defense is to actively reshape the flows at intermediate routers.
Unfortunately, the cost of this defense is prohibitive latency.

Fu et al. [14,15], followed by Levine et al. [17], demonstrated that even packet
flows protected by constant-rate cover traffic are vulnerable to statistical analysis
of inter-packet intervals. Fu et al. propose to generate cover traffic with variable
inter-packet intervals, which is achieved by our adaptive padding scheme.

In the “defensive dropping” scheme [17], route initiators generate dummy
packets, marking each one so that it is dropped by one of the intermediate
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mixes. The initiator must send all traffic at the same constant rate, delaying
real packets so as not to exceed the chosen rate. Bursty traffic generated by
interactive applications suffers vast extra latency in this case (see section 7).
The possibility of an active attack is mentioned in [17], but it is not included in
the simulations, and no defenses are proposed.

Devastating timing attacks have been successfully demonstrated in real-world
mix networks [19,23]. To prevent a particular type of timing analysis performed
by a malicious client, Øverlier and Syverson recommend using a trusted entry
node [23], which is complementary to the defenses proposed in this paper.

3 Model and Metrics

Network. We use a simplified model of a mix network. A single connection con-
sists of an initiator (or sender), a sequence (path) of N mixes, and a destination
server. In a “short-path” network, N is set randomly to 2 or 3; in a “long-path”
one, N is selected randomly from between 5 and 8. We ignore the system-specific
details of the path establishment protocol, and assume that all packets from the
initiator to the server follow the same path through the (overlay) mix network.

We make the standard assumption that, following the path establishment
protocol, all intermediate mixes share pairwise symmetric keys with the initiator,
and that each consecutive pair of mixes on a path shares a pairwise symmetric
key. We assume an end-to-end TCP connection between the initiator and the
server, i.e., there is no separate TCP connection between each consecutive pair
of intermediate mixes. An example of such a system is Tarzan [13]. We further
discuss feasibility of our techniques in various types of mix networks in section 8.

Timing analysis. We consider an attacker who measures inter-packet intervals,
i.e., time differences between observations of consecutive packets, on two network
links in order to infer whether these links carry the same connection. Even
when packets are padded and encrypted, inter-packet intervals tend to remain
correlated within the same IP flow. Moreover, traffic associated with interactive
applications such as Web browsing tends to occur in bursts. Sequences of inter-
packet intervals vary widely between different packet flows, and can thus be
used to “fingerprint” a connection. Following Levine et al. [17], we assume that
the attacker divides time into fixed-size windows, counts the number of packets
observed during each window, and correlates the sequences of packet counts.

An active attacker can also impose his own unique timing signature (by drop-
ping packets or introducing artificial bursts) onto the flow he is interested in,
and then attempt to identify this signature on other network links.

Our attack model is deliberately simple. We ignore the effects of packet drops
and bursts on higher-level TCP behavior. In a real attack, the attacker may also
look at timing characteristics other than inter-packet intervals, actively modify
packet streams in order to cause observable changes in network behavior, corrupt
packets to cause TCP retransmission, and so on. Our model is sufficient for
demonstrating serious problems with previously proposed solutions, and enables
us to directly compare adaptive padding with defensive dropping [17].
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Defense metric. Our attacker correlates packet counts on two network links
within a certain time window. If the correlation coefficient exceeds some thresh-
old, the attacker decides that the links carry the same flow. This analysis can
suffer from false positives (the attacker erroneously determines that unrelated
links carry the same flow) and false negatives (the attacker erroneously deter-
mines that the links are unrelated even though they do carry the same flow).

High correlation thresholds increase the false negative rate and decrease the
false positive rate, while low thresholds do the opposite. The standard metric
in this situation is the crossover error rate (called equal error rate in [17]), at
which the false positive rate is equal to the false negative rate. A low crossover
error rate means that the attacker achieves both a low false positive rate and a
low false negative rate, i.e., the defense is ineffective. On the other hand, high
crossover rates mean that the defense is good. The highest crossover rate is 0.5.
If the error rate is greater than 0.5, the attacker can simply flip all the answers.

Negative impact on network performance. Defenses against timing anal-
ysis use dummy traffic to hide gaps between real packets and/or alter timing
patterns of flows by delaying packets or dropping them completely. Both tech-
niques have negative consequences for network performance as observed by the
end users. Adding dummy traffic consumes bandwidth, while delaying or drop-
ping packets increases latency. The ideal defense should minimize both effects.

Our metrics are the average padding ratio of dummy packets to real packets
across all links of a single connection, and the maximum and average extra delay
per real packet in the defended viz. undefended network.

4 Adaptive Padding

After a mix receives a packet, our adaptive padding algorithm samples from the
statistical distribution of inter-packet intervals. If the next packet arrives before
the chosen interval expires, it is forwarded and a new value is sampled. To avoid
skewing resulting intervals towards short values, the distribution is modified
slightly to increase the probability of drawing a longer interval next time. If the
chosen interval expires before a packet arrives, the gap is “repaired” by sending
a dummy packet. Each mix is assumed to have a store of properly encrypted
dummy packets, ready for injection into the packet stream (see section 8).

We assume that each mix knows a rough statistical distribution of inter-packet
intervals for a “normal” flow. This distribution can be pre-computed from traf-
fic repositories such as NLANR [21], or from the mix’s own observations. Our
defense is fundamentally probabilistic, and may provide relatively poor protec-
tion for flows whose distribution of inter-packet intervals is very different from
the assumed distribution. Nevertheless, our method is a significant improvement
over alternatives that simply ignore statistical characteristics of the protected
flows by assuming that all senders emit traffic at the same constant rate.

Data structures. For each connection that passes through it, a mix maintains
a data structure consisting of several bins. The bins are mutually exclusive and
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Fig. 1. Data structure representing distribution of inter-packet intervals at each mix

jointly cover all interval values from 0 to infinity. Each bin except the last cor-
responds to a finite range of inter-packet intervals; the last bin represents all
intervals longer than a certain value. We will numbers bins as b0 (corresponding
to the shortest inter-packet intervals), b1, and so on. For interactive Internet
traffic, the distribution of inter-packet intervals tends to be wide but heavily bi-
ased to short values. Therefore, we found that increasing the range represented
by each bin exponentially with the bin index works well. Intuitively, short inter-
packet intervals, which occur frequently, are split into several bins, while long
intervals, which are rare, are allocated to a single bin (see example in fig. 1).

Adaptive padding algorithm. We assume that a route through the network
has been established prior to actual communication. Upon receiving the first
packet of a connection, the mix forwards it and initializes the bins by drawing
a sample of N values from the statistical distribution of inter-packet intervals,
where N is a parameter of the system. Each sampled value falls into some range
represented by exactly one bin, and a token is placed into that bin. For simplicity,
a token counter is associated with each bin, and is incremented appropriately.

Upon receiving a packet, the mix randomly selects a token and removes it
from its bin. An expected inter-packet interval (EIPI) is chosen randomly from
the range represented by that bin. If another packet does not arrive before EIPI
expires, the mix sends a dummy packet to the next mix, and selects a new token
(the old token is not replaced). If a packet arrives before EIPI expires, this
means that the mix has chosen a “wrong” interval. It places the token back into
its bin, calculates the actual interval between the new packet and its predecessor,
removes a token from the bin corresponding to that interval, and forwards the
packet. This is done to avoid skewing the actual inter-packet interval distribution
towards short values. A new token is then randomly chosen, and so on.

The number of tokens decreases as more packets arrive on the connection.
Rarely, on an unusually long-lived connection, a packet may arrive after an
interval that falls into an empty bin bi. In this case, to avoid significantly affecting
statistical characteristics of the resulting flow, the token is removed from the next
non-empty bin bj such that i < j. Alternatively, all bins can be re-filled from the
distribution; the difference between the two methods is negligible in practice.

If all bins are empty, they are re-filled using a new sample from the distribution
of inter-packet intervals, and the distribution itself updated, if necessary.

This adaptive padding algorithm repairs gaps that may have been caused by
intentional or unintentional packet drops. The algorithm is probabilistic, and
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may randomly select a very short EIPI when there is a “legitimate” gap in the
packet flow (e.g., the sender’s application is silent). This may result in tremen-
dous amounts of cover traffic. One solution is to ignore the bins corresponding to
low intervals in the token selection algorithm, i.e., to only insert dummy packets
into relatively large gaps. We investigate the tradeoff between padding ratios
and effectiveness of adaptive padding against traffic analysis in section 5.2.

Destroying natural fingerprints. Real packet flows tend to be bursty, and
each flow naturally has a unique pattern of inter-packet intervals which can be
used as its “fingerprint” by the attacker in order to distinguish two or more
flows. This fingerprint can be eliminated by dispatching all packets at the same
constant rate, but this imposes prohibitive extra latency (see section 7).

The basic algorithm described above selects a new EIPI after receiving a
packet or after the previous EIPI expired. To destroy natural patterns, however,
gaps should be filled without adding packets where traffic is already dense. We
thus propose a more sophisticated dual-mode algorithm.

(Burst) After a packet has been received, a new expected inter-packet interval
is selected only from higher bins, i.e., those associated with long intervals. This
collection of bins will be referred to as the High-Bins Set (HBS).

(Gap) After the previously chosen expected inter-packet interval expired
without receiving a packet and a dummy packet has been sent, the new interval
is selected only from lower bins, i.e., those associated with short intervals. This
collection of bins will be referred to as the Low-Bins Set (LBS).

Intuitively, when the flow contains a natural burst, the next expected interval
is chosen to be long to decrease the chance of introducing a dummy packet where
packet density is already high. When the flow contains a natural gap, the next
interval is short, to increase the chance of introducing a dummy packet. HBS
and LBS can be configured based on observed traffic characteristics (see below).

Basic adaptive padding does not impose any extra latency on real packets.
(A small delay is needed to defeat active attacks, as described in section 6.)
Extra processing at each mix consists of generating a random number for each
received packet, and, if necessary, drawing a dummy packet from its store. This
is negligible compared to decryption and re-encryption that must be performed
on each packet. The exact amount of dummy traffic is a parameter of the system,
and depends on the desired effectiveness against timing analysis (see section 5.2).

5 Experimental Evaluation

We evaluate four schemes: undefended, defensive dropping [17], a variant of de-
fensive dropping with constant-rate cover traffic (i.e., real traffic is not delayed,
only dummy packets are sent at constant rate), and adaptive padding. For each
scheme, attacker’s crossover error rate is computed on 3000 simulated flows.

To simplify comparisons with [17], we use the same model for network links.
The packet drop rate is drawn from an exponential distribution with the mean
of either 5% (between the sender and the first mix), or 1% (mix-to-mix links).
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The average delay d is uniformly random between 0 and 100 ms. The actual
delay for each packet is drawn from an exponential distribution with mean d.

The traffic model in our simulations is based on actual TCP traffic traces
from Lawrence Berkeley Laboratory [16] and NLANR archives [21]. We found
that our results are consistent across all traces. The data presented in the rest of
the paper are based on the NLANR Auckland-VIII data set [20]. The distribution
of inter-packet intervals within a single TCP connection, used by the adaptive
padding algorithm in our simulations, was also extracted from these traces.

To simulate application traffic, we select an inter-packet interval at random
from the distribution, generate a “real” packet after the interval expires, and re-
peat. For adaptive padding and undefended simulations, this is exactly the traffic
emitted by the sender. For the variant of defensive dropping with constant-rate
cover traffic, a real packet is sent as soon as it is generated, and a dummy packet
is sent at some constant rate. For standard defensive dropping, both real and
dummy packets are sent at the same constant rate, i.e., real packets are placed in
a queue until it’s time to send them. We do not model TCP acknowledgements,
re-transmissions, exponential backoff in response to dropped packets, and other
TCP features that may be exploited by a sophisticated attacker. Our simple
model is sufficient to demonstrate the power of inter-packet interval correlation.

In the undefended simulation, each mix simply forwards packets to the next
mix. With defensive dropping, the first mix drops a dummy packet with probabil-
ity 0.6. With adaptive padding, mixes inject dummy packets using the dual-mode
algorithm of section 4 and the pre-set distribution of inter-packet intervals.

5.1 Attack Model

The attacker observes a set of entry links and a set of exit links with the goal
to determine which exit link corresponds to which entry link.

Attacker’s observation time is set to 60 seconds, enough to defeat previously
proposed defenses. Increasing observation time reduces effectiveness of any de-
fense, including ours. Even small statistical differences between packet flows can
be detected if the observation time is long enough. We conjecture that long-term
attacks cannot be prevented without assuming that some senders or mixes emit
cover traffic in perfect synchrony, which cannot be achieved by any real system.

The attacker divides time into windows of W seconds [17]. Empirically, W = 1
gives the most accurate results. For each observed link, the attacker counts the
number of packets xk during the kth window, producing a sequence of packet
counts for each link. For every possible entry-exit pair, he computes the cross-
correlation of the two sequences as r(d) = i((xi−μ)(x′

i+d−μ′))√
i(xi−μ)2

√
i(x

′
i+d−μ′)2

, where delay

d = 0 and μ, μ′ are the means of the two sequences.
If the correlation r(d) for a pair of links exceeds some threshold t, the attacker

determines that the links carry the same flow. Otherwise, he determines that they
carry different flows. For a given t, the false positive rate is the fraction of pairs
that carry different flows but were erroneously determined to carry the same flow;
the false negative rate is the fraction of same-flow pairs that were erroneously



26 V. Shmatikov and M.-H. Wang

determined to carry different flows. The attacker chooses t so that the false
positive and false negative rates are equal. This is the attacker’s crossover error
rate. High crossover rate means that the defense is effective.

5.2 Evaluation Results

An overview of our results is in fig. 2. The crossover rates for defensive dropping
and adaptive padding are from configurations that produce, on average, one
dummy packet for each real packet (1:1 padding ratio). The constant rate for
both types of defensive dropping is 6.67 packets per second.

Undefended. Timing analysis is extremely effective against unmodified network
flows. (Recall that only inter-packet intervals are unmodified; all other defenses,
including encryption, are deployed, and no mixes are corrupted.) The crossover
rate is close to 0, i.e., there exists a correlation threshold that results in negligible
false positive and false negative rates. Inter-packet intervals on two links of the
same path have correlation close to 0.9 vs. less than 0.3 for unrelated links.
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Fig. 3. Padding ratio vs. effectiveness
against timing analysis

Defensive dropping with constant-rate cover. The variant of defensive
dropping in which dummy packets are sent at constant rate while real packets
are sent as soon as they are produced by the application does not provide much
protection, with the crossover rate close to 0. Constant-rate cover traffic may hide
periods of inactivity, but does not eliminate patterns of inter-packet intervals.

Adaptive padding and defensive dropping. Defensive dropping and adap-
tive padding are the two defenses that offer some protection against timing anal-
ysis, increasing the attacker’s crossover rate to above 0.25 in our simulations.

The two defenses work for different reasons. Defensive dropping decreases cor-
relations within the same flow to 0.4−0.6, while raising (erroneous) correlations
of different flows to 0.3 − 0.5. This is due to constant-rate cover traffic, which
causes all flows to look similar initially. For defensive dropping to work, other
flows must be sent at the same constant rate as the protected flow.

Adaptive padding, on the other hand, raises correlation between different flows
only to 0.1− 0.3, and most of the defensive effect is due to lowering correlation
within the same flow to 0.2 − 0.4. Adaptive padding thus provides standalone
defense for a flow even if other flows do not use any defenses.
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Fig. 3 displays the fundamental tradeoff of adaptive padding between the
padding ratio and the attacker’s crossover error rate. As the padding ratio in-
creases, the attacker’s error rate goes up at the cost of increased network con-
gestion, as more dummy packets must be generated for each real packet.

At point A in fig. 3, LBS is bins b4−7, and HBS is bins above b12. The error
rate is raised only to .03, but only 1 dummy packet is needed per 9 real packets.
Defensive dropping achieves the same 1:9 padding ratio if the constant rate is
set to 3 packets per second. The resulting error rate of 0.27 is better than adap-
tive padding, but the average extra latency per packet exceeds 3.5 seconds (see
fig. 6).

At point B in fig. 3, LBS is set to bins b3−6, and HBS to bins above b11. On
average, this requires 0.56 dummy packets per each real packet and achieves 0.37
error rate with zero extra latency. By contrast, the constant rate that achieves a
comparable padding ratio for defensive dropping results in (significantly worse)
0.2 error rate, with average extra latency of 1.1 seconds per packet.

At point C, LBS is bins b0−8, and HBS is bins above b10. The resulting padding
ratio is around 1.3:1, and the attacker’s error rate is 0.48, close to theoretically
optimal. In our simulations, defensive dropping was unable to achieve similar
error rates with padding ratios under 50:1.

Short paths. When paths are short (2 or 3 mixes) and defensive dropping is
used, attacker’s error rates decrease slightly. Fewer variations due to natural net-
work delays and drops are accumulated by the flows, and distinguishing features
of entry links are still pronounced on exit links, leading to higher correlations.

With adaptive padding, crossover rates decrease, too. Padding ratios decrease
as well, because fewer mixes inject dummy packets, e.g., at point B in fig. 3, the
error rate is 0.19 with the padding ratio of 1:3. Decreasing padding ratios tend
to outweigh decreasing error rates, i.e., for a given padding ratio, the error rate
for shorter paths is comparable or better than that for longer paths.

6 Active Attacks

In addition to passively observing network links, an active attacker may impose
his own timing signature onto the target flow and attempt to recognize this
signature on other network links. We assume that he cannot create new packets
(this requires knowledge of the symmetric keys of all subsequent mixes), nor
replay packets (this is easy to prevent with caching and hash checking).

Artificial gaps. The attacker may drop several consecutive packets in the target
flow to create a large gap. Fig. 4 shows the results of simulating 3000 normal
flows and and 3000 target flows in which the attacker drops several consecutive
packets on the entry link 1 second after the flow has started.

Dropping even a small number of consecutive packets drastically decreases
the effectiveness of defensive dropping. With constant rate, all flows look very
similar initially, so a noticeable change to one of the flows, such as introduction
of a large gap, is almost guaranteed to create a recognizable feature.
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ror rate for 5-sec artificial burst attack

With adaptive padding, artificial drops do not decrease the attacker’s error
rate. Intermediate mixes are likely to reduce the gap by injecting dummy packets.
Moreover, other flows may have similar gaps due to natural variations.

Artificial bursts. The attacker can create a signature from artificial packets
bursts by holding up packets on a link and then releasing all of them at once.

We simulated this attack with a 5-second and 15-second attacker’s queue
(while very effective, the latter is somewhat unrealistic, as it is likely to result
in the higher-level TCP connection simply being dropped). Defensive dropping
provides no defense: the crossover rate is 0 in both cases, i.e., the attacker can
perfectly identify the target flow. With adaptive padding, the crossover rate
drops from .45 to .36 with a 5-second queue, and to .21 with a 15-second queue.

Our modified adaptive padding algorithm breaks up bursts by queueing all
packets whose inter-arrival time is in the first bin (i.e., very short). Each such
packet is delayed for a short random interval. Fig. 5 shows the tradeoff between
the crossover rate and the extra latency imposed on real packets. As expected,
the longer the delay, the better the defense. This penalty is paid only by packets
with extremely short inter-arrival times; the impact on normal flows is small.

7 Comparison with Constant-Rate Defenses

We further compare adaptive padding with constant-rate defenses, including
variations such as the defensive dropping scheme of Levine et al. [17].

Latency is prohibitive. Constant-rate defenses fundamentally assume that
senders emit traffic at a constant rate. Low-latency mix networks, however, are
intended to provide anonymity for interactive applications such as Web browsing,
and it is well-known (and borne out by real-world traces such as [21]) that
Web traffic is bursty. Therefore, the sender must delay packets when the rate
of actual traffic generated by the application exceeds the pre-set constant rate.
Furthermore, this delay propagates to all subsequent packets. If the rate of real
traffic exceeds the pre-set constant rate, packet delays increase to infinity.

Fig. 6 quantifies the latency penalty. For example, if the constant rate is 5
packets per second, real packets are delayed by 1.1 seconds on average. This delay
may be acceptable for relatively one-directional and non-interactive applications.
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Fig. 6. Latency penalty of constant-rate defenses

Constant-rate defenses may thus be a good choice for users who are willing to
tolerate increased latencies and are not worried about active attacks.

For interactive applications, however, extra latency is likely to be prohibitive.
Moreover, there is evidence that low latency is essential for user adoption of
anonymity systems [12]. A non-trivial increase in latency may cause fewer users
to participate in the system, resulting in lower baseline anonymity.

The average maximum delay for each flow in our simulations is approximately
3.5 seconds, with many flows delayed by almost 10 seconds. Delays like these
are likely to result in dropped TCP connections, disabling the network for all
purposes (such effects are beyond the scope of our simplified model).

By contrast, adaptive padding does not impose any extra latency against a
passive attacker, and only a small latency against an active attacker.

Everybody must send at the same constant rate. As observed in sec-
tion 5.2, constant-rate defenses are effective only if most flows in the network
are emitted at the same constant rate, which is clearly unrealistic. On the other
hand, adaptive padding is effective in protecting a single flow even if other flows
in the network do not use any defense against timing analysis.

There is no “right” constant rate. It may appear that the latency prob-
lem may be solved by setting a high constant rate which matches the shortest
inter-packet interval(s) of actual traffic. Unfortunately, this is not feasible. Inter-
packet intervals associated with traffic bursts are so short that the constant
rate must be exceedingly high, resulting in vast amounts of dummy traffic when
bursts are not occurring. From the network perspective, this “solution” is equiv-
alent to taking the most congested time slice and expanding it to the entire
connection.

Defense fails against active attacks. As shown in section 6, constant-rate de-
fenses, including defensive dropping, do not provide any defense against artificial
gaps or bursts introduced by an active attacker.

Defense fails at high traffic rates. With defensive dropping, only dummy
packets may be dropped by intermediate mixes. If the application generates real
packets at a higher rate than the chosen constant rate, most packets on each
link are real and cannot be dropped. This becomes simple constant-rate traffic,
which is vulnerable to basic timing analysis [14,17].
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Defense reveals presence of real traffic. Even if real traffic is sparse (but
bursty), the constant-rate blend of real and cover traffic produced by defensive
dropping will likely consist of alternating sequences of real and dummy pack-
ets. Because only dummy packets may be dropped by intermediate mixes, the
attacker can conclude that periods of sparse packets are padding and periods of
dense packets are real traffic. If constant-rate cover traffic with defensive drop-
ping is used to hide whether the connection is active or not, the attacker can
break the defense simply by observing packet density.

8 Creation and Management of Dummy Packets

The main feature of our approach is that dummy packets are injected into
the flow by intermediate mixes (as opposed to the route initiator), in order
to “smooth out” statistical anomalies in inter-packet intervals. In the simplest
case, the mix creates dummy packets itself, encrypting them with the next mix’s
key. The next mix decrypts the packet, recognizes it as a dummy, re-encrypts
it and forwards it on. A passive attacker cannot feasibly distinguish encrypted
dummy packets from encrypted real packets by observing the network. An active
attacker who can compromise a mix, however, will be able to recognize dummy
packets generated by the preceding mixes, negating the effects of cover traffic.

Pre-computation of dummy packets. For security in the presence of com-
promised mixes, injected dummy packets should be indistinguishable from real
packets by all subsequent mixes. If layered encryption is used, dummy packets
should be encrypted with the the same keys in the same order as real packets.

An intermediate mix does not know its successors in the mix chain, and thus
cannot properly encrypt a dummy packet itself. One solution is to have the
initiator pre-compute large batches of dummy packets for all mixes in the chain.
This is done offline, e.g., during route setup, and thus has no impact on the
bandwidth and latency of actual communication. During route setup, each mix
receives from the initiator a batch of dummy packets. The batch is encrypted
with their shared pairwise key. Each dummy packet is properly encrypted with
the keys of all successor mixes (this does not leak their identities). Whenever the
mix needs to inject a dummy packet, it simply gets it from the batch. None of
its successors on the route can tell a real packet from an injected dummy packet.

These batches can be replenished periodically, or, depending on the implemen-
tation, a mix may signal to the route initiator that it needs a new batch when
the connection is quiet. This approach is secure against compromised mixes, and
trades off storage at the intermediate mixes against online computation (since
mixes no longer generate dummy packets on the fly), resulting in faster perfor-
mance. It also prevents malicious mixes from flooding the connection with bogus
dummy packets, because they will not decrypt properly at the successor mixes.

Injection of pre-computed packets into a stream of encrypted packets assumes
that encryption is block cipher-based, as in, e.g., the Freedom system [5]. If a
stream cipher is used, as in onion routing [27,11], the state of the cipher used
for the ith layer of encryption must be synchronized between the sender and the
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ith mix in the path. Because the sender cannot predict when an intermediate
mix may need to inject a dummy packet, pre-computation is infeasible, and an
alternative mechanism such as reverse paths (see below) must be used.

Malicious clients and servers. Vulnerability of real-world mix networks to
timing analysis performed by malicious clients and servers has been shown by,
respectively, Øverlier and Syverson [23], and Murdoch and Danezis [19]. In our
case, we assume that dummy packets are sent beyond the last mix to the desti-
nation server, and that the latter can recognize and discard them.

This can sometimes be achieved without server cooperation. For example, if
the sender knows that the server discards all packets with an invalid message
authentication code (MAC), he can append invalid MACs to all dummy packets.
Even if the attacker compromises the last mix, he does not learn the key shared
between the sender and the destination, and thus cannot check MAC validity.

In general, adaptive padding requires server cooperation, and thus does not
protect from malicious servers. This may appear to be a serious disadvantage viz.
sender-originated cover traffic, but, in reality, many low-latency applications such
as Web browsing are bidirectional, and thus also require server cooperation. For
instance, if defensive dropping is used to protect HTTP connections, a malicious
server can easily track propagation of its responses back to the client.

Protection offered by adaptive padding (or, in general, by any mix-injected
cover traffic) is a mirror image of protection offered by sender-originated cover
traffic. With the former, the last link of a mix chain is padded, but the first
link is not. With the latter, the first link is padded, but the last link is not.
Therefore, the former requires server cooperation, while the latter requires client
cooperation (and is insecure against a malicious client).

Reverse routes. Another solution is to reverse the conventional route setup
process so that the server (rather than the initiator) ends up sharing a key with
each mix in the chain. The sender encrypts packets only with the server’s key
and sends them to the first mix on the path. Each succeeding mix encrypts the
packet with the key it shares with the server. The server unwraps all onion layers
of encryption. (A similar mechanism is used by location-hidden servers in Tor.)
With reverse routes, intermediate mixes can easily inject dummy packets into
the flow — all they need to do is simply encrypt them with the key they share
with the next mix, and send them with the proper route identification.

The Øverlier-Syverson attack on hidden servers demonstrates the importance
of protecting reverse paths from malicious clients. Since this cannot be done with
sender-based defenses, mix-injected cover traffic is a better solution in this case.

9 Challenges and Future Directions

Attacks considered in this paper by no means exhaust the list of possible threats
against low-latency mix networks. We made the standard, unrealistic assumption
that all connections start at the same time. In reality, attacks based on correlat-
ing start and end times of connections may prove very successful. In general, it is
very difficult to hide connection start and end times using dummy traffic because
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the mix network handles dummy and real packets differently (e.g., dummies can
or even should be dropped, while real packets are never dropped).

With adaptive padding, any intermediate mix may inject a dummy packet.
The more mixes a flow has traversed, the denser it tends to become. The attacker
may be able to estimate the hop count of a flow by measuring its density. This
cannot always be used to attack anonymity, however. Furthermore, padding
ratios are higher on the links closer to the destination. Even when the average
padding ratio is low, links toward the end of the path may experience more
congestion. On the flip side, the client-side links, which tend to be slower and less
reliable, are free of padding. In two-way communication, where the same route
with adaptive padding is used in both directions, the padding ratios balance out.
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Abstract. We study the problem of Secure Multi-party Computation
(SMC ) in a model where individual processes contain a tamper-proof
security module, and introduce the TrustedPals framework, an efficient
smart card based implementation of SMC for any number of participat-
ing entities in such a model. Security modules can be trusted by other
processes and can establish secure channels between each other. How-
ever, their availability is restricted by their host, that is, a corrupted
party can stop the computation of its own security module as well as
drop any message sent by or to its security module. We show that in
this model SMC can be implemented by reducing it to a fault-tolerance
problem at the level of security modules. Since the critical part of the
computation can be executed locally on the smart card, we can compute
any function securely with a protocol complexity which is polynomial
only in the number of processes (that is, the complexity does not depend
on the function which is computed), in contrast to previous approaches.

1 Introduction

Motivation. The problem of Secure Multi-party Computation (SMC, sometimes
also referred to as Secure Function Evaluation), is one of the most fundamental
problems in security. The setting is as follows: a set of n parties jointly wants
to compute the result of an n-ary function F . Every party provides its own
(private) input to this function but the inputs should remain secret to the other
parties, except for what can be derived from the result of F . The problem is
easy to solve if you assume the existence of a trusted third party (TTP) which
collects the inputs, computes F and distributes the result to everyone. However,
the problem is very challenging if you assume that there is no TTP available and
parties can misbehave arbitrarily, that, they can send wrong messages or fail to
send messages at all. Still, the protocol must correctly and securely compute F
as if a TTP were available.
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Having been initially proposed by Yao in 1982 [28], it got its first solution
only in 1987, when Goldreich, Micali and Wigderson [15] showed that in a syn-
chronous system with cryptography a majority of honest processes can simulate
a centralized trusted third party. This was done by transforming the function F
into a computation over a finite field and then showing that addition and mul-
tiplication in this finite field could be implemented securely using secret sharing
and agreement protocols. It was also shown that a majority of honest processes
was necessary for SMC.

All existing general solutions to SMC are based on the original idea of Goldre-
ich, Micali and Wigderson [15]. Hence, the message complexity always depends
on the function that is computed. For example, the most efficient solution to
SMC we are aware of [17] requires communicating O(m · n3) field elements (m
is the number of multiplication gates in F ) and at least O(n2) rounds of com-
munication (in fact, the round complexity also depends on F ). Thus, despite
solutions, many practictioners have been prevented to attempting to implement
general SMC due to lack of efficiency.

Recently, there has been an increasing interest in SMC which probably stems
from the growing importance and the difficulty to implement fault-tolerance in
combination with security in today’s networks. In fact, in the concluding remarks
on the COCA project, Zhou, Schneider and van Renesse [29] call to investigate
practical secure multi-party computation.

Related Work. In 2003, MacKenzie, Oprea and Reiter [20] presented a tool
which could securely compute a two-party function over a finite field of a specific
form. Later, Malkhi et al. [21] presented Fairplay, a general solution of two-
party secure computation. Both papers follow the initial approach proposed
by Goldreich, Micali and Wigderson [15], that is, they make extensive use of
compilers that translate the function F into one-pass boolean circuits. Iliev and
Smith [18] report in yet unpublished work on performance improvements using
trusted hardware. In this paper we revisit SMC in a similar model but using a
different approach.

The approach we use in this paper was pioneered by Avoine and Vaudenay
[4]. It assumes a synchronous model with no centralized TTP, but the task of
jointly simulating a TTP is alleviated by assuming that parties have access to
a local security module (Avoine and Vaudenay [4] call this a guardian angel).
Recently, manufacturers have begun to equip hardware with such modules: these
include for instance smart cards or special microprocessors. These are assumed
to be tamper proof and run a certified piece of software. Examples include the
Embedded Security Subsystem within the recent IBM Thinkpad or the IBM
4758 secure co-processor board [10]. A large body of computer and device man-
ufacturers has founded the Trusted Computing Group (TCG) [27] to promote
this idea. Security modules contain cryptographic keys so that they can set up
secure channels with each other. However, they are dependant on their hosts to
be able to communicate with each other.

Later, Avoine et al. [3] showed that, in a model with security modules, the
fair exchange problem, an instance of SMC, can be reduced to an agreement
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problem amoung security modules, which can itself be transformed to the con-
sensus problem, a classical problem of fault-tolerant distributed computing. The
reduction allows modular solutions to fair exchange, as the agreement abstrac-
tion can be implemented in different ways [9,13]. The problem of SMC has not
yet been investigated in this model.

Contributions. In this paper, we investigate the resilience and efficiency of SMC
in the model of untrusted hosts and security modules. In this model the secu-
rity modules and their communication network form a subnetwork with a more
benign fault assumption, namely that of general omission [24]. In the general
omission failure model processes may simply stop executing steps or fail to send
or receive messages sent to them.

We extend the work by Avoine et al. [3] and derive a novel solution to SMC
in a modular way: We show that SMC is solvable if and only if the problem
of Uniform Interactive Consistency (UIC) is solvable in the network of security
modules. UIC is closely related to the problem of Interactive Consistency [23],
a classic fault-tolerance problem. From this equivalence we are able to derive a
basic impossibility result for SMC in the new model: We show that UIC requires
a majority of correct processes and from this can conclude that SMC is impossi-
ble in the presence of a dishonest majority. This shows that, rather surprisingly,
adding security modules cannot improve the resilience of SMC. However, we
prove that adding security modules can considerably improve the efficiency of
SMC protocols. This is because the computation of F can be done locally within
the security modules and does not affect the communication complexity of the
SMC protocol. Therefore our solution to SMC which uses security modules re-
quires only O(n) rounds of communication and O(n3) messages. To the best
of our knowledge, this is the first solution for which the message and round
complexity do not depend on the function which is computed.

Furthermore, we give an overview of TrustedPals, a peer-to-peer implemen-
tation of the security modules framework using Java Card Technology enabled
smart cards [8]. Roughly speaking, in the TrustedPals framework, F is coded as
a Java function and is distributed within the network in an initial setup phase.
After deployment, the framework manages secure distribution of the input values
and evaluates F on the result of an agreement protocol between the set of secu-
rity modules. To show the applicability of the framework, we implemented the
approach of Avoine et al. [3] for fair exchange. To our knowledge, TrustedPals is
the first practical implementation of SMC (1) for any number of processes and
(2) which does not require a transformation into and a subsequent computation
in a finite field. While still experimental, the TrustedPals framework is available
for download [1].

Roadmap. We first present the model in Section 2. We then define the security
problem of secure multi-party computation (SMC) and the fault-tolerance prob-
lem of uniform interactive consistency (UIC) in Sections 3 and 4. The security
problems arising when using UIC within a SMC protocol are discussed in Sec-
tion 5. We present the equivalence of SMC and UIC, in Section 6, and finally
describe the TrustedPals efficient framework in Section 7.
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2 Model

2.1 Processes and Channels

The system consists of a set of processes interconnected by a synchronous com-
munication network with reliable secure bidirectional channels. Two processes
connected by a channel are said to be adjacent.

A reliable secure channel connecting processes P and Q satisfies the following
properties:

– (No Loss) No messages are lost during the transmission over the channel.
– (No Duplication) All messages are delivered at most once.
– (Authenticity) If a message is delivered at Q, then it was previously sent by

P .
– (Integrity) Message contents are not tampered with during transmission,

i.e., any change during transmission will be detected and the message will
be discarded.

– (Confidentiality) Message contents remain secret from unauthorized entities.

In a synchronous network communication proceeds in rounds. In each round,
a party first receives inputs from the user and all messages sent to it in the
previous round (if any), processes them and may finally send some messages to
other parties or give outputs to the user.

2.2 Untrusted Hosts and Security Modules

The set of processes is divided into two disjoint classes: untrusted hosts (or
simply hosts) and security modules. We assume that there exists a fully connected
communication topology between the hosts, i.e., any two hosts are adjacent. We
denote by n the number of hosts in the system. Furthermore, we assume that
every host process HA is adjacent to exactly one security module process MA

(there is a bijective mapping between security modules and hosts). In this case
we say that HA is associated with MA (MA is HA’s associated security module).
We call the part of the system consisting only of security modules and the
communication links between them the trusted system.

We call the part of the system consisting only of hosts and the communica-
tion links between them the untrusted system. The notion of association can be
extended to systems, meaning that for a given untrusted system, the associated
trusted system is the system consisting of all security modules associated to any
host in that untrusted system (see Figure 1).

In some definitions we use the term process to refer to both a security module
and a host. We do this deliberately to make the definitions applicable both in
the trusted and the untrusted system.

2.3 Relation to Systems with Trusted Hardware

The model sketched above can be related to the setup in practice as follows:
untrusted hosts model Internet hosts and their users, whereas security modules
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Fig. 1. Hosts (parties) and security modules

abstract tamper proof components of user systems (like smart cards). Intuitively,
security modules can be trusted by other security modules or hosts, and hosts
cannot be trusted by anybody. Hosts may be malicious, i.e., they may actively
try to fool a protocol by not sending any message, sending wrong messages, or
even sending the right messages at the wrong time.

Security modules are supposed to be cheap devices without their own source
of power. They rely on power supply from their hosts. In principle, a host may
cut off the power supply to its security module whenever he chooses, thereby
preventing the security module from continuing to execute steps. Instead of doing
this, a host may inhibit some or even all communication between its associated
security module and the outside world.

2.4 Trust and Adversary Model

The setting described above is formalized using distinct failure models for differ-
ent parts of the system. We assume that nodes in the untrusted system can act
arbitrarily, i.e., they follow the Byzantine failure model [19]. In particular, the
incorrect processes can act together according to some sophisticated strategy,
and they can pool all information they possess about the protocol execution.
We assume however that hosts are computationally bounded, i.e., brute force
attacks on secure channels are not possible.

For the trusted system we assume the failure model of general omission [24],
i.e., processes can crash or fail by not sending messages or not receiving messages.
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A process is faulty if it does not correctly follow the prescribed protocol. In
particular, a security module is faulty if it crashes or commits send or receive
omissions. Otherwise a process is said to be correct. In a system with n processes,
we use t to denote a bound on the number of hosts which are allowed to be faulty.

3 Secure Multi-party Computation

In secure multi-party computation (SMC), a set of processes p1, . . . , pn, each
starting with an input value xi, wants to compute the result of a deterministic
function F , i.e., r = F (x1, . . . , xn). Result r should be computed reliably and
securely, i.e., as if they were using a trusted third party (TTP). This means that
the individual inputs remain secret to other processes (apart from what is given
away by r) and that malicious processes can neither prevent the computation
from taking place nor influence r in favorable ways.

We assume that F is a well-known deterministic function with input domain
X and output domain Y upon which all processes have agreed upon beforehand
and that all correct processes jointly begin the protocol. We say that r is an
F -result if r was computed using F . Since faulty processes cannot be forced
to submit their input value, F may be computed using a special value ⊥ /∈ X
instead of the input value of a faulty process.

Instead of defining SMC using a TTP [14], we now define SMC using a set of
abstract properties.

Definition 1 (secure multi-party computation). A protocol solves secure
multi-party computation (SMC) if it satisfies the following properties:

– (SMC-Validity) If a process receives an F -result, then F was computed with
at least the inputs of all correct processes.

– (SMC-Agreement) If some process pi receives F -result ri and some process
pj receives F -result rj then ri = rj.

– (SMC-Termination) Every correct process eventually receives an F -result.
– (SMC-Privacy) Faulty processes learn nothing about the input values of cor-

rect processes (apart from what is given away by the result r and the input
values of all faulty processes).

From a security protocols perspective, the above definition can be considered
slightly stronger than the usual (cryptographic) definitions of SMC since it de-
mands that SMC-properties hold without any restriction. In the literature it is
often stated that the probability of a violation of SMC-properties can be made
arbitrarily small. We have chosen this stronger definition to simplify the presen-
tation. We believe that definitions, theorems and proofs can be transferred into
a probabilistic model with moderate effort.

The properties of SMC are best understood by comparing them to a solution
based on a TTP. There, the TTP waits for the inputs of all n processes and
computes the value of F on all those inputs which it received. Since all correct
processes send their input value to the TTP, F is computed on at least those
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values, which motivates SMC-Validity. After computing F , the TTP sends the
result back to all processes. Hence, all correct processes eventually receive that
result (SMC-Termination). Additionally, if a process receives a result from the
TTP, then it will be the same result which any other process (whether correct or
faulty) will receive. This motivates SMC-Agreement. SMC-Privacy is motivated
by the fact that the TTP does all the processing and channels to the TTP
are confidential: no information about other processes’ input values leaks from
this idealized entity, apart of what the result of F gives away when it is finally
received by the processes.

4 Uniform Interactive Consistency

The problem of Interactive Consistency (IC) was introduced by Pease, Shostak
and Lamport in 1980 [23]. It is one of the classical problems of reliable distributed
computing since solutions to this problem can be used to implement almost any
type of fault-tolerant service [26]. In this problem, every process starts with an
initial value vi. To solve the problem, the set of processes needs to agree on
a vector D of values, one per process (Agreement property). Once vector D is
output by process p, we say that p decides D. The i-th component of this vector
should be vi if pi does not fail, and can be ⊥ otherwise. IC is equivalent to the
(also classic) Byzantine Generals Problem [19].

Definition 2 considers a version of IC with a stronger agreement property
called Uniform Agreement. Uniform Agreement demands that all processes
should decide the same (if they decide) — it does not matter whether they
are correct or faulty.

Definition 2 (uniform interactive consistency). A protocol solves uniform
interactive consistency (UIC) if it satisfies the following properties:

– (UIC-Termination) Every correct process eventually decides.
– (UIC-Validity) The decided vector D is such that D[i] ∈ {vi,⊥}, and is vi if

pi is not faulty.
– (UIC-Uniform Agreement) No two different vectors are decided.

Parvédy and Raynal [22] studied the problem of UIC in the context of general
omission failures. They give an algorithm that solves UIC in such systems pro-
vided a majority of processes is correct. Since their system model is the same as
the one used for trusted systems in this paper, we conclude:

Theorem 1 ([22]). If t < n/2 then UIC is solvable in the trusted system.

Parvédy and Raynal also show that Uniform Consensus (UC), a problem closely
related to UIC, can be solved in the omission failure model only if t < n/2.
In Uniform Consensus, instead of agreeing on a vector of input values like in
UIC, all processes have to decide on a single value which must be input value of
some process. Given a solution to UIC, the solution to UC can be constructed in
the following way: the processes first solve UIC on their input values and then
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output the first non-⊥ element of the decided vector as the result of UC. Thus,
we conclude:

Corollary 1. UIC is solvable in the trusted system only if t < n/2.

5 Maintaining Secrecy in Trusted Systems

The problem of UIC, which was introduced in the previous section, will be used
as a building block in our solution to SMC. The idea is that a protocol for SMC
will delegate certain security-critical actions to the trusted system in which the
UIC protocol runs. In this section we argue that we have to carefully analyze
the security properties of the protocols which run within the trusted system in
order to maintain confidentiality and be able to implement SMC-Privacy.

5.1 Example of Unauthorized Information Flow

Assume that a host HA hands its input value vA of SMC to its associated security
module MA and that MA sends vA over a secure channel to the security module
MB of host HB. Since all communication travels through HB, HB can derive
some information about vA even if all information is encrypted. For example,
if no special care is taken, HB could deduce the size (number of bits) of vA by
observing the size of the ciphertext of vA. This may be helpful to exclude certain
choices of vA and narrow down the possibilities in order to make a brute-force
attack feasible.

As another example, suppose MA only sends vA to MB if vA (interpreted as
a binary number) is even. Since we must assume that HB knows the protocol
which is executed on MA and MB, observing (or not observing) a message on
the channel at the right time is enough for MB to deduce the lowerest order
bit of vA. In this example, the control flow of the algorithm (exhibited by the
message pattern) unintentionally leaks information about secrets.

5.2 Security Properties of Protocols in the Trusted System

A protocol running in the trusted system needs to satisfy two properties to be
of use as a building block in SMC:

– (Content Secrecy) Hosts cannot learn any useful information about other
hosts’ inputs from observing the messages in transit.

– (Control Flow Secrecy) Hosts cannot learn any useful information about
other host’s inputs from observing the message pattern.

To provide these two secrecy properties in general, it is sufficient to use a
communication protocol between the processes that ensures unobservability. Un-
observability refers to the situation when an adversary cannot distinguish mean-
ingful protocol actions from “random noise” [25]. In particular, unobservability
assumes that an adversary knows the protocol which is running in the under-
lying network. It demands that despite this knowledge and despite observing
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the messages and the message pattern on the network it is impossible for the
adversary to figure out in what state the protocol is. The term “state” refers to
all protocol variables including the program counter, e.g., the mere fact whether
the protocol has started or has terminated must remain secret.

Definition 3 (unobservability). A protocol satisfies unobservability if an
unauthorized entity which knows the protocol cannot learn any information about
the state of the protocol.

Obviously, if unobservability is fulfilled during the application of UIC then an
adversary cannot obtain any information which may be derived from the control
flow of the algorithm and therefore Content Secrecy and Control Flow Secrecy
are fulfilled.

There are known techniques in the area of unobservable communication that
guarantee perfect unobservability [25]. It goes without saying that unobservabil-
ity techniques are not for free. However, the cost does not depend on the function
F and depends only polynomially on the number of processes (i.e. number of
real messages).

Unobservability as well as Content and Control Flow Secrecy are sufficient
to maintain secrecy in the trusted subsystem. However, Control Flow Secrecy is
sometimes not necessary. In the fair exchange implementation of Avoine et al.
[3] it was shown that, to ensure security, it is sufficient that the adversary does
not know when the agreement protocol is in its final round. The adversary may
know whether the protocol is running or not.

This (weaker) form of Control Flow Secrecy was implemented using the idea
of fake rounds. In the first round of the protocol, a random number ρ is dis-
tributed amoung the security modules. Before actually executing the agreement
protocol, ρ fake rounds are run. Using encryption and padding techniques, it is
impossible for the adversary to distinguish a fake round from an actual round
of the agreement protocol.

6 Solving SMC with Security Modules

6.1 Relating SMC to UIC

The following theorem shows that SMC and UIC are “equivalent” in their re-
spective worlds. The idea of the proof is to distribute the input values to the
function F within the trusted subsystem using UIC and then evaluate F on the
resulting vector. The functional properties of SMC correspond to those of UIC
while the security properties of SMC are taken care of the properties of the se-
curity modules and the fact that the UIC protocol can be made to operate in
an unobservable way.

Theorem 2. SMC is solvable for any deterministic F in the untrusted system
if and only if UIC is solvable in the associated trusted system.
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SMC(input xi)
D := secureUIC (xi)
return F (D)

Fig. 2. Implementing SMC using UIC on security modules. Code for the security mod-
ule of host Hi. The term “secure UIC” refers to a UIC protocol that satisfies Content
Secrecy and Control Flow Secrecy.

UIC(input vi)
D := SMCF (vi)
return D

Fig. 3. Implementing UIC on security modules using SMC for the function
F (v1, . . . , vn) = (v1, . . . , vn) in the untrusted system. Code for the security module
of host Hi.

Proof. (⇐) We first prove that the solvability of UIC in the trusted system
implies the solvability of SMC in the untrusted system. Fig. 2 shows the trans-
formation protocol which is executed within the security module. The hosts first
give their inputs for SMC to their security modules. Security modules run “se-
cure UIC” (i.e., UIC which satisfies Message Secrecy and Control Flow Secrecy)
on these inputs, compute F on the decided vector and give the result to their
hosts. We prove that the properties of SMC are achieved.

First consider SMC-Validity. UIC-Termination guarantees that all correct pro-
cesses eventually decide on some vector D. UIC-Validity guarantees that D con-
tains the inputs of all correct processes, and hence, SMC-Validity holds for the
output of the transformation algorithm.

Consider SMC-Agreement. From UIC-Uniform Agreement it follows that all
processes decide on the same vector. As F is deterministic, all processes compute
the same F -result if they compute such a result.

SMC-Termination follows immediately from UIC-Termination.
Now consider SMC-Privacy. Since secure UIC is executed (i.e., the construc-

tion and proof techniques presented in Section 5 have been applied to ensure Con-
tent Secrecy and Control Flow Secrecy) and because security modules are tamper-
proof, we conclude that there is no unauthorized information flow from within the
trusted system to the outside (i.e., to the untrusted system). The only (authorized)
flow of information occurs at the interface of the security modules when they out-
put the result of computing F . SMC-Privacy easily follows from this observation.

(⇒) We now prove that if SMC is solvable in the untrusted system, then UIC
is solvable in the trusted system.

First note that if SMC is solvable in the untrusted system, then SMC is trivially
also solvable in the trusted system. This is because the assumptions available to
the protocol are much stronger (general omission failures instead of Byzantine).
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To solve UIC, we let the processes compute the function F (v1, . . . , vn) =
(v1, . . . , vn) (see Fig. 3). We now show that the properties of UIC follow from
the properties of SMC.

UIC-Termination follows immediately from SMC-Termination.
To see UIC-Validity, consider the decided vector D = (d1, . . . , dn). SMC-

Validity and the construction of Fig. 3 guarantee that D contains the inputs
of all correct processes. Consider a faulty process pj with input value vj . Then
either F was computed using its input, and then dj = vj , or, according to
our definition of SMC, function F was computed using a special input value ⊥
instead of vj , and then, dj = ⊥.

To see UIC-Uniform Agreement follows directly from SMC-Agreement.
This concludes the proof. �

Theorem 2 allows us to derive a lower bound on the resilience of SMC in the
given system model using Theorem 1.

Corollary 2. There is no solution to SMC in the untrusted system if t ≥ n/2.

6.2 Analysis

Theorem 2 and Corollary 2 show that adding security modules cannot improve
the resilience of SMC compared to the standard model without trusted hardware
[15]. For the model of perfect security (i.e., systems without cryptography) our
secure hardware has a potential to improve the resilience from a two-thirds
majority [5,7] to a simple majority. However, this would rely on the assumption
that security modules can withstand any side-channel attack, an assumption
which can hardly be made in practice.

Since F is computed locally, the main efficiency metric for our solution is
message and round complexity of the underlying UIC protocol. For example,
the worst case message complexity of the protocol of Parvédy and Raynal [22]
is O(n3) and the worst case round complexity if O(n) even if modifications
for unobservable communication are added [6]. This is in contrast to the most
efficient solution to SMC without secure hardware which requires at least O(n2)
rounds and O(mn3) messages where m is the number of multiplications in F [17].

7 TrustedPals Implementation

We now report on the implementation of the trusted subsystem using smart
cards [1]. Our implementation is fundamentally a peer-to-peer distributed sys-
tem. Each peer consists of two parts, the security module and its (untrusted)
host application. It leverages the power of different programming platforms and
software technologies.

7.1 Programming Platforms and Technologies

The security module is realized using a Java Card Technology enabled smart
card, whereas its (untrusted) host application is implemented as a normal Java
desktop application.
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The Java Card Technology defines a subset of the Java platform for smart
cards and allows application developers to create and install smart card appli-
cations on their own, even after the smart card was manufactured. Multiple
Java Card applications (so-called Applets) from different vendors can run on the
same smart card, without compromising each other’s security. The communica-
tion between the host computer and the smart card is a half-duplex, master-slave
model. In Java Card Technology, there are two programming models used for
communication with the smart card, the APDU message-passing model and
the Java Card Remote Method Invocation (JCRMI ), a subset of Java SE RMI
distributed-object model. Though our current implementation uses the APDU
model, we plan to migrate to JCRMI. For more information about the Java Card
Technology, we refer the interested readers to Chen [8].

The host part of the application is implemented in Java, using the Spring
Framework [12]. Spring is a lightweight, dependency injection inversion of con-
trol container that allows us to easily configure and assemble the application
components. For more on dependency injection and inversion of control contain-
ers, please refer to Fowler [11].

The OpenCard Framework [16] is used by the host part of the application
for communication with the smart card, whereas the JMS (Java Message Ser-
vice) is used for communication with the other hosts. JMS is a standard Java
API, part of Java Platform, Enterprise Edition, for accessing enterprise mes-
saging systems. It allows the applications to communicate in a loosely coupled,
asynchronous way. Besides, the provided infrastructure supports different qual-
ity of service, fault tolerance, reliability, and security requirements. As a JMS
provider, we have used ActiveMQ [2]. It is an open source, 100% compliant JMS
1.1 implementation, written in Java. ActiveMQ can be seamlessly integrated and
configured through Spring. What is more, its support for message-driven POJOs
concept and the Spring’s JMS abstraction layer makes much easier the devel-
opment of message applications. Another interesting feature of ActiveMQ is its
concept called Networks of Brokers. It allows us to start a broker for each host;
these brokers then interconnect with each other and form a cluster of brokers.
Thus, a failure of any particular host does not affect the other hosts.

7.2 Architecture

The overall (simplified) architecture of our project is depicted in Figure 4, where
relations between components are depicted. The components comprise the Pro-
tocol on the smart card, the Controller, the Clock, the Message Communication
Unit and the Adversary which operate on the host.

The Protocol on the smart card in fact consists of several parts: (1) a Java
implementation of the function F which is to be evaluated, and (2) an imple-
mentation of UIC which satisfies sufficient secrecy properties as explained above.

All messages generated during the execution of the protocol are encrypted
and padded to a standard length and sent over the APDU interface to the host.
The Communication Unit takes care of distributing these messages to other hosts
using standard Internet technology. The Controller and the Clock are under total



46 M. Fort et al.

Fig. 4. Relations between architecture components

control of the host. This is acceptable as tampering with them would just result
in message deletion or in disturbing the synchronous time intervals, which might
cause message losses as well. That would be no problem, since the adversary has
power to destroy messages stored in the Message Communication Unit, due to
the general omission model nature, where process crashes and message omissions
may occur - note that a process crash may be simulated by permanent message
omissions, that is, all messages are omitted. In order to perform fault-injection
experminents, the Adversary unit may simulate transient or permanent message
omissions.

In the host memory, the Clock triggers individual rounds in the Controller,
which then triggers the individual rounds in the protocol on the smart card. To
run a different protocol, it is sufficient to add a new (so called applet) protocol
to the (multiple applet) smart card.
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7.3 Experiences

We implemented the fair exchange protocol of Avoine et al. [3] within Trust-
edPals and tested it with four participating parties. The code of one party was
executed on a smart card while the code of the other parties was simulated on
a single PC.

We did some initial measurements on the speed of the protocol. We observed
that the communication between the host PC and the smart card is the bot-
tleneck and dominates the time needed to execute a synchronous round. Our
implementation needed roughly 600 ms to perform the necessary communica-
tion and so in our setup we set the round length to one second. Depending in
the necessary level of security the protocol needs between 4 and 10 rounds (i.e.,
between 4 and 10 seconds) to complete. Since our implementation is not opti-
mzed for speed and future technologies promise to increase the communication
bandwith on between host and smart card, we believe that this performance can
be improved considerably.

We did some fault-injection experiments and tested the implementation using
the random adversary. Within more than 10.000 runs the protocol did not yield
any single successful security violation.
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Abstract. Many theoretical PIR (Private Information Retrieval) con-
structions have been proposed in the past years. Though information
theoretically secure, most of them are impractical to deploy due to the
prohibitively high communication and computation complexity. The re-
cent trend in outsourcing databases fuels the research on practical PIR
schemes. In this paper, we propose a new PIR system by making use of
trusted hardware. Our system is proven to be information theoretically
secure. Furthermore, we derive the computation complexity lower bound
for hardware-based PIR schemes and show that our construction meets
the lower bounds for both the communication and computation costs,
respectively.

1 Introduction

Retrieval of sensitive data from databases or web services, such as patent
databases, medical databases, and stock quotes, invokes concerns on user privacy
exposure. A database server or web server may be interested in garner informa-
tion about user profiles by examining users’ database access activities. For ex-
ample, a company’s query on a patent from a patent database may imply that it
is pursuing a related idea; an investor’s query on a stock quote may indicate that
he is planning to buy or sell the stock. In such cases, the server’s ability of per-
forming information inference is unfavorable to the users. Ideally, users’ database
retrieval patterns are not leaked to any other parties, including the servers.

A PIR (Private Information Retrieval) scheme allows a user to retrieve a data
item from a database without revealing information about the data item. The
earliest references of "query privacy" date back to Rivest et al [18] and Feigen-
baum [9]. The first formal notion of PIR was defined by Chor et al [6]. In their
formalization, a database is modelled as a n-bit string x = x1x2 · · ·xn, and a
user is interested in retrieving one bit from x. With this formalization, many
results have been produced in recent years. Depending on whether trusted hard-
ware is employed or not, we classify PIR schemes into two categories: traditional
PIR which does not utilize any trusted hardware and hardware-based PIR which
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employs trusted hardware in order to reduce communication and computation
complexities.

The major body of PIR work focuses on the traditional PIR. Interested read-
ers are referred to a survey [10] for a thorough review. A big challenge in PIR
design is to minimize the communication complexity, which measures the num-
ber of bits transmitted between the user and the server(s) per query. A trivial
solution of PIR is for the server to return the entire database. Therefore, the
upper bound of communication complexity is O(n) while the lower bound is
O(log n), since by all means the user has to provide an index. For a single server
PIR with information theoretic privacy, it is proven in [6] that the communi-
cation complexity is at least O(n) and therefore confirming that O(n) is the
lower bound. Two approaches are used to reduce the communication cost. One
is to duplicate the database in different servers, with the assumption that the
servers do not communicate with each other. Without assuming any limit the
servers’ computation capability, PIR schemes with multiple database copies are
able to offer information theoretic security with lower communication cost. The
best known result is [3] due to Beimel et. al., with communication complexity
O(nlog log ω/ω log ω), where ω is the number of database copies. The other ap-
proach still uses single server model but assumes that the server’s computation
capability is bounded. Schemes following this approach offer computational se-
curity with relatively low communication complexity. The best result to date is
due to Lipmaa [15], where the user and the server communication complexity
are O(κ log2 n) and O(κ log n) respectively, with κ being the secure parameter
of the underlying computationally hard problem.

Another key performance metric of PIR schemes is their computation com-
plexity. All existing traditional PIR schemes require high computation cost at
the server(s) end. Beimel et al [4] proved that the expected computation of the
server(s) is Ω(n)1, which implies that any study on traditional PIR schemes is
only able to improve its computation cost by a constant factor.

To the best of our knowledge, two hardware-based PIR constructions exist in
literature. The earlier scheme [19] due to Smith and Safford is proposed solely to
reduce the communication cost. On each query, a trusted hardware reads all the
data items from an external database and returns the requested one to the user.
The other hardware-based scheme [13,14] is due to Iliev and Smith. The scheme
facilitates an efficient online query process by offloading heavy computation load
offline. For each query, its online process costs O(1). Nonetheless, depending on
the hardware’s internal storage size, for every k (k << n) queries the external
database needs to be reshuffled with a computation cost O(n log n). For conve-
nience, we refer to the first scheme as SS01 and the latter as IS04. Both schemes
have O(log n) communication complexity.

Our Contributions. The contributions of this paper are three-fold: (1) We
present a new PIR scheme using the same trusted hardware model as in [13] and
1 Ω is the notation for asymptotic lower bound. f(n) = Ω(g(n)) if there exists a

positive constant c and a positive integer n0 such that 0 ≤ cg(n) ≤ f(n) for all
n ≥ n0.
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prove that it is secure in the information theoretical sense; (2) Among all existing
PIR constructions, our scheme achieves the best performance in all aspects:
O(log n) communication complexity, O(1) online computation cost and O(n)
offline computation cost; (3) We prove that our average computation complexity
per query, O(n/k), is the lower bound for hardware-based PIR schemes using
the same model, where k (k << n) is the maximum number of data items stored
by the trusted hardware.

2 Models and Definitions

Database Model and Its Permutation. We use π to denote a permutation of n
integers: (1, 2, · · · ,n). For 1 ≤ i ≤ n, the image of i under π is denoted by π(i).
A database D is modelled as an array, represented by D = [d1, d2, · · ·dn], where
di is the i-th data item in its original form, for 1 ≤ i ≤ n. A permuted D under π
is denoted by Dπ and its i-th data record is denoted by Dπ[i], for 1 ≤ i ≤ n. The
database D is permuted into Dπ by using π in such a way that the i-th element
of Dπ is the π(i)-th element in D, i.e.

Dπ[i] = dπ(i) (1)

In other words, Dπ = π−1(D). To protect the secrecy of π, the permutation
is always coupled with encryption operations. In the rest of the paper, we use
Dπ[i] � dπ(i) to denote that Dπ[i] is the ciphertext of dπ(i). To illustrate the idea,
a trivial example is as follows. Let π = (1324), which means π(1) = 3, π(2) =
4, π(3) = 2, π(4) = 1. Then for D = [d1, d2, d3, d4], we have Dπ � [d3, d4, d2, d1].
To distinguish the entries in the original plaintext database and the permuted
and encrypted database, we use the convention throughout the paper that data
items refer to those in D and data records refer to those in Dπ.

Architecture. As shown in Figure 1 below, our hardware-based PIR scheme com-
prises of three types of entities: a group of users; a server and a trusted hardware
denoted by TH. The server hosts a permuted and encrypted version of a database
D = [d1, · · · , dn], which consists of n items of equal length2. TH is a secure and
tamper-resistant device residing on the server. With limited computation power
and storage cache, TH shuffles the original database D into database Dπ based
on a permutation π; it remembers the permutation π and answers users’ queries.

Each user interacts with TH via a secure channel, e.g. a SSL connection.
When a user wants to retrieve the i-th data item of D, she sends a query q to
TH through the channel. On receiving q, TH accesses the permuted database Dπ

and retrieves the intended item di. Throughout the paper, by using "q = i", we
mean the query q requests the i-th item of D. By saying "the index of a (data)
item", we refer to its index in the original database D, by saying "the index of a
(data) record", we refer to its index in the shuffled database in which the record
locates.
2 If necessary, we use padding for those data items with different length. Different to

the bit model in [6], we extend it to the block model.
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Fig. 1. Hardware-based PIR Model

Trusted Hardware. TH is trusted in the sense that it honestly executes the PIR
protocol. Neither outside adversaries nor the server is able to tamper its exe-
cution or access its private space. Its limited private cache is able to store up
to k (k << n) data items along with their indices. The indices of those cached
items are managed by TH using a list denoted by Γ . In other words, Γ stores
the original indices. We assume TH is capable of performing CPA-secure (i.e.,
secure under Chosen Plaintext Attacks) symmetric key encryption/decryption
and to generate random numbers or secret keys.
Access Pattern. As in [11], the access pattern for a time period is defined A =
(a1, · · · , aN), where ai is the data record read in the i-th database access, for i ∈
[1, N ]. We observe that a record in the access pattern is essentially a probabilistic
result of both the current query and the query history. In fact, the latter results
in the current state of TH and the database.
Adversary. We consider adversaries who attempt to derive non-trivial informa-
tion from the user’s queries. Possible adversaries include both outside attackers
and the server. Note that we do not assume any trust on the server. The adver-
sary is able to monitor all the input and output of TH. Moreover, the adversary
is allowed to query the database at her will and receives the replies from TH.
Stained Query and Clean Query. A query is stained if its content, e.g. the index
of the requested data, is known to the adversary without observing the access
pattern. This may occur in several scenarios. For instance, a query is compro-
mised or revealed accidently; or the query could be originated from the adversary
herself. On the other hand, a query is clean if the adversary does not know its
content before observing the access pattern.
Security Model. Our security model follows the security notion in ORAM [11].
We measure the information leakage from PIR query executions. A secure PIR
scheme ensures that the adversary does not gain additional information to de-
termine the distribution of queries. Formally, we define it as follows.
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Definition 1. A hardware-based PIR scheme is secure, if given a clean query q
and an access pattern A, the conditional probability for the event that the query
is on index j (i.e., q=j) is the same as its a-priori probability, i.e.

Pr(q = j|A) = Pr(q = j), for all j ∈ [1,n].

The equation implies that the access pattern A reveals to the adversary no
information on the target query q’s content.

Table 1 below highlights the notations used throughout this paper.

Table 1. Notations

Notation Description
k The maximum number of data items cached in TH.
D The original database in the form of (d1, d2, · · · , dn).
π0, π1, · · · A sequence of secret random permutations of n elements {1, 2, · · · , n}.
Dπs A permuted database of D using permutation πs such that Dπs [j] �

dπs(j), for 1 ≤ j ≤ n, where Dπs [j] denotes the j-th record in Dπs .
ai The retrieved data record by TH during its i-th access to a shuffle

database.
A The access pattern comprising all the retrieved records (a1, · · · , aN)

during a fixed time period.
As The access pattern comprising all the retrieved records during the s-th

session, as defined in Section 3.
Γ The list of (original) indices of all data items stored in TH’s cache.

3 The PIR Scheme

System Setup

We consider applications where a trusted third party (TTP) is available to ini-
tialize the system. This TTP is involved only in the initialization phase and then
stays offline afterwards. For other scenarios where the TTP is not available, an
alternative solution is provided in Section 6.

TTP secretly selects a random permutation π0 and a secret key sk0. It per-
mutes the original database D into Dπ0 , which is encrypted under sk0, such that
Dπ0 [j] � dπ0(j) for j ∈ [1,n]. Dπ0 is then delivered to the server. TTP secretly
assigns π0 and sk0 to TH, which completes the system initialization.

The outline of our PIR scheme is as follows. Every k consecutive query execu-
tions are called a session. For the s-th session, s ≥ 0, let πs,Dπs and sks denote
the permutation, the database, and the encryption key respectively. On receiving
a query from the user, TH retrieves a data record from Dπs , decrypts it with sks

to get the data item, and stores the item in its private cache. Then TH replies
to the user with the desired data item. The detailed operations on data retrieval
are shown in Algorithm 1. After k queries are executed, TH generates a new
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random permutation πs+1 and an encryption key sks+1. It reshuffles Dπs into
Dπs+1 by employing πs+1 and sks+1. Note that in the newly shuffled database
Dπs+1 , all data items are encrypted under the secret key sks+1. The details on
database reshuffle are given in Algorithm 2.

The original database D is not involved in any database retrieval operations.
Since TH always performs a decryption for every read operation and an encryp-
tion for every write operation, we omit them in the algorithm description in
order to keep the presentation compact and concise.

Retrieval Query Process

The basic idea of our retrieval algorithm is the following. TH always reads a
different record on every query and every record is accessed at most once. Thus,
if the database is well permutated (in the sense of oblivious permutation), all
database accesses within the session appear random to the adversary.

Without loss of generality, suppose that the user intends to retrieve di in D
during the s-th session (s ≥ 0). On receiving the query for index i, TH performs
the following: If the requested di is not in TH’s cache, it locates the corresponding
record in the permutated database Dπs by computing the record index as π−1

s (i).
If the requested item resides in TH, it reads from Dπs a random record which is
not accessed before 3. The algorithm is elaborated in Figure 2 below.

di Dπs

i
i /∈ Γ

π−1
s (i) Dπs di

Γ = Γ ∪ {i}

j j ∈R {1, · · · , n} \ Γ
π−1

s (j) Dπs dj

Γ = Γ ∪ {j}
di

Fig. 2. Retrieval Query Processing Algorithm

Access Pattern. The access pattern As produced by Algorithm 1 is a sequence
of data records which are retrieved from Dπs during the s-th session. It is clear
from Figure 2 that on each query, TH reads exactly one data record from Dπs .
Therefore, when the s-th session terminates, As has exactly k records.

3 The operation should be coded so that both "if" and "else" situations take the same
time to stand against side-channel attack. This requirement is applied at the similar
situation of reshuffle algorithm later.
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Reshuffle Process

After k retrievals, TH’s private cache reaches its limit, which demands a reshuffle
of the database with a new permutation. Note that simply using cache substitu-
tion introduces a risk of privacy exposure. The reason is that when a discarded
item is requested again, the adversary knows that a data record is retrieved more
than once by TH from the same location. Therefore, a reshuffle procedure must
be executed at the end of each session.

TH first secretly chooses a new random permutation πs+1. The expected
database Dπs+1 satisfies Dπs+1 [j] � dπs+1(j), j ∈ [1,n]. The correlation between
Dπs and Dπs+1 is

Dπs+1[j] � Dπs [π
−1
s ◦ πs+1(j)], (2)

for 1 ≤ j ≤ n, where π−1
s ◦ πs+1(j) means π−1

s (πs+1(j)).
The basic idea of our reshuffle algorithm is as follows. We sort the items in

TH’s cache in ascending order based on their new positions in Dπs+1 . We observe
that those un-cached items in Dπs will also be logically sorted in the ascending
order based on their new indexes, because the database supports index-based
record retrieval. The reshuffle process is similar to a merge-sort of the sorted
cached items and un-cached items. TH plays two roles: (1) participating in the
merge-sort to initialize Dπs+1 ; (2) obfuscating the read/write pattern to protect
the secrecy of πs+1.

TH first sorts indices in Γ based on the ascending order of their images under
π−1

s+1. It assigns database Dπs+1 sequentially, starting from Dπs+1 [1]. For the
first n − k assignments, TH always performs one read operation and one write
operation; for the other k assignments, TH always performs one write operation.
The initialization of Dπs+1 [j], j ∈ [1,n], falls into one of the following two cases,
depending on whether its corresponding item is in the cache or not.

Case(i) The corresponding item is not cached (i.e., πs+1(j) �∈ Γ ): TH reads it
(i.e., the record Dπs [π−1

s ◦πs+1(j)]) from Dπs and writes it to Dπs+1 as Dπs+1 [j].

Case (ii) The corresponding item is in the cache (i.e., πs+1(j) ∈ Γ ): Before
retrieving Dπs [π−1

s ◦πs+1(j)] from the cache and writing it into Dπs+1 as Dπs+1 [j],
TH also performs a read operation for two purposes: (a) to demonstrate the same
reading pattern as if in Case (i) so that the secrecy of πs+1 is protected; (b) to
save the cost of future reads. Moreover, instead of randomly reading a record
from the Dπs , TH looks for the smallest index which has not been initialized
and falls in Case (i). It then retrieves the corresponding data record from Dπs .
Since Γ is sorted, this searching process totally costs k comparisons for the entire
reshuffle process. The benefit of this approach coupled with a sorted Γ is that
both the costs for testing if πs+1(j) ∈ Γ and the item retrieval from the cache
are O(1); Otherwise, both cost O(k) per item and O(nk) in total.

The details of the reshuffle algorithm are shown in Figure 3, where min de-
notes the head of sorted Γ . We use sortedel(i)/ sortins(i) to denote the sorted
deletion/insertion of index i from/to Γ and subsequent adjustments.
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Algorithm 2: Reshuffle Dπs into Dπs+1, executed by TH
1. secretly select a new random permutation πs+1;
2. sort indices in Γ based on the order of their images under π−1

s+1.
set j = 1; j′ = 1.

3. while 1 ≤ j ≤ n − k do
4. while πs+1(j′) ∈ Γ do j′ = j′ + 1 end;
5. set r = π−1

s ◦ πs+1(j′); read Dπs [r] from Dπs ;
6. if j = j′ /∗ Case (i): πs+1(j) /∈ Γ ∗/

7. write Dπs+1 by setting Dπs+1 [j] � Dπs [r];
8. else /∗ Case (ii): πs+1(j) ∈ Γ ∗/

9. write Dπs+1 by setting Dπs+1 [j] � dmin; a

10. sortedel(j); Insert Dπs [r] into cache and sorteins(j′);
11. j = j + 1;j′ = j′ + 1;
12. end{while};
13. while n − k + 1 ≤ j ≤ n do
14. set Dπs+1 [j] = dmin; sortdel(j);
15. j = j + 1;
16. end

a dmin is exactly Dπs [π−1
s ◦πs+1(j)] since Dπs+1 is filled in by an increas-

ing order.

Fig. 3. Database Reshuffle Algorithm

The reshuffle algorithm is secure and efficient. An intuitive explanation of its
security is as follows. After a reshuffle, the new database is reset to its initial
status. If an item has been accessed in the previous session, it is placed at a ran-
dom position by the reshuffle. Other items are indeed relatively linkable between
sessions. However, the linkage does not provide the adversary any advantage
since they have not been accessed at all. Note that the addition in the inner loop
is executed at most n− 1 times in total, since j′ never decreases. Because Γ is
a sorted list and the inserted and deleted indices are in an ascending order, the
insertion and deletion are of constant cost. Totally at most n comparisons are
needed for the whole execution. Therefore, the overall computation complexity
of Algorithm 2 is O(n).

Reshuffle Pattern. The access pattern produced by Algorithm 2 is denoted
by Rs. Since TH only reads n− k data records, Rs has exactly n− k elements.
Note that the writing pattern is omitted because it is in a fixed order, i.e.,
sequentially writing from position 1 to position n.

4 Security

We now proceed to analyze the security of our scheme based on the notion
defined in Section 2. Our proof essentially goes as follows. Lemma 1 proves that
the reshuffle procedure is oblivious in the same notion as in Oblivious RAM [11].
Thus after each reshuffle, the database is reset into the initial state such that
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the accesses between different sessions are not correlated. Then in Theorem 1 we
show that each individual query session does not leak information of the query,
which leads to the conclusion on user privacy across all sessions.

Lemma 1. The reshuffle algorithm in Figure 3 is oblivious. For any non-
negative integer s, any integer j ∈ [1,n],

Pr(Dπs [j] = dl |A0,R0, · · · ,As−1,Rs−1) = 1/n, (3)

for all l ∈ [1,n], where Ai and Ri, i ∈ [0, s − 1], are the access pattern and
reshuffle pattern for i-th session respectively.

Proof. We prove Lemma 1 for a fixed j by induction on the session index s.
The proof applies to all j ∈ [1,n].
I. s = 0. Since Dπ0 , the initial shuffled database, is constructed in advance under
a secret random permutation π0, the probability Pr(Dπ0 [j] = dl | ∅) = 1/n holds
for all 1 ≤ l ≤ n.

II. Suppose the lemma is true for s = i, that is, Pr(Dπi [j] = dl | A0,R0, · · · ,
Ai−1,Ri−1) = 1/n. We proceed to prove that it holds for s = i + 1, i.e.

Pr(Dπi+1 [j] = dl |A1,R1, · · · ,Ai,Ri) = 1/n, (4)

for all l ∈ [1,n].
In order to use the recursive assumption, We link the two databases Dπi+1

and Dπi by the following conditional probability,

Pr(Dπi+1 [j] = dl |A1, R1, · · · , Ai, Ri)

=
n∑

x=1

Pr(Dπi+1 [j] = Dπi [x] |A1, R1, · · · , Ai, Ri) · Pr(Dπi [x]=dl |A1, R1, · · · , Ai, Ri).

(5)

Then the formula is evaluated depending on cases that whether or not l is
stained and whether or not the item corresponding to x is in the cache. The
conclusion is obtained by showing that the right hand side of the equation sums
to be 1/n in any case. Due to page limitation, the detailed proof which can be
found in the full version [22] is omitted here. �

Lemma 1 implies that the reshuffle procedure resets the observed distribution
of the data items. Therefore, the events occurring during separated sessions
are independent of each other. Theorem 1 below addresses the security of the
proposed PIR scheme.

Theorem 1. Given a time period, the observation of the access pattern A =
(a1, a2, · · · , aN), N > 0, provides the adversary no additional knowledge to de-
termine any clean query q, i.e. for all j ∈ [1,n],

Pr(q = j|A) = Pr(q = j) (6)

where Pr(q = j) is an a-priori probability of query q being on index j.
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Proof. For 1 < t ≤ N , let Pr(at | a1, · · · , at−1) denote the probability of the
event that data at is accessed immediately after the access of t − 1 records.
Let Pr(at | a1, · · · , at−1; q = j) denote the probability of the same event with
additional knowledge that the requested index of query q is j. Note that we do
not assume any temporal order of the query q and the t-th query. We proceed
to show below that

Pr(at | a1, · · · , at−1) = Pr(at | a1, · · · , at−1; q = j) (7)

Without loss of generality, suppose at is read from Dπs during the s-th session.
Consider the following two cases:

1. at ∈ Rs, i.e. at is accessed during a reshuffle process: Obviously Pr(at |
a1, · · · , at−1) = Pr(at | a1, · · · , at−1; q = j), due to the fact that the access
to at is completely determined by permutation πs and πs+1.

2. at ∈ As, i.e. at is accessed during a query process: Let this query be the l-th
query in this session, l ∈ [1, k]. Therefore, l− 1 data items are cached by TH
before at is read. We consider two scenarios based upon Algorithm 1:
(a) The requested data is cached in TH: at is randomly chosen from those

data items not cached in TH. Therefore, Pr(at | a1, · · · , at−1) = 1
n−(l−1) .

(b) The requested data is not cached in TH: at is retrieved from Dπs based
on the permutation πs. According to Lemma 1, the probability that at

is selected is 1
n−(l−1) .

Note that the compromise of a query, i.e. knowing q = j, possibly helps
an adversary to determine whether at is in case (2a) or (2b). Nonetheless,
this information does not change Pr(at | a1, · · · , at−1), since their values are

1
n−(l−1) in both cases. Thus, Pr(at | a1, · · · , at−1) = Pr(at | a1, · · · , at−1, q =
j) when at ∈ As.

In total, we conclude that for any t and q = j,

Pr(at | a1, · · · , at−1) = Pr(at | a1, · · · , at−1; q = j).

As a result,

Pr(A | q = j) = Pr(a1, · · · , aN | q = j)
= Pr(aN | a1, · · · , aN−1; q = j) · Pr(a1, · · · , at−1 | q = j)

=
N∏

t=1

Pr(at | a1, · · · , at−1; q = j)

=
N∏

t=1

Pr(at | a1, · · · , at−1)

= Pr(A). (8)
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Then,

Pr(q = j |A) = Pr(q = j,A)/Pr(A)

=
Pr(A | q = j) · Pr(q = j)

Pr(A)
= Pr(q = j).

The result shows that, given the access pattern, the a-posteriori probability
of a query equals to its a-priori probability, which concludes the security proof
for our PIR scheme. �

5 Performance

We proceed to analyze the communication and computation complexity of our
PIR scheme. They are evaluated with respect to the database size n. Both com-
plexities of our scheme reach the respective lower bounds for hardware-based
PIR schemes.
Communication. We consider the user/system communication cost per query.
In our scheme, the users only inputs an index of the desired data item and
TH returns exactly one data item. Therefore, its communication complexity per
query is O(log n). Note that O(log n) is the lower bound of communication cost
for all PIR constructions.
Computation. For simplicity purpose, each reading, writing, encryption, and de-
cryption of a data item is treated as one operation. The computation cost is
measured by the average number of operations per session and per query. We
also measure the online cost which excludes the expense of offline reshuffle op-
erations.

As evident in Figure 2 and 3, it costs the trusted hardware O(1) operations to
process a query and O(n) operations to reshuffle the database. Table 2 compares
the computation cost of our scheme against [19] and [13,14].

Table 2. Comparison of Computation Cost of Three Hardware-based PIR Schemes

Schemes Total cost Online cost Average Cost
per session (k queries) per query per query

Our scheme O(n) O(1) O(n/k)
IS04 [13,14] O(n log n) O(1) O(n

k
log n)

SS01 [19] O(kn) O(n) O(n)

Our scheme outperforms the other two hardware-based PIR schemes in all
three metrics. The advantage originates from our reshuffle algorithm which
utilizes the hardware’s cache in a more efficient manner. Moreover, we prove
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that the average cost per retrieval of our scheme reaches the lower bound for
all information-theoretic PIR schemes with the same trusted hardware system
model. Our result is summarized in the following theorem.

Theorem 2. For any information-theoretically secure PIR scheme with a
trusted hardware storing maximum k data items, the average computation cost
per retrieval is Ω(n/k).

Proof. Our proof is constructed in a similar manner to the proof in [4] which
shows the computational lower bound for traditional PIR schemes.

Fix a PIR scheme, let Bi denote the set of all indices that the hardware
reads in order to return di. Bi is essentially a random variable probabilistically
determined by both the user query on di and the items that the hardware has
already stored inside. Consequently, E(|Bi|) denotes the expect number of data
items to read by the hardware to process a query on index i. We evaluate E(|Bi|)
as the computation cost for PIR schemes.

For 1 ≤ l ≤ n, let Pr(l ∈ Bi) be the probability that the hardware reads dl in
order to answer the query on index i. We define P(l) as the maximum of these
probabilities for all 1 ≤ i ≤ n, i.e.

P(l) = max
1≤i≤n

{Pr(l ∈ Bi)}.

Note that for an information-theoretically secure PIR scheme, user privacy im-
plies that B1, B2, · · · , Bn have the identical distribution. Therefore, for conve-
nience purpose, let

P(l) = Pr(l ∈ B1).

Due to Lemma 5 of [4]4,

E(|Bi|) =
n∑

l=1

P(l). (9)

Our target now is to show E(|Bi|) = Ω(n/k). We prove it by contradiction.
Suppose that among P(1), · · · ,P(n), there at least exist k + 1 of them whose

values are less than 1/(k+1). Without loss of generality, let the k+1 probabilities
be P(1),P(2), · · · ,P(k+1). Now consider the probability Pr(1 /∈ B1∩2 /∈ B2 · · ·∩
(k + 1) /∈ Bk+1). We have,

Pr(1 /∈ B1 ∩ 2 /∈ B2 · · · ∩ (k + 1) /∈ Bk+1)
= 1− Pr(1 ∈ B1 ∪ 2 ∈ B2 · · · ∪ (k + 1) ∈ Bk+1)

≥ 1−
k+1∑
l=1

Pr(l ∈ Bl) = 1−
k+1∑
l=1

P(l)

> 1− (k + 1)
1

k + 1
= 0.

4 It can be proved by defining the random variables Y1, · · · , Yn where Yl = 1 if l ∈ Bi

and Yl = 0 otherwise.
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On the other hand, note that TH only caches k data items in maximum. As a
consequence, there always exists one data item which must be read from the
database during the k + 1 queries on 1, 2, · · · , k + 1. Thus, the event that 1 /∈
B1∩2 /∈ B2 · · ·∩(k+1) /∈ Bk+1 never occurs, i.e. Pr(1 /∈ B1∩2 /∈ B2 · · ·∩(k+1) /∈
Bk+1) = 0, which contradicts the probability computation above.

Thus, at most k elements in {P(1), · · · ,P(n)} whose values are less than
1/(k + 1) . As a result,

n∑
l=1

P(l) ≥ (n− k) · 1
k + 1

, (10)

which shows the lower bound for average computation cost is Ω(n/k). �

6 Discussion

Database Initialization Using TH

For applications where no trusted third party exists, TH can be used to initialize
the database. TH first chooses a random permutation π0. For 1 ≤ i ≤ n, TH
tags the i-th item di with its new index π−1

0 (i). Using the merge-sort algorithm
[8], d1, d2, · · · , dn are sorted based on their new indices by TH. With the limited
cache size in TH, Batcher’s odd-even merges sorter [1] is an appropriate choice
which requires (log2 n−log n+4)n/4−1 comparisons. One may argue that Beneš
network [21] and Goldstein et al’s switch networks [12] incur less comparisons.
Unfortunately, neither is feasible in our system since the first one requires at
least n log n-bit (>> k) memory in TH while the latter has a prohibitively high
setup cost. Note that encryption is applied during tagging and merging so that
the process is oblivious to the server.

A simple example is presented in Fig. 4. The database in the example has
4 items d1, d2, d3, d4. The permutation is π0 = (1324), i.e. π0(1) = 3, π0(2) =
4, π0(3) = 2 and π0(4) = 1. The circles denote TH and the squares denote
encrypted data items. After initialization, the original four items are permuted
as shown on the right end. All the encrypted items are stored on the host. In

1||3d1||3d3||2d4||1d

1||3d

3||2d

2||4d

1d

2d

3d

4d

1||3d

2||4d

4||1d 3||2d

2||4d

4||1d

3||2d

2||4d

4||1d

tag merge 1 by 1 to 
length 2 merge 2 by 2 to length 4

Fig. 4. Initial oblivious shuffle example using odd-even merges
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every operation, only two items are read into TH’s cache and then written back
to the server.

Instantiation of Encryption and Permutation Algorithms

An implicit assumption of our security proof in Section 4 is the semantic se-
curity of the encryption of the database. Otherwise, the encryption reveals the
data information and consequently exposes user privacy. Our adversary model
in Section 2 allows the adversary to submit queries and observe the subsequent
access patterns and replies. Thereafter, the adversary is able to obtain k pairs
of plaintext and ciphertext in maximum for each encryption key, since different
random keys are selected in different sessions. Thus, it is demanded to have an
encryption algorithm semantically secure under CPA (Chosen Plaintext Attack)
model. In practice, CPA secure symmetric ciphers such as AES, are preferred
over public key encryptions, since the latter have more expensive computation
cost and higher storage space demand.

For the permutation algorithm, we argue that it is impractical for a hardware-
based PIR to employ a true random permutation, since it requires O(n log n)
bits of storage, comparable to the size of the whole database. As a result, we opt
for a pseudo-random permutation with a light computation load.

Since a cipher secure under CPA is transformed into an invertible pseudo-
random permutation, we choose a CPA secure block cipher, e.g. AES, to im-
plement the needed pseudo-permutation. With a block cipher, a message is en-
crypted by blocks. When n �= 2�log n�, the ciphertext may be greater than n.
In that case, the encryption is repeated until the output is in the appropriate
range. Since 2�log n� ≤ 2n, the expected number of encryptions is less than 2.
Black and Rogaway’s result in [5] provides more information on ciphers with
arbitrary finite domains.

Service Continuity

The database service is disrupted during the reshuffle process. The duration
of a reshuffle is non-negligible since it is an O(n) process. A trivial approach to
maintaining the continuity of service is to deploy two pieces of trusted hardware.
While one is re-permuting the database, the other deals with user queries. In
case that installing an extra hardware is infeasible, an alternative is to split the
cache of the hardware into two halves with each having the capacity of storing
k/2 items. Consequently, the average computation cost will be doubled.

Update of Data Items

A byproduct of the reshuffle process is database update operations. To update
di, the trusted hardware reads di obliviously in the same way as handling a read
request. Then, di is updated inside the hardware’s cache and written into the
new permuted database during the upcoming reshuffle process. Though the new
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value of di is not written immediately into the database, data consistency is
ensured since the hardware returns the updated value directly from the cache
upon user requests.

7 Conclusion

In summary, we present in this paper a novel PIR scheme with the support of a
trusted hardware. The new PIR construction is provably secure. The observation
of the access pattern does not offer additional information to adaptive adversaries
in determining the data items retrieved by a user.

Similar to other hardware-based PIR schemes, the communication complex-
ity of our scheme reaches its lower bound, O(log n). In terms of computation
complexity, our design is more efficient than all other existing constructions. Its
online cost per query is O(1) and the average cost per query is only O(n/k),
which outperforms the best known result by a factor O(log n) (though using a
big-O notation, the hidden constant factor is around 1 here). Furthermore, we
prove that O(n/k) is the lower bound of computation cost for PIR schemes with
the same trusted hardware based architecture.

The Trusted Computing Group (TCG) [20] defines a set of Trusted Computing
Platform (TCP) specifications aiming to provide hardware-based root of trust
and a set of primitive functions to propagate trust to application software as well
as across platforms. How to extend and improve our proposed PIR scheme based
on trusted computing technologies will be one of our future research directions.
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Abstract. Despite increasing needs for the coalition-based resource
sharing, establishing trusted coalition of nodes in an untrusted com-
puting environment is a long-standing yet increasingly important issue
to be solved. The Trusted virtual domain (TVD) is a new model for es-
tablishing trusted coalitions over heterogeneous and highly decentralized
computing environment. The key technology to enable TVD is the in-
tegrity assurance mechanism, which allows a remote challenger to verify
the configuration and state of a node.

A modern computer system consists of a multi-layer stack of software,
such as a hypervisor, a virtual machine, an operating system, middle-
ware, etc. The integrity assurance of software components is established
by chains of assurance from the trusted computing base (TCB) at the
lowest layer, while the communication interface provided by nodes should
be properly abstracted at a higher layer to support interoperable com-
munication and the fine-grained handling of expressive messages.

To fill the gap between ”secure communication between nodes” and
”secure communication between trusted components”, a notion of ”Se-
cure Message Router (SMR)”, domain-independent, easy to verify, multi-
functional communication wrapper for secure communication is intro-
duced in this paper. The SMR provides essential features to establish
TVDs : end-to-end secure channel establishment, policy-based message
translation and routing, and attestability using fixed clean implementa-
tion. A virtual machine-based implementation with a Web service inter-
face is also discussed.

Keywords: Trusted Virtual Domain, Distributed Coalition, Trusted
Computing, Mandatory Access Control.

1 Introduction

1.1 Background

In computer and information security history, there have been many efforts to
achieve controlled sharing of digital resources. Recent advances in hardware plat-
forms and networking technology increase the need for sharing resources securely
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Fig. 1. Trusted Virtual Domain Model

across decentralized administrative nodes in an insecure network world. More-
over, there is a growing tendency for nodes to form coalitions in order to col-
laborate by sharing some of their resources, or by coordinating some of their
activities. Such coalitions are quite common in various scenarios, such as grid
computing, on-demand working environments, and virtual enterprises.

With the increasing needs for the coalition-based resource sharing, establish-
ing trusted coalitions in untrusted computing environments is becoming increas-
ingly important concern. The client-server-style authenticated key establishment
techniques such as SSL/TLS and IPSec provide end-to-end secure communica-
tion channels to build virtual private networks in open but untrusted network
environments. Traditional authentication has focused on identifying the identity
of the subject, i.e., who is at the other end of the communication channel, in or-
der to control what information can be released to each subject, while not dealing
with how the information is managed in the container at the end-point after the
release of the information. Thus, once information is released through the chan-
nel, the program at the container may, through error or malice, propagate the
information improperly. This implies identity-based authentication provides the
secure communication channel only between nodes (or the interfaces of nodes)
participating in the coalition, while it does not provide any assurances on the in-
formation handling (or how information flows in the coalition) in an end-to-end
manner.

1.2 Trusted Virtual Domain

To tackle this problem in a universal and flexible way, we are developing an
integrity-based end-to-end trusted computing infrastructure called Trusted Vir-
tual Domain (TVD), which was originally introduced in an ongoing project in our
research division (see [1] for details). A number of recent research projects[2,3,4,5]
support realization of the TVD concept in various application domains. The basic
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idea of TVD is to establish a coalition of trusted components running on the nodes
participating in the coalition in a decentralized, heterogeneous environment in or-
der to allow them to simplify the management and to provide explicit
infrastructure-level containment and trust guarantees. Our own view of TVD is
formalized by the following definition (illustrated in Figure 1).

Definition 1 (Trusted Virtual Domain). A coalition C which consists of a
set {c1, . . . , cl} of (trusted) software components running on the nodes {n1, . . . ,
nl} respectively is a trusted virtual domain D as long as the following properties
are satisfied:

– (Enforceability) Each component ci works as a reference monitor for a set
Ri of resources in the node ni.

– (Authenticity of Enforceability) Any component ci in C can provide strong
evidence that domain policy PD is properly enforced for any access to the
resources Ri.

– (Authenticated secure channel) Any component in C can establish an end-
to-end secure communication channel with the other components in C by
checking the evidence given above.

– (Policy-Governed Communication) Communications between software com-
ponents through the secure channels established above conforms to the domain
policy PD.

We refer to a software component which satisfies the above properties as a
”trusted component” (”TC” for short).

The major difference between a TVD-based coalition and a VPN-based one is
that the software components in TVD are authorized to participate in the do-
main not only by authenticating their identities but also by attesting to the
integrity of the other components (see remarks below). A security assurance of
the coalition based on the VPN only covers the channel between nodes, while
it does not cover the internal behavior of the nodes because there is no assur-
ance after passing through the channel interfaces to the internal of the node.
Meanwhile, the TVD expands its coverage of assurance in such a way that the
trusted boundary is not limited to the interfaces of the node, but also includes
the trusted software components in the nodes.

Remarks: In general, assurance of the integrity of components does not directly
imply any assurance for the security properties of the components. The integrity
assurance of components is considered as evidence that assures no unintended
behavior will occur, but the intended behavior should be mapped to certain secu-
rity properties with assurance based on a mathematical or analytical evaluation
mechanism. For instance, a rigorous language-based information flow analysis
shows the software component as a whole enforces the policies with respect to
certain security properties such as confidentiality, integrity, or non-interference
[6]. For more complex computer systems, an evaluation under the Common Cri-
teria, which is an internationally recognized ISO standard used by governments
and other organizations to assess the security and assurance of components,
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provides weaker,but in practice useful, evidence of the assurance of security
properties � .

A modern computer system consists of multi-layer stacks of software, such as a
hypervisor, virtual machine, an operating system, and application sandboxes in-
cluding middleware stack. Without assuming assurance based on
tamper-resistant software, no integrity assurance can be provided for any soft-
ware component which is running on an untrusted software runtime environment,
because the behavior of the software running in such an environment can eas-
ily be compromised. This characteristic implies that the integrity assurance of
software components is established by the chain of assurance from the trusted
computing base (TCB) at the lowest layer, which could be a hardware layer such
as a Trusted Platform Module (TPM) [7][8]. Therefore, the higher the layer the
software component is placed in, the harder it is to establish integrity assurance
for it.

In contrast, the communication interface provided by nodes should be prop-
erly abstracted at the highest possible layer to support interoperable commu-
nications and fine-grained handling of expressive messages between TCs. For
example, highly interoperable Web-service interfaces are implemented on Web
application servers, which could be huge, multi-layered, highly complex, and thus
often difficult to manage securely. To assure the integrity of the software behind
the interface, the TC must include the trusted implementation of its interfaces.
However, this could raise serious concerns:

– Differences of abstraction layers between communication interfaces and TCs:
It is difficult to build an assured implementation which handles both enforce-
ability and communication control, because of the gap between the layer of
abstraction for interfaces and that for the trusted components which can
be build from the bottom. The communication stack is usually provided by
different mechanism from the TC.

– Multiple TCs in a node: It is quite common that a communication stack
implementing an interface is directly controlled by a node, not by any TCs.
In such cases, the interface implementation is never included in a single TC.

Due to these observations, there exists a non-trivial gap between ”secure com-
munications between nodes” and ”secure communications between trusted com-
ponents”. This gap brings the needs for an independent implementation of the
interface to be placed at the boundary and for a secure intra-node communi-
cation mechanism to be placed between that implementation and the trusted
components.

1.3 Our Contribution

To fill the gap between the TC and the interfaces, this paper introduces the
notion of a Secure Message Router (SMR), a domain-independent, easy to verify,
multi-functional communication wrapper which mediates the communications
between trusted components.
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Fig. 2. Secure Messaging Router model

The model of SMR is described in Figure 2. The SMR is placed in each node
in a coalition, and mediates the communications between TCs. The SMR works
as a component which is governed by the TCB in the same node. The SMR
employs the TCB’s functions in order to control communication done by the
TCs and to detect the state change of the TCs. The TCB controls inbound-
outbound communication with TCs so that the communication cannot be done
without SMR mediating it. This property provided by the TCB allows the SMR
to perform complete mediation of communication done by TCs in the same node.
Also, the SMR can manage the list of TCs and their states, and detect change
of their states which are continuously observed by the TCB.

We say a communication channel from c1 to c2 is end-to-end secure if the rule
derived from the policy for a domain which c1 belongs to is enforced all of the
messages which are transferred from c1 to c2 over the channel. The end-to-end
secure communication channel between TCs is mediated by the SMRs s1 and
s2. The secure channel between c1 and c2 consists of the three independent com-
munication channels between c1 and s1 (channel 1), betweens1 and s2 (channel
2), and between s2 and c2 (channel 3). The SMR s1 works as the end-point
of channel 2 between nodes n1 and n2, while different secure channels such as
channel 1 inside the node n1 or channel 3 inside the node n2 between SMR are
established. We call channel 2 an inter-communication channel, and channel 1
or 3 an intra-communication channel. Thus, the inter-communication channel
and the two intra-communication channels are collaboratively integrated with
the mediation of the SMRs in order to establish an end-to-end secure channel
between TCs. The correctness of the behavior of s1 and s2 is crucial to connect
three secure channels in an end-to-end secure manner. This correctness is at-
tested by integrity assurance which is checked by the TCs c1 or c2. This check
is domain-independent, in the sense that the correct behavior of the SMR is de-
fined regardless of the design or policy of any specific TVD. On the other hand,
the attestation between TCs is domain-specific, which allows the designer of a
TVD to support application-specific, finer-grained requirements for TVD.

Besides these features, the SMR provides the following capabilities which are
required to establish a TVD.

– Policy-based message routing: In principle, only a single SMR is running
on each node, while multiple TCs could be contained in the node. The end-
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point of an inter-communication channel is an SMR, and thus the single SMR
needs to be shared by multiple TCs. A capability for message routing allows
nodes to participate in multiple coalitions simultaneously, just by each node
maintaining multiple TCs and by the SMRs controlling the destinations of
the message transfers according to the domain policy.

– Secure message translation: Some messages transmitted over the inter-
communication channel could be domain-specific, in other words, depen-
dent on which domain the message is transferred to. For example, to enable
mandatory access control (MAC) in the TVD, a security label should be
attached to the data which is conveyed in the messages transmitted. If het-
erogeneous implementations of TCs in coalitions are considered, the security
label should be translated to appropriate security labels that can be handled
by each TC. The SMR properly translates the messages from and to each
TC according to the domain policy.

– State Management: Some of the domain policy is stateful in the sense that
the destination of a message transfer could be dependent on the state of the
coalition, (considering the history of message transfers, status of the TC,
etc.) In addition, application-specific policies could be transactional, in the
sense that the series of messages needs to be handled sequentially in order
to form a unit of execution. The SMR provides stateful and transactional
operations for routing and translating messages. The state of the domain is
maintained by the SMR or possibly by the TCs in a decentralized manner.
The SMR provides a function to integrate the domain state among the SMRs
and TCs, which could be used through a unified interface when the SMRs
or TCs in the domain evaluating the domain policy.

– Thin clean implementation: The SMR provides only a small set of func-
tions for mediation: routing, translation, and state handling. This limited
functionality allows us to implement SMR as a domain-independent and
reusable trusted software component. Moreover, the feather-weight imple-
mentation makes it easy to obtain security assurance in the integrity of the
SMR.

This paper is structured as follows: In Section 2, we describe the framework
for realizing trusted virtual domain and discuss issues affecting the end-to-end
secure communication addressed in this paper. We present our new approach,
the Secure Messaging Router (SMR) and describe several protocols based on
the SMR in Section 3. Section 4 discusses possible implementations of the SMR.
Related works is discussed in Section 5. Finally, we conclude in Section 6 with
a summary of our results and consider issues that still remain to be addressed.

2 Flexible Framework for Trusted Virtual Domain

The notion of a TVD can be implemented independently and concurrently using
a variety of underlying technologies and mechanisms. One of the promising im-
plementations of TVD is an approach using hypervisor-based isolation coupled
with Trusted Computing Group (TCG)-based verification.
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TCG technology provides hardware-based assurance of software integrity. This
is based on a security module called the Trusted Platform Module (TPM) which
is usually implemented as a tamper-resistant hardware module. The TPM mea-
sures and reports platform integrity correctly in a manner that cannot be com-
promised even by the platform owners or the software running on it. The platform
measurement mechanism provides strong evidence for enforceability in Definition
1. Also, a challenge-response type confirmation protocol called TCG-attestation
allows a remote challenger to verify the precise configuration and state of a com-
puting platform in a reliable way, by using a tamper-resistant secure subsystem.
This feature supports the realization of authenticity in Definition 1.

Another important requirement for enforceability and its authenticity is to
guarantee the security property that any access to resources must be governed
by the domain policy. This can be viewed as stating that all resources controlled
by the TC are virtually isolated within exclusively controlled compartments.
This fundamental feature is called ”containment” in the context of TVD [1].
Hypervisor technologies such as the Xen Hypervisor provides very strong iso-
lation among TCs on the same node, while secure OSes such as SELinux or
sandbox mechanisms such as a JVM can also provide isolation among applica-
tions running in the same execution environment.

How to realize the authenticated secure channel and policy governed commu-
nication in Definition 1 depends on who mediates the communications between
TCs and what kinds of information the messages contain. For example, sHype[2]
presents how to establish secure communication channels between virtual ma-
chines running on Xen hypervisor, where the communications are governed by
the MAC policy and the messages transmitted over the channel are associated
with MAC labels. In this case as illustrated in Figure 3 (a), a secure communica-
tion channel is directly established between VMs only with the mediation of the
hypervisor which can be verifiably assumed to be a TCB. This type of commu-
nication channel provides a very strong security assurance since it requires no
mediation except for a TCB. However, some situations require finer-grained con-
trol of the channel and the messages on them. Typical examples include a policy
for information flow control or a usage control policy. For example, a member
in a coalition may be authorized to send information categorized as an ”an-
nouncement” at most once a day, as long as the approvals from at least k of the
members for that day are attached to the message, but the recipients will be lim-
ited to the members who gave approvals. This kind of fine-grained, stateful, and
application-specific control is not suitable for the TCB for the following reasons.

– Configuration of the TCB, in general, is controlled only by strictly authorized
subjects (such as node administrator).

– Flexible configuration of the TCB degrades its assurance, especially if the
assurance of the TCB is attested by using the integrity measurement. (For
example, under the Common Criteria evaluation, certification should be is-
sued only for a rigorously fixed configuration of the system.)

– The TCB is placed at the lowest layer, and therefore the granularity of the
control can be coarse compared with the application-specific requirements.
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Fig. 3. Models of inter-communication channel

For example, some domain policy might require not only the security label
associated with the data, but also more detailed information on who, when,
and how the data has been created or manipulated in order to determine
if the data transfer is allowed. In general, such state information is finer-
grained compared with the information which is observable from the TCB.
Furthermore, expressive representations of the data need to be handled in
order to support heterogeneous implementations of TCs.

Therefore, an independent mechanism which handles the communications be-
tween TCs needs to be provided outside the TCB in order to protect the security
of the TCB. There are two types of approach as illustrated in Figure 3 ((b) and
(c)). In the first approach, the TC contains the communication stack to establish
an end-to-end secure communication channel directly between the TCs. It is easy
to establish a secure channel over a public channel by using existing techniques
such as SSL/TLS or Web Service (WS) security. Also, arbitrary granularity of
the messages can be handled if every TC in a coalition is aware of how to com-
municate with the others. This is reasonable in a single domain setting, but not
in a collaborative multi-domain setting. Specifically, if a node manages multiple
TCs in order to participate in multiple independent coalitions and wants to enjoy
collaborative activities (such as data transfers, sharing resources, or event notifi-
cations) across the multiple coalitions, every TC need to prepare communication
stacks on a domain-by-domain basis. This limitation is because the control point
of routing and messaging provided by communication stack is tightly bound to
a core part of a TC. To overcome the limitations of the first approach and to
deal with interoperable communications for multi-domain settings, our proposed
approach using the Secure Message Router (SMR) can be used. The SMR can be
seen as a divided portion of the TC which only deals with the mediation of secure
communications (which is why we call it a ”router”). Figure 3 (c) illustrates our
approach using SMR, where an end-to-end communications link between TCs
is established with the mediation of the SMRs, and this is easily extensible to
support multiple TCs simply by routing the messages at the SMR.
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Fig. 4. Establishing end-to-end secure channel between TCs

3 Secure Messaging Router

This section gives an informal description of our proposed approach, Secure
Message Router (SMR), which provides complete mediation for the secure com-
munication between TCs to establish a coalition based on the Trusted Virtual
Domain (TVD) model.

3.1 End-to-End Secure Channel

Figure 4 depicts the protocol to establish a secure communication channel by
using the remote attestation sub-protocol of the integrity measurement, which
allows a remote challenger to verify the precise configuration and state of a
computing platform. TCG-attestation is one of the promising implementations
of this sub-protocol based on a tamper resistant secure subsystem such as TPM.
Here, we will discuss how to use the sub-protocol to achieve our goal rather than
how the sub-protocol works in detail. Without loss of generality, we focus on a
protocol between two nodes hereafter though we believe there is no significant
difficulty to extend the mechanism to multi-party scenarios. Suppose the two
nodes are n1 and n2 and each node ni, for i = 1, 2, manages a TC ci and a
SMR si, where ci has an internal communication channel only with si, while si

also has an external communication channel. We refer to the remote attestation
sub-protocol which allows a challenger x to verify y as RA(x, y).

This protocol allows c1 to establish an end-to-end secure communication chan-
nel with the trusted mediation of s1 and s2. The basic idea of this protocol is
to establish mutual trust based on the integrity assurance of the end points as
well as the assurance of the SMRs. Since the message transfers are mediated, c1
needs to invoke the remote attestation sub-protocol RA(s1, s2) and RA(c1, c2)
simultaneously in order to check the capability of mediation. To establish mu-
tual trust, the counterpart c2 also needs to confirm the capabilities of c1 and s1
by using RA(c2, c1) and RA(s2, s1). Note that the TC does not need to confirm
the integrity assurance of the SMR within the same node since the capability of
the SMR for complete mediation is guaranteed by the TCB in the same node.
Therefore, in this protocol, si and s2 work as trusted communication wrappers
for c1 and c2, respectively. On the other hand, the SMR acts as the liaison for the
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TC in the same node from the viewpoint of the remote nodes. Thus, the SMR
might need to monitor the integrity of the TC in the same node, since the SMR
is responsible for the uninterrupted assurance as of the correct configuration and
state of the TC in the same node within a session of the secure channel.

3.2 Multi-domain Handling

The basic functions provided by an SMR are the support of translation and
routing, which allows the node to join with multiple coalitions based on the
TVD model. Figure 5 illustrates the intuitive scenario for the two nodes n1 and
n2. Suppose n1 manages the SMR s1 and two TCs cA

1 and cB
1 where cx

i indicates
a trusted component which is managed within ci as a member of a coalition
x. For this example, n1 is participating in two coalitions A and B, and n2 is
participating in A and E.

The specifications of the TC could be node-specific in a heterogeneous com-
puting environment. For example, to enforce a MAC policy such as the Bell-
LaPadula policy in a coalition, a security label associated with the data needs
to be transferred from node to node. If more fine-grained control is considered,
messages which contain more information, such as contexts, states, or obliga-
tions, need to be exchanged between nodes in an expressive but interoperable
way. The SMR translates the node-specific messages to interoperable messages
and vice versa according to translation rules compliant with the domain policies.
In the case of Figure 5, when n1 joins those coalitions, n1 sets up a translation
function t1 and its inverse t−1

1 in the SMR s1. The function t1 translates an out-
bound message into an interoperable message, while t−1

1 translates an in-bound
message into a node-specific (application-specific) representation. These trans-
lations support not only simple replacement of the term but also finer-grained,
constraint-based control complying with the domain policy, e.g., certain con-
straints prohibit translation, or a part of the message is encrypted under certain
conditions. The translation functions t1 and t−1

1 could be changed over time if
the node joins or leaves the domain. When those functions are changed, all of the
secure channels which has been already established and mediated by the SMR
must be re-established because the security of the channel is dependent on the
integrity assurance of the SMR.

Routing is another important function of an SMR. For example, in Figure 5,
if cA

1 wants to send a message to all of the members in a coalition A, c1 can do so
simply by designating the destination in the message and by sending it to s1, cA

1
never manage any list of members in the coalition A. Similarly, cA

1 can send the
message to cA

2 with the mediation of s2 simply by designating the destination cA
2 .

Note that the correctness of the behavior of the SMR ensures that the message
is never transmitted to any other TC such as cE

2 . Intuitively, as illustrated in
Figure 5, SMRs in a TVD collaboratively establish a virtual boundary which
protects the TCs in the TVD in order for the coalition of the TCs to meet the
TVD requirements described in Definition 1. The interactions among multiple
domains are fully controlled over their boundaries, and the SMRs work as a
gateway across the boundaries. The SMR’s abstraction of the communication
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Fig. 5. Multi-domain handling

layer from the domain-specific layer allows the nodes in a coalition to simplify
the management of the TVD and the specification of the domain policy.

3.3 TVD Management

When a node wants to join an existing coalition, a node prepares a TC and
sets up rules for routing and translation in the SMR, and establishes end-to-
end secure communication channels with all of the members in the coalition.
This should be done at the time of joining, but some delegation of authority
reduces the overhead. For example, all members in a coalition can give some
special member (an administrative node) the right to check the membership
qualifications of the new member.

The functionality of SMR is optimized for the objective of establishing TVD,
in the sense that the SMR provides only the minimal but commonly required
functionality for TVD management. In order to facilitate the management of the
coalition, the SMR provides a reporting interface which can be accessed from
any other node or administration service. This can be used in order to observe
the configuration and status inside the node and to offer state management.
This interface is also used for the remote attestation sub-protocol as mentioned
in Section 3.1. The reporting interface does not allow any input such that it
causes a state transition of the SMR, and therefore it does not introduce any
side effects affecting the integrity assurance of the SMR.

The SMR is responsible for continuously observing the members in a coalition
in order to confirm if the assurance is still valid. To prevent unnoticed alteration
of the configuration or the state of the TC, the SMR provides the current status
of the TC through the reporting interface. This can be implemented by period-
ically using the internal attestation protocol (with support by the TCB [7][8]).

4 Implementation of the SMR

Our model of the SMR does not limit the applicability to any specific imple-
mentation, though the feature of domain-independent attestability of the SMR
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requires a formally-verifiable implementation with minimal but sufficient func-
tionality. A possible implementation could be a thin clean implementation of a
Web service handler running over a micro-kernel OS with the smallest set of
functionality. In this case, the SMR is introduced within a virtual machine fully
controlled by the hypervisor, which is considered to be a TCB. The attestability
of the implementation running over the micro-kernel OS has been thoroughly
discussed in the literature (e.g. [2]). The reason to exploit the Web service is its
interoperability and security[9]. The Web service standard provides interoper-
ability to realize easy connectivity over heterogeneous computing environments,
and in addition, the Web service security mechanism allows us to establish secure
communications even in the presence of an intermediary mediator, which could
be regarded as a significant advantage compared with the other secure channel
technologies such as SSL/TLS. Another extreme approach could be a hardware
implementation such as an appliance, secure coprocessor, or hardware extension
to the node, because it is widely accepted that hardware is more difficult to crack
than software. In that case, the assurance of the capability of the SMR must be
provided by a different mechanism, such as the Common Criteria evaluation.

A TCB needs to provide two functions; 1) controlling inbound-outbound com-
munication with TCs so that the communication cannot be done without SMR
mediating it, 2) monitoring the states of the TCs so that the SMR can detect
the change of their states. Furthermore, according to Definition 1, the TC needs
to work as a reference monitor for the resources under the control of the TC.
A virtual-machine-based implementation meets these requirements. The Virtual
Machine Monitor (VMM) works as the TCB, and the Virtual Machines (VMs)
running on the VMM are considered as the TCs. In this case, the VM isolation
and communication control mechanism provided by the VMM allow the SMR
to fully mediate the communication done by the TCs. The VMM can measure
the state of the VM by the integrity measurement mechanism such as the TCG
technology. The resources in the VM are governed by the policy enforced by the
OS which is introduced in the VM.

A VMM supports hardware-level isolation between VMs. This allows the ex-
plicit control of communication, while the granularity of the control is bound to
the VM-level, because the VMM is not aware of any internal detail of the VM.
In the meanwhile, the TCs could be placed at the higher layer. For example, the
Integrity Measurement Architecture (IMA) [8] enhances Linux by a TPM-based
Linux Security Module in order to generate verifiable representative information
about the software stack running on the system. In this case, a process can work
as a TC if the integrity of the process is verified by the IMA, which works as
a TCB in the sense that the TCB guarantees the TC’s correct behavior by al-
lowing the process to access only privileged resources and to communicate with
outside only with the mediation of the SMR.

A distributed information flow control is one of the most attractive application
of the TVD. Though a TC controls the information flow inside it, the SMR
controls the information flow across the TCs. Furthermore, even in the internal
information flow, some style of the control requires a domain-wide context which
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is never in the TC. The SMR integrates such domain-wide context by accessing
the TC internally or by communicating with the other SMRs in the domain. The
TC provides the SMR with an implementation of a callback interface which is
predefined by the SMR. The TC can also access the SMR through an interface
for accessing the domain-wide information. This allows the TC to delegate the
domain-wide task such as the membership service or state management.

The SMRs collaboratively manage and share the list of the TCs and their
state in the domain. When the node joins or leaves a domain, the state of the
SMR in the node is modified because the SMR needs to maintain the state of
the domain and the domain policy. Since the end-to-end secure channel between
TCs requires that the correctness of the SMR’s behavior is properly verified
by an integrity assurance mechanism, the state change of the SMR triggers the
channel re-establishment. This might be concern when the size of the domain
is huge or the network structure is complicated. Another issue is the policy
representation for multiple domains. Currently, we are assuming the existence
of the mutual agreement on how to represent and evaluate the policy, while this
might be too strong when we support highly heterogeneous environment. We
need a common understanding on the representation of the policy, as well as a
negotiation mechanism to establish mutual agreement on it.

5 Related Work

The Trusted Computing Group [7] has been gaining more attention than before,
and various use-cases leveraging TCG technologies have been identified. Sailer et
al. [10] utilizes TCG integrity measurements and attestation to protect remote
access points, in order to enforce corporate security policies on remote clients
in a seamless and scalable manner. One of the most active areas in the TCG
is the Trusted Network Connect (TNC), with the main idea of using platform
integrity information for network authorization control. One binding of TNC to
an existing protocol is to use the TLS extension header [7] to extend EAP-TLS
to support TCG attestation within that protocol.

NetTop [11] uses VMWare [12] to isolate execution environments, and allows
connecting isolated environments to each other to establish a network of secure
environments, and leverages secure OS such as SELinux to enhance the security
on the host and the guest OS. Terra [13] realizes isolated trusted platforms on
top of a virtual machine monitor, and allows attestation by using a binary image
of each virtual machine, such as virtual disks, virtual BIOS, PROM, and VM
descriptions. Terra exploits non-TCG based attestation to check the software
stacks running in the guest OS, to build trusted relationship between multiple
VMs.

Recent efforts on mitigating the drawbacks of TCG attestation include the
Semantic Remote Attestation [14], which leverages language-based security and
trusted virtual machines to verify the characteristics of a VM in a more semantic
manner including attestation of dynamic, arbitrary, and system properties as
well as the behavior of the portable code. Property-based Attestation [5,15]
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proposes an attestation model with a trusted third party that translates low-
level integrity information into a set of properties. WS-Attestation [9] proposes
to exchange attestation in the form of a credential which asserts properties and
binds those properties to hash-value-based attestation generated by a TPM chip,
while protecting the configuration details from potentially malicious challengers.

The notion of an SMR and its goals have a lot in common with the Law-
Governed Interaction (LGI), a notion that originally introduced by Minsky [16]
with its prototype developed in subsequent work [17,18,19,20]. LGI is a decen-
tralized coordination and control mechanism for distributed systems. The policy
management mechanism in the LGI allows a distributed group of heterogeneous
nodes to engage in a mode of interaction governed by an explicitly specified pol-
icy, called a law, which is enforced on every node in order to create a coalition in
which members can rely on each other to comply with the given law. Their Moses
middleware implements the concept of LGI. Even though our trusted virtual do-
main based on the SMR provides not only the policy-governed communications
among nodes, but also infrastructure-level support for coalition management
fully integrated with integrity-based assurance of the configuration and status of
the node, nevertheless, the notion of LGI could significantly reduce the complex-
ity of inter-node communication management. In fact, the statements of domain
policy in the TVD model are initially specified at an abstract level, and decom-
posed in order to be enforced on the communications and behaviors of the TCs
in each coalition.

Yin and Wang proposed an application-aware IPsec policy system as mid-
dleware to provide Internet applications with network-layer security protection
[21]. In order to introduce application context into the IPsec policy model, they
use a socket monitor which detects the socket activities of applications and re-
ports them to the application policy engine. They also propose an application
specification language to configure and distribute application-specific policies.
Our approach has some similarity with their approach in terms of bringing the
higher-layer’s context and requirements such as interoperability to the lower-
layer’s base security model (the TCB in our case). Their approach employs the
network layer’s security mechanism as the basic security infrastructure, while
our approach employs the isolation mechanism such as hypervisor technology
and the integrity-based assurance mechanism such as the TCG technology. Fur-
thermore, the SMR supports a coalition of TCs to establish a trusted virtual
domain.

6 Conclusions

Despite the increasing needs for coalition-based resource sharing, establishing
trusted coalitions of nodes in untrusted computing environments is a long-
standing yet increasingly important problem. A Trusted Virtual Domain (TVD)
could be a solution to this problem by establishing trusted coalitions based on
integrity assurances in heterogeneous and highly decentralized computing en-
vironments. However, the integrity assurance mechanism which is the basis of
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the TVD needs to be designed carefully with consideration of modern computer
architectures that consist of multi-layer stacks of software, such as hypervisors,
virtual machines, operating systems, JVMs, middleware, etc. The gap between
”secure communication between nodes” and ”secure communication between
trusted components” requires a new notion of an SMR, which provides a num-
ber of functions such as end-to-end secure channel establishment, policy-based
message translation and routing, and attestability through configuration-fixed,
clean implementations.

In this paper, we considered virtual machine-based implementations with Web
service interfaces as a possible implementation, but the issues related to formal
verification of such implementations still remains to be solved. The approach
using the language-based information-flow analysis[6] could be the next direction
of this research.
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Abstract. Many novel usage scenarios for protected digital content are
emerging. Some of these are content transfer, by which users give away,
borrow, or re-sell their protected content to other users. The transfer
must abide by the rules defined by a rights issuer. The concept of autho-
rized domain complicates the transfer operation. The main contribution
of this paper is that we present a full-fledged design and implementation
of the transfer operation for one of the major DRM standards, namely
Open Mobile Alliance (OMA) DRM. The transfer operations include de-
vice compliance check, transfer between two devices (from two different
domains), and license revocation within a domain. Our approach extends
the user experience in using the DRM-protected digital content.

1 Introduction

Many novel digital content usage scenarios of Digital Rights Management (DRM)
[1, 17] are emerging. The concept of authorized domain is proposed by DVB
Consortium (http://www.dvb.org/) to support high usability in DRM [7, 10].
The user is able to use the digital content on any device, which belongs to
her authorized domain, in any manner she likes. For instance, she can move
the content freely or make and distribute replicas of the content within her
authorized domain.

Nowadays, the users interact with each other more frequently in using the
digital content. One of the user-to-user interaction is content transfer, as a gift,
a loan or a resale. After transfer, the license (and the associated content) is
bound to another user. Intuitively, this grants a user more freedom in using her
digital content. There are potential benefits for the content providers as well.
A content provider could distinguish between the costs of a license that can be
transferred or cannot be transferred. Additionally, an increased distribution of
the digital content by reselling might attract the users to buy original content
from the content providers.

We envisage that the transfer operation in a DRM system especially in an
authorized domain will become increasingly important. In this paper, we pro-
pose a theoretical approach and provide an implementation based on one of

D. Gollmann, J. Meier, and A. Sabelfeld (Eds.): ESORICS 2006, LNCS 4189, pp. 81–96, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



82 C.N. Chong et al.

the main DRM standards, namely Open Mobile Alliance (OMA) (http://www.
openmobilealliance.com). We propose our approach based on OMA-DRM be-
cause OMA-DRM provides a full-fledged implementation to develop DRM sys-
tems on mobile devices. Thereby, by extending OMA-DRM to facilitate the
transfer operation, we are able to develop a complete DRM system that is ca-
pable of supporting wide variety of usage scenarios.

Our approach improves user’s experience of using the DRM-protected digital
content in her authorized domain. As far as we know, this paper is the first
proposal of a full-fledged design implementation of transfer operation in a DRM
standard, namely OMA-DRM.

The remainder of the paper is organized as follows: Section 2 discusses our
approach and its implementation in OMA-DRM. Section 3 analyzes the security
of our approach. Section 4 describes our prototype. Section 5 briefly explains
some related work. Finally, section 6 concludes the paper.

2 Our Approach

In this section, we elaborate on our approach to implement license and con-
tent transfer in OMA-DRM. There are several approaches available supporting
transfer of license, as discussed in section 5. We propose an approach that can
be seamlessly implemented in OMA-DRM at the same time fulfilling some rea-
sonable requirements as listed in section 2.3.

2.1 Players

We identify four main players corresponding to the OMA-DRM v.2.0 [14], as
shown in Figure 1, namely Compliance Server, Rights Issuer, and two users
namely Giver and Taker. The Compliance Server acts as a trusted third party
that proves the compliance of the devices a user possess in her domain. The Com-
pliance Server has a direct (business) interaction with the Rights Issuer (RI).

The Rights Issuer manages Giver’s and Taker’s authorized domain. When a
user adds a device in her domain, she has to initiate the ROAP Join Domain
Protocol [14] from the Device or from a Website of a Rights Issuer that can send
a trigger, etc. The management of OMA-DRM authorized domain is centralized,
i.e., the rights issuer can keep a record of all the devices in the user’s domain.

The Rights Issuer also generates and distributes licenses (and the associated
digital content) to a user’s device or domain. The Giver initiates the transfer of
a license, and Taker receives the transferred license (and the associated digital
content). Giver and Taker have their own domain. There are a number of de-
vices whose compliance is checked and verified using proofs obtained from the
Compliance Server. Transfer is performed between Taker’s Device and Giver’s
Device, as shown in Figure 1.

As shown in Figure 2, a connected Device can reach the Rights Issuer by
establish a network connection with the Rights Issuer directly, e.g. via wired
or wireless connection. On the other hand, a unconnected Device can reach the
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DeviceDevice
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Fig. 1. The overview of the license transfer concept
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Issuer

Unconnected
Device

Connected
Device

Fig. 2. The reachability of a device to a rights issuer

Rights Issuer via a connected Device, which acts as a proxy having a direct net-
work connection to the Rights Issuer. This is as defined by OMA-DRM v.2.0 [14].

When a device is capable of reaching the rights issuer in real-time to perform
transfer operation, we call it an online transfer. Otherwise, it is an offline trans-
fer. The offline transfer can be performed when two devices can connect each
other, e.g. via wired (e.g. USB) or wireless (e.g. Bluetooth) connection without
connecting to the rights issuer. However, the rights issuer can still “participate”
in offline transfer by using pre-defined usage rights (e.g. by specifying in the
license that off-line transfer is not allowed).

2.2 Assumptions

We make the following assumptions under which our solution is valid:

– An OMA authorized domain has been established for the users. All devices
belonging to the domain may maintain a replica of each domain-based license
and therefore can render the domain-based digital content.

– Device compliance can be verified by the Compliance Server. After compli-
ance verification, the device is trusted, i.e., it enforces the rights stated on
the license correctly.

– All devices have OMA-DRM Agents [15].
– We assume that Giver’s and Taker’s domains are managed by the same

Rights Issuer and the content stays under control of the Rights Issuer.
– We do not consider stateful license [14] in this paper.
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2.3 Requirements

In order to support the rightful and secure transfer of licenses between users, we
define the following requirements that have to be satisfied:

– Rights Issuer Control: The Rights Issuer shall be able to control the transfer
operations, either in real-time or after the transfer is complete. The Rights
Issuer should be able to keep track of the digital content before and after
the transfer.

– Compliance Check of Participants: The Rights Issuer, the devices of Giver
and Taker can achieve mutual compliance check to perform the transfer
operations. This is only required in some specific cases, i.e., when transferring
some secrets such as the content encryption keys.

– High Usability: The users, i.e., both Giver and Taker can perform the transfer
operations with high convenience. The users do not need to connect their
devices to the Rights Issuer in real-time (i.e., without network connection)
to perform the transfer operations.

– Successful Completion: All transfer operations should be completed success-
fully. If errors occur during the transfer operation, the Giver, Taker and Rights
Issuer will not suffer from any severe loss e.g. permanent loss of a license.

2.4 Four Steps

As shown in Figure 3, our approach has four steps. In this section, we elaborate
on the protocols to achieve license and content transfer. In OMA-DRM, a license
is called Rights Object (RO) [16]. Hereafter in this paper licenses will be referred
to as Rights Objects, or RO. There are two types of RO, namely domain-based
RO and device-based RO. A user can render the domain-based RO in every
device that belongs to her domain, whereas the user can only render the device-
based RO on a particular device.

Device Compliance Check. As mentioned in section 2.3, compliance check
is only required for some specific cases. Both the Taker’s and Giver’s device
connect to the Compliance Server via a Rights Issuer (RI) to obtain a proof of
compliance, i.e., compliance token.

Online Certificate Status Protocol (OCSP) [11] is a method for determining
the revocation status of X.509 certificates [9]. The mechanism requires a con-
nection to an OCSP server (also called OCSP responder) in order to check the
validity of a given certificate. OMA DRM clients (v.2.0) [15] already use this
functionality to determine the revocation status of Rights Issuers.

Certificate Revocation Lists (CRLs) [4] are another mechanism that can be
used to control the status of certificates. The advantage of OCSP over CRL is
that it does not require the maintenance of long revocation lists in every device.
An OCSP Responder (OR) returns a signed response indicating that the status
of a certificate supplied in the request is ‘good’, ‘revoked’ or ‘unknown’.

The compliance token is retrieved with the help of a RI as shown in Figure 3. It
is assumed that the device has already registered with the RI with ROAP 4-Pass
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Fig. 3. OMA implementation of transfer

Registration Protocol [14]. The messages are similar to the ROAP Registration
Request and Registration Response messages.

The processing at the RI will be exactly the same as for the ROAP registration
protocol. The only difference is the certificate (chain) that is being validated.
The ROAP registration protocol validates the RI certificate while the new ROAP
device compliance protocol validates the device certificate. We elaborate on the
messages of the protocol listed in Table 1:

M#1. The message is based on the ROAP Registration Request message. Since
device and RI have already exchanged and validated their certificates at the
ROAP Registration Protocol, it is not required to exchange this data again.
The trustedAuthorities element is kept since the DeviceCertificateChain might
differ from the RI certificate chain received at the ROAP 4-Pass Registration
Protocol. Upon receipt of this message the RI will contact an OCSP responder
as specified in the ROAP Registration protocol.
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Table 1. ROAP protocol for Device Compliance Request, where the element DevX
designates either Giver’s or Taker’s device

M# Parties ROAP Message

1 DevX → RI ROAP Device Compliance Request { trustedAuthorities
}

2 RI → DevX ROAP Device Compliance Response {
DeviceCertificateChain, ocspResponse DevX }

M#2. The message is based on the ROAP Registration Response message.
It includes a complete certificate chain for the device and the corresponding
OCSP response, i.e., ocspResponse DevX. The compliance token that is used in
the Device–Device License Transfer is composed of the certificate chain and the
OCSP response received in this message.

Device–Device License Transfer. To perform transfer, both the Taker and
Giver’s devices can be connected to each other (e.g. via wired connection with
USB cable or wireless with Bluetooth). The Taker’s device and Giver’s device
exchange messages, which include a valid compliance token. At the same time,
the Taker’s device checks its current status of reachability to the Rights Issuer. If
the Taker’s device is currently offline, the Giver’s device transfers a device-based
RO, i.e., one that the Taker can only access on her receiving device (for a period
of time).

The permission for the Giver’s device to issue a device-based RO for the
Taker’s device can be exclusively granted by the RI (e.g. through an additional
usage rights specified in the original RO). The RO on the Giver’s device is
revoked temporarily through a process elaborated later. The RO replicas in the
Giver’s domain are then revoked permanently after the Taker requests for a
domain-based RO from the RI.

Table 2 depicts the message exchange between the Taker’s device (DevT) and
the Giver’s device (DevG) in transferring the RO.

M#1. The device DevG initiates the transfer operation by sending the ROAP
Trigger Transfer message to DevT. The message includes the identity of the RO
RO ID, which indicates the RO that Giver wants to transfer to Taker.

M#2. After receiving the ROAP Trigger Transfer message, the device DevT
sends a ROAP T G Transfer Request message to the device DevG. The message
must include the item RO ID received from the device DevG earlier.

The message includes an indication of whether it requires a device-based
RO it can use without contacting RI (typically DevT only sets this flag if it
cannot reach RI in real-time – the decision is left to the device or the user if
the device can reach RI and if it needs an RO for offline usage, respectively),
i.e., requestOfflineDeviceRO DevT. Compliance token must only be present
if the item requestOfflineDeviceRO DevT is set (i.e., ocspResponse DevT and
certificateChain DevT).
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Table 2. The contents of each ROAP message exchange in the protocol of Device–
Device License Transfer

M# Parties ROAP Message

1 DevG → DevT ROAP Trigger Transfer { RO ID }
2 DevT → DevG ROAP T G Transfer Request {

RO ID, certificateChain DevT,
requestOfflineDeviceRO DevT, ocspResponse DevT }

3 DevG → DevT ROAP T G Transfer Response { original RO G,
transferContext, device RO T,
certificateChain DevG, ocspResponse DevG,
certificateChain RI, ocspResponse RI }

M#3. The device DevG constructs the message ROAP T G Transfer Response.
The message contains the original RO that is given away, i.e., original RO G. The
message must contain the transfer context, which asserts that G transfers this RO
to Taker and has or will revoke the RO replicas in G’s domain (transferContext).
The transferContext has the following form:

transferContext =
{ RO_ID, DevG_ID, DevT_ID, transferTime,
requestOfflineDeviceRO_DevT

}sig-DevG_PriKey

The item transferTime indicates the moment Giver creates the
transferContext and is used as part of the revocation process. By making
transferTime mandatory the protocol is limited to the Giver’s devices that sup-
port OMA-DRM v.2.0 secure time.

The device DevG includes the items device RO T and certificateChain DevG,
ocspResponse DevG if the message M#2 includes the requestOfflineDeviceRO DevT

flag. The device DevG verifies that the original RO allows the creation of
device RO T (which is decided by the RI when Giver acquires the RO from
RI). The device DevG takes its own capabilities into account such as its ca-
pability to create device RO T. The device DevG also verifies in this case that
DevT’s request is authentic, and verifies the compliance of DevT, both using
certificateChain DevT and ocspResponse DevT.

If DevT requires a device RO T for offline use, but it cannot be honoured due to
lack of capabilities then errorNoOfflineROCapabilities is returned. If the reason
is based on policy then errorPolicyDeniesOfflineRO is returned. If DevT prefers
a device RO T for offline use but it cannot be honoured due to any reason then
the protocol continues with the next message, but without device RO T and any
other parameter that is only required for offline use.

In case the item device RO T is present DevT verifies that also the
other optional fields, namely certificateChain DevG, ocspResponse DevG,
certificateChain RI, and ocspResponse RI are present.

In case device RO T must be generated, the device DevG processes the original
RO, i.e., original RO G to make it a RO to Taker, which Taker can only use on
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DevT. DevG adds the limitations in the rights expression of device RO T if the
transfer policy prescribes this. This policy can be hard-coded and prescribed by
for example CMLA [15], or it is present as part of original RO G (stated in the
REL [16], which is defined by RI).

Upon receipt of the M#3 DevT verifies that the DevT receives original RO G

and transferContext that correspond with the requested RO ID. If DevT requires
device RO T but does not receive it within a specified timeout then DevT aborts
the protocol. This leaves both the Giver’s device and Taker’s device in a state
that equals to the state before initiation of the transfer protocol.

Upon receipt of the M#3 that includes the device-based RO device RO T, the
device DevT attempts to access the content according to the following rules. The
device DevT verifies the authenticity and integrity of the item original RO G

using the items certificateChain RI and ocspResponse RI. The device DevT
verifies the authenticity and integrity of the message transferContext using
certificateChain DevG and ocspResponse DevG. The device DevT verifies the au-
thenticity and integrity of device RO T using certificateChain DevG and
ocspResponse DevG.

The device DevT verifies that RO ID of original RO G and device RO T are
identical. The device DevT evaluates the rights expression of device RO T as
defined by OMA-REL [16] and must in addition check that this rights expression
is not broader than the rights expression contained in original RO G. In case of
successful evaluation DevT uses the content encryption key (CEK) of device RO T

to decrypt the content.

Device–Domain License Transfer. Device–Domain License Transfer is per-
formed for the Taker to obtain a domain-based RO from the Rights Issuer. The
Taker must present the transfer context to the RI. The RI can use the transfer
context to further process the revocation on the Giver’s domain.

Table 3 depicts the message exchange between DevT and RI to perform
Device–Domain License Transfer.

M#1. The device DevT sends the ROAP T RI Transfer Request message to RI,
which includes some message items received from the device DevG at the Device–
Device License Transfer operation (Table 2). The ROAP T RI Transfer Request

message is very similar to an OMA DRM v.2.0 ROAP acquisition request mes-
sage. The message must include the message transferContext, and the Giver’s
original RO, i.e., original RO G.

The message also includes the Taker’s domain information, i.e., domainInfo T.
The device DevT should have user consent which domainInfo T to use if multiple
options are available. As stated in section 2.2, we assume that the domains of
G and T are managed by the same RI. Thus, the device DevT can initiate
M#1 (in Table 3). Note that if T has no prior relation with RI or if it has no
domain context for this RI, the device DevT must initiate the required ROAP
Registration and/or Join Domain protocol(s) as specified by OMA-DRM v.2.0
before sending M#1.
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Table 3. The content of each ROAP message exchange in the protocol of Device–
Domain License Transfer

M# Parties ROAP Message

1 DevT → RI ROAP T RI Transfer Request{ original RO G,
transferContext, certificateChain DevG,
domainInfo T}

2 RI → DevT ROAP T RI Transfer Response{ domain RO T,
certificateChain RI, ocspResponse RI}

M#2. The Rights Issuer RI processes original RO G and produces domain RO T,
i.e., the domain-based RO dedicated to the Taker’s domain. Before
generating M#2, RI should verify the authenticity and integrity of ROAP

T RI Transfer Request, original RO G, transferContext including verification of
the revocation status of the signers.

RI should also verify that transferContext indicates the device DevT as the
recipient of the transfer and signee of the request. RI should also verify that DevT
is a member of the indicated domain in domainInfo T. RI uses transferContext

to determine if the RI wants to deliver the domain-based RO.
If RI decides not to honour the request it must return an error indicating

the type, e.g. errorWaitForSuccessfullRevocation to indicate that revocation
must be finished first, errorTransferFailed to indicate that transferring failed
persistently. Otherwise, RI must create a RO as it would do for the OMA DRM
v.2.0 ROAP Acquisition Protocol and send this in ROAP T RI Transfer Response

message to the device DevT. The device DevT must process this message as if
it concerns a ROAP Acquisition Protocol, including verification of authenticity,
integrity and compliance of domain RO T, RI, etc.

License Revocation. In this section, we describe a best-effort license revo-
cation mechanism. The purpose of license revocation is to revoke the license
replicas in a user’s domain before or after the transfer of the license and the
associated digital content. License revocation makes the license (and replicas
thereof) unavailable to the current owner’s domain. This ensures that the trans-
ferred license becomes unavailable to each device in the Giver’s domain. Since
the completion of the revocation process cannot be instantaneous due to the
offline devices in the Giver’s domain, it is required to ensure the completion of
revocation within a time interval that would be set by the RI.

To support a correct license revocation, all devices must maintain a copy of
the license revocation list, that each device uses to check the validity of stored
licenses. The license revocation list indicates the domain licenses that cannot be
further used within that domain. This may raise the storage problem of huge
license revocation list. However, with the rapidly increasing capacity of current
storage space with the relatively reasonable price, this can be solved to a certain
extent. We can also apply some optimization techniques, such as a compression
method to efficiently store the revocation list on small devices. This, however,
we leave outside the scope of this paper.
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The license revocation process involves updating the revocation list stored on
the device. The update is triggered by all domain devices when they connect to
the RI, through a revocation list refresh request message. The actual update can
be done either by allowing the Rights Issuer to push the new revocation list, or
to piggyback the new revocation list to the devices when they request for a fresh
compliance token.

During the Device–Device License Transfer operation discussed earlier, the
revocation is initiated by the Giver’s device (DevG). The item transferContext

is generated at DevG, asserting that DevG has transferred the RO and has/will
revoke the RO replicas in the Giver’s domain. Both the DevG and Taker’s device
(DevT) possess the transfer context.

When either device connects to the RI, the transfer context is sent to RI as a
notification that the RO has been transferred from Giver to Taker. Thereby, RI
can initiate the license revocation – the RI sends a request for refreshing their
RO revocation list (RORL) to all the Giver’s devices in her domain (that happen
to be online), i.e., RI G Revocation Request.

All devices receiving the revocation request must replace their RORLs with
the new one and where possible must delete the newly revoked RO. Other de-
vices that are offline will receive the revocation request from the RI whenever
they are online. Until then, the RO remains usable on those devices. However,
the RI notifies Giver which of her device has not updated the RORL, as the RI
keeps a record of devices that belong to her domain.

Until the new RORL is updated on all the devices in the domain (for some
specific time) the RI maintains the following state information for the Giver’s
domain, as shown in Table 4. The timestamps (Time n) is used to indicate the
last time the corresponding device updates the RORL.

Each device receiving the request from the RI for revocation must update
its RORL and must respond with the message G RI Revocation Confirm, so that
the RI can update the state information (as shown in Table 4). The message
structure of the request and confirm messages are listed in Table 5. Note that
the label DevG here indicates each of the devices belong to the Giver’s domain.

M#1. The RI G Revocation Request message is initiated by RI to DevG, i.e., one
of the devices in Giver’s domain, which connects to the RI to request fresh com-
pliance token. When the user requests for a fresh compliance token, the user’s de-
vice initiates the RORLRefreshTrigger. The RI G Revocation Request message in-
cludes a new RORL, i.e., RORL new, signed by the RI for integrity and authenticity.

M#2. Upon receipt the message, DevG updates the stored RORL, by replacing
the old one with the newly received RORL from the RI G Revocation Request

message. To confirm the revocation, the Giver’s device DevG responds to the
RI with the G RI Revocation Confirm message. The message includes the version,
identifier, and update time of the RORL, i.e., RORL version, RORL identifier,
and RORL time, respectively. RI verifies if the RORL version, RORL identifier, and
RORL time received are correct to ensure the revocation has been done properly.
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Table 4. State information of the Giver’s domain maintained by the RI

Domain Composition Active RORL

Current RI RORL RORL(Time n)
Device 1 RORL(Time n)
· · · · · ·
Device n RORL(Time some-time-ago)

Table 5. The message structure of revocation request and confirm

M# Parties ROAP Message

1 RI → DevG RI G Revocation Request { { RORL new }sig-RI PriKey
}

2 DevG → RI G RI Revocation Confirm { { RORL version,
RORL identifier, RORL time }sig-DevG PriKey }

RI checks if all the recorded devices (see Table 4) have already updated the
RORL.

We can also implement revocation locally prior to the transfer. In other words,
the user must revoke all the license replicas within her domain before transfer-
ring. This can be expanded easily with our approach – the user must connect all
devices in her domain to the Rights Issuer for revocation prior to the transfer.
However, this is more inconvenient than our best-effort approach from the user’s
perspective. The user normally cannot anticipate which content she wants to
transfer especially when the user cannot connect the Rights Issuer.

3 Threat Analysis

In this section, we analyze several threats to our proposed solution. Section 3.1
and section 3.2 are considered as a form of replay attacks.

3.1 Store on Non-compliant Storage

The user can move a license (or its replica) to a (non-compliant) storage medium.
After the transfer and revocation, the user moves the license back to the device
in her domain.

We propose using a license revocation list (or rights object revocation list, i.e.,
RORL) to keep a record of all the revoked license (see section 2.4). However,
this solution seems to be confined by some limitations, which we believe can be
overcome:

– The RORL may grow to a size that is unmanageable by devices with limited
resources. Therefore, we need an optimization mechanisms to manage the
RORL.
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– The device must be obliged to re-connect the rights issuer for an up-to-date
RORL. We must make sure that without an up-to-date RORL, the device
(with the DRM agent built-in) cannot further distribute and/or render any
content.

3.2 Illegitimate Transfer Proliferation

The user can perform multiple offline transfers from every device in her domain to
all the devices of another user’s domain. For instance, the Giver can use Device1
to transfer a license to Taker’s Device offline. After that, without connecting to
the the Rights Issuer, the Giver could use Device2 to transfer the replica of the
transferred license to Taker’s another Device. Instead of the same Taker (say
Taker1), the user can offline transfer to another Taker (Taker2) device. These
threats are caused by the license revocation approach discussed in section 2.4.

As discussed in section 2.4, to perform the transfer, the device must request a
fresh compliance token from the Rights Issuer. Additionally, the Giver and Taker
must connect to the Rights Issuer for the new digital content, etc. on a regular
basis. Thus, the Rights Issuer can detect this form of replay attack if there are
more than one transfer context for the same license has been generated (Note:
only one transfer context is generated to transfer the license). Furthermore, there
is a limited number of devices allowed in a user’s domain (as defined by OMA-
DRM [15]), which further alleviates this threat.

To tackle the threat of offline transfer to Taker1 and Taker2, if either Taker
contacts the Rights Issuer requesting for the domain-based license, the Rights
Issuer can notice there are two same transfer context. Thereby, the Rights Issuer
can then detect the Giver’s unauthorized multiple offline transfer. Moreover, the
device-based license can only be rendered in within a short period.

Additionally, the Rights Issuer in our approach (based on OMA-DRM archi-
tecture [15]) keeps a record of all the available devices in the user’s domain.
Therefore, it is easy for the Rights Issuer to check if a particular device has been
offline for a long period of time.

4 Prototype

To serve the purpose of proof-of-concept, a prototype is built implementing the
proposed solution for content transfer. In the prototype, we have defined a use
case as follows: Aaron and Jasmine love collecting music tracks from the 1950s.
Each has a mobile terminal that contains the some music tracks and the asso-
ciated rights. They want to trade some tracks using their mobile. They connect
the mobiles and swap the content. After trading, both Aaron and Jasmine are
not able to access their original content and licenses anymore.

Figure 4 illustrates part of the prototype that facilitates transfer operation be-
tween two mobile phones. We use the state-of-the-art broadband network proto-
cols, Bluetooth protocols, Near-Field Communication (NFC) and General Packet
Radio Service (GPRS) to facilitate the communications between these compo-
nents. There are three main components in the prototype, namely:
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Fig. 4. The architecture of the prototype that implements transfer

– Backend Server: It implements the Rights Issuer and Compliance Server.
– Home Media Center (HMC): It implements the Media Server, which manages

the user’s content; and Renderer, which implements the OMA DRM Client.
– Mobile Phone: It implements J2ME Midlet, which is an OMA DRM Client.

Aaron and Jasmine each has his/her own Home Media Center and Mobile
Phone. When Aaron initiates transfer operation to Jasmine on their mobile
phones, the Device–Device License Transfer operation is initiated. After the
Device–Device License Transfer operation, Jasmine can only render the trans-
ferred content on her Mobile Phone. She can connect her mobile phone to the
Backend requesting for a domain-based RO so that she can render the content on
her HMC. If the request is granted, the Backend contacts Aaron’s HMC (assum-
ing now that Aaron’s HMC is connected) to initiate the revocation process. As
the Backend Server keeps a record of all Aaron’s devices in his domain, thus, the
Backend Server can contact Aaron (e.g. via emails) for updating the revocation
list on all his devices.

5 Related Work

The transfer rights can already be expressed in the available rights expression
languages (REL) [6], such as XrML [5], ODRL [8], OMA-REL [16], and Licens-
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eScript [2]. However, the underlying DRM architecture enforcing the aforemen-
tioned RELs does not support explicitly transfer.

Nair et al. [12] have proposed a set of protocols, which can achieve redistri-
bution of the content from one user to another. However, they merely focus on
the device-to-device distribution, i.e., they do not consider the concept of autho-
rized domain. They also propose several payment methods for the redistribution,
which considers the benefits of the rights issuer. However, the rights issuer does
not participate in the process of redistribution in real-time.

Conrado et al. [3] have proposed an approach that supports anonymous trans-
fer of the digital content (and the associated license) to another user. To perform
transfer operation, the user must initiate a connection with the rights issuer re-
questing an anonymous license, which is a license that is not associated to any
user. The user can thus transfer the anonymous license to another user. Thereby,
the privacy of the user who receives the license is protected from the rights is-
suer. Prior to transfer, the user must first revoke all the license replicas in her
authorized domain, i.e., pre-revocation.

Our approach does not consider privacy protection for user due to the require-
ment of Rights Issuer Control (as described in section 2.3). The Rights Issuer
would like to keep track of the digital content before and after the transfer.
However, our approach can be easily customized to support pre-revocation.

6 Conclusions

Digital Rights Management (DRM) attempts to control the user’s access over
the digital content, protecting the benefits of the rights issuers. The drawback is
that the users are constrained in the usage of digital content. Thus, the concept
of authorized domain is proposed to grant the users more freedom - the user is
allowed to make replicas of the license (and the associated digital content) and
use the content on all devices that belong to her domain.

The transfer operation is useful from the user’s and also the rights issuer’s per-
spective. The user can transfer a license and the associated content to another user
as a gift, loan or resale. However, license transfer between two users becomes com-
plicated due to the user’s freedom granted by the concept of authorized domain.
There are a number of license replicas in a user’s domain, which have to be taken
care of for the transfer operations.

We propose an approach for the transfer of license and content. The approach
facilitates the compliance check of devices performing transfer, the secure license
transfer between users’ devices, and the efficient license revocation in the user’s
domain. We design a set of protocols, which extend the OMA-DRM interacting
the Giver, Taker and Rights Issuer. The proposed approach is able to fulfill the
following requirements:

– Rights Issuer Control: The Rights Issuer can decide if the Giver can issue a
device-based license by stating the transfer rights on the license for offline
transfer. When the Taker requests for a domain-based license for the received
content, the Rights Issuer can determine to grant the Taker’s request.
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– Compliance Check of Participants: The Giver’s and Taker’s devices must
possess an up-to-date compliance token to perform offline transfer. Thus,
the devices must connect to the Rights Issuer to request for an up-to-date
compliance tokens on a regular basis for offline transfer.

– High Usability: The Giver and Taker can perform offline transfer when there
is no network connection, and the Taker can use the transferred license on
the receiving device (within a limited time period).

– Successful Completion: We make the protocols for the transfer operations
context-free. If errors happen, the user can resume the protocols by resending
the messages (within a timeout).

As discussed in section 2, we assume that the Giver and Taker’s domain are
maintained by the same Rights Issuer. We envision the possibility to separate the
domain management from the Rights Issuer, which may provide more business
opportunities and high scalability. We consider this as our future work.
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1 Introduction

The new generation of mobile networks and devices (2.5G, 3G and 4G) has
opened up a promising market for multimedia content distribution services on
mobile phones. However, before such services can be launched, the issues related
to digital rights management (DRM) and the protection of copyrighted work
have to be sorted out. Indeed, the existence of efficient compression formats for
digital content, broadband capacity networks, and Peer-To-Peer file exchange
have encouraged the piracy phenomena in the Internet world. The fear of du-
plicating this model in the mobile world is a major obstacle for the growth of a
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�� This work was done when she was with CNRS/LIFL, Cité Scientifique, 59 655 Vil-
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market for digital content distribution : if the different value chain actors (con-
tent providers, content retailers, network operators) cannot expect a fair income
from their efforts, they will not enter this new market and the ultimate looser is
the consumer.

To fight piracy, different approaches have been used to provide security for the
distribution of audio content. Watermarking is one line of research that has been
seen as very promising by the content industry to solve all their piracy ails. A lot
of research has been done on watermarking during these past years [3]. However,
if the technology, which consists of dissimulating information in a host signal,
is mature, its applications in the real word are far from effective, especially for
the protection against illegal copies. The failed experiment of the SDMI Forum
in defining a system to protect copies based essentially on the watermarking
technology has shown the limits of this approach [4].

The approach taken in the SDMO (Secured Diffusion of Music on mObile)
project1 aims at combining tightly the traditional security tools of cryptography
and smartcard together with watermarking to strengthen the overall security
of the audio content distribution service (streaming and download) for mobile
phones. The main idea is to use watermarking as an active security tool to rein-
force and broaden the scope of classical DRM. The project also takes advantage
of the closed nature of the mobile environment, both at the network and the
terminal sides, to build secure end-to-end architecture to protect audio content.

The paper first gives an overview of the protection system devised by the
SDMO project for music distribution on mobiles. Section 2 describes the spec-
ifications of the system and the main usage scenarios. Section 3 describes the
security architecture and analyzes how the astute interworking of cryptogra-
phy, smartcards and watermarking produces a secure environment for content
distribution.

2 SDMO System Description

2.1 SDMO Service and Requirements

Unlike the open Internet network, mobile networks are easier to control; indeed,
the centralized and authoritarian control the operator has over his network allows
for more possibilities for monitoring the traffic and possibly blocking data. Since
some nodes handle all the data traffic, the usage of efficient tools to track illegal
contents is really effective there. Moreover, the client in this context is well
identified as a subscriber to the mobile service. This gives more means to prevent
the consumption of illegal content at the end-user mobile phone.

The main objective of the SDMO project has been to define a secure audio
content diffusion service in the controlled mobile world that reaches beyond to
the open world of Internet. The problem was approached by first defining some
ideal yet reasonable security requirements. In this context, the SDMO project
defined two requirements (Figure 1):
1 Funded by “Réseau National de Recherche en Télécommunication”, the French Na-

tional Research Network on Telecommunication.
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Fig. 1. Operational architecture

– Maximizing security in the mobile domain. This is done by prohibiting the
consumption of illegal audio content on mobile devices, and the circulation
thereof on the mobile operator’s network. The aim here is to provide an end-
to-end protection in this domain including the network and the terminal
device.

– Restricting the spread of illegal audio content in the Internet domain. This
objective is fulfilled by a constant background checking and tracing of the
usage of illegal content on commercial web sites.

For a mobile operator aiming at offering and developing new services around a
music catalogue, the assurance that no pirated content will circulate on his net-
work will encourage the development of new business with the majors producing
content. It is well known that the entertainment industry is very sensitive to such
arguments. Checking the legality of the content during the transport through
the network and in the terminal to prevent piracy is of prime importance.

To reach this purpose, SDMO intends to be a content security service provider
offering the necessary tools to the actors of the content distribution value chain.
In Figure 2, illustrating such a value chain, SDMO is positioned as a service for
a mobile operator in agreement with an audio content provider, offering them:

– the SDMO content preparation server, ensuring the watermarking, compres-
sion, encryption and formatting of a music content file;

– the SDMO Client implemented on the mobile device allowing the playback
of SDMO content and blocking illegal content;

– a SDMO Web scrutator ;
– SDMO Mobile network control to stop illegal content from circulating on the

mobile network.
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Fig. 2. The SDMO service elements and their position in the music content distribution
value chain

2.2 Use Case Scenario

The project considers a classical content delivery scenario in which a mobile user
buys a piece of music and acquires it from the content server. A pre-listening
phase of limited duration of the audio content is possible at the same quality
as the original one. Two content delivery modes are provided: download of the
music file or streaming it by buying the listening rights. The usage rights are
expressed and delivered in a separate licence file. The usages of the content by
the user can be distinguished as follow:

– Locally at the terminal device: in that case, any use (play, copy, ...) is con-
strained by the usage rights granted in the licence;

– Redistribution:
– through the mobile network : the user can transfer the audio content to
another mobile phone. The content should not be played by the new user
device before paying the corresponding rights. In the case of pirated content,
it should not be played on mobile devices neither be circulating in the mobile
network. A rigorous control of the content should be placed in some core
network nodes.
– through the device peripherals (Infrared, Bluetooth, memory stick, ...): the
mobile user can also transfer this content to and from his own personal
computer via a peripheral. From there on, it becomes easy to transfer the
content to other remote computers. It is also possible for this content to be
placed in some web sites on Internet; for this reason, the content provider
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servers should be continually examined in order to verify that they are not
retailing illegal content. Another possible strategy consists in prohibiting
such type of transactions by locking the device peripherals.

In the case of content exchange between two mobiles terminals, the Mobile
Network Controller has the task of filtering illegal content.

2.3 SDMO Content Format

The audio content is compressed in MPEG-4 AAC-LC (Low Complexity profile)
format at 24kbps bit rate. This audio codec is recommended by 3GPP as an
audio codec for Packet Switch Services in the mobile network [1]. The resulting
compressed bitstreams are encrypted using the AES-128 CBC algorithm, then
put into 3GP file format for streaming or downloading. This file is associated with
a licence in OMA DRM REL v2 format (based on ODRL language) indicating
the usage rights and restrictions as well as the necessary decryption keys and
the content identifier [8]. Such format, including the content and the licence, is
called SDMO DRM format. To allow the detection of illegal content, two types
of audio content are distinguished in the framework of SDMO system:

– Controlled content : necessarily in SDMO DRM format (i.e. encrypted and
wrapped with SDMO DRM header + a separated licence) or another format
provided by a legal distribution service.

– Uncontrolled content : in any format not associated with a DRM service.

With this distinction, a content can be (i) encrypted and in SDMO DRM
format and hence it is controlled, (ii) or in clear and hence either free or pirated.
In the latter case, the content was encrypted and the cryptographic protection
has been circumvented; this is the situation where the watermark comes into
play to distinguish between legal and pirated content.

3 Security

3.1 Separating Security Contexts

Analysis. The security of a mobile phone is relatively low, especially since the
trend is towards more open operating systems. Mobile phones are more and more
like PCs and are prone to the same ills: viruses, Trojan horses, etc. Moreover, the
user might be inclined to deliberately load hacking programs in order to access
protected content without payment of the licences. That is why the keys and the
cryptographic algorithms are usually stored in the USIM (Universal Subscriber
Identity Module), the smartcard which is in the mobile phone.

For a system relying on the super-distribution model, where the same content
is always encrypted with the same key, the biggest threat is the compromise of
the content key. If that occurs, it is easy to give everyone access to the content
key, while still using the original ciphered content.
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In order to prevent this threat, one has to provide a means to protect the
content until the moment of the audio rendering. However, since the content
is in compressed format, the decompression operation requires the deciphering
of the content. Ideally, these two operations, deciphering and decompression,
should be performed in a tamper-proof environment, the smartcard in our case.
However, due to the limitation of the smartcard in terms of processing power,
the file has to be (for the time being) decompressed in the mobile phone.

It is a classical paradigm, often seen in PayTV applications, to have the smart-
card deliver the content keys to the decoder in order for it to decrypt the video
stream. There, the keys are changed very frequently, so that intercepting the
content keys by hacking a decoder and distributing them to would-be pirates is
not a good solution, as by the time the key arrives at the destination, a new
key is already in use. However, this model does not stand for a content that has
a long lifetime, like in the distribution of musical content destined to be stored
and played at will. If the key is compromised, not only is the content available
in clear, but the pirates can use the legitimate content (i.e. encrypted content)
for free and even sell the keys.

Solution. In the SDMO project, the smartcard is used to separate the security
contexts of the SDMO distribution architecture and the SDMO player system.
Indeed, the smartcard is the secure holder of the licence, and thus of the coveted
file encryption key ContentKey. If the key were to be sent to the mobile phone
to decrypt the file, it would be easy to hack one phone to recover the content key
and then distribute it. So the simple solution is to have the smartcard decrypt
the file internally.

In order to avoid the clear content to appear on the smartcard-to-mobile
interface, the smartcard and the mobile phone set up a local secure channel, i.e.
they set up a local session key which is updated from time to time, e.g. for each
new musical content or at each start-up. Thus, after decrypting the content with
the key ContentKey stored in the licence, the smartcard re-encrypts it with
the local session key in order to send it to the player for further decryption,
decompression and audio rendering.

Now, if a mobile phone is hacked and its keys are compromised, it does not
affect the whole system and may not lead to massive piracy where content keys
are distributed to be used to decrypt original content files.

A simple key establishment protocol. To allow session key establishment, every
USIM card contains a common SIM-Player Authentication key SimPlayerAuth-
Key which is stored in the smartcard in a secure environment (as for UserKey).
On the other hand, each SDMO player is personalized with an individual key
PlayerKey and its certificate, consisting simply in the PlayerKey encrypted with
AES using the key SimPlayerAuthKey.

During the first step of the session key establishment, the Player generates a
16-byte random challenge and encrypts it with its key PlayerKey. This value
concatenated with the Player certificate is sent to the USIM. The latter is able
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Fig. 3. The session key establishment protocol

to decrypt the Player certificate in order to recover PlayerKey which is used to
decrypt the challenge.

Secondly the USIM generates a 16-byte session key SessionKey which is
XORed with the challenge; the result is encrypted by using PlayerKey and
is sent to the Player.

Finally the Player recovers the session key by decrypting with his key the
value sent by the card and by XORing the resulting value with the challenge.

In order to avoid a zero session key attack which can be mounted by a hack-
ing card by sending in the last step the encrypted challenge received at the first
step, we prohibit session keys equal to zero. Figure 3 summarizes the session key
establishment.

As players are not tamper-proof devices, hackers may succeed in recovering
a couple (Player key, Player certificate) and propose programs that authenticate
themselves to the USIM and thus gain access to the content in clear. To coun-
teract this kind of piracy, a revocation list is maintained in the data base of the
SDMO server in order to blacklist the keys from hacked Players and is send to
the USIM with the licences.

The question now is: is this enough to ensure reliable mutual authentication
and good session keys? In our setting, where the basic premise is that the smart-
card is secure, the session key is unilaterally chosen by the smartcard. A more
complex authentication, such as SSL, would be time consuming and would not
take advantage of the dissymmetry in the tamper-proof character of the smart-
card versus the mobile. Clearly, a pirate could set up a connection with a card by
sending a random message and would thus establish a secure channel for which
he does not know the key, which is useless in our case as the only thing that
will happen is that he will have the content encrypted with an unknown key,
meaning he gained nothing.

3.2 Adapting OMA ROAP Security Context for Smartcards

In order to protect the musical content, the first level of protection in SDMO
involves a classical DRM architecture, more precisely the OMA (Open Mobile
Alliance) DRM v2 architecture [6].
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The goal for OMA is to provide an open system, where any device of any kind
can connect to any server and negotiate a licence. In the SDMO architecture,
the only device that is supposed to enter in communication with the server is
the user’s smartcard. This smartcard has been personalized in order to fulfil this
mission, with applications and data, especially keys, that permit access to the
server.

Our goal has been to make the most out of the tamper resistance of the
smartcard in order to simplify the protocols and the computation power needed,
yet still remaining compatible with OMA DRM v2 protocols [7] and licence
formats [8].

The ROAP protocol defined by OMA DRM v2 uses a 4-pass registration
protocol in order to authenticate a device and set up a security context, i.e. a
shared session key that will be used to secure the subsequent communications.
This protocol makes heavy use of public key infrastructure in order to certify the
device and thus is very demanding in computation for both server and device.
This is an issue when the user’s device is a mobile phone, since public key
cryptography demands intensive computations and is accordingly power hungry.
Moreover, it is difficult to store and manipulate secret keys inside a mobile,
because it is not a secure computing environment, opening the door to key
compromising and account hacking. That is why the keys and cryptographic
algorithms are stored in the USIM.

Looking at the ROAP protocol, it appears that once the device is registered
to the server, there is no further need to run through the registration again as
long as the security context is not compromised. So that if the keys are well
protected, as in a smartcard, there is no need to ever register again once the first
security context is established. Furthermore, there is only one security context
per couple server-device, so that, in a system like SDMO where the server is
unique, each smartcard has only one security context to manage. Therefore,
this once-in-a-lifetime registration protocol can occur before the smartcard is
issued to the user in the secure environment of the personalization process of
the smartcard. The protocol can then be simplified to the extreme: the shared
key is simply generated by the SDMO server and stored both in the smartcard
and in the users account database on the server. From that moment on, no one
will have access to the shared key outside of the SDMO licence server and the
SDMO application in the smartcard.

With regards to security, one gets thus the full security of the OMA DRM
v2 ROAP protocol without the hassle of public key cryptography and with the
added security that no operation involving the keys is performed outside a se-
cure environment. OMA specifies the AES as the algorithm to use in case of
symmetrical encryption cryptography, so we choose the 128-bit AES in Cipher
Block Chaining mode with an initial value set to zero.

Our scheme works as follows. In preparation of the system, the SDMO licence
server manages a secure database of users accounts, whereas each user is issued
an ID and a key. For each of the users, a smartcard is personalized with his
specific data: UserID and UserKey, according to the ROAP (Right Acquisition
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Object Protocol) registration protocol [7]. From there on, the user’s smartcard
and the SDMO licence server can communicate securely by using the shared
UserKey with the ROAP protocol. This key cannot be compromised as it is
stored in the server and in the smartcard only, both secure environments, and
the key never leaves these.

Each content file is encrypted with its particular key ContentKey according to
OMA DRM specifications [5]. Once the content is encrypted, it has no intrinsic
value any more without the corresponding key; so the encrypted file can be
freely distributed by any means, and in particular using super-distribution. The
file is encapsulated in an OMA DRM envelope, so that the content identifier
ContentID can be easily recovered. On the system side, the final step is to store
both ContentID and ContentKey in a secure database managed by the SDMO
licence server.

When a legitimate user wants to play a file, he purchases the right to do
so from the SDMO licence server which downloads the corresponding licence
containing the key ContentKey into the user’s smartcard, using the ROAP pro-
tocol with the security session (based on UserKey) established at the smartcard
personalization.

3.3 Improving Security on the Local Link with Watermarking
Techniques

Let us first remark that an audio file can be transferred through any interface,
like the radio (operator’s network), Bluetooth or Infra-Red. This does not have
any impact on the lawfulness of the download. For example, a legally purchased
audio file can be temporally stored on a memory card or a computer in order to
free space on the mobile phone. The crucial information at the terminal level is
to know if the hardware should render the file or not. So, the right question is:
“Has the use of this file originally been protected by SDMO?”

– If no, we assume that it is a content which can be played freely.
– If yes, we have to check that a licence has been purchased before playing.

It is difficult to find a technical solution based only on cryptographic tools
to such a question, especially because of the “originally” term. Due to the fact
that the decompression process has to be performed on a content in clear, cryp-
tographic protection is of no use after this step. So that there are several means
for a pirate to either recover the content in clear or to play pirated content:

– hack the keys of one player and replace the player’s software by its own
– monitor the buffers of the player and read or write data on the fly
– insert a pirate software on the interface of the software modules of the player

or of the audio rendering hardware

Hence, we decided to supplement the encryption based security with the em-
bedding of a watermark signal, which remains imperceptible but present in the
whole audio signal, even when it is converted to an analogical format and played.
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The captured signal still contains a watermark, and the use of such a pirated
content can be detected. On the content server side, the watermark is embedded
before the encryption and DRM encapsulation.

In order to overcome the security hole at the decompression step, we use a
watermarking technique whereby the content is identified by a specific identifi-
cation number, WmID (SDMO Watermark Identifier). This number is recovered
in the rendering module, at the very last moment before actual rendition of the
signal.

The system works as follows. When the content file is prepared for distribution,
the WmID is computed and inserted as a watermark in the signal, then the file is
ciphered with the ContentKey. The WmID is stored in the content database along
with the ContentKey. When a user asks for a licence, the WmID is added in an
specific ciphered field of the licence. When the mobile starts playing a content
file, the WmID is transmitted to the rendering module via a secure link (that has
been set up in the same manner as on the smartcard-to-mobile interface). Thus,
the rendering module simply extracts the watermark of the content currently
playing and compares it to the content it is supposed to be playing. As long as
they coincide, rendition goes on. As soon as there is a discrepancy, rendition stops
independently of the player software. In order to be able to play free non-SDMO
content, as long as no watermark is detected, rendition is performed.

So a normal execution works as follows. The encrypted file is delivered to
the player and its licence is delivered to the USIM (file and licence can be sent
separately). When the user select the content to be played, the player sends the
file to the USIM. Upon receiving the header of the file, the smartcard checks
the licence (key and usage rights), decrypts the content and sends a new version
of it to the player, encrypted with the session key. At the same time, it sends
an encrypted command containing WmID to the rendering module. The player
decrypts the content, decompresses it and sends it to the rendering module. The
hardware starts rendering the content and checks the watermark on the fly.

When a user wants to play an audio file illegally, several cases can occur.

– The USIM does not contain the licence corresponding to the content. The
file will not be decrypted by the smartcard.

– The player is not a SDMO player. It will not get a session key from the
USIM card and will not be able to decrypt the content.

– The file is pirated (it was originally protected by the DRM system, but the
DRM protection has been stripped off and the file decrypted); however, it
still contains a SDMO watermark. The player will decompress the content,
but the hardware module will stop render it as soon as the watermark is
detected.

If the file is not encrypted and does not contain a SDMO watermark, it is
considered as a legal clear content. Thus, the player will decompress it and the
hardware module will render it since no watermark is detected.
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3.4 Improving Security in the Network with Watermarking
Techniques

Given the insertion of the SDMO Watermark Stamp, bound to the content in
a discrete way (without any additional signaling bit), an appropriate probe can
check the content in the mobile network and will be able to discriminate between
SDMO pirated content and non-pirated content and act in an appropriate way.

As the SDMO Watermark Stamp has to be checked at the network level, it
has to be just one bit indicating that the signal is legal or not. This test must
be simple, fast enough and robust.

Several cases can occur:

– If a content moving through the mobile network is encrypted (in SDMO
DRM format), then no watermark check has to be performed as the content
is in a protected format.

– If a content is not encrypted, a watermark check has to be performed. If
the audio signal carries the SDMO Watermark Stamp, it is a SDMO pirated
content that has been decrypted or “captured” somehow (e.g. in the vicinity
of the digital to analogue conversion). The network should take action, for
example block the pirated content, reject it or report some information to
the provider for further use.

– If the content is not encrypted and does not carry the SDMO Watermark
Stamp, then the content is assumed not to be pirated and can transit through
the mobile network.

3.5 Specifications of the Watermarking Techniques

We considered two kinds of watermarks, both hidden in the audio files in an
imperceptible and robust way: a SDMO Watermark Stamp and a SDMO Wa-
termark Identifier. The first one can be extracted to prove that the file has been
pirated and is used for network control; the second one gives an identifier which
is compared during audio rendering with the one extracted from the licence in
the terminal.

The main specifications of these watermarks, resulting from the network and
the terminal requirements, are given in Table 1.

Table 1. SDMO watermarks properties

Specifications SDMO Stamp SDMO Identifier
Capacity (bit) 1 32
Duration (seconds) 15 15
Desired bit error rate 10−5 10−5

False alarm rate 10−7 10−7
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Table 2. BER performances of the SDMO watermarking algorithms

Spread Spectrum Scheme Scalar Costa Scheme
Attack/Compression Condition BER Condition BER

Without attacks 0 0
White Gaussian Noise SNR = 40 dB 4 · 10−5 WNR = 39 dB 3 · 10−6

SNR = 25 dB 5.1 · 10−3

Level adjustment Gain = +6 dB 1.2 · 10−6 Gain = +10 dB 1.2 · 10−5

Gain = −6 dB 2.5 · 10−6 Gain = −10 dB 2.3 · 10−3

Cropping Rate = 10−5 3.7 · 10−6

Rate = 10−4 7.4 · 10−4

De-synchronization 1 to 10 sample/s 3.17 · 10−6

Compression AAC@24 kbit/s 10−3 AAC@24 kbit/s 10−5

The watermark payload was set to 32 bits every 15 seconds, to prevent listen-
ing to a significant part of the audio content in case of unauthorized listening.

The watermarking detection key stored in the terminal could be compromised.
The use of an asymmetric watermarking algorithm is hence recommended at the
level of the terminal. However, the actual state of the art of asymmetric water-
marking shows that no algorithm is robust enough. As the watermark robustness
is the most important criterion, we decided to use a symmetric algorithm and
maximize key’s security in the terminal. Two different blind symmetric water-
marking technologies have been explored and developed: algorithm based on time
domain Spread Spectrum [2] and on Scalar Costa Scheme [10, 11]. As it is not
the purpose of this article to detail these techniques, we will only expose their
behavior. We considered robustness according to ordinary or malicious trans-
formations (noise addition, filtering, cropping, de-synchronization, . . . ), and of
course took into account the AAC compression step.

The performances of the two algorithms have been also evaluated in terms of
BER against different attacks (see Table 2).

4 Conclusion

This paper presents the SDMO system and its specifications aiming to maximize
the audio content security in the mobile domain. This objective is reached by
defining an end-to-end security architecture involving both the terminal and
the network in a complementary way. Such architecture uses watermarking in
close relationship with cryptography, rights management and smartcard in the
terminal.

The implementation of the proposed architecture has shown how flexible the
SDMO specifications are when combined with an existing DRM standard like
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OMA DRM v2. According to this security domain, the SDMO Content protec-
tion solution must be seen as an added value security tools.
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Abstract. This paper presents an access control model for program-
ming applications in which the access control to resources can employ
user interaction to obtain the necessary permissions. This model is in-
spired by and improves on the Java security architecture used in Java-
enabled mobile telephones. We consider access control permissions with
multiplicities in order to allow to use a permission a certain number of
times. An operational semantics of the model and a formal definition of
what it means for an application to respect the security model is given.
A static analysis which enforces the security model is defined and proved
correct. A constraint solving algorithm implementing the analysis is pre-
sented.

1 Introduction

Access control to resources is classically described by a model in which an access
control matrix specifies the actions that a subject (program, user, applet, . . . )
is allowed to perform on a particular object. Recent access control mechanisms
have added a dynamic aspect to this model: applets can be granted permissions
temporarily and the outcome of an access control depends on both the set of
currently held permissions and the state of the machine. The most studied ex-
ample of this phenomenon is the stack inspection of Java (and the stack walks
of C
) together with the privileged method calls by which an applet grants all
its permissions to its callers for the duration of the execution of a particular
method call, see e.g. [1, 3, 5, 8]. Another example is the security architecture for
embedded Java on mobile telephones, defined in the Mobile Information Device
Profile (MIDP) [13] for Java, which uses interactive querying of the user to grant
permissions on-the-fly to the applet executing on a mobile phone so that it can
make internet connections, access files, send SMSs etc. An important feature
of the MIDP model are the “one-shot” permissions that can be used once for
accessing a resource. This quantitative aspect of permissions raises several ques-
tions of how such permissions should be modeled (e.g., “do they accumulate?” or
“which one to choose if several permissions apply?”) and how to program with
such permissions in a way that respects both usability and security principles
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such as Least Privilege [12] and the security property stated below. We review
the MIDP model in Section 2.

In this paper, we present a formal model for studying such programming
mechanisms with the purpose of developing a semantically well-founded and
more general replacement for the Java MIDP model. We propose a semantics of
the model’s programming constructs and a logic for reasoning about the flow of
permissions in programs using these constructs. This logic will notably allow to
prove the basic security property that a program will never attempt to access a
resource for which it does not have permission. Notice that this is stronger than
just ensuring that the program will never actually access the resource. Indeed,
the latter property can be trivially achieved in systems with run-time checks—at
the expense of accepting a security exception when an illegal access is detected.
The basic security property is pertinent to systems with or without such dynamic
controls. For systems without any run-time checks, it guarantees the absence of
illegal accesses. For dynamically monitored systems, it guarantees that access
control exceptions will never be raised.

The notion of permission is central to our model. Permissions have an internal
structure (formalised in Section 3) that describes the actions that it enables and
the set of objects to which it applies. The “one-shot” permissions alluded to
above have motivated a generalisation in which permissions now have multiplic-
ities, stating how many times the given permission can be used. Multiplicities
are important for controlling resource access that has a cost, such as sending of
SMSs and establishing network connections on mobile telephones. For example,
in our model it is possible for a user to grant an applet the permission to send
3 SMSs during a transaction. Furthermore, with the accompanying analyses we
propose, it is possible to verify formally that such a number of permissions are
sufficient for completing the transaction.

The security model we propose has two basic constructs for manipulating
permissions:

– grant models the interactive querying of the user, asking whether he grants
a particular permission with a certain multiplicity to the applet, and

– consumemodels the access to a method which requires (and hence consumes)
permissions.

In this model, we choose not to let permissions accumulate i.e., the number of
permissions available of a given type of permissions are those granted by the
most recently executed grant. To avoid the potential confusion that may arise
when several permissions can be used by a consume we introduce a typing of
permissions that renders this situation impossible.

An important feature of this model is that an application can request one
or more permissions in advance instead of having to ask permission just before
consuming it, as with the “one-shot” permissions. The choice of where to insert
requests for user-granted permissions now becomes important for the usability
of an applet and has a clear impact on its security. We provide a static analysis
that will verify automatically that a given choice of placement will ensure that
an applet always has the permissions necessary for its further execution.



112 F. Besson, G. Dufay, and T. Jensen

The analysis is developed by integrating the grant and consume constructs into
a program model based on control-flow graphs. The model and its operational
semantics is presented in Section 4. In this section, we also formally define what
it means for an execution trace (and hence for a program) to respect the basic
security property. Section 5 defines a constraint-based static analysis for safely
approximating the flow of permissions in a program with the aim of computing
what permissions are available at each program point. Section 7 describes how to
solve the constraints produced by the analysis. Section 8 describes related formal
models and verification techniques for language-based access control and Section 9
concludes.

2 The Java MIDP Security Model

The Java MIDP programming model for mobile telephones [13] proposes a thor-
oughly developed security architecture which is the starting point of our work.
In the MIDP security model, applications (called midlets in the MIDP jargon)
are downloaded and executed by a Java virtual machine. Midlets are made of a
single archive (a jar file) containing complete programs. At load time, the midlet
is assigned a protection domain which determines how the midlet can access re-
sources. It can be seen as a labelling function which classifies a resource access
as either allowed or user.

– allowedmeans that the midlet is granted unrestricted access to the resource;
– user means that, prior to an access, an interaction with the user is initiated

in order to ask for permission to perform the access and to determine how
often this permission can be exercised. Within this protection domain, the
MIDP model operates with three possibilities:
• blanket: the permission is granted for as long as the midlet remains

installed;
• session: the permission is granted for as long as the midlet is running;
• oneshot: the permission is granted for a single use.

The oneshot permissions correspond to dynamic security checks in which each
access is protected by a user interaction. This clearly provides a secure access
to resources but the potentially numerous user interactions are at the detriment
of the usability and makes social engineering attacks easier. At the other end of
the spectrum, the allowed mode which gets granted through signing provides a
maximum of usability but leaves the user with absolutely no assurance on how
resources are used, as a signature is only a certificate of integrity and origin.

In the following we will propose a security model which extends the MIDP
model by introducing permissions with multiplicities and by adding flexibility to
the way in which permissions are granted by the user and used by applications.
In this model, we can express:

– the allowed mode and blanket permissions as initial permissions with mul-
tiplicity ∞;
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– the session permissions by prompting the user at application start-up
whether he grants the permission for the session and by assigning an in-
finite number of the given permission;

– the oneshot permissions by prompting the user for a permission with a
grant just before consuming it with a consume.

The added flexibility is obtained by allowing the programmer to insert user
interactions for obtaining permissions at any point in the program (rather than
only at the beginning and just before an access) and to ask for a batch of
permissions in one interaction. The added flexibility can be used to improve
the usability of access control in a midlet but will require formal methods to
ensure that the midlet will not abuse permissions (security concern) and will
be granted by the programmer sufficient permissions for a correct execution
(usability concern). The analysis presented in section 5 is addressing these two
concerns.

3 The Structure of Permissions

In classical access control models, permissions held by a subject (user, program,
. . . ) authorise certain actions to be performed on certain resources. Such per-
missions can be represented as a relation between actions and resources. To
obtain a better fit with access control architectures such as that of Java MIDP
we enrich this permission model with multiplicities and resource types. Con-
crete MIDP permissions are strings whose prefixes encode package names and
whose suffixes encode a specific permission. For instance, one finds permissions
javax.microedition.io.Connector.http and javax.microedition.io.Con-
nector.sms.sendwhich enable applets to make connections using the http pro-
tocol or to send a SMS, respectively. Thus, permissions are structured entities
that for a given resource type define which actions can be applied to which
resources of that type and how many times.

To model this formally, we assume given a set ResType of resource types.
For each resource type rt there is a set of resources Resrt of that type and a
set of actions Actrt applicable to resources of that type. We incorporate the
notion of multiplicities by attaching to a set of actions a and a set of resources
r a multiplicity m indicating how many times actions a can be performed on
resources from r. Multiplicities are taken from the ordered set:

Mul
�
= (N ∪ {⊥Mul ,∞},≤).

The 0 multiplicity represents absence of a given permission and the ∞ multi-
plicity means that the permission is permanently granted. The ⊥Mul multiplicity
represents an error arising from trying to decrement the 0 multiplicity. We define
the operation of decrementing a multiplicity as follows:

m− 1 =

⎧⎨⎩∞ if m =∞
m− 1 if m ∈ N,m �= 0
⊥Mul if m = 0 or m = ⊥Mul
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Several implementations of permissions include an implication ordering on
permissions. One permission implies another if the former allows to apply a
particular action to more resources than the latter. However, the underlying
object-oriented nature of permissions imposes that only permissions of the same
resource type can be compared. We capture this in our model by organising
permissions as a dependent product of permission sets for a given resource
type.

Definition 1 (Permissions). Given a set ResType of resource types and Res
Type-indexed families of resources Resrt and actions Actrt, the set of atomic
permissions Permrt is defined as:

Permrt
�
= (P(Resrt)× P(Actrt)) ∪ {⊥}

relating a type of resources with the actions that can be performed on it. The
element ⊥ represents an invalid permission. By extension, we define the set of
permissions Perm as the dependent product:

Perm
�
=

∏
rt∈ResType

Permrt ×Mul

relating for all resource types an atomic permission and a multiplicity stating
how many times it can be used.

For ρ ∈ Perm and rt ∈ ResType, we use the notations ρ(rt) to denote the
pair of atomic permissions and multiplicities associated with rt in ρ. Similarly,
�→ is used to update the permission associated to a ressource type, i.e., (ρ[rt �→
(p,m)])(rt) = (p,m).

Example 1. Given a ressource type SMS ∈ ResType, the permission ρ ∈ Perm
satisfying ρ(SMS) = ((+1800∗, {send}), 2) grants two accesses to a send ac-
tion of the resource +1800∗ (phone number starting with +1800 ) with the type
SMS.

Definition 2. The ordering �p ⊆ Perm × Perm on permissions is given by

ρ1 �p ρ2
�
= ∀rt ∈ ResType ρ1(rt) � ρ2(rt)

where � is the product of the subset ordering �rt on Permrt and the ≤ ordering
on multiplicities.

Intuitively, being higher up in the ordering means having more permissions to
access a larger set of resources. The ordering induces a greatest lower bound
operator � : Perm × Perm → Perm on permissions. For example, for ρ ∈
Perm

ρ[File �→ ((/tmp/∗, {read ,write}), 1)] � ρ[File �→ ((∗/dupont/∗, {read}),∞)]=
ρ[File �→ ((/tmp/ ∗ /dupont/∗, {read}), 1)]
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Operations on Permissions

There are two operations on permissions that will be of essential use:

– consumption (removal) of a specific permission from a collection of permis-
sions;

– update of a collection of permissions with a newly granted permission.

Definition 3. Let ρ ∈ Perm, rt ∈ ResType, p, p′ ∈ Permrt , m ∈ Mul and
assume that ρ(rt) = (p,m). The operation consume : Permrt → Perm → Perm
is defined by

consume(p′)(ρ) =
{

ρ[rt �→ (p,m− 1)] if p′ �rt p
ρ[rt �→ (⊥,m− 1)] otherwise

There are two possible error situations when trying to consume a permission.
Attempting to consume a resource for which there is no permission (p′ ��rt p) is
an error. Similarly, consuming a resource for which the multiplicity is zero will
result in setting the multiplicity to ⊥Mul .

Definition 4. A permission ρ ∈ Perm is an error, written Error(ρ), if:

∃rt ∈ ResType, ∃(p,m) ∈ Permrt ×Mul , ρ(rt) = (p,m) ∧ (p = ⊥ ∨m = ⊥Mul).

Granting a number of accesses to a resource of a particular resource type is
modeled by updating the component corresponding to that resource type.

Definition 5. Let ρ ∈ Perm, rt ∈ ResType, the operation grant : Permrt ×
Mul → Perm → Perm for granting a number of permissions to access a resource
of a given type is defined by

grant(p,m)(ρ) = ρ[rt �→ (p,m)]

Notice that granting such a permission erases all previously held permissions for
that resource type, i.e., permissions do not accumulate. This is a design choice:
the model forbids that permissions be granted for performing one task and then
used later on to accomplish another. The grant operation could also add the
granted permission to the existing ones rather than replace the corresponding
one. Besides cumulating the number of permissions for permissions sharing the
same type and resource, this would allow different resources for the same resource
type. However, the consume operation becomes much more complex, as a choice
between the overlapping permissions may occur. Analysis would require handling
multisets of permissions or backtracking.

Another consequence of the fact that permissions do not accumulate is that
our model can impose scopes to permissions. This common programming pattern
is naturally captured by inserting a grant instruction with null multiplicity at
the end of the permission scope.
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4 Program Model

We model a program by a control-flow graph (CFG) that captures the ma-
nipulations of permissions (grant and consume), the handling of method calls
and returns, as well as exceptions. These operations are respectively represented
by the instructions grant(p,m), consume(p), call, return, throw(ex), with
ex ∈ EX , rt ∈ ResType, p ∈ Permrt and m ∈ Mul . Exceptions aside, this model
has been used in previous work on modelling access control for Java—see [1, 3, 8].

Definition 6. A control-flow graph is a 7-tuple

G = (NO ,EX ,KD ,TG ,CG,EG ,n0)

where:

– NO is the set of nodes of the graph;
– EX is the set of exceptions;
– KD : NO → {grant(p,m), consume(p), call, return, throw(ex)}, ass-

ociates a kind to each node, indicating which instruction the node represents;
– TG ⊆ NO ×NO is the set of intra-procedural edges;
– CG ⊆ NO × NO is the set of inter-procedural edges, which can capture

dynamic method calls;
– EG ⊆ EX ×NO×NO is the set of intra-procedural exception edges that will

be followed if an exception is raised at that node;
– n0 is the entry point of the graph.

In the following, given n,n′ ∈ NO and ex ∈ EX , we will use the notations n
TG→

n′ for (n,n′) ∈ TG , n
CG→ n′ for (n,n′) ∈ CG and n

ex→ n′ for (ex,n,n′) ∈ EG .

Example 2. Figure 1 contains the control-flow graph of grant and consume
operations during a flight-booking transaction (for simplicity, actions related to
permissions, such as {connect} or {read}, are omitted). In this transaction, the
user first transmits his request to a travel agency, site. He can then modify his
request or get additional information. Finally he can either book or pay the de-
sired flight. Corresponding permissions are summarised in the initial permission
pinit, but they could also be granted using the grant operation. In the example,
the developer has chosen to delay asking for the permission of accessing credit
card information until it is certain that this permission is indeed needed. Another
design choice would be to grant this permission from the outset. This would min-
imise user interaction because it allows to remove the querying grant operation.
However, the initial permission pinit would then contain file �→ (/wallet/∗, 2)
instead of file �→ (/wallet/id, 1) which violates the Principle of Least Privilege.

Operational Semantics

We define the small-step operational semantics of CFGs in Figure 2. The se-
mantics is stack-based and follows the behaviour of a standard programming
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pinit[http �→ (∗,∞); https �→ (site, 1); file �→ (/wallet/id, 1)]

consume(http(site))

consume(http(∗))

consume(file(/wallet/id))

consume(http(site)) grant(file(/wallet/visa#), 1)

consume(file(/wallet/visa#))

consume(https(site))

2.

3.
3.

4. 5.

1. 1.

1. Modify request
2. Get info
3. Choose flight
4. Book only
5. Book and pay

Fig. 1. Example of grant/consume permissions patterns

language with exceptions, e.g., as Java or C
. Instantiating this model to such
languages consists of identifying in the code the desired grant and consume op-
erations, building the control-flow graph and describing the action of the other
instructions on the stack.

The operational semantics operates on a state consisting of a standard control-
flow stack of nodes, enriched with the permissions held at that point in the
execution. Thus, the small-step semantics is given by a relation � between
elements of (NO∗ × (EX ∪ {ε}) × Perm), where NO∗ is a sequence of nodes.
For example, for the instruction call of Figure 2, if the current node n leads
through an inter-procedural step to a node m, then the node m is added to the
top of the stack n:s, with s ∈ NO∗.

Instructions may change the value of the permission along with the current
state. E.g., for the instruction grant of Figure 2, the current permission ρ of the
state will be updated with the new granted permissions. The current node of the
stack n will also be updated, at least to change the program counter, depending
on the desired implementation of grant. Note that the instrumentation is non-
intrusive, i.e. a transition will not be blocked due to the absence of a permission.
Thus, for s in NO∗, e in (EX ∪ {ε}), ρ′ in Perm , if there exists s′ in NO∗, e′

in (EX ∪ {ε}), ρ′ in Perm such that s, e, ρ � s′, e′, ρ′, then for all ρ and ρ′, the
same transition holds.

This operational semantics will be the basis for the notion of program ex-
ecution traces, on which global results on the execution of a program will be
expressed.

Definition 7 (Trace of a CFG). A partial trace tr ∈ (NO , (EX ∪ {ε}))∗ of
a CFG is a sequence of nodes (n0, ε) :: (n1, e1) :: . . . :: (nk, ek) such that for
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KD(n) = grant(p, m) n
TG→ n′

n:s, ε, ρ � n′:s, ε, grant(p, m)(ρ)
KD(n) = consume(p) n

TG→ n′

n:s, ε, ρ � n′:s, ε, consume(p)(ρ)

KD(n) = call n
CG→ m

n:s, ε, ρ � m:n:s, ε, ρ
KD(r) = return n

TG→ n′

r:n:s, ε, ρ � n′:s, ε, ρ

KD(n) = throw(ex) n
ex→ h

n:s, ε, ρ � h:s, ε, ρ
KD(n) = throw(ex) ∀h, n

ex� h

n:s, ε, ρ � n:s, ex, ρ

∀h, n
ex� h

t:n:s, ex, ρ � n:s, ex, ρ

n
ex→ h

t:n:s, ex, ρ � h:s, ε, ρ

Fig. 2. Small-step operational semantics

all 0 ≤ i < k there exists ρ, ρ′ ∈ Perm, s, s′ ∈ NO∗ such that ni:s, ei, ρ �
ni+1:s′, ei+1, ρ

′.
For a program P represented by its control-flow graph G, we will denote by

�P � the set of all partial traces of G.

To state and verify the safety of a program that acquires and consumes permis-
sions, we first define what it means for an execution trace to be safe. We define
the permission set available at the end of a trace by induction over its length.

PermsOf (nil)
�
= pinit

PermsOf (tr :: (consume(p), e))
�
= consume(p,PermsOf (tr))

PermsOf (tr :: (grant(p,m), e))
�
= grant((p,m),PermsOf (tr))

PermsOf (tr :: (n, e))
�
= PermsOf (tr) otherwise

pinit is the initial permission of the program, for the state n0. By default, if no
permission is granted at the beginning of the execution, it will contain ((∅, ∅), 0)
for each resource type. The allowed mode and blanket permissions for a re-
source r of a given resource type can be modeled by associating the permission
(({r},Act),∞) with that resource type.

A trace is safe if none of its prefixes end in an error situation due to the access
of resources for which the necessary permissions have not been obtained.

Definition 8 (Safe trace). A partial trace tr ∈ (NO , (EX ∪ {ε}))∗ is safe,
written Safe(tr), if for all prefixes tr′ ∈ prefix(tr), ¬Error (PermsOf (tr′)).

5 Static Analysis of Permission Usage

We now define a constraint-based static flow analysis for computing a safe ap-
proximation, denoted Pn, of the permissions that are guaranteed to be available
at each program point n in a CFG when execution reaches that point. Thus, safe
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Pn0 �p pinit

KD(n) = grant(p, m) n
TG→ n′

Pn′ �p grant(p, m)(Pn)

KD(n) = consume(p) n
TG→ n′

Pn′ �p consume(p)(Pn)
KD(n) = call n

CG→ m n
TG→ n′

Pn′ �p Rm(Pn)

KD(n) = call n
CG→ m

Pm �p Pn

KD(n) = call n
CG→ m n

ex→ h

Ph �p Rex
m (Pn)

KD(n) = call n
CG→ m ∀h, n

ex� h

Pn �p Rex
m (Pn)

KD(n) = throw(ex) n
ex→ m

Pm �p Pn

Fig. 3. Constraints on minimal permissions

means that Pn underestimates the set of permissions that will be held at n dur-
ing the execution. The approximation will be defined as a solution to a system of
constraints over Pn, derived from the CFG following the rules in Figure 3. The
rules for Pn are straightforward data flow rules: e.g., for grant and consume
we use the corresponding semantic operations grant and consume applied to
the start state Pn to get an upper bound on the permissions that can be held
at end state Pn′ . Notice that the set Pn′ can be further constrained if there is
another flow into n′. The effect of a method call on the set of permissions will be
modeled by a transfer function R that will be defined below. Finally, throwing
an exception at node n that will be caught at node m means that the set of
permissions at n will be transferred to m and hence form an upper bound on
the set of available permissions at this point.

Our CFG program model includes procedure calls which means that the anal-
ysis must be inter-procedural. We deal with procedures by computing summary
functions for each procedure. These functions summarise how a given procedure
consumes resources from the entry of the procedure to the exit, which can hap-
pen either normally by reaching a return node, or by raising an exception which
is not handled in the procedure. More precisely, for a given CFG we compute the
quantity R : (EX ∪{ε})→ NO → (Perm → Perm) with the following meaning:

– the partial application of R to ε is the effect on a given initial permission of
the execution from a node until return;

– the partial application of R to ex ∈ EX is the effect on a given initial
permission of the execution from a node until reaching a node which throws
an exception ex that is not caught in the same method.

Given nodes n,n′ ∈ NO , we will use the notation Rn and Rex
n for the partial

applications of R ε n and R ex n. The rules are written using diagrammatic
function composition ; such that F ;F ′(ρ) = F ′(F (ρ)). We define an order �
on functions F, F ′ : Perm → Perm by extensionality such that F � F ′ if ∀ρ ∈
Perm , F (ρ) �p F ′(ρ).
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KD(n) = grant(p, m) n
TG→ n′

Re
n � grant(p, m); Re

n′

KD(n) = consume(p) n
TG→ n′

Re
n � consume(p); Re

n′

KD(n) = return

Rn � λρ.ρ

KD(n) = call n
CG→ m n

TG→ n′

Re
n � Rm; Re

n′

KD(n) = call n
CG→ m ∀n′, n ex� n′

Rex
n � Rex

m

KD(n) = call n
CG→ m n

ex→ h

Rn � Rex
m ; Rh

KD(n) = throw(ex) n
ex→ h

Re
n � Re

h

KD(n) = throw(ex) ∀n′, n ex� n′

Rex
n � λρ.ρ

Fig. 4. Summary functions of the effect of the execution on initial permission

As for the entities Pn, the function R is defined as solutions to a system
of constraints. The rules for generating these constraints are given in Figure 4
(with e ∈ EX ∪ {ε}). The rules all have the same structure: compose the effect
of the current node n on the permission set with the function describing the
effect of the computation starting at n’s successors in the control flow. This
provides an upper bound on the effect on permissions when starting from n. As
with the constraints for P , we use the functions grant and consume to model
the effect of grant and consume nodes, respectively. A method call at node n is
modeled by the R function itself applied to the start node of the called method
m. The combined effect is the composition Rm;Re

n′ of the effect of the method
call followed by the effect of the computation starting at the successor node n′

of call node n.

6 Correctness

The correctness of our analysis is stated on execution traces. For a given program,
if a solution of the constraints computed during the analysis does not contain
errors in permissions, then the program will behave safely. Formally,

Theorem 1 (Basic Security Property). Given a program P :

(∀n ∈ NO ,¬Error (Pn)) ⇒ ∀tr ∈ �P �,Safe(tr)

The proof of this theorem relies on a big-step operational semantics which is
shown equivalent to the small-step semantics of Figure 2. This big-step semantics
is easier to reason with (in particular for method invocation) and yields an
accessibility relation Acc that also captures non-terminating methods. The first
part of the proof of Theorem 1 amounts to showing that if the analysis declares
that if no abstract state indicates an access without the proper permission then
this is indeed the case for all the accessible states in program.
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Lemma 1.

(∀n ∈ NO ,¬Error(Pn)) ⇒ ∀(n, ρ) ∈ Acc,¬Error(ρ)

To do this, we first show (by induction over the definition of the big-step se-
mantics) that summary functions R correctly model the effect of method calls
on permissions. Then, we show a similar result for the permissions computed for
each program point by the analysis:

Lemma 2.

∀n ∈ NO , ∀ρ ∈ Perm , (n, ρ) ∈ Acc ⇒ Pn �p ρ

Lemma 1 is a direct consequence of Lemma 2. Using proof by contradiction, we
suppose (n, ρ) ∈ Acc with Error(ρ), then we get Pn �p ρ, which contradicts
¬Error (Pn) given Error (ρ).

The second part links the trace semantics with the big-step instrumented
semantics by proving that if no accessible state in the instrumented semantics
has a tag indicating an access control error then the program is safe with respect
to the definition of safety of execution traces. This part amounts to showing that
the instrumented semantics is a monitor for the Safe predicate.

A more detailed proof is given in the online version of this paper at http://
hal.inria.fr/inria-00083453.

7 Constraint Solving

Computing a solution to the constraints generated by the analysis in Section 5
is complicated by the fact that solutions to the R-constraints (see Figure 4)
are functions from Perm to Perm that have infinite domains and hence cannot
be represented by a naive tabulation [14]. To solve this problem, we identify
a class of functions that are sufficient to encode solutions to the constraints
while restricted enough to allow effective computations. Given a solution to the
R-constraints, the P -constraints (see Figure 3) are solved by standard fixpoint
iteration.

The rest of this section is devoted to the resolution of the R-constraints. The
resolution technique consists in applying solution-preserving transformations to
the constraints until they can be solved either symbolically or iteratively.

7.1 On Simplifying R-Constraints

In our model, resources are partitioned depending on their resource type. At
the semantic level, grant and consume operations ensure that permissions of
different types do not interfere i.e., that it is impossible to use a resource of a
given type with a permission of a different type. We exploit this property to
derive from the original system of constraints a family of independent ResType-
indexed constraint systems. A system modelling a given resource type, say rt, is
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a copy of the original system except that grant and consume are indexed by rt
and are specialized accordingly:

grantrt(p′rt′ ,m′) =
{
λ(p,m).(p′,m′) si rt = rt′

λ(p,m).(p,m) sinon

consumert(p′rt′) =
{
λ(p,m).(if p′ �rt′ p then p else ⊥,m− 1) si rt = rt′

λ(p,m).(p,m) sinon

Further inspection of these operators shows that multiplicities and atomic per-
missions also behave in an independent manner. As a result, each ResType in-
dexed system can be split into a pair of systems: one modelling the evolution of
atomic permissions; the other modelling the evolution of multiplicities. Hence,
solving the R-constraints amounts to computing for each exception e, node n
and resource type rt a pair of mappings:

– an atomic permission transformer (Permrt → Permrt) and
– a multiplicity transformer (Mul → Mul).

In the next sections, we define syntactic representations of these multiplicity
transformers that are amenable to symbolic computations.

7.2 Constraints on Multiplicity Transformers

Before presenting our encoding of multiplicity transformers, we identify the
structure of the constraints we have to solve. Multiplicity constraints are terms
of the form x≤̇e where x : Mul → Mul is a variable over multiplicity transform-
ers, ≤̇ is the point-wise ordering of multiplicity transformers induced by ≤ and
e is an expression built over the terms

e ::= v|grantMul(m)|consumeMul(m)|id |e; e

where

– v is a variable;
– grantMul(m) is the constant function λx.m;
– consumeMul(m) is the decrementing function λx.x−m;
– id is the identity function λx.x;
– and f ; g is function composition (f ; g = g ◦ f).

We define MulF = {λx.min(c, x−d)|(c, d) ∈ Mul×Mul} as a restricted class of
multiplicity transformers that is sufficiently expressive to represent the solution
to the constraints. Elements of MulF encode constant functions, decrementing
functions and are closed under function composition as shown by the following
equalities:

grantMul(m) = λx.min(m, x−⊥Mul)
consumeMul(m) = λx.min(∞, x −m)
λx.min(c, x− d′);λx.min(c′, x− d′) = λx.min(min(c− d′, c′), x− (d′ + d))
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We represent a function λx.min(c, x − d) ∈ MulF by the pair (c, d) of multi-
plicities. Constraint solving over MulF can therefore be recast into constraint
solving over the domain MulF � = Mul ×Mul equipped with the interpretation
�(c, d)�

�
= λx.min(c, x− d) and the ordering �� defined as (c, d) �� (c′, d′)

�
= c ≤

c′ ∧ d′ ≤ d.

7.3 Solving Multiplicity Constraints

The domain MulF � does not satisfy the descending chain condition. This means
that iterative solving of the constraints might not terminate. Instead, we use an
elimination-based algorithm. First, we split our constraint system over MulF � =
Mul ×Mul into two constraint systems over Mul . Example 3 shows this trans-
formation for a representative set of constraints.

Example 3. C = {Y �� (c, d),Y ′ �� X,X �� Y ;� Y ′} is transformed into
C′ = C1 ∪ C2 with C1 = {Y1 ≤ c,Y ′

1 ≤ X1,X1 ≤ min(Y1 − Y ′
2 ,Y

′
1)} and

C2 = {Y2 ≥ d,Y ′
2 ≥ X2,X2 ≥ Y ′

2 + Y2}.

Notice that C1 depends on C2 but C2 is independent from C1. This result holds
generally and, as a consequence, these sets of constraints can be solved in se-
quence: C2 first, then C1.

To be solved, C2 is converted into an equivalent system of fixpoint equations
defined over the complete lattice (Mul ,≤,max,⊥Mul). The equations have the
general form x = e where e ::= var | max(e, e) | e + e. The elimination-based
algorithm unfolds equations until a direct recursion is found. After a normalisa-
tion step, recursions are eliminated using a generalisation of Proposition 1 for
an arbitrary number of occurences of the x variable.

Proposition 1. x = max(x+ e1, e2) is equivalent to x = max(e2 +∞× e1, e2).

Given a solution for C2, the solution of C1 can be computed by standard fix-
point iteration as the domain (Mul ,≤,min,∞) does not have infinite descending
chains. This provides multiplicity transformer solutions of the R-constraints.

8 Related Work

To the best of our knowledge, there is no formal model of the Java MIDP access
control mechanism. A number of articles deal with access control in Java and
C
 but they have focused on the stack inspection mechanism and the notion of
granting permissions to code through privileged method calls. Earlier work by
some of the present authors [3, 8] proposed a semantic model for stack inspec-
tion but was otherwise mostly concerned with proving behavioural properties
of programs using these mechanisms. Closer in aim with the present work is
that of Pottier et al. [11] on verifying that stack inspecting programs do not
raise security exceptions because of missing permissions. Bartoletti et al. [1] also
aim at proving that stack inspecting applets will not cause security exceptions
and propose the first proper modelling of exception handling. Both these works
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prove properties that allow to execute the program without dynamic permis-
sion checks. In this respect, they establish the same kind of property as we do
in this paper. However, the works cited above do not deal with multiplicities
of permissions and do not deal with the aspect of permissions granted on the
fly through user interaction. The analysis of multiplicities leads to systems of
numerical constraints which do not appear in the stack inspecting analyses.

Language-based access control has been studied for various idealised program
models. Igarashi and Kobayashi [7] propose a static analysis for verifying that
resources are accessed according to access control policies specified e.g. by finite-
state automata, but do not study specific language primitives for implementing
such an access control. Closer to the work presented in this article is that of
Bartoletti et al. [2] who propose with λ[] a less general resource access con-
trol framework than Igarashi and Kobayashi, and without explicit notions of
resources, but are able to ensure through a static analysis that no security vio-
lations will occur at run-time. They rely for that purpose on a type and effect
system on λ[] from which they extract history expressions further model-checked.
In the context of mobile agent, Hennessy and Riely [6] have developed a type
system for the π-calculus with the aim of ensuring that a resource is accessed
only if the program has been granted the appropriate permission (capability)
previously. In this model, resources are represented by locations in a π-calculus
term and are accessed via channels. Permissions are now capabilities of execut-
ing operations (e.g. read, transmit) on a channel. Types are used to restrict the
access of a term to a resource and there is a notion of sub-typing akin to our
order relation on permissions. The notion of multiplicities is not dealt with but
could probably be accommodated by switching to types that are multi-sets of
capabilities.

Our permission model adds a quantitative aspect to permissions which means
that our analysis is closely related to the work by Chander et al. [4] on dynamic
checks for verifying resource consumption. Their safety property is similar to ours
and ensure that a program always acquires resources before consuming them.
However, their model of resources is simpler as resources are just identified by
name. Because their approach requires user-provided invariants, their analysis of
numeric quantities (multiplicities) is very precise. In contrast to this, our analysis
is fully automatic.

9 Conclusions

We have proposed an access control model for programs which dynamically ac-
quire permissions to access resources. The model extends the current access
control model of the Java MIDP profile for mobile telephones by introducing
multiplicities of permissions together with explicit instructions for granting and
consuming permissions. These instructions allow to improve the usability of an
application by fine-tuning the number and placement of user interactions that
ask for permissions. In addition, programs written in our access control model
can be formally and statically verified to satisfy the fundamental property that
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a program does not attempt to access a resource for which it does not have the
appropriate permission. The formalisation is based on a model of permissions
which extends the standard object × action model with multiplicities. We have
given a formal semantics for the access control model, defined a constraint-based
analysis for computing the permissions available at each point of a program, and
shown how the resulting constraint systems can be solved. To the best of our
knowledge, it is the first time that a formal treatment of the Java MIDP model
has been proposed.

The present model and analysis has been developed in terms of control-flow
graphs and has ignored the treatment of data such as integers etc. By combining
our analysis with standard data flow analysis we can obtain a better approxi-
mation of integer variables and hence, e.g., the number of times a permission-
consuming loop is executed. In the present model, we either have to require
that there is a grant executed for each consume inside the loop or that the
relevant permission has been granted with multiplicity ∞ before entering the
loop. Allowing a grant to take a variable as multiplicity parameter combined
with a relational analysis (the octagon analysis by Miné [9]) is a straightforward
extension that would allow to program and verify a larger class of programs.

This work is intended for serving as the basis for a Proof Carrying Code
(PCC) [10] architecture aiming at ensuring that a program will not use more
resources than what have been declared. In the context of mobile devices where
such resources could have an economic (via premium-rated SMS for instance)
or privacy (via address-book access) impact, this would provide improved con-
fidence in programs without resorting to third-party signature. The PCC cer-
tificate would consist of the precomputed Pn and Re

n. The host device would
then check that the transmitted certificate is indeed a solution. Note that no
information is needed for intra-procedural instructions other than grant and
consume—this drastically reduces the size of the certificate.
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Abstract. Motivated by the need of application-level access control in
dynamically extensible systems, this work proposes a static annotation
system for modeling capabilities in a Java-like programming language.
Unlike previous language-based capability systems, the proposed anno-
tation system can provably enforce capability confinement. This confine-
ment guarantee is leveraged to model a strong form of separation of duty
known as hereditary mutual suspicion. The annotation system has been
fully implemented in a standard Java Virtual Machine.

1 Introduction

Dynamic extensibility is a popular architectural feature of networked or dis-
tributed software systems [1]. In such systems, code units originating from po-
tentially untrusted origins can be linked dynamically into the core system in
order to augment its feature set. The protection infrastructure of a dynamically
extensible system is often language based [2]. Previous work on language-based
access control largely focuses on infrastructure protection via various forms of
history-based access control [3,4,5,6,7,8,9]. The security posture of infrastruc-
ture protection tends to divide run-time principals into a trusted “kernel” vs
untrusted “extensions”, and focuses on controlling the access of kernel resources
by extension code. This security posture does not adequately address the need
of application-level security , that is, the imposition of collaboration proto-
cols among peer code units, and the enforcement of access control over resources
that are defined and shared by these code units. This paper reports an effort to
address this limitation through a language-based capability system.

The notion of capabilities [10,11] is a classical access control mechanism for
supporting secure cooperation of mutually suspicious code units [12]. A capabil-
ity is an unforgeable pair comprised of an object reference plus a set of access
rights that can be exercised through the reference. In a capability system, pos-
session of a capability is the necessary and sufficient condition for exercising the
specified rights on the named object. This inherent symmetry makes capability
systems a natural protection mechanism for enforcing application-level security.

Previous approaches to implement language-based capability systems involve
the employment of either the proxy design pattern [13] or load-time binary
rewriting [14] to achieve the effect of interposition. Although these “dynamic”
approaches are versatile enough to support capability revocation , they are not
without blemish. Leaving performance issues aside, a common critique [13,15]
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is that an unmodified capability model fails to address the need of capability
confinement : once a capability is granted to a receiver, there is no way to
prevent further propagation.

An alternative approach is to embed the notion of capabilities into a static
type system [16]. In a capability type system [17,18], every object reference
is statically assigned a capability type, which imposes on the object reference
a set of operational restrictions that constrains the way the underlying object
may be accessed. When a code unit delegates a resource to an untrusted peer,
it may do so by passing to the peer a resource reference that has been statically
typed by a capability type, thereby exposing to the peer only a limited view of
the resource.

The class hierarchy of a Java-like programming language [19,20] provides non-
intrusive building blocks for capability types. Specifically, one may exploit ab-
stract types (i.e., abstract classes or interfaces in Java) as capability types. An
abstract type exposes only a limited subset of the functionalities provided by the
underlying object, and thus an object reference with an abstract type can be
considered a capability of the underlying object. A code unit wishing to share
an object with its peer may grant the latter a reference properly typed with
an abstract type. The receiver of the reference may then access the underlying
object through the constrained interface. This scheme, however, suffers from the
same lack of capability confinement. The problem manifests itself in two ways.

1. Capability Theft. A code unit may “steal” a capability from code units
belonging to a foreign protection domain, thereby amplifying its own access
rights. Worst still, capabilities can be easily forged by unconstrained object
instantiation and dynamic downcasting.

2. Capability Leakage. A code unit in possession of a capability may inten-
tionally or accidentally “push” the capability to code units residing in a less
privileged protection domain.

This paper proposes a lightweight, static annotation system called Discre-
tionary Capability Confinement (DCC), which fully supports the adop-
tion of abstract types as capability types and provably prevents capability theft
and leakage. Targeting Java-like programming languages, the annotation system
offers the following features:

– While the binding of a code unit to its protection domain is performed stati-
cally, the granting of permissions to a protection domain occurs dynamically
through the propagation of capabilities.

– Inspired by Vitek et al [21,22,23,24], a protection domain is identified with
a confinement domain . Once a capability is acquired, it roams freely
within the receiving confinement domain. A capability may only escape from
a confinement domain via explicit capability granting.

– Following the design of Gong [25], although a method may freely exercise
the capabilities it possesses, its ability to grant capabilities is subject to
discretionary control by a capability granting policy .
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– Under mild conditions, capability confinement guarantees such as no theft
and no leakage can be proven. Programmers can achieve these guarantees
by adhering to simple annotation practices.

– An application-level collaboration protocol called hereditary mutual sus-
picion is enforced. This protocol entails a strong form of separation of
duty [26,27]: not only is the notion of mutually-exclusive roles supported,
collusion between them is severely restricted because of the confinement
guarantees above.

The contributions of this paper are the following:

– A widely held belief among security researchers is that language-based capa-
bility systems adopting the reference-as-capability metaphor cannot address
the need of capability confinement [13,15]. Employing type-based confine-
ment, this work has successfully demonstrated that such a capability system
is in fact feasible.

– The traditional approach to support separation of duty is through the impo-
sition of mutually exclusive roles [28,27]. This work proposes a novel mech-
anism, hereditary mutual suspicion, to support separation of duty in an
object-oriented setting. When combined with confinement guarantees, this
mechanism not only implements mutually exclusive roles, but also provably
eliminate certain forms of collusion.

Organization. Sect. 2 motivates DCC by an example. Sect. 3 outlines the main
type constraints. Sect. 4 states the confinement guarantees. Sect. 5 discusses
extensions and variations. The paper concludes with related work and future
work. Appendix A reports implementation experiences.

2 Motivation

The Hero-Sidekick Game. Suppose we are developing a role-playing game. Over
time, a playable character, called a hero (e.g., Bat Man), may acquire an arbi-
trary number of sidekicks (e.g., Robin). A sidekick is a non-playable character
whose behavior is a function of the state of the hero to which it is associated.
The intention is that a sidekick augments the power of its hero. The number of
sidekicks that may be attached to a hero is a function of the hero’s experience.
A hero may adopt or orphan a sidekick at will. New hero and sidekick types may
be introduced in future releases.

A possible design is to employ the Observer pattern [29] to capture the dy-
namic dependencies between heros and sidekicks, as is shown in Fig. 1, where
sidekicks are observers of heros. The GameEngine class is responsible for creating
instances of Hero and Sidekick, and managing the attachment and detachment
of Sidekicks. This set up would have worked had it not been the following
requirement: users may download new hero or sidekick types from the internet
during a game play. Because of dynamic extensibility, we must actively ensure
fair game play by eliminating the possibility of cheating through the downloading
of malicious characters. Two prototypical cheats are the following.
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public interface Character { /* Common character behavior ... */ }
public interface Observable {

State getState();
}
public abstract class Hero implements Character, Observable {

protected Sidekick observers[];
public final void attach(Sidekick sidekick) { /* Attach sidekick */ }
public final void detach(Sidekick sidekick) { /* Detach sidekick */ }
public final void broadcast() {

for (Sidekick observer : observers)
observer.update(this);

}
}
public interface Sidekick extends Character {

void update(Observable hero);
}
public class GameEngine { /* Manage life cycle of characters ... */ }

Fig. 1. A set up of the hero-sidekick game

Cheat I: Capability Theft. A Sidekick reference can be seen as a capability,
the possession of which makes a Hero instance more potent. A malicious Hero
can augment its own power by creating new instances of concrete Sidekicks, or
stealing existing instances from unprotected sources, and then attaching these
instances to itself.

Cheat II: Capability Theft and Leakage. A Hero exposes two type interfaces:
(i) a sidekick management interface (i.e., Hero), and (ii) a state query inter-
face (i.e., Observable). While the former is intended to be used exclusively by
the GameEngine, the latter is a restrictive interface through which Heros may be
accessed securely by Sidekicks. This means that a Hero reference is also a capa-
bility from the perspective of Sidekick. Upon receiving a Hero object through
the Observable argument of the update method, a malicious Sidekick may
downcast the Observable reference to a Hero reference, and thus exposes the
sidekick management interface of the Hero object (i.e., capability theft). This in
turn allows the malicious Sidekick to attach sidekicks to the Hero object (i.e.,
capability leakage).

Solution Approach. To control capability propagation, DCC assigns the Hero and
Sidekick interfaces to two distinct confinement domains [21], and restricts
the exchange of capability references between the two domains. Specifically, ca-
pability references may only cross confinement boundaries via explicit argument
passing. Capability granting is thus possible only under conscious discretion .
Notice that the above restrictions shall not apply to GameEngine, because it is
by design responsible for managing the life cycle of Heros and Sidekicks, and
as such it requires the rights to acquire instances of Heros and Sidekicks. This
motivates the need to have a notion of trust to discriminate the two cases.

To further control the granting of capabilities, a capability granting policy
[25] can be imposed on a method. For example, a capability granting policy can
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be imposed on the broadcast method so that the latter passes only Observable
references to update, but never Hero references.

Our goal is not only to prevent capability theft and leakage between Hero and
Sidekick, but also between the subtypes of Hero and those of Sidekick. In
other words, we want to treat Hero and Sidekick as roles, prescribe capability
confinement constraints between them, and then require that their subtypes
also conform to the constraints. DCC achieves this via a mechanism known as
hereditary mutual suspicion .

3 Discretionary Capability Confinement

This section presents the DCC annotation system for the JVM bytecode lan-
guage. The threat model is reviewed in Sect. 3.1, the main type constraints are
specified in Sect. 3.2, and the utility of DCC in addressing the security challenges
of the running example is discussed in Sect.3.3.

3.1 Threat Model

As the present goal is to restrict the forging and propagation of abstractly typed
references, we begin the discussion with an exhaustive analysis of all means by
which a reference type A may acquire a reference of type C. We use metavari-
ables A, B and C to denote raw JVM reference types (i.e., after erasure). We
consider class and interface types here, and defer the treatment of array types
and genericity till Sect. 5.1.

1. B grants a reference of type C to A when B invokes a method1 declared in
A, passing an argument via a formal parameter of type C.

2. B shares a reference of type C with A when one of the following occurs:
(a) A invokes a method declared in B with return type C; (b) A reads a
field declared in B with field type C; (c) B writes a reference into a field
declared in A with field type C.

3. A generates a reference of type C when one of the following occurs: (a) A
creates an instance of C; (b) A dynamically casts a reference to type C; (c)
an exception handler in A with catch type C catches an exception.

3.2 Type Constraints

We postulate that the space of reference types is partitioned by the programmer
into a finite number of confinement domains, so that every reference type
C is assigned to exactly one confinement domain via a domain label l(C). We
use metavariables D and E to denote confinement domains. The confinement
domains are further organized into a dominance hierarchy by a programmer-
defined partial order �. We say that D dominates E whenever E � D. The
1 By a method we mean either an instance or static method, or an instance or class

initializer. By a field we mean either an instance or static field.
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dominance hierarchy induces a pre-ordering of reference types. Specifically, if
l(B) = E , l(A) = D, and E � D then we write B A, and say that B trusts A.
We write A � B iff both AB and BA. The binary relation � is an equivalence
relation, the equivalence classes of which are simply the confinement domains.
If C A does not hold, then a reference of type C is said to be a capability for
A. Intuitively, capabilities should provide the sole means for untrusted types to
access methods declared in capability types. The following constraint is imposed
to ensure that an untrusted access is always mediated by a capability:

(DCC1) Unless B  A, A shall not invoke a static method declared in B.

Acquiring non-capability references is harmless. Capability acquisition, however,
is restricted by a number of constraints, the first of which is the following:

(DCC2) The following must hold:
1. A can generate a reference of type C only if C  A. [No capability gen-

eration is permitted.]
2. B may share a reference of type C with A only if C  A ∨ A � B.

[Capability sharing is not permitted across domain boundaries.]

In other words, capability acquisition only occurs as a result of explicit capability
granting. Once a capability is acquired, it roams freely within the receiving
confinement domain. Escape from a confinement domain is only possible when
the escaping reference does not escape as a capability, or when it escapes as a
capability via argument passing.

We also postulate that there is a root domain � so that � � D for all D.
All Java platform classes are members of the root domain �. This means they
can be freely acquired by any reference type2.

Capability granting is regulated by discretionary control. We postulate that
every declared method has a unique designator, which is denoted by metavari-
ables m and n. We occasionally write A.m to stress the fact that m is declared in
A. Associated with every method m is a programmer-supplied label l(m), called
the capability granting policy of m. The label l(m) is a confinement domain.
(If l(n) = E , l(m) = D, and E � D, then we write n  m. Similarly, we write
m  A and A  m for the obvious meaning.) Intuitively, the capability granting
policy l(m) dictates what capabilities may be granted by m, and to whom m
may grant a capability.

(DCC3) If A.m invokes3 B.n, and C is the type of a formal parameter of n, then
C  B ∨A � B ∨ (B  m ∧ C  m).

2 Notice that the focus of this paper is not to protect Java platform resources. Instead,
our goal is to enforce application-level security policies that prescribe interaction
protocols among dynamically loaded software extensions. The organization of the
domain hierarchy therefore reflects this concern: platform classes and application
core classes belong respectively to the least and the most dominating domain.

3 In the case of instance methods, if A.m invokes B.n, the actual method that gets
dispatched may be a method B′.n′ declared in a proper subtype B′ of B. Constraints
(DCC3) and (DCC4) only regulate method invocation. Dynamic method dispatching
is regulated by controlling method overriding through (DCC6).
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That is, capability granting (¬ CB) across domain boundaries (¬ A � B) must
adhere to the capability granting policy of the caller (Bm∧C m). Specifically,
a capability granting policy l(m) ensures that m only grants capabilities to those
reference types B satisfying B  m, and that m only grants capabilities of type
C for which C  m.

A method may be tricked into invoking another method that does not honor
the caller’s capability granting policy. This classical anomaly is known as the
Confused Deputy [30]. The following constraint ensures that capability granting
policies are always preserved along a call chain.

(DCC4) A method m may invoke another method n only if n  m.

We now turn to the interaction between capability confinement and subtyping.
We write A <: B whenever A is either B itself or one of B’s subtypes. A
subtype exposes the interface of its supertypes. Specifically, if a reference type
A has acquired a reference of type B, then A has effectively acquired a reference
of every type B′ that is a supertype of B. This is because implicit widening
conversion is not considered a reference acquisition event in our threat model.
The following constraint is imposed to ensure that widening does not turn a
non-capability into a capability.

(DCC5) If A <: B then B  A.

When an instance method B.n is invoked, the method that gets dispatched
may be a method B′.n′ declared in a subtype B′ of B. This allows B′.n′ to
“impersonate” B.n, potentially allowing B′.n′ to (i) grant capabilities in a way
that violates the capability granting policy of B.n, (ii) return a capability to
a caller with whom B′ is not supposed to share capabilities, or (iii) accept
a capability argument that is intended for B rather than B′. The following
constraint prevents impersonation.

(DCC6) Suppose B.n is overridden by B′.n′. The following must hold:
1. n′  n. [Overriding never relaxes capability granting rights.]
2. If the method return type is C, then C  B ∨ B � B′. [A method that

returns a capability may not be overridden by a method declared in a
different domain.]

3. If C is the type of a formal parameter, then C B′ ∨B � B′. [A method
may be granted a capability only if it does not override a method declared
in a different domain.]

If reference types A and B do not trust each other (i.e., neither A  B nor
B A hold), they are said to be mutually suspicious. The following constraint
requires that mutual suspicion is preserved by subtyping.

(DCC7) Hereditary mutual suspicion. Suppose A and B are mutually sus-
picious. If A′ <: A and B′ <: B, then A′ and B′ are also mutually suspicious.

(DCC7) results in a strong form of static separation of duty [27]. Firstly, as  is
reflexive, no reference type can be a subtype of both A and B. This renders A
and B mutually exclusive roles. Secondly, Sect. 4.2 shows that a class of collusion
between A and B can be provably eliminated.
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3.3 Addressing the Security Challenges

GameEngineDomain
GameEngine

CharacterDomain
Character
Observable

HeroDomain
Hero

SidekickDomain
Sidekick

Fig. 2. Dominance hierarchy for
the hero-sidekick application. Ar-
rows represent “dominated-by” re-
lationships (�).

The challenge of capability theft and leakage
described in our running example (Sect. 2)
can be fully addressed by DCC. A domi-
nance hierarchy for the hero-sidekick game
application is given in Fig. 2. Because Hero-
Domain and SidekickDomain are incompa-
rable in the dominance hierarchy, Hero and
Sidekick are capabilities for each other.
Consequently, not only are Sidekicks not
allowed to downcast an Observable ref-
erence to a Hero capability (i.e., Cheat
II), Heros are also forbidden to create new
Sidekick capabilities or to steal such ca-
pabilities through aliasing (Cheat I). Fur-
thermore, the dominance hierarchy also ren-
ders GameEngineDomain the most dominat-
ing confinement domain, thereby allowing
GameEngine to have full access to the ref-
erence types declared in the rest of the con-
finement domains. We also annotate every method A.m displayed in Fig. 1 with
a capability granting policy of l(m) = l(A): e.g., l(update) = SidekickDomain.
Consequently, even if a Sidekick obtains a Hero reference, it is still not allowed
to attach any sidekick to the Hero instance (Cheat II). Lastly, hereditary mutual
suspicion allows us to turn Hero and Sidekick into mutually suspicious roles,
so that their subtypes cannot conspire to communicate capabilities.

4 Confinement Properties

Given a discretionary access control mechanism such as DCC, safety analysis
[31,32,33] must be conducted to characterize the conditions under which access
rights are not granted to unintended parties. This section reports the confinement
properties that have been established for DCC [34].

4.1 Featherweight JVM

Our confinement results are formalized in a lightweight model of the JVM called
Featherweight JVM (FJVM) [35]. FJVM is a nondeterministic production sys-
tem that describes how the JVM state evolves in reaction to access events. Non-
determinism is employed because we are not modeling the execution of a specific
bytecode sequence, but rather all possible access events that may be generated
by the JVM when well-typed bytecode sequences are executed. FJVM manipu-
lates object references. Every object reference is an instance of exactly one class.
An object has an arbitrary number of fields, each of which is declared either
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A,B, C ∈ C raw reference types
m, n ∈ M method designators

p, q, r ∈ O object references
S, T ::= 〈Π,Γ ; Φ, A.m, σ〉 VM states

Π ::= ∅ | Π ∪ {r : C} object pools
Γ ::= ∅ | Γ ∪ {p : B � q : C} link graphs
Φ ::= ∅ | Φ ∪ {r : C} stack frames
σ ::=  | push(Φ, A.m, C, σ) proper stacks

Fig. 3. FJVM states

in the class of the object or one of the supertypes. Each field in turn stores an
object reference. A field may only be initialized once but never updated.

Fig. 3 summarizes the structure of a VM state 〈Π, Γ ;Φ, A.m,σ〉. The object
pool Π is a finite set of allocations r : C, recording the objects allocated by the
VM, together with their class membership. The link graph Γ is a finite set of
links . A link p : B � q : C asserts that p has a field declared in B, with field
type C, storing the object reference q. The stack frame Φ is a finite set of labeled
references r : C. The set Φ models the references accessible in a JVM stack
frame, and tracks the type interfaces that are visible to the execution context.
The execution context A.m is the currently executing method. The proper stack
σ models the call chain that leads to the current VM state. Specifically, σ is
either an empty stack, �, or a non-empty stack, push(Φ, A.m, C,σ), where Φ is
the caller stack frame, A.m is the caller execution context, C is the callee return
type, and σ is another proper stack.

In the following, we write x for a list x1, . . . , xk. We also write X � x if x ∈ X .
Obvious variations shall be clear from the context.

Fig. 4 defines the state transition relation →Σ , which is parameterized by a
safety policy Σ. Intuitively, Σ specifies for each execution context A.m the set
Σ[A.m] of permitted events. The transition rules ensure that →Σ observes Σ.
We model the type rules of DCC by the policy in Fig. 5. (DCC5) and (DCC7)
are not modeled: (DCC5) is implicitly assumed in the proofs [34], and (DCC7) is
orthogonal to the confinement results.

4.2 Confinement Theorem

To help articulate confinement guarantees, a family of Accessible judgments are
defined in Fig. 6 to assert that a labeled reference (r : C or q : C) is accessible
from a domain (D) in a given VM state. The main confinement theorem is stated
below (consult [34] for a detailed proof).

Theorem 1 (Discretionary Capability Confinement). Suppose
〈Π, Γ ;Φ, A.m, �〉 ∗−→Σ 〈Π ′, Γ ′;Φ′, A′.m′,σ′〉. Let D be an arbitrary domain. If
Accessible [D](r : C | 〈Π ′, Γ ′;Φ′, A′.m′,σ′〉), then at least one of the following
conditions holds:
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Φ � r : C C <: B

〈Π,Γ ; Φ, A.m, σ〉 →Σ 〈Π,Γ ; Φ ∪ {r : B}, A.m, σ〉 (T-Widen)

r is a fresh object reference from O
new〈B〉 ∈ Σ[A.m]

〈Π,Γ ; Φ, A.m, σ〉 →Σ 〈Π ∪ {r : B}, Γ ; Φ ∪ {r : B}, A.m,σ〉 (T-New)

Φ � r : C Π � r : C′ C′ <: B
checkcast〈B〉 ∈ Σ[A.m]

〈Π,Γ ; Φ, A.m, σ〉 →Σ 〈Π,Γ ; Φ ∪ {r : B}, A.m, σ〉 (T-CheckCast)

Φ � p : B0 B0 <: B Γ � p : B � q : C
getfield〈B : C〉 ∈ Σ[A.m]

〈Π,Γ ; Φ, A.m, σ〉 →Σ 〈Π,Γ ; Φ ∪ {q : C}, A.m, σ〉 (T-GetField)

Φ � p : B0 B0 <: B Φ � q : C
putfield〈B : C〉 ∈ Σ[A.m]

〈Π,Γ ; Φ, A.m, σ〉 →Σ 〈Π,Γ ∪ {p : B � q : C}; Φ, A.m, σ〉 (T-PutField)

Φ � r : C

invokestatic〈B.n : C → C〉 ∈ Σ[A.m]
〈Π,Γ ; Φ, A.m, σ〉 →Σ 〈Π, Γ ;Φ′, B.n, σ′〉

where Φ′ = {r : C} and σ′ = push(Φ, A.m,C, σ)

(T-InvokeStatic)

Φ � r0 : C0 C0 <: B Φ � r : C
Π � r0 : B′′ B′′ <: B′ B′ <: B

invokemethod〈B.n : C → C〉[B′.n′] ∈ Σ[A.m]
〈Π,Γ ; Φ, A.m, σ〉 →Σ 〈Π,Γ ; Φ′, B′.n′, σ′〉

where Φ′ = {r0 : B′, r : C} and σ′ = push(Φ, A.m,C, σ)

(T-InvokeMethod)

Φ′ � r : C

〈Π,Γ ; Φ′, B.n, push(Φ, A.m, C, σ)〉 →Σ 〈Π,Γ ; Φ ∪ {r : C}, A.m, σ〉 (T-Return)

Fig. 4. FJVM transitions

1. Accessible [D](r : C | 〈Π, Γ ;Φ, A.m, �〉) (previously accessible)
2. l(C) � D (not a capability)
3. C  m ∧ D � l(m) (controlled capability propagation)

The theorem above ensures that capability propagation honors the capability
granting policy of a method. In the following, we describe how one may anno-
tate methods with capability granting policies to preserve useful confinement
properties. Specifically, a method A.m is said to be safe iff m  A. Executing
a safe method A.m will only cause those domains dominated by l(A) to acquire
capabilities that A can generate. Programmers concerned with capability con-
finement may then arrange their code to invoke untrusted software extensions
only via safe method interfaces.

Theft. Capability theft occurs when executing code in a domain causes the
domain to acquire capabilities it does not already possess. The absence of theft
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Fig. 5. A safety policy for DCC

l(B) = D Γ � p : B � q : C

Accessible [D](q : C | Γ )
Φ � r : C′ C′ <: C

Accessible [D](r : C | Φ)

Accessible [D](r : C | Φ)
Accessible [D](r : C | push(Φ, A.m, C′, σ))

Accessible [D](r : C | σ)
Accessible [D](r : C | push(Φ, A.m,C′, σ))

Accessible [D](r : C | Γ )
Accessible [D](r : C | 〈Π,Γ ; Φ, A.m, σ〉)

Accessible [D](r : C | Φ)
Accessible [D](r : C | 〈Π,Γ ;Φ, A.m,σ〉)

Accessible [D](r : C | σ)
Accessible [D](r : C | 〈Π,Γ ; Φ, A.m, σ〉)

Fig. 6. Accessibility judgments

makes capabilities unforgeable. Theorem 1 entails that executing safe methods
always guarantees the absence of capability theft.

Corollary 2 (No Theft). Suppose m  A and 〈Π, Γ ;Φ, A.m, �〉 ∗−→Σ

〈Π ′, Γ ′;Φ′, A′.m′,σ′〉. Let D be l(A). If Accessible[D](r : C | 〈Π ′, Γ ′;Φ′,
A′.m′,σ′〉), then at least one of the following conditions holds:

1. Accessible [D](r : C | 〈Π, Γ ;Φ, A.m, �〉) (previously accessible)
2. l(C) � D (not a capability)

Leakage. Capability leakage occurs when executing code in a domain causes a
foreign domain to acquire a capability that the foreign domain does not already
possess. When a capability is granted to a domain, it is in the interest of the
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granter that the grantee will not leak the granted capability. Theorem 1 entails
that a safe method never leaks capabilities to a domain that is not dominated
by the home domain of the method.

Corollary 3 (No Leakage). Suppose m  A and 〈Π, Γ ;Φ, A.m, �〉 ∗−→Σ

〈Π ′, Γ ′;Φ′, A′.m′,σ′〉. Let D be a domain such that D � l(A) is not true. If
Accessible [D](r : C | 〈Π ′, Γ ′;Φ′, A′.m′,σ′〉), then at least one of the following
conditions holds:

1. Accessible [D](r : C | 〈Π, Γ ;Φ, A.m, �〉) (previously accessible)
2. l(C) � D (not a capability)

Mutual Suspicion. Suppose A and B are mutually suspicious, and a safe method
A.m is invoked. By Corollary 2, no reference of type B will be acquired by A as
a result of the invocation. Similarly, by Corollary 3, no reference of type A will
be acquired by B. Consequently, mutually suspicious types never exchange ca-
pabilities as a result of invoking safe methods. If the two types have never been
explicitly granted capabilities of one another, then they cannot invoke meth-
ods declared in each others type interface. Collusion of this kind is therefore
completely eliminated.

5 Extensions and Variations

5.1 Accommodating Other Language Constructs

Arrays. The array types C[ ], C[ ][ ], . . . are said to be carrier types for declared
type C. An object reference with a carrier type is a carrier . If D acquires a
carrier (e.g., of type C[ ]) for a capability type C, while E obtains a carrier-type
reference (e.g., of type Object[ ]) to the same object, then E can store references
into the carrier, while D can retrieve the said references as type-C capabilities.
Special type constraints must be introduced into DCC to avoid the misuse of
carriers as covert channels for capability communication. A solution is to allow
the aliasing of carriers across domain boundaries so long as the acquisition of
capability carriers is categorically denied. This can be enforced easily by minor
revisions to the type constraints in Sect. 3.2: (a) assume C � C[ ]; (b) adapt
(DCC3) to forbid the granting of capability carriers across domain boundaries.
Further details concerning the treatment of arrays can be found in [34].

Genericity. Genericity does not present any security challenge to the present de-
sign of DCC. Genericity is a purely source-level construct that is translated into
bytecode via type erasure. The source-level generic type Set<C> is translated
into the raw reference type Set. Set members are retrieved as Object references.
The compiler introduces a dynamic cast to convert the retrieved Object ref-
erence into a type-C reference. There are two implications to this set up: (1)
since generic containers such as Set belong to the root domain, DCC permits
the acquisition and transmission of capability containers; (2) if C is a capabil-
ity type, then P-CheckCast will effectively forbid the retrieval of any type-C
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capabilities from generic containers. This is consistent with the overall design
philosophy of DCC: capability acquisition must only occur as a result of explicit
granting (i.e., argument passing). In summary, there is no security motivation
for any additional type constraint to account for genericity.

5.2 Modular Enforcement of Hereditary Mutual Suspicion

Hereditary mutual suspicion (DCC7) interacts with dynamic linking in a non-
trivial manner. Specifically, (DCC7) is universally quantified over all subtypes of
two mutually exclusive roles. The enforcement of (DCC7) thus involves a time
complexity quadratic to the number of subtypes of the mutually exclusive roles,
making it very inefficient. Worst still, because of the dynamic linking semantics of
the JVM, some of these subtypes may not have been completely loaded, making it
impossible to enforce (DCC7) at link time. This section addresses these two issues
by examining a reformulation of (DCC7) that facilitates modular enforcement .
A conservative solution is adopted. Specifically, we want to check reference type
A only once at link time, and then conclude that it will not participate in the
violation of (DCC7) in the future. To this end, we (1) lift the reasoning of mutual
suspicion from the level of reference types to the level of confinement domains,
and (2) capture in a binary relation the sufficient condition by which mutual
suspicion is preserved in subtyping. A programmer-supplied partial order :� is
postulated, so that:

(HMS1) � :� D (HMS2) D :� E ⇒ D � E
(HMS3) (D :� E ∧ D′ � E)⇒ (D � D′ ∨D′ � D)

We say thatD strongly dominates E whenever E :� D. The :� relation induces
a pre-ordering of Java reference types: we write B : A iff l(B) = E , l(A) = D
and E :� D. It follows readily from definition that : is reflexive and transitive,
and B :  A ⇒ B  A. We restate (DCC7) in a form that facilitates modular
enforcement:

(DCC7′′) If A <: B, then B : A.

The companion technical report [34] shows that (DCC7) follows from (DCC7′′).
That is, (DCC7′′) is sound but incomplete: programs satisfying (DCC7′′) are
guaranteed to satisfy (DCC7), but some programs satisfying (DCC7) may not
satisfy (DCC7′′). We trade completeness for tractability.

6 Concluding Remarks

Related Work. Previous language-based capability systems [16,13,14] lack con-
finement guarantees. This work combines the idea of confinement domains [21]
with capability granting policies [25] to achieve confinement.

The design of DCC has been influenced by confined types [21,22,23,24]. While
the confinement boundaries of confined types are uniform, those in DCC are



140 P.W.L. Fong

discriminatory, allowing reference acquisition through dominance and capability
granting through discretion. This difference is due to the fact that confined types
is designed to uniformly confine all instances of a given concrete class, but DCC
is designed to selectively confine those references that would otherwise escape
with a privileged static type.

The static type system pop [36] supports the reference-as-capability metaphor
in an inheritance-less object calculus. Contrary to “communication-based” sch-
emes of object confinement (e.g., confined types), an “used-based” approach
has been adopted by pop to impose a custom “user interface” over an object.
The user interface specifies how individual protection domains may access the
object. DCC can be seen as a hybrid of communication-based and use-based
approaches to capabilities: use-based views are modeled as static types imposed
on references, and references may only escape from a confinement domain so
long as they do not escape with a view that grants privileged accesses to the
receiving domain.

Stack inspection [5] is an access control model for program execution that
involves code units belonging to distinct protection domains. A common as-
sumption behind most existing models of stack inspection [5,6,7,9] is that the
binding of permissions to code units is performed statically. DCC identifies pro-
tection domains with confinement domains. While the binding of code units to
their protection domains is performed statically, the granting of permissions to
protection domains occurs dynamically through capability acquisition. Notice,
however, the right to grant capabilities is still modeled statically in DCC in the
form of a stack invariant.

Although this work is primarily concerned with access control, and thus or-
thogonal to language-based information flow control [37], one may see the No
Theft and No Leakage properties as playing the analogous roles of Simple
Security and *-Property in information flow control.

Separation of duty is foundational in ensuring system integrity [26]. Establish-
ing mutually-exclusive roles is a popular means [28] for implementing separation
of duty. The underlying assumption is that collusion between multiple agents
is unlikely. In DCC, hereditary mutual suspicion not only establishes mutually
exclusive roles, but provably prevents a class of collusion. To the best of the au-
thor’s knowledge, this is the first work to enforce such a strong form of separation
of duty in a language-based environment.

Future Work. To ease exposition, a simple representation of capability granting
policy has been adopted. A future direction is to explore finer-grained represen-
tations of capability granting policies, and study the collaboration idioms thus
enabled. First ideas are reported in [34].

The right to grant capability is always diminishing along a call chain. This
restricts the reusability of methods, and causes methods deep in a call chain
incapable of granting capabilities. Can we allow the amplification of capability
granting right while preserving confinement? A helpful observation is that the
reasoning of capability granting right is akin to stack inspection. Exploring this
connection belongs to future work.
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A limitation of DCC is the lack of support for capability revocation. It is obvi-
ously impossible to “revoke” a reference that has already been acquired by a con-
finement domain. However, the lack of revocation can be alleviated by carefully
regulating authority delegation. Constrained delegation is a well-studied topic
in role-based access control and trust management (see, particularly, [38,39,40]).
Controlling delegation in DCC belongs to future work.
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A Implementation Experience

A.1 Source-Level Annotations

Although DCC is formulated and enforced at the bytecode level, a specification
mechanism has been devised to facilitate the annotation of Java source files with
such DCC typing information as domain membership (l(C)), capability granting
policy (l(m)), dominance relationship (�), and strong dominance relationship
(:�). These source-level annotations are encoded using the JDK 5.0 metadata
facility. For example, Fig. 7 illustrates how the domain hierarchy in Fig. 2 is
encoded at the source level as an interface hierarchy. Specifically, a confinement
domain is represented as an empty public interface with a @Domain annotation.
The dominance relation is represented by interface extension: if a domain inter-
face E extends another domain interface D, then D � E . The root domain � is
represented by the predefined domain interface Root, which must be a superin-
terface of every user-defined domain interface. Strong dominance is specified via
the allowSubtyping element of a @Domain annotation. Specifically, the value of
an allowSubtyping element is a list of domain interfaces. If domain interface
D appears in the allowSubtyping list of domain interface E , then we intend it
to mean D :� E . If no allowSubtyping element is supplied, then, by default,
the domain interface is strongly dominated only by Root. Lastly, domain mem-
bership and capability granting policies are indicated by the @Confined and
@Grants annotations respectively. For example, the following declaration con-
fines the Robin class to SidekickDomain and sets the capability granting policy
of the update method to SidekickDomain:

@Confined ( SidekickDomain.class )
public class Robin implements Sidekick {

@Grants ( SidekickDomain.class )
public void update(Observable hero);

}
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@Domain
public interface CharacterDomain extends Root { }
@Domain( allowSubtyping = { CharacterDomain.class } )
public interface HeroDomain extends CharacterDomain { }
@Domain( allowSubtyping = { CharacterDomain.class } )
public interface SidekickDomain extends CharacterDomain { }
@Domain
public interface GameEngineDomain extends HeroDomain, SidekickDomain { }

Fig. 7. An interface hierarchy representing the dominance hierarchy of the hero-
sidekick game application

Type Checkerjavac BackendFrontend
Annotated

Classfile

Annotated

ClassfileSource

Java

Internet JVM

Source

Java Load−Time

Fig. 8. The DCC software development environment

A.2 Type Checkers

We envision a programming environment (Fig. 8) in which Java source files em-
bedded with DCC annotations are partially validated by a compiler frontend,
and subsequently translated into annotated classfiles by the JDK 5.0 compiler.
The annotated classfiles are then type-checked at the bytecode level by a com-
piler backend prior to shipping. To guard against malicious code generators, type
checking is also conducted by the JVM at load time, against classfiles, at the
bytecode level. All the three DCC type checkers depicted in Fig. 8 have been
implemented. The frontend component is a source-level type checker based on
the JDK 5.0 annotation processing tool (apt). It ensures that the type inter-
face of Java classes and interfaces conform to type constraints (DCC5), (DCC6)
(DCC7′′), as well as the HMS rules. The backend component is an offline,
bytecode-level type checker based on the Apache ByteCode Engineering Library
(BCEL). It ensures that classfiles or JAR files conform to all the DCC type
constraints. Lastly, the load-time type checker is obtained by embedding the
backend type checking engine into a Java class loader, which type-checks class-
files as they are loaded into the JVM.

The present design of DCC is optimized for enforcement efficiency, and as
such it requires no iterative analysis of method bodies. All type constraints are
enforced by a linear-time scan of classfiles.
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Abstract. Access structure is a flexible mechanism for representing
complex access control and authorization policies [1]. Numerous efforts
have been devoted to the research of efficient schemes for implementing
access structures in a scalable manner. Threshold closure was invented as
an efficient way to implement access structures that represent complex
authorization policies [4]. In essence, threshold closure is an efficient and
scalable implementation of access structure using a reduced collection of
threshold schemes [5]. A practical application of threshold closure was
presented in [6] where the use of threshold closure for addressing the
complex security needs of Grid Computing Systems was explained. One
major deficiency of threshold closure is that a threshold closure generated
from the corresponding access structure is not minimal in size, thus the
collection of threshold schemes is not optimized for efficiency. In this con-
nection, an operation called minimal covering was proposed to minimize
the size of a threshold closure once it is formed from its corresponding
access structure [4]. Unfortunately, the minimal covering of a threshold
closure is no longer a threshold closure, thus is not scalable in terms
of addition/deletion of access control rules. This paper presents a way
for constructing minimal threshold closure. It defines a new structure
called enhanced threshold closure. The paper proves that the enhanced
threshold closure of an access structure is a threshold closure and is min-
imal, hence it is also called a minimal threshold closure. The paper also
presents a mechanism for constructing minimal threshold closure from a
basis access structure.

Keywords: Access Control, Authorization, Threshold Schemes, Thresh-
old Closure.

1 Introduction

Threshold scheme was proposed for implementing access control [5]. With a (t,
l) threshold scheme, a secret key needed for accessing the resource is split into
l pieces such that any t (or more) of the l pieces are needed to reconstruct the
secret, hence enabling access to the resource. The beauty of the threshold scheme
is that it is a simple mechanism for describing the “t out of l” authorization rules.
More importantly, such rules can be directly implemented very efficiently using
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threshold cryptography. Hence, a collection of threshold schemes may be used
to efficiently implement complex policies of access structures. The threshold
scheme is attractive because it is computationally efficient and only involves the
computation of a simple Lagrange interpolation. However, its expressive power
is still very limited as it was proven that threshold schemes cannot express
authorization policies in many cases [7]. For example, it cannot specify exactly
which subset of participants is allowed to determine the secret and which is
not. Therefore, the concept of access structure for representing complex secret
sharing schemes was proposed by [1, 2, 3].

Access structure is a flexible mechanism for representing complex access con-
trol and authorization policies [1]. An access structure is composed of a collection
of authorized set which can be implemented as a collection of threshold schemes
[5]. Unfortunately, access structures are difficult to implement. Furthermore, the
use of threshold schemes will be tedious if the policies they represent are dy-
namic. For example, when more “t out of l” rules are added to the system, it is
highly likely that the overall collection of threshold schemes are redundant, thus
leading to serious security management problems [4].

Numerous efforts have been devoted to the research of efficient schemes for im-
plementing access structures in a scalable manner. The strong expressive power
of access structure makes it an attractive approach for representing access con-
trol policies. However, the collection of threshold schemes of an access structure
is hard to maintain especially when the authorized set needs to be updated reg-
ularly. In practical situations, dynamic updating of the authorized set is more
of the norm than exception, unfortunately. In order to realize the potential ben-
efits of access structure, some efficient schemes for implementing the dynamic
authorized set in a scalable manner is highly desirable.

To allow efficient implementation of access structures and at the same time
address the security management issues of threshold schemes, threshold closure
was proposed by [4] as an efficient and flexible approach to secret sharing. A
threshold closure is an efficient approach for representing an access structure
by specifying a collection of threshold schemes. Complex authorization policies
may be represented using an access structure (with each authorized set in the
access structure represented by a threshold scheme) which is then translated to
a threshold closure which in turn can be implemented efficiently using a minimal
collection of threshold schemes. In essence, threshold closure is an efficient and
scalable implementation of access structure by representing an access structure
with a reduced collection of threshold schemes. [4] proved that a threshold clo-
sure generated from a basis access structure is equivalent to that basis access
structure. Besides, operators are provided to maintain this one-to-one correspon-
dence when access control rules and added/deleted from the authorized set. A
practical application of threshold closure for addressing the complex security
needs of Grid Computing Systems was presented in [6].

One major deficiency of threshold closure is that a threshold closure generated
from the corresponding access structure is not minimal in size, thus the collec-
tion of threshold schemes is not optimized for efficiency. In this connection, an
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operation called minimal covering was proposed by [4] to minimize the size of
a threshold closure once it is formed from its corresponding access structure.
Unfortunately, the minimal covering of a threshold closure is no longer a thresh-
old closure. Thus the threshold closure operators will not be applicable to the
minimal covering, hence it is not scalable in terms of addition/deletion of access
control rules and fails to maintain the scalability of threshold closure.

This paper addresses the deficiency of threshold closure by presenting a way
for constructing minimal threshold closure. In this paper, we define a new struc-
ture called enhanced threshold closure, and prove that the enhanced threshold
closure of an access structure is a threshold closure and is minimal. As a result
of this prove, an enhanced threshold closure is also called a minimal threshold
closure. The paper also presents a mechanism for constructing minimal threshold
closure from a basis access structure.

This paper is organized as follows: An overview of threshold closure and the
minimization issues of threshold closures are explained in Section 2. In Section 3,
a new structure for implementing access structure, namely the enhanced thresh-
old closure, will be introduced. This section also proves that an enhanced thresh-
old closure is indeed a threshold closure. Section 4 proves that the enhanced
threshold closure is minimal and unique. Section 5 describes the mechanism for
constructing minimal threshold closure from access structure. The discussion of
this paper is concluded in Section 6.

2 Threshold Closure

A threshold closure, denoted as ε, is a collection of (t, S)-threshold schemes (S
is a set of l users such that 0 < t ≤ |S|, S ⊆ P where P is the set of all potential
participants/users), and satisfies the three conditions:

1. Redundant-free i.e. there do not exist two distinct (t1, S1), (t2, S2) ∈ ε such
that

S1 ⊆ S2 or |S1 ∩ S2| ≥ min{t1, t2}, t1 �= t2.

2. Reduced i.e. there do not exist (t, S1), (t, S2), . . . , (t, Sm) ∈ ε such that

m⋃
i=1

[Si]t = [
m⋃

i=1

Si]t.

where
[S]t = {S′ : |S′| = t, S′ ⊆ S}.

3. Closed i.e. ∀(t, S1), (t, S2), . . . , (t, Sm) ∈ ε and S′
1 ⊆ S1, S

′
2 ⊆ S2, . . . , S

′
m ⊆

Sm (“=” cannot be held by all) if

m⋃
i=1

[S′
i]t = [

m⋃
i=1

S′
i]t
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then

(t,
m⋃

i=1

S′
i) ∈ ε, or

(t,
m⋃

i=1

S′
i) /∈ ε and (∃(t, S) ∈ ε)

m⋃
i=1

S′
i ⊂ S.

It was proven in [4] that there exists a one-to-one correspondence between
access structure Γ0 and threshold closure ε. After implementing the algorithm
of converting Γ0 to ε, the number of the thresholds in the destination threshold
closure is very much smaller than the number of the authorized sets in the access
structure.

Besides, [4] also introduced four kinds of operation on Γ0 and ε to allow
authorization policies to be dynamically changed efficiently. The four operations
are:

1. Add (t, S) into ε.
2. Add S into Γ0.
3. Delete (t, S) from ε.
4. Delete S from Γ0.

The consistency between Γ0 and ε can be maintained using these four opera-
tions. By exploring these convenient operations, the threshold closure not only
can expand and contract freely but also preserve its permanent consistency with
the dynamic access structure. Therefore we can see that threshold closure has
better efficiency and scalability while it keep the high express power of other
general access structure schemes.

In addition, the min(ε) which is the minimal covering of threshold closure ε can
be obtained. As pointed out by [4], the threshold closure is not minimal in size. In
order to reduce the size of the threshold closure, a minimization mechanism was
introduced and the result, namely minimal covering of the threshold closure, is
a minimal collection of threshold schemes that represent the same access control
policies as the original threshold closure. However, a minimal covering is not a
threshold closure by itself. To illustrate this, we look at the following counter-
example: For instance,

ε = {(2,P1P2P5), (2,P1P3P5), (2,P1P4P6),
(2,P2P3P6), (2,P2P4P7), (2,P3P4P7),

(2,P1P2P3P4)}

is a threshold closure [4]. According to the definition of the sufficient covering of
threshold closure, it is easy to see that a collection

ε1 = {(2,P1P2P5), (2,P1P3P5), (2,P1P4P6),
(2,P2P3P6), (2,P2P4P7), (2,P3P4P7)}

is a sufficient covering of the threshold closure ε. It is the minimal covering of
threshold closure ε, too. However, it is not a threshold closure.
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Because of the contradiction between condition (3) of Definition 4.1 and con-
dition (2) of sufficient covering (defined in Definition 4.5 of [4]), in general, a
sufficient covering of threshold closure is not a threshold closure.

As a consequence, the minimal covering reduces the size of the threshold clo-
sure at the cost of scalability. Note that a threshold closure is scalable because
it is consistent with its associated access structure, and such consistency can be
maintained with the help of four conventional operations. Now that the mini-
mal covering is not a threshold closure, the consistency cannot be maintained
efficiently and hence the scheme is not scalable.

In the next section we define the enhanced threshold closure as a tool for rep-
resenting a complex access structure. We then prove that an enhanced threshold
closure is indeed a threshold closure with minimal size.

3 Enhanced Threshold Closure

Let P = {P1,P2, · · · ,Pw} be a finite of w participants. T ⊆ 2P be a collection
of subsets of the set P . Relation ! be defined as the set inclusion ⊆. Then the
set T is a finite subset and {T,!} is a poset. It implies that there are some
maximal elements on the set T. From the property of the poset we have that if
a is a maximal element of the poset {T,!}, then a is unique and there exists
no element in T to contain a. Denote that:

T = {a|a is a maximal element of T}

and
[S]t = {X ||X | = t,X ⊆ S}.

Definition 1. Let T be defined on the set T ⊆ 2P . A collection of (t,S)-threshold
schemes ε = {(t, S)|0 < t ≤ |S|, S ∈ T} is called an enhanced threshold closure
of the set T, if it satisfies the following conditions:

1. For any two distinct threshold schemes (t1, S1), (t2, S2) ∈ ε

|S1 ∩ S2| < min{t1, t2}.

2. If a set S0 ⊆ P and [S0]k ⊆ ∪(t,S)∈ε[S]t, then there exists a threshold scheme
(k, S) ∈ ε such that S0 ⊆ S.

Now we show that an enhanced threshold closure is indeed a threshold closure.
To prove this, we need the following lemmas.

Lemma 1. If ε is an enhanced threshold closure of the set T, then there do not
exist (t, S1), (t, S2), · · · , (t, Sm) ∈ ε such that

∪m
k=1[Sk]t = [∪m

k=1Sk]t.
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Proof : Otherwise, if the above relation is held, then

[∪m
k=1Sk]t ⊆ ∪(k,S)∈ε[S]k.

By condition (2) of Definition 1 there exists a threshold scheme (t, S) ∈ ε that
satisfies

∪m
k=1Sk ⊆ S.

Therefore, there exists at least one set Sk ∈ {S1, S2, · · · , Sm} such that Sk ⊂ S.
It is contradictory to fact that Sk is a maximal element in the set T.

Lemma 2. Suppose that ε is an enhanced threshold closure of the set T. For
any (t, S1), (t, S2), · · · , (t, Sm) ∈ ε and S′

1 ⊆ S1, S
′
2 ⊆ S2, · · · , S′

m ⊆ Sm (”=”
cannot be held by all), if

∪m
k=1[S

′
k]t = [∪m

k=1S
′
k]t

then
(t,∪m

k=1S
′
k) ∈ ε

or there exists a threshold scheme (t, S) ∈ ε such that

∪m
k=1S

′
k ⊂ S.

Proof : If (t, S1), (t, S2), · · · , (t, Sm) ∈ ε and S′
1 ⊂ S1, S

′
2 ⊂ S2, · · · , S′

m ⊂ Sm,

∪m
k=1[S

′
k]t = [∪m

k=1S
′
k]t

and
(t,∪m

k=1S
′
k) �∈ ε.

Hence
[∪m

k=1S
′
k]t = ∪m

k=1[S
′
k]t ⊆ ∪m

k=1[Sk]t ⊆ ∪(t,S)∈ε[S]t
By condition (2) of Definition 1, there exists a threshold scheme (t, S) ∈ ε such
that

∪m
k=1S

′
k ⊆ S

Since
(t,∪m

k=1S
′
k) �∈ ε

that is
∪m

k=1S
′
k �= S,

so
∪m

k=1S
′
k ⊂ S.

From Lemma 1 and Lemma 2 we can obtain the following result.

Theorem 1. If ε is an enhanced threshold closure, then it is also a threshold
closure.

Proof : Lemma 1 shows that an enhanced threshold closure satisfies Condition 2
of threshold closure. Lemma 2 shows that an enhanced threshold closure satisfies
condition 3 of threshold closure. Hence, Lemma 1 and Lemma 2 proves that an
enhanced threshold closure is a threshold closure.
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4 Minimal Threshold Closure

For a given access structure (i.e. a set of threshold schemes), there may exist
more than threshold closure. For instance, the universal set should satisfy the
condition of threshold closure [4]. We are interested in the performance of the
enhanced threshold closure which could be determined by the number of elements
it contains. This section we will answer this problem and illustrate that the
enhanced threshold closure of the set T is minimal and unique if it exists.

Definition 2. Let A ⊆ 2P be a finite set. ξ(A) ⊆ 2P is a closure of A if for
∀A ∈ A, ∃C ∈ ξ(A), such that A ⊆ C ⊆ P .

Definition 3 A closure B of A is called a minimal closure of A, if ξ(A) is
another closure of A, then ξ(A) must be a closure of B. A minimal closure of A
is called the least closure of A if it has the least elements among the collection of
minimal closure of A, that is, if B is the least closure of A and C is any minimal
closure of A, then |B| ≤ |C|.

Lemma 3. The least closure of A is unique.

Proof : Suppose that B and C are two distinct least closures of A. By the defini-
tion we have |B| = |C|. It follows that there exits an element B ∈ B and B �∈ C.
Because B is a minimal closure and C is a closure of A, C should be a closure of
B. There exists an element C ∈ C, such that B ⊂ C. Because C is also a minimal
closure of A, the same reason as before, there exist an element B1 ∈ B, such
that C ⊆ B1. It implies that B,B1 ∈ B, and B ⊂ B1. We construct a collection
D as the following:

D = B − {B}

It is obvious that D is also a minimal closure of A since B1 is still an element of
D. But |D| = |B| −∞. It contradicts that B is the least closure of A. Therefore
the least closure of A is unique.

According to the previous definition, the enhanced threshold closure is based on
a maximal element set T. Thus the number of element in the enhanced threshold
closure depends on the set T. To determine the size of the enhanced threshold
closure, we need the following theoretical results.

Lemma 4. T is the least closure of T.

Proof : From the definitions of the closure and T, it is easy to see that T is a
closure of T. If T1 is another closure of T, then for any element a ∈ T, there
exists an element in T1 contained the element a. According to the definition of
T, it implies T ⊆ T. Therefore, for every a ∈ T, there exists an element in T1

contained the element a. It follows that T is a minimal closure of T.
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If there exists a set T2 such that T2 is a minimal closure of T and |T2| < |T|,
by the above argument, T2 is also a closure of T. Then for every a ∈ T, there
exists an element b ∈ T2, such that a ⊆ b.

Because T is the collection of the maximal elements of T and |T2| < |T|,
there exist at least two elements a1, a2 ∈ T and an element b1 ∈ T2, such that
a1 ⊆ b1 and a2 ⊆ b1.

Since T is a minimal closure of T, it is a closure of T2 too. It follows that
for b1 ∈ T2, there exists an element a3 ∈ T, such that b1 ⊆ a3. It implies that
a1 ⊆ a3 and a2 ⊆ a3. It is contradictory to the fact that a2 is a maximal element
in T. Therefore, T is the least closure of T.

From Lemma 3, Lemma 4, and Definition 1 it concludes that:

Theorem 2. If ε is an enhanced threshold closure of the set T, then ε is unique
and minimal.

Proof : According to Definition 1, an enhanced threshold closure is a maximal
element collection. The maximal element collection is the least closure (Lemma
3) and the least closure is unique (Lemma 4).

Because of Theorem 2, the enhanced threshold closure of a collection of threshold
schemes is the unique minimal threshold closure of the collection. Hence, from
now on, the term “enhanced threshold closure” and “minimal threshold closure”
will be used interchangeably.

5 Constructing Minimal Threshold Closure

The collection of authorized sets Γ and unauthorized sets Γ̃ , assumed to be
disjoint, are called the access structure (Γ, Γ̃ ) of the secret sharing scheme. Fur-
ther, if every subset of participants belongs to either Γ or Γ̃ then (Γ, Γ̃ ) is
called complete. Through this discussion we assume that every access structure
is complete.

If Γ is an access structure on P , then X ∈ Γ is a minimal qualified set if
Y �∈ Γ whenever Y ⊂ X . The family of minimal qualified set of Γ is denoted as
Γ0 and is called the basis of Γ . We refer to a minimal qualified set as a basis set.

Definition 4. An access structure Γ0 and a threshold closure ε are said to be
consistent with each other iff

∪(t,S)∈ε[S]t = Γ0.

If Γ0 and ε are consistency, we denoted as Γ0 ∼ ε or ε ∼ Γ0.

Now we want to find a way to construct the enhanced threshold closure. First
of all, the relationship between the enhanced threshold closure and basis access
structure is analyzed. Next theorems are contributed for this purpose.
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Theorem 3. If two enhanced threshold closures ε1 and ε2 are distinct, then

∪(t,S)∈ε1 [S]t �= ∪(t,S)∈ε2 [S]t.

Proof : Otherwise, if ε1 �= ε2, and

∪(t,S)∈ε1 [S]t = ∪(t,S)∈ε2 [S]t (1)

We can suppose that there exists a threshold (t1, S1) ∈ ε1 − ε2. By Equation 1,

[S1]t1 ⊆ ∪(t,S)∈ε2 [S]t.

From condition (2) of Definition 1 it follows that there exists a threshold (t, S2) ∈
ε2 such that S1 ⊂ S2. Same reason we get that there exists a threshold (t, S3) ∈
ε1 such that S2 ⊂ S3. It implies that S1, S3 ∈ ε1 and S3 ⊂ S1. It is in contradic-
tion with that S1 ∈ T is a maximal element.

Theorem 4. Given a basis access structure Γ0, there is one and only one en-
hanced threshold closure ε consistent with it.

Proof : Given a basis access structure Γ0. Define

Ξ = {(t, S)|[S]t ⊆ Γ0}, Θ = {(t, S)|(t, S) ∈ Ξ,S is a maximal element} (3)

Π = {S|(t, S) ∈ Ξ}, Π = {S|(t, S) ∈ Θ} (4)

Now we will prove that Θ is an enhanced threshold closure consistent with
Γ0. First, we prove that Θ is an enhanced threshold closure. If there exist two
thresholds (t1, S1), (t2, S2):

|S1 ∩ S2| ≥ t1, t1 < t2.

Then there exist two sets St1 , St2 ∈ Γ0, such that

|St1 | = t1, |St2 | = t2, St1 ⊆ S1, St2 ⊆ S2, St1 ⊂ St2

It is in contradiction with the definition of Γ0. Therefore, for any two distinct
access structures (t1, S1), (t2, S2) ∈ Θ condition (1) of Definition 1 hold. It also
follows that the set Π is the maximal elements on the set Π .

Suppose there exists a set S0 to satisfy:

[S0]k ⊆ ∪(t,S)∈Θ[S]t

Since (t, S) ∈ Θ ⊆ Ξ. Then [S]t ⊆ Γ0. It implies that [S0]k ⊆ Γ0. It follows
(k, S0) ∈ Ξ. Thus, there exists a threshold (k, S) ∈ Θ and S0 ⊆ S. Therefore,
the set Θ is an enhanced threshold closure of the set Π .

Next we prove that Γ0 ∼ Θ. By relation (3) (t, S) ∈ Θ ⊆ Ξ, that is, [S]t ⊆ Γ0.
Thus, ∪(t,S)∈Θ[S] ⊆ Γ0.

For any S1 ∈ Γ0, it is obvious that [S1]|S1| ∈ Ξ. By the definition of Θ, there
exists a threshold (|S1|, S2) ∈ Θ, such that S1 ∈ [S2]|S1|. Therefore, Γ0 ∼ Θ.

Lastly, from Theorem 3 we can conclude that there is only one enhanced
threshold closure consistent with the basis access structure Γ0.
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Theorem 5. Given an enhanced threshold closure ε, there is one and only one
basis access structure Γ0 consistent with it.

Proof : Construct
∪(t,S)∈ε[S]t = Γ.

If there exist two sets

S10 ∈ [S1]|S10|, S20 ∈ [S2]|S20|, S10 ⊂ S20

where (|S10|, S1), (|S20|, S2) ∈ ε. It is a contradiction to the condition (1) of
Definition 1. Therefore, Γ is a basis access structure. From the construction it is
directly to see that Γ is consistent with the enhanced threshold closure ε. The
uniqueness of the basis access structure is also followed from the definition and
the construction.

By combining Theorem 3, 4 and 5, it concludes that the enhanced threshold
closure and basis access structure are one-to-one correspondence.

6 Conclusion

This paper addresses the deficiency of threshold closure by presenting a way for
constructing minimal threshold closure. In this paper, we defined a new struc-
ture called enhanced threshold closure, and proved that the enhanced threshold
closure of an access structure is a threshold closure and is minimal. As a result
of this proof, an enhanced threshold closure is also called a minimal threshold
closure. A mechanism for constructing minimal threshold closure from a basis
access structure was also presented in this paper.
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Abstract. Trust-management systems address the authorization prob-
lem in distributed systems. They offer several advantages over other ap-
proaches, such as support for delegation and making authorization deci-
sions in a decentralized manner. Nonetheless, trust-management systems
such as KeyNote and SPKI/SDSI have seen limited deployment in the
real world. One reason for this is that both systems require a public-key
infrastructure (PKI) for authentication, and PKI has proven difficult to
deploy, because each user is required to manage his/her own private/pub-
lic key pair. The key insight of our work is that issuance of certificates
in trust-management systems, a task that usually requires public-key
cryptography, can be achieved using secret-key cryptography as well.
We demonstrate this concept by showing how SPKI/SDSI can be modi-
fied to use Kerberos, a secret-key based authentication system, to issue
SPKI/SDSI certificates. The resulting trust-management system retains
all the capabilities of SPKI/SDSI, but is much easier to use because a
public key is only required for each SPKI/SDSI server, but no longer for
every user. Moreover, because Kerberos is already well established, our
approach makes SPKI/SDSI-based trust management systems easier to
deploy in the real world.

1 Introduction

Authorization is a central problem in distributed environments where resources
are shared among many users across different administrative domains. Trust-
management systems [3] are designed to address the authorization problem in
distributed environments; they answer the question “Is principal A allowed to
perform operation O on a shared resource R?”. Existing trust-management sys-
tems, such as KeyNote [2] and SPKI/SDSI1 [9], rely heavily on public-key in-
� Supported by NSF under grants CCF-0524051 and CCR-9986308, and by ONR

under grants N00014-01-1-{0796,0708}.
1 Strictly speaking, SPKI/SDSI would not be considered to be a trust-management

system according to the definition given by Blaze et al. [3]—if the processing of
the certificates is not standardized (i.e., is application specific). In the context of
this paper, we assume that certificate processing in SPKI/SDSI is standardized, and
hence consider SPKI/SDSI to be a trust-management system.
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frastructure (PKI). They use PKI to produce digitally-signed certificates, wh-
ich authorize a principal to perform an operation on a shared resource.

However, PKI-based systems have proved difficult to deploy in practice because
of several reasons [17]. Some issues (e.g., naming) have been addressed by trust-
management systems, such as KeyNote and SPKI/SDSI. However, each user is
still required to possess a public-private key pair, and it is cumbersome to securely
transport and retrieve private keys. Complexity of PKI is another issue that makes
PKI-based systems difficult to deploy. Implementing PKI-based solutions requires
in-depth knowledge of PKI and much modification to existing systems.

Despite the issues mentioned above, trust-management systems are still de-
sirable for authorization in distributed environments because they offer several
advantages over traditional centralized authorization systems [2]. For example,
because the trust-management system SPKI/SDSI has no conceptual require-
ment for a central authority and provides the ability to make authorization
decisions in a truly distributed fashion [14], it is very scalable—an important
requirement in distributed systems. SPKI/SDSI is also simple to use as it sup-
ports delegation, which simplifies access control, and provides locally defined
name spaces, which allows each user to define his/her own security policies.

We introduce a technique to reduce the dependence of trust-management sys-
tems on PKI so that they become easier to deploy in the real-world. We observe
that the main use of PKI in trust-management systems is to digitally sign each
certificate with the private key of the principal who issues the certificate. The
key behind our work is that the signing process can be achieved using secret-
key-based systems as well. Although the notion of using secret-key cryptography
in place of public-key cryptography as the building block of security operations
has been studied previously [16,8] and has been used in distributed military
and banking systems, to the best of our knowledge, our work is the first to
apply this technique in the context of trust-management systems, specifically
SPKI/SDSI.

By utilizing existing secret-key-based systems, which are already widely de-
ployed, we can reduce the dependence of trust-management systems on PKI
because end users no longer need to have public-private key pairs. In our ap-
proach, each site in a distributed environment has a dedicated trust-management
server, whose sole purpose is to issue digitally-signed certificates, and this server
possesses a public-private key pair. Users at a site authenticate themselves to
this server using a secret key, and the server issues digitally-signed certificates
on their behalves. Thus, in our solution just one server per site needs to have
a public-private key pair, as opposed to traditional trust-management systems,
where each principal must possess a public-private key pair.

In this paper, we focus on the trust-management system SPKI/SDSI and show
how to reduce its dependence on PKI by using Kerberos [19], a widely-deployed
secret-key-based authentication system. In our approach, we allow authenticated
Kerberos users to issue SPKI/SDSI certificates. The Kerberized SPKI/SDSI
server2 (K-SPKI/SDSI) accepts certificate requests from authenticated Kerberos

2 Here, Kerberize means that we modify the SPKI/SDSI server to use Kerberos library.
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Fig. 1. Reducing SPKI/SDSI’s dependence on PKI using Kerberos

users, and generates corresponding SPKI/SDSI certificates on their behalves.
In the original SPKI/SDSI system, shown in Figure 1(a), each principal has
the ability to issue name certificates and auth certificates, signed using his/her
public-private key. In contrast, with our solution, shown in Figure 1(b), each
user no longer needs to have a public-private key pair. Instead, a site has a ded-
icated Kerberized SPKI/SDSI server—with its own public-private key—that is
responsible for signing certificates. To issue a SPKI/SDSI certificate, a user first
authenticates with the local Kerberos server and obtains a secure communica-
tion channel with the K-SPKI/SDSI server. The user can then issue the same
certificates, in the form of certificate requests, but without the public-private key
pair. The certificate requests are sent by the user, through the secure channel,
to the K-SPKI/SDSI server, which creates and signs the certificates. The signed
certificates can be either stored at the K-SPKI/SDSI server or sent back to the
user, depending on the configuration of the system. In the case where the newly
issued certificates are sent back to the user, the new system operates identically
to the original SPKI/SDSI system because the certificates are stored locally,
and authorization decisions can still be made locally. If the certificates are kept
on the server, the server would act as a repository for the certificates issued by
users in its domain. Such repositories could be used to organize certificate-chain
discovery either centrally or in a distributed manner [14], leaving the burden of
certificate management completely to the server.

Our technique offers several tangible benefits. Because end-users of the sys-
tem authenticate themselves with a dedicated trust-management server using
secret keys, it rids trust-management systems of the requirement that each prin-
cipal must possess a public-private key pair. Furthermore, because we use se-
cret keys to authenticate users to the dedicated server, and secret-key cryp-
tography is widely deployed, we believe that the solution we present will make
it easier to deploy PKI-based trust-management systems. In addition, only a
small change is required at the end-user level to deploy our solution: each
Kerberos application can now pass an optional parameter to the Kerberos li-
brary function kuserok to indicate that it wants to use our K-SPKI/SDSI
server to perform an authorization check. Finally, because the dedicated trust-
management server still uses a public-private key pair, our solution retains all
the advantages of trust-management systems, such as delegation and distributed
authorization.
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The contributions of this paper are as follows:
• We show how to make SPKI/SDSI easier to deploy in the real world by

reducing its dependence on PKI through leveraging Kerberos, a secret-key-
based system that is already widely deployed.

• Our approach synthesizes the benefits of both secret-key-based authentica-
tion systems, such as Kerberos, and PKI-based trust-management systems,
such as SPKI/SDSI. We utilize Kerberos’ proven authentication frame-
work while retaining SPKI/SDSI’s elegant distributed authorization fea-
tures, such as delegation, authorization proofs, local name spaces, and dis-
tributed certificate-chain discovery.

• We have created a prototype that implements the technique; the paper pro-
vides a preliminary report about our implementation and its performance.

Background on SPKI/SDSI is given in Section 2; readers with a knowledge
of SPKI/SDSI may choose to skip this section. The method for combining
SPKI/SDSI and Kerberos is described in Section 3. Section 4 discusses deploy-
ment and performance issues of our prototype. Section 5 discusses related work.

2 Background on SPKI/SDSI

SPKI/SDSI [9] is a novel public-key infrastructure designed to address the au-
thorization problem in distributed systems. In SPKI/SDSI, a principal can be
an individual, process, host, or any other entity. All principals are represented
by their public keys, i.e., a principal is its public key. Let K denote the set of
public keys; specific keys are denoted by K,KA,KB,K

′, etc. An identifier is a
word over some alphabet Σ. The set of identifiers is denoted by A. Identifiers
will be written in typewriter font, e.g., A and Bob. A term is a key followed by
zero or more identifiers. Terms are either keys, local names, or extended names.
A local name is of the form K A, where K ∈ K and A ∈ A. For example, K Bob
is a local name. Local names are important in SPKI/SDSI because they create
a decentralized name space. The local name space of K is the set of local names
of the form K A. An extended name is of the form K σ, where K ∈ K and σ is a
sequence of identifiers of length greater than one. For example, K UW CS faculty
is an extended name.

2.1 Certificates

SPKI/SDSI has two types of certificates, or “certs”:
Name Certificates (or name certs): A name cert provides a definition of a
local name in the issuer’s local name space. Only key K may issue or sign a cert
that defines a name in its local name space. A name cert is a signed four-tuple
(K, A, S, V ). The issuer K is a public key and the certificate is signed by K. A
is an identifier. The subject S is a term. Intuitively, S gives additional meaning
for the local name K A. V is the validity specification of the certificate. Usually,
V takes the form of an interval [t1, t2], i.e., the cert is valid from time t1 to t2
inclusive.
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Authorization Certificates (or auth certs): An auth cert grants (with or with-
out delegation privileges) a specific authorization from an issuer to a subject.
Specifically, an auth cert is a five-tuple (K,S,D, T, V ). The issuer K is a public
key, which is also used to sign the cert. The subject S is a term. If the delegation
bit D is turned on, then a subject receiving this authorization can delegate this
authorization to other keys. The authorization specification T specifies the per-
mission being granted; for example, it may specify a permission to read a specific
file, or a permission to login to a particular host. The validity specification V for
an auth cert is the same as in the case of a name cert.

2.2 Certificates as Rewrite Rules

A labeled rewrite rule is a triple L
T−→ R, where L and R are terms and T is an

authorization specification. T̂ is the authorization specification such that for all
other authorization specifications t, T̂ ∩ t = t, and T̂ ∪ t = T̂ .3 Sometimes

we will write T̂−→ simply as −→, i.e., a rewrite rule of the form L −→ R has an
implicit label of T̂ . We will treat certs as labeled rewrite rules:
• A name cert (K, A, S, V ) will be written as a labeled rewrite rule K A−→S.

• An auth cert (K,S,D, T, V ) will be written asK � T−→ S � if the delegation
bit D is turned on; otherwise, it will be written as K � T−→ S �.

Note that in authorization problems, we only consider valid certificates, so, as a
pre-processing step, we first check the validity specification V for each certificate
in use. For the rest of the paper, we assume that only valid certificates are
considered for authorization proofs.

Because we only use labeled rewrite rules in this paper, we refer to them as
rewrite rules or simply rules. A term S appearing in a rule can be viewed as
a string over the alphabet K ∪ A, in which elements of K appear only at the
beginning. For uniformity, we also refer to strings of the form S � and S � as
terms. Assume that we are given a labeled rewrite rule L T−→ R that corresponds
to an auth cert. Consider a term S = LX . In this case, the labeled rewrite rule
L

T−→ R applied to the term S (denoted by (L T−→ R)(S)) yields the term RX .
Therefore, a rule can be viewed as a function from terms to terms that rewrites
the left prefix of its argument, for example,

(KA Bob −→ KB)(KA Bob myFriends) = KB myFriends.

Consider two rules c1 = (L1
T−→ R1) and c2 = (L2

T ′
−→ R2), and, in addition,

assume that L2 is a prefix of R1, i.e., there exists an X such that R1 = L2X .

Then the composition c2 ◦ c1 is the rule L1
T∩T ′
−→ R2X . For example, consider the

two rules:
c1 : KA friends

T−→ KA Bob myFriends

c2 : KA Bob
T ′−→ KB

3 The issue of intersection and union of authorization specifications is discussed
in [9,11].



Reducing the Dependence of SPKI/SDSI on PKI 161

The composition c2 ◦ c1 is KA friends
T∩T ′
−→ KB myFriends. Two rules c1 and

c2 are called compatible if their composition c2 ◦ c1 is well defined.4

A certificate chain ch is a sequence of certificates [c1, c2, · · · , ck]. The label of
a certificate chain ch = [c1, · · · , ck], denoted by L(ch), is the label obtained from
ck ◦ ck−1 · · · ◦ c1.

3 Kerberizing SPKI/SDSI

In this section, we explain how we can reduce the dependence of SPKI/SDSI on
PKI by utilizing a secret-key-based authentication system, namely Kerberos. We
first introduce an example that will be used throughout this section. Next, we use
this example to illustrate how the original SPKI/SDSI system works. Finally, in
Section 3.2, we describe how the reliance of SPKI/SDSI on PKI can be reduced
by using Kerberos. We assume that the reader is familiar with Kerberos (for a
detailed description of Kerberos see [19]).

BobX

R

Alice YCS Bio

②

③

① ①

[KAlicestudents → Kx]
[KAlicestudents → Ky ] [KBob � TR−→ KAlice �]

[KAlice � TR−→ KAlice students �]

Fig. 2. Distributed authorization using SPKI/SDSI

Example. Suppose that there are two sites, Bio and CS, which correspond to
the biology and the computer science departments, respectively. Two professors,
Alice from CS and Bob from Bio, are collaborating on a project. Bob wants to
delegate to Alice full access rights to a shared resource R. In addition, Alice plans
to delegate access rights to resource R to her students, who are also involved in
the project, without allowing them to delegate these rights further.

3.1 Authorization in SPKI/SDSI

In this section, we describe how SPKI/SDSI authorization works in a distributed
environment, using the example given above. There are three components to a
SPKI/SDSI authorization scenario, denoted by the circled numbers in Figure 2.

Certificate issuance (Figure 2 ①→). First, each user issues auth and name certs.
In our example, Bob delegates access rights TR to resource R to Alice by issuing
the following auth cert, signed with his private key:
4 In general, the composition operator ◦ is not associative. However, when (c3 ◦ c2) ◦ c1

exists, so does c3 ◦ (c2 ◦c1); moreover, the expressions are equal when both are defined.
Thus, we allow ourselves to omit parentheses and assume that ◦ is right associative.
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KBob � TR−→ KAlice �

At CS, Alice grants two of her students, X and Y , access to R by issuing the
following two name certs and one auth cert, all signed with Alice’s private key:

KAlice students −→ KX

KAlice students −→ KY

KAlice � TR−→ KAlice students �

The two name certs state that X and Y are students of Alice; the auth cert states
that all of her students (i.e., X and Y ) can access resource R with authorization
specification TR, but they cannot delegate the access right.

Now assume that student X wants to access R at site Bio according to autho-
rization specification TR. He needs to perform the following two steps:

Certificate-chain discovery (Figure 2 ②→). To request access to resource R, a
user U first performs certificate-chain discovery to obtain a proof that he can
access resource R. This can be achieved by executing a distributed certificate-
chain-discovery algorithm [14], and, if the algorithm finds that U is authorized,
it returns a proof in the form of a finite set of certificate chains {ch1, · · · , chm}.
In our example, student X initiates the distributed certificate-chain discovery,
which will involve both Alice and Bob. The distributed certificate-chain discovery
returns the singleton set of chains {ch1}, where ch1 = [c1, c2, c3] and ci are the
following certificates:

c3 = KBob � TR−→ KAlice �
c2 = KAlice � TR−→ KAlice students �
c1 = KAlice students −→ KX

Requesting a resource (Figure 2 ③→). After user U obtains a set of certificate
chains SCH = {ch1, · · · , chm} from the previous step, he presents SCH to
the owner of the resource R to which TR refers. The owner authorizes KU iff
TR ⊆

⋃m
i=1 L(chi) (this step is usually called compliance checking).

In our example, after making the certificate-chain-discovery request, “Does
KBob � resolve to KX� or KX� with authorization specification TR?”, student
X presents {ch1} to KBob . KBob checks that TR ⊆ L(ch1), which is true, and
hence grants X access to resource R.

3.2 Authorization in Kerberized SPKI/SDSI

Notice that, to use SPKI/SDSI, every user needs to have a public-private key
pair. In this section, we describe how to reduce SPKI/SDSI’s dependence on
PKI by using the distributed authentication system Kerberos in a SPKI/SDSI
implementation. The key insight behind our work is that the certificate issuance
process in SPKI/SDSI can also be achieved using secret-key-based systems, such
as Kerberos. In SPKI/SDSI, each certificate is signed by its issuer using the
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private key, and the signature serves as the proof for the authenticity of the
certificate. In a secret-key-based system such as Kerberos, the authentication
process also produces the evidence for who the user is, and this evidence can be
employed by the user to issue certificates. In Kerberos, an authenticated user
obtains a token called Ticket Granting Ticket (TGT), which contains digital ev-
idence about the user. This token can be used to obtain a secure communication
channel with various Kerberos services. Therefore, in our approach, we use a
Kerberized SPKI/SDSI server for each site so that an authenticated Kerberos
user can securely issue certificate requests through the Kerberized SPKI/SDSI
server. In essence, our approach relaxes SPKI/SDSI’s binding requirement where
each user is identified by its public key. Instead, each principal will be a Kerberos
principal in a Kerberos realm. Consequently, with our approach, a SPKI/SDSI
user no longer needs to have a public-private key pair, and we only require one
public-private key pair per site—namely, for the SPKI/SDSI server. Our new
system is called K-SPKI/SDSI, short for Kerberized SPKI/SDSI.

In our system, each SPKI/SDSI site runs a Kerberized SPKI/SDSI server
(K-SPKI/SDSI), which shares a public-private key pair with the Kerberos Key
Distribution Center (KDC) at its site. The public-private key of site st is denoted
by Kst. We now describe the three components of our authorization scenario in
this new setting. Figure 3 illustrates the high-level idea behind our approach.

Certificate issuance (Figure 3 ①→). To issue K-SPKI/SDSI certificates, a Ker-
beros user first authenticates with the local KDC using the standard Kerberos
authentication protocol and receives a Ticket Granting Ticket (TGT) from the
KDC. Using the TGT, the user requests a Service Granting Ticket (SGT) for
accessing the Kerberized SPKI/SDSI (K-SPKI/SDSI) server. Throughout the
rest of the section, we assume that the user has obtained an SGT for the K-
SPKI/SDSI server at its site. Using the SGT, the user issues requests for gen-
erating SPKI/SDSI name certs or auth certs. The session key Ks provided in
the SGT is used to protect both the integrity and confidentiality of the requests
sent over the communication channel.

To issue an auth cert, a user at site st sends a cert request EKs [U, S,D, T, V ],
encrypted with the session key Ks from the SGT, to the K-SPKI/SDSI server.
Here U is the name of the user, S is the subject, D is the delegation bit, T is the
authorization specification, and V is validity information. Upon receiving this
encrypted auth-cert request, the K-SPKI/SDSI server ascertains its validity, and
if the auth cert is valid, it creates a new K-SPKI/SDSI auth cert of the form
[Kst U,Kst S,D, T, V ], signs it with its private key. The newly issued certificates
can be stored in the K-SPKI/SDSI server so that authorization can be done more
efficiently. However, to fully emulate SPKI/SDSI, the certs could also be sent
back to the users who have requested them. In this scenario, authorization would
be carried out exactly as in the original SPKI/SDSI. Notice that in the new auth
cert the public key Kst of site st is added before both U and S. In our example,
Bob sends the following auth-cert request, encrypted with the appropriate session
key (obtained from his SGT), to the K-SPKI/SDSI server SBio :
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Fig. 3. Reducing SPKI/SDSI’s dependence on PKI using Kerberos. Dashed lines rep-
resent secure Kerberos communication channels.

Bob � TR−→ CS Alice �

The auth cert states that Bob delegates full access rights to resource R to Alice
from CS. The K-SPKI/SDSI server SBio verifies the encrypted auth certs shown
above, then creates and signs the following K-SPKI/SDSI auth cert:

KBio Bob � TR−→ KBio CS Alice �

To issue a name cert, a user at site st sends an encrypted name-cert request
EKs [U, A, S, V ] to the K-SPKI/SDSI server. Here U , S, and V are the same as
in an auth cert, while A is an identifier. The validation step is exactly the same
as that for issuing auth certs. After a request is validated, the K-SPKI/SDSI
server creates a new name cert of the form [Kst U, A,Kst S, V ], signs it with its
private key. Similar to auth certs, the name certs can be either stored in the
K-SPKI/SDSI server or sent back to the users who have requested them. As
before, we will write the name cert as U A −→ S. In our example, Alice sends
two name certs and one auth cert (Figure 3.2 (a)), encrypted with the session
key Ks, to the K-SPKI/SDSI server at her site. The K-SPKI/SDSI server verifies
the encrypted name certs, creates the corresponding K-SPKI/SDSI name certs,
and signs them (Figure 3.2 (b)). Notice that the left-hand sides of K-SPKI/SDSI
certificates have three symbols: the left-hand side of an extended auth cert is of
the form Kα U � or Kα U �, where Kα is the public key of site α and U is a user;
the left-hand side of an extended name cert is of the form Kα U A, where both U
and A are identifiers. In SPKI/SDSI the left-hand sides of auth and name certs
have just two symbols. However, the translation from user certificate requests
to the actual certificate can be done automatically because this is just a special
case of left-prefix rewriting, and the primitives generalize to arbitrary left-prefix
rewriting systems [5], which covers the case of K-SPKI/SDSI certs with three
left-hand-side symbols.

Besides user-issued certificates, each SPKI/SDSI site also needs to exchange
its public key with other SPKI/SDSI sites, represented as name certificates. For
example, the site Bio would issue the following name certificate:

KBio CS −→ KCS
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Alice students −→ X KCS Alice students −→ KCS X
Alice students −→ Y −→ KCS Alice students −→ KCS Y

Alice � TR−→ CS Alice students � KCS Alice � TR−→ KCS Alice students �
(a) Name-cert requests (b) K-SPKI/SDSI name certs

Fig. 4. Issuing SPKI/SDSI certificates using K-SPKI/SDSI

Certificate Chain Discovery (Figure 3 ②→). Suppose that user U at site st1 wishes
to access resource R at site st2 with access rights given by T . U first initiates
a certificate-chain discovery, e.g., using the algorithms from [20] or, in the case
where certificates are stored at the K-SPKI/SDSI servers, using the distributed
algorithm from [14]. If the search is successful and returns a set of certificate
chains SCH, U needs its site st1 to prepare a proof of authorization that U can
present to the owner of R. This is because, while SCH proves that user U at site
st1 has access to R, only st1 can assure the owner of R (who possibly resides at
a different site st2) that the requesting user is indeed U . Thus, U sends SCH to
st1, and st1 sends back the following Kerberos tokens:

TokenU = EKs(K1)TicketU

TicketU = EKst2
(K2) EK2 [st1, (R, st2, U, st1, T, SCH , K1, TS1, Lifetime1)Kst1

]

where Ks is the session key for U and st1, K1 and K2 are fresh secret keys gen-
erated by st1, and ( · )Kst1

denotes data signed by st1. Intuitively, TokenU makes
the key K1 known to U , and TicketU says that SCH is a proof of authorization
for access to R at site st2 (with access type T ) by user U at site st1. By signing
the message, site st1 confirms that anybody in possession of key K1 is indeed U .
Notice that R, st2, U , and st1 are implicitly contained in SCH and can be omit-
ted in practice. In our example, assume that student X receives a token with
the set of certificate chains SCH = {ch1}, where ch1 is the certificate chain
[c1, c2, c3, c4]: Notice that (c4 ◦ c3 ◦ c2 ◦ c1)(KBioBob �) ∈ {KCS X �,KCS X �}
and TR ⊆ L([c1, c2, c3, c4]).

c1 = KBio Bob � TR−→ KBio CS Alice � c3 =KCS Alice� −→KCS Alice students �
c2 = KBio CS −→ KCS c4 = KCS Alice students −→ KCS X

Requesting a resource (Figure 3 ③→). Upon receiving TokenU , user U decrypts
EKs(K1) and retrieves the session key K1. He then constructs the following
Kerberos authenticator:5

AuthenticatorU = EK1 [ U, st1,TS 2,Lifetime2 ]

User U sends the message [TicketU AuthenticatorU ] to the owner of resource
R (at site st2), who requests its local K-SPKI/SDSI server st2 to verify the
message. The server performs the following steps:
5 The actual content of the authenticator is irrelevant in our example.
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• Decrypts the message EKst2
(K2) with its private key and retrieves K2.

• Decrypts the part of TicketU encrypted with K2.
• Obtains the public key Kst1 and verifies the signature of st1.
• Ascertains freshness and validity of the token using the time-stamp TS 1 and

the lifetime Lifetime1; checks that SCH indeed proves the desired access.
• Similarly, the K-SPKI/SDSI server ascertains the validity of the authenti-

cator, thus making sure that the sender is indeed user U at st1. Notice that
the server knows the session key K1 from TicketU .

If all the steps given above are successful, then the K-SPKI/SDSI server sends
a message to R indicating that U should be granted access, and that communi-
cation between R and U should be protected using key K1.

3.3 Analysis

Correctness of the Protocol. The key idea behind our work is to rely on
Kerberos to provide a secure channel for users to submit SPKI/SDSI name
certs and auth certs, which are signed and stored at each site. In contrast, in
the original SPKI/SDSI system, each user can issue and sign her own certs.
We note that there is no conceptual difference between these two approaches;
only the underlying security mechanisms used are different (one uses secret-
key cryptography and the other uses public-key cryptography). For example,
in the original SPKI/SDSI approach, a user U issues a name cert this way:
(K, A, S, V )K′ . Here the subscript K ′ denotes that the name cert is signed by
the user using the private key K ′. In comparison, the corresponding step in our
approach is implemented by issuing the certificate request EK [U, A, S, V ], where
EK denotes that the name-cert request is encrypted by the session key shared
between the user and the K-SPKI/SDSI server. The request is first validated,
then translated by the K-SPKI/SDSI server into actual certificates, signed with
K-SPKI/SDSI server’s private key. Thus, in both cases, the possession of a secret
(K ′ in SPKI/SDSI, and K in Kerberos) provides the digital links between the
certs issued and the user who has issued them.

Trade Offs. Although previous work has shown that secret keys can be used in
place of public keys to implement the same security objectives, such as building
a secure broadcast-communication channel [8,16], there are pros and cons with
each approach. A secret-key-based system is simpler to set up and use. However,
secret-key-based systems often require both communication parties to be online
to function properly. For example, sending a message between two Kerberos
users usually requires both the sender and receiver to be active at the same time
so that they can exchange a secret encryption key.6 On the other hand, public-
key-based systems can operate in offline mode. For example, to send a message
using PKI, the sender can simply encrypt the message using the recipient’s public
key, without contacting the recipient first. However, key management is a major

6 Unless the two sides have previously agreed upon a shared secret key.
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issue that has hindered wider acceptance of PKI-based systems because it is
much more cumbersome to maintain public-private key pairs.

Our approach eliminates the public-private key pairs for individual users. In-
stead, each K-SPKI/SDSI server has a dedicated public-private key pair that is
used for signing SPKI/SDSI certificates, whereas users use secret keys in their
communication with the server (e.g., for requesting certificates). We chose this
hybrid approach for the following reasons. First, the use of PKI in the autho-
rization mechanism of SPKI/SDSI lends itself to offline checking of certificate
chains. Indeed, when a user requesting access to a resource presents a set of
certificate chains to the owner of that resource, the architecture of SPKI/SDSI
ensures that the owner can check the validity of these chains without contacting
the owners of the keys involved in the chains (in fact, without even verifying
their identities). While it is worth noting that by adopting the ideas of Lampson
et al. [16] or Davis and Swick [8] it is possible to emulate SPKI/SDSI using
secret keys only, such a scheme would not allow offline checking of certificates.
Secondly, the communication between users and servers usually happens online,
which motivates the use of secret keys in this context. Finally, if the certificates
issued by users are stored in the SPKI/SDSI servers, our approach can be very
well combined with the distributed certificate-chain algorithm presented in [14].

Threat Analysis. Our message exchange for requesting a resource is very
similar to the exchange of messages between the client and KDC in Kerberos.
In essence, the ticket TicketU states that “anyone who uses K1 is U”. Since
in TokenU K1 is encrypted with Ks, which can only be known by the user U
(because Ks is in the SGT issued to U), only U could have known K1 (assuming
that authentication in Kerberos is correct). It is possible for an adversary to
replay the message [TicketU AuthenticatorU ] to the resource R and masquerade
as U . However, this attack fails if R and U communicate using K1, which is
unknown to the attacker.

3.4 Extension to Other PKI-Based Trust-Management Systems

Different trust-management systems have different logics to express security poli-
cies. Most of the components (auth and name certs in SPKI/SDSI) of these se-
curity policies are signed by principals using their private keys. Recall that our
protocol essentially allows a server to sign statements on behalf of an authenti-
cated user. Although we have explained our protocol for SPKI/SDSI, it is clear
that it can be used for other trust-management systems. We now demonstrate
how our protocol can be extended for the trust-management system KeyNote [2].
Figure 5 shows an example of a KeyNote credential that grants some rights
(RFC822-EMAIL) to Alice, who has the public key DSA:4401ff92 (Line 2). We
can achieve the same goal using our technique, as shown in Figure 6. In our ap-
proach, the credential states that if Alice is an authenticated Kerberos user with
the Kerberos identity alice@LABS.COM, then she can have the rights specified
in the credential. It must be noted that the two credentials, although they ap-
pear similar, have very different operational semantics. In the original KeyNote
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KeyNote -Version : 2
Local - Constants: Alice="DSA:4401 ff92"
Authorizer: "RSA:abc123"
Licensees: Alice
Conditions: (app_domain == "RFC822 -EMAIL") && (address ~= ".*@labs \\.com\$");
Signature: "RSA -SHA1:213354 f9"

Fig. 5. An example of a KeyNote credential. Line 2 represents Alice’s public key.

KeyNote -Version : 2
Local - Constants: Alice=" Kerberos :alice@LABS.COM"
Authorizer: "RSA:abc123"
Licensees: Alice
Conditions: (app_domain == "RFC822 -EMAIL") && (address ~= ".*@labs \\.com\$");
Signature: "RSA -SHA1:213354 f9"

Fig. 6. An example of the same KeyNote credential, but without requiring Alice to
have a public key

example, Alice can further delegate the rights she has received by issuing new
credentials directly—without any compliance checking. However, in the Kerber-
ized scenario, because Alice no longer has a public-private key pair, she can
only delegate her rights by first authenticating herself through Kerberos, and
then issue a delegation request through a dedicated Kerberized KeyNote server.
In both cases, the Authorizer (Line 3) represents the public-private key for the
Kerberized KeyNote server.

4 Implementation and Evaluation

We have built a prototype system to evaluate our approach. The implementa-
tion uses MIT’s Kerberos distribution (version 1.3.1 [19]) and the Distributed
SPKI/SDSI library, which is based on a model checker for weighted pushdown
systems [20]. The test environment contains 1500 name certs and 30 auth certs,
distributed over different sites. Each site runs on a dedicated machine on a local
area network. All test machines have identical configurations: 800 MHz Pentium
III with 256 MB RAM, running TAO Linux version 1.0.

We evaluated our approach using two criteria: ease of deployment and per-
formance. Because our implementation is still a prototype, and we have not
deployed the system in a real-world environment, we evaluated the prototype in
a simulated environment, using synthetic data. We summarize the results based
on these two criteria:

Ease of deployment: Three steps are required to deploy our system, assuming
that Kerberos is already installed.

1. Install a public-private key pair: In our approach, only one public-private
key pair is needed for each Kerberos site. In addition, sites need to exchange
their public keys. However, we believe that this is a reasonable requirement
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because the exchange is done only once. Alternatively, public keys could be
obtained on demand using existing solutions for public-key exchange.

2. Install the K-SPKI/SDSI server: Each Kerberos site must have its own K-
SPKI/SDSI server. Because each K-SPKI/SDSI server is implemented as
a Kerberos service, this does not require any changes to Kerberos besides
setting up the secret key between the KDC and the K-SPKI/SDSI server.

3. Enhance Kerberos clients: Kerberos clients that want to take advantage of
our distributed authorization features can be updated easily by using a new
library call to access the K-SPKI/SDSI server.

Performance: We have tested our implementation in a model where all certifi-
cates are stored at the K-SPKI/SDSI servers, which then uses the distributed
algorithm from [14] for certificate-chain discovery (for results, see Section 4.2).
In these experiments, the performance of distributed authorization is highly de-
pendent on how K-SPKI/SDSI certificates are distributed among the sites: the
more distributed the certs are, the more sites are needed to resolve authorization
queries, and the longer it takes to process an authorization query. In our study,
distributed authorization performed well: in a test environment with about 1,500
certificates and eight Kerberos sites, it took about 1 second to process a complex
authorization request, and took half as long to process a simple one. Because
this is only a prototype implementation, there is still plenty of opportunity for
optimizations that would improve the performance. Notice, however, that this
issue is slightly orthogonal to the issue of integrating SPKI/SDSI with Kerberos,
since certificate-chain discovery could still be done locally.

4.1 Ease of Deployment

The objective of this work is to make SPKI/SDSI, and potentially other PKI-
based trust-management systems, less reliant on PKI and easier to deploy in
the real world. We achieve this by two means. SPKI/SDSI’s reliance on PKI is
reduced by using the authentication provided by existing infrastructures, such as
Kerberos, that are proven and in use. The approach tries to make SPKI/SDSI fit
into existing systems seamlessly instead of introducing substantial changes that
would present an impediment to adoption. Deploying our system in environments
where Kerberos is installed only requires a few small changes.

Second, in terms of implementation, we tried to minimize the changes to
Kerberos, because such changes usually result in additional complications for
deployment. We achieved this goal by implementing the K-SPKI/SDSI server as
an independent unit, instead of changing the KDC. As a result, our implemen-
tation requires no changes to the KDC, and only one minor modification to the
Kerberos library.7

Our approach also has some drawbacks. First, by using a separate server,
clients must be modified to use the provided features—although the change is
7 We changed the function kuserok, which, when called, evaluates whether a Kerberos

principal is allowed to login to a host. Our change provides an option for callers of
this function to use the K-SPKI/SDSI server to check for authorization.
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very simple. The alternative is to provide these functionalities inside the KDC.
When a Kerberos client requests an SGT for a service, the KDC automatically
performs the necessary authorization query on behalf of the client and stores the
authorization token as part of the SGT. This approach makes the authorization
process transparent to the clients, but it does require changes to the KDC.
This technique is also used by others for adding authorization support inside
Kerberos [4,10,22,15]. We are currently evaluating both approaches.

In addition to the changes above, when deploying our system, each site must
install a public-private key pair. Furthermore, each site needs to send its pub-
lic key to other sites with which it plans to collaborate. However, we believe
that this is a reasonable requirement because setting up a collaboration is an
administrative task that only needs to be done once for each collaborating site.

4.2 Performance

We also evaluated the performance of our system in a simulated distributed en-
vironment using the algorithm from [14]. We only considered the performance
for distributed authorization because issuing certificates is an infrequent admin-
istrative task. The simulated test environment consisted of eight Kerberos sites,
as shown in Figure 7. Each node in the graph represents a Kerberos site; nodes
with a symbol R represent a service that Kerberos users can access. To illustrate
what goes on, some of the certificates used in the experiments are shown next
to each site. Because in a distributed environment every Kerberos site stores its
own certificates, resolving an authorization request may involve multiple sites,
depending on how the K-SPKI/SDSI certificates are distributed. For instance, in
Figure 7 when Manager from the site GOV attempts to access resource R from NSF,

NSF (R)Knsf R � t1−→ Knsf edu programs �
Knsf edu → Kedu

Knsf R � t2−→ Kgov�
Kedu programs → Kedu schools faculty

Kedu schools → Kwisc schools
EDU GOV Kgov � t2−→ Kgovprograms �

Kgov programs → KgovManager

WISC Kwisc schools → Kuw

UW Kuw faculty → KuwChancellorKuw faculty → Kls faculty

LSKls faculty → Kcs faculty Kls faculty → Kbio faculty

CSKcs faculty → KcsAlice BIO

Fig. 7. Test setup with 1500 name certs and 30 auth certs (only a few are shown due
to space constraints)
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Table 1. Distributed Authorization Performance Results

Scenario # of sites Request Time (ms)
Manager@GOV (→) 2 (fundB apply) 581
Chancellor@UW (�) 4 (fundA apply) 930
Alice@CS (���) 6 (fundA apply) 1128

only these two sites are involved in distributed authorization, as indicated by the
solid arrow. In contrast, when Alice, from CS, wants to access the same resource
R, multiple sites (along the dashed arrows) must participate in the distributed
authorization. Therefore, we expect the number of sites involved in distributed
authorization to be an important factor in performance. For this reason, we
tested distributed authorization using three different scenarios, indicated by the
three types of arrows in Figure 7.

Table 1 shows the results of the experiments. As expected, the number of sites
involved in distributed authorization has a direct impact on the performance of
the system. In the most complex case (Alice@CS), where six Kerberos sites were
involved, resolving an authorization request took almost twice as long as the time
required in the simplest case (Manager@GOV), where only two sites were involved.
However, as this is only a prototype, we expect to improve the performance in
the future by optimizing the code. Furthermore, our test setup is an extreme
case where every Kerberos site has its own physical KDC. In practice, different
logical Kerberos sites could share a single physical KDC, which would improve
the performance by reducing the communication overhead.

5 Related Work

The key idea behind our approach is that we can use secret-key cryptography
to implement the same SPKI/SDSI operations (e.g., issuing certificates) with
the same level of security as with public-key cryptography. The notion of using
secret keys in place of public-private key pairs as the building block of security
operations was first proposed by Lampson et al. [16], who showed that, by using
a relay (an agent that everyone trusts, e.g. the Kerberos KDC), one can build
public-key-style secure communication channels. This idea has been extended by
Davis and Swick to build other public-key-style security protocols using secret
keys [8]. Our work also uses this idea, but applies it in the context of PKI-based
trust-management systems, specifically SPKI/SDSI.

Leveraging the advantages of both Kerberos and Public-Key Infrastructure
(PKI) has been explored before. PKINIT [23], PKCROSS [12], and PKDA [21]
all extend Kerberos by using public-key cryptography for authentication pur-
poses. Our work has a different goal: it is targeted toward authorization rather
than authentication; in particular, the goal is to use Kerberos to reduce the depen-
dence of SPKI/SDSI on PKI. Furthermore, the approaches of [23,12,21] require
modifications to the Kerberos infrastructure itself, while our approach does not.

K-PKI [6,15] addresses the problem of accessing Kerberos services from PKI-
based systems, such as web applications. K-PKI provides a special Kerberosserver,
KCA, that can generate short-term X.509 certificates for authenticated Kerberos
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clients. Later on, when a client tries to access Kerberos services through some web
applications, (s)he first authenticates with the web services using the generated
certificate. The web services, in turn, can obtain necessary Kerberos credentials
and access the Kerberos services on behalf of the client. While K-PKI provides a
glue between Kerberos and the PKI world, the complexity of the PKI systems is
not reduced: all clients are required to manage public-private key pairs. Our work,
on the other hand, tries to reduce the reliance of trust-management systems on
PKI so that individual users no longer need to have public-private key pairs.

Another aspect of our work is to bring trust management, such as SPKI/SDSI,
to Kerberos-based infrastructures. Although there has been previous work on
extending Kerberos’ authentication framework with authorization services, that
work generally assumes a centralized authority and does not address cross-realm
authorization. Of these, Neuman’s work on restricted proxy [18] is the closest to
ours. Restricted proxy is a model for building various authorization services such
as authorization servers, capabilities, and access control. However, SPKI/SDSI
is a superset of restricted proxy, and offers other features, such as distributed
trust management. DCE’s Privilege Service (PS) [22], ECMA’s SESAME [10],
and Microsoft’s Kerberos extension [4] provide authorization capability through
the use of an optional field (called authorization data) provided by Kerberos. For
each authenticated Kerberos principal, authorization information (such as group
membership, security identifiers) about the principal is stored in the field. This
authorization data is used by application servers to check users’ access privileges.
These systems have the common drawback that, unlike SPKI/SDSI, they rely on
a centralized authority for granting access privileges. In contrast, our approach
uses SPKI/SDSI, which does not require a central authority, and authorization
decisions can be made in a truly decentralized manner [14].

SPKI/SDSI [9], based on public-key infrastructure, was designed to address
the centralized authority issue of conventional PKI-based systems. SPKI/SDSI
provides a novel framework for managing trust (in the form of certificates) using
a decentralized approach. In SPKI/SDSI, no central authority is needed be-
cause each principal can issue her own certificates. Much of the previous work
on SPKI/SDSI focuses on theoretical aspects of SPKI/SDSI [1,7,13,20]. Despite
such work, SPKI/SDSI has not been adopted in the real world, primarily due
to the difficulty of key-management issues in PKI-based systems. Our work ad-
dresses this problem by reducing SPKI/SDSI’s reliance on PKI—by making use
of Kerberos, essentially unchanged. By relying on Kerberos, a well-accepted and
widely used system, our approach should make it possible for SPKI/SDSI to be
adopted in the real world more easily.
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Abstract. User delegation is a mechanism for assigning access rights
available to a user to another user. A delegation operation can either
be a grant or transfer operation. Delegation for role-based access con-
trol models have extensively studied grant delegations. However, transfer
delegations for role-based access control have largely been ignored. This
is largely because enforcing transfer delegation policies is more complex
than grant delegation policies. This paper, primarily, studies transfer
delegations for role-based access control models. We also include grant
delegations in our model for completeness. We present various mecha-
nisms that authorise delegations in our model. In particular, we show
that the use of administrative scope for authorising delegations is more
efficient than using relations. We also discuss the enforcement and revo-
cation of delegations. Finally, we compare our work with relevant work
in the literature.

1 Introduction

Role-based access control (RBAC) is being increasingly recognized as an efficient
access control mechanism that facilitates security administration [1]. Roles are
identified with various job functions in an organization and users are assigned
to roles based on their job responsibilities and qualifications. Permissions are
associated with roles. Users acquire permissions through the roles allocated for
them. This feature of role-based models greatly simplifies the management of
permissions.

Delegation is a mechanism of assigning access rights to a user. Delegation
may occur in two forms: administrative delegation and user delegation. An ad-
ministrative delegation allows an administrative user to assign access rights to
a user and does not, necessarily, require that the administrative user possesses
the ability to use the access right. A user delegation allows a user to assign a
subset of his available rights to another user. However, a user delegation opera-
tion requires that the user performing the delegation must posses the ability to
use the access right. Furthermore, like Schaad, we believe that an administra-
tive delegation operation is often long-lived and more durable (permanent) than
a user delegation operation that is short-lived (temporary) and intended for a
specific purpose [2, Chapter 7, Page 117]. This paper studies user delegation. In
the rest of the paper, ‘delegation’ is always understood to be as ‘user delegation’
unless stated otherwise. The user who performs a delegation is referred to as a
‘delegator’ and the user who receives a delegation is referred to as a ‘delegatee’.
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Rights can be delegated in two ways in RBAC: by delegating roles or by
delegating individual permissions. Delegating a permission p gives the delegatee
the ability to use p. However, delegating a role r gives the delegatee the ability
to act in role r. That is, the delegatee is authorized for role r (and thereby gains
the ability to use permissions assigned to role r and roles that are junior to
r). In particular, we note that individually delegating all permissions explicitly
assigned to a role r does not authorize the delegatee to act in role r.

Broadly, delegation of privileges may be classified into (at least) two kinds:
grant and transfer [3]. A grant delegation model, following a successful delegation
operation, allows a delegated access right to be available to both the delegator
and delegatee. As such, this is a monotonic model, in which available autho-
rizations are only increased due to successful delegation operations. However, in
transfer delegation models, following a successful delegation operation, the abil-
ity to use a delegated access right is transferred to the delegatee; in particular,
the delegated access right is no longer available to the delegator.

Grant delegation models are, primarily, concerned with allowing the delegatee
to use the delegated access right. However, in transfer delegation models, besides
allowing the delegatee to use the delegated access right, we must prevent the use
of the delegated access right by the delegator. It is this feature that makes
it more difficult to enforce transfer delegation policies in most access control
frameworks [2, 4]. Furthermore, it can be easily seen that, in grant delegation
models the availability of access rights increases monotonically with delegations.
While some business requirements may support grant delegations, it is often
desirable that sensitive access rights may not be available to a large number of
users (at any given time). Such requirements are usually expressed as cardinality
constraints in an access control policy [5, 6]. Transfer delegation policies prove
to be more useful when an access control policy specifies cardinality limits on
the availability of access rights between users.

Consider, for example, an access control policy that requires the co-operation
of k users to accomplish a given task. The unavailability of (at least) one of
the users, which can be for several reasons, makes it impossible to complete the
task. A desirable solution would be for users to be able to delegate the access
right to another user, who may act on behalf of the former user. In the above
example, when assumed that the access control policy specifies that the right
r, that is required to complete the task, is available to no more than k users,
the reference monitor will always deny an attempt to delegate the right r, using
grant delegation, to another user to prevent violation of the policy. Such scenarios
require that the delegation be made using transfer delegation.

Most works that studied delegation in the context of role-based models are
grant delegation models [3, 7, 8, 9, 10, 11, 12, 13]. To our knowledge no work has
studied temporary transfer delegation for role-based models. This paper, pri-
marily, aims to study transfer delegation for role-based models. Role hierar-
chies are an important reason for the wide interest in role-based models. Hence,
it is natural to consider role hierarchies when studying any aspect of role-
based models. The semantics of transfer delegations become more complex when
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role-hierarchies are considered. We develop a comprehensive delegation model
for role-based systems that provides support for both grant and transfer delega-
tion policies. In this paper, we study delegation in the context of both RBAC0
model (flat roles) and RBAC1 model (hierarchical roles) of the RBAC96 family
of models [1].

The rest of the paper is organized as follows. In the next section, we develop
the background for the rest of the paper and define semantics for grant and
transfer delegations. Section 3 describes the mechanism for authorising delega-
tions. Section 4 presents enforcement of delegations. A comparison of our work
with related work in the literature is given in Sect. 5. We conclude this work and
discuss future work in Sect. 6.

2 Role-Based Delegation

The theoretical development of role-based access control and its standardization
has been strongly influenced by the RBAC96 family of models [1]. For this reason,
we consider delegation within the context of the RBAC96 family of models. In
the next section, we introduce some important prerequisite concepts, including
the relevant features of RBAC96 and the concept of administrative scope, which
is the building block of the RHA family of administrative models [14].

2.1 Preliminaries

RBAC96. RBAC0 is the simplest model and defines a set of roles R, a set
of permissions P , a set of users U , a permission-role assignment relation PA ⊆
P × R, and a user-role assignment relation UA ⊆ U × R. We denote the set of
roles explicitly assigned to a user u by Ru; that is, Ru = {r ∈ R : (u, r) ∈ UA}
and the set of roles explicitly assigned to a permission p by Rp; that is, Rp =
{r ∈ R : (p, r) ∈ PA}.

RBAC1 introduces the concept of a role hierarchy RH ⊆ R × R. The graph
of the relation RH is acyclic and the transitive reflexive closure of RH defines a
partial order on R.

We write r � r′ in preference to (r, r′) ∈ RH ∗ (the transitive reflexive closure
of RH ). We may also write r′ � r whenever r � r′. We write ↓r to denote the
set {r′ ∈ R : r′ � r} and ↓R′ to denote

⋃
r′∈R′ ↓r′. We write ↑r to denote the

set {r′ ∈ R : r′ � r} and ↑R′ to denote
⋃

r′∈R′ ↑r′.
Access control decisions are granted within the context of a user session,

which is determined by the set of roles that a user activates. This set of roles is
a subset of the roles for which the user is authorized directly by the UA relation
and indirectly by the role hierarchy. We denote a session for user u by Su ⊆ ↓Ru.
A user u is permitted to invoke a permission p if there exists an activated role
r ∈ Su and a role r′ ∈ R such that (p, r′) ∈ PA and r′ � r.

Administrative scope. While RBAC96 is widely regarded as the de facto
standard for role-based access control, there is less consensus regarding role-
based administration. There are three approaches that are regarded as being
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relatively mature and sophisticated [15]: the ARBAC97 model [16], which is the
administrative counterpart of RBAC96; the RHA family of models [14]; and the
role control center [15]. Since delegation can be regarded as “lightweight user-
based administration”, it is natural that ideas from role-based administration
may be useful in models for delegation. Indeed, the can delegate relation in
RDM2000 is very similar in structure and meaning to the can assign relation
from ARBAC97 [12]. In this section, we introduce the concept of administrative
scope from the RHA model and generalize its definition for use in our delegation
model.

Definition 1 (Crampton and Loizou [14]). Let r ∈ R and define σ(r) =
{s � r : ↑s ⊆ ↓r ∪ ↑r}. We say that σ(r) is the administrative scope of r.

In Fig. 1(a), for example, σ(b) = {d}; g �∈ σ(b), because e > g and e is not
comparable to b. Administrative scope defines a sub-hierarchy forming a natural
unit of administration for the role r.

The success of any administrative operation in the RHA model is determined
by the inclusion (or otherwise) of any role parameters in the requesting role’s
administrative scope. Hence, a user assigned to role b could add a new role i with
parent role d, for example, but could not add a new role k with parent role g.

Administrative scope has been shown to be a far more flexible approach to
role-based administration than ARBAC97 [14]. As such, it is unsurprising that
it turns out to have considerable advantages in role-based delegation. However,
it will be necessary to compute the administrative scope of a role in different
partially ordered sets, each of which is a sub-hierarchy of the role hierarchy.
Hence, we extend our notion of administrative scope to include two parameters:
a partially ordered set X and an element x ∈ X . We write σ(x,X) to denote
the administrative scope of x computed in partially ordered set X . In practice
X will be a subset of R. We now discuss the two most important cases.

– If a user u is assigned to a set of roles Ru, this induces a user view ↓Ru of
the role hierarchy containing all the roles to which u is implicitly assigned
(via the user-role and role hierarchy relations). This user view is important
in defining which roles a user retains following the delegation of a role. In
this case, when u delegates r, we compute σ(r, ↓Ru) (see Proposition 2).

– Similarly, a set of activated roles Su ⊆ ↓Ru defines a session view ↓Su, which
is useful in defining the roles available to a user following certain types of
transfer delegation. In this case, when u delegates r, we compute σ(r, ↓Su)
(see Proposition 3).

2.2 Delegation Operations

We now describe the characteristics of delegation operations in RBAC96. The
grant operation is well understood and has been described in several earlier
papers [3, 7, 8, 9, 10, 11, 12, 13]. We include it here for completeness. We define
three different types of transfer operations in the context of RBAC1.
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RBAC0.

grantR0(u, v, r): The delegator u grants the role r to delegatee v. The delegator
may continue to use r.

grantP0(u, v, p): The delegator u grants the permission p to delegatee v. The
delegator may continue to use p.

xferR0(u, v, r): The delegator u transfers the role r to delegatee v. The delegator
may no longer use r.

xferP0(u, v, p): The delegator u transfers the permission p to delegatee v. The
delegator may no longer use p.

RBAC1.

grantR1(u, v, r): The delegator u grants the role r to delegatee v. The delegator
may continue to use r. The delegatee acquires the right to use all roles in ↓r.

grantP1(u, v, p): The delegator u grants the permission p to delegatee v. The
delegator may continue to use p.

xferP1(u, v, p): The delegator u transfers the permission p to delegatee v. The
delegator may not continue to use p.

xferRstrong(u, v, r): The delegator u transfers the role r to delegatee v. The
delegator may not use any role in ↓r. The delegatee acquires the right to use
all roles in ↓r. We call this strong transfer of a role from the delegator to
the delegatee.

xferRstatic(u, v, r): The delegator u transfers the role r to delegatee v. The
delegator may not use x ∈ ↓r unless there exists a role r′ such that (u, r′) ∈
UA and x � r′. (Informally, u retains the use of a role x if there is an
alternative path from x to a role to which u is assigned.) We call this static
weak transfer of a role from the delegator to the delegatee. As before, the
delegatee acquires the right to use all roles in ↓r.

xferRdynamic(u, v, r): The delegator u transfers the role r to delegatee v. The
roles available to the delegator are determined by the roles he activates in
a session. The delegator may not use x ∈ ↓r unless there exists a role r′

such that u has activated r′ in the current session and x � r′. (Informally,
u regains the use of a role x if there is an alternative path from x to a role
that u has activated in her session.) We call this dynamic weak transfer of
a role from the delegator to the delegatee. As before, the delegatee acquires
the right to use all roles in ↓r.

Given the above definitions, the following results are used as a basis for decid-
ing whether the delegator is allowed to use a role following a successful transfer
delegation operation. We discuss the enforcement of the consequences of transfer
delegations in Sect. 4.

Proposition 2. If u has performed a static weak delegation of role r, then u is
denied access to all roles in σ(r, ↓Ru), where Ru denotes the set of roles assigned
to u.
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Proof. Suppose u cannot use role x. Then x � r and there does not exist a role
r′ such that (u, r′) ∈ UA and x � r′. Hence, ↑x ⊆ ↓r ∪ ↑r in ↓Ru. The result
follows.

Proposition 3. If u has performed a dynamic weak delegation of role r, then
u is denied access to all roles in σ(r, ↓Su), where Su is the set of roles activated
by u.

Proof. The proof is analogous to that of Proposition 2.

Proposition 4. Let Rstrong, Rdynamic and Rstatic denote the set of roles denied
to a user following the operations xferRstrong(u, v, r), xferRdynamic(u, v, r)
and xferRstatic(u, v, r), respectively. Then Rstrong ⊆ Rdynamic ⊆ Rstatic.

Proof. Rstrong = ↓Ru \ ↓r, Rdynamic = ↓Ru \ σ(r, ↓Su) and Rweak = ↓Ru \
σ(r, ↓Ru). Now σ(r) ⊆ ↓r irrespective of the sub-hierarchy in which σ is com-
puted. Hence Rstrong ⊆ Rdynamic. Moreover, Su ⊆ Ru and it is easy to see that
this implies that σ(r, ↓Ru) ⊆ σ(r, Su) (since if r′ � x for some x ∈ ↓r and some
r′ ∈ Su, then r′ ∈ Ru).

Consider the role hierarchy depicted in Fig. 1. We assume that some user u is
assigned to roles b and f . In the diagram, unfilled nodes represent roles that
are available to u (and filled nodes represent nodes that are not available). Each
diagram represents different views of the role hierarchy: Fig. 1(a) illustrates the
whole hierarchy; Fig. 1(b) illustrates u’s view of the hierarchy; and Fig.s 1(d)
and 1(e) illustrate two different session views, one in which only role b is activated
and one in which only role f is activated.

The user delegates role d, represented by the square node, to another user.
Figure 1(b) illustrates the roles that are denied to the user in the event that
strong transfer is used to delegate the role. If we are using dynamic weak transfer,
then the ability to use role h is determined by whether the user activates role f ,
as shown in Fig. 1(d) and Fig. 1(e). If we are using static weak delegation, the
role h is always available, as depicted in Fig. 1(c).

3 Controlling Delegation

We assume that an access control policy specifies whether delegation of a role
or permission is permitted. We also assume the presence of a reference monitor
that evaluates such access control policies to determine whether a delegation
operation is permitted. There are two issues involved in the specification of
delegations:

– Is a user (delegator) authorized to delegate a role or permission that is
available to him?

– Can a role or permission be delegated to a user (delegatee)?

In this section, we describe two new mechanisms for authorizing delegations,
and discuss their advantages over existing approaches.
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(e) Weak dynamic
transfer: f activated

Fig. 1. Transfer delegation patterns for role d

3.1 Delegation Relations

Role delegation relation. We introduce two relations that authorize role
delegations in a role-based system: can-delegate and can-receive. The bi-
nary relation can-delegate specifies the set of roles that can be delegated by
a delegator and the relation can-receive authorizes delegation of a role to a
delegatee.

The relation can-delegate ⊆ R×R specifies whether a user is authorized to
delegate a role. (r, r′) ∈ can-delegate specifies that a user u is authorized to
delegate role r′, if r ∈ Rs, where Rs denotes the set of roles that are active in
u’s current session s. For example, in Fig. 1(a), if (b, d) ∈ can-delegate then u
may delegate role d if b ∈ Rs.

We define a constraint on the tuples in the can-delegate relation that guar-
antees that no user can delegate a role r that the user is not assigned to. Specif-
ically, we require that if (r, s) ∈ can-delegate then r � s. In our example,
in Fig. 1(a), an attempt to add the tuple (b, d) to the can-delegate relation
will succeed since b � d. However, an attempt to add the tuple (d, c) to the
can-delegate relation will fail since d � c.
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A delegatee must satisfy a set of conditions, usually role memberships, in
order to be authorized to receive a delegation. A delegation condition specifies
the conditions that must be satisfied by the delegatee to receive a delegation. We
adopt the notation of a SARBAC constraint to model a delegation condition [14].
Let R′ = {r1, . . . , rk} be a subset of R and let

∧
R′ denote r1∧· · ·∧rk. We model

a delegation condition as
∧
C for some C ⊆ R. A delegation condition

∧
C is

said to be satisfied by a user v if C ⊆ ↓Rv. In other words, the condition
∧
C

is satisfied by the delegatee if he is assigned to all the roles in C. The relation
can-receive ⊆ R × C specifies whether a user is authorized to receive a role
delegation. (r, C) ∈ can-receive means a delegatee v may receive a delegation
of role r provided that v satisfies

∧
C.

It may be more efficient to limit the set of roles that a delegatee may receive
due to a successful delegation. For example, in Fig. 1(a), is it reasonable for
a delegation request to succeed that delegates a role c to a delegatee v who
currently is assigned to role g? We may often require that such delegations are
not allowed, since v may lack sufficient expertise to efficiently perform the job
requirements of role c. Essentially, we require that a delegation always results
in a natural progression for the delegatee with respect to the role hierarchy.
We formalize the above requirement by defining the following constraint on the
tuples in the can-receive relation: (r, C) ∈ can-receive then for all r′ ∈ C we
require that r′ � r. Note that this constraint does not apply if r has no junior
roles (that is, r is a leaf node in the hierarchy). In our example, (c, {g}) is not a
permissible entry in can-receive; (c, {f}), in contrast, is a permissible entry.

In summary, the role-based reference monitor refers to the can-delegate and
can-receive relations to establish whether a delegation operation can succeed.
A request by u to delegate r to v will succeed only if there exists (r′, r) ∈
can-delegate such that r′ ∈ Rs, where s is u’s current session and a tuple
(r, C) ∈ can-receive such that v satisfies

∧
C. In our example, let us assume

that (b, d) ∈ can-delegate, (d, {g}) ∈ can-receive, (u, b) ∈ UA and (v, g) ∈
UA. Then an attempt by u to delegate role d to v will succeed.

Permission delegation relation. We define a relation can-delegatep⊆ R×
P that specifies the set of permissions that can be delegated by a user u. (r, p) ∈
can-delegatep specifies that a delegator u may delegate a permission p provided
that there exists r ∈ Rs. Similar to the can-delegate relation, we define a
constraint on the can-delegatep relation that guarantees that no user u can
delegate a permission p that is not available to u. In other words, we require
that if (r, p) ∈ can-delegatep then there exists a role r′ such that (p, r′) ∈ PA
and r′ � r.

The relation can-receivep ⊆ P × C specifies whether a user is authorized
to receive a permission delegation, where C is a delegation condition as defined
above. (p, C) ∈ can-receivep means that a delegatee v is authorized to receive
a delegation of a permission p if v satisfies

∧
C. Similar to the can-receive

relation, we define a constraint on the can-receivep relation that ensures that
a delegation always results in a natural progression for the delegatee with respect



182 J. Crampton and H. Khambhammettu

to the role hierarchy. If (p, C) ∈ can-receivep then there must exist r′ ∈ C and
r ∈ R such that (p, r) ∈ PA and r′ � r.

3.2 Using Administrative Scope

The use of relations for controlling delegations, discussed above, has been used
extensively in the literature mainly perhaps because of its simplicity [7, 12, 13].
The use of relations is simple, if we assume that RBAC relations, such as the role
hierarchy relation RH , remain static. However, updates to the RBAC relations
may lead to inconsistencies in the can-delegate and can-receive relations.
Such inconsistencies are explained in detail in Sect. 3.3. For now, we note that
the dynamic nature of various RBAC components increases the complexity of
managing the relations that are used for controlling delegations. It is our belief
that the mechanism used for controlling delegations must be simple and able
to implicitly handle any updates to RBAC relations. In this section, we suggest
an alternative method for controlling delegations, which dynamically handles
updates to RBAC relations using the concept of administrative scope [14].

We limit the extent to which a user can delegate roles and permissions using
the administrative scope of the roles(s) activated by the user. Specifically, we
define the administrative scope of a session s to be

σ(s) =
⋃
r∈S

σ(r).

Then in order for the delegation of role r by user u to succeed we require that
r ∈ σ(s), where s is u’s current session. In other words, u can only delegate roles
that are within his administrative scope. Similarly, in order for the delegation of
permission p by user u to succeed we require that there exists r ∈ s such that
(p, r) ∈ PA and r ∈ σ(s).

We now consider what criteria the delegatee must satisfy to be able to receive
a delegation. Informally, for the delegation of r to v to succeed, we require that v
is already “sufficiently authorized”. Now, the delegation of role r means that the
delegatee is authorized for all roles r′ � r. These observations lead to the idea
that the delegatee should already be assigned to any roles outside the delegator’s
administrative scope that the delegatee will acquire as a result of the delegation.
More formally, for the delegation of role r to user v by user u to succeed we
require that for all r′ < r such that r′ �∈ σ(s), there exists r′′ such that r′ � r′′

and (v, r′′) ∈ UA.
In our example, Fig. 1(a), u (who is assigned to b and f) may delegate role d

since d ∈ σ(b). Moreover, the delegation of d to user v will only succeed if v is
already assigned to role g. Note, however, that a user w who is assigned (only) to
role f will not be able to receive the delegated role d (from u) because g �∈ σ(s),
g < d and w is not assigned to g.

Administrative scope implicitly deals with any updates to various RBAC re-
lations, in particular the role hierarchy relation RH , since administrative scope
of a session s is computed, dynamically, with respect to the role hierarchy. Con-
sider, for example, Fig. 2(a) and Fig. 2(b) that depicts our original role hierarchy
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and a role hierarchy that is obtained after deleting an edge between roles d and
b. In the original hierarchy, if a user u has activated b in a session s then u is
authorized to delegate role d since d ∈ σ(s). However, following the edge dele-
tion operation, u is no longer able to delegate d since d /∈ σ(s). In other words,
the success of delegation operations adapts in a natural and transparent way
to changes in the structure of the role hierarchy. Figure 2(c) depicts the role
hierarchy obtained after deleting an edge between roles g and d. In the original
hierarchy, the delegatee v, who is assigned to role g, can receive a delegation
of role d since g < d. Following the edge deletion operation, v will not be able
to receive a delegation of d because g ≮ d. Note that in Fig. 2(c) there are no
roles less than d. This observation leads to the result that no user can receive a
delegation of a role {r ∈ R : ↓r ⊆ ↑r ∩ ↓r}.
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Fig. 2. Role hierarchies before and after edge deletion

3.3 Discussion

Most work in the literature uses a single relation to control delegation [7, 12, 13].
This relation encodes conditions on both the delegator and delegatee. We have
proposed an alternative approach where the above issues are dealt with inde-
pendently. There are several advantages in dealing with these issues separately.
Primarily, it eases the management of delegation specification. Furthermore,
such an approach employs separation of tasks, thus, making the model less error
prone while updating delegation policies. For example, if we wish to revoke the
authority of a role r to perform any delegations, then appropriate tuples are
deleted from the can-delegate relation. Note that such an operation does not
require any updates to the can-receive relation that authorizes a delegation
to the delegatee. Similarly, if we require that a permission p may no longer be
delegated to a delegatee who satisfies a condition

∧
C, we only delete necessary

tuples from the can-receivep relation.
The use of relations to control delegation is common to most existing ap-

proaches, mainly perhaps because of its simplicity [7, 12, 13]. The use of relations
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is appropriate, if we assume that RBAC structures such as the role hierarchy re-
main static. However, updates to the role hierarchy may lead to inconsistencies in
the can-delegate and can-receive relations. Consider, for example, Fig. 2(a)
and Fig. 2(b) that depict an original role hierarchy and a role hierarchy obtained
after deleting an edge between roles d and b. If (b, d) ∈ can-delegate it will need
to be explicitly deleted following the deletion of this edge. Similar considerations
apply to the operations that involve revocation of a permission p assigned to b.
Similarly, if (b, {d}) ∈ can-receive, then we must delete this entry following
the deletion of the edge between b and d. In summary, the can-delegate and
can-receive relations must be updated after updates to certain RBAC relations
to prevent inconsistencies.

Hence the advantages of using relations for controlling delegations are lim-
ited if we allow updates to RBAC relations. In contrast, administrative scope
is a dynamic model and implicitly deals with any updates to RBAC relations.
It is important to note that, following successful updates to RBAC relations,
no explicit updates are required with the use of administrative scope to resolve
any inconsistencies involved in controlling delegations. This is because adminis-
trative scope (and hence delegation) is determined by the structure of the role
hierarchy. In short, the use of administrative scope greatly simplifies delegation
in the presence of dynamic RBAC structures.

Furthermore, the administrative scope model for controlling delegations pre-
serves the separation of conditions on delegator and delegatee that we introduced
in our relation-based model. The issues that are involved in controlling delega-
tions, such as specifying the roles that a user is authorized to delegate and
receive, are still dealt with independently. Note also that the constraint we use
to limit the increase of power of the delegatee can be framed very elegantly using
administrative scope and existing RBAC relations.

4 Enforcing Delegation Constraints

Enforcing delegation operations that grant a role or permission to a user is quite
straightforward as it is a monotonic action. That is, the set of roles or per-
missions for each user either stays the same or increases. Delegation operations
that transfer a role or permission are rather more difficult. In this section, we
introduce three relations that are used to guarantee that delegation operations
are enforced correctly. The model described in this section can be used for both
grant and transfer delegations. To our knowledge, this is the first treatment of
the consequences of temporary transfer delegation policies for access control in
role-based systems. This is mainly due to the fact that there is much to say on
the subject when grant delegations, but not transfer delegations, are allowed in
role-based models.

4.1 The Delegation History Relation

The delegation history (DH) relation is used to record all delegations that have
been made. The DH relation is used by the delegators and administrative users
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for administrative purposes. Typically, such activities include auditing and re-
voking delegations.

A DH tuple has the form (i, u, v, o, C,M) where i is an identifier, u is a
delegator, v is the delegatee, o is an object or target of the delegation that can
either be a set of roles R′ ⊂ R and/or a set of permissions P ′ ⊆ P , C is the
set of conditions, from the can-receive relation, that must be satisfied by the
delegatee and M is a delegation mask. A delegation mask records various internal
details of a delegation.

A delegation mask M contains five bits which are used to record certain details
of the delegation. More specifically, a delegation mask has the form b4b3b2b1b0,
where bi ∈ {0, 1}, b4 specifies whether the delegated object can be further del-
egated1, b3 specifies whether the delegated object is a role or permission, b2
specifies whether the delegation is static or dynamic, b1 specifies whether the
delegation is strong or weak, and b0 specifies whether the delegation is grant or
transfer. The characteristics of a delegation mask are summarized in Table 1,
and some examples of masks are shown in Table 2 together with the commands
that would give rise to such a mask.

Note that we require the delegator to explicitly set a few values of the bits in
the delegation mask while performing a delegation operation. In particular, we
require that the bits b0, b1 and b2 are set by the delegator, while the bits b3 and
b4 are deduced by the access control enforcement system.

Table 1. Delegation mask bit values

b4 b3 b2 b1 b0

0 undelegatable role static strong grant

1 delegatable permission dynamic weak transfer

4.2 Temporary Delegation Relations

We also introduce two relations tempUA and tempPA, which record temporary
user-role and user-permission assignments that arise from delegation operations.
tempUA contains tuples of the form (i, u, r, s), where s ∈ {−,+} and i identifies
a tuple in the DH relation. The meaning of the tuple (i, v, r,+) is analogous to
(v, r) ∈ UA; such a tuple would arise as a result of a grant or transfer of role
r to the delegatee v. In contrast, a tuple of the form (i, u, r,−) means that u is
prohibited from activating role r; such a tuple only arises when u transfers r to
v. The precise set of roles that are unavailable for the delegator u depends on
the transfer type used for delegation (strong, weak static or weak dynamic).

tempPA contains tuples of the form (i, u, p, s), where s ∈ {−,+} and i iden-
tifies a tuple in the DH relation. The tuple (i, v, p,+) means that v is allowed

1 An extra boolean-valued parameter can be added to each of the delegation com-
mands; this parameter would be used to set this bit.
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Table 2. Examples of valid delegation mask values, their semantics, and associated
commands

Mask Delegation semantics Command

00xx0 undelegatable, role, grant grantR

10x01 delegatable, role, strong, transfer xferRstrong

00011 undelegatable, role, static, weak, transfer xferRstatic

10111 delegatable, role, dynamic, weak, transfer xferRdynamic

11xx0 delegatable, permission, grant grantP

11x01 delegatable, permission, strong, transfer xferPstrong

01111 undelegatable, permission, dynamic, weak, transfer xferPdynamic

11011 delegatable, permission, static, weak, transfer xferPstatic

to use p; such a tuple would arise as a result of a grant or transfer of permission
p to the delegatee v. A tuple of the form (i, u, p,−) means that u is prohibited
from invoking permission p; such a tuple only arises when u transfers p to v.

For simplicity, we write (i, u, R′, s) to denote {(i, u, r′, s) : r′ ∈ R′}. We also
write (i, u,P ′, s) to denote {(i, u, p′, s) : p′ ∈ P ′}. We now describe the effects
on various relations following the successful execution of a delegation operation.
We focus our attention on the more difficult case of RBAC1.

Successful delegation operations are recorded in the delegation history relation
DH . Hence, following any delegation of o by u to v, we have DH ← DH ∪
{(i, u, v, o, C,M)}. In addition we have the following operational semantics:

grantR1(u, v, r): u grants role r to v. Such a delegation requires that the dele-
gatee v is allowed to use role r. Hence, tempUA← tempUA ∪ {(i, v, r,+)}.

grantP1(u, v, p): u grants permission p to the delegatee v. Then, permission
p must be available to the delegatee v. Hence, tempPA ← tempPA ∪
{(i, v, p,+)}.

xferP1(u, v, p): delegator u transfers the authority to use permission p to the
delegatee v. Hence, we add tempPA← tempPA ∪ {(i, v, p,+), (i, u, p,−)}.

xferRstrong(u, v, r): u performs a strong transfer of role r to v. The delegator
u may not use any role in ↓r and the delegatee v acquires the right to use
all roles in ↓r. Hence, tempUA← tempUA∪{(i, v, r,+), (i, u, R′,−)}, where
R′ = ↓r.

xferRstatic(u, v, r): u performs a static weak transfer of role r to v. The del-
egator u may not use a role x ∈ ↓r unless there exists a role r′ such that
(u, r′) ∈ UA and x � r′. Hence, by Proposition 2, tempUA ← tempUA ∪
{(i, v, r,+), (i, u, R′,−)}, where R′ = σ(r, ↓Ru).

xferRdynamic(u, v, r): u performs a dynamic weak transfer of role r to v. The
set of roles available to the delegator u are computed by the roles that
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u activates in a session. Hence, by Proposition 3, tempUA ← tempUA ∪
{(i, v, r,+), (i, u, R′,−)}, where R′ = σ(r, ↓Su).2

4.3 Access Control Decisions

The role-based reference monitor uses the tempUA and tempPA relations, in
addition to the UA and PA relations, to make access control decisions. For
example, an attempt by a user u to activate a role r is always denied if there
exists a tuple (i, u, R′,−) ∈ tempUA such that r ∈ R′; and granted if there exists
a tuple (i, u, r′,+) ∈ tempUA or (u, r′) ∈ UA such that r � r′. Similarly, an
attempt to invoke a permission p by u is always denied if (i, u, p,−) ∈ tempPA;
and granted if (i, u, p,+) ∈ tempPA or there exist r, r′ ∈ R such that (p, r) ∈
PA, (u, r′) ∈ UA and r � r′.

4.4 Revocation

Successful delegations have a specified lifetime or may be revoked before the
delegation ends.3 In either case, the tempUA and tempPA relations must be
updated to prevent any subsequent use of the delegated access right by the
delegatee and, if necessary, to allow the delegator to use the delegated access
right. Essentially, we require that when a delegation d ∈ DH ends or is revoked
the tuples (i, u, R′, s) ∈ tempUA and (i, u,P ′, s) ∈ tempPA are deleted, where
i identifies the obsolete delegation d. We now describe the effects on various
relations when a delegation ends or is revoked.

grantR1(u, v, r): When such a delegation ends, the delegatee v is no longer al-
lowed to use role r. Hence, tempUA← tempUA \ {(i, v, r,+)}.

grantP1(u, v, p): permission p must no longer be available for the delegatee v.
Hence, tempPA← tempPA \ {(i, v, p,+)}.

xferP1(u, v, p): delegatee v must be prevented from using permission p and the
delegator u regains the ability to use the delegated permission p. Hence,
tempPA← tempPA \ {(i, v, p,+), (i, u, p,−)}.

xferRstrong(u, v, r): u performs a strong transfer of role r to v. The delegator
u gets back the right to use any role in ↓r and the delegatee v can no longer
use any role in ↓r. Hence, tempUA ← tempUA \ {(i, v, r,+), (i, u, R′,−)}
where R′ = ↓r.

2 It is important to note that, following a dynamic weak transfer, the roles that are
to be prevented for the delegator u are determined by the roles that are active in
u’s current session. Hence, it is necessary to add appropriate tuples to the tempUA
relation whenever a session is initiated by a user who has performed a weak dynamic
delegation.

3 In a practical implementation, the DH relation would include some information that
would determine the lifetime of the delegation: this information might be a start and
an end time, or a start time and a duration, for example.
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xferRstatic(u, v, r): u performs a static weak transfer of role r to v. Similar
to the above delegation, the delegator u gets back the right to use any
role in ↓r and the delegatee v can no longer use any role in ↓r. Hence,
tempUA← tempUA \ {(i, v, r,+), (i, u, R′,−)} where R′ = σ(r, ↓Ru).

xferRdynamic(u, v, r): u performs a dynamic weak transfer of role r to v. Again,
the delegator u regains the right to use any role in ↓r and the delega-
tee v can no longer use any role in ↓r. Hence, tempUA ← tempUA \
{(i, v, r,+), (i, u, R′,−)} where R′ = σ(r, ↓Su).4

5 Related Work

Several delegation models have been proposed for role-based access control
[3, 7, 8, 9, 10, 11, 12, 13]. The early work of Barka and Sandhu was instrumen-
tal in identifying the important considerations for delegation in RBAC [3]. This
included the concepts of monotonic and non-monotonic delegation, which cor-
respond to our grant and transfer models. To our knowledge, the work that
we present in this paper represents the first attempt to deal properly with the
consequences of temporary non-monotonic delegation in RBAC.5

Of the work in the literature, the RBDM0, RDM2000 and PBDM models are
closest to our work [7, 8, 12, 13]. RBDM0 is a model for delegating roles, and
is based on the RBAC0 model of the RBAC96 family of models [7]. Another
role delegation model for role-based access control is presented in [8]. RDM2000
defines a rule-based framework for delegation and revocation [12]. The model
considers role hierarchies and also provides support for multi-step delegations.
The PBDM model proposes a delegation model for permissions that supports
multi-step delegations [13].

The RDM2000 model uses a relation can delegate ⊆ R × 2R × IN to autho-
rize delegations, IN is the set of natural numbers. If (r, C,n) ∈ can delegate, a
delegator acting in role r may delegate any role r′ � r to a delegatee v provided
v satisfies some role assignment conditions specified by C; n is used to define
the maximum depth of a delegation. A major limitation of this relation is that
no constraints are defined on the tuples in the can delegate relation. That is,
r and C are not required to have any relationship with each other. What this
means is that the delegatee’s power can be arbitrarily increased by a successful
delegation. In practice, a delegatee can be assigned to roles for which they lack
any relevant expertise or experience.

The PBDM model uses a similarly named relation can delegate ⊆ R × R ×
P × IN. If (r, r′,P ′,n) ∈ can delegate then a delegator who is assigned to role r

4 Recall that, following a dynamic weak transfer of a role r, we determine the roles
that are not available for the delegator u, in a session s, by computing σ(r, ↓Su) (see
Proposition 3). Hence, it may also be necessary to delete appropriate tuples from
the tempUA and tempPA relations when the delegator u deactivates a role.

5 Barka distinguishes between temporary and permanent delegation for role-based
delegation models [17]. We believe the latter is more correctly viewed as an ad-
ministrative activity. Barka does not consider temporary non-monotonic delegation
policies (which we call transfer delegation policies).



Delegation in Role-Based Access Control 189

can delegate the set of permissions P ′ to a user who is assigned to a role r′ with
a maximum delegation depth of n. Like the RDM2000 model, the can delegate
relation does not require that there is any relationship between P ′ and r, which
means that it is possible for a delegator u to delegate a permission p that is
not available to u. As we have already noted, these relation-based approaches to
delegation are unlikely to be suitable in environments where the role hierarchy
may change.

Unlike the above discussed models, which use a single relation for controlling
delegations, we use two different relations: can-delegate and can-receive. Ad-
vantages of using different relations for controlling delegations include flexibility,
greater control while specifying delegations, ease of management and is less error
prone. Furthermore, our model for controlling delegations defines constraints on
the can-delegate and can-receive relations. Such constraints ensure that the
tuples that are added to the can-delegate and can-receive relations does not
give the authority for a delegator u to delegate a right that is not available to
u and the rights of a delegatee v can only be incrementally increased and are
limited by v’s existing rights.

Hence, we believe our delegation specification model is more conservative
(and thus safer), more fine-grained and more manageable than these models
[7, 8, 12, 13]. However, in Sect. 3.3, we observed that the use of relations for
controlling delegations may not be efficient for implicitly handling updates to
various RBAC relations. Our model includes an alternative way of controlling
delegations using the concept of administrative scope [14]. The administrative
scope model is dynamic and implicitly handles any updates to RBAC relations,
in particular the role hierarchy relation RH . We have also described the enforce-
ment of both grant and transfer delegations and dealt with revocations.

A delegation model with restricted permission inheritance is proposed in [9].
The model is based on the idea of dividing a role hierarchy into inter-related
role hierarchies. A cascaded role delegation model in the context of decentral-
ized trust management systems is presented in [10]. Another model that supports
delegation of both roles and permissions is discussed in [11]. We believe that our

Table 3. Delegation characteristics in various delegation models

Characteristic RBDM0 RDM2000 PBDM Our model
Role delegation ✓ ✓ ✓ ✓

Permission delegation ✗ ✗ ✓ ✓

Grant delegation ✓ ✓ ✓ ✓

Transfer delegation ✗ ✗ ✗ ✓

Controlling delegations ✓ ✓ ✓ ✓

Implicit updates ✗ ✗ ✗ ✓

Delegation history ✗ ✓ ✗ ✓

Temporary delegation assignments ✓ ✓ ✓ ✓

Revocation ✓ ✓ ✓ ✓
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model can easily be extended to incorporate these concepts. However, none of
the above work considers transfer delegation for role-based systems. Table 3 com-
pares the support provided for key delegation features by well known delegation
models.

6 Conclusions and Future Work

We have developed a comprehensive delegation model for role-based access con-
trol that provides support for both grant and transfer delegation policies. This
is the first attempt in the literature that extensively studies transfer delegations
for role-based access control.

We have discussed two mechanisms for controlling delegations: the relations
approach and the administrative scope approach. In particular, we have shown
that the concept of administrative scope can be used for authorising delegations
and is more effective than relations for delegation in dynamic environments.

We have also presented an enforcement mechanism that supports both grant
and transfer delegation policies. Our enforcement model uses a delegation his-
tory relation DH and temporary delegation relations, tempUA and tempPA,
to guarantee that delegations are enforced correctly. We also discussed various
effects on the above relations following a successful delegation operation and
corresponding revocations.

An immediate priority in future work is to enrich the revocation mechanism
that has been described in this paper. Most importantly, we wish to provide
support for cascaded revocations. That is, if a delegation is revoked and this
delegation had been used to generate other delegations, then the latter dele-
gations must also be revoked. We may also consider revocation of a delegation
when a user is revoked from a role r ∈ C, where C is a delegation condition.
Another future work is to consider supporting revocations such as those dis-
cussed in [18]. Furthermore, we wish to define necessary commands that provide
an option to set the delegatable flag in delegation mask. A long term goal is to
develop abstract Java classes that implement our delegation model.
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Abstract. Nowadays, security solutions are mainly focused on provid-
ing security defences, instead of solving one of the main reasons for se-
curity problems that refers to an appropriate Information Systems (IS)
design. In fact, requirements engineering often neglects enough attention
to security concerns. In this paper it will be presented a case study of
our proposal, called SREP (Security Requirements Engineering Process),
which is a standard-centred process and a reuse-based approach which
deals with the security requirements at the earlier stages of software
development in a systematic and intuitive way by providing a security
resources repository and by integrating the Common Criteria into the
software development lifecycle. In brief, a case study is shown in this pa-
per demonstrating how the security requirements for a security critical
IS can be obtained in a guided and systematic way by applying SREP.

1 Introduction

Present-day information systems are vulnerable to a host of threats. What is
more, with increasing complexity of applications and services, there is a cor-
respondingly greater chance of suffering from breaches in security [20]. In our
contemporary Information Society, depending as it does on a huge number of
software systems which have a critical role, it is absolutely vital that IS are
ensured as being safe right from the very beginning [1, 13].

As we know, the principle which establishes that the building of security into
the early stages of the development process is cost-effective and also brings about
more robust designs is widely-accepted [9]. The biggest problem, however, is that
in the majority of software projects security is dealt with when the system has
already been designed and put into operation. Added to this, the actual security
requirements themselves are often not well understood. This being so, even when
there is an attempt to define security requirements, many developers tend to
describe design solutions in terms of protection mechanisms, instead of making
declarative propositions regarding the level of protection required [4].
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A very important part of the achieving of secure software systems in the soft-
ware development process is that known as Security Requirements Engineering,
which provides techniques, methods and norms for tackling this task in the IS
development cycle. It should involve the use of repeatable and systematic pro-
cedures in an effort to ensure that the set of requirements obtained is complete,
consistent and easy to understand and analyzable by the different actors involved
in the development of the system [10]. A good requirement specification docu-
ment should include both functional requirements and non-functional. As far as
security is concerned, it should be a consideration throughout the whole devel-
opment process, and it ought to be defined in conjunction with the requirements
specification [16].

After having performed a comparative analysis of several relevant proposals
of IS security requirements, as those of Yu 1997 [21], Toval et al. 2001 [19], Popp
et al. 2003 [17], Firesmith 2003 [5], Breu, et al. 2004 [3], etc. in [15], we concluded
that those proposals did not reach the desired level of integration into the devel-
opment of IS, nor are specific enough for a systematic and intuitive treatment
of IS security requirements at the early stages of software development. In addi-
tion, as yet, only few works (such as the article of Massacci et al. [12]) describes
complex case studies which really cope with the complexity required by secu-
rity standards, such as ISO/IEC 17799 [7] and ISO/IEC 15408 [8], compliance.
Therefore, in this paper we briefly present the Security Requirements Engineer-
ing Process (SREP) [14] along with a case study of this proposal, which describes
how to integrate security requirements into the software engineering process in a
systematic and intuitive way. In order to achieve this goal, our approach is based
on the integration of the Common Criteria (CC) [8] into the software lifecycle
model, because the CC helps us deal with the security requirements along all
the IS development lifecycle, together with the reuse of security requirements
which are compatible with the CC Framework subset. In addition this proposal
integrates other approaches such as UMLSec [17], security use cases [5] or misuse
cases [18]. The remainder of this paper is set out as follows: in section 2, we will
describe SREP. We will present the case study of SREP in section 3. Next, in
section 4 it is presented the lessons learned. Lastly, our conclusions will be set
out in section 5.

2 SREP: Security Requirements Engineering Process

To describe our proposal, we will rely on the process description patterns used in
the Unified Process (UP) [2], since it is a use-case and risk driven, architecture-
centric, iterative and incremental development process frame-work that leverages
the Object Management Group’s (OMG) UML and that is compliant with the
OMG’s Software Process Engineering Metamodel (SPEM).

The Security Requirements Engineering Process (SREP) is an asset-based
and risk-driven method for the establishment of security requirements in the
development of secure Information Systems. Basically, this process describes
how to integrate the CC into the software lifecycle model together with the
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Fig. 1. SREP Overview

use of a security resources repository to support reuse of security requirements,
assets, threats and countermeasures. The focus of this methodology seeks to
build security concepts at the early phases of the development lifecycle.

As it is described in Fig. 1, the UP lifecycle is divided into a sequence of phases,
and each phase may include many iterations. Each iteration is like a mini-project
and it may contain all the core workflows (requirements, analysis, design, im-
plementation, and test), but with different emphasis depending on where the
iteration is in the lifecycle. Moreover, the core of SREP is a micro-process, made
up of nine activities which are repeatedly performed at each iteration through-
out the iterative and incremental development, but also with different emphasis
depending on what phase of the lifecycle the iteration is in. Thus, the model
chosen for SREP is iterative and incremental, and the security requirements
and their associated security elements (threats, security objectives, etc.) evolve
along the lifecycle. At the same time, the CC Components are introduced into
the software lifecycle, so that SREP uses different CC Components according
to the phase of the lifecycle and the activity of SREP, although the Software
Quality Assurance (SQA) activities are per-formed along all the phases of the
software development lifecycle, and it is in these SQA activities where the most
of CC Assurance Requirements might be incorporated into.

2.1 The Security Resources Repository

The purpose of development with requirements reuse is to increase their quality:
inconsistency, errors, ambiguity and other problems can be detected and cor-
rected for an improved use in subsequent projects [19]. Thereby, it will guarantee



Applying a Security Requirements Engineering Process 195

Fig. 2. Meta-model for security resources repository

us the fastest possible development cycles based on proven solutions. Therefore,
we propose a Security Resources Repository (SRR), which stores all the security
reusable elements. A meta-model, which is an extension of the meta-model for
repository proposed by Sindre, G., D.G. Firesmith, and A.L. Opdahl [18], show-
ing the organization of the SRR is exposed in Fig. 2. The dark background in
the objects represents our contribution to the meta-model.

As presented in Fig. 2, it is an asset-driven as well as a threat-driven meta-
model, because the requirements can be retrieved via assets or threats. Next, we
will outline the most important and/or complex aspects of the meta-model:

– ’Generic Threat’ and ’Generic Security Requirement’ are described inde-
pendently of particular domains. And they can be represented as different
specifications, thanks to the elements ’Threat Specification’ and ’Security
Requirement Cluster Specification’.

– ’Security Requirement Cluster’ is a set of requirements that work together
in satisfying the same security objective and mitigating the same threat. We
agree with Sindre, G., D.G. Firesmith, and A.L. Opdahl [18] that, in many
cases, it is a bigger and more effective unit of reuse.

– The ’Req-Req’ relationship allows an inclusive or exclusive trace between
requirements. An exclusive trace between requirements means that they are
mutually alternative, as for example that they are in conflict or overlapping.
Whereas, an inclusive trace between requirements means that to satisfy one,
another/other/s is/are needed to be satisfied.

It is known that an important part of the security of an IS can be often
achieved through administrative measures, however the CC does not provide us
with methodological support, nor contain security evaluation criteria pertaining
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to administrative security measures not directly related to the IS security mea-
sures. Therefore, according to ISO/IEC 17799:2005 [7], we propose to include
legal, statutory, regulatory, and contractual requirements that the organization,
its trading partners, contractors, and service providers have to satisfy, and their
socio-cultural environment. After converting these require-ments into software
and system requirements format, these requirements along with the CC security
requirements would be the initial subset of security requirements of the SRR.

3 Case Study

The case study we presented here is a representative case of a security critical IS
in which security requirements have to be correctly treated in order to achieve a
robust IS. It will be analysed the case of an administrative unit of the National
Social Security Institute (of Spain), which has the porpoise of providing citizens
e-government services. Here it will be studied the case of an e-government service
which consists of an application (called Pension-App) that basically allows to
provide information about the pension/s of a concrete citizen. Taking into ac-
count the constraint of space, this case study is unrealistically simple to enable
points of SREP to be easily illustrated in this paper.

PensionApp is an application that allows citizens to obtain an official doc-
ument which reflects the current amount and the status of their pension/s
(whether it is being processed and the stage where it is at the moment of the
request, or whether it has been successfully granted or rejected), it also allows
citizens to update some personal data, such as their address and bank account
number. One of the main design goals was maximum ease of use. Thus, citizens
have online access to PensionApp through the Internet or they can go to an office
of the National Social Security Institute, where a civil servant will provide them
with an official paper document with the information requested about their pen-
sion or he/she will update the personal information of the citizens by interacting
with other application which has been al-ready developed. Thus, a citizen can
only obtain information about his/her own pension and update his/her personal
information whereas a civil servant can get pension information and update per-
sonal information for a specified social security number of a person by interacting
with the IS but through other application different from PensionApp. Thereby,
we assume that initial functional requirements have been elicited and that there
is only two functional requirements:

– Req 1: On request-1 from an EndUser, the system shall display in-formation
about his/her pension. This request shall include the social security number
of the EndUser.

– Req 2: On request-2 from an EndUser, the system shall update the personal
information of the pensioner. This request shall include the social security
number of the EndUser and changed personal data.

In addition we assume that the Organization has already introduced some
elements into the Security Resources Repository (SRR), such as legal, statutory,
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regulatory, and contractual requirements that the organization, its trading part-
ners, contractors, and service providers have to satisfy, and their socio-cultural
environment. After converting these requirements into software and system re-
quirements format, these requirements along with the CC security requirements
will be the initial subset of security requirements of the SRR, which together
with their associated security-elements (security objectives, assets, threats,...)
will be the initial subset of security elements of the SRR.

SREP defines nine activities to be carried out as well as several iterations
through the software development lifecycle, and each iteration will generate in-
ternal or external releases of various artefacts which altogether constitute a base-
line, although in the following subsection of this paper we will only describe one
iteration at the early stages of the software development lifecycle.

3.1 Activity 1: Agree on Definitions

In this activity we have to agree upon a common set of security definitions,
along with the definition of the organizational security policies and the security
vision of the IS. The following is a minute subset of the definitions that should
be agreed.

– Information security: preservation of confidentiality, integrity and availabil-
ity of information; in addition, other properties, such as authenticity, ac-
countability, non-repudiation and reliability can be also involved [ISO/IEC
17799:2005].

– Threat: a potential cause of an unwanted incident, which may result in harm
to a system or organization [ISO/IEC 13335-1:2004] [6].

– Availability: the property of being accessible and usable upon de-mand by
an authorized entity [ISO/IEC 13335-1:2004].

– Confidentiality: the property that information is not made available or dis-
closed to unauthorized individuals, entities, or processes [ISO/IEC 13335-
1:2004].

– Integrity: the property of safeguarding the accuracy and complete-ness of
assets [ISO/IEC 13335-1:2004].

– Asset: anything that has value to the organization [ISO/IEC 13335-1:2004].

Then, the Security Vision Document will be written, in which it will be out-
lined the security vision of the IS. In this case, it will state that the most impor-
tant asset is information, so from the security point of view it is important that
confidentiality, availability and integrity of information, as well as authenticity,
accountability, non-repudiation of the users and services are ensured.

3.2 Activity 2: Identify Vulnerable and/or Critical Assets

We have to perform an examination of functional requirements (Req1) (because
according to CC assurance requirement ADV FSP.3.1D the developer shall pro-
vide a functional specification) and we have realized that there is only one rele-
vant asset type: Information. Other assets would need to be considered in a real
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case study, including tangible assets such as money or products and intangible
assets such as reputation. We can consider different types of Information:

– Personal information about the pensioner: name, social security number,
address.

– Personal information about the pension/s: kind of pension (old-age/disability
(type of disability)/widow’s pension), amount of money, bank account num-
ber.

3.3 Activity 3: Identify Security Objectives and Dependencies

In this activity the SRR can be used, so that if the type of assets identified in
the previous activity are in the SRR we will be able to retrieve their associated
security objectives (SO). Otherwise we will determine the security objectives for
each asset and we will take into account the security policy of the Organization
as well as legal requirements and constraints in Spain and in the National Social
Security Institute. We can identify the following security objectives:

– SO1: Prevent unauthorised disclosure of information. (Confidential-ity). Val-
uation - High.

– SO2: Prevent unauthorised alteration of information. (Integrity). Valuation
- High.

– SO3: Ensure availability of information to the authorised users. Valuation -
Medium.

– SO4: Ensure authenticity of users. Valuation - High.
– SO5: Ensure accountability. Valuation - Medium.

This is not a complete list, it should be refined in subsequent iterations (for
example by establishing probability and dependencies between the security ob-
jectives), but it will be enough for this discussion. These security objectives will
be written down in the Security Objectives Document with the help of the CC
assurance classes (CC class ASE).

3.4 Activity 4: Identify Threats and Develop Artefacts

If the assets identified in the previous activity are in the SRR we will be able
to retrieve their associated threats. Otherwise we will find all threats that can
prevent the security goal from being achieved by instantiating the business use
cases into misuse cases or by instantiating the threat-attack trees associated
with the business and application pattern. In addition, we will analyse prede-
fined threat lists for the type of assets selected and following the CC assurance
requirement AVA VAN.5.2E we will search in public domain sources to identify
potential vulnerabilities in the IS. In Fig. 3 we present an example of misuse
case diagram along with the possible attackers (crackers, thieves, etc.).

Therefore we identify several possible types of threats to Information:

– Generic Threat 1: Unauthorised disclosure of information.
– Generic Threat 2: Unauthorised alteration of information.
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Fig. 3. Security Use Cases and Misuse Cases

– Generic Threat 3: Unauthorised unavailability to information.
– Generic Threat 4: Spoof user.

Then, we will develop the Generic Threats together with the Specific Threats
(which are several paths of these Generic Threats) if there are no threats in the
SRR that match with the previous identified types of threats. So we will present
an example of a specification of a Generic Threat(Generic Threat 2) and a
Specific Threat using misuse cases as a method of specification in Tables 1 and 2.

Finally, with the former information we have achieved in this activity, we will
constitute the first version of the Security Problem Definition Document with
the help of the CC assurance classes (CC class ASE). As it is in this document
where the assumptions are written down, we would like to reflect the fact that
we do not take into consideration, because it is not the main object of this
specific work, possible attacks on the provider and consumer organizations, on
the network infrastructures or on the infrastructure in use, along with other
elements at an organizational level (and not only system-level elements).

3.5 Activity 5: Risk Assessment

Having identified the threats, we shall now go on to determine the probability
of each threat and to assess its impact and risk. In order to carry out this task,
we will use a technique proposed by the guide of techniques of MAGERIT [11]
and which is based on tables to analyse impact and risk of threats.

For the time being we are going to evaluate risk and impact with five possi-
ble values: Very Low, Low, Medium, High and Very High. The likelihood of a
threat could be: Very Frequent (daily event), Frequent (monthly event), Normal
Frequency (once a year), Rarely (once in several years). We have therefore to
produce a table of threats, attacks (misuse cases: MUC) and risks to register the
evaluation of impact and risk regarding the threats we have identified. In Table
3 we will present an example of the analysis of the risk of one threat previously
detailed in the former activity. All of this is captured in the Risk Assessment
Document which will be also refined in subsequence iterations.
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Table 1. Generic Threat Specification using misuse cases (GMUC)

Table 2. Specific Threat specification
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Table 3. Table of Threats, Attacks and Risks

3.6 Activity 6: Elicit Security Requirements

In order to derive security requirements, each security objective is analysed for
possible relevance together with its threats which imply more risk, so that the
suitable security requirements or the suitable cluster of security requirements
that mitigate the threats at the necessary levels with regard to the risk as-
sessment are selected. First of all, we will use domain knowledge to transform
the entities described in the security objectives into entities in the functional
requirement. In this case, it is straightforward, the security objectives refer to
information and we know that it is pension information or pensioner information
in the context of the functional requirements.

Then, we will transform the security objectives (Confidentiality, Integrity,
Availability, Authenticity, Accountability) into constraints on the operations
that are used in functional requirements. Additionally, we will search in the
CC security functional requirements catalogue (which has been previously in-
troduced together with the CC assurance requirements into the SRR) security
requirements which mitigate the threats that can prevent the security objective
from being achieved, therefore in this case, we will search for ensuring the in-
tegrity, availability, authenticity and accountability of PensionApp. Moreover,
we will search in the CC security assurance requirements catalogue to determine
the assurance requirements which ensure the secure development of the IS.

The security requirements (SR) that we identify are the following ones:

– SR1: The security functions of PensionApp shall use cryptography [assign-
ment: cryptographic algorithm and key sizes] to protect confidentiality of
pension information provided by PensionApp to an EndUser. (CC require-
ment FCO CED.1.1)

– SR2: The security functions of PensionApp shall identify and authenticate
an EndUser by using credentials [assignment: challenge-response technique
based on exchange of encrypted random nonces, public key certificate] be-
fore an EndUser can bind to the shell of PensionApp. (CC requirements
FIA UID.2.1 & FIA UAU.1.1)

– SR3: When PensionApp transmits pension or pensioner’s information to
EndUser, the security functions of PensionApp shall provide that user with
the means [assignment: digital signature] to detect [selection: modification,
deletion, insertion, replay, other integrity] anomalies. (CC requirement
FCO IED.1.1)

– SR4: The security functions of PensionApp shall ensure the availability of
the information provided by PensionApp to an EndUser within [assignment:
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a defined availability metric] given the following conditions [assignment: con-
ditions to ensure availability]. (CC requirement FCO AED.1.1)

– SR5: The security functions of PensionApp shall require evidence that Pen-
sionApp has pension information to an EndUser and he/she has received the
information. (CC requirement FCO NRE.1.1)

– SR6: The security functions of PensionApp shall store an audit record of the
following events [selection: the request for pension information, the response
of PensionApp] and each audit record shall record the following information:
date and time of the event, [selection: success, failure] of the event, and
EndUser identity. (CC requirements FAU GEN)

Due to the former security requirements the first functional requirements
(Req1 and Req2) have to be updated, so that they will be as follows:

– Req 1’: On request from an EndUser, the system shall display information
about his/her pension. This request shall include the social se-curity number
of the EndUser and the EndUser’s Credentials.

– Req 2’: On request-2 from an EndUser, the system shall update the personal
information of the pensioner. This request shall include the social security
number of the EndUser and the EndUser’s Credentials and the changed
personal dates.

In Table 4 we will present an example of a Generic Security Requirement
specification using security use cases as a method of specification. Finally, the
Security Requirements Specification Document is written in this activity and it
will be refined in subsequence iterations because we try to avoid unnecessarily
and prematurely architectural/design mechanisms specification.

3.7 Activity 7: Categorize and Prioritize Requirements

According to the impact and the likelihood of the threats, that is according to
the risk, we will rank the security requirements as follows: 1- SR1; 2- SR2; 3-
SR3; 4- SR5 and SR6; 5- SR4.

3.8 Activity 8: Requirements Inspection

In this activity, we will generate the Validation Report, thereby we will review
the quality of the previous work with the help of the CC assurance requirements,
these assurance requirements will result from the determined EAL, which was
agreed with the stakeholders in the first activity, although it could be modified
in subsequent iterations. Supposing we agreed EAL1 (functionally tested) the
assurance components that we will use will be presented in the Table 5.

Then we will write the first version of the Security Requirements Rationale
Document with the help of the CC assurance classes (CC class ASE), show-
ing that if all security requirements are satisfied and all security objectives are
achieved, the security problem defined previously is solved: all the threats are
countered, the organizational security polices are enforced and all assumptions
are upheld.
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Table 4. Generic Security Requirement Specification

Table 5. EAL 1 Common Criteria Assurance classes and components
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3.9 Activity 9: Repository Improvement

We will store in the SRR the new elements, in this case in this iteration the
Generic and Specific Threats and Requirements which were developed in the
activities 4 and 6 will be stored. After all, we will write the Security Target doc-
ument of the CC. This activity will be performed coinciding with the milestone
at the end of each phase of the UP.

4 Lessons Learned

Among the most important lessons learned we may stand out from the case
study presented above we can highlight the following ones:

– The application of this case study has allowed us to improve and refine the
following activities of SREP: identification of security objectives, identifica-
tion of threats and elicitation of requirements.

– Tool support is critical for the practical application of this process in large-
scale software systems due to the number of handled artefacts and the several
iterations that have to be carried out.

– As it is an iterative and incremental security requirements engineering pro-
cess, we have realized that this philosophy lets us take into account changing
requirements, facilitates reuse and correct errors over several iterations, risks
are discovered and mitigated earlier, and the process itself can be improved
and refined along the way.

– Regarding to the experience with the Common Criteria, we have realized
that it is sometimes difficult to find the right meaning of the CC require-
ments, it would be easier if the CC provides examples for each security
requirement. However the CC provide us with an important help in order
to treat security requirements in a systematic way, in spite of the fact that
CC requirements have complex dependencies and the CC does not provide
us with any method/guide to include them into the software development
process, so that a modification in one document often leads to modify several
other documents.

5 Conclusions

In our present so-called Information Society the development of more and more
sophisticated approaches to ensuring the security of information is becoming a
need. In this paper we demonstrate how the security requirements for a security
critical IS can be obtained in a guided and systematic way by applying SREP.
Starting from the concept of iterative software construction, we propose a mi-
croprocess for the security requirements analysis, made up of nine activities,
which are repeatedly performed at each iteration throughout the iterative and
incremental development, but with different emphasis depending on where the
iteration is in the lifecycle. Therefore the contribution of this work is that of
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providing a standard-based process that deals with the security requirements
at the early stages of software development in a systematic and intuitive way,
which is based on the reuse of security requirements, by providing a Security Re-
sources Repository (SRR), together with the integration of the Common Criteria
(ISO/IEC 15408) into software development lifecycle. Moreover, it also conforms
to ISO/IEC 17799:2005 with regard to security requirements (sections: 0.3, 0.4,
0.6 and 12.1). Hence, it is a very helpful process for security critical Information
Systems. Further work is also needed to provide a CARE (Computer-Aided Re-
quirements Engineering) tool which supports the process, as well as a refinement
of the theoretical approach by proving it with more real case studies in order to
complete and detail more SREP.
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Abstract. The immaturity of current intrusion detection techniques
limits the traditional security systems in surviving malicious attacks.
Intrusion tolerance approaches have emerged to overcome these limita-
tions. Before intrusion tolerance is accepted as an approach to security,
there must be quantitative methods to measure its survivability. How-
ever, there are very few attempts to do quantitative, model-based eval-
uation of the survivability of intrusion tolerant systems, especially in
database field. In this paper, we focus on modeling the behaviors of an
intrusion tolerant database system in the presence of attacks. Quantita-
tive measures are proposed to characterize the capability of a resilient
database system surviving intrusions. An Intrusion Tolerant DataBase
system (ITDB) is studied as an example. Our experimental results vali-
date the models we proposed. Survivability evaluation is also conducted
to study the impact of attack intensity and various system deficiencies
on the survivability.

1 Introduction

Although intrusion tolerance techniques, which gain impressive attention re-
cently, are claimed to be able to enhance the system survivability, survivability
evaluation models are largely overlooked in the previous research. Quantifying
survivability metrics of computer systems is needed and important to meet the
user requirements and compare different intrusion tolerant architectures. Efforts
aimed at survivability evaluation have been based on classic reliability or avail-
ability models.

The work described in this paper is motivated by the limitations of using the
evaluation criteria for availability to evaluate survivability. The evaluation cri-
teria for system availability are quantified by availability modeling, which has a
fairly matured literature as summarized in [1]. However, the availability model
cannot be used to quantify the survivability of a security system. Besides the
differences between security and fault tolerance, a fundamental reason is because
the availability model assumes the “fail-stop” semantics, but the “attack-stop”
semantics probably can never be assumed in trustworthy data processing sys-
tems, not only because of the substantial detection latency, but also because of
the needs for degraded services.

D. Gollmann, J. Meier, and A. Sabelfeld (Eds.): ESORICS 2006, LNCS 4189, pp. 207–224, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The goal of this paper is taking the first step to develop a survivability eval-
uation model that can systematically address the inherent limitations of classic
availability evaluation models in measuring survivability. The approach we pro-
posed is using a state transition graph to model an intrusion tolerant database
system. We attempt to model the system in a modular way, so that it can be
easily adapted to a wide variety of intrusion tolerant database systems. Quanti-
tative measures are proposed to characterize the capability of a resilient database
system surviving intrusions. Furthermore, we are interested in understanding the
impact of existing system deficiencies and attack behaviors on the survivability.
In this paper, we take the first step to do detailed, quantitative evaluation of the
survivability of intrusion tolerant database systems and the impact of system
deficiencies and attack behaviors on it.

In particular, the main contributions of this paper are four-fold:

1. We extend the classic availability model to a new survivability (evaluation)
model. Comprehensive state transition approaches are applied to study the
complex relationships among states and their transition structures encoding
sequential response of intrusion tolerant database systems facing attacks.

2. Novel quantitative survivability evaluation metrics are proposed by us. Mean
Time to Attack (MTTA), Mean Time to Detection (MTTD), Mean Time to
Marking (MTTM), and Mean Time to Repair (MTTR) are proposed as basic
measures of survivability. We find that there is a natural mapping between
the MTTA-MTTD-MTTM-MTTR model and the steady state probabili-
ties of the system in state transition modeling. This mapping not only pro-
vides valuable insights on why the MTTA-MTTD-MTTM-MTTR model can
measure survivability, but also provides a convenient way to use mathemat-
ical analysis to quantify survivability. Based on the MTTA-MTTD-MTTM-
MTTR model, this survivability measuring methodology is no longer ad hoc.

3. To validate the survivability models we proposed, a representative intrusion
tolerant database system, ITDB [2], is studied as an empirical example. A
real testbed is established to conduct comprehensive validation experiments
running TPC-C benchmark transactions. Experimental results show the va-
lidity of the survivability models we proposed.

4. To further evaluate the security of ITDB, we have done an empirical surviv-
ability evaluation, where maximum-likelihood methods are applied to esti-
mate the values of the parameters used in our state transition models. The
impacts of existing system deficiencies and attack behaviors on the surviv-
ability are then studied using quantitative measures we defined.

The rest of the paper is organized as follows. In Section 2, we give an overview
of the ITDB framework. In Section 3, a series of state transition models are
proposed. In Section 4, quantitative measures of database system survivability
are proposed. The experiments are conducted in Section 5 to validate the models
we established. Survivability evaluation results are reported in Section 6. In
Section 7, we discuss the related work. We conclude our paper in Section 8.
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2 ITDB: An Motivating Example

ITDB is motivated by the following practical goal: “after the database is dam-
aged, automatically locate the damaged part, contain and repair it as soon as
possible, so that the database can continue being useful in the face of attacks or
intrusions”. The major components of ITDB are shown in Figure 1. Note that
in [3], a comprehensive ITDB system has been proposed. In this paper, we only
focus on important components of ITDB, namely the damage containment and
recovery subsystems. In the rest of this section, we give a brief overview of the
functions of major ITDB components.

Confinement Executor

Database 
Server

Transaction Logs

Transaction Proxy

Intrusion Detector

Damage Assessor

Damage Repairer

Unconfinement  Executor

Damage Recovery System

Damage Containment System

Traditional Database System

Mediator

User Transsactions

Fig. 1. Basic ITDB System Architecture

The Mediator subsystem functions as a “proxy” for each user transaction and
transaction processing call to the database system. Through this proxy, ITDB
is able to keep useful information about user transactions, such as information
about transactions’ read and write operations, which is important to generate
the corresponding logs for damage recovery and containment. This part is the
foundation of the whole ITDB system. All other subsystems of ITDB rely on
this part.

Traditional damage containment approaches are one-phase. An item o will
not be contained until it is identified as damaged. However, significant dam-
age assessment latency can cause the damage on o spreading to many other data
items before o is contained. To overcome this limitation, ITDB uses a novel tech-
nique called multi-phase damage containment as an alternative. This approach
has one containing phase, which instantly contains the damage that might have
been caused by an intrusion as soon as the intrusion is identified, and one or more
later on uncontaining phases, denoted containment relaxation, to uncontain the
items that are mistakenly contained during the containing phase.

The damage recovery subsystem has the responsibility to perform accurate
damage assessment and repair. To do this job, first, the damage recovery subsys-
tem retrieves reportedmalicious transactionmessages from the intrusion detection
subsystem. ITDB then traces damage spreading by capturing the dependent-upon
relationship among transactions. ITDB repairs the damage caused by Ti using a
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special cleaning transaction which restores each contaminated data item to its lat-
est undamaged version.

The intrusion detection subsystem has the responsibility to detect and report
malicious transactions to the damage containment and recovery subsystems. It
uses the trails kept in the logs and some relevant rules to identify malicious
transactions.

3 Modeling Intrusion Tolerant Database Systems

To analyze and evaluate the survivability of an intrusion tolerant database sys-
tem, a quantitative evaluation model is required. A variety of modeling tech-
niques can be applied in the research of survivability study. Deterministic models
are quite limited in the stochastic behavior. State transition models are much
more comprehensive. All possible system states can be captured by state tran-
sition models. In this section, we apply state transition models to explore the
complex relationships and transition structure of an intrusion tolerant database
system.

3.1 Basic State Transition Model

Figure 2 shows the basic state transition model of an intrusion tolerant database
system. Traditional computer security leads to the design of systems that rely on
prevention to attacks. If the strategies for prevention fail, the system is brought
from good state G into the infected state I during the penetration and explo-
ration phases of an attack. If the attack is detected successfully, intrusion toler-
ance system picks up where attack prevention leaves off. The system enters the
containment state M . In this state, all suspicious data items are contained. After
marking all the damage made by the attack, undamaged items are released and
the system enters to the recovery state R. The repair process will compensate all
the damage and the system returns to the good state G. The four phases which
are attack penetration, error detection, attack containment, damage assessment
and error recovery, describe the basic phenomena that each intrusion tolerant
system will encounter. These can and should be the basic requirement for the
design and implementation of an intrusion tolerant database system.

Parameters in Figure 2 are: 1/λa is the mean time to attacks (MTTA), the
expected time for the system to be corrupted; 1/λd is the mean time to detect
(MTTD), the expected time for the intrusion to be detected; 1/λm is the mean
time to mark (MTTM), the expect time for the system to mark “dirty” data

G RMI
mda

r

Fig. 2. Basic State Transition Model
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items; 1/λr is the mean time to repair (MTTR), the expect time for the system
to repair damaged data items.

3.2 Intrusion Detection System Model

As an important part of an intrusion tolerant system, the Intrusion Detection
System (IDS) is largely ignored in intrusion tolerant system modeling. [4] as-
sumes that the IDS can report intrusion without delay or false alarm. Some
works only consider part of IDS parameters, like true positive [5]. In this part,
we will integrate a comprehensive model of IDS into the whole system.

False alarm rate and detection probability are widely used to evaluate the
performance of an IDS in either networking [6] or database field [7]. Detection
latency, so called detection time in [8], is another metrics to evaluate an IDS.
We define detection latency as the duration that elapses from the time when an
attack compromises a database system successfully to the time when the IDS
identifies the intrusion. All these three metrics are included in our model.

Let Ta and Tfa, respectively, denote the times to intrusion and the time to
the failure of the IDS. If the IDS fails before the intrusion, then a false alarm is
said to have occurred. Let A denote the time to intrusion occurrence. Clearly,

A = min{TA, Tfa} (1)

We assume that Ta and Tfa are mutually independent and exponentially dis-
tributed with parameter λa and α, respectively. Then, clearly, A is exponentially
distributed with parameter λa + α.

After the intrusion, it takes a finite time Td (detection latency) to detect the
intrusion. We assume that the time to identify one successful intrusion is expo-
nentially distribution with parameter λd. For the imperfect detection, we assume
that all attacks will be identified by the database administrator eventually. We
use state MD and MR to represent the undetected state and manual repair state
respectively. We assume that the detection probability of an IDS to identify a
successful intrusion is d. The transition probability that the system transfers
from state I to state MD is (1 − d). We assume that the time to manually
identify a successful intrusion is exponentially distribution with parameter λmd

and the time to manually repair infected data items is exponentially distribution
with parameter λmr. The state transition model considering the deficiencies of
the IDS is presented in Figure 3.

G MI
d da+

m
r

MDMR

(1-d) d

md

mr

R

Fig. 3. State Transition Model with IDS
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3.3 Damage Propagation and Repair Model

The damage keeps propagating the effect of the intrusion during the detection
phase. The purpose of the IDS is to reduce its detection latency. Although dam-
age spreading is a normal phenomenon, little work puts effort on studying the
effect of damage propagation on the survivability in their intrusion tolerant sys-
tem models. In this part, we want to take the first step to study the effect of
detection delay on damage propagation, which may affect damage assessment
and repair correspondingly.

Let Tdi denotes the time between the infection of (i− 1)th and ith data item.
Obviously,

Td =
k∑

i=1

Tdi (2)

where k is the number of infected data items during the detection latency. Let’s
assume that Tdi is exponentially distributed with parameter λdi and

FDi(t) = 1− e−λdit (3)

As soon as the intrusion is identified, the containing phase instantly contains
the damage that might have been caused by an intrusion. At the same time, the
damage assessment process begins to scan the contained data items and locate
the infected ones. We assume that the time to scan one infected data item is
exponentially distributed with parameter λm.

After all infected data items are identified via the damage assessment process,
the repair system begins to compensate the damage caused by the intrusion. We
assume the time to repair one infected data item is exponentially distributed
with parameter λr

Let (I : k) denote the infect state with k infected data items in the database,
and (M : k) denote the mark state with k infected data need to be located.
Figure 4 shows the comprehensive state transition model of ITDB.
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Fig. 4. Comprehensive State Transition Model
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4 Survivability Evaluation

Evaluation criteria in trustworthy data processing systems are often referred to
as survivability or trustworthiness. Survivability refers to the capability of a sys-
tem to complete its mission, in a timely manner, even if significant portions are
compromised by attacks or accidents [9]. However, in the context of different
types of systems and applications, it can mean many things. This brings a dif-
ficulty in the measurement and interpretation of survivability. For a database
system, survivability is the quantified ability of a system or subsystem to main-
tain the integrity and availability of essential data, information, and services.
Also a survivable database system should maintain the performance of essential
services facing attacks. In this section, based on the models we established in
Section 3, quantitative metrics are proposed to facilitate evaluating the surviv-
ability of intrusion tolerant database systems from several aspects.

4.1 State Transition Model Analysis

Let {X(t), t ≥ 0} be a homogeneous finite state Continuous Time Markov
Chain (CTMC) with state space S and generator matrix Q = [qij ]. Let Pi(t) =
P{X(t) = i, i ∈ S} denote the unconditional probability that the CTMC will
be in state i at time t, and the row vector P(t) = [P1,P2, · · · ,Pn] represent the
transient state probability vector of the CTMC. The transient behavior of the
CTMC can be described by the Kolmogorov differential equation:

dP(t)
dt

= P(t)Q (4)

where P(0) represents the initial probability vector (at time t = 0).
In addition, cumulative probabilities are sometimes of interest. Let L(t) =∫ t

0 P (u)du; then, Li = (t) represents the expected total time the CTMC spends
in state i during the interval [0, t). L(t) satisfies the differential equation:

dL(t)
dt

= L(t)Q + P(0) (5)

where L(0) = 0.
The steady-state probability vector π = limt→∞P(t) satisfies:

πQ = 0,
∑
i∈S

πi = 1 (6)

By solving the equations 4, 5 and 6, we can get some important survivable
metrics of an intrusion tolerant database system.

4.2 Survivability Evaluation Metrics

In our model, survivability is quantified in terms of integrity and availability.
According to survivability, we define integrity in a way different from integrity
constraints. In this paper, we define integrity as follow:
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Definition 1: Integrity is defined as a fraction of time that all accessible data
items in the database are clean.

High integrity means that the intrusion tolerant database system can serve
the user with good or clean data at a high probability. Obviously, all data items
are clean and accessible in state G. When attacks occur, some data items will
be affected. So in state I, part of accessible data items are “dirty”. After the
intrusion is identified, the ITDB can contain the all damaged data until it finish
the repair process. Since the ITDB does selective containment and repair, the
database system is still available, and accessible data items are clean during the
containment, damage assessment, and repair process.

Consider the model in Figure 2, state space S = {G, I,M, R}. The generator
matrix Q for the basic state transition model in Section 3.1 is:

Q =

⎡⎢⎢⎣
−λa λa 0 0

0 −λd λd 0
0 0 −λm λm

λr 0 0 −λr

⎤⎥⎥⎦ (7)

By solving the equations 5 and 6, we can get:

πG =
1/λa

1/λa + 1/λd + 1/λm + 1/λr
=

MTTA

MTTA+ MTTD + MTTM + MTTR

πI =
1/λd

1/λa + 1/λd + 1/λm + 1/λr
=

MTTD

MTTA+ MTTD + MTTM + MTTR

πM =
1/λm

1/λa + 1/λd + 1/λm + 1/λr
=

MTTM

MTTA+ MTTD + MTTM + MTTR

πR =
1/λr

1/λa + 1/λd + 1/λm + 1/λr
=

MTTR

MTTA+ MTTD + MTTM + MTTR

From Definition 1, we can get the integrity for the basic state transition model
in Section 3.1:

I = πG + πM + πR =
MTTA+ MTTM + MTTR

MTTA+ MTTD + MTTM + MTTR
(8)

Similarly, we can get the integrity for the comprehensive state transition model
we proposed in Section 3.3:

I = πG +
k∑

i=1

πMi +
k∑

i=1

πRi (9)

Availability [1] is defined as a fraction of time that the system is providing
service to its users. Since the ITDB does on-the-fly repair and will not stop its
service facing attacks, its availability is nearly 100%, which can not show the
performance of ITDB clearly. To better evaluate the survivability of ITDB, we
define another type of availability, Rewarding-availability:
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Definition 2: Rewarding-availability (RA) is defined as a fraction of time
that the all clean data items are accessible.

If the clean data can not be accessed, it is a loss of service to users. Rewarding-
availability means that the system not only can serve its users, but also do not
deny the request for the clean data. ITDB will release the all contained clean
data items after damage assessment. For the basic state transition model in
Section 3.1, the Rewarding-availability is:

RA = πG + πR =
MTTA+ MTTR

MTTA+ MTTD + MTTM + MTTR
(10)

The Rewarding-availability for the comprehensive state transition model in
Section 3.3 is:

RA = πG +
k∑

i=1

πRi (11)

5 Empirical Validation

The models we proposed in the above section need to be validated. In this
section, we compare the prediction of our model with a set of measured ITDB
behaviors facing attacks. For our test bed, we use Oracle 9i Server to be the
underlying DBMS. The TPC-C benchmark [10] is in general DBMS independent,
thus the transaction application can be easily adapted to tolerate the intrusions
on a database managed by almost every “off-the-shelf” relational DBMS such as
Microsoft SQL Server, Informix, and Sybase.

5.1 Parameters Setting and Estimation

In the models we proposed, some parameters can be controlled by us. In our
experiments, the behaviors of attackers, human interaction and the properties
of IDS can be controlled by us. So we will set the value of attack hitting rate λa,
false alarm rate α, detection probability d, detection rate λd, manual repair rate
λmr and manual detection rate λmd. We will also vary their value to investigate
the impact of them on system survivability.

Assume we generate n attack events and k data items are damaged by the
attacks. Let assume the total attack time is An, the total detect time is Dk, the
total manual detection time is MDn, and the total manual repair time is MRn.
The transition rates are:

λa =
n

An
, λd =

k

Dk
, λmd =

(1− d)k
MDn

, λmr =
(1− d)k
MRn

(12)

Some parameters in our model are the characters of ITDB, which are not
controlled by us. In this section, we will use the method of maximum-likelihood
to produce estimators of these parameters. Assume we observed k scan events



216 H. Wang and P. Liu

Table 1. Parameter Setting and Estimation

Parameters Value
Attack Hitting Rate, λa 0.5(Low); 1(Moderate); 5(Heavy)
Detect Rate, λd 10(Slow); 15(Medium); 20(Fast)
Mark Rate, λm 27
Repair Rate, λr 22
Manual Detection Rate, λmd 0.02
Manual Repair Rate, λmr 0.02
False Alarm Rate, α 10%; 20%; 50%
Detection Probability, d 80%; 90%; 99%

and repair events, the total mark time is Mk, and the total repair time is Rk.
The maximum-likelihood estimators of λm, λr are

Λ̃M =
k

Mk
, Λ̃R =

k

Rk
(13)

Table 1 shows the values of parameter setting and estimation of our experi-
ments.

5.2 Validation

The steady state probability of occupying a particular state computed from
the model was compared to the estimated probability from the observed data.
The steady state probabilities for the Markov model are computed by using
Equation 6. The measured data are estimated as the ratio of the length of time
the system was in that state to the total length of the period of observation. The
results are shown in Table 2.

Table 2. Comparison of state occupancy probabilities. (λa = 0.5, λd = 10, α = 10%,
d = 90%).

State Observed Value Value from Model Difference (%)
G 71.64 72.15 0.7169
I 3.96 3.72 6.4516
M 2.64 2.45 7.7551
R 1.98 1.89 4.7619
U 0.55 0.57 3.5088
M 4.4 4.09 7.5795

It can be seen that the computed values from the model and the actual ob-
served values match quite closely. This validates the model building methodology,
and so the Markov model can be taken to model the real system reasonably well.
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6 Results

In this section, we use ITDB [2] as an example to study intrusion tolerant
database systems’ survivability metrics we proposed in section 4. Instead of
evaluating the performance of a specified system, we focus on the impact of dif-
ferent system deficiencies on the survivability in the face of attack. Experiments
run using different system settings and workloads. The analysis presented here
is designed to compare the impact of different parameters of intrusion detection
subsystems, such as False Alarm Rate, Detection Latency; and different work-
load parameters, such as Attack Rates on the relative survivability metrics of
ITDB.

6.1 Impact of Attack Intensity

The attack rate can challenge the survivability of an intrusion tolerant system.
As an intrusion tolerant system, a key problem is whether ITDB can handle
different attack intensity. To answer this question, in this part, we will study the
impact of attack rate on survivability of ITDB.

We compare the steady state probabilities of different system configuration of
ITDB under different attack rates. In Figure 5(a), an example of a good system,
which has a good IDS and fast damage assessment and repair system, is shown.
As can be seen, the heavy attacks have little impact on the survivability of
ITDB. The damage assessment and repair subsystems can locate and mask the
intrusion quickly. As a result, the steady state probabilities of state I, R, and
M are very slow. The integrity and rewarding-availability remain at a high level
(> 0.8). The only impact of high attack rate is that the probability of ITDB
staying at state I is increased. This does not hurt the survivability of ITDB.

An example of a bad system is shown in Figure 5(b). The high attack rate
increases the work load for damage marking and repairing subsystems. As a
result, steady state probabilities of state R (πR > 0.3) and state M go up
quickly. This keeps ITDB busy on analyzing and masking the heavy attacks.
However, the system integrity is not impacted by the attacks significantly. The
reason is that the ITDB applies the damage containment strategy. This enables
the ITDB having the capability to provide clean information to users even facing
heavy attacks.

6.2 Impact of False Alarms

False alarm is a key factor to evaluate the performance of an IDS. ITDB adopts
the behavior-based intrusion detection techniques. The high false alarm rate is
often cited as the main drawback of behavior-based detection techniques since
the entire scope of the behavior of an information system may not be cov-
ered during the learning phase. High false alarm rate may bring extra workload
to the recovery subsystem and waste some system resources. Will ITDB tolerant
the relatively high false alarm rates? To answer this question, we will evaluate
the impact of false alarms on the steady state of ITDB in this part.
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Fig. 5. Impact of Attack Intensity
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(a) Light Attack (λa = 1, λd =
15, d = 90%)
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λd = 15, d = 90%)

Fig. 6. Impact of False Alarm Rate

Figure 6(a) shows the variation of steady state probabilities when ITDB is un-
der light attacks (λa = 1). ITDB maintains the integrity (> 0.85) and rewarding-
availability (> 0.6) at a high level, even though facing a nearly 100% false alarm
rate. This indicates that the system can tolerate a high false alarm rate under
light attacks. Also the steady state probabilities of state I,M, R are at a very low
level (< 0.1). This indicates that the system can contain, locate, and repair the
attacks efficiently and quickly. Another case that ITDB is under heavy attacks
(λa = 5) is shown in Figure 6(b). As can be seen, high false alarm brings pressure
on ITDB. The steady state probability of state I, πD, is higher than the proba-
bility state G, πG, when false alarm rate is higher than 60%. The heavy attacks
and extra load brought by false alarms increase the steady state probabilities of
state I, M , and R. These mean that ITDB spends much more time on state I and
keeps busy on analyzing and repairing the damage. The rewarding-availability
decreases as the damage containment and assessment process becomes longer.
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At the same time, the system still can maintain the integrity (> 0.85) at a high
level. This means that the probability that the system can provide clean data to
some users is high.

6.3 Impact of Detection Probability

Detection probability is another important feature to measure the performance
of an intrusion detector. In this section, we will study the impact of detection
probabilities on the survivability under different attack intensity.

Figure 7(a) shows that ITDB is under light attack (λa = 1). When detection
rate is 0%, the system totally depends on manual detection. Since the manual
detection requires human intervention, it takes a relatively long time to detect
the intrusion manually. As a result, ITDB has a high probability (> 0.4) stay-
ing at state MD and a low probability staying at state G when d = 0. The
integrity and rewarding-availability are also at a low level (≈ 0.5). The steady
state probability of state MD goes back to 0 when the detection probability is
100%. The steady state probabilities of state M and R go up while the detection
probability is increasing. This indicates that, with more attacks are identified
by the IDS, the system will spend more time on damage assessment and recov-
ery. Since the manual repair is much slower than the repair subsystem of ITDB,
the rewarding-availability and integrity go up while the detection probability
is increasing. When ITDB faces a heavy attack as shown in Figure 7(b), low
detection rate hurts the performance of ITDB. The steady state probability of
state G, πG is lower than 0.5.

Compared with the false alarms, the impact of detection probability on the
survivability of an intrusion tolerant database system is severer. The variance of
integrity and rewarding-availability is less than 0.2 when the detection probabil-
ity changes from 0% to 100%, while the variance is nearly 0.4 when changing false
alarm rate from 0% to 100%. One reason is that the high false alarms will bring
extra load to the security system to contain and repair unaffected data items,
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Fig. 7. Impact of Detection Rate
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while low detection probability will bring more work for the administrator to
mark and repair the damage manually. If the system can identify and recover
the damage faster than manual operation, the impact of low detection probabil-
ity is severer and more dangerous to the survivability. This result encourages us
to consider more on improving the detection probability for the future intrusion
tolerant system development.

6.4 Transient Behaviors

Much of the theory developed for solving Markov chain models is devoted to
obtaining steady state measures, that is, measures for which the observation
interval is “sufficiently large” (t → ∞). These measures are indeed approxima-
tions of the behavior of the system for a infinite, but long, time interval, where
long means with respect to the interval of time between occurrences of events
in the system. However, in some cases the steady state measures are not good
approximations for the measures during a relatively “short” period of time.

Before reaching the steady state, the system will go through a transient period.
If the damage containment and recovery systems are not efficient enough, the
system may never reach steady states, or take a very long time. The cumulative
time distribution of contain and repair states will be dominant. Even through
the steady state probability of good state is high, obviously we can not satisfy
the system’s performance. The limitation of steady state measures motivates us
to observe the transient behaviors of different intrusion tolerant systems in this
part. Figure 8 and 9 show the comparison results. We start the system from
state G, which means PG(0) = 1.

A better system’s behaviors are shown in Figure 8. We assume that a better
intrusion tolerant system has a good IDS, which can detect intrusion quickly and
have a high detection rate and a low false alarm rate. Damage assessment and
repair systems can locate and mask the intrusion quickly. As can be seen in Fig-
ure 8(a), a better system reaches steady state quickly. The probability of staying
at state G is high, while the probabilities of staying at another states, like state
I, R, and M , are very low. From Figure 8(b), we can also find that the cumula-
tive time distribution of staying at state G is dominant, which means the system
will spend most of time at good state. Since the damage assessment and repair
system can accomplish their tasks quickly, the cumulative time distribution of
state I, R, and M are low.

In Figure 9, we give an example of a poor system, which has a slow assessment
and repair system. Compared with Figure 8, we can find that it takes a longer
time for the system to reach steady states. The cumulative time of state G is
not dominant. The system spends more time on damage assessment and repair.

7 Related Works

Despite that intrusion tolerance techniques, which gain impressive attention re-
cently, are claimed to be able to enhance the system survivability, suitable and
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Fig. 8. Transient Behaviors of a good system
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Fig. 9. Transient Behaviors of a poor system

precise measures to evaluate the survivability of an intrusion tolerant system
are largely missed in the previous research. Most of the research in the litera-
ture report and discuss the survivable capability of their work from a qualitative
point of view. Little research has proposed the quantitative evaluation metrics
of survivability.

In [9] and [11], formal definitions of survivability are presented and compared
with related concepts of reliability, availability, and dependability. [11] defined
the survivability from several aspects and claimed that the big difference between
reliability and survivability is that degraded services of survivable systems are
acceptable to users, reliability assumes that the system is either available or
not. However, the quantitative measurements of survivability and the level of
degraded services are missing in that study.

The attacks and the response of an intrusion tolerant system are modeled
as a random process in [5]. Stochastic modeling techniques are used to capture
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the attacker behavior as well as the system’s response to a security intrusion.
Quantitative security attributes of the system are proposed in the paper. Steady-
state behaviors are used to analyze the security characterization. A security
measure called the mean time (or effort) to security failure is proposed. However,
“good guestimate” values of model parameters were used in their experiments.
And the validation of their models is missing in their work.

Efforts for quantitative validation of security have usually been based on for-
mal methods [12]. [13] shows that probabilistic validation through stochastic
modeling is an attractive mechanism for evaluating intrusion tolerance. The
authors use stochastic activity networks to quantitatively validate an intrusion-
tolerant replication management system. Several measures defined on the model
were proposed to study the survivability provided by the intrusion tolerant sys-
tem. The impacts of system parameters variations are studied in that work.

Although several survivability models and corresponding measurements were
proposed in the literature, they are limited in evaluating the security attribu-
tions of an intrusion tolerant database system. Zhang and Liu [14] take the first
step towards delivering database services with information assurance guaran-
tees. In particular, (a) the authors introduce the concept of Quality of Integrity
Assurance(QoIA) services; (b) a data integrity model, which allows customers or
applications to quantitatively specify their integrity requirements on the services
that they want the database system to deliver, is proposed; and (c) the authors
present an algorithm that can enable a database system to deliver a set of QoIA
services without violating the integrity requirements specified by the customers
on the set of services.

An online attack recovery system for work flow is proposed in [4]. The behav-
iors of the recovery system are analyzed based on a Continuous Time Markov
Chain model. Both steady-state and transient behaviors are studied in that pa-
per. Only ‘NORMAL’, ‘SCAN’, and ‘RECOVERY’ three categories of states
are considered in the model. The deficiency of intrusion detection and damage
propagation are not considered in that model.

In [15], we have done detailed, quantitative evaluation on the impact of in-
trusion detection deficiencies on the performance and survivability by running
TPC-C benchmark. However, only some ad hoc survivability metrics were used.
Systematic survivability model and measurements were not proposed in [15].

8 Conclusion

In this paper, we extend the classic availability model to a new survivability
model. Comprehensive state transition approaches are applied to study the com-
plex relationships among states and their transition structure encoding sequen-
tial response of intrusion tolerant database systems facing attacks. Mean Time
to Attack (MTTA), Mean Time to Detection (MTTD), Mean Time to Marking
(MTTM), and Mean Time to Repair (MTTR) are proposed as basic measures
of survivability. Quantitative metrics integrity and rewarding-availability are de-
fined to evaluate the survivability of intrusion tolerant database systems.
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A real intrusion tolerant database system is established to conduct compre-
hensive experiments running TPC-C benchmark transactions to validate the
state transition models we established. Experimental results show the validity of
proposed survivability models. To further evaluate the security of ITDB, we have
done an empirical survivability evaluation, where maximum-likelihood methods
are applied to estimate the values of the parameters used in our state transition
models. The impacts of existing system deficiencies and attack behaviors on the
survivability are studied using quantitative measures we defined. Our evaluation
results indicate that (1) ITDB can provide essential database services in the
presence of attacks, and (2) maintain the desired essential survivability proper-
ties without being seriously affected by various system deficiencies and different
attack intensity.
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Abstract. Based on a system model consisting of processes describing the ma-
chine, the honest users and the adversary, this paper introduces an abstract frame-
work of refinement relations preserving existential confidentiality properties for
nondeterministic, probabilistic systems. It allows a refinement step to trade func-
tionality between the machine and its environment, thus shifting the concep-
tual boundary between machine and environment. A refinement also permits the
realization to extend the observational means of an adversary. A confidentiality-
preserving refinement relation is defined in terms of another, more basic rela-
tion that considers deterministic probabilistic processes. An instantiation with an
entropy-based confidentiality property illustrates the use of this framework. The
relationship to other concepts of secure refinement, in particular to reactive sim-
ulatability, is discussed.

1 Introduction

The paradigm of system and software development by stepwise refinement is a long
standing one. Although rarely practiced rigorously, it provides the formal semantical
justification for modern techniques such as behavioral subtyping for object-oriented
inheritance [15], design by contract [21], and model-driven development. In its rigorous
form, it has been applied, among others, in safety-critical applications [4].

The general idea of stepwise refinement is to first capture the essential requirements
on a system in a concise model, the initial specification, that abstracts from all unnec-
essary detail and leaves room for subsequent design decisions. In a refinement step,
two models, the (abstract) specification and the (concrete) realization are related by a
preorder on models, the refinement relation. Compared to the specification, the refine-
ment relation may admit to reduce nondeterminism, change the types of data, or replace
atomic actions by sequences of “more primitive” actions. This process terminates with
a completely refined model, the implementation, which is supposed to be easily trans-
formable to a conventional program. A refinement relation should preserve the essential
properties of the specification, be a preorder, and be compositional, which means that
replacing a sub-specification by a realization in the context of a model yields a realiza-
tion of that model, i.e., contexts are monotonic functions with respect to the refinement
preorder.

Starting with [11], there is a vast body of research (e.g., [1, 7, 13]) investigating re-
finement relations that preserve functional properties such as deadlock freedom or the
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observational behavior of an abstract data type. The preservation theorems for those
refinement relations are universal in the following sense: they guarantee that any real-
ization refining a given specification has the same (suitably rephrased) properties as the
specification.

Considering the development of secure systems, confidentiality poses particular
problems. It is well-known that refinement relations which allow one to reduce nondeter-
minism [12] do not preserve confidentiality properties, such as possibilistic information
flow properties, of nondeterministic specifications. Roscoe [24] called this the refinement
paradox. Several approaches to deal with this deficiency of classical refinement relations
have been proposed. Roscoe et al. [26] avoid the problem by requiring the adversary’s
view of the system to be deterministic. Similarly, Jürjens [14] distinguishes specifica-
tion nondeterminism from implementation nondeterminism, and disallows specification
nondeterminism whenever it influences the validity of a security property. Mantel [18]
shows how refinement operators tailored for specific information flow properties can
modify an intended realization such that the resulting realization preserves the given flow
property. Ryan and Schneider [27] discuss the effects of nondeterminism on information
flow properties in depth. They conceptually distinguish High nondeterminism and sys-
tem nondeterminism to show where nondeterminism may influence information flow.
That distinction somehow reflects the distinction between nondeterminism for speci-
fication purposes and the kind of nondeterminism induced by probabilistic choices at
run-time.

Contributions. In the present paper, we take a different view to the problem. Accept-
ing that the particular way of resolving nondeterminism influences the confidentiality
properties of the resulting realization, we investigate refinement relations that preserve
the existence if a secure implementation: they keep invariant the existence of a deter-
ministic realization of the given model that satisfies a given confidentiality property.

We consider a system model including the machine1 to be built as well as its envi-
ronment. The environment consists of a model of the honest users and a model of the
adversary. This allows one to model systems whose security depends on assumptions
of user and adversary behavior, i.e., to make these assumptions explicit. This system
model is an extension of the one we proposed before [10, 29]. It has some similarity
with the one proposed by Backes et. al [3], which we discuss in Section 7.

Our models may use three kinds of choice: External choice, nondeterministic choice,
and probabilistic choice. Jürjens’ implementation nondeterminism basically is an ab-
straction of probabilistic choice. We consider it important to explicitly model the prob-
abilistic behavior of systems because confidentiality is inherently probabilistic: a sys-
tem keeps confidential which one of alternative system behaviors that produce the same
observations for an adversary not by just producing the same observations, but their
relative probabilities also must be approximately equal. Otherwise the adversary’s risk
of making a false guess would be (unacceptably) low. The underlying assumption of
possibilistic models is that the (unknown) stochastic behavior of the system is such
that it produces a sufficiently high risk for the adversary of guessing wrong. To include

1 Following Jackson [32], we call the “system to be implemented” machine in order to distin-
guish it from the system comprising the machine and its environment.
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probabilities in the analysis, however, does not mean that one needs to exactly know the
stochastic behavior of the system: Realistic assumptions together with a robustness of
the confidentiality properties that allows for a range of probabilities without destroying
security are sufficient.

(Specification) nondeterminism, on the other hand, is important for abstract models,
in which specifiers cannot or do not want to prematurely choose between alternative be-
havior. Furthermore, certain modeling operators in general introduce nondeterminism.

We propose an abstract notion of confidentiality preserving refinement. It builds
on behavior refinement, which allows a realization to reduce nondeterminism and to
change the data types of input / output data. The realization may also provide additional
means for the adversary to observe the machine. The refinement relation is parame-
terized by another preorder, the information flow refinement order, which ensures the
existential preservation of a given confidentiality property.

Since the data space and the means of observation may change, the preservation
property refers to a point of reference describing the model to which the confidential-
ity property directly refers. In a sequence of refinement steps, the initial specification
usually is the point of reference.

The system model and the refinement framework allow for different environments
in the specification and the realization. Thus, trading of functionality between the envi-
ronment and the machine can be accomplished in a refinement step.

The initial specification will usually be concise and the machine model may even be
deterministic. Data refinements or trading can then produce nondeterminism in more
detailed models, which will be resolved by implementation choices in subsequent re-
finement steps.

Finally, we instantiate the framework with a confidentiality property based on the en-
tropy of classes of indistinguishable behavior, and with an information flow refinement
order defined in terms of mutual information.

Overview. Section 2 sketches probabilistic CSP, the process calculus on which our
framework is based. Section 3 introduces our general system model, consisting of pro-
cesses describing the machine and its environment, as well as the adversary capabili-
ties of observing the system. The structure of confidentiality properties is the topic of
Section 4, and Section 5 presents the main result of this paper: the abstract definition
of confidentiality-preserving refinement and the corresponding preservation theorem.
Section 6 instantiates that framework for a specific confidentiality property. The reader
may wish to browse this section first to aid understanding the abstract discussions in
Sections 3 through 5. Section 7 discusses related work, before the conclusion gives
some pointers to ongoing and future research.

2 Probabilistic Communicating Sequential Processes

To formally model the systems we reason about, we use the probabilistic extension
PCSP of the process algebra CSP [25] which Morgan et al. [22] have proposed. We
use PCSP because it integrates probabilistic choice with nondeterministic and external
choice, and its semantics, in particular the semantics of probabilistic choice, is centered
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around the concept of refinement. This supports well our investigation of the relation-
ship of refinement and confidentiality.

CSP. A process P produces sequences of events, called traces. An event c.d consists
of a channel name c and a data item d. Two processes can synchronize on a channel
c by transmitting the same data d over c. If one process generates an event c.d and
the other generates an event c.x, where x is a variable, both processes exchange data
when synchronizing on channel c: the value of x becomes d. The set of traces of P is
traces(P). The length of a trace t is #t.

The process e → P first generates event e, and behaves like P afterwards. The pro-
cess P |[ X ]|Q is a parallel composition of P and Q synchronized on the channels in X:
if P or Q generate events on channels not in X, then those events appear in an arbitrary
order; if a process generates an event on a channel in X, it waits until the other process
also generates an event on the same channel; if the data transmitted by both processes
are equal (or can be made equal because an event contains a variable), then the par-
allel composition generates that event, otherwise the parallel composition deadlocks.
The composition P ‖�X Q asynchronously transmits data from P to Q and synchronizes
the processes on the remaining channels, such that the behavior of Q on X cannot in-
fluence P. The definition of P ‖�X Q involves a buffering process that collects events
from P on X and forwards them to Q while blocking any flow of events from Q to
P through X.

Although not uniformly definable in terms of the standard CSP operators, P ‖�X Q
can be constructed for any given P, Q, and X.

In the notion of refinement we use, we are interested in changing data representations
of the communicated data (I/O refinement), because many effects compromising confi-
dentiality can be described by distinguishing data representations in an implementation
that represent the same abstract data item (e.g., different representations of the same
natural number). For a relation R on data, the process2 P[[R]]D is the process P where
each data item a in events of P is replaced by a data item b that is in relation with a, i.e.,
a R b holds.

The process P \ X is distinguished from P by hiding the channels in X ⊆ αP, where
αP is the set of channels used by P. The traces of P \ X are the traces of P where all
events over channels in X are removed. The external choice P � Q is the process that
behaves like either P or Q, depending on the event that the environment offers. For a
family of processes P(x), the process�P(x) nondeterministically behaves like one of
the P(x). The process P � Q nondeterministically behaves like P or like Q.

There are several refinement relations for standard CSP. Most commonly, one uses
the failures/divergences refinement. Informally, the process Q refines the process P,
written P � Q, if Q is more deterministic and less diverging than P. For details, see
[25].

For n ∈ N, the finite approximation P ↓ n of P behaves like P for the first n events
and diverges afterwards. Any process P is characterized by its finite approximations. It

2 The subscript D indicates that this variant of relational renaming does not change the channel
names but only the communicated data.
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is their least upper bound with respect to the refinement order: P =
⊔

n : N • P ↓ n. A
process F that diverges after n events is called a finite process.

The cone P↑ of a process P is the set of all refinements of P, P↑= {Q : CSP | P �
Q}.

Probabilistic CSP. Morgan et al. [22] extend standard CSP by a probabilistic choice
operator: The process P p⊕Q behaves like P with a probability of p, and it behaves like
Q with a probability of 1−p. This view of probabilistic processes does not appeal to the
intuition that a process chooses particular behavior (a trace or a failure) probabilistically.
It rather emphasizes that a probabilistic process behaves like a standard process with a
certain probability. Although it may seem unfamiliar at first sight, this view leads to a
smooth integration of probabilistic choice with the other operators of CSP, in particular
with nondeterministic choice.

The semantics of PCSP relies on continuous evaluations over a Scott topology of the
inductive partial ordering (CSP,�). We can only present the essential concepts relevant
to our work here. See [22] for further detail.

The set of probabilistic processes PCSP is the set of continuous evaluations mapping
“Scott-open” sets of standard processes to [0, 1] over the failure-divergences model of
CSP under the refinement order, (CSP,�). Let P and Q be probabilistic processes in
PCSP. The process Q refines P iff for all Scott-open Y ⊆ CSP: P(Y) ≤ Q(Y). Since
standard processes can be embedded in PCSP and the refinement orders coincide, we
write P � Q for PCSP refinement, too.

For a finite standard process F and a probabilistic process P, we write F �˜ P for the
probability that P is a member of F↑. If P � Q then it also holds for all finite F ∈ CSP
that F �˜ P ≤ F �˜ Q.

For processes P, Q in PCSP, and p ∈ [0, 1], the probabilistic choice of P and Q is
defined for all Scott-open subsets Y of CSP:

(P p⊕ Q)(Y) = p · P(Y) + (1− p) · Q(Y)

Because the cone of a finite process is Scott-open, the following relationship between
the probability of refining a finite process and probabilistic choice holds. For P, Q in
PCSP, finite F in CSP and probability p,

F �˜ P p⊕ Q = p · (F �˜ P) + (1− p) · (F �˜ Q)

Furthermore, any non-recursive probabilistic process can be expressed as a prob-
abilistic choice of finitely many standard processes, because probabilistic choice dis-
tributes through all (embedded) operators of CSP.

Finally, we remark that nondeterministic choice generalizes probabilistic choice (for
any probability p) and external choice in PCSP, whereas probabilistic choice and exter-
nal choice are not related by refinement.

P � Q �
{

P p⊕ Q

P � Q

The indexed probabilistic choice
⊕P

i:I Pi canonically generalizes the binary operator
for finite index sets I: this process chooses i – and thus Pi – with probability P(i).
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Fig. 1. A system consists of a machine and its environment

Probabilistic Linear Processes. We consider probabilistic confidentiality properties
that refer to the probability of a process QE performing a trace t, i.e., the process QE
is considered a random variable on traces. This is possible only if QE is deterministic,
does not admit external choice, and if the length of the considered traces of QE is
bounded by some natural number k. The latter is necessary to distinguish a trace t from
a prefix s of t if QE may block after s. Then s and t refer to different probabilistic events.

To resolve nondeterministic and external choices, we consider the set P of all max-
imal refinements of P. The members Q of P are probabilistic deterministic, i.e., they
are free of nondeterminism, but they still admit external choices. The latter are resolved
by means of an environment process E that probabilistically resolves external choices
of Q and thus serves as a scheduler [30, 6]. We call a process E achieving this in the
k-approximation of the composition Q ‖�W E an admissible environment. Admissibility
is characterized by the fact that (Q ‖�W E) ↓ k is probabilistic linear, i.e., there is a
probability function PE such that

(Q ‖�W E) ↓ k =
⊕PE

t∈traces(Q)↓k Fink(t)

where Fink(t) is the process producing the first k events of t and diverging afterwards.
If the length of t is less than k then Fink(t) deadlocks after t.

The environment process E is admissible for an arbitrary process P if it is admissible
for all Q ∈ P. For QE = (Q ‖�W E) ↓ k the probability PE(t) is Fink(t) �˜ QE.
Therefore, we define

Prk
QE(t) = (Fink(t) �˜ QE)

This is the probability of QE producing exactly the first min{k,#t} events of t.

3 System Model

A system consists of three PCSP processes, as shown in Figure 1: the machine P, the
(honest) user environment H, and the adversary environment A. The machine synchro-
nizes with the adversary via the channels in the (functional) adversary interface AI.
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Additionally, the adversary can observe the machine on the channels in the monitoring
interface MI, and it can interact with the honest users on the environment interface EI.
The sets of channels AI, EI, and MI partition the channels of A. An adversary model
(P,A,H,HI,AI,MI,EI, k) additionally determines a bound k on the length of system
traces that are to be considered. The union of the adversary interfaces W = AI∪EI∪MI
is the adversary window. By convention, we use W (with suitable indexes) to denote ad-
versary windows.

The set EEI,MI
P,k (H,A) comprises all deterministic admissible environment processes.

EEI,MI
P,k (H,A) = {Hd |[ EI ]|Ad | Hd ∈ H ∧ Ad ∈ A

∧ Hd |[ EI ]|Ad admissible for P,W, k}

To make assertions about the probabilistic behavior of an adversary model means
to consider the probabilistic linear processes (Q ‖�MI E) ↓ k where Q ∈ P and E ∈
EEI,MI

P,k (H,A). Those processes refine the system in its environment, and we call them
the variants of the adversary model:

P ‖�MI (H |[ EI ]|A) � Q ‖�MI E

An adversary model captures a model of the machine to be built together with as-
sumptions on the behavior of the honest users and an adversary. The interfaces AI and
EI allow the adversary to actively influence the machine and the honest users (permit-
ting active attacks on the users). The user environment can also allow an adversary to
compromise users during a system run.

The bound k not only reflects a technical necessity but also a realistic assumption:
Associating time units with system events, it restricts the time an adversary can spend
on attacks. It is a parameter of the concepts we introduce in the following.

It is possible to strengthen these concepts, requiring them to hold for all k and using
an inductive argument to establish the required properties. However, we will restrict the
presentation and consider a fixed k only.

4 Confidentiality Properties

This section discusses a common abstraction of the confidentiality properties of adver-
sary models. In particular, it motivates the existential nature of those properties.

Basic Confidentiality Properties. The concept of indistinguishable traces is the foun-
dation for defining confidentiality properties of adversary models. Given a set of chan-
nels W, two traces s, t ∈ traces(P) of a process P are indistinguishable by W (denoted
s ≡W t) if their projections to W are equal:

s ≡W t ⇔ s � W = t � W

where s � W is the projection of s to the sequence of events on W.
Indistinguishability induces a partition on the trace set of a process. We are partic-

ularly interested in the traces up to the length of k. The set JP,k
W (o) contains the traces
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of P with a length of at most k that produce the observation o on W. The set Obsk
W(P)

comprises all observations P produces with traces that are no longer than k.

JP,k
W (o) = {t : traces(P) | t � W = o ∧ #t � k}

Obsk
W(P) = {t � W | t ∈ traces(P) ∧ #t � k}

The traces that are indistinguishable by an adversary window W are the ones that an
adversary cannot obviously distinguish. Given an observation o, the adversary does not
know which member of JP,k

W (o) caused the observation (unless that set is a singleton).
In earlier work [28], we have discussed several confidentiality properties based on

indistinguishability. Possibilistic confidentiality properties, such as the various informa-
tion flow properties that Mantel [19] analyzes, basically require at least one alternative
indistinguishable behavior to exist for any given one, according to the system design.
They neither distinguish systems with respect to the number of alternative behaviors,
nor with respect to the degree of evidence (in any suitable measure) an adversary might
assign to the alternative behaviors in question. We are primarily interested in proba-
bilistic confidentiality properties. These define the “degree of evidence” of alternative
behaviors based on the probabilistic behavior of the system in a given environment.
Therefore, we focus on predicates CP(QE,W, k) depending on a probabilistic linear
process QE (a realization of the machine process in an admissible environment), an
adversary window W and the length bound k. We call such a property a basic confiden-
tiality property.

We do not further characterize basic confidentiality properties here. Section 6 dis-
cusses an example. In the following discussion of the structure of confidentiality prop-
erties, a predicate CP(QE,W, k) serves as a placeholder.

Structure of Confidentiality Properties. It is not obvious for an adversary model
(P,A,H,HI,AI,MI,EI, k) which refinements QE of a given machine P in an admissible
environment E ∈ EEI,MI

P,k (H,A) must satisfy CP(QE,W, k) for the adversary model to
satisfy a confidentiality property based on CP(QE,W, k).

As already indicated in Section 1, the refinement paradox motivates the existential
nature of confidentiality properties.

Since it has become known that possibilistic information flow properties are closure
properties [19, 20], the observation that refinement does not preserve confidentiality in
general is not so surprising anymore: refinement reduces nondeterminism and thus di-
minishes the set of traces, which is the definition of trace refinement. A closure property
requires that, given a member of a set, certain other items are also members of that set.
Therefore, a trace refinement, in general, does not preserve closure properties.

These considerations show that we cannot expect all refinements QE of a system
in its environment to satisfy a given basic confidentiality property CP(QE,W, k) with
respect to the adversary window W and the trace bound k, unless we can exclude “spec-
ification nondeterminism” in P. However, this is hardly possible in the current theory of
probabilistic (and standard) CSP for two reasons. A technical reason is that hiding and
data renaming almost inevitably introduce nondeterminism. Methodologically, the non-
deterministic choice of CSP has an interpretation as “execution time nondeterminism”,
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because it is demonic and must be considered to be resolved “after” all probabilistic and
external choices. On the other hand, it is refined by probabilistic and external choice,
as well. Thus, the definition of CSP refinement clearly considers nondeterminism as a
means of postponing implementation decisions. From a methodological point of view,
it is also necessary to allow P to contain “specification nondeterminism”, because P
actually is a specification and, as such, must provide ways of abstracting from design
decisions including decisions on how the system chooses alternative behavior.

The environment, in contrast to the machine process, must be considered with all
variations that the adversary model permits. Analyzing a system for security with re-
spect to a single admissible realization H0 |[ EI ]|A0 of the user and adversary envi-
ronment would yield a quite weak result. Instead, all E ∈ EEI,MI

P,k (H,A) need to be
considered for evaluating the security of a system.

This argument shows that, although we inevitably need to consider an environment
process E describing user and adversary behavior to obtain a probabilistic analysis of
security properties of a system, we must not restrict the analysis to one particular such
process but we must carry out that analysis for all members of EEI,MI

P,k (H,A). In partic-
ular, this allows an analysis to consider arbitrary adversary. Taking the chaotic process
Chaos as the adversary environment models the most liberal assumption about the ad-
versary behavior, because Chaos is refined by any other process.

We conclude that an adversary model satisfies a confidentiality property that is de-
fined in terms of a basic confidentiality property CP if there is a probabilistic linear
realization of the machine process that satisfies CP in all admissible environments.
Therefore, a confidentiality property has the general form:

∃Q : P • ∀E : EEI,MI
P,k (H,A) • let QE = (Q ‖�MI E) ↓ k • CP(QE,W, k)

This definition avoids the refinement paradox, because it explicitly states that not
necessarily all functionally correct realizations are supposed to be secure but that at
least one realization needs to exist that is. It also avoids the misconception that a system
will be secure in any working environment but makes the admissible working conditions
and the constraints on the behavior of adversaries explicit.

Remark 1. Other “non-functional” requirements have a similar “existential” nature: To
be adequate for a system with real-time performance requirements, for example, a
model must admit a performing implementation, but not all functionally correct im-
plementations of the model necessarily satisfy the real-time constraints.

5 Confidentiality Preserving Refinement

This section discusses a definition of refinement of adversary models that preserves a
given confidentiality property. The refinement relation allows the realization to be more
deterministic, to change the communicated data, to shift the responsibility to realize be-
havior from the environment to the machine, and to extend the adversary window, thus
providing the adversary with new means of observation. The motivation3 to consider

3 Refer to [10] for a more detailed motivation.
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these variation points lies in the fact that moving from an initial specification to an im-
plementation, the concepts the adversary models need to consider necessarily include
more detailed descriptions of the processed data and also more intricate ways of the
adversary to observe the system. Furthermore, the interpretation of an adversary model
differs depending on its role in a refinement: as a specification, an adversary model
reflects what an adversary is allowed to observe (and to do); as a realization, an adver-
sary model describes what an adversary can observe (or do). Therefore, the refinement
relation needs to ensure that an adversary’s abilities do not exceed his permissions:
if the specification satisfies a confidentiality property then the realization must satisfy
a similar confidentiality property that is “re-abstracted” to the data model of the first
confidentiality property.

In the following, we first introduce behavior refinement. Then, we define a re-
abstraction preorder on the variants of the specification and the realization adversary
models. The definition of confidentiality preserving refinement (CPR) refers to another
preorder, the information flow refinement order: CPR holds if the re-abstraction and the
information flow refinement preorders coincide on the adversary models in question.

Behavior Refinement. Allowing the refining process to communicate different data
than the refined process, behavior refinement generalizes PCSP refinement. Of course,
the change of data must not be completely arbitrary but there must be a relation between
the concrete and the abstract data that is compatible to PCSP refinement. A retrieve
relation R maps the data of the concrete process Q to the data of the abstract process P,
i.e., it is total on the data of Q and its range is in the data of P.

A retrieve relation R abstracts away the additional detail of the concrete data to “re-
trieve” the abstract data that the concrete data implements. The following definition of
behavior refinement uses a retrieve relation to abstract the data of the refining process
before comparing that “data abstracted” process to the refined process with PCSP re-
finement. With data renaming, we have a CSP operator at hand to perform the data
abstraction.

Definition 1 (Behavior Refinement). Let P and Q be probabilistic processes. Let R be
a retrieve relation from Q to P. Then Q behaviorally refines P via R (written P �R Q),
if P � Q[[R]]D.

Behavior refinement allows Q to resolve nondeterminism in P (as usual either by ex-
ternal or by probabilistic choice). Additionally, it offers new implementation freedom
for Q if R maps several data items ci,ki of Q to the same abstract data item ai of P. In
particular, if P offers a probabilistic choice between several e1.ai and e2.aj, then the
refinement condition P � Q[[R]]D requires Q to produce e1.ci,ki and e2.cj,kj for some ki

and kj with the same distribution as P, but it does not prescribe the choice of the ki and
kj, which Q may choose nondeterministically.

Extending behavior refinement to adversary models, there are two points to clarify:
first, how can the relationship between system process and environment change in a
refinement; and second, how do the adversary windows relate?

The following Definition 2 allows a refinement to change the “responsibility” of
the machine and its environment to establish certain behavior. It relates the abstract
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and concrete machines in their respective environments. It does not require that the
concrete machine as such refines the abstract one (and the environment processes relate
similarly).

A central objective of our investigation on confidentiality preserving refinement is
to clarify the conditions under which the adversary’s observational power may change
securely under refinement. Definition 2 allows the refining adversary model to extend
the adversary window, i.e., it requires Wa ⊆ Wc. The additional channels in Wc give
the adversary means of observing the system that are not present in the abstract ad-
versary model. The behavior refinement does not relate those means of observation to
the abstract model, which the definition reflects by hiding Wc − Wa. Thus it allows
the adversary to make arbitrary additional observations. In the rest of this section, we
addresses the question whether those additional observations affect the security of the
system.

Definition 2 (Behavior Refinement of Adversary Models). Let two adversary mod-
els with identical bound k be given: A = (Pa,Aa,Ha,HIa,AIa,MIa,EIa, k) and C =
(Pc,Ac,Hc,HIc,AIc,MIc,EIc, k). The realization C behaviorally refines the specifica-
tion A via the retrieve relation Rca (written A �Rca C) if Wa ⊆ Wc and

Pa ‖�MIa
(Ha |[ EIa ]|Aa) �Rca (Pc ‖�MIc

(Hc |[ EIc ]|Ac)) \ (Wc −Wa)

To refine a specification to an implementation in a stepwise fashion, any refinement
relation must be a preorder, i.e., be reflexive and transitive for an appropriate choice of
retrieve relations. Behavior refinement inherits these properties from PCSP refinement,
i.e., A �id A and A �Rba B ∧ B �Rcb C ⇒ A �Rcb

o
9Rba C hold.

Re-Abstraction. Basic confidentiality properties refer to the variants of adversary
models, and CPR must place conditions on the “matching” variants of the specifica-
tion and the realization in order to ensure preservation of the property. Re-abstraction
relates the variants of the specification to the “data abstracted” variants of the realiza-
tion. By definition, variants are probabilistic linear (before diverging after k events).
This means that a variant of the specification cannot be refined further (up to k). Data
renaming a variant of the realization, however, may introduce nondeterminism. There-
fore, there may be several “matching” variants of the specification for a given variant
of the realization. These are exactly the ones that the re-abstraction selects.

Definition 3 (Re-Abstracted Refinement). Let Rca be a retrieve relation from the data
of QEc to the data of QEa. Let Wa and Wc be sets of channels of QEa and QEc, re-
spectively, such that Wa ⊆ Wc. Then the re-abstracted refinement of (QEc,Wc) by
(QEa,Wa), denoted (QEc,Wc) +↖Rca

(QEa,Wa), is defined by

(QEa,Wa) +↖Rca
(QEc,Wc)⇔ QEc \ (Wc −Wa)[[Rca]]D � QEa

Similar to behavior refinement, re-abstraction is a preorder.

Information Flow Refinement. A behavioral refinement possibly refines the data
which the processes communicate, and it may also change the adversary window. A
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basic confidentiality property CP refers to the data and the adversary window of the
abstract model. To determine whether a refined adversary model satisfies the same con-
fidentiality property, it is in general necessary to relate the concrete data and adversary
window back to the abstract ones, to which CP originally refers. In a sequence of re-
finement steps, one usually wishes to relate back to the confidentiality property of the
initial specification.

To capture this formally, we say that a refined basic confidentiality property
CPr(QE,W,Wr,Rr, k) refers to a point of reference consisting of an adversary win-
dow Wr and a retrieve relation Rr. A refined basic confidentiality property induces a
simple one by the following equivalence:

CP(QE,W, k)⇔ CPr(QE,W,W, id, k)

Re-abstraction relates the “matching” variants of the specification and the realiza-
tion adversary models. The following concept of information flow refinement serves
as an abstraction of the relationship that the matching variants must satisfy in order to
preserve a given confidentiality property.

Definition 4 (Information Flow Refinement). Let CPr be a refined confidentiality
property. A preorder (QEa,Wa) 	k

Rca
(QEc,Wc) on pairs of probabilistic linear pro-

cesses and adversary windows is called an information flow refinement relation for CPr

with the point of reference (Wr,Rr) if it strengthens the re-abstraction preorder and it
is sufficient to preserve CPr, i.e., for all adversary modelsA = (Pa,AIa,Wa, k,Ha,Aa)
and C = (Pc,AIc,Wc, k,Hc,Ac) such that the domain of Rr comprises the data space of
A, andA �Rca C holds, the following is satisfied:

∀Qa : P
a ; Qc : P

c ; Ea : EEIa,MIa
Pa,k

(Ha,Aa); Ec : EEIc,MIc
Pc,k

(Hc,Ac) •
let QEa = Qa ‖�MIa

Ea; QEc = Qc ‖�MIc
Ec •

( (QEa,Wa) 	k
Rca

(QEc,Wc) ⇒ (QEa,Wa) +↖Rca
(QEc,Wc) )

∧ ( (QEa,Wa) 	k
Rca

(QEc,Wc) ∧ CPr(QEa,Wa,Wr,Rr, k)
⇒ CPr(QEc,Wc,Wr,Rca

o
9 Rr, k) )

By definition, an information flow refinement relation is a subset of the re-abstraction
relation. Usually, it makes sense only for variants that are related by re-abstraction.
In the following, we will see that the crucial condition for confidentiality-preserving
refinement requires that the reverse implication is true and the two preorders coincide
on the variants of the adversary models in question.

CPR. Under which condition is a behavioral refinement of adversary models a confi-
dentiality-preserving one? Due to the existential nature of confidentiality properties, it
is not necessarily the case that a behavioral refinement admits a secure refinement at
all. The realization might exclude all possible secure refinements even though the spec-
ification satisfies the confidentiality property, i.e., there is a variant of the specification
satisfying the desired basic confidentiality property. The behavior refinement can only
preserve confidentiality if there is a secure variant Q̂Ea of the specification that (PCSP-)
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refines the re-abstracted realization. If this is the case, then we need to know that the
re-abstracted variants of the realization matching Q̂Ea are secure, too. Confidentiality-
preserving refinement guarantees the latter.

Definition 5 (Confidentiality-Preserving Refinement, CPR). Let 	 be an informa-
tion flow refinement relation. The adversary model C is a confidentiality-preserving
refinement (CPR) of the adversary model A for 	 via the retrieve relation Rca (writ-
ten A ��

Rca
C) if A �Rca C and the re-abstracted refinement of variants of A and C is

sufficient for their information flow refinement:

∀Qa : P
a ; Qc : P

c ; Ea : EEIa,MIa
Pa,k

(Ha,Aa); Ec : EEIc,MIc
Pc,k

(Hc,Ac) •
let QEa = Qa ‖�MIa

Ea; QEc = Qc ‖�MIc
Ec •

(QEa,Wa) +↖Rca
(QEc,Wc) ⇒ (QEa,Wa) 	k

Rca
(QEc,Wc)

In conjunction with the first implication in Definition 4, the definition of CPR implies
that (givenA �Rca C) A ��

Rca
C is equivalent to the identity of information flow refine-

ment and re-abstraction on the variants ofA and C.
The following lemma establishes that CPR is a well-behaved refinement relation.

Lemma 1 (CPR is a Preorder). For all adversary models A, B, and C, CPR satisfies
A ��

id A andA ��
Rba
B ∧ B ��

Rcb
C ⇒ A ��

Rcb
o
9Rba

C.

Proposition 1 states the most important property of CPR, namely that it does indeed
preserve confidentiality properties (with an appropriately adjusted point of reference).
As indicated before, CPR cannot be expected to allow “secure” refinements only but
it can establish that a behavior refinement whose re-abstraction admits an “abstractly
secure” PCSP refinement preserves that security over data refinement and extension of
adversary windows.

Proposition 1 (CPR preserves CPr). Let CPr be a refined basic confidentiality prop-
erty with point of reference (Wr,Rar). Let 	 be an information flow refinement property

for CPr. If A ��
Rca
C then the following implication holds:(

∃Qa : P
a • ∀Ea : EEIa,MIa

Pa,k
(Ha,Aa) •

((Pc ‖�MIc
(Hc |[ EIc ]|Ac)) \ (Wc −Wa))[[Rca]]D � Qa ‖�MIa

Ea

∧ CPr(Qa ‖�MIa
Ea,Wa,Wr,Rar, k)

)
⇒(

∃Qc : P
c • ∀Ec : EEIc,MIc

Pc,k
(Hc,Ac) • CPr(Qc ‖�MIc

Ec,Wc,Wr,Rca
o
9 Rar, k)

)
Remark 2. Carefully analyzing the constellation of the quantifiers in Proposition 1 sug-
gests that the definition of information flow refinement might be too strong. For confi-
dentiality preservation, it suffices indeed to require alternating universal and existential
quantifiers like ∀Qa ∃Qc ∀Ec ∃Ea • . . . in Definition 4. Unfortunately, the resulting
definition of CPR is not transitive, because the required witnesses for the variant of the
intermediate adversary model need not match.



238 T. Santen

6 Probabilistic Confidentiality: Ensured Entropy

This section serves to illustrate an instantiation of the framework discussed in the pre-
ceeding sections. It presents the probabilistic confidentiality property of ensured en-
tropy [28]. Space limitations4 do not permit to show the definitions in full detail or
discuss the use of this property by way of an application example.

As mentioned in Section 4, classes JP,k
W (o) of indistinguishable traces are our starting

point for defining confidentiality properties. Each variant of an adversary model induces
a system of indistinguishability classes. Turning this fact into a requirement, one can
propose a maskM that is a system of sets of traces such that the traces in each M ∈M
are indistinguishable. A variant QE (possibilistically) secures a mask M if its set I of
indistinguishability classes coversM, written I 
M:

I 
 M⇔ ∀M : M; I : I • M ∩ I = ∅ ∨ M ⊆ I

If I 
 M, the variant QE can produce all members of each M ∈M. Upon observing
o at W, an adversary cannot conclude which member of M ⊆ JQE,k

W (o) caused that
observation.

Ensured entropy extends this idea and requires that the indistinguishability classes
of QE not only coverM but also that their entropy5 (given the respective observation)
exeeds a lower bound associated to the members ofM. As the entropy is a measure of
uncertainty, this requirement puts a lower bound on the adversary’s effort to infer the
trace that caused an observation from that observation. Ensured entropy is weaker than,
e.g., probabilistic noninterference [9] because it does not strictly prevent information
flow from the machine to the adversary.

Given a mask M and a mapping H : M→ R+, the corresponding basic confiden-
tiality property CPM(QE,W, k) is defined by

CPM(QE,W, k) ⇔ {o : ObsW(QE) • JQE,k
W (o)} 
 (M↓ k)

∧ ∀M :M • ∀ o : ObsW(QE) | M ⊆ JQE,k
W (o) • H(M)≤Hk

W(QE|o)

where Hk
W(QE|o) is the entropy of the process QE given the observation o, i.e., the en-

tropy of JQE,k
W (o) given o. CPM(QE,W, k) is well-defined because QE is a probabilistic

linear process and, therefore, the probabilities of traces of QE can be determined. (We
spare the reader the technical definition of the refined version of CPM(QE,W, k).)

Information Flow Refinement. The information flow refinement relation that pre-
serves CPM is defined in terms of the conditional mutual information between the
behavior of the specification variant QEa and the observations of the realization vari-
ant QEc given an observation oa of the specification. Using the identifiers of processes
and adversary windows to denote random variables for the respective processes and

4 A companion paper presenting the details of what is sketched here is in preparation.
5 For an explanation of entropy, mutual information and the other concepts of information the-

ory, refer to any book on coding theory, such as [17].
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their observations, the information flow refinement relation 	k
Rca

for CPM(QE,W, k) is
defined by:

(QEa,Wa) 	k
Rca

(QEc,Wc) ⇔
(

QEc \ (Wc −Wa)[[Rca]]D = QEa

∧ I(QEa; (QEc,Rca,Wc) | Wa = oa) = 0
)

The mutual information6 I(QEa; (QEc,Rca,Wc) | Wa = oa) describes the difference of
the entropy of the traces of QEa producing the observation oa on Wa, and of the entropy
of the observations on Wc produced by traces of QEc whose re-abstractions produce the
abstract observation oa.

It is relatively straightforward to show that this information flow refinement relation
preserves CPM(QE,W, k), i.e., the entropy of re-abstracted indistinguishability classes
is equal to the one of the corresponding specification classes.

The transitivity proof of the relation, however, is quite involved. It needs to use sev-
eral independence relationships between observations and process behaviors at different
levels of refinement.

Having established those lemmas, however, the framework of CPR delivers a theory
of “refinement preserving the entropy of indistinguishable system behavior”.

7 Related Work

The work presented here extends previous work [10, 29] on CPR. The general idea of an
adversary window to model possible observations is already present there. To consider
indistinguishability classes as the basis for definitions of confidentiality properties also
is not new. Zakinthinos and Lee [31] call indistinguishability classes low level equiv-
alence sets (LLES). They give a definition of a (possibilistic) security property as one
that can be recast as a property holding for each indistinguishability class and show that
several information flow properties can be defined as properties of those classes.

The definition of CPR in [10, 29] is a quite restrictive variant of ensured entropy:
It basically requires the entropy of all indistinguishability classes of the realization to
be maximal, but it does not relate the probabilistic properties of the specification and
the realization. Furthermore, that early definition of CPR assumed that scheduling takes
place at the “meta-level” and did not make the task of the environment as a scheduler
explicit. Finally, it assumed a probabilistic extension of CSP but did not explicitly base
on PCSP.

The relationship to other propositions of secure refinement [14, 18, 24] has been
discussed in Section 1. To the best of our knowledge, Graham-Cumming [8] still is one
of the few to address security issues in data refinement. But he does not consider I/O
refinement as we do.

Lowe [16] also uses the idea of quantifying over the possible refinements of a spec-
ification similar to our variants of an adversary model. Furthermore, he quantifies in-
formation flow discretely, without referring to probabilities, and thus his work mediates
between a possibilistic yes/no concept of information flow and one based on probabilis-
tic information theory. In contrast to our view, he uses a pessimistic approximation and

6 The exact definition is quite technical and cannot be presented here.
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considers the worst case, i.e., maximal, flow of information produced by all variants.
Our view is pessimistic on the environment but considers an optimistic view on the ma-
chine, because the implementors control the way machine nondeterminism is resolved.

The framework as it stands now has some strong similarities with the system model
underlying reactive simulatability [23, 3], which addresses the cryptographically secure
implementation of “ideal” cryptographic protocols by “real” ones using cryptographic
algorithms [2]. Both system models explicitly distinguish the machine, the honest users,
and the adversary, all of which can interact through designated communication chan-
nels. Like our adversary window, “forbidden” channels model means of the adversary
to which honest users do not have access. The differences between the two approaches
stem from the different purposes they are designed to serve: We aim at a stepwise de-
velopment of an “ideal” system starting from a very abstract initial specification and
ending at an implementation model that still abstracts from issues of computational
complexity. The model of Backes, Pfitzmann and Waidner, in contrast, is designed to
support the last transition from such an “ideal” implementation model to one that uses
“real” algorithms. Therefore, it is asynchronous and deterministic. It has a very detailed
step semantics that allows one to analyze computation and communication acts in a
very detailed manner (including their computational complexity). The concept of re-
active simulatability is used to compare an ideal with a real model. It essentially is a
strong (probabilistic) bisimulation [30] that enforces cryptographic indistinguishability
(not to be confused with our notion of indistinguishability) of the honest users’ view
of the system, while the adversary can change in the transition from “ideal” to “real”.
Thus, reactive simulatability is very well suited to analyze the question whether an im-
plementation of a cryptographic protocol is correct. However, it is too restrictive to sup-
port stepwise refinement from a very abstract to a much more detailed system model.
In particular, it insists that the user model is the same for both, ideal and real system.
This also implies that trading functionality between the machine and its environment
does not establish a valid simulation.

8 Conclusion

Our framework for CPR captures general conditions sufficient to preserve probabilis-
tic confidentiality properties in behavior refinements of nondeterministic probabilistic
systems. It takes the refinement paradox into account by considering existential confi-
dentiality properties. Definitions 4 and 5 provide an abstraction that separates the issues
of preserving a probabilistic (basic) property from the ones of preserving an existen-
tial one. Thus, it allows to investigate the relationship of different properties within the
same framework.

The central definitions only rely on the fact that PCSP refinement is a compositional
preorder, and that hiding may introduce nondeterminism. Any formalism coming with
such a refinement order could replace PCSP in the framework.

The framework establishes the essential property of a refinement relation, namely
that it is a preorder. Research on conditions of compositionality of CPR is still going
on. However, because CPR is more liberal than, e.g., simulatability, a result as strong
as the one for that relation [5] cannot be expected without additional side conditions.
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To identify conditions of compositionality is one task of ongoing research, as is the
representation of standard confidentiality properties such as probabilistic [9] noninter-
ference. Furthermore, tool support is a very important issue. Here, one can build on
established tools for standard CSP and combine those with verifiers for probabilistic
calculi.

Finally, confidentiality is not the only property that standard behavior refinement
does not preserve. Many properties such as real-time constraints and quality of service
behave similarly under refinement. Therefore, there is hope to apply the present results
to other application areas as well.

Acknowledgments. Thanks go to anonymous reviewers for constructive and informed
comments.
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Boris Köpf and David Basin

Information Security
ETH Zurich, Switzerland

{bkoepf, basin}@inf.ethz.ch

Abstract. Timing side channels are a serious threat to the security of
cryptographic algorithms. This paper presents a novel method for the
timing-sensitive analysis of information flow in synchronous hardware
circuits. The method is based on a parameterized notion of confiden-
tiality for finite transition systems that allows one to model information
leakage in a fine-grained way. We present an efficient decision procedure
for system security and apply it to discover timing leaks in nontrivial
hardware implementations of cryptographic algorithms.

1 Introduction

Timing side channels are a serious threat to the security of cryptographic al-
gorithms [4, 12, 18]. By analyzing the running times of algorithms such as RSA
decryption, an attacker may be able to deduce information about the secret key
used, possibly even recovering the key in its entirety. Several countermeasures
against this threat have been proposed, including blinding and randomization
techniques. While these techniques successfully defeat certain known attacks, it
is difficult to argue their completeness, in the sense that they defeat all attacks
that exploit timing information.

One systematic and complete countermeasure for preventing timing attacks
is to ensure that the algorithms’ running times are independent of the secrets
processed. Agat [1] pursues this approach by giving a security type system for
a simple imperative programming language. If a program can be assigned a se-
curity type, then its running times are independent of the secrets it computes
with, and hence do not reveal this confidential information. This is shown by
proving the soundness of the type system with respect to a semantic notion of se-
cure information flow. Although this result (as well as other approaches that use
programming language-based models [29, 22, 3]) provides an attractive analysis
method, the timing model used is based on a high-level language and is therefore
too simplistic. Indeed, if the timing behavior of the underlying hardware is not
accurately modeled, it is unclear what is gained from such a formal analysis.
Unfortunately, providing precise timing models for today’s processors seems out
of reach. Giving upper bounds for the real-time behavior of multi-purpose pro-
cessors is already a daunting task [20] and is still not sufficient for proving the
absence of timing leaks.
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In this paper, we approach the problem on a different level of abstraction.
We focus on special-purpose hardware implementations of cryptographic algo-
rithms, which are particularly important in resource-critical application domains
[24]. We develop a method for the information flow analysis of synchronous
(clocked) hardware circuits. To this end, we define RI/RO-security, a param-
eterized and timing-sensitive notion of security for Mealy machines, in which
each transition corresponds to one clock tick. RI/RO-security can be instanti-
ated to standard noninterference definitions, but it can also be used to express
that only partial information on each confidential input is revealed through the
system’s observable behavior. In system runs of arbitrary length, this partial in-
formation can accumulate. We show that the guarantees of RI/RO-security can
be combined with assumptions on the environment to derive an upper bound
on the number of distinguishable output behaviors, a measure for what an at-
tacker may learn about the processed secrets. We develop efficient algorithms
for deciding whether a finite-state system is RI/RO-secure. For deterministic
systems, we reduce this to a reachability problem for a special kind of prod-
uct automaton. In the nondeterministic case, we reduce this to a generaliza-
tion of the Partition Refinement Problem. We also provide a compositional-
ity result as a first step to scaling-up the analysis method to more complex
designs.

Finally, we report on initial experimental results using our method. We have
encoded our decision procedures in an off-the-shelf model checker and used it
to discover subtle timing side channels in a textbook hardware implementation
of a finite-field exponentiation algorithm. The synchronous hardware descrip-
tion language Gezel [25] provides the link between our analysis method and
concrete hardware implementations. Namely, Gezel allows one to specify syn-
chronous circuits in terms of automata, and it comes with a tool for translating
the designs into a subset of the industrial-strength hardware description lan-
guage Vhdl. The translation is cycle-true, which means that it preserves the
timing behavior within the granularity of clock ticks. Moreover, the output is
synthesizeable, i.e. it can be mapped to a physical implementation. Hence, the
security guarantees obtained using our analysis method translate into guarantees
for real-world hardware implementations.

Our main contributions are twofold. First, we extend well-studied notions
of information flow security to a model that is appropriate for the analysis of
timing side channels in hardware implementations. Second, we develop efficient
algorithms for deciding whether a system is secure and we show that they can
be practically applied to nontrivial circuits.

The remainder of this paper is structured as follows. In Section 2, we introduce
our automaton model and define security. In Section 3, we develop reduction
techniques and efficient algorithms for deciding whether an automaton has secure
information flow. We report on experimental results in Section 4, before we
present related work and draw conclusions in Sections 5 and 6.
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2 The Scenario

2.1 Machine Model

We use Mealy machines as a model for hardware circuits that are synchronized
by a global clock signal. We assume that one transition corresponds to one clock
cycle and that, during each clock cycle, input signals are read and output signals
generated. Furthermore, we assume input enabledness, that is, the machine can
always react to every possible input. While hardware is typically designed to be
deterministic, nondeterminism is useful too, for example, for modeling require-
ments, and hence we will keep our presentation general wherever possible. As
there is no standard notion of a nondeterministic Mealy machine, we use the
term automaton with output.

Definition 1. An automaton with output is a 5-tuple M = (S,Σ, Γ, δ, s0),
where S is a finite set of states, Σ is a finite input alphabet, Γ is a finite output
alphabet, δ ⊆ S × Σ × Γ × S is a transition relation, and s0 ∈ S the initial
state. We call M deterministic if for every (s, a) ∈ S × Σ there is at most one
(b, s′) ∈ Γ × S with (s, a, b, s′) ∈ δ.

In a transition (s, a, b, s′), a denotes the input and b denotes the output. We will
sometimes use the shorthand δ(s, a, b) to denote the set {s′ | (s, a, b, s′) ∈ δ}. As
noted above, we require the transition relation to be total, i.e. for all s ∈ S and
a ∈ Σ, there is at least one b ∈ Γ and one s′ ∈ S with (s, a, b, s′) ∈ δ. We do not
consider ε-transitions as they contradict the assumption that input and output
are provided during each clock cycle. In the setting of hardware circuits, Σ and
Γ will be of the form {0, 1}n, for some n ∈ NNN , and represent the values of all
ingoing and outgoing signals.

2.2 Defining Security

We specify security with respect to an observer of the system. An observer is
modeled in terms of its capabilities for distinguishing different system behaviors.
If all system runs are indistinguishable, even when the system computes with dif-
ferent secret data, then the system is intuitively secure. Conversely, information
may leak if the system shows distinguishable behavior while processing different
secrets.

Distinguishing atomic inputs/outputs. The fact that two outputs a, b ∈ Γ are
indistinguishable is captured by an equivalence relation RO ⊆ Γ × Γ . We say
that a and b are observationally equivalent, or simply RO-equivalent, if and only
if a RO b. In other words, if the system outputs x ∈ Γ , an observer can only
deduce the RO-equivalence class [x]. Similarly, we use the equivalence relation
RI ⊆ Σ × Σ to model to what extent an observer can distinguish the input of
the system.

In the following, IdX denotes the identity on a set X and AllX denotes X×X .
For relations R ⊆ Γ1 × Γ1 and Q ⊆ Γ2 × Γ2, we overload notation and define
R×Q ⊆ (Γ1×Γ2)2 as (r1, q1) (R×Q) (r2, q2) if and only if r1 R r2 and q1 Q q2.
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Example 1. The relation RO = AllΓ formalizes an observer who cannot distin-
guish between any two system outputs. In contrast, the relation RO = IdΓ mod-
els an observer who can determine the (singleton) IdΓ -equivalence class of the
output, or equivalently, who can see the entire output. We can also model more
fine-grained capabilities. Consider, for example, Γ = Γ1×Γ2, with Γ1 = {0, 1}n,
and the predicate ΨΓ1 = {(a, b) ∈ Γ1 × Γ1 | ‖a‖ = ‖b‖}, where ‖x‖ denotes the
Hamming weight of x, i.e. the number of bits set to 1. The relation ΨΓ1 × IdΓ2

models that an observer can see the entire Γ2-component of the output, but can
only deduce the Hamming weight (determine the ΨΓ1 -equivalence class) of the
Γ1-component. �

Expressing security. Two states of a system are observationally equivalent if ev-
ery output from one state can be matched by an RO-equivalent output from the
other state whenever the corresponding inputs are RI -equivalent. We call the
observational equivalence of states RI/RO-equivalence, which is a partial equiva-
lence relation (Per), i.e. symmetric and transitive, but not necessarily reflexive.
If the initial state of a system is not observationally equivalent to itself, then
running the system on RI -equivalent input sequences may lead to observable
differences in the system behavior. This constitutes a refinement of an observer’s
knowledge about the input (modeled by RI), and thus is an information leak. If,
on the other hand, the initial state is observationally equivalent to itself, then
we say that the system is RI/RO-secure. The idea that security can be modeled
as a system being observationally equivalent to itself is formalized in the Per
model of secure information flow [23].

The next section gives a formal account of these ideas.

2.3 A Parameterized Notion of Observational Equivalence

For the systems under consideration, we model observational equivalence of
states by using a parameterized notion of strong bisimulation. This will capture
timing behavior, as every transition corresponds to a tick of the global clock,
and strong bisimulation equivalence allows one to distinguish process behaviors
that differ in the number of transitions leading to some output.

Definition 2 (RI/RO-Equivalence). Let M = (S,Σ, Γ, δ, s0) be an automa-
ton with output, and let RI ⊆ Σ2 and RO ⊆ Γ 2 be equivalence relations. We
define �RI

RO
as the union of all symmetric and transitive relations R on S with

the property that for all s1, s2 ∈ S:

s1 R s2 ⇒ ∀a1, a2 ∈ Σ.(a1 RI a2 ⇒ ∀(s1, a1, o1, s
′
1) ∈ δ.

∃(s2, a2, o2, s
′
2) ∈ δ.

s′1 R s′2 ∧ o1 RO o2).
(1)

Two states s1, s2 ∈ S are RI/RO-equivalent iff s1 �RI

RO
s2.

Definition 3 (RI/RO-Security). Let M = (S,Σ, Γ, δ, s0) be an automaton
with output, and let RI ⊆ Σ2 and RO ⊆ Γ 2 be equivalence relations. Then M is
RI/RO-secure iff s0 �RI

RO
s0.
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It is easy to see that �RI

RO
is a partial equivalence relation on S and that �RI

RO

itself satisfies Property (1) of Definition 2.
We will now give several instances of RI/RO-security. We first show how

it encompasses a number of security notions from language-based information-
flow (for an overview of this area, see [21]). Afterwards, we instantiate RI/RO-
security to specify partial information flow, which will prove to be useful in our
experiments.

In the following examples, we assume two security domains, high and low,
and we restrict the flow of information from the high domain to the low domain.
A common assumption in programming language-based approaches is that each
variable is classified as either high or low and that an observer may only see the
values of the low variables. In our setting, input and output signals take the role
of variables and have high and low components. This intuition is reflected by
assuming that Σ = ΣH ×ΣL, where ΣH and ΣL represent the values of all high
and low input signals, respectively. Similarly, we assume that Γ = ΓH × ΓL.
The policy that no information flows from the high into the low domain can
then be formalized in the framework of RI/RO-equivalence by choosing RI =
AllΣH × IdΣL and RO = AllΓH × IdΓL . When Σ is understood, we write IdL as
an abbreviation for IdΣL . We abbreviate analogously for Γ , AllL and the high
domain.

Example 2. In the deterministic case, �AllH×IdL

AllH×IdL
represents a notion of obser-

vational equivalence closely related to Agat’s Γ -bisimulation [1]. In our model,
every transition takes one time unit, while in Agat’s approach the duration of
each transition is given by a label representing the primitive operations of the
underlying machine. �

Example 3. In the nondeterministic case, �AllH×IdL

AllH×IdL
represents a possibilistic no-

tion of security similar to Volpano and Smith’s concurrent noninterference [26],
which has been used to model the security of multithreaded programs in the
presence of a purely nondeterministic scheduler. Note that our definition is more
restrictive with respect to timing, as it is based on strong bisimulation equiva-
lence as opposed to the weak bisimulation-based concurrent noninterference. �

In addition to capturing variants of previously studied notions of security, RI/
RO-equivalence allows one to express more fine-grained forms of information
flow.

Example 4. Consider the binary predicate ΨΣ = {(a, b) ∈ Σ × Σ | ‖a‖ = ‖b‖},
where Σ = {0, 1}n and ‖x‖ denotes the Hamming weight of x. Suppose we have
s0 �Ψ

IdΓ
s0, where s0 is the initial state of a deterministic system. Then the

system shows the same behavior for each pair of (and hence, by transitivity of
�Ψ

IdΓ
, for all) input traces a1 · · · am and b1 · · · bm, where ‖ai‖ = ‖bi‖ for every

i ∈ {1, . . . ,m}. �

The converse of Example 4 is more subtle. An observable difference between
two output traces of a deterministic system implies that the input traces’ Ham-
ming weight differs at some point in time. While the leakage of a single input’s
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Hamming weight might be acceptable, the leakage of the Hamming weight of all
symbols in the input trace can be used to encode arbitrary information.

Example 5. Consider an automaton M with a single state s0, alphabets ΣH =
ΣL = Γ = {0, 1}, and transitions {(s0, (h, l), h, s0) | h, l ∈ {0, 1}}. M maps every
high input h to the identical output. Still, M is ΨH × IdL/IdΓ -secure. �

To assess how much can be learned by observing the behavior of a RI/RO-secure
system, we need to consider the environment that provides it with high input.

2.4 Environment Behavior

In this section, we consider the interaction of a deterministic automaton M =
(S,ΣH ×ΣL, Γ, δ, s0) with an environment that provides it with high input. We
will show how to combine security guarantees for M with restrictions on the
environment to give bounds on the number of distinguishable behaviors. This is
a useful measure for assessing the information leakage from the high to the low
domain since, for a deterministic system and an arbitrary low input, variations
in the output are necessarily due to variations in the high input. Thus, a greater
number of distinguishable output traces means that more information about the
high input is leaked.

We specify the high environment as a subset E ⊆ Σ∗
H of high input traces

of the form
⋃∞

i=0 ◦i
j=1Aj , where Aj ⊆ ΣH represents the set of possible in-

puts from the high environment at time instant j and ◦ denotes word conca-
tentation. Dually to the requirement that M is input enabled, we require the
high environment to provide an input at every clock cycle. For an arbitrary
trace w ∈ Σ∗

L, a high environment E, and RO ⊆ Γ × Γ , we denote the set
of distinguishable behaviors by BM,RO(E,w). Concretely, for (s, a, b, s′) ∈ δ,
we define λRO (s, a) = [b], where [b] denotes the RO-equivalence class of b.
We canonically extend λRO to a mapping from input traces to R∗

O-equivalence
classes of output traces. Here, the relation R∗

O is defined as
⋃∞

i=0 R
k
O where

a1 · · · ak Rk
O b1 · · · bk iff ai RO bi, for all i ∈ {1, . . . , k}. Now we can formally

define BM,RO(E,w) = {λRO(s0, 〈v, w〉) | v ∈ E, |w| = |v|}, where | · | is the
length function and where 〈v, w〉 denotes the trace in (ΣH ×ΣL)∗ obtained by
pairing corresponding elements of v and w.

Recall that if a Q × IdL/RO-secure deterministic system is provided with
input from a high environment E in which all traces of the same length are
Q∗-equivalent, then it will produce only R∗

O-equivalent output. That is, |BM,RO

(E,w)| = 1 for every w ∈ Σ∗
L. If we weaken the requirement that the input is

always Q-equivalent, the number of distinguishable behaviors may increase. The
next theorem gives an upper bound for this number.

Theorem 1. Let M = (S,ΣH ×ΣL, Γ, δ, s0) be a deterministic automaton with
output, let Q ⊆ ΣH × ΣH and RO ⊆ Γ × Γ be equivalence relations, and let
E =

⋃∞
i=0 ◦i

j=1Aj ⊆ Σ∗
H be a high environment. If M is (Q × IdL)/RO-secure,

then for all w ∈ Σ∗
L we have

|BM,RO(E,w)| ≤ Π∞
j=1|Aj/Q| .



Timing-Sensitive Information Flow Analysis for Synchronous Systems 249

Proof. It suffices to prove |{λRO(s0, 〈v, w〉) | v ∈ ◦k
j=1Aj}| ≤ Πk

j=1|Aj/Q| for
all w ∈ Σk

L, as taking the limit k→∞ then leads to the desired result. We define
the mapping λ′

w : ◦k
j=1Aj/Qk → {λRO(s0, 〈v, w〉) | v ∈ ◦k

j=1Aj} by λ′
w([u]) =

λRO (s0, 〈u,w〉). λ′
w is well-defined since λRO(s0, 〈v, w〉) = λRO (s0, 〈v′, w〉) for

all v, v′ with v Qk v′. Note that λ′
w is surjective and that the range of a func-

tion is of cardinality less or equal than its domain, hence |{λRO(s0, 〈v, w〉) | v ∈
◦k

j=1Aj}| ≤ |◦k
j=1Aj/Qk | holds. We conclude with |◦k

j=1Aj/Qk | = Πk
j=1|Aj/Q|.�

Note that the mapping λ′
w from the proof of Theorem 1 expresses the correpon-

dence between equivalence classes of high input and output behaviors. The fact
that its domain is independent of w shows that an attacker cannot learn more
than the Q∗-equivalence class of a fixed high input, even if he runs the system
with all possible low inputs.

Example 6. If a system is AllH × IdL/AllH × IdL-secure (see Example 3) and is
provided with input from a high environment E =

⋃∞
i=0 ◦i

j=1Aj ⊆ Σ∗
H , then the

number of distinguishable output behaviors is Π∞
i=1|Aj/AllH | = 1. That is, the

system can be securely operated in an arbitrary high environment. �

Example 7. Consider again the ΨH × IdL/IdΓ -secure automaton M from Exam-
ple 5. The number of possible system behaviors is unbounded, as |{0, 1}/ΨH | = 2
and Π∞

j=1|{0, 1}/ΨH | diverges. This estimation is tight in the sense that an arbi-
trary amount of information can be leaked. �

Example 8. Consider an ΨH × IdL/AllH × IdL-secure circuit in which the high
component is initialized during the first clock tick and subsequent high input
is 0. The environment here is given by E =

⋃∞
i=0 ◦i

j=1Aj where A1 = ΣH

and Aj = {0} for j > 1. Then, for each low input w, the system shows at
most |ΣH/ΨH | distinguishable behaviors, each of which corresponds to one ΨH -
equivalence class. This correspondence is given by the mapping λ′

w from the
proof of Theorem 1. Thus at most the secret input’s Hamming weight is leaked
during execution. �

3 Deciding RI/RO-Equivalence

In this section, we reduce the question of deciding RI/RO-equivalence to tra-
ctable, well-understood problems and we analyze the complexity of the resulting
algorithms. We start with the case when the automata are deterministic, which
turns out to be very efficiently solvable.

3.1 Deterministic Case

We first reduce the problem of deciding the RI/RO-equivalence of states to a
reachability problem for a special type of product automaton. This may seem
surprising as, in general, information flow properties are properties of sets of
traces rather than properties of individual traces [16]. The key idea behind our
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construction is that every trace of the product automaton corresponds to a pair
of traces of the original system. Taking the transitivity of RI/RO-equivalence
into account, it suffices to analyze each individual trace of the product automaton
in order to establish RI/RO-security for the original system.

Definition 4. Let Mi = (Si,Σ, Γ, δi, s0,i), with i ∈ {1, 2}, be deterministic au-
tomata with output, and let RI and RO be equivalence relations on Σ and Γ , re-
spectively. Then M1×RI

RO
M2 is the automaton (S1×S2, RI , {0, 1}, δ′, (s0,1, s0,2)),

where

δ′ = {((s1, s2), (a, b), χ, (t1, t2)) | a RI b ∧ (χ = if c R0 d then 1 else 0) ∧
(s1, a, c, t1) ∈ δ1 ∧ (s2, b, d, t2) ∈ δ2} .

A falsifying state is a state with an outgoing transition labeled with 0. We now
show that deciding observational equivalence of states is equivalent to determin-
ing whether a falsifying state can be reached in M ×RI

RO
M .

Theorem 2. Let M = (S,Σ, Γ, δ, s0) be a deterministic automaton with output,
RI ⊆ Σ ×Σ and RO ⊆ Γ × Γ equivalence relations, and let s1, s2 ∈ S. Then

s1 �RI

RO
s2 ⇔ no falsifying state is reachable from (s1, s2) in M ×RI

RO
M .

Proof. (⇒) We show that no input w ∈ (RI)∗ can trigger a transition labeled
with 0. We proceed by induction on the length of w. The assertion is clear
for w = ε. Suppose now that w = (a, b)w′. As s1 �RI

RO
s2 and δ is total and

deterministic, there are unique transitions (s1, a, c, t1) and (s2, b, d, t2) ∈ δ, with
t1 �RI

RO
t2 and (c, d) ∈ RO. Hence M ×RI

RO
M outputs 1 on this transition and

we apply the induction hypothesis to (t1, t2) and w′.

(⇐) We show that Q = {(t1, t2) | (t1, t2) can be reached from (s1, s2)} fulfills
(1) of Definition 2. Pick (t1, t2) ∈ Q and (a, b) ∈ RI . Since δ is total and deter-
ministic, there are unique transitions (t1, a, c, t′1) and (t2, b, d, t′2) ∈ δ. Clearly,
(t′1, t

′
2) can also be reached from (s1, s2) in M ×RI

RO
M and, as no transition

labeled with 0 can be triggered by assumption, (c, d) ∈ RO holds. Hence Q is
contained in the union of all relations with (1) of Definition 2. �

This theorem justifies a simple decision procedure where we decide RI/RO-
equivalence by searching the product automaton from Definition 4. We use
breadth-first search, as it will find a shortest path to a falsifying state.

Corollary 1. Let M = (S,Σ, Γ, δ, s0) be a deterministic automaton with output,
let s1, s2 ∈ S, and let RI ⊆ Σ and RO ⊆ Γ be equivalence relations. Then
s1 �RI

RO
s2 can be decided in time O(|S|2|RI |), given the product automaton

M ×RI

RO
M .

Proof. Breadth-first search can be implemented in time O(|V |+ |E|) on a graph
G = (V,E). M ×RI

RO
M has |S|2 states and |S|2|RI | transitions. This yields

an O(|S|2|RI |) upper bound for the time complexity of deciding RI/RO-
equivalence. �
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3.2 Nondeterministic Case

A straightforward extension of the above reduction does not appear possible in
the nondeterministic case. Instead, we use the Partition Refinement Problem
[19] as a starting point for deciding RI/RO-equivalence.

A partition of a set S is a set π = {A1, . . . , An} of pairwise disjoint blocks with
the property that

⋃n
i=1 Ai = S. A refinement of a partition π is a partition π′

such that every block of π′ is contained in some block of π. A partition π can also
be formalized in terms of an equivalence relation Rπ, where the elements of π
correspond to the equivalence classes of Rπ. The Partition Refinement Problem
is, given a partition π and a property P , to find the coarsest refinement π′ of
π such that π′ fulfills P . This is equivalent to finding the greatest equivalence
relation Rπ′ , with Rπ′ ⊆ Rπ, such that Rπ′ satisfies P .

Since RI/RO-equivalence is a partial equivalence relation, Per for short, we
need to generalize the Partition Refinement Problem. The Partial Partition Re-
finement Problem is, given a partial equivalence relation R and a property P , to
find the coarsest refinement R′ of R, such that R′ satisfies P . We next show that
the problem of deciding RI/RO-equivalence can be cast as an instance of this
problem. Then, following the ideas in [11], we compute this coarsest refinement
as the maximal fixed point of a monotone mapping Φ.

The domain of a partial equivalence relation R is the set dom (R) = {x ∈
S | x R x} on which R is reflexive, and hence an equivalence relation. A partial
partition of a set S is a pair 〈{A1, . . . , An}, C〉, where the Ai are pairwise disjoint
blocks with

⋃n
i=1 Ai ∪C = S and

⋃n
i=1 Ai ∩C = ∅. There is a one-to-one corre-

spondence between Pers R of a set S and partial partitions 〈{A1, . . . , An}, C〉,
where the Ai correspond to the equivalence classes of R, and C = S \ dom(R).
As notation, we denote this correspondence as 〈{A1, . . . , An}, C〉 =̂ 〈R,C〉. Let
π1 = 〈{A1, . . . , An}, C1〉 and π2 = 〈{B1, . . . , Bm}, C2〉 be partial partitions of
S. We define π1 ≤ π2 to hold whenever C1 ⊇ C2 and if every block of π1 is
contained in some block of π2. The relation ≤ is a partial order on the set of
all partial partitions of a set S. In fact, it is also a lattice when we define the
meet � as 〈{A1, . . . , An}, C1〉 � 〈{B1, . . . , Bm}, C2〉 = 〈{Ei,j}, C1 ∪ C2〉, with
Ei,j = Ai ∩Bj for i ∈ {1, . . . ,n} and j ∈ {1, . . . ,m}.

In the remainder of this subsection, let M = (S,Σ, Γ, δ, s0) be a nondeter-
ministic automaton with output, and let RI ⊆ Σ × Σ and RO ⊆ Γ × Γ be
equivalence relations.

Definition 5 (RI/RO-partition). A RI/RO-partition of S is a partial parti-
tion 〈{A1, . . . , An}, C〉 of S, with

∀i, j ∈ {1, . . . ,n}. ∀s1, s2 ∈ Ai. ∀(a1, a2) ∈ RI . ∀x ∈ Γ/RO .

δ(s1, a1, x) ∩Aj �= ∅ ⇔ δ(s2, a2, x) ∩Aj �= ∅ ∧
δ(s1, a1, x) ∩ C = δ(s2, a2, x) ∩ C = ∅ ,

(2)

where δ(s, a, x) denotes the set
⋃

c∈x δ(s, a, c). A RI/RO-partition π of S is max-
imal if π ≥ π′ holds for every RI/RO-partition π′ of S.
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We adapt (2) of Definition 5 to a mapping on partial partitions whose fixed points
are precisely the RI/RO-partitions of S. To this end, let π=〈{A1, . . . , An}, C1〉 =̂
〈R1, C1〉 be a partial partition of S. We define Φ(π) := 〈R2, S \dom(R2)〉, where
s1 R2 s2 if and only if

s1 R1 s2 ∧ ∀j ∈ {1, . . . ,n}. ∀(a1, a2) ∈ RI . ∀x ∈ Γ/RO .

δ(s1, a1, x) ∩Aj �= ∅ ⇔ δ(s2, a2, x) ∩Aj �= ∅ ∧
δ(s1, a1, x) ∩C1 = δ(s2, a2, x) ∩C1 = ∅ .

Lemma 1. Let 〈R,C〉 be a partial partition of the set of states S. Then the
following are equivalent:

1. 〈R,C〉 is a fixed point of Φ.
2. 〈R,C〉 is a RI/RO-partition of S.
3. R satisfies (1) of Definition 2.

The proof of Lemma 1 is given in Appendix A. From Lemma 1, it follows that the
relation �RI

RO
is a maximal fixed point of the function Φ. In particular, �RI

RO
itself

satisfies (1) of Definition 2 and is thus contained in every maximal fixed point
of Φ. Conversely, as every fixed point of Φ satisfies Property (1), the maximal
fixed point is contained in �RI

RO
, the union of all such relations.

The following theorem gives a constructive way to derive maximal RI/RO-
partitions.

Theorem 3. There exists a unique maximal RI/RO-partition π∗ of S, namely,
π∗ = Φn(〈{S}, ∅〉), for some n ∈NNN .

Proof (Sketch). First observe that Φ is monotone with respect to ≤. Now since
the set of partial partitions of S is a complete lattice, it follows from the Knaster-
Tarski fixed point theorem that a unique maximal fixed point of Φ exists. By
Lemma 1, this fixed point is also a maximal RI/RO-partition. The full proof
details are given in Appendix A. �

Theorem 3 provides the basis of an efficient algorithm for deciding the RI/RO-
equivalence of states.

Corollary 2. For two states s1, s2 ∈ S we can decide s1 �RI

RO
s2 in time

O(|S|4 · |RI | · |Γ/RO |) ,

under the assumption that δ(s, a, x) =
⋃

c∈x δ(s, a, c) is given as an array indexed
by s ∈ S, a ∈ Σ, and x ∈ Γ/RO .

Proof. It suffices to show that a single application of Φ can be computed in
time O(|S|3 · |RI | · |Γ/RO |). Due to Theorem 3, a fixed point can be obtained by
iteratively applying Φ. As Φ(π) ≤ π for every partition π, this process terminates
within at most |S| applications.
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We assume S = {s1, . . . , sn} and that the equivalence class of each state
is given by a representative si with minimal i, and by a distinguished symbol
∗ �∈ S if the state is outside the domain of the relation. For example, in the case
of π = 〈{S}, ∅〉, the canonical representative for every state is s1. Suppose now
we are given a partial partition π = 〈R,C〉 and we want to compute Φ(π) =
〈R′, C′〉. To decide whether two states si and sj relate in R′, we perform the
following procedure: for all (a1, a2) ∈ RI , and for all x ∈ Γ/RO , we compare
the corresponding sets of R-equivalence classes of the target states. If all of the
corresponding sets coincide, si and sj are in the same R′-equivalence class. By
iterating i stepwise from 1 to n, we perform this check for every j ∈ {1, . . . ,n}.
Under this ordering, the canonical representative of the R′-equivalence class of
each sj is the si with minimal index such that equivalence of si and sj can be
established, and ∗ if there is no such si. In this way, each application of Φ can
be computed in time O(|S|3 · |RI | · |Γ/RO |). �

3.3 Compositionality

Compositionality is a prerequisite for scaling our analysis method to larger sys-
tems. In this section we use the example of sequential composition to show how
the guarantees obtained from analyzing sub-circuits can be combined to a guar-
antee for the entire system. To this end, we first define an operator that connects
the output signals of a machine M1 to the input signals of a machine M2. M2’s
transition function is total, hence communication never blocks. This notion of
composition models a sequential connection of two synchronous circuits with a
common clock.

Definition 6. Let Mi = (Si,Σi, Γi, δi, s0,i), with i ∈ {1, 2}, be automata with
output and let Γ1 ⊆ Σ2. Then M1 ·M2 is the automaton (S1×S2,Σ1, Γ2, δ

′, (s0,1,
s0,2)), where

δ′ = {((s1, s2), a, b, (t1, t2)) | ∃c ∈ Γ1. (s1, a, c, t1) ∈ δ1 ∧
(s2, c, b, t2) ∈ δ2} .

If the observational equivalence relation on the input alphabet of M2 is coarser
than the one on the output alphabet of M1, then we can safely compose the two
machines, as the following theorem shows.

Theorem 4. Let Mi = (Si,Σi, Γi, δi, s0,i), with i ∈ {1, 2}, be automata with
output and let RI ⊆ Σ1×Σ1, RO ⊆ Γ1 ×Γ1, QI ⊆ Σ2×Σ2, and QO ⊆ Γ2 ×Γ2
be equivalence relations. Let s1, s2 ∈ S1 and t1, t2 ∈ S2. If Γ1 ⊆ Σ2, RO ⊆ QI,
s1 �RI

RO
s2, and t1 �QI

QO
t2, then

(s1, t1) �RI

QO
(s2, t2) in M1 ·M2 .

The proof of Theorem 4 is given in Appendix A.

Example 9. Suppose Mi = (Si,Σi, Γi, δi, s0,i), for i ∈ {1, 2}, are automata with
output, Σ1 = ΣH × ΣL, and Γ1 = Σ2 = {0, 1}n. If the output of M1 is not



254 B. Köpf and D. Basin

distinguishable with respect to the Hamming weight, i.e. s0,1 �AllH×IdL

Ψ s0,1,
(where Ψ = {(a, b) ∈ {0, 1}n | ‖a‖ = ‖b‖}) and if M2 does not leak anything
other than possibly the Hamming weight, i.e. s0,2 �Ψ

IdΓ2
s0,2, then the composi-

tion M1 ·M2 does not leak any information, i.e. the initial state relates to itself
under �AllH×IdΓ2

IdL
. �

Analogous results hold for the parallel composition of two circuits.

4 Experimental Results

Below we report on two case studies: a simple circuit for bit-serial multiplica-
tion of nonnegative integers and a circuit for exponentiation in the field F2k .
Exponentiation over F2k is relevant, for example, in the generalized ElGamal
encryption scheme, where decryption consists of one exponentiation and one
multiplication step [17]. We implemented and tested both circuits in the hard-
ware description language Gezel. Instead of implementing a search procedure
by hand, we used the symbolic model checker Smv to automate the search on
the product automaton from Definition 4.1 Note that we translated the Gezel
implementations to the input language of Smv by hand. However, the semantic
gap between both languages is so small that an automated translation would be
straightforward.

4.1 The Circuits

Bit-serial multiplication. For multiplying two natural numbers m and n bitwise,
consider the representation n = Σk−1

i=0 ni2i, where ni denotes the ith bit of n.
The product m ·Σk−1

i=0 ni2i can be expanded to

(. . . ((nk−1 ·m) · 2 + nk−2 ·m) · 2 + . . . ) · 2 + n0 ·m ,

which can easily be turned into an algorithm: starting with p = 0, one iterates
over all the bits of n, beginning with the most significant bit. If ni = 1, one
updates p by adding m and then doubling p’s value. Alternatively, if ni = 0, one
updates p by just doubling its value. At the end of the loop, p = m · n.

We implemented two versions of this algorithm. In the first version, the dou-
bling and adding operations each take one clock cycle. Hence, the running time
reflects the number of 1-bits in n. In the second version, we introduce a dummy
step whenever no addition takes place. In this way, the running time is indepen-
dent of the operands. In our Smv implementations, the input signals are called
hi_in and lo_in and they are initialized during the first clock cycle with the
values of n and m, respectively. Input values of subsequent cycles are ignored.
We use two output signals: one for the result p and a flag done, which signals
termination.
1 The Gezel and Smv-code is given in the accompanying technical report [13].
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Exponentiation in a finite field. We analyzed a hardware implementation of
the finite field exponentiation algorithm from [6]. Basically, it consists of the
following three building blocks:

1. To compute the exponentiation of a field element x with exponent a =
Σn−1

i=0 ai2i, one iterates over all bits of the exponent

xa = (. . . (((xan−1 )2 · xan−2)2 · xan−3)2 · . . . )2 · xa0 . (3)

In finite fields, every element x is represented by the coefficients of a poly-
nomial, and thus each square and each multiplication operation in Equation
3 is again implemented by a loop.

2. Multiplication of polynomials q and x = Σr−1
j=0xjT

j is computed using the
expansion (. . . ((xr−1 · q) · T + xr−2 · q) · T + . . . ) + x0 · q in a loop similar to
the one for bit-serial multiplication.

3. At the bit level, multiplication by T of a polynomial represented by coeffi-
cients s = (sr−1, . . . , s0) can be implemented as follows. If sr−1 = 0, left-shift
s by one. If sr−1 = 1, left-shift s by one and XOR the result with the coef-
ficients of the field polynomial.

In our Smv-implementation of this exponentiation algorithm, the input signals
hi_in and lo_in are initialized during the first clock cycle with a and x, respec-
tively. Input values of subsequent cycles are ignored. We use two output signals,
p and done, to represent the result xa and termination, respectively.

4.2 Security Properties

We analyzed the multiplication and the exponentiation circuits from Section 4.1
with respect to two different security properties.

Property 1. We specify that a circuit’s running time is independent of the con-
fidential part of the input, the input signal hi_in. Recall that, in the case of
serial multiplication, hi_in and lo_in are initialized with the operands n and
m, respectively. In the case of exponentiation, hi_in and lo_in are initialized
with the exponent a and the basis x, respectively. For verifying that the execu-
tion time is independent of the high input, we are only interested in when the
computation terminates, that is, when the flag done is set, and we ignore all
other output. This is specified by the relation �AllΣH

×IdΣL

AllΓH
×IdΓL

. Here, ΣH = {0, 1}k

denotes the range of hi_in, and ΣL = {0, 1}l denotes the range of lo_in. The
done-flag ranges over ΓL = {0, 1}, and ΓH stands for all output that is not
considered.

Figure 1 demonstrates how the product construction of Definition 4 can be
encoded in a few lines of Smv-code. The system to be analyzed is a module that
we call circuit, which we instantiate twice in line 4. Both instances, sys1 and
sys2, are provided with the same low input (as specified by IdΣL), and are pro-
vided with all possible combinations of high inputs (as specified by AllΣH ). This
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1 MODULE main
2 VAR
3 lo,hi1,hi2 : array (SIZE-1)..0 of boolean;
4 sys1 : circuit; sys2 : circuit;
5 ASSIGN
6 sys1.lo_in:=lo; sys1.hi_in:=hi1;
7 sys2.lo_in:=lo; sys2.hi_in:=hi2;
8
9 SPEC !EF(!sys1.done=sys2.done)

Fig. 1. Product construction in Smv

is reflected in lines 6 and 7. In fact, all such input combinations are considered,
as no assignments are made to the variables lo, hi1, and hi2.

Reachability of a falsifying state of the product automaton corresponds to
a violation of the Ctl-formula !EF(!sys1.done=sys2.done) in line 9. If we
reach a state in which one instance’s done flag is set before the other instance
terminates, then we have found a falsifying state of the product automaton. In
this case, Smv computes a counterexample, namely, two AllΣH×IdΣL-equivalent
input sequences that lead to a distinguishable output.

Property 2. While it is easy to see that the running times of the multiplication
and exponentiation algorithms depend on the input to the hi_in-signal, it is less
clear what these dependencies are. We now specify and check a second property
that formalizes that the running time only depends on the Hamming weight of
the hi_in input (see also Example 4). That is, if the system is provided with
two input sequences that are indistinguishable with respect to the Hamming
weight of corresponding inputs to hi_in, then we require that the system has
equivalent timing behavior. This is specified by the relation �Ψ×IdΣL

AllΣH
×IdΓL

, where
Ψ = {(a, b) ∈ ΣH × ΣH | ‖a‖ = ‖b‖}. Here again, ΣH = {0, 1}k denotes the
range of hi_in, and ΣL = {0, 1}l denotes the range of lo_in. The done-flag
ranges over ΓL = {0, 1}, and ΓH stands for all output that is not considered.

The Smv-implementation of Property 2 follows along the same lines as the
implementation of Property 1. The only difference is that we modify the input
to hi_in of sys2 in line 7 of Figure 1 in the following way:

sys2.hi_in:=
case
hi1[0]+...+hi1[SIZE-1]=hi2[0]+...+hi2[SIZE-1] : hi2;
1 : hi1;

esac;

The variables hi1 and hi2 both take all possible values in their range. Only when
their Hamming weight coincides is sys2 fed with hi2. Otherwise its input is hi1.
In this way, we ensure that the inputs to both instances of circuit always have
the same Hamming weight and that all such combinations are considered.



Timing-Sensitive Information Flow Analysis for Synchronous Systems 257

4.3 Results

Security Analysis. The table in Figure 2 presents the results of our analysis. The
first column corresponds to the serial multiplication algorithm where dummy
steps are inserted to avoid timing leaks. The second column corresponds to the
multiplication algorithm without dummy steps, and the third column contains
the results for the finite-field exponentiation algorithm. The rows correspond to
Properties 1 and 2 described in Section 4.2. An entry � denotes that the model
is secure with respect to the corresponding notion of security, whereas × denotes
that this is not the case.

The first column reflects what was intended by inserting dummy computation
steps into the design: the circuit’s running time is independent of the input to
the signal hi_in. In particular, as Example 6 shows, arbitrary input sequences
do not lead to distinguishable behavior.

The second column shows that the running time of the multiplication algo-
rithm without dummy computation depends on the input to the signal hi_in.
However, if the implementation is only run on inputs with equal Hamming
weight, then we cannot observe any differences between the running times. Ex-
ample 8 shows that, if the high environment provides input only during the first
clock cycle, no more than the Hamming weight of the input can be leaked. Note
that this actually holds in an arbitrary environment, as the circuit ignores input
during all but the first clock ticks.

The third column shows that the running time of the exponentiation algorithm
depends on the input to the signal hi_in, which corresponds to the exponent.
The result of the analysis with respect to inputs of equal Hamming weights is
surprising. When only considering loop 1 (see Section 4.1), one might expect the
same result as for serial multiplication. However, the second row states that this
is not the case: even when provided with input of the same Hamming weight, the
system shows differences in its running times. This means that information other
than the Hamming weight can be leaked. We have not yet undertaken a precise
characterization of this leak. The counterexample computed by Smv suggests
that this might be nontrivial: the first difference between the sequences of states
reached in both instances of circuit occurs after 20 steps, and distinguishable
output is not produced until 36 steps.

Performance. We performed our experiments on a 2.4 GHz machine with 3
gigabytes of RAM. In the case of serial multiplication, we were able to ana-
lyze designs up to 10 bits per operand within one minute. In the case of ex-
ponentiation, we were able to analyze designs with up to 3 bits per operand
within 2 minutes.2 For larger bit-widths the running times increased notably.
Note that these numbers were obtained by using Smv “out of the box”, that is,
without applying one of the many existing optimization techniques. We expect
a significant performance gain by tailoring the search procedure to our spe-

2 This corresponds to a state-space size of approximately 252 for the product automa-
ton.
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Multiplication
(padded) Multiplication Exponentiation

�AllH×IdL
AllH×IdL � × ×

�Ψ×IdL
AllH×IdL � � ×

Fig. 2. Results of Analysis

cific problem instance, for example by adopting abstraction techniques for ha-
ndling bit-vectors.

5 Related Work

Both timing-aware security definitions and decidability results exist in process
algebraic settings, e.g., [7, 15], to name just a few. Their standard model of com-
munication is event-based and differs significantly from our time-synchronous
model. Likewise, security definitions for process algebras usually restrict the
detection of secret events by low-level observers, while RI/RO-security aims
at protecting a stream of confidential data. While formal connection between
language-based and process algebraic approaches can be made [8], we focus on
methods from language-based security as they are more directly related to our
work.

Several authors use bisimulations to express timing-sensitive notions of secure
information flow, e.g., [29, 1, 22]. The use of arbitrary equivalence relations for
capturing partial information flow has been proposed in a timing-insensitive con-
text [2, 9]. In this context, the notion of independent composition [2] is related
to our product construction ×RI

RO
. RI/RO-security marries the timing-awareness

of the bisimulation-based approaches with the accuracy of the parameterized
approaches. In [10], a parameterized and timing-aware definition of secure infor-
mation flow is given. However, it does not allow for input sequences of arbitrary
length and it is unclear whether it can be efficiently checked. The idea of quanti-
fying information by the number of distinguishable behaviors has been proposed
by Lowe [15] as an over-approximation for Shannon’s information-theoretic mea-
sure.

Programming language-based approaches to counter timing leaks usually as-
sume infinite-state transition systems, which leads to undecidable analysis prob-
lems. One way to approximate undecidable security conditions is to use syntax-
driven techniques, such as security type systems. Several security type systems
for dealing with timing-sensitive notions of secure information flow for program-
ming languages have been proposed [1, 29, 22, 14, 3]. We exploit the fact that the
state spaces in our setting are finite to develop a method for efficiently deciding
system security.

Tolstrup et al. [28] present an information flow analysis method for the hard-
ware description language Vhdl that does not consider timing issues. A recent
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follow-up paper [27] also incorporates timing and provides a type-system to ap-
proximate a semantic definition of security. Analyzing hardware on the level of
Vhdl has the advantage of being very concrete, but it also means that one has
to deal with artifacts such as processes and δ-time. Our automata-based model
is more abstract and it allows for a clean separation of program semantics and
security definitions. Moreover, our approach has the advantage of an efficient
decision procedure.

6 Conclusions and Outlook

The results presented in this paper are both theoretical and practical. On the
theoretical side, we have developed a parametric notion of security for an au-
tomaton model for synchronous systems and have given algorithms and complex-
ity bounds for its decision problem. In the deterministic case, we have derived
quantitative bounds for the confidential information that a system may reveal to
an attacker. On the practical side, we have shown that our definitions encompass
a number of interesting security properties and applied our techniques to verify
(or detect timing leaks in) nontrivial hardware implementations of cryptographic
algorithms.

While the notion of RI/RO-security proposed appears to be a general and
useful parametric notion of information flow, counting distinguishable behaviors
provides only an approximate measure of the quantity of information that a
system may leak. It should not be difficult though to incorporate probability
distributions on the inputs to give more concrete, information-theoretic bounds,
e.g. along the lines of [5].

Another area for future work concerns algorithms and abstractions that can
help us manage both larger systems and those with infinite state-spaces. It would
also be interesting to use our security notions as a starting point for techniques
to automatically correct insecure systems.
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14. B. Köpf and H. Mantel. Eliminating implicit information leaks by transformational
typing and unification. In In Proc. FAST’05, LNCS 3866, pages 42–62, 2006.

15. G. Lowe. Quantifying Information Flow. In Proc. CSFW ’02, pages 18–31.
16. J. D. McLean. A General Theory of Composition for Trace Sets Closed under

Selective Interleaving Functions. In Proc. IEEE Symp. on Security and Privacy
’94, pages 79–93.

17. A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography.
CRC Press, 1996.

18. D. A. Osvik, A. Shamir, and E. Tromer. Cache Attacks and Countermeasures: the
Case of AES. In Proc. CT-RSA ’06, LNCS 3860, pages 1–20.

19. R. Paige and R. E. Tarjan. Three Partition Refinement Algorithms. SIAM J.
Comput., 6(16):973–989, 1987.

20. P. Puschner and A. Burns. A Review of Worst-Case Execution-Time Analysis.
Real-Time Systems, 18(2/3):115–128, 2000.

21. A. Sabelfeld and A. C. Myers. Language-based Information-Flow Security. J.
Selected Areas in Communication, 21(1):5–19, 2003.

22. A. Sabelfeld and D. Sands. Probabilistic Noninterference for Multi-threaded Pro-
grams. In Proc. CSFW ’00, pages 200–215.

23. A. Sabelfeld and D. Sands. A PER Model of Secure Information Flow in Sequential
Programs. Higher-Order and Symbolic Computation, 14(1):59–91, 2001.

24. P. Schaumont and I. Verbauwhede. Domain-Specific Codesign for Embedded Se-
curity. IEEE Computer, 36(4):68–74, 2003.

25. P. Schaumont and I. Verbauwhede. The Descriptive Power of GEZEL. Technical
report, 2005.

26. G. Smith and D. Volpano. Secure Information Flow in a Multi-Threaded Impera-
tive Language. In Proc. POPL ’98, pages 355–364.

27. T. Tolstrup and F. Nielson. Analyzing for Absence of Timing Leaks in VHDL. In
Proc. WITS ’06 (to appear).

28. T. Tolstrup, F. Nielson, and H. Nielson. Information Flow Analysis for VHDL. In
Proc. PaCT ’05, LNCS 3606, pages 79–98.

29. D. Volpano and G. Smith. Eliminating Covert Flows with Minimum Typings. In
Proc. CSFW ’97, pages 156–168.

A Proofs

In the following, let M = (S,Σ, Γ, δ, s0) be a nondeterministic automaton with
output, and let RI ⊆ Σ ×Σ and RO ⊆ Γ × Γ be equivalence relations.
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Lemma 1. Let 〈R,C〉 be a partial partition of the set of states S. Then the
following are equivalent:

1. 〈R,C〉 is a fixed point of Φ.
2. 〈R,C〉 is a RI/RO-partition of S.
3. R satisfies (1) of Definition 2.

Proof. (1. ⇒ 2.) The assertion follows by setting R1 = R2 = R in the definition
of Φ, and observing that two states s1 and s2 relate in R whenever they are
contained in the same set Ai of the corresponding partial partition.

(2. ⇒ 3.) Let s1 R s2, a1 RI a2, and (s1, a1, c1, s
′
1) ∈ δ. As δ(s1, a1, [c1])∩C = ∅,

we have s′1 ∈ δ(s1, a1, [c1])∩A for some equivalence class A of R. By hypothesis,
we also have δ(s2, a2, [c1])∩A �= ∅, and hence there is a transition (s2, a2, c2, s

′
2) ∈

δ with c1 RO c2 and s′1 R s′2.

(3. ⇒ 1.) Let 〈R,C〉 =̂ 〈{A1, . . . , An}, C〉 and Φ(〈R,C〉) = 〈R′, C′〉. It suffices
to show that R′ = R. The implication R′ ⊆ R follows directly from the definition
of Φ. To show that R ⊆ R′, choose s1 R s2 and a1 RI a2. If δ(s1, a1, x)∩Aj �= ∅,
then there is a (s1, a1, c1, s

′
1) ∈ δ with c1 ∈ x and s′1 ∈ Aj . As R satisfies (1) of

Definition 2, there is also a (s2, a2, c2, s
′
2) ∈ δ, with c2 ∈ x and s′2 ∈ Aj . Hence

δ(s2, a2, x) ∩Aj �= ∅, and R ⊆ R′ follows. �

Theorem 3. There exists a unique maximal RI/RO-partition π∗ of S, namely,
π∗ = Φn(〈{S}, ∅〉), for some n ∈NNN .

Proof. To apply the Knaster-Tarski fixed-point theorem, it suffices to show that
Φ is monotone. To this end, consider the partial partitions π1 = 〈{A1, . . . , An},
C1〉 =̂ 〈Q1, C1〉 and π2 = 〈{B1, . . . , Bm}, C2〉 =̂ 〈Q2, C2〉, where π1 ≤ π2. Fur-
thermore, let Φ(π1) = 〈Q′

1, C
′
1〉 and Φ(π2) = 〈Q′

2, C
′
2〉. We need to show that

s1 Q′
1 s2 implies s1 Q′

2 s2. Assume s1 Q′
1 s2. By the definition of Φ, this im-

plies s1 Q1 s2, which implies s1 Q2 s2. Furthermore, for all (a1, a2) ∈ RI ,
and for all x ∈ Γ/RO , we have δ(s1, a1, x) ∩ C1 = δ(s2, a2, x) ∩ C1 = ∅. As
C1 ⊇ C2, we also have δ(s1, a1, x) ∩ C2 = δ(s2, a2, x) ∩ C2 = ∅. Finally, let
(a1, a2) ∈ RI and x ∈ Γ/RO , and suppose s′1 ∈ δ(s1, a1, x) ∩ Bi. s′1 is also
contained in some Aj ⊆ Bi, as otherwise this would contradict the assumption
δ(s1, a1, x)∩C1 = ∅. Then, as s1 Q′

1 s2, we also have δ(s2, a2, x)∩Aj �= ∅. Hence
we conclude δ(s2, a2, x) ∩ Bi �= ∅. The proof that δ(s2, a2, x) ∩ Bi �= ∅ implies
δ(s1, a1, x) ∩Bi �= ∅ follows along the same lines and concludes the proof of the
monotonicity of Φ.

As S is finite, the lattice of partial partitions of S is also finite and hence
complete. The Knaster-Tarski fixed-point theorem guarantees the existence of a
unique maximal fixed point π∗. We have Φ(π) ≤ π for every partial partition π
of S, and hence iteratively applying Φ to π = 〈{S}, ∅〉 leads to the fixed point
π∗ = Φn(π) after a finite number of steps n. �

Theorem 4. Let Mi = (Si,Σi, Γi, δi, s0,i), with i ∈ {1, 2}, be automata with
output and let RI ⊆ Σ1×Σ1, RO ⊆ Γ1 ×Γ1, QI ⊆ Σ2×Σ2, and QO ⊆ Γ2 ×Γ2
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be equivalence relations. Let s1, s2 ∈ S1 and t1, t2 ∈ S2. If Γ1 ⊆ Σ2, RO ⊆ QI,
s1 �RI

RO
s2, and t1 �QI

QO
t2, then

(s1, t1) �RI

QO
(s2, t2) in M1 ·M2 .

Proof. Since s1 �RI

RO
s2 and t1 �QI

QO
t2, there are relations R1 ⊆ S1 × S1 and

R2 ⊆ S2 × S2 that satisfy Property (1) of Definition 2, where (s1, s2) ∈ R1
and (t1, t2) ∈ R2. It suffices to show that R1,2 := {((s, t), (s′, t′) | |(s, s′) ∈
R1 ∧ (t, t′) ∈ R2} also fulfills Property (1). To this end, let ((s, t), (s′, t′)) ∈ R1,2
and let (a, b) ∈ RI . Choose ((s, t), a, c, (p, q)) ∈ δ′, where δ′ is the transition
function of M1 · M2. From the definition of δ′, there is an e ∈ Γ1 such that
(s, a, e, p) ∈ δ1 and (t, e, c, q) ∈ δ2. As R1 satisfies (1) of Definition 2, there
is a (s′, b, d, p′) ∈ δ1, with (p, p′) ∈ R1 and (e, d) ∈ RO. As RO ⊆ QI and
(t, t′) ∈ R2, there is a (t′, d, c′, q′) ∈ δ2 with (c, c′) ∈ QO and (q, q′) ∈ R2. From
the definition of δ′, we have ((s′, t′), b, c′, (p′, q′)) ∈ δ′ with (c, c′) ∈ QO and
((p, q), (p′, q′)) ∈ R1,2, as required. �
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Abstract. Stack inspection is now broadly used as dynamic access con-
trol infrastructure in such runtime environments as Java virtual machines
and Common Language Runtime. However, stack inspection is not suffi-
cient for security assurance since the stack does not retain security infor-
mation on the invoked methods for which execution is finished. To solve
this problem, access control models based on execution history have been
proposed. This paper presents a formal model for programs with access
control based on execution history, which are called HBAC programs.
Their expressive power is shown to be strictly stronger than programs
with stack inspection. It is also shown that the verification problem for
HBAC programs is EXPTIME-complete, while the problem is solvable
in polynomial time under a reasonable assumption. Finally, this paper
presents a few optimization techniques used in the implementation of a
verification tool for HBAC programs. The results of experiments show
that the tool can verify practical HBAC programs within a reasonable
time.

1 Introduction

Stack inspection is now broadly used as dynamic access control infrastructure in
such runtime environments as Java virtual machines [15] and the Common Lan-
guage Runtime. However, stack inspection is not sufficient for security assurance
since the stack does not retain security information on the invoked methods for
which execution is finished. To solve this problem, a few access control mod-
els have been proposed [1, 14, 22]. A common feature of these works is that the
history of execution such as method invocation and resource access is used for
access control, and the history is not always forgotten even if the surrounding
method execution is completely finished. Schneider [22] defines an enforceable
security policy as a prefix-closed nonempty set of event sequences and also de-
fines security automata, which exactly recognize enforceable policies. Later Fong
[14] introduces several subclasses of security automata and compares the expres-
sive power of these subclasses. Fong defines shallow history automata with finite
state space and shows that the class of policies recognized by shallow history
automata is incomparable with stack inspection. Another novel approach is pro-
posed by Abadi and Fournet [1]. As in stack inspection, a target system for
access control is an object-oriented recursive program. A set of permissions is
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assigned statically (before runtime) to each method; current permissions are
modified each time a method is invoked. Generally, current permissions depend
on all the methods executed so far. This forms a contrast to access control based
on stack inspection, which completely cancels the effect of the finished method
execution. In [1], an implementation built on the top of C� runtime environment
is reported. However, formal verification methods for the model of [1] have not
been investigated, except [2].

In this paper, we propose a formal model for Abadi-Fournet style access con-
trol called the History-Based Access Control program (HBAC program). An
HBAC program is a directed graph where a node represents a program point
and an edge represents a control flow. We also show that the expressive power of
HBAC programs is stronger than programs with stack inspection. We also define
the security verification problem for HBAC programs and show that it is solvable
in deterministic polynomial time under a reasonable assumption while the prob-
lem is EXPTIME-complete in general. Finally, we propose a few optimization
techniques used in verification of HBAC programs. Experimental results show
that practical HBAC programs can be verified within reasonable time and space.

Related works. There have been some studies on the verification of history-
based access control [2, 3, 4, 11, 16]. The program model proposed in [3, 4] is a call-
by-value λ-calculus augmented with local policy defined as a regular language of
events. For each function call, a new (but statically bound to the function) local
policy is imposed in a nested way. They proposed a model checking algorithm
for a given program and a global security property by reducing the problem to
the traditional model checking problem for basic process algebra by removing
duplicated local policies caused by recursive calls. The access control mechanism
of [3, 4] is an extension of [22, 14] that differs from [1] and ours, i.e., their model
do not have an explicit dynamic check on permissions. Another access control
mechanism based on [22, 14], which simulates security automaton by inserting
dynamic access control codes into a target program, was proposed in [11]. In their
later work [16], a type system is used to guarantee that the rewritten program
adheres to security policies. Their model also differs from [1] and ours, and they
do not deal with model checking problems. The previous work most related to
ours is [2] where a program model with explicit dynamic checks on permissions
and grant/accept constructs is defined. They proposed a type system in the
Volpano-Smith style [23] and show that a typesafe program has noninterference
property. This property is important because one of the main purposes of access
control is to avoid undesirable information flow. However, they ignore model
checking problems, as in [11, 16]. Moreover, unlike our study, none of these works
discuss the computational complexity needed for verification or optimization
issues that are important for implementing a useful verification tool.

2 HBAC Program

We will define the syntax and operational semantics of an HBAC program, which
resembles but is more general than the model in [18, 20]. An HBAC program is
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simply a control flow graph with three types of nodes: call, return and check.
The graph is decomposed into methods, and each method is given a subset of
permissions for access control called the static permissions of the method. A
(local) state of a program is a pair 〈n, C〉 of the current program point n and a
subset of permissions C called the current permissions. A (global) configuration
is represented by a stack, which is a finite sequence of local states. A call node
has two parameters, grant permissions and accept permissions. When a method
is called from a configuration 〈n1, C1〉 : . . . : 〈nk, Ck〉 with the current (call)
node n1 with grant permissions PG and accept permissions PA, a new local
state 〈m, C′〉 is pushed onto the stack where m is the entry point of the callee
method and C′ is the updated current permission obtained by intersecting C1
with the static permission of the callee method. Furthermore, PG is temporarily
added to the current permissions during the execution of the callee method and
PA is added to the current permissions when returned from the callee method.
A check node tests whether the current permissions include a specified subset
of permissions, and if not, the execution is aborted. For simplicity, we do not
include an exception handling mechanism in our HBAC model, although it is
not difficult to incorporate a throw-catch-style exception handling into the model
and extend the model checking algorithm presented in Section 4, as was done in
our previous work [19].

Formally, an HBAC program is a directed graph given by a 7-tuple π =
(NO ,TG ,CG , IS , IT ,PRM ,SP) where NO is a finite set of nodes, TG ⊆ NO×
NO is a set of transfer edges, CG ⊆ NO × NO is a set of call edges, IS :
NO → {call [PG,PA] | PG,PA ⊆ PRM } ∪ {check [P ] | P ⊆ PRM } ∪ {return} is
the labeling function for nodes, IT ∈ NO is the initial node, which represents
the entry point of the entire program, PRM is a finite set of permissions, and
SP : NO → 2PRM is the assignment of permissions to nodes. Each node n ∈ NO
corresponds to a program point, and NO is divided into three subsets by IS as
follows:

– IS (n) = call [PG,PA] where PG,PA ⊆ PRM . Node n is a call node that
represents a method call. Parameters PG and PA are called grant permissions
and accept permissions, respectively.

– IS (n) = return. Node n is a return node that represents the return from a
callee method.

– IS (n) = check [P ] where P ⊆ PRM . Node n is a check node that represents
a test for the current permissions. (The formal definition of current permis-
sions is given later.) If current permissions include P as a subset, then the
execution continues. Otherwise, it is aborted. For p ∈ PRM , check [{p}] is
abbreviated as check [p].

A transfer edge (tg) represents a control flow within a method, and a call edge
(cg) connects a method caller and a callee. In the figure, a solid arrow denotes a
cg and a dotted arrow denotes a tg. A node that has an incoming edge without
a source node denotes the initial node.
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n0

n1

n4

n5

n3

return

return

call[φ,φ]

call[φ,φ]

check[w]

{r}

{r, w}

{r, w}

naiveunknown file I/O

n2

return

Fig. 1. An HBAC program

Example 1. Figure 1 is an example of an HBAC program π1 with initial node n0.
There exists a tg from n0 to n1 (denoted as n0

TG→ n1), which means control can
move to n1 just after the execution of n0. Likewise, there exists a cg from n1 to
n4 (denoted as n1

CG→ n4). This means that if control reaches n1, then control is
further passed to n4 by a method call. If control reaches n5, it returns to n1. �

For node n, SP(n) specifies a subset of permissions that are assigned to n before
runtime (static permissions). We assume that every node in the same method
has the same static permissions, i.e.,

n
TG→ n′ ⇒ SP(n) = SP(n′).

Also, for every call node n such that IS(n) = call [PG,PA], we require PG ⊆
SP(n) and PA ⊆ SP(n). In Fig 1, a method is represented by the set of nodes
surrounded by a rectangle. A set beside the rectangle denotes the static permis-
sions assigned to the nodes belonging to the method. For example, SP(n0) =
SP(n1) = SP(n2) = {r, w} and SP(n3) = {r}.

The description length of π = (NO ,TG ,CG, IS , IT ,PRM ,SP) is defined as
‖π‖ = |NO | · |PRM |+ |TG|+ |CG|. A state of π is a pair 〈n, C〉 of a node n ∈ NO
and a subset of permissions C ⊆ PRM . A configuration of π is a finite sequence
of states, which is also called a stack. The concatenation of state sequences ξ1
and ξ2 is denoted as ξ1 : ξ2. The semantics of an HBAC program is defined
by the transition relation → over the set of configurations, which is the least
relation satisfying the following rules.

IS(n) = call [PG,PA], n
CG→ m

〈n, C〉 : ξ → 〈m, (C ∪ PG) ∩ SP(m)〉 : 〈n, C〉 : ξ
(1)

IS(m′) = return, IS(n) = call [PG,PA], n
TG→ n′

〈m′, C′〉 : 〈n, C〉 : ξ → 〈n′, C ∩ (C′ ∪ PA)〉 : ξ
(2)

IS(n) = check [P ], P ⊆ C, n
TG→ n′

〈n, C〉 : ξ → 〈n′, C〉 : ξ
(3)
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Table 1. Modification of current permissions

method call return
(general case) (C ∪ PG) ∩ SP(m) C ∩ (C′ ∪ PA)
PG = SP(n) SP(n) ∩ SP(m) C ∩ (C′ ∪ PA)

PG = ∅ C ∩ SP(m) C ∩ (C′ ∪ PA)
PA = SP(n) (C ∪ PG) ∩ SP(m) C

PA = ∅ (C ∪ PG) ∩ SP(m) C ∩ C′

PA = ∅, PG = ∅ C ∩ SP(m) C ∩ C′(= C′)

For a configuration 〈n1, C1〉 : . . . : 〈nk, Ck〉, the stack top is 〈n1, C1〉 where n1
and C1 are called the current program point and the current permissions of the
configuration, respectively.

Rule (1) says that if control is at a call node n where IS (n) = call [PG,PA]
and there exists a cg n

CG→m, then 〈m, (C∪PG)∩SP(m)〉 can be pushed onto the
stack. That is, when control reaches call node n, a method invocation can occur
by passing control to m and the current permissions become (C ∪PG)∩ SP(m).
Rule (2) concerns the return from the method. Assume a tg n

TG→ n′. If the current
node is return node m′ in the callee method, then the next current node can be
n′. The current permissions become C ∩ (C′ ∪ PA). Note that if there is no cg
from call node n, then control cannot proceed beyond n since rule (1) cannot
be applied to n. Similarly, if there is no tg from call node n, then control stops
when it reaches a return node of the callee method. Although a program with
such a node is pathological, for simplicity we make no syntactical restrictions on
cgs and tgs.

We can easily show C′ ⊆ C ∪ PG whenever rule (2) can be applied to
a configuration reachable from the initial configuration by induction on the
rule application. The definition of current permissions for some special cases
shown in Table 1 helps us understand why they are defined as in rules (1) and
(2).

Finally, rule (3) says that if control reaches a check node n with IS (n) =
check [P ] and a tg n

TG→ n′ and the current permissions include P , then the
control can be passed to n′.

The trace set of π is defined as [[π]] = {n0n1 . . .nk | n0 = IT , C0 = SP(IT ),
ξ0 = ε, ∃C1, . . . , Ck ⊆ PRM , ∃ξ1, . . . , ξk ∈ (NO×2PRM )∗, 〈ni, Ci〉 : ξi →
〈ni+1, Ci+1〉 : ξi+1 for 0 ≤ i < k} , where ε denotes the empty sequence.

For a set S of sequences, let prefix(S) denote the set of all nonempty prefixes
of sequences in S.

Example 2. We return to the HBAC program π1 in Fig 1. When the method
‘unknown’ is called by n0, the current permissions become {r, w} ∩ SP(n3) =
{r, w} ∩ {r} = {r}, since IS (n0) = call [∅, ∅] (see Table 1). The test at node n4
fails since IS (n4) = check [w] and the current permission {r} does not include
{w}. Summarizing,
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Fig. 2. Chinese wall policy

〈n0, {r, w}〉 → 〈n3, {r}〉 : 〈n0, {r, w}〉 → 〈n1, {r}〉
→ 〈n4, {r}〉 : 〈n1, {r}〉 �→ 〈n5, {r}〉 : 〈n1, {r}〉.
[[π1]] = {n0,n0n3,n0n3n1,n0n3n1n4} = prefix({n0n3n1n4}).

Note that since no node exists with multiple outgoing tg or multiple outgoing
cg (i.e., there is no nondeterminism) and no cycle exists in π1, the trace set can
be represented as the prefixes of a single sequence n0n3n1n4.

Consider the situation where method ‘naive’ calls ‘unknown’ and the latter
method secretly changes the contents of a local variable of ‘naive’, say fname, to
the name of a very critical file. Then ‘naive’ requests ‘file I/O’ to delete fname
without knowing that the contents of fname have been changed. If ‘file I/O’ per-
forms check [w] before deleting the file, unintended file deletion can be avoided
since the current permission does not include write permission {w} as the effect
of executing ‘unknown.’ As explained below, however, such access control cannot
be realized by stack inspection.

Let π2 be the HBAC program that is the same as π1, except that IS(n0) =
call [∅, {r, w}]. Since the accept permissions of n0 are {r, w},

〈n0, {r, w}〉 → 〈n3, {r}〉 : 〈n0, {r, w}〉 → 〈n1, {r, w}〉
→ 〈n4, {r, w}〉 : 〈n1, {r, w}〉 → 〈n5, {r, w}〉 : 〈n1, {r, w}〉.

Similarly, let π3 be the HBAC program that is the same as π1, except that
IS(n1) = call [{r, w}, ∅]. Since the grant permissions of n1 are {r, w},

〈n0, {r, w}〉 → 〈n3, {r}〉 : 〈n0, {r, w}〉 → 〈n1, {r}〉
→ 〈n4, {r, w}〉 : 〈n1, {r}〉 → 〈n5, {r, w}〉 : 〈n1, {r}〉. �

Example 3. Chinese wall policy [5] is a policy such that a user has access per-
mission to any resources, but once the user has accessed one of the resources,
(s)he loses access permission to the resources belonging to competing parties.
A simplified Chinese wall policy can be represented by program π4 in Fig 2.
If n0 calls ‘serviceA,’ the current permissions lose permission pB. Thus, if n1
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calls ‘serviceB’ afterward, the check at n5 fails. The same situation occurs when
‘serviceB’ and ‘serviceA’ are called in this order. In fact,

[[π4]] = prefix(n0n3n4n1(n3n4n2 + n5) + n0n5n6n1(n5n6n2 + n3)),

where the argument of ‘prefix’ is specified by a regular expression and + denotes
the union operator. �

3 Comparison with Stack Inspection

A program with Java stack inspection (abbreviated as SI program) can be rep-
resented by an 8-tuple π = (NO ,TG ,CG, IS , IT ,PRM ,SP ,PRV ), where each
component of π is identical to that of an HBAC program, except that label IS(n)
of each call node n is simply call without PG and PA, and a set of privileged
nodes PRV ⊆ NO is specified. The execution of check node check [P ] succeeds
if (a) for every node n on the stack, P ⊆ SP(n), or (b) there exists a node
n0 ∈ PRV on the stack such that P ⊆ SP(n0) and for every later node n in the
stack, P ⊆ SP(n). By adopting an eager evaluation strategy, we can define the
semantics of π by the following rules and rule (3) defined above (see [18, 20] for
details).

IS(n) = call , n
CG→ m, n �∈ PRV

〈n, C〉 : ξ → 〈m, C ∩ SP(m)〉 : 〈n, C〉 : ξ
(4)

IS(n) = call , n
CG→ m, n ∈ PRV

〈n, C〉 : ξ → 〈m,SP(n) ∩ SP(m)〉 : 〈n, C〉 : ξ
(5)

IS(m′) = return, IS(n) = call , n
TG→ n′

〈m′, C′〉 : 〈n, C〉 : ξ → 〈n′, C〉 : ξ
(6)

A program without check node is called a basic program. An HBAC (resp. SI)
program π is an HBAC (resp. SI) extension of a basic program π0 if π is obtained
from π0 by the following operations:

– Insert zero or more check nodes of HBAC (resp. SI) program into π0;
– Add grant permissions and/or accept permissions to call nodes (in the case

of HBAC extension); and
– Choose some nodes as privileged nodes (in the case of SI extension).

The formal definition of the extension is omitted due to space limitation. Let
nc be a homomorphism over the set of nodes defined by nc(n) = n for a call
node and a return node n and nc(n) = ε for a check node n. Let π1 and π2 be
extensions of a basic program π0. We say that π1 and π2 are trace equivalent if
nc([[π1]]) = nc([[π2]]).

Comparing rules (4), (5), (6) with rules (1), (2), we can see that a non-
privileged call node and a privileged node in an SI program can be simulated
by call [∅,SP(n)] and call [SP(n),SP(n)], respectively. This correspondence was
informally described in [1]. However, the converse does not hold, as shown in the
next example.
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Fig. 3. A basic program

Example 4. Program π4 in example 3 is an HBAC extension of basic program
π0 in Fig 3. Note that

nc([[π4]]) = prefix(n0n4n1n4n2 + n0n6n1n6n2).

There exists no SI extension πSI of π0 such that nc([[πSI]]) = nc([[π4]]). Informally,
this is because the effect of executing ‘serviceA’ or ‘serviceB’ is canceled when
control reaches n1 in any SI extension of π0. �

Theorem 1. For every basic program π0 and every SI extension π of π0, there
exists an HBAC extension π′ of π0 that is trace equivalent to π. There exists a
basic program π0 and an HBAC extension π of π0 such that there exists no SI
extension π′ of π0 that is trace equivalent to π. �

4 Model Checking HBAC Program

In this section, we discuss the verification problem (or model checking problem)
defined as follows:

Inputs: An (HBAC) program π = (NO , . . .) and a verification property ψ ⊆
NO∗.

Output: Does every trace in [[π]] satisfy ψ ? (i.e., [[π]] ⊆ ψ ?)

Example 5. Consider the verification problem for program π4 of example 3 and
the verification property ψ = (Σ − {n4})∗ + (Σ − {n6})∗, where Σ = (n0 +
n1 + · · · + n6). As explained in example 3, nodes n4 and n6 cannot be reached
simultaneously in a single trace, and thus [[π4]] ⊆ ψ holds. �

Let M be any representation of a language such as an automaton and a grammar.
The description length of M is denoted by ‖M‖, and the language expressed by
M is denoted by L(M).

Lemma 1. For an arbitrary HBAC program π, we can construct a context-free
grammar (cfg) G such that L(G) = [[π]] and ‖G‖ = O(‖π‖ · c|PRM |) (c > 1).
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(Proof sketch) We define the set of nonterminal symbols of G as (NO×2PRM )∪
(NO×2PRM ×2PRM ). A nonterminal symbol 〈n, C〉 ∈ NO×2PRM derives every
trace starting from node n with current permissions C. A nonterminal symbol
[n, C, C′] ∈ NO × 2PRM × 2PRM derives every trace starting from node n with
current permissions C and ending with a return node with current permissions
C′. In the following, let C, C′, and C′′ be arbitrary subsets of PRM . For each
node n, G has the rule 〈n, C〉 → n. For each pair (n,m) of nodes such that
IS(n) = call [PG,PA] and n

CG→ m, G has the rule 〈n, C〉 → n 〈m,P1〉, where
P1 = (C ∪ PG) ∩ SP(m). Moreover, for each node n′ such that n

TG→ n′, G has
the following rules:

〈n, C〉 → n[m,P1, C
′]〈n′,P2〉 (7)

[n, C, C′′]→ n[m,P1, C
′][n′,P2, C

′′] (8)
P2 = C ∩ (C′ ∪ PA)

For each pair (n,n′) of nodes such that IS(n) = check [P ] and n
TG→ n′, if P ⊆ C,

then G has the following rules:

〈n, C〉 → n〈n′, C〉
[n, C, C′] → n[n′, C, C′]

For each return node n, G has the rule [n, C, C] → n. The start symbol of G is
〈IT, SP (IT )〉. �

Theorem 2. Let π be an HBAC program and M be a finite automaton (fa). The
verification problem for π and ψ = L(M) is solvable in deterministic O(‖π‖ ·
c|PRM | · ‖M‖3) time (c > 1).

(Proof sketch) By lemma 1, we can construct a cfg G such that L(G) = [[π]]. Thus,
the verification problem is equivalent to deciding whether L(G)∩L(M) = ∅. The
latter condition can be checked in O(‖G‖ · ‖M‖3) time. �

Corollary 1. The verification problem for π and ψ = L(M) is solvable in de-
terministic O(‖π‖2 · ‖M‖3) time if |PRM | = O(log ‖π‖). �

The assumption that |PRM | = O(log ‖π‖) is realistic since the number of per-
missions is usually not so large compared with the program size.

Let EXPTIME denote the class of decision problems solvable in deterministic
O(cp(n)) time for a constant c (> 1) and a polynomial p. The following theorem
states that if the assumption that |PRM | = O(log ‖π‖) does not hold, then the
verification problem is EXPTIME-complete.

Theorem 3. Let π be an HBAC program and M be an fa. The verification
problem for π and ψ = L(M) is EXPTIME-complete.
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(Proof sketch) EXPTIME-hardness can be shown by a reduction from the mem-
bership problem for polynomial space-bounded alternating Turing machines [7].

5 Optimization of Model Checking Algorithm

From the proof of theorem 2, we obtain the following algorithm for solving the
verification problem.

Algorithm 1. For a given HBAC program π and an fa M such that ψ = L(M),
perform the following three steps in this order.

1. Construct a cfg G such that L(G) = [[π]] based on the proof of lemma 1.
2. Construct a cfg Ĝ such that L(Ĝ) = L(G) ∩ L(M).
3. Decide whether L(Ĝ) = ∅.

The size of the G constructed in step 1 is exponential to |PRM |. In most
cases, however, G contains useless rules. In this section, we describe techniques
for avoiding the construction of useless rules so that we can greatly reduce veri-
fication time and space.

5.1 Basic Idea

The following is traditional algorithm for eliminating useless rules in a cfg [17].
Nonterminal symbol X is generating if there exists a derivation from X to some
string of terminal symbols. X is reachable if a derivation exists from the start
symbol of G to αXβ for some α and β. A rule r is useless if r contains a
symbol that is not generating or not reachable. The traditional algorithm finds
set V of all the symbols that are generating and reachable and then removes all
rules involving one or more symbols not in V . While this algorithm eliminates
useless rules of a given cfg, we want to avoid constructing such rules in the cfg
construction. From the definition of G in the proof of lemma 1, we can show the
following lemma:

Lemma 2. Let π be an HBAC program and G be the cfg constructed for π in
step 1 of algorithm 1. For each n ∈ NO and C,C′ ⊆ PRM, 〈n, C〉 and [n, C, C′]
are not reachable if C �⊆ SP (n), and [n, C, C′] is not generating if C′ �⊆ C. �

By this lemma, we can avoid constructing rules involving 〈n, C〉 or [n, C, C′]
such that C �⊆ SP (n) or C′ �⊆ C. However, the number of remaining rules is still
exponential to |PRM | in most cases, and thus we need further optimization.

5.2 Rules with Reachable Symbols

The following breadth-first search algorithm exactly constructs the rules involv-
ing only reachable symbols.
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Algorithm 2

1. Let Q be an FIFO-queue (or simply, queue). Initialize Q to the queue only
containing the start symbol 〈IT, SP (IT )〉.

2. Extract one symbol (〈n, C〉 or [n, C, C′]) from Q. Construct every rule whose
left-hand side is the extracted symbol, if that rule has not been constructed.
For example, if the extracted symbol is [n, C, C′] and IS(n) = call[PG,PA],
then construct [n, C, C′] → n[m,P1, C

′′][n′,P2, C
′] where P1 = (C ∪ PG) ∩

SP (m) and P2 = C ∩ (C′′ ∪ PA) for each m, n′ and C′′ such that n
CG→ m,

n
TG→ n′ and C′′ ⊆ P2. Insert the nonterminal symbols contained in the right-

hand side of the constructed rule into Q.
3. Repeat step 2 until Q becomes empty.

Since only a finite number of nonterminal symbols of the form 〈n, C〉 or [n, C, C′]
exists, the algorithm always halts. Obviously, algorithm 2 constructs rule r of
G if and only if r only contains reachable symbols. If the following conditions
hold for some constant c, then the number of rules constructed by algorithm 2
is polynomial to ‖π‖.

1. |SP (n) ∩ SP (m)| < c for each n in the main method (i.e., the method to
which IT belongs) and each m such that n

CG→ m.
2. |PG(n)| < c for each call node n where PG(n) is the set of grant permissions

of n.

The HBAC program of the Chinese wall policy in example 3 satisfies these
conditions.

5.3 Precomputing Current Permissions

Some of the rules constructed in algorithm 2 may contain reachable but non-
generating symbols. To avoid constructing such rules, we modify algorithm 2
as follows. Assume that a symbol 〈n, C〉 for a call node n is extracted from
the queue in step 2 of algorithm 2. Instead of constructing a rule 〈n, C〉 →
n[m,P1, C

′]〈n′,P2〉 for all C′ ⊆ P1 (rule (8) in the proof of lemma 1), the modi-
fied algorithm invokes the following procedure Return-P ermission with actual
parameters m and P1. Then Return-P ermission computes a set S of subsets of
permissions such that S ⊇ {C′ | [m,P1, C

′] is generating} through a depth-first
search as well as constructing rules consisting of symbols that are generating and
reachable from [m,P1, C

′] for some C′ ∈ S. In the body of Return-P ermission,
color[n, C] is a variable that indicates whether the pair (n, C) has been visited
[9]. It is assumed that color[n, C] = write for every pair (n, C) at the first time
Return-P ermission is invoked. If color[n, C] = gray, then (n, C) has been vis-
ited but computation for (n, C) is not completed. If color[n, C] = black, then
computation for (n, C) has been completed. If color[n, C] = gray holds in line 1
of Return-P ermission(n, C), i.e., a cycle of method calls in the HBAC program
is detected, then a conservative answer, the set of all the subsets of C, is returned
(line 2).
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Return-Permission(n,C)
1 if color[n, C] = gray \a loop is found
2 then return 2C

3 if color[n, C] = black
4 then return result[n, C] \return the results of previous calculation
5 color(n, C) ← gray
6 result[n, C] ← ∅
7 if IS(n) = return
8 then construct a rule [n, C, C] → n
9 result[n, C] ← result[n, C] ∪ {C}
10 if IS(n) = check[P ] and P ⊆ C

11 then for each n′ such that n
TG→ n′

12 do R ← Return-Permission(n′, C)
13 for each C′ ∈ R
14 do construct a rule [n, C, C′] → n[n′, C, C′]
15 result[n, C] ← result[n, C] ∪ {C′}
16 if IS(n) = call[PG, PA]
17 then for each m such that n

CG→ m
18 do P1 ← (C ∪ PG) ∩ SP (m)
19 R1 ← Return-Permission(m,P1)
20 for each C′ ∈ R1

21 do P2 ← C ∩ (C′ ∪ PA)
22 for each n′ such that n

TG→ n′

23 do R2 ← Return-Permission(n′, P2)
24 for each C′′ ∈ R2

25 do construct a rule [n, C, C′′] → [m, P1, C
′][n′, P2, C

′′]
26 result[n, C] ← result[n, C] ∪ {C′′}
27 color(n, C) ← black
28 return result[n, C]

5.4 Localizing the Precomputation

If a given HBAC program π is acyclic (as a directed graph with set of edges
CG ∪ TG), then the algorithm in 5.3 constructs a rule r of G if and only
if r contains only generating and reachable symbols. On the other hand, as-
sume that π contains a cycle. The algorithm may construct a rule that con-
tains a reachable but nongenerating symbol for the following reason. If Return-
P ermission(m,P1) is called recursively from line 19 of Return-P ermission with
color[m,P1] = gray, then 2P1 is substituted for R1 and symbols [m,P1, C

′] with
C′ ⊆ P1 are constructed in line 25, even though some of these symbols are
nongenerating.

However, if |P1 − PA| is small enough, then the number of different values
C ∩ (C′ ∪ PA) substituted for P2 in line 21 is also small since C ∩ (C′ ∪ PA) =
(C∩PA)∪(C∩(C′−PA)), where C′ ⊆ P1 and thus the number of different values
substituted for C′−PA is small. Especially if PA = SP(n), i.e., n simulates stack
inspection, then P1−PA = ∅, and only a single possible value of P2 exists, which
is C. Furthermore, C′ does not directly affect result[n, C] in line 26. Hence, by
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postponing the construction of a rule in line 25, we can modify line 20 as a for
statement on every subset of P1 − PA instead of every subset of P1.

6 Experiments

To examine the optimization efficiency described in the previous section on prac-
tical HBAC programs, we implemented a verification tool and measured verifi-
cation time in the following two examples.

– Chinese wall policy
We extend program π4 in example 3 to program πc(k) with k + 1 methods
{client, service1, . . . , servicek} by replacing services A and B with k copies
of serviceA. The set of static permissions of client is {p1, p2, . . . , pk}, and
the one for servicei (1 ≤ i ≤ k) is {pi}. We specify a verification property
ψ for πc(k) as

(N1 ∪Nc)∗ + (N2 ∪Nc)∗ + · · ·+ (Nk ∪Nc)∗,

where Nc is the set of the nodes of method client and Ni is the one for
servicei. An HBAC program π satisfies ψ if and only if there is no trace of
π containing nodes of two or more distinct service methods.

– Online banking system
As mentioned in section 3, we can convert every SI program into an equiva-
lent HBAC program. We define πo(k) as an HBAC program obtained from a
sample SI program in [20], which models part of an integrated online bank-
ing system with k banks (Fig 4). Each bank serves its clients with a method
for withdrawing money. Method spender is an agent of a reliable user that
has static permissions {d1, . . . , dk}, and clyde is an agent of an unreliable
user without permission. They can access method debiti (1 ≤ i ≤ k), which
is a service provider of the i-th bank. Each debiti checks whether a user has
permission di and performs privileged calls on readi and writei. A verifi-
cation property ψ is given the same as in [20]. That is, the negation of ψ
is ψ = Σ∗NclydeΣ

∗NrwΣ∗, where Σ is the set of all nodes, Nclyde is the
set of nodes in method clyde, and Nrw is the union of the sets of nodes
of every readi and every writei. An HBAC program π satisfies ψ if and
only if control never reaches readi or writei after it once reaches a node in
clyde.

Table 2 summarizes the results of the experiments. G is the cfg generated in
step 1 of algorithm 1. M is a regular grammar such that ψ = L(M). Fig 5
shows computation time needed to verify πc(k) and πo(k). Without optimization,
we could not verify πo(k) for any k ≥ 1 and πc(k) for k ≥ 10, because the
number of the rules of G was exponential to k and the amount of memory was
insufficient to store G. With full optimization, both the number of the rules of
G and computation time were reduced to polynomial to k for πc(k) and πo(k).
Especially, the computation time for πo(k) was linear to k. As in [20], we estimate
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n1: call[φ ,{d,r,w,...,dk,rk,wk}]

n2: return

n3: call[φ,{d1,...,dn}]

n4: call[φ,{d1,...,dn}]

n5: return

n6: call[φ,φ]

n7: call[φ,φ]

n8: return

n9: check[{d1}]

n10: call[{d1,r1,w1},{d1,r1,w1}]

n11: call[{d1,r1,w1},{d1,r1,w1}]

n12: return

n13: check[{r1}]

n14: return

n15: check[{w1}]

n16: return

System
{d1,r1,w1,...,dk,rk,wk}

spender
{d,...,dn}

clyde
φ

debit1

{d1,r1,w1}

read1 {d1,r1,w1} write1 {d1,r1,w1}

 check[{dk}]

 call[{dk,rk,wk},{dk,rk,wk}]

 call[{dk,rk,wk},{dk,rk,wk}]

 return

 check[{rk}]

return

check[{wk}]

return

debitk

{dk,rk,wk}

readk {dk,rk,wk} writek {dk,rk,wk}

Fig. 4. Online banking system

Table 2. Verification profiles of sample programs

πc(k) πo(k)
k 5 10 20 40 60 80 5 10 15 20

the number of permissions 5 10 20 40 60 80 15 30 45 60
the number base † 1613
of the rules 1‡ 165 1103 2253 5753 10853 1866
of G 1+2‡ 81 211 621 2041 4261 7281 184 1316 33200

1+2+3 ‡ 81 211 621 2041 4261 7281 153 293 433 573
‖M‖ 124 389 1369 5129 11289 20340 208 388 568 748
computation base 0.815
time(sec) 1 0.217 0.369 1.60 22.4 131 0.715

1+2 0.173 0.293 1.38 23.0 131 499 0.244 0.693 7.77
1+2+3 0.074 0.158 1.37 21.0 131 494 0.210 0.275 0.333 0.356

verification result true true true true true true true true true true

† base is the algorithm 1 modified based on lemma 2 (section 5.1).
‡ optimizations 1 to 3 described in sections 5.2, 5.3, and 5.4, respectively.

that the number of permissions used in an ordinary network application is at
most several tens, and the results suggest that the proposed verification method
is feasible for practical programs.
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Fig. 5. Verification time for πc(k) and πo(k)

7 Conclusion

In this paper, we presented a new model for dynamic access control based on exe-
cution history called HBAC programs. The expressive power of HBAC programs
was examined, and the verification problem for HBAC programs was shown to
be solvable. Although the complexity of the problem is EXPTIME-complete in
general, our verification tool verified sample programs within a reasonable time.

Our program model is closely related to a class of infinite state systems called
pushdown systems (abbreviated as PDS). Indeed, the behavior of an HBAC
program can be modeled by a PDS with an exponential number of stack sym-
bols. The decidability and complexity of LTL and CTL∗ model checking [8]
for PDS are extensively studied in [10, 12]. Verification results conducted on a
model checker for PDS are reported in [13]. Although the verification problem
and the model checking algorithm in this paper are based on finite traces, we
can extend the algorithm to infinite traces (and thus LTL) using ω-context-free
grammars [6], and the time complexity of the algorithm is slightly better than
the one needed when applying the algorithm in [10] to a PDS that models a given
HBAC program. Namely, the former is proportional to |QM |3, where |QM | is the
number of the states of a Büchi automaton M representing the negation of a
verification property, while the latter is proportional to |QM |2|ΔM |, where |ΔM |
is the number of the transitions of M . Note that the optimization described in
section 5 can be applied not only when using our algorithm but also when using
a model checker for PDS to verify an HBAC program.

Future work includes comparing the expressive power of various subclasses of
security automata [14, 22] with that of HBAC programs.
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From Coupling Relations to Mated Invariants for
Checking Information Flow

(Extended Abstract)

David A. Naumann�

Stevens Institute of Technology, Hoboken NJ 07030 USA

Abstract. This paper investigates a technique for using automated program ver-
ifiers to check conformance with information flow policy, in particular for pro-
grams acting on shared, dynamically allocated mutable heap objects. The tech-
nique encompasses rich policies with forms of declassification and supports mod-
ular, invariant-based verification of object-oriented programs. The technique is
based on the known idea of self-composition, whereby noninterference for a com-
mand is reduced to an ordinary partial correctness property of the command se-
quentially composed with a renamed copy of itself. The first contribution is to
extend this technique to encompass heap objects, which is difficult because tex-
tual renaming is inapplicable. The second contribution is a systematic means to
validate transformations on self-composed programs. Certain transformations are
needed for effective use of existing automated program verifiers and they exploit
conservative flow inference, e.g., from security type inference. Experiments with
the technique using ESC/Java2 and Spec# verifiers are reported.

1 Introduction

Consider an imperative command S acting on variables with declaration Γ . For exam-
ple, Γ could be x : int,y : int,z :bool and S could be z := (y > 0);x := x + 1;y := x. A
standard notion of confidentiality policy is to label variables with levels from a partially
ordered set, e.g., {low,high} with low ≤ high. This is interpreted to mean that infor-
mation is only allowed to flow from one variable to another, say x to y, if the level of
x is at most the level of y. Such a policy is of interest only under the mandatory ac-
cess control assumption that a principal at level λ can directly read only variables with
confidentiality label at or below λ . (Our results apply as well to the dual, integrity.)

This paper investigates a technique for using ordinary program verifiers to check
conformance with policy, in particular for programs acting on shared, mutable heap
objects and policies that specify flows with finer granularity than individual program
variables. The intended application is to programs in Java and similar languages but
the technique pertains to any program using pointer structure. The technique is known
as self-composition [25,7,30,15]; it reduces security to an ordinary partial correctness
property of the program composed with itself. The first contribution is a novel extension
of this technique to encompass the heap. The second contribution is a systematic means
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to validate certain transformations on self-composed programs that are needed to make
effective use of automated program verifiers to check security; this draws on work by
Benton [9], Terauchi and Aiken [30]. The third contribution is to report on promising
experiments with the ESC/Java2 [18] and Spec# [6] tools and to pose challenges for
improvement of these tools.

To explain the main ideas we begin by considering the scenario above, with impera-
tive commands acting on variables of primitive type. For the specific lattice {low,high}
we write x ∈ vis to express that x is low. The formal notion that visible outputs reveal
no information about secret inputs (high variables) is called noninterference [27] and
is expressed in terms of two runs of the program:1 If two initial states s and s′ agree
on variables in vis and t, t ′ are the final states from running the program on s and s′

respectively, then t and t ′ also agree on variables in vis.
In program verification, a dashed identifier like s′ is often used to refer to the final

state corresponding to s; we do not use dashes that way, but rather to indicate a coupling
relation.

Because the noninterference property involves two runs, it cannot simply be mon-
itored at runtime or expressed directly as a pre/post specification. For static analysis,
a popular approach is by means of a type system in which types include security la-
bels [31,21,27,24,4,8]. The rules prevent, e.g., assignment to a low variable of an ex-
pression containing a high variable. Static analysis is useful to detect bugs and trojans;
it does not prevent attacks that violate the abstractions embodied by the language se-
mantics on which the analysis and definition of noninterference are based.

Self-composition. Besides type checking, another approach that has been explored is
based on Hoare logic [14,10,11]. The condition “s and s′ agree on visible variables”
can be expressed by an assertion x = x′ ∧ y = y′ ∧ . . . with an equation x = x′ for each
x∈ vis, where x′ is fresh variable. Such an assertion can be interpreted in a pair of states
s,s′, where x′ is the value of x in s′, or better still in a single state that assigns values
to both x and x′. Now the property that S is noninterferent can be expressed using a
renamed copy S′ acting on the dashed variables. Add to the language a combinator |
so that S|S′ means parallel, independent execution of S and S′. Then S is noninterferent
just if S|S′ takes initial states satisfying x = x′ ∧ y = y′ ∧ . . . to final states satisfying the
same. For example, S at the beginning of the paper is noninterferent for vis = {x} and
for vis = {x,y} but not for vis = {x,z}.

Two features of this formulation are interesting in terms of policy. Most importantly,
the pre-post specification can be extended to allow partial releases at finer granularity
than variables. For example, the equation encrypt(k,secret) = encrypt(k′,secret ′) in

1 This paper focuses on termination-insensitive noninterference. Covert channels such as timing
and power consumption are also ignored. The rationale is that such flows are harder to exploit
as well as to prevent —our aim is a practical means to reduce the risk of trojans and bugs
in production software. For further simplification in this paper, programs are deterministic,
only initial and final states are observable, and the heap is unbounded. Pointer arithmetic is
disallowed, just as it is in Java and its cousins (ignoring hashcode), since otherwise it is very
hard to constrain information flow. On the other hand, the results make no assumption about
the memory allocator, which may depend on the entire state; this entails some complications
concerning but is a price worth paying for applicability to real systems.
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a precondition would allow release of the encryption but not the secret plaintext. The
policy with postcondition z = z′ and precondition (y > 0) = (y′ > 0) is satisfied by the
S at the beginning of the paper. Preconditions can also condition secrecy of a variable
on event history or permissions, or allow one but not both of two secrets to be released
(e.g., [10,29,1,5]).

The second feature relevant to policy is that the formulation does not directly handle
label lattices bigger than {low,high}. But it is well known that the noninterference
property for a general lattice L can be reduced to a conjunction of properties, using
just {low,high} with low representing all the levels below a fixed level in L and high
representing the rest. Henceforth we consider policy in the form of a set vis of low
variable and field names.

This paper focuses on checking programs for conformance with given policy. Be-
cause only terminating computations are considered, and because S and S′ act on dis-
joint variables, computations of S|S′ are the same as computations of the sequence S;S′

(and also S′;S). We have arrived at the self-composition technique [7,30]: noninterfer-
ence of S is reduced to an ordinary partial correctness property of S;S′ with respect to
specifications over dashed and undashed copies of program variables.

Partial correctness is undecidable whereas the type-based approach is fast. But effi-
ciency is gained at the cost of conservative abstraction; typical type systems are flow
insensitive and may be very conservative in other ways, e.g., lack of arithmetic sim-
plification. With a complete proof system, and at the cost of interactive proving, any
noninterferent program can be proved so using self-composition. What is really inter-
esting is the potential to use existing automated verification tools to check security of
programs that are beyond the reach of a conventional type-based analysis. There are two
significant obstacles to achieving this potential; overcoming them is the contribution of
the paper.

Obstacles. To see the first obstacle, note first that there is reason to be optimistic about
automation: pre-post specification of policy involves only simple equalities, not full
functional correctness. But Terauchi and Aiken [30] point out that to verify a simple
correctness judgement {x = x′}S;S′{y = y′} requires —in some way or another de-
pending on the verification method— to find an intermediate condition that holds at the
semicolon. Suppose S involves a loop computing a value for y. The intermediate condi-
tion needs to describe the final state of y with sufficient accuracy that after S′ it can be
determined that y = y′. In the worst case this is nothing less than computing strongest
postconditions. The weakest precondition for S′ would do as well but is no easier to
compute without a loop invariant being given. (And similarly for method calls.) This
obstacle will reappear when we consider the second obstacle.

The second obstacle is due to dynamically allocated mutable objects. Note first that
there is little practical motivation, or means, to assign labels to references themselves
since upward flows can create useful low-high aliases and reference (pointer) literals
are not available in most languages. Rather, field names and variables are labeled, as in
Jif [21] and [4,8]. But noninterference needs to be based on a notion of indistinguisha-
bility taking into account that some but not all references are low visible. References to
objects allocated in “high computations” (i.e., influenced by high branching conditions)
must not flow to low variables and fields. References that are low-visible may differ be-
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tween two runs, since the memory allocator may be forced to choose different addresses
due to differing high allocations (unless we make unrealistic assumptions about the al-
locator as in some works). Suppose a state s takes the form s = (h,r) where r is an
assignment to variables as before and h is a partial function from references to objects
(that map field names to values). Indistinguishability of (h,r) and (h′,r′) can be for-
malized in terms of a partial bijective relation on references, interpreted as a renaming
between the visible references in domh and those in domh′ (as in [4,8,22]).

The second obstacle is that self-composition requires a “renamed copy” of the heap
—but objects are anonymous. To join (h,r) and (h′,r′) into a single state, r and r′ are
combined as a disjoint union r.r′ as before. But how can h and h′ be combined into
a single heap? And how can S be transformed to an S′ such that computations of S;S′

correspond to pairs of computations of S? —all in a way that can be expressed using
assertions in a specification language like JML [19]. Our solution adds ghost fields to
every object; these are used in assertions that express the partition of the heap into
dashed and undashed parts as well as a partial bijection between them. Theorem 1
says that our solution is sound and complete (relative to the verification system). The
theorem applies to relational properties in general, not just noninterference. The full
significance of this pertains to data abstraction and is beyond the scope of this paper,
but the importance of relations between arbitrary pairs S and S′ should become apparent
in the following paragraphs.

Theorem 1 says that S is noninterferent just if the corresponding “partial correctness
judgement” (Hoare triple) is valid for S;S′ where S′ is the dashed copy. The point is
to use an off-the-shelf verifier to prove it. But our relations involve the ghost fields
that encode a partial bijection; as usual with auxiliary variables, a proof will only be
possible if the program is judiciously augmented with assignments to these variables.
The assignments are only needed at points where visible objects are allocated: for x :=
new C in the original program S (where C is the name of the object’s class), we need
in S′ to add assignments to fields of the object referenced by x′ to link the two —after
both have been allocated: x := new C;x′ := new C;Mate(x,x′) where Mate abbreviates
the ghost assignments. But consider the following toy example where allocation occurs
in a loop. The policy is that secret does not influence the result, which is an array of
objects each with val field set to x.

Node[] m(int x, int secret) {
Node[] m_result; m_result= new Node[10]; int i= 0;
while (i<10) { m_result[i]= new Node(); m_result[i].val= x; i++; }
return m_result; }

If two copies of the method body are sequentially composed, all the undashed objects
have been allocated before any of the dashed ones are, so they cannot be paired up as
required, at least not without additional reasoning about the postcondition of the first
loop —the first obstacle reappears!

To overcome the first obstacle, Terauchi and Aiken [30] exploit that the sequence
S;S′ has special structure. They give a transformation whereby S′ is interleaved and
partially merged with S so that equalities between undashed variables and their dashed
counterparts are more easily tracked by an automated verifier. In particular, for a loop
while E do S od with guard condition E known to be low, the two copies can be merged
as while E do S;S′ od rather than while E do S od;while E ′ do S′ od. (Example method



From Coupling Relations to Mated Invariants 283

m is shown self-composed in Fig. 3 and transformed in Fig. 2.) There are other opti-
mizations, e.g., commuting independent commands and replacing x := E;x′ := E ′ by
x := E;x′ := x in case E is an integer expression known to be low (and a mating version
for reference types). The transformations depend on prior information and of course
they must be proved sound. The prior information is itself a noninterference property
(e.g., E = E ′ modulo renaming of references, for the loop transformation), but it can
be weaker than the ultimate policy to be checked. The idea is that a type based analy-
sis is used first; if it fails to validate conformance with the desired policy, it may still
determine that some expressions are low and this can be exploited to facilitate the self-
composition technique.

Similar considerations apply to modular reasoning about method calls, for which
thorough investigation is left to future work.

This paper formulates the transformations using relational Hoare logic as advocated
by Benton [9]. The observation is that the contextual information on which many trans-
formations depend (e.g., compiler optimizations) can be expressed as relational proper-
ties, typically partial equivalence relations, that are checked by various static analyses
(including information flow typing). To adapt and extend Benton’s logic from simple
imperative programs to objects requires that renamings be incorporated and additional
rules are needed. Type inference would be performed on the originaal program S, but
the program to be transformed is the self-composed version S;S′, so an intricate embed-
ding is needed to justify use of the transformed program to check security of S. This is
Theorem 2, which is formulated semantically. Development of the requisite proof rules
is left to future work.

Overview. Sect. 2 sketches the language for which our results are formalized, focus-
ing on the model of state. Sect. 3 formalizes relational correctness judgements (“Hoare
quadruples”) and defines some important relations like indistinguishability. Noninter-
ference for command S in context Γ is expressed as the relational correctness judge-
ment Γ |Γ |= S ∼ S :R −−� S where R and S are the precondition and postcondition
expressing the security policy. (Notation adapted from [28,9].)

Sect. 4 gives the main definitions, which use ghost fields and local conditions to
encode a pair of states as a single state, and thereby encode relations as predicates.
Sect. 5 gives the first theorem: a program satisfies a relational correctness judgement
just if the self-composed version satisfies the partial correctness judgement obtained by
combining pairs of initial and final states. That is, Γ |Γ |= S∼ S :R −−� S is equivalent
to validity of a partial correctness judgement Δ |= {R1} S;S′ {S 1} where context Δ
is the combined state space, also written Γ .Γ ′, that declares both dashed and undashed
copies of the variables. Here R1 and S 1 are predicates on this state space that encode
relations R and S , and S′ is the dashed copy of S.

Sect. 6 illustrates how the encoding of state pairs from Sect. 4 can be expressed
as a formula in a specification language like JML [19] and it reports on encouraging
experiments. Sect. 7 describes rules by which S;S′ can be transformed to a merged form
S∗ under the assumption of some weaker security property Γ |Γ |= S∼ S :T −−� T that
would be obtained by type inference. The transformation itself is expressed in a form
like Δ |Δ |= S;S′ ∼ S∗ :T −−� T that says the two are equivalent under the assumption.
The second theorem confirms that Δ |= {R1} S∗ {S 1} implies Δ |= {R1} S;S′ {S 1},
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thereby reducing the original security problem, Γ |Γ |= S∼ S :R −−� S , to verification
of Δ |= {R1} S∗ {S 1}.

Sect. 8 discusses related work and issues in modular specification of the “mating
invariant” in JML and similar specification languages. An online version gives omitted
definitions and proofs.

2 Programs, Semantics, and Partial Correctness Judgements

Our results pertain to languages like Java where objects are instances of named classes
and the class of a reference can be tested (and cast). No arithmetic operations are appli-
cable to references, except for equality test. One key lemma (Lemma 1), is proved by
induction on syntax and thus requires a semantics for commands. The full version of
the paper uses a language similar to that in [3]: a complete program is a class table, i.e.,
closed set of class declarations in which fields and methods can be mutually recursive.
Commands include field update, assignment, control structures and local blocks dy-
namically bound method calls —essentially sequential Java. The main ideas and results
only involve the semantic entities, in particular states and state transformers.

Programs are assumed to be type-correct. A command in context, written Γ � S,
denotes a state transformer of type Γ �Γ , i.e., a total function from initial states for
Γ to ⊥-lifted states for Γ . The improper state ⊥ represents divergence and error. This
denotational style of semantics is used primarily in order to support modular reasoning
about method invocations. (The full version of the paper addresses modular, per-method
verification as it is done in tools like ESC/Java2.)

A single syntactic category, “variable names”, is used for field, parameter, and local
variable names, with typical element x. The data types are given by T := int | bool | C
where C ranges over names of declared classes. A value of a class type C is either null
or a reference to an allocated object of type C. Subtyping is the reflexive, transitive
relation ≤ determined by the immediate superclass given in each class declaration.

States have no dangling pointers and every object’s field and every local variable
holds a value compatible with its type. To formalize these conditions and others, it is
convenient to separate the type of an object from the state of its fields. A ref context
is a finite partial function ρ that maps references to class names. The idea is that if
o ∈ domρ then o is allocated and moreover o points to an object of type ρ o. We write
[[T ]]ρ for the set of values of type T in a state where ρ is the ref context. In case T is a
primitive type, [[T ]]ρ is a set of values, independent from ρ . But if T is a class C then
[[C]]ρ is the set containing nil and all the allocated references o ∈ domρ with ρ o≤C.

Given context Γ and ref context ρ , a store for Γ in ρ is an assignment r of values to
variables, such if x :T is in Γ then r x is in [[T ]]ρ . Let [[StoΓ ]]ρ be the set of stores for
Γ in ρ . For instance, we write fieldsC for the variable context of declared and inherited
fields of objects of exactly type C. Thus a store in [[Sto(fieldsC)]]ρ represents the state
of a C-object. A heap for ρ is a function that maps each reference o ∈ domρ to an
object of class ρ o, i.e., to an element of [[Sto(fields(ρ o))]]ρ . Thus for h ∈ Heapρ and
o ∈ domρ , the application hox (sometimes written ho.x for clarity) denotes the value
of field x of object o in h. A pre-heap is like a heap but with dangling pointers allowed.
A program state for given context Γ is a triple (ρ ,h,r) containing a ref context, a heap,
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and a store for Γ . The set of states for Γ is written [[Γ ]] —note the absence of parameter
ρ , since the ref context is part of the state. Finally, the meaning [[Γ � S]] of a command
S is a (total) function from [[Γ ]] to [[Γ ]]∪{⊥}.

Partial correctness judgements. It is usual for postconditions to be two-state predicates,
i.e., to have some means to refer to the initial state and thereby relate initial and final
values, e.g., “old” expressions in JML or auxiliary variables. We formalize auxiliaries
in terms of indexed families of predicates. Suppose that P and Q are indexed families
of predicates Pτ ⊆ [[Γ ]], Qτ ⊆ [[Γ ]] for some Γ and with τ ranging over some set. Then
define Γ |= {P} S {Q} to mean ∀τ . Γ |= {Pτ} S {Qτ}. Here Γ |= {Pτ} S {Qτ}
means ∀t ∈ [[Γ ]] . Pτ t ∧ [[Γ � S]]t �= ⊥⇒ Qτ ([[Γ � S]]t). In fact our only use of auxil-
iaries is to manipulate pointer renamings encoded in the state.

3 Coupling Relations and Relational Correctness Judgements

In this section we specify noninterference in terms of relational correctness judgements,
where couplings involve bijective renaming of visible objects. Throughout the paper, we
let τ and σ range over finite bijective relations on the (infinite) set of references. For
such a relation we write τ :ρ ↔ ρ ′, and say τ is a typed bijection from ρ to ρ ′, if and
only if domτ ⊆ domρ , rngτ ⊆ domρ ′, and ρ o = ρ ′o′ for all (o,o′) ∈ τ . Finally, τ is
total, and called a renaming, if domτ = domρ and rngτ = domρ ′. For states we write
τ :s↔ s′ to abbreviate τ :ρ ↔ ρ ′ where s = (ρ ,h,r) and s′ = (ρ ′,h′,r′). Also (o,o′) ∈ τ
is often written as a curried application τ oo′, that is, we confuse sets with characteristic
functions.

For any Γ and Γ ′, an indexed relation from Γ to Γ ′ is a family, R, indexed on typed
bijections, such that Rτ ⊆ [[Γ ]]× [[Γ ′]] for all τ and moreover if Rτ(ρ ,h,r)(ρ ′,h′,r′)
then τ :ρ ↔ ρ ′. Note that we do not write Rτ ⊆ [[Γ ]]ρ× [[Γ ′]]ρ ′ —we have not defined
[[Γ ]]ρ . The first example is a kind of identity relation that takes into account that pro-
grams are insensitive to renaming, owing to the absence of address arithmetic. Indexed
relations (on states) are usually defined in terms of a hierarchy of relations on simpler
semantic objects —stores and values— and we reflect this in the notation.

Idτ Γ (ρ ,h,r)(ρ ′,h′,r′) ⇐⇒ (τ :ρ ↔ ρ ′, is total) ∧ Idτ (StoΓ )r r′

∧ ∀(o,o′) ∈ τ . Idτ (Sto(fields(ρ o)))(ho)(h′ o′)
Idτ (StoΓ )r r′ ⇐⇒ ∀(x :T ) ∈ Γ . Idτ T (r x)(r′ x)
Idτ T vv′ ⇐⇒ v = v′ for primitive type T
Idτ C vv′ ⇐⇒ (v = nil = v′)∨ τ vv′ for class C

Strictly speaking, it is the function mapping τ to Idτ Γ that is an indexed relation (in this
case, from Γ to Γ ); but we indulge in harmless rearrangement of parameters for clarity.

To understand the third conjunct in the definition of Idτ Γ , recall that fieldsC is the
typing context for the fields declared and inherited in class C, and ρ o is the class
of reference o. So this conjunct uses the instantiation Γ := fields(ρ o) of the relation
Idτ (StoΓ ) for stores. Note that Idτ T ⊆ [[T ]]ρ× [[T ]]ρ ′ and Idτ (StoΓ ) ⊆ [[StoΓ ]]ρ×
[[StoΓ ]]ρ ′.
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Although Idτ Γ requires τ to be total on the relevant ref contexts, the definitions of
Idτ (StoΓ ) and Idτ T make no such restriction on τ . This is exploited in the definition
of relation Ind and others below which require τ to be from ρ to ρ ′ but not total.

The next relation is the simple form of indistinguishability with respect to a set vis
of low fields and variables, used, e.g., in [4].

Indvis
τ Γ (ρ ,h,r)(ρ ′,h′,r′) ⇐⇒ (τ :ρ ↔ ρ ′) ∧ Indvis

τ (StoΓ )r r′

∧ ∀(o,o′) ∈ τ . Indvis
τ (Sto(fields(ρ o)))(ho)(h′ o′)

Indvis
τ (StoΓ )r r′ ⇐⇒ ∀(x :T ) ∈ Γ . x ∈ vis ⇒ Idτ T (r x)(r′ x)

Note that Indvis
τ Γ differs from Idτ Γ in that Indvis

τ does not require τ to be total. Ref-
erences in domτ or in rngτ are forced to include all those that are visible to the low
observer; this is because the definition of Indvis

τ (StoΓ ) requires the Idτ relation to hold
for all visible variables (and fields), which in turn requires that references in these vari-
ables are related by τ .

Whereas Id and Ind are from Γ to itself, we need similar relations from Γ to the
dashed copy Γ ′. (Recall that fields do not get renamed, only locals.)

Iddτ Γ (ρ ,h,r)(ρ ′,h′,r′) ⇐⇒ (τ :ρ ↔ ρ ′ is total) ∧ Iddτ (StoΓ )r r′

∧ ∀(o,o′) ∈ τ . Idτ (Sto(fields(ρ o)))(ho)(h′ o′)
Iddτ (StoΓ )r r′ ⇐⇒ ∀(x :T ) ∈ Γ . Idτ T (r x)(r′ x′)

Note that relation Id suffices for the heap objects and for values; the only real difference
is that for stores we need to compare r x with r′ x′, i.e., to impose x = x′. Similarly:

Inddvis
τ Γ (ρ ,h,r)(ρ ′,h′,r′) ⇐⇒ (τ :ρ ↔ ρ ′) ∧ Inddvis

τ (StoΓ )r r′

∧ ∀(o,o′) ∈ τ . Indvis
τ (Sto(fields(ρ o)))(ho)(h′ o′)

Inddvis
τ (StoΓ )r r′ ⇐⇒ ∀(x :T ) ∈ Γ . x ∈ vis ⇒ Idτ T (r x)(r′ x′)

For heap objects, the fields are not renamed, so Indvis
τ (Sto(fields(ρ o))) is used here.

Suppose S and S′ are commands over Γ and Γ ′ respectively, and R, S are indexed
relations from Γ to Γ ′. Here Γ ′ can be any variable context, not necessarily the dashed
copy of Γ ; even Γ ′ = Γ is allowed. We define the relational correctness judgement
Γ |Γ ′ |= S∼ S′ :R −−� S to mean ∀τ . Γ |Γ ′ |= [[Γ � S]]∼ [[Γ ′ � S′]] :Rτ −−� Sτ . This
in turn is defined in the following.

Definition 1 (relational correctness judgement). Suppose f is in Γ �Γ , f ′ is in Γ ′�
Γ ′, both R and S are indexed relations from Γ to Γ ′, and τ is a typed bijection. Define
Γ |Γ ′ |= f ∼ f ′ :Rτ −−� Sτ iff ∀s,s′ . Rτ ss′ ∧ f s �=⊥ ∧ f ′ s′ �=⊥⇒ Sτ( f s)( f ′ s′).

For the languages of [3,4], one can prove that programs are insensitive to renaming in
the following sense: For all Γ � S we have Γ |Γ |= S ∼ S : IdΓ −−� IdΓ .

One might expect to express noninterference for S and policy vis as the judgement
Γ |Γ |= S ∼ S : Indvis −−� Indvis but this does not take into account that newly allocated
objects can exist in the final state. In fact a sensible formulation of policy is Γ |Γ |=
S∼ S :(∃τ . Indvis

τ )−−� (∃τ . Indvis
τ ) which is attractive in that it eliminates the need for

top level quantification over τ . But for modular checking of method calls, in particular
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Fig. 1. On the left are two related heaps, encoded as one five-object heap on the right

to reason about the caller’s store after a method call, it is important for the bijection
supporting the final state to be an extension of the initial one. The property shown to
be enforced by a type system in [4] is indeed this slightly stronger but more intricate
property: Γ |Γ |= S ∼ S : Indvis

τ −−� ∃σ ⊇ τ . Indvis
σ for all τ . (Here we write a logical

quantifier but the meaning is a union ∪σ⊇τ Indvis
σ .) That is, our main use of relational

correctness judgements will instantiate Sτ in Def. 1 by Sτ := ∃σ . σ ⊇ τ ∧Rσ . In the
self-composed version to be used by a verifier, the bijection is encoded in auxiliary state
and the condition σ ⊇ τ comes for free because the ghost fields need never be updated
after initialization.

It is convenient to express noninterference in terms of the renamed program. Let
Γ ′ be the dashed copy of Γ and S′ be the dashed copy of S. Then clearly we have
Γ |Γ |= S ∼ S : Indvis −−� Indvis if and only if Γ |Γ ′ |= S ∼ S′ : Inddvis −−� Inddvis.

4 Ghost Mating: Encoding Relations as State Predicates

This section defines the encoding of two states as one. Class Object is assumed to
declare ghost fields dash :bool and mate :Object, so that they are present in all objects.
None of the considered relations or programs should depend on these fields except
through explicit use in the encoding.

Suppose ρ and ρ ′ are disjoint ref contexts, written ρ#ρ ′ (meaning domρ#domρ ′).
Suppose we have typed bijection τ :ρ ↔ ρ ′, not necessarily total, and heaps h∈Heapρ ,
h′ ∈Heapρ ′. We aim to encode a pair h,h′ as a single heap k for ρ.ρ ′. The idea is that,
in k, an object o ∈ domρ will have k o.dash = false whereas an o ∈ domρ ′ will have
k o.dash = true. Moreover, if τ oo′ then we will have k o.mate = o′ and k o′.mate = o.
This arrangement is formalized by conditions on k which can be expressed in formulas
as o.mate �= nil ⇒ o.dash=¬o.mate.dash∧o.mate.mate = o and o.x �= nil ⇒ o.dash=
o.x.dash for every class type field (x :C) ∈ fields(ρ o), with x �≡mate. The right side of
Figure 1 depicts a well mated heap. Given disjoint contexts Γ and Γ ′, a well mated state
for Γ .Γ ′ is one where references in variables of Γ are to undashed objects (and Γ ′ to
dashed). This notion is only used in the case that Γ ′ is the dashed copy of Γ .

Definition 2 (well mated state). Given disjoint contexts Γ #Γ ′, state (ρ ,h,r)∈[[Γ .Γ ′)]]
is well mated for Γ and Γ ′ iff (a) h is well mated; (b) r x = nil∨h(r x).dash = false, for
every x in domΓ with Γ x a class type; and (c) r x′ = nil∨h(r x′).dash = true, for every
x′ in domΓ ′ with Γ ′ x′ a class type.
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Note that there is no restriction on primitive values. We have x �≡mate here because we
assume field names are never reused as variable names.

Suppose that Γ is disjoint from Γ ′. Given a typed bijection τ from ρ to ρ ′, we aim
to combine states, say (ρ ,h,r) ∈ [[Γ ]] and (ρ ′,h′,r′) ∈ [[Γ ′]], into a single state that is
well mated and reflects τ . We cannot assume ρ#ρ ′ —from initial states with disjoint
heaps, running a pair of programs could lead to non-disjoint heaps (since we make no
assumptions about the allocator). Instead, our construction includes a suitable renaming
to make the heaps disjoint.

As a first step, function match is defined as follows. The idea is that for any h ∈
Heapρ , any τ :ρ ↔ ρ ′, and any boolean b, match(h,τ,b) is a pre-heap where o.dash =
b for every o and moreover if o is in the domain of τ then o.mate is a —dangling!—
reference in accord with τ .

Now we define the combined state, joinτ(ρ ,h,r)(ρ ′,h′,r′), by the following steps.
First, choose ρ̂ and τ̂ such that ρ̂#ρ and τ̂ is a renaming from ρ ′ to ρ̂ . Let ĥ be the
renaming of h′ by τ̂ and mutatis mutandis for r̂′ and r′. Let h0 = match(h,(τ; τ̂), false)
and also ĥ0 = match(ĥ,(τ̂−1;τ−1),true), writing “;” for relational composition. Finally,
define joinτ(ρ ,h,r)(ρ ′,h′,r′) = ((ρ.ρ̂), h0.ĥ0, r.r̂)

Note that (ρ ,h0,r) is not quite an element of [[Γ ]], because h0 is only a pre-heap due
to the dangling mate fields. For the same reason, (ρ̂ , ĥ, r̂) is almost but not quite an
element of [[Γ ′]]. What matters is that if τ is a typed bijection from ρ to ρ ′ and Γ #Γ ′
then joinτ(ρ ,h,r)(ρ ′,h′,r′) is in [[Γ .Γ ′]] and is well mated.

To partition a well mated heap into two, we first define dsh h = {o ∈ domh |
ho.dash = true} and undsh h = {o ∈ domh | ho.dash = false}. Roughly speaking,
h�(dshh), i.e., h with its domain restricted to include only dashed objects, is in
Heap(ρ�(dshh)). But in fact h�(dshh) may have dangling references in mate fields,
so we define a function dematch that sets all mate fields to nil.

For splitting to invert joining we cannot just discard mates. If k in Heapρ is well
mated then we obtain typed bijection τ :(ρ�(undshh))↔ (ρ�(dshh)) by

τ oo′ ⇐⇒ k o.dash = false∧ k o.mate = o′ (1)

Splitting and joining are mutually inverse, modulo renaming. The intricate details
are omitted in this extended abstract. One consequence is that every well mated state
in [[Γ .Γ ′]] is equal, up to renaming, to one in the range of join. Even more, a well
mated state that encodes via (1) a particular bijection τ is in the range of joinτ . Thus,
for a relation that is insensitive to renaming, we can give a pointwise definition of a
corresponding predicate.

Definition 3 (coupling relation to mated predicate). Given an indexed relation R
from Γ to Γ ′ with Γ #Γ ′, define a predicate R1

τ ⊆ [[Γ .Γ ′]] by

R1
τ t ⇐⇒ ∃s,s′ . t = joinτ ss′ ∧ Rτ ss′

That is, t is in R1
τ iff t is well mated for τ and splits as some s,s′ with Rτ ss′.

As an example, if a state with heap h satisfies (Indvis
τ )1 then for any o with ho.mate �=

nil the visible primitive fields of ho are equal to those of ho.mate and the visible class
fields of ho are mated. There is no constraints for field names not in vis.
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5 Hoare Quadruples Reduced to Triples

This section shows that a relational correctness judgement for some coupling relation
is equivalent to a partial correctness judgement for the corresponding predicate and the
self-composed program. To begin, it is convenient to define f  f ′ which applies state
transformer f and then f ′. Suppose Γ #Γ ′, f is in Γ �Γ , and f ′ is in Γ ′�Γ ′. Define
f  f ′ to be an element of Γ .Γ ′�Γ .Γ ′ as follows, where we partition the store as r,r′

in accord with Γ ,Γ ′.

( f  f ′)(ρ ,h,r.r′) = let (ρ0,h0,r0) = f (ρ ,h,r) in
let (ρ1,h1,r1) = f ′(ρ0,h0,r′) in (ρ1,h1,r0.r1)

Our meta-notation “let − in ” is ⊥-strict, so f  f ′ returns⊥ if either f or f ′ does.
This notion is useful in case f acts only on the undashed part of the heap and f ′ on the

dashed part, but the definition is more general. Note also that the domain Γ .Γ ′�Γ .Γ ′
includes state transformers that in no way respect the dash/mate structure. In particular,
well matedness of s does not imply the same for ( f  f ′)s. But we have the following.

Lemma 1. If Γ � S, Γ ′ � S′, and Γ #Γ ′ then ([[Γ � S]] [[Γ ′ � S′]])s = [[Γ .Γ ′ � S;S′]]s
for any well mated s. (Recall that we assume dash and mate do not occur in S or S′.)

A state transformer f is independent from mate,dash provided it does not update these
fields on initially existing objects or newly allocated objects and moreover s�dm =
t�dm ⇒ ( f s)�dm = ( f t)�dm, where we abbreviate dm for dash,mate and � removes
elements from a function’s domain.

Lemma 2. Suppose Γ #Γ ′, f is in Γ �Γ , and f ′ is in Γ ′�Γ ′. (a) For any τ,u,s,s′,
if u�dm = (( f  f ′)(joinτ ss′))�dm and u = joinσ t t ′ for some σ , t,t ′ then t = f s and
t ′ = f ′ s′. (b) If f , f ′ are independent from mate,dash then (( f  f ′)(joinτ ss′))�dm is
equivalent to joinσ ( f s)( f ′ s′) for some σ , up to renaming (i.e., related by Id).

To state the precise correspondence, in terms of states that include the dash and mate
fields, we need to mask them as follows. Define R̂1

τ by

R̂1
τ t ⇐⇒ ∃u . u�dm = t�dm∧R1

τ u

Theorem 1. Suppose Γ #Γ ′ and consider commands in context Γ � S and Γ ′ � S′. Sup-
pose R and S are indexed relations from Γ to Γ ′ that are insensitive to renaming. Then
for any τ we have

Γ |Γ ′ |= S ∼ S′ :Rτ −−� ∃σ ⊇ τ . Sσ iff Γ .Γ ′ |= {R1
τ} S;S′ {∃σ . σ ⊇ τ ∧ Ŝ 1

σ }

In particular, noninterference for a command S and policy vis is, by definition, the prop-
erty that Γ |Γ |= Rτ ∼ S :S−−� ∃σ . σ ⊇ τ ∧ R̂σ (for all τ) where R is Indvis

τ Γ . This is
the same as the renamed version Γ |Γ ′ |= Rτ ∼ S :S′ −−� ∃σ . σ ⊇ τ ∧ R̂σ where R is
Inddvis

τ Γ . The Theorem reduces this to the triple Γ .Γ ′ |= {R1
τ} S;S′ {∃σ .σ ⊇ τ∧R̂1

σ}.
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6 Experiments: Expressing Well Mating and Relations as
Assertions

Sections 4 and 5 formulate the technique in semantic terms. A key feature of our en-
coding is that it requires no special instrumentation of program semantics but rather is
expressed by first order conditions over auxiliary state. One can think of a number of
variations on encoding; we describe one convenient pattern.

To express the self composed program using JML, a fresh method with two copies
of the parameters is used. For non-static methods, the target object (this) needs to be
made an explicit parameter so there can be two copies. Two copies of the result are
needed; our encoding uses fields for this purpose. As a simple example, consider this
method where the policy is that secret does not influence the result.

static int p(int x, int y, int secret) {
x= secret; if (secret % 2 == 1) y=x * secret; else y= secret * secret;
return y - secret * x; }

For the self composed version, two fields and a new method Pair p are added to the
class, as follows (using $ for dash which is not legal in Java identifiers).

int p_result, p_result$; // new fields to hold the pair of results of p

/*@ requires x==x$ && y==y$;
@ modifies p_result, p_result$;
@ ensures p_result == p_result$;
@*/

void Pair_p(int x, int y, int secret, int x$, int y$, int secret$) {
x= secret; if (secret % 2 == 1) y=x * secret; else y= secret * secret;
p_result= y - secret * x;
x$= secret$; if(secret$ % 2==1) y$=x$*secret$;else y$=secret$*secret$;
p_result$= y$ - secret$ * x$; }

This is verified by ESC/Java2 (version 2.0a9) in 0.057sec; insecure versions are quickly
rejected. Similar results for this and the other experiments were found using the Spec#
tool. Note that ESC/Java2 is deliberately unsound in some ways, though not in ways
that appear relevant to the present experiments.

Another experiment is to adapt the preceding method p by using a wrapper object
for the result. For experiment we add the ghost fields explicitly where needed.

class Node {
public int val;

/*@ ghost public Node mate; */
/*@ ghost public boolean dash; */ }

The variation using such a wrapper object verifies without difficulty, since the requisite
ghost updates can be added following the second allocation.

As discussed in Sect. 1 and justified in Sect. 7 to follow, loops are most easily
checked by applying an interleaving transformation for allocations that occur under low
guards. For method m in Sect. 1 the self-composed version appears in Figure 2, where
the transformation from while E do S od;while E ′ do S′ od to while E do S;S′ od
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Node[] m_result, m_result$; // new fields to hold the pair of results of m

/*@ requires x==x$; // policy
// ordinary preconditions
@ ensures m_result != null && m_result$ != null;
@ ensures m_result.length==10 && m_result$.length==10;
@ ensures (\forall int j; 0<=j&&j<10 ==> m_result[j]!=null);
@ ensures (\forall int j; 0<=j&&j<10 ==> m_result$[j]!=null);
// mating and policy
@ ensures (\forall int j; 0<=j&&j<10 ==> m_result[j].mate==m_result$[j]);
@ ensures (\forall int j; 0<=j&&j<10 ==> m_result$[j].mate==m_result[j]);
@ ensures (\forall int j; 0<=j&&j<10 ==> !m_result[j].dash);
@ ensures (\forall int j; 0<=j&&j<10 ==> m_result$[j].dash);
@ ensures (\forall int j; 0<=j&&j<10 ==> m_result[j].val==m_result$[j].val);
@ assignable m_result, m_result$, m_result[*], m_result$[*];

*/
void Pair_m(int x, int secret, int x$, int secret$) {

m_result= new Node[10]; m_result$= new Node[10];
// **mating assignments for the arrays would go here**
int i= 0;
//@ maintaining ...
while (i<10) {

m_result[i]= new Node(); m_result$[i]= new Node();
//@ set m_result[i].dash= false; set m_result$[i].dash= true;
//@ set m_result[i].mate= m_result$[i]; set m_result$[i].mate= m_result[i];
m_result[i].val= x; m_result$[i].val= m_result[i].val;
i++;

} }

Fig. 2. Self-composed and transformed method m from Sect. 1, with JML annotation

has been applied. The self-composed version needs to be annotated with assignments
to the ghost fields (written as JML comments with keyword set), at the point where
the dashed copy has been allocated and is low-visible. Here we do not mate the arrays
themselves, since JML doesn’t allow ghost fields to be added to arrays, but we do mate
their contents. This example verifies in 0.425sec (using the -loopSafe option for sound-
ness) with the elipses replaced by an obvious invariant derived from the postcondition
by a standard heuristic (replace constant 10 by variable i).

To illustrate that the transformation is not necessary in general, Fig. 3 shows the
running example self-composed but not transformed. The mating assignments are all
in the second loop body and this version verifies in 0.529sec. It works because the
objects created by the first loop are easily referenced since they are in an array. But
whereas the loop invariants needed for Fig. 2 are obtained from the postcondition by
simply replacing constant 10 by index variable i, the version in Fig. 3 requires additional
invariants (the only ones shown) expressing the absence of aliasing since the allocations
are separated in the code. If instead of an array one considers a linked list or other linked
structure, it is more difficult to state such invariants.

7 Transforming the Self-composed Command

Terauchi and Aiken propose an interleaving transformation like the one used in the
preceding experiment and described in Sect. 1. They show it sound, but in the setting
of a simpler language without objects. It depends on conservative analysis that could
be obtained by type inference. Their formulation does not suggest an obvious way to
extend the results to richer language features or policies. This section sketches how to
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// Specification same as in previous version...
void Pair_m(int x, int secret, int x$, int secret$) {

m_result= new Node[10]; m_result$= new Node[10];
int i= 0;
//@ maintaining ...(\forall int j,k; 0<=j&&j<k&&k<i ==> m_result[j]!=m_result[k]);
while (i<10) {

m_result[i]= new Node();
m_result[i].val= x;
i++;

}
i= 0;
//@ maintaining ...(\forall int j,k; 0<=j&&j<k&&k<10 ==> m_result[j]!=m_result[k]);
//@ maintaining (\forall int j,k; 0<=j&&j<10&&0<=k&&k<i ==> m_result[j]!=m_result$[k]);
while (i<10) {

m_result$[i]= new Node();
m_result$[i].val= x$;
//@ set m_result[i].dash= false; set m_result$[i].dash= true;
//@ set m_result[i].mate= m_result$[i]; set m_result$[i].mate= m_result[i];
i++;

} }

Fig. 3. Self-composed method m, not transformed

use relational correctness judgements to formulate the interface to the analysis as well
as the transformations themselves. Indexing is elided for clarity.

Suppose the goal is to check the simple noninterference property Γ |Γ |= S ∼
S : Indvis −−� Indvis. After renaming the second copy, Theorem 1 tells us an equivalent
partial correctness judgement Δ |= {(Inddvis)1} S;S′ {(Inddvis)1} where Δ is Γ .Γ ′. In-
stead of directly verifying this, we want S∗ such that Δ |= {(Inddvis)1} S∗ {(Inddvis)1}
implies Δ |= {(Inddvis)1} S;S′ {(Inddvis)1}. The requisite transformation can be ex-
pressed by relational correctness judgements: the relations express both the notion of
equivalence (e.g., modulo renaming) and the conditions under which the transformation
is valid (e.g., known initial values, or final values that aren’t used). Here is an example
judgement that transforms x := y by renaming and exploiting a precondition:

x,y : int |x′,y′ : int |= x := y ∼ x′ := 0 :(y = 0∧ y = y′)−−� (x = x′ ∧ y = y′)

The situation of interest is complicated by the fact that the program S;S′ to be trans-
formed already acts on two copies of Γ . The rule we need for loop transformation
includes an antecedent of the form Δ |Δ |= E ∼ E ′ :R −−� . . . where R expresses that
the dashed and undashed copies of E have the same value.

To establish the antecedents, the idea of Terauchi and Aiken is to use type inference
to find a less precise property of S, namely Γ |Γ |= S ∼ S : IndV −−� IndV for some
V ⊆ vis. Type inference would yields this property for all constituent parts including
the loop guard E (if it is low; otherwise no transformation is needed). This is now
lifted to Δ by a construction applicable to any context Γ : the cartesian square of a
predicate, intersected with the identity. For any P ⊆ [[Γ ]], define P⊗P ⊆ [[Γ ]]× [[Γ ]]
by (P⊗P)ss′ ⇐⇒ s = s′ ∧P s.

Taking R to be InddV ⊗ InddV , the analysis-based transformations yield Δ |Δ |=
S;S′ ∼ S∗ :R −−� R. Now the desired judgement Δ |= {(Inddvis)1} S;S′ {(Inddvis)1}
(which itself encodes a relation!) is lifted to the level of relations in the squared form
Δ |Δ |= S;S′ ∼ S;S′ :(Inddvis)1⊗ (Inddvis)1 −−� (Inddvis)1 ⊗ (Inddvis)1. This can now
be composed with the transformation Δ |Δ |= S;S′ ∼ S∗ :R −−� R by general transi-
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tivity (that is: Γ |Γ |= S0 ∼ S1:R0 −−� S 0 and Γ |Γ |= S1 ∼ S2:R1 −−� S 1 imply
Γ |Γ |= S0 ∼ S2:(R0;R1) −−� (S 0;S 1)). The outcome is a judgement involving
composed relations like (InddV ⊗ InddV );((Inddvis)1⊗ (Inddvis)1). For this process to
be useful, the composed relations must boil down to the original noninterference prop-
erty, which they do owing to a general result about the relational logic.

Theorem 2. Let Δ abbreviate Γ .Γ ′. Suppose Δ |Δ |= S ∼ S∗ :R −−� S for some S
and S∗, where R and S are symmetric. Let P and Q be predicates on Δ such that
R;(P ⊗P) = P ⊗P and P ⊗P = (P ⊗P);R (and mutatis mutandis for Q).
Then Δ |= {P} S∗ {Q} implies Δ |= {P} S {Q}.

This can be instantiated with S := (S;S′) with S′ being a renamed copy of S; moreover
P and Q encode the desired noninterference property based on Indvis and R,S en-
code the result of type based analysis, e.g., P is Inddvis⊗ Inddvis, R is InddV ⊗ InddV

and Q,S correspond to P,R but with extended bijections as usual. In the situation
described above with V ⊆ vis we have Inddvis

τ ⊆ InddV
τ because larger vis is more re-

strictive. This yields the requisite absorption properties, e.g., R;(P⊗P) = P⊗P .
So the Theorem justifies the use of transformations that are sound for InddV to prove
noninterference with respect to vis.

8 Discussion

We defined a novel encoding to support self-composition in programs acting on the
heap. The encoding is expressed in terms of auxiliary state, specifically ghost fields
which are available in specification languages like JML. Theorem 1 says that a rela-
tional property is equivalent to a corresponding partial correctness property of a self-
composed program. The notion of relational property is general enough to encompass
rich declassification policies and also to be used to reason about program transfor-
mations. Theorem 2 justifies the use of transformations like those of Aiken and Ter-
auchi [30] which are needed to make the self-composed version amenable to off-the-
shelf program verifiers (automatic or interactive), in particular to bring allocations to-
gether by merging loops. Preliminary experiments indicate that the encoding and me-
chanical transformations work smoothly with extant tools.

For modular verification of commands with method calls, it is desirable to transform
the program so that a duplicated pair of calls can be brought together and even replaced
by a single invocation of a suitably transformed version of the method (like pair_m in
the example). The transformed version can be proved to satisfy its specification using
verification, if necessary, or by security type checking.

The fact that type checking can be used to justify transformations does not mean that
the verification technique achieves nothing beyond what can be type checked. Trans-
formation is not always necessary, as illustrated by Fig. 3; similarly, method calls need
not be transformed if adequate functional specifications are available. The properties
needed to justify transformations can themselves be proved by verification instead of
type checking.
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Related work. Self-composition is essentially an application of Reynolds’ method for
proving data refinements [25,13], but data refinement with general heaps has only re-
cently been studied [3] and not yet using this method. Barthe, D’Argenio, and Rezk [7]
develop a general theory of self-composition. They sketch a treatment of the heap using
separation logic semantics; indistinguishability of abstract lists is used to avoid the is-
sue of pointer renaming. Terauchi and Aiken [30] note that self-composition generalizes
to general relational properties (of a single program, in their case). They introduce the
transformations we studied in this paper and report good experimental results for de-
terministic simple imperative programs using the BLAST tool [17]. Correctness of the
transformations is proved under reasonable assumptions typical of type systems [30].
But their formulation seems rather specific and it is unclear how to extend it to richer
semantics, e.g., where equality may only be up to renaming.

Benton [9] develops relational Hoare logic for a deterministic imperative language
and applies it to analysis-based compiler optimizations. Yang [32] develops a relational
Separation Logic [26]. The secure flow logic of Amtoft and Banerjee [2] can be seen as
a relational Hoare logic for the special case of noninterference; it is extended to heaps
in [1] and applied to declassification in [5]. The focus of Amtoft et al. is automated
static analysis; an abstract interpretation for the heap is presented in “logical form”.

Darvas, Hähnle, and Sands [11] use the KeY tool for interactive verification of nonin-
terference. It uses a dynamic logic for Java, which is more expressive than ordinary par-
tial correctness assertions, allowing in particular existential quantification over weakest-
precondition statements. For nondeterministic S, the self-composed version S;S′ does
not capture relational properties, but they can be captured using the conjugate predi-
cate transformer¬wlp¬ [16]. This suggests it would be interesting to explore the use of
dynamic logic for relational properties of nondeterministic programs.

Dufay, Felty, and Matwin [15] use the self-composition technique to check noninter-
ference for data mining algorithms implemented in Java. They use the Krakatoa tool,
based on the Coq theorem prover and using JML [19]. They extend JML with special
notations to refer to the two copies of program state and extend Krakatoa to gener-
ate special verification conditions. The paper does not give much detail about the heap
encoding. To prove that noninterference is enforced by their security type inference
system for an ML-like language, Pottier and Simonet [24] extend the language with a
pairing construct and semantics that encodes two runs of a program as one.

Future work. Although our small experiments worked without difficulty, there is an
impediment to scaling up the idea. The mating condition appears in preconditions and
postconditions of every method, so effectively it is an object invariant. But in general it
needs to be fully ramified to all fields of all reachable objects. This is tricky because in
languages like JML specifications must respect the visibility rules of the language and
therefore cannot refer to “all” fields. One possibility is to define the mate predicate as
a pure method, overridden in each class—it constrains the fields visible in that class,
by invoking mate on class type fields and invoking super.mate for inherited ones.
Care is needed, owing to cycles in the heap; moreover reasoning about pure methods
in specifications is not well supported in current verifiers [12]. Another approach is
to formulate mating in a decentralized way using explicit object invariants, which are a
topic of active research on modular reasoning [20]. The mating invariant is incompatible
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with ownership-based invariants (or model fields) but it is compatible with friendship-
based invariants [23]; friendship is slated to be added to Spec# and is available as an
undocumented feature in the tool of Cees Pierik (www.cs.uu.nl/groups/IS/vft/).

Theorem 2 characterizes the useful transformations and some examples have been
mentioned, but it remains to develop a full set of transformations. Benton’s proof system
could be extended to incorporate the heap and also method calls, and syntax added to
manipulate the embeddings. The idea is to derive specialized transformations like those
needed for self-composition from very powerful general rules that can be formulated in
a relational setting.

Self-composition generalizes to simulations for data abstraction. In particular, we
plan to investigate use of the encoding for establishing the antecedent in the represen-
tation independence property [3].

Acknowledgement. Thanks to Dustin Long for help with the ESC/Java experiments.
Thanks to Dustin and to Mike Barnett for adapting the Java experiments to Spec# and
trying them with the Boogie verifier. Insightful comments from reviewers significantly
improved the presentation.
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Abstract. We propose a logic for specifying security policies at a very
high level of abstraction. The logic accommodates the subjective nature
of affirmations for authorization and knowledge without compromising
the objective nature of logical inference. In order to accurately model
consumable authorizations and resources, we construct our logic as a
modal enrichment of linear logic. We show that the logic satisfies cut
elimination, which is a proof-theoretic expression of its soundness. We
also demonstrate that the logic is amenable to meta-reasoning about
specifications expressed in it through several examples.

1 Introduction

In this paper we develop a logic for specifying security properties of distributed
systems at a very high level of abstraction. One of the difficulties in this domain
is that security specifications, by nature, depend on individuals’ intent as well
as their state of knowledge. In addition to logical inference regarding the truth
of propositions, we therefore also need to reason with affirmations of principals
(to express intent), and knowledge of principals. In addition, we often need to
capture changes of state, such as transfer of money or goods, which is most easily
expressed in linear logic. We therefore arrive at a linear logic with additional
modal operators for affirmation and knowledge, indexed by principals. We believe
the combination of linearity with modalities such as affirmation and knowledge
is an original contribution of this paper with some new insights, such as how
to model possession of consumable resources as linear knowledge, or single-use
authorizations as linear affirmations.

We show that our logic satisfies cut elimination, which is a proof-theoretic ex-
pression of its soundness. Moreover, the cut elimination theorem shows that the
various components of the logic are orthogonal and, for example, there is a co-
herent subsystem containing only affirmations and not knowledge. We illustrate
our logic through two examples. The first concerns a student registration system
and demonstrates how to represent use-once authorizations, but avoids the use
of knowledge. The second is a specification of monetary instruments which em-
ploys affirmations expressing authorization and knowledge to model possession
of resources. In both examples we show how to exploit the formal foundation
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of our logic in order to reason about properties of specifications expressed in it.
In the student registration example we show that various constraints, such as
the maximal number of credits a student can sign up for, are respected. In the
monetary examples, we verify balance conditions on the total amount of money
in the bank or under the control of principals. These meta-theoretic analyses rely
again on cut elimination and a somewhat deeper property, namely completeness
of focusing.

While beyond the scope of the present paper, some prior work on proof-
carrying authorization [7,8] suggests that fragments of our logic would be a
suitable basis for policy enforcement in a distributed architecture.

We now present the logic in two steps, first reviewing affirmation as developed
in [14] in the new context of linearity. We then add possession and knowledge,
followed by a brief sketch of the meta-theory of our logic and the examples. We
conclude with additional related work and future plans.

2 A Constructive Linear Logic of Affirmation

When designing a new specification logic, we have to consider the range of prop-
erties we would like to express. First, we realize that we need standard logical
connectives such as conjunction and implication. These are concerned with the
truth of propositions, which is therefore our first judgment, A true. We also need
reasoning from hypotheses, so our basic judgment form is a hypothetical judg-
ment. One might say that this constitutes the objective part of the logic since
everyone agrees on the laws of logical reasoning and therefore on the meaning
of the connectives.

Second, we need a way for principals to express their intent, such as who may
access some information they have. We call this judgment affirmation, written as
K affirms A (principal K affirms proposition A). The affirmation of a proposition
does not imply its truth, otherwise everyone could give themselves access to any
resource simply by affirming this. For example, a principal may affirm that she
has access to a certain file on the disk. This is an expression of her intent; in
truth she will not have access to the file unless the security policy allows it. On
the other hand, if A is true then all principals are willing to affirm A since we
assume principals are rational and can verify evidence for A.

In an implementation, we imagine affirmations can be established in two ways:
cryptographically via certificates containing A signed by K, and logically via a
deduction proving that A is true. The combination of signed certificates and
logical proofs is the foundation of proof-carrying authorization [6,7].

We would like to go a step further and allow affirmations that may be used
only once. For example, a personal check for $10 from K made out to L can be
seen as an affirmation that K is prepared to pay L the sum of $10. However, this
affirmation can be used by L only once; L cannot be allowed to cash the check
multiple times. In logical terms this means that the certificate is linear, and that
our logic will be an enrichment of linear logic. Linear logic is characterized by a
linear hypothetical judgment where each linear assumption must be used exactly
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once and therefore represents a consumable resource. Of course, we also still need
assumptions whose use is unrestricted for reusable certificates. From the point
of view of linear logic, these assumptions are of the form A valid, because their
proof cannot depend on any linear resources.

Putting these observations together, we obtain the judgment forms

Γ ;Δ =⇒ A true
Γ ;Δ =⇒ K affirms A

where Δ consists of linear (use-once) hypotheses A true and Γ consists of un-
restricted (reusable) hypotheses A valid. It turns out that we do not need to
explicitly consider conclusions of the form A valid or hypotheses of the form
K affirms A because they can always be eliminated.

The first set of rules just captures the nature of the hypothetical judgments.
Because A true or A valid can always be inferred from their position in the
sequent, we will generally abbreviate these judgments to just A. The short-hand
γ stands for judgments we consider on the right, which are either A true or
K affirms A.

Γ ;A =⇒ A
(init)

Γ,A;Δ,A =⇒ γ

Γ,A;Δ =⇒ γ
(copy)

Next, the rules pertaining to the affirmation judgment. Because we do not con-
sider hypotheses of the form K affirms A, there is only one rule which states that
any principal K is prepared to affirm any true proposition.

Γ ;Δ =⇒ A

Γ ;Δ =⇒ K affirms A
(affirms)

Next, we internalize affirmation as a propositional modal operator so that we
can combine affirmations with logical connectives such as implication. We write
〈K〉A for the proposition that internalizes K affirms A. In a sequent calculus
connectives are characterized by left and right rules.

Γ ;Δ =⇒ K affirms A
Γ ;Δ =⇒ 〈K〉A

(〈〉R)
Γ ;Δ,A =⇒ K affirms C

Γ ;Δ, 〈K〉A =⇒ K affirms C
(〈〉L)

While the right rule is straightforward, the left rule is key to understanding the
modal nature of affirmation. Observe that in order to apply the left rule to 〈K〉A,
the succedent of the sequent must be an affirmation by the same principal K.
This means we can move from the truth of 〈K〉A to the truth of A, but only if
we are reasoning about the affirmations of K. This captures that K is rational.

3 Possession and Knowledge

The next step is to introduce knowledge into our logic. We are not aware of any
attempts to combine epistemic logic with linear logic, so we believe this to be a
contribution of this paper of independent interest.
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One assumption commonly made about knowledge is that it is monotonic:
we may learn more, for example, by inference, but we do not forget. Then what
is “linear knowledge”? Returning to the usual interpretation of linear logic, we
consider a linear assumption A true as a resource that may be consumed in a
proof. Then linear knowledge is nothing but possession of a resource that may
be consumed in a proof. We therefore write K has A for the new judgment of
possession which is linear. It turns out we can always eliminate possession in the
succedent of a sequent, so there is only one judgmental rule.

Γ ;Δ,A =⇒ γ

Γ ;Δ,K has A =⇒ γ
(has)

Informally, it states that if K possesses A then A may be used a resource. We
have to take care, however, to make sure that other principals cannot steal the
resource.

We internalize possession as a proposition, [K]A, expressing that it is true that
K possesses A. The hypothetical nature of sequents means that a proposition
[K]A in the succedent expresses potential possession, where a proof corresponds
to a plan to achieve this position. For example, the sequent

·;K has (B � A),K has B =⇒ [K]A

could be read as: If K has a means to transform a resource B into a resource
A, and K also has resource B, then it is true that K can obtain resource A. Of
course, resources B and B � A would be consumed in the process of obtaining
A, since those resources are linear.

The right rule expresses that, in order to show that K could obtain resource
A, we have to show that resource A can be obtained using only the resources
in Γ and Δ that K possesses and no others. This requires a restriction operator
that removes from a context Δ all assumptions that are not of the form K has
A, and similarly for the unrestricted context. In comparison, the left rule for
[K]A is straightforward, just transforming the proposition to the corresponding
judgment.

Γ |K ;Δ|K =⇒ A

Γ ;Δ|K =⇒ [K]A
([]R)

Γ ;Δ,K has A =⇒ γ

Γ ;Δ, [K]A =⇒ γ
([]L)

The restriction operator on linear assumptions1 is defined formally as

(·)|K = ·
(Δ,K has A)|K = Δ|K ,K has A
(Δ,L has A)|K = Δ|K for L �= K
(Δ,A true)|K = Δ|K

This means in the []R rule above, the linear context in the premise and the
conclusion must contain only assumptions of the form K has B for the given K
but possibly distinct B.
1 The corresponding operator on unrestricted assumptions Γ is given below.
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We also need more traditional knowledge of propositions, subject to unre-
stricted reuse. We write this judgment as K knows A. By its nature, it belongs
in the context Γ . Again, knowledge is only required in assumptions so we have
only one rule pertaining directly to the judgment. It allows us to infer the truth
of A given K’s knowledge of A. Of course, the converse must be prohibited.

Γ,K knows A;Δ,A =⇒ γ

Γ,K knows A;Δ =⇒ γ
(knows)

Internalizing knowledge in the same way as possession, keeping in mind its un-
restricted nature, we obtain the following two rules.

Γ |K ; · =⇒ A

Γ ; · =⇒ [[K]]A
([[]]R)

Γ,K knows A;Δ =⇒ γ

Γ ;Δ, [[K]]A =⇒ γ
([[]]L)

The first expresses that K can obtain knowledge of A if it follows by logical
reasoning from the knowledge that K already has and no other assumptions.
Formally, restriction is defined as follows.

(·)|K = ·
(Γ,K knows A)|K = Γ |K ,K knows A
(Γ,L knows A)|K = Γ |K for L �= K
(Γ,A valid)|K = Γ |K

This concludes our introduction to the basic logic, omitting only the standard
connectives, both linear and non-linear. A description of the these may be found
in [11]. We assume that the first-order universal quantifier is included because
we need it to encode the examples in section 5. All results of the next section
extend to the first-order case easily.

4 Cut Elimination

In a sequent calculus the connectives are explained via their right and left rules.
Since propositions are always decomposed in such rules when read from the
conclusion to the premises, we are justified in saying that the meaning of propo-
sitions is determined by their proofs, but only if the underlying interpretation of
the sequent as a hypothetical judgment is respected. This is the contents of two
important theorems: the admissibility of cut and the identity principle. Admis-
sibility of cut expresses that we can always eliminate an assumption A true if we
can supply a proof of A true. The identity principle states that we only need the
(init) rule Γ ;A =⇒ A for the case where A is atomic. To prove these we need
to state them in a more general form to account for the other judgments in our
logic. Other properties, such as weakening and contraction for the unrestricted
context are immediate and we don’t state them explicitly.
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Theorem 1 (Admissibility of cut).

1. If Γ ;Δ =⇒ A and Γ ;Δ′, A =⇒ γ then Γ ;Δ′, Δ =⇒ γ.
2. If Γ ; · =⇒ A and Γ,A;Δ′ =⇒ γ then Γ ;Δ′ =⇒ γ.
3. If Γ ;Δ =⇒ K affirms A and Γ ;Δ′, A =⇒ K affirms C then Γ ;Δ,Δ′ =⇒

K affirms C.
4. If Γ |K ;Δ|K =⇒ A and Γ ;Δ′,K has A =⇒ γ then Γ ;Δ′, Δ|K =⇒ γ.
5. If Γ |K ; · =⇒ A and Γ,K knows A;Δ′ =⇒ γ then Γ ;Δ′ =⇒ γ.

Proof. By nested induction, first on the structure of the cut formula A and then
on the size of the two given derivations, as in [18,11].

Theorem 2 (Identity). In the sequent calculus where initial sequents are re-
stricted to atomic propositions, Γ ;A =⇒ A for any proposition A.

Proof. By induction on the structure of A.

5 Examples and Reasoning About Policies

We present two examples of security policies expressed in our logic using linear
authorization and knowledge. The first one uses linear authorizations to describe
a university course registration system. In the second example, we use linear
knowledge and authorizations to represent a system of monetary instruments
like checks, promissory notes and bank accounts. We reason about interesting
properties of these systems (like correctness with respect to a given specification)
using the logic. Some of the methods used for reasoning can be generalized
beyond these examples. We return to this point briefly at the end of the section.

5.1 Course Registration

This example describes a university registration system using linear authoriza-
tions. Some of the authorizations in this example may be replaced by linear
possessions, but we do not do this to keep the example simple. We assume
two main principals: a calendar which authorizes free time slots available for
students, and a registrar who controls the entire registration process. The fol-
lowing table lists the predicates we use along with their intuitive meanings.

slot(S, T ) Student S is free during time slot T
credits(S,R) Student S may register for R more credits in the

semester
registered(S,C,R, T ) Student S is registered in course C for R credits in

time slot T
seats(C,N) There are N more seats available in course C
course(C,R, T ) Course C is worth R credits and runs in time slot T

We wish to enforce three conditions during registration:

1. No student registers for more than a stipulated number of credits.
2. A student does not register for two courses that use the same time slot.
3. A maximum registration limit for each course is respected.



A Linear Logic of Authorization and Knowledge 303

In the logic, linear authorizations are represented as assumptions of the form
〈K〉A in the linear context Δ. Authorizations meant for unrestricted use are rep-
resented as assumptions of the same form in the context Γ . In an implementa-
tion, these assumptions are substituted by certificates signed by the authorizing
principals.

We assume that at the beginning of the semester a number of certificates are
issued by the registrar and the calendar, i.e., we assume that a number of autho-
rization assumptions are present in our context when we start reasoning. These
are the following. For each student S there is one linear certificate of the form
〈registrar〉credits(S,R) issued by the registrar. This certificate mentions the
maximum number of credits R that the student is permitted to take during the
semester. For each possible time slot T , each student S gets one certificate of
the form 〈calendar〉slot(S, T ) from the calendar. This entitles the student to
register for some course in time slot T .

For each course C, the registrar issues a linear certificate of the form
〈registrar〉seats(C,N), that specifies the number of seats N in the course.
The registrar also issues one unrestricted certificate for each course C. This cer-
tificate specifies the number of credits R the course is worth, and the time slot
T in which it runs. It has the form 〈registrar〉course(C,R, T ).

Now we state the policy rule governing registration in courses. The rule is
universally quantified over the terms S, N , R, R′, C and T .

reg : 〈registrar〉course(C,R, T ) ⊃
〈registrar〉seats(C,N) �
〈registrar〉credits(S,R′) �
(N ≥ 1) ⊃ (R′ ≥ R) ⊃
〈calendar〉slot(S, T ) �

(〈registrar〉registered(S,C,R, T ) ⊗
〈registrar〉credits(S,R′ −R) ⊗
〈registrar〉seats(C,N − 1))

Intuitively, this rule says the following: if course C, worth R credits and run-
ning in time slot T , has at least one seat available, and student S can register
for at least R more credits during the semester and is free during time slot
T , then S may register for the course C. The rule consumes the credential
〈registrar〉credits(S,R′), replacing it with a similar credential that decre-
ments R′ by the number R of credits that the course is worth. This enforces
condition (1) above. The rule also consumes S’s time slot credential correspond-
ing to the course’s time slot T to prevent her from registering in another course
that runs in the same slot. This enforces condition (2). Condition (3) is en-
forced because the rule replaces the credential 〈registrar〉seats(C,N) with
〈registrar〉seats(C,N − 1). This reduces the number of seats available in the
course by one.

Observe that there is no condition in the rule that represents intent of stu-
dent S to register for course C. This is because we are interested in expressing
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only the security aspects of the system in the logic. If this rule were to be im-
plemented, say using a protocol, it would be necessary to ensure that the rule is
used only when student S is actually willing to register for the course C.

Atomicity in policy implementation. In any realistic implementation of the
above policy, it is essential that the policy rule reg be used atomically, i.e., in
any application of the rule, all its pre-conditions be satisfied simultaneously.2

This is significant due to linearity, because proving some pre-conditions of the
rule may utilize linear resources, and a partial application of the rule may result
in a situation where linear resources are incorrectly consumed.

A simple example illustrates this point. Suppose a student S wishes to register
for course C worth R credits in time slot T and the following hold: (a) the course
has a seat (there is a certificate 〈registrar〉seats(C,N), where N ≥ 1), (b)
the student S has sufficient number of available credits (she has a certificate
〈registrar〉credits(S,R′) where R′ ≥ R), and (c) S does not have the required
time slot certificate 〈calendar〉slot(S, T ). If we were to permit non-atomic use
of the policy rule, we could consume the linear certificates mentioned in (a) and
(b) to conclude the following:

〈calendar〉slot(S, T ) �
(〈registrar〉registered(S,C,R, T ) ⊗
〈registrar〉credits(S,R′ −R) ⊗
〈registrar〉seats(C,N − 1))

However, since the student does not have the required time slot certificate
〈calendar〉slot(S, T ), we cannot proceed any further. At this point, the system
is stuck in an inconsistent state because two linear certificates mentioning the
number of seats in course C and student S’s available credits have been con-
sumed. No student can register in course C now, and S cannot register for any
other course. Thus it is essential that the policy rule above (and in general, any
policy rule that uses linear resources), be enforced atomically in an implemen-
tation.

Atomicity in the logic. If we can enforce atomicity of policy rules at the level
of the logic itself, we can reason more faithfully about the consequences of poli-
cies using the logic. In particular, we can prove useful invariance properties of
the system as it evolves under a particular policy. Since atomicity is an artifact
of the implementation, the method used to enforce it in the logic should not
affect logical consequence or provability in the logic. One such method is focus-
ing [5], which is a proof search technique that combines a number of inference
steps atomically without affecting provability. A detailed description of focusing
is beyond the scope of this paper. In the following we present it only to the
extent that is appropriate for our purpose. We convert each policy rule into a
derived inference rule, which we add to the logic. Atomicity is forced implicitly
by the inference rule. For example, the rule reg can be converted to the following
inference rule.

2 The pre-conditions of a rule A1 � . . . An � B are A1, . . . , An.
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Γ ; · =⇒ 〈registrar〉course(C, R, T )

Γ ; Δ1 =⇒ 〈registrar〉seats(C, N)

Γ ;Δ2 =⇒ 〈registrar〉credits(S, R′)
Γ ; · =⇒ N ≥ 1

Γ ; · =⇒ R′ ≥ R

Γ ;Δ3 =⇒ 〈calendar〉slot(S, T )

Γ ; Δ4, 〈registrar〉registered(S, C, R, T ),
〈registrar〉credits(S, R′ −R), 〈registrar〉seats(C, N − 1)

=⇒ γ

(reg)
Γ ; Δ1Δ2Δ3Δ4 =⇒ γ

Read bottom up, the rule says that we can conclude γ using the linear re-
sources Δ1Δ2Δ3Δ4, if we can prove the preconditions of the rule reg using Δ1,
Δ2 and Δ3, and use Δ4 and the three authorizations produced by reg to prove
γ. This is exactly the behavior of the rule reg if it were implemented atomically.

System states and steps. We now formalize a notion of system state and
state transition (step) for our example. Once we have these definitions we can
prove that certain properties of system states are invariant under steps. These
properties can be used to establish that the policy satisfies the three conditions
mentioned at the beginning of the example. Informally, a state of the system is
a pair of contexts Γ ;Δ that contains only those authorizations that are relevant
to our example.

Definition 2 (State). A state of the system is a pair of contexts Γ ;Δ, satis-
fying the following conditions.

1. All assumptions in Γ have the form 〈registrar〉course(C,R, T ).
2. All assumptions in Δ have one of the forms 〈registrar〉credits(S,R),
〈calendar〉slot(S, T ), 〈registrar〉registered(S,C,R, T ) or
〈registrar〉seats(C,N).

3. For each student S, Δ has exactly one assumption of the form
〈registrar〉credits(S,R).

4. For each student S and each time slot T , there is at most one assumption
of one of the following forms in Δ: 〈calendar〉slot(S, T ) and
〈registrar〉registered(S,C,R, T ).

5. For each course C, there is exactly one assumption of the form
〈registrar〉course(C,R, T ) in Γ and one assumption of the form
〈registrar〉seats(C,N) in Δ.

6. For each student S and each course C, there is at most one assumption of
the form 〈registrar〉registered(S,C,R, T ) in Δ.

Next, we define a state change, or step of the system. This notion is closely
related to a similar idea from multi-set rewriting [10].

Definition 3 (Step). We say that the pair of contexts Γ ;Δ steps to the pair
Γ ′;Δ′ (written Γ ;Δ −→ Γ ′;Δ′), if there is a derivation of Γ ;Δ =⇒ γ from
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Γ ;Δ′ =⇒ γ that is parametric in the conclusion γ, i.e., there is a derivation of
the following form that is correct for every γ.

Γ ′; Δ′ =⇒ γ

...
Γ ; Δ =⇒ γ

By definition, −→ is a transitive relation and −→∗=−→. The following lemma
characterizes −→ in terms of smaller inferences.

Lemma 1 (Characterization of steps). Let Γ ;Δ be a state, i.e., it satisfies
all conditions in definition 2. Suppose Γ ;Δ −→ Γ ′;Δ′. Then Γ = Γ ′ and the
corresponding derivation from definition 3 must have the following form (for
some n ≥ 0).

. . .

. . . Γ ; Δ′ =⇒ γ
(reg)

Γ ; Δn =⇒ γ

...
Γ ; Δ1 =⇒ γ

(reg)
Γ ;Δ =⇒ γ

Further, the pairs Γ ;Δi and Γ ;Δ′ are states of the system, i.e., they satisfy the
conditions in definition 2.

Proof. The proof of this lemma follows by observing that if we reason backwards
from the sequent Γ ;Δ =⇒ γ, then the only rule that applies is reg. This is
because γ is parametric (so no right rule applies). Further, we assumed that
Γ ;Δ is a state, and hence the only assumptions are of the form 〈K〉A, and so
no left rule applies either because the form of γ is unknown. This argument can
now be repeated. �

Lemma 1 provides us an induction principle for reasoning with steps. We can
induct on the number of (reg) rules in the derivation mentioned in the lemma.
Using this method we can prove the following correctness proposition.

Property 1 (Correctness of the policy). Suppose Γ ;Δ is a state and Γ ;Δ
−→ Γ ;Δ′. Then the following hold.

1. For each student S, the sum of all credits R in authorizations of the form
〈registrar〉credits(S,R) and 〈registrar〉registered(S,C,R, T ) in the
context Δ is the same the corresponding sum in Δ′.

2. For every time slot T , and every student S, there is at most one authorization
of the form 〈registrar〉registered(S,C,R, T ) in Δ and Δ′.

3. For each course C, the sum of N in the (unique) certificate of the form
〈registrar〉seats(C,N) and the number of certificates of the form
〈registrar〉registered(S,C,R, T ) in the context Δ is the same as the cor-
responding sum in Δ′.
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Proof. (1) and (3) follow by induction on the number of (reg) rules in the
derivation corresponding to Γ ;Δ −→ Γ ;Δ′ from lemma 1. (2) follows from the
fact that Γ ;Δ′ must be a state (lemma 1) and that each state satisfies clause 4
of definition 2. �

Observe that if we start from a state Γ ;Δ which has no assumptions of the form
〈registrar〉registered(S,C,R, T ), then the three statements of the above
proposition imply the three correctness conditions mentioned at the beginning
of the example for the state Γ ;Δ′. This formally proves that the policy imple-
mented by the rule reg is correct with respect to those conditions.

5.2 Monetary Instruments

We describe a monetary system involving bank accounts, checks, promissory
notes and tradeable items in our logic. In addition to linear authorizations, this
example uses linear possessions to represent various monetary resources in the
hands of principals. We use an approach similar to the previous example. First
we describe the system in our logic using specific predicates and policy rules.
Then we convert the policy rules to inference rules in order to force atomicity.
Next, we define a notion of state and step for the system. Finally, we characterize
steps in a manner analogous to lemma 1, and use this to prove two properties of
the monetary system. The first property says that the total amount of money in
the system remains unchanged as the system evolves. The second property says
that the net assets of every principal remain constant.

We assume the existence of at least two principals, the bank and a credit
company cc. We assume that every principal has an account in the bank. We
represent account balances of principals as assumptions of linear possession: the
assumption bank has balance(K,N) represents the fact that K has N dollars
in her bank account. In particular, the bank maintains its own account. This is
represented as bank has balance(bank, N).

A check for amount N is represented by the proposition check(N).3 A check
is useful only when signed by a principal, who promises to pay the correspond-
ing amount to its bearer, and possessed by some other principal who can use
it. A check for N dollars signed by K, and possessed by K ′ is represented as
K ′ has 〈K〉check(N). Observe the difference in the use of affirmation and knowl-
edge here: K’s signature on the check is represented using an affirmation, which
corresponds realistically to the fact that the check is an intent of payment made
by K, whereas the fact that K ′ holds the check is represented using linear pos-
session.

A promissory note of amount N signed by principal K and possessed by
principal K ′ is represented by the assumption K ′ has 〈K〉iou(N). The difference
between a promissory note and check is that a check can be cashed at a bank
whereas a promissory note cannot be. We assume that the credit company holds
one promissory note of the form cc has 〈K〉iou(N), for each principal K. The

3 In order to keep the representation simple, we do not write the beneficiary of the
check as an explicit argument in the predicate check.
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ax1 : [L]〈K〉check(N) � [bank]balance(K, N1) �
[bank]balance(L, N2) � (N1 ≥ N) ⊃

([bank]balance(K, N1 − N) ⊗ [bank]balance(L, N2 + N))

ax2 : [bank]balance(K, N1) � [bank]balance(bank, N2) � (N1 ≥ N) ⊃
([bank]balance(K, N1 − N) ⊗
[K]〈bank〉check(N) ⊗
[bank]balance(bank, N2 + N))

ax3 : [cc]〈K〉iou(N) � ([cc]〈K〉iou(N + N ′) ⊗ [K]〈cc〉check(N ′))

ax4 : [L]〈M〉check(N) � [K]item(N) � ([L]item(N) ⊗ [K]〈M〉check(N))

ax5 : [K]〈L〉check(N) � [cc]〈K〉iou(N ′) � (N ′ ≥ N) ⊃
([cc]〈K〉iou(N ′ − N) ⊗ [cc]〈L〉check(N))

ax6 : [K]〈K〉check(N)

Fig. 1. Rules for the monetary system in section 5.2

amount N may be zero if K does not owe the credit company anything. Finally,
we have tradeable items in the system. An item of value N possessed by K is
represented as K has item(N).

Various possible transactions in the system are represented by the rules ax1-
ax6 shown in figure 1. These rules are universally quantified over terms in up-
percase. (ax1) says that if a principal L has a check for amount N signed by K,
she may take it to the bank and get it cashed. In the process, the bank incre-
ments L’s balance by N and decrements K’s balance by the same amount. (ax2)
permits a principal K having account balance at least N to obtain a banker’s
check for that amount. The bank transfers the amount N from K’s account to
its own and gives K a signed check for the same amount. (ax3) says that the
credit company is willing to sign checks for principals by taking promissory notes
from them.

If a principal K possesses an item worth N , she can sell it to L, provided L
can produce a check for the same amount. This is represented by (ax4). The
check moves from L to K during the transaction. (ax5) permits a principal K
to pay the credit company using a check. (ax6) says that any principal K may
sign a check for any amount N .

As with our last example, we convert each of these policy rules to an inference
rule, which we add to our logic. For brevity, we omit an explicit description of
the rules. We proceed to define the notion of state and step for our system. In
this example there are no unrestricted resources; therefore we omit the context
Γ from our definitions.

Definition 4 (State). A state of the system is a context Δ satisfying the fol-
lowing conditions.
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1. Δ contains assumptions of the following forms only: (a) bank has balance
(K,N), (b) cc has 〈K〉iou(N), (c) K has 〈L〉check(N), and (d) K has
item(N).

2. For each principal K, there is exactly one assumption of each of the following
forms in Δ: bank has balance(K,N), and cc has 〈K〉iou(N).

The definition of a transition step is similar to that in the previous example.

Definition 5 (Step). We say that the context Δ steps to Δ′ (written Δ −→ Δ′)
if there is a derivation of ·;Δ =⇒ γ from the assumption ·;Δ′ =⇒ γ that is
parametric in the conclusion γ.

Now we state a characterization lemma for steps, similar to lemma 1.

Lemma 2 (Characterization of steps). Suppose Δ is a state, i.e., it satisfies
the conditions in definition 4. Let Δ −→ Δ′. Then the corresponding derivation
from definition 5 has the following form, where each rule marked (∗) is an in-
ference rule derived from one of the policy rules (ax1)-(ax6).

. . .

. . . ·; Δ′ =⇒ γ
(∗)

·; Δn =⇒ γ

...
·; Δ1 =⇒ γ

(∗)
·; Δ =⇒ γ

Further, Δi and Δ′ are states of the system, i.e., they satisfy the conditions in
definition 4.

As before, this lemma gives us an induction principle for steps. Using that we
can prove the property shown below. The first statement in the property says
that the total amount of money in the system (as measured by the sum of the
bank balances of all principals) remains constant. The second statement says
that the net assets of every principal remain the same as the system evolves.

Property 2 (Consistency). Let Δ be a state, and Δ −→ Δ′. Then the follow-
ing hold.

1. The sum of all N such that bank has balance(K,N) exists in Δ, is the same
as the corresponding sum for Δ′.

2. For each principal K, the sum of amounts N in all assumptions of the form
bank has balance(K,N), K has 〈L〉check(N) and K has item(N) minus
the sum of amounts N in assumptions of the form L has 〈K〉check(N) and
cc has 〈K〉iou(N) is the same for both Δ and Δ′.

Proof. By induction on the number of rules marked (∗) in the derivation corre-
sponding to Δ −→ Δ′ from lemma 2. �
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Generic description of atomicity and steps. In reasoning about the policies
expressed in the two examples above, we used a number of similar concepts. In
each case we had: (a) inference rules derived from policy rules to force atomicity,
(b) notion of state, (c) notion of step, and (d) correctness conditions that are
invariant across steps (properties 1 and 2). Of these, the definition of state and
correctness are specific to a given policy and hard to generalize, but we can
describe atomicity and step for all policies expressible in the logic in a generic
manner by building a logic programming language based on our logic. We discuss
this briefly.

Our enforcement of atomicity using inference rules is based on focusing. The
notion of step relates quite naturally to the idea of forward chaining from proof
search. Focusing and forward chaining can be combined systematically to build a
logic programming language based on our logic. In such a language, proof search
would proceed through interleaving phases of goal directed backward search and
forward chaining. For policies expressed in the language, the notions of atomicity
and step arise from the semantics of proof search. Technically, such a language
requires a new lax modality to separate the two phases of proof search. Prior
experience with the language LolliMon [17] suggests that this is feasible and can
be implemented in practice.

6 Related Work

Our logic combines three major concepts: affirmation, knowledge, and linearity.
As far as we are aware, this is the first time that a linear logic of affirmation and
knowledge has been proposed and investigated. From the security perspective,
affirmations are used for authorization, knowledge to specify the intended flow
of information, linear affirmations for use-once credentials, and linear knowledge
for possession of consumable resources. In prior work, two of the authors have
developed the (non-linear) logic of affirmations for authorization [14], which is
a small fragment of what is presented here. The use of linearity for single-use
credentials together with an enforcement mechanism was first proposed by four
of the authors [8], but the underlying logic was not fully developed and its
properties not investigated. Furthermore, this logic was lacking a treatment of
possession and knowledge.

The study of authorization by logical means was initiated by Abadi et al. [4].
Their logic was classical, presented in an axiomatic style and studied through a
Kripke semantics. No proof-theory or meta-theoretic properties like cut elimina-
tion were described. Subsequently, a number of authorization logics have been
studied and implemented [13,9,16,15,12,19]. None of these logics is linear or pro-
vides proof-theoretic explanation of the logical operators. Further pointers on
this line of work can be found in a survey by Abadi [2], who has also recently
reformulated a (non-linear) constructive authorization logic [1] based on DCC [3]
which is quite similar to a fragment of the logic given here.

The concepts of possession and knowledge are related to the K-operator from
epistemic logics (see [20] for a survey of epistemic logics), which describes knowl-
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edge held by individuals and is similar to our operator [[K]]A. As far as we are
aware, the study of epistemic logics and its operators has been restricted almost
exclusively to the classical setting. Simultaneous use of knowledge and linearity
described in this paper to represent resources held by principals also appears to
be new.

We believe that the proof-carrying authorization (PCA) [6,7] architecture can
be extended to implement policies expressed in some fragments of the proposed
logic. The main new problem is enforcement of single use and atomicity of oper-
ations. Prior work in this direction indicates that contract signing protocols can
be used for doing this effectively [8]. We do not believe it possible to implement
the entire logic in a proof-carrying architecture because a proof of authorization
may depend on private knowledge held by individuals, and verifying such a proof
could result in a breach of security. Therefore, in order to effectively implement
this logic using PCA, we have to restrict ourselves to certain fragments, for ex-
ample, where authorizations made by any principal do not depend on knowledge
held by others.

7 Conclusion

We have presented a new constructive linear logic that develops the logical con-
cepts of affirmation and knowledge from judgmental principles. The logic yields
a clean proof theory and an analysis of meanings of the connectives from proof
rules. We have shown that the logic satisfies cut elimination and demonstrated
that policies expressed in the logic are amenable to meta-theoretic analysis re-
garding their correctness. We believe that this logic is a good foundation for ex-
pressing policies involving linear authorizations and resources held by principals.

There are several avenues for future work besides those mentioned with the
related work. One is to construct and implement a logic programming language
based on this logic, as mentioned at the end of section 5. Another avenue for
future work is to study non-interference properties for the logic, along the lines
of [14]. These properties permit administrators to explore the consequences of
their policies by showing that certain forms of assumptions cannot affect prov-
ability of certain other forms of conclusions. A third direction is to extend the
logic with explicit constructs for distribution of knowledge on physical sites to
reason about networked security systems at a slightly lower level of abstraction.
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17. Pablo López, Frank Pfenning, Jeff Polakow, and Kevin Watkins. Monadic concur-
rent linear logic programming. In Proceedings of the 7th International Symposium
on Principles and Practice of Declarative Programming (PPDP’05), Lisbon, Por-
tugal, 2005.

18. Frank Pfenning. Structural cut elimination I. Intuitionistic and classical logic.
Information and Computation, 157(1/2):84–141, March 2000.

19. Harald Rueß and Natarajan Shankar. Introducing Cyberlogic. In Proceedings
of the 3rd Annual High Confidence Software and Systems Conference, Baltimore,
Maryland, April 2003.

20. W. van der Hoek and R. Verbrugge. Epistemic logic: A survey. Game Theory and
Applications, 8:53–94, 2002.
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Abstract. We present a number of enhancements to the voter verifiable
election scheme Prêt à Voter [CRS05]. Firstly, we propose a mechanism
for the distributed construction by a set of independent clerks of the
ballot forms. This construction leads to proto-ballot forms with the can-
didate list encrypted and ensures that only a collusion of all the clerks
could determine the cryptographic seeds or the onion/candidate list as-
sociation. This eliminates the need to trust a single authority to keep this
information secret. Furthermore, it allows the on-demand decryption and
printing of the ballot forms, so eliminating chain of custody issues and
the chain voting style attacks against encrypted receipt schemes identi-
fied in [RP05].

The ballot forms proposed here use ElGamal randomised encryption
so enabling the use of re-encryption mixes for the anonymising tabulation
phase in place of the decryption mixes. This has a number of advantages
over the RSA decryption mixes used previously: tolerance against failure
of any of the mix tellers, full mixing of terms over the Z∗

p space and en-
abling the mixes and audits to be fully independently rerun if necessary.

1 Introduction

The Prêt à Voter scheme, presented in [CRS05], is a cryptographic voting scheme
that enables voter-verifiability: at the time of casting their vote, voters are pro-
vided with an encrypted receipt. They can then check, via a secure Web Bulletin
Board (WBB), that their receipt is accurately included in a robust anonymising
mix process. Various checking mechanisms serve to detect any corruption in any
phase of this process: encryption of the vote, recording and transmission of the
encrypted ballot receipt and the decryptions of the votes. Full details can be
found in [CRS05]. Henceforth we will refer to this version of the scheme as Prêt
à Voter’05.

Prêt à Voter seeks to achieve the goals of accuracy and ballot secrecy with
minimal trust in the system: software, hardware, officials. Assurance is achieved
through a high degree of transparency and we thus verify the correctness of the
election rather that attempting to verify the system.

This scheme has the benefit of providing a very simple and familiar voter
experience, but certain vulnerabilities and trust assumptions have been identi-
fied, see [RP05]. In this paper we present a number of enhancements designed
to counter these threats and eliminate the need for these trust assumptions.
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The construction of the ballot forms presented here also enables the use of
re-encryption mixes in the anonymising/tabulation phase. This also provides a
number of advantages over the RSA/decryption mixes of Prêt à Voter’05.

The structure of the paper is as follows: in the next section we give the key
elements of Prêt à Voter’05. Section 3 summarises some of the threats to and
trust assumptions needed in Prêt à Voter’05. Section 4 presents the distributed
construction of encrypted ballot forms. Sections 5 and 6 describe how these
forms can be used in the vote casting process. Section 7 describes the use of
this construction for re-encryption mixes during the anonymising and tabulation
phase. Sections 8 and 9 describe the new auditing procedures required for the new
ElGamal style ballot forms. Sections 10 and 11 discuss some further extensions
to deal with more general voting methods and remote voting.

2 Outline of Prêt à Voter 2005

We now present an overview of the Prêt à Voter voter-verifiable scheme. Voters
select at random a ballot form, an example of which is shown in Figure 1.

Obelix
Asterix
Panoramix
Idefix

7rJ94K

Fig. 1. Prêt à Voter ballot form

In the booth, the voter makes her selection in the usual way by placing a
cross in the right hand column against the candidate of choice, or, in the case of
a Single Transferable Vote (STV) system for example, they mark their ranking
against the candidates. Once the selection has been marked, the left hand strip
is detached and discarded. The remaining right hand strip now constitutes the
receipt, as shown in Figure 2.

X

7rJ94K

Fig. 2. Prêt à Voter ballot receipt

The voter now exits the booth and casts their vote in the presence of an
official. The ballot receipt is placed under an optical reader or similar device
that records the random value at the bottom of the strip and an index value
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indicating the cell into which the X was marked. The receipt is digitally signed
and franked and the voter now retains this as their receipt.

Possession of a receipt might appear to open up the possibility of coercion or
vote-buying. However, the candidate lists on the ballot forms are independently
randomised for each ballot form. Thus, with the left hand strip removed, the
right hand strip alone does not indicate which way the vote was cast.

The cryptographic value printed on the bottom of the receipt, the ‘onion’,
is the key to extraction of the vote. Buried cryptographically in this value is
the information needed to reconstruct the candidate list shown on the left hand
strip. This information is encrypted under the secret keys shared by a number
of tellers. Thus, only the tellers acting in concert are able to reconstruct the
candidate order and so interpret the vote value encoded on the receipt.

Once the election has closed, all the receipts are transmitted to a central
tabulation server which posts them to a secure WBB. This is an append-only,
publicly visible facility. Only the tabulation server, and later the tellers, can
write to this and, once written, anything posted to it will remain unchanged.
Voters can visit this WBB and confirm that their receipt appears correctly.

After a suitable period, the tellers take over and perform a robust, anonymis-
ing, decryption mix on the batch of posted receipts. Various approaches can be
used to ensure that the tellers perform the decryptions correctly. Details of this
can be found in [CRS05].

Prêt à Voter’05 proposes an Authority responsible for the generation of the
entropy for the crypto seeds and prior printing of the ballot forms. Random
auditing, by independent organisations, of the forms before, during and after the
election serve to detect any attempt by the the Authority to pass off incorrectly
formed ballot forms. Later in this paper we propose an alternative approach
using on-demand creation and printing of forms and post-auditing.

The Prêt à Voter’05 approach has the advantage of simplicity and results in
a very simple and familiar experience for the voters: they simply register, collect
a form, mark their selection in the booth and then cast the form.

For full details of the mechanisms used in the 2005 version of the scheme to
detect any malfunction or misbehaviour by the devices or processes that comprise
the scheme, see [CRS05]. The construction of the ballot forms used here calls for
rather different monitoring and auditing mechanisms that we detail later.

3 Threats and Trust Models

The simplicity of the original scheme, in particular the use of a single authority
and the pre-printing and pre-auditing of the ballot forms, comes at a certain
cost: various trust assumptions need to be made. In this section we briefly recall
the threats and assumptions of Prêt à Voter’05 identified in [RP05].

3.1 The Need to Trust the Authority for Confidentiality

In Prêt à Voter 2005, a single entity creates the ballot forms. Whilst it is not
necessary to trust this entity from the point of view of accuracy, it is necessary
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to trust it not to leak the ballot form information. Clearly, if the Authority were
to leak this information, the scheme would become susceptible to coercion or
vote buying.

3.2 Chain of Custody

Just as we need to trust the Authority not to leak ballot form information, we
also need to assume that mechanisms are in place to ensure that none of this
information is leaked during storage and distribution. Various counter-measures
are possible: for example, ballot forms could be kept in sealed envelopes to be
revealed only by the voters in the booth. Alternatively, a scratch card style
mechanism along the lines suggested in [RP05] could be used to conceal the
onion value until the voter reveals it at the time of vote casting. The ballot
forms would also need to be stored and distributed in locked, sealed boxes. All
of these counter-measures are rather procedural in nature and so require various
trust assumptions.

3.3 Chain Voting

Conventional, pen and paper elections may be vulnerable to a style form of vote
buying known as chain voting. The UK system in particular is vulnerable. Here,
the ballot forms are a controlled resource: on entering the polling station, the
voter is registered and marked off on the electoral roll. They are given a ballot
form which they take to the booth, mark and then cast in the ballot box. In
principle, officials should observe the voters casting their form.

The attack works as follows: the coercer smuggles a blank ballot form out of
the polling station. The controls on the distribution of the forms should make
this a little tricky, but in practise there are many ways it could be achieved.
Having marked the form for the candidate of their choice, the coercer intercepts
a voter as they enter the polling station. The voter is told that if, when they exit
the polling station, they hand a fresh, blank form back to the coercer they will
receive an reward. The attack can now proceed inductively until a voter decides
to cry foul. Note that, once initialised, the controls on the ballot forms works in
the coercer’s favour: if the voter emerges from the polling station with a blank
form, it is a strong indication that they did indeed cast the marked form they
were given by the coercer.

3.4 Kleptographic Channels

A further, rather subtle vulnerability can occur where a single entity is respon-
sible for creating cryptographic variables: kleptographic attacks as described in
[YY96]. The possible relevance of such attacks to cryptographic voting schemes
is described in [M. 06]. The idea is that the entity may carefully choose the
values of the crypto variables in order to leak information to a colluding party.

In the case of Prêt à Voter, the Authority might choose the seed values in
such a way that an agreed, keyed cryptographic hash of the onion value indi-
cates the candidate order. Clearly this may require quite a bit of searching and
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computation to find suitable values. Note however that such an attack could
pass unnoticed: the distribution of seed values would look perfectly random to
anyone ignorant of the cryptographic hash function.

4 Distributed Generation of Encrypted Ballot Forms

Many of the above attacks stem from the fact that a single entity is able to
determine, in the sense of being able both to know and to control, the seed
values. We now present a mechanism for the distributed generation of the seed
values and ballot forms. Throughout, we will use ElGamal encryption rather
than RSA as used in Prêt à Voter’05 and we will work in Z∗

p , p a (large) prime.
An analogous construction is possible for the distributed creation of the RSA,

layered onions of Prêt à Voter’05. However, as we want to introduce re-encryption
mixes at the tabulation stage, we present the construction for ElGamal encryp-
tion here. We note also that the term onion is a slight misnomer where ElGamal
terms are used but we will retain it here for historical reasons.

The ballot forms will be generated by a set of l clerks in such a way that
each contributes to the entropy of the crypto seed and this remains encrypted
throughout. Consequently the candidate list, which is derived from the seed,
remains concealed and all the clerks would have to collude to determine the
seeds values.

We assume a set of decryption tellers who hold the key shares for a threshold
ElGamal primitive with public key: (p, α, βT ). These will act much as the tellers
of the original scheme and will be responsible for the final decryption stage
after the anonymising, re-encryption mix phase. Details of the anonymising and
decryption/tabulation phases will be given in section 7.

We also assume a set of Registrars with threshold secret key shares correspond-
ing to the public key: (p, α, βR). These public keys are known to the Clerks and
are used in the construction of the ballot forms.

An initial clerk C0 generates a batch of initial seeds s0
i . These seeds are drawn

randomly from a binomial distribution centred around 0 with standard deviation
σ. σ would probably be chosen to be of order n, the number of candidates.

From these, C0 generates a batch of pairs of ”entangled” onions by encrypting
each s0

i , actually in the form γ−s0
i , under the Registrar key and the Teller key:

({γ−s0
i }PKR , {γ−s0

i }PKT ).

Expressed as ElGamal encryptions these have the form:

(αx0
i , β

x0
i

R .γ−s0
i ), (αy0

i , β
y0

i

T .γ−s0
i )

for fresh random values x0
i , y

0
i drawn from Z∗

p .
Notice that, for convenience later, we have encrypted the value γ−s0

i for some
generator γ of Z∗

p rather than encrypting s0
i directly. The reason for this will

become apparent shortly.
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The remaining l−1 Clerks now perform re-encryption mixes and transforma-
tions on this batch of onion pairs. Each Clerk takes the batch of pairs output
by the previous Clerk and performs a combined re-encryption along with an
injection of fresh entropy into the seed values. For each pair of onions, the same
entropy is injected into the seed value of both onions to ensure that these values
continue to match for each pair.

More precisely, for each pair of the batch, the jth Clerk Cj generates a new,
random values x̄, ȳ and s̄ and performs the following mix/transformation on each
onion pair of the batch:

{(αxj−1
i , β

xj−1
i

R .γ−sj−1
i ), (αyj−1

i , β
yj−1

i

T .γ−sj−1
i )}

↓
{(αxj−1

i .αx̄j
i , β

xj−1
i

R .β
x̄j

i

R .γ−sj−1
i .γ−s̄j

i ), (αyj−1
i .αȳj

i , β
yj−1

i

R .β
ȳj

i

R .γ−sj−1
i .γ−s̄j

i )}
↓

{(α(xj−1
i +x̄j

i ), β
(xj−1

i + x̄j
i )

R .γ−(sj−1
i +s̄j

i )), (α(yj−1
i +ȳj

i ), β
(yj−1

i + ȳj
i )

R .γ−(sj−1
i +s̄j

i ))}
↓

{(αxj
i , β

xj
i

R .γ−sj
i ), (αyj

i , β
yj

i

T .γ−sj
i )}

where

xj
i = xj−1

i + x̄j
i

yj
i = yj−1

i + ȳj
i

sj
i = sj−1

i + s̄j
i

The x̄, ȳ denote fresh random values drawn from from Z∗
p generated by the

Clerk during the mix. Similarly the s̄ values are freshly created random values
except that these are again chosen randomly and independently with a binomial
distribution mean 0 and standard deviation σ. Having transformed each onion
pair in this way, the Clerk Cj then performs a secret shuffle on the batch and
outputs the result to the next Clerk, Cj+1.

Thus, each Clerk performs a re-encryption mix along with the injection of
further entropy into the seed values s̄.

So the final output after l− 1 mixes is a batch of pairs of onions of the form:
{{(αxi , βxi

R .γ−si), (αyi , βyi

T .γ−si)} where:

xi = xl
i , yi = yl

i , si = sl
i

thus:
xi = Σl

i=1x̄
i

etc.
The final si values will have binomial distribution mean 0 and standard de-

viation σ
√

(l).
We will refer to the first onion as the “Registrar onion” or “booth onion” and

the second onion as the “Teller onion”.
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For each pair, assuming correct behaviour of the clerks, the s values in the two
onions should match. We’ll discuss mechanisms to detect corruption of the forms
later. As the seed values, and hence the candidate orders, remain encrypted,
none of clerks knows the seed values and only if they all acted in collusion could
they determine the seed values. These “proto-ballot form” can now be stored
and distributed in encrypted form, thus avoiding the chain of custody problems
mentioned above. The seed values can now be revealed on demand by a threshold
set of the Registrars.

5 On-Demand Creation of Ballot Forms

The above construction of the proto-ballot forms means that the ballot form
material can be stored and distributed in encrypted form. Once registered at
the polling station, voters are assigned at random one of these forms:

onionL onionR

The voter proceeds to the booth in which they find a device that reads the
left-hand onion. In the simplest case, the secret key to decrypt the left-hand
onions could be held in the devices in the booths. Thus, the left hand onion
could be decrypted in the booth, the seed value s revealed and the candidate
order π derived as some agreed function of s. If lodging the keys in a single
device is considered rather fragile, the left-hand onion could be encrypted under
a threshold key held by a number of registrars. The onions could be transmitted
to these registrars and a threshold set of these would then decrypt the onions
and return the seed to the booth device.

The candidate list can now be printed by the device in the booth to give a
standard Prêt à Voter ballot form:

Obelix
Asterix
Panoramix
Idefix
onionL onionR

As an additional precaution, the left-hand onion might be separately de-
stroyed.

The point of the paired onions is now clear: we arrange for the booth device
to see only the left hand onion and so it will not know the association of the
candidate list with the right hand, teller onion that will appear on the receipt.
Various mechanisms are possible to ensure that the booth device does not see
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the right-hand onion. The scratch strip mechanism could be invoked here again
for example: the right-hand onion would be covered by a scratch strip that would
only be removed at the time of casting, or even at some time after casting. The
voter only really needs to reveal the teller onion when they come to check their
receipt on the WBB.

Strictly speaking, the lth clerk in collusion with the booth device could form
the candidate list/onion association. Elaborations of the scheme to counter the
threat of such collusion attacks are the subject of ongoing research.

6 Supervised Casting of a Ballot

The voter in the booth now has a “conventional” Prêt à Voter style ballot form
with the candidate list and the associated right hand (teller) onion. His vote
can now be cast in the usual way by marking an X against the candidate of
their choice. The left hand strip is detached and discarded and the voter leaves
the booth and casts their vote in the presence of an official exactly as described
previously. Their receipt is recorded digitally as (r, onion), where r is the index
value indicating the position of the X .

The receipt can be digitally signed and franked at this point to counter any
receipt faking attacks.

Once the election has closed, copies of the digitised receipts will be posted to
the WBB exactly as before and the voters can visit this and assure themselves
that their receipt has been correctly registered. In addition to this, a Verified En-
crypted Paper Audit Trail mechanism could be deployed: at the time of casting,
an extra paper copy of the receipt is made and retained in a sealed audit box.
This can be used to independently check the correspondence with the receipts
posted to the WBB.

7 Re-encryption/Tabulation Mixes

Our construction leads to ElGamal onions which appear to be well suited to
being put through re-encryption mixes. However, the form of the ballot receipts
means that this is not quite straightforward: in addition to the onion term we
have the index value, in the clear as it were. An obvious approach would be to
send the receipt terms through the mix re-encrypting the onions whilst leaving
the index values unchanged. The problem with this is that an adversary is able
to partition the mix according to the index values. There may be situations
in which this is acceptable, for example large elections in which the number of
voters vastly exceeds the number of voting options. In general it seems rather
unsatisfactory.

A more satisfactory solution, at least for the case of a simple selection of
one candidate from the list, is described in this section. We will discuss how to
achieve full mixing in the more general case in section 10.

In this case we restrict ourselves to just cyclic shifts from the base ordering
of the candidate list from a base ordering. For single candidate choice elections,
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this is sufficient to ensure that the receipts do not reveal the voter’s selection.
For more general styles of election, in which for example voters are required to
indicate a ranking of the candidates, we of course need to allow full permutations
of the candidate list. Indeed, even in the case of single selection elections, it is
preferable to allow full permutations in order to eliminate any possibility of
a systematic corruption of votes. For this moment we discuss the approach of
simple cyclic shifts.

Let si be the shift of the candidate list for the ith ballot form. We can absorb
the index value r into the onion:

(αy , βy
T .γ

r−si)

This gives a pure ElGamal term and the value r−si taken modulo n indicates
the voter’s the original candidate choice in the base ordering. These ElGamal
terms can now be sent through a conventional re-encryption mix by a set of
mix tellers, see for example [JJR02]. These mix tellers do not hold any secret
keys but read in a batch of ElGamal terms from the WBB, re-encrypt each of
them and then post the resulting terms in random order to the WBB. After an
appropriate number of such anonymising re-encryption mixes, (a threshold set
of) the decryption tellers take over to extract the plaintext values.

Thus, in contrast to the decryption mixes uses previously, the anonymising
and decrypting phases are separated out in re-encryption mixes.

This will yield decrypted terms of the form:

γr−si (mod p).

Now we have to extract the values r−si (mod n) to recover the original votes.
The difficulty is that r − si is the discrete log of γr−si in Z∗

p so in general, if
the seed values had been drawn randomly from Z∗

p , computing this would be
intractable. However, we have set things up so that the s values are drawn from
a binomial distribution so we can search the space very efficiently. We could, for
example, generate a look-up table for the logs out to some multiple of σ

√
(l).

Occasionally we will have an outlier that will require some search beyond the
range of the look-up table.

7.1 Coercion Resistance and Plausible Deniability

The point of using a binomial distribution for the seed value is to ensure plausible
deniability or coercion resistance whilst at the same time avoiding the discrete
log problem. An alternative approach would be to bound the possible seed values
generated by the clerks to lie in some fixed range, between −M and +M say.
This would have the problem that occasionally we would hit situations in which
final decrypted r − s values would take on extreme values, e.g., r − s = −M .
In this case, an adversary could deduce that r must have equalled 0 and so be
able to link this vote value back to a subset of the receipts, i.e., receipts with
the index value 0.
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Using a distribution avoids such “edge effects” whilst avoiding our having to
compute arbitrary discrete logs in Z∗

p . Arguably, the adversary would be able to
assign a non-flat probability distribution to the possible r values, but as long as
no values of r can ever be eliminated, plausible deniability will be maintained.

We should also observe that even if it were possible to link a vote back to a
particular index value, this would not typically violate ballot secrecy unless this
it so happened that this identified a unique receipt, i.e., there happened to be
only one receipt with this r value.

8 Auditing the Ballot Forms

The mechanisms described above allow for the distributed generation of ballot
forms and just-in-time decryption of the candidate list and printing of the ballot
forms. This has clear advantages in terms of removing the need to trust a single
entity to keep the ballot form information secret and avoiding chain of custody
issues. On the other hand, it means that we can no longer use the random
pre-auditing of pre-printed ballot forms as suggested in [CRS05]. Consequently,
we must introduce alternative techniques to detect and deter any corruption or
malfunction in the creation of the ballot forms.

A possible approach, in the supervised context at least, is to incorporate the
two sided ballot form mechanism suggested in [Rya06] and re-introduce a cut-
and-choose mechanism into the voter protocol. Here, a ballot form would be
assigned two independent, entangled pairs of onions. One printed on one side of
the form, the other on the flip side. In the booth, on each side, the left hand
onion would be decrypted and the corresponding candidate list printed in the
left hand column. The result is two independent ballot forms, one printed on
each side, as illustrated in Figure 3.

Obelix —————-
Asterix —————-

Panoramix —————-
Idefix —————-

7rJ94K —————-

Side 1

Panoramix —————-
Idefix —————-
Obelix —————-
Asterix —————-

Y u78gf —————-

Side 2

Fig. 3. Prêt à Voter ballot form

Figure 3 shows the two sides of such a dual ballot form. These two sides
should be thought of as rotated around a vertical axis. Note that each side has an
independent randomization of the candidate order along with the corresponding
cryptographic values. Thus each side carries an independent Prêt à Voter ballot
form.

The voter uses only one side to encode their vote and makes an arbitrary
choice between the sides. Suppose that the voter in this case chooses what we
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are referring to as side 2 and wants to cast a vote for Idefix. They place an
X against Idefix on side 2 and then destroy the left hand strip that shows the
candidate order for side 2. This results in a ballot receipt of the form shown in
Figure 4.

Obelix
Asterix

Panoramix
Idefix

7rJ94K

auditable side
(remaining part of Side 1)

—————-
X —————-

—————-
—————-

Y u78gf —————-

vote encoding side
(remaining part of Side 2)

Fig. 4. Both sides of a Prêt à Voter ballot receipt

These two sides should be thought of as being rotated around a vertical axis
with respect to each other. Thus the shaded, third column of side 1 would oppose
the candidate list of side 2.

The voter makes a random choice of which side to use to cast their vote and
made their mark on the middle column against their candidate of choice and
leave the flip, unselected side blank. The left hand column of the selected side is
destroyed, and so the blank column of the flip side is destroyed. This results in a
receipt on which the candidate list for the chosen side has been destroyed, whilst
the ballot form on the slip, unselected side is intact, i.e., still has the onion value
and candidate list. The information on both sides would now be recorded when
the ballot is cast and posted to the WBB.

This flip side can now be audited and checked to ensure that the candidate
list printed by the booth correctly corresponds to the onion value. Such checks
could be performed immediately at the time of casting to detect any problems as
soon as possible. Additionally, checks could be performed on the posted values.

In addition to such post-auditing of the dual ballot forms, we can do some
pre-auditing of the committed onions pairs. This would help pick up any mal-
functions or corruption in the preparation of the proto-forms at an early stage.

9 Auditing the Anonymising Mixes

In order to detect any malfunction or corruption by the mix tellers, we can
again use the Partial Random Checking approach of [JJR02]. Here the checks on
audited links will be slightly different: rather than revealing the seed information
for the layer in question, the teller is required to reveal the re-randomisation
value used to e-encrypt the select link. Auditing of the decryption tellers is
quite straightforward as we don’t need any further mixing at this stage (the
anonymising mixes will be enough to ensure ballot secrecy). The correctness
of the decryptions can thus be directly checked by simply encrypting the final
values with the public keys and checking that these agree with the initial terms.
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10 Handling Full Permutations and STV Style Elections

In order to deal with full permutations of the candidate list it is not immediately
clear how to generalise the approach of section 7. As mentioned, one possibility is
to leave the index values unchanged through the mixes. This might be acceptable
in some situations but is clearly not satisfactory in general.

One solution is simply to have one onion for each candidate position. For a
single candidate selection the ballot receipt would in effect simply be the onion
value against the chosen candidate. This feels rather inelegant and inefficient in
terms of multiplying up the number of onions required.

For a ranked voting method, in which the voters are required to place a rank
against each candidate, a ballot receipt would now comprise n pairs of rank value
and onion. Each of these pairs could be put through the mix separately with the
rank value unchanged (allowing the adversary to partition the mix according
to the rank values seems not to matter). This approach works fine as long as
the voting method does not require a voters rankings to be kept grouped for
tabulation, as with STV for example.

11 Remote Voting with Prêt à Voter

The encrypted ballot forms proposed here would appear to be adaptable to
remote voting. We could for example, use a protocol like that described in
[ZMSR04], to transform left-hand onions encrypted under the registrars’ public
key to terms encrypted under an individual voter’s public key. The protocol of
[ZMSR04] achieves this without having to reveal the underlying plaintext (seed)
in the process. A pair of such ballot forms could be supplied to each voter in
order to mimic the cut-and-choose mechanism described above. Details of such
protocols are the subject of ongoing research.

Any remote voting scheme must face problems of coercion. A possible ap-
proach to counter such threats is the use capabilities as proposed in [JCJ02].
The possibility of using such a mechanism in conjunction with Prêt à Voter
2005 was explored in [CM05]. Voters are supplied with capabilities that are es-
sentially encryptions of a nonce and a valid string. Votes are cast along with a
capability and these go through the mix alongside the ballot terms. They emerge
from the mix decrypted. A valid capability will decrypt to a valid plaintext. The
validity or otherwise of the capability is not apparent until it is decrypted. As
a consequence, a voter who is being observed whilst casting their vote has the
possibility of deliberately and surreptitiously corrupting their capability. As long
as the voter has some window of unobserved access to system he can cast his
vote with his valid capability.

12 Conclusions

We have proposed some extensions to Prêt à Voter 2005 to counter vulnerabilities
identified previously:
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– Authority knowledge of ballot form crypto variables.
– Chain of custody threats.
– Chain voting attacks.
– Kleptographic channels.

The new version of the scheme counters these threats by enabling the dis-
tributed construction of encrypted ballot forms by a set of clerks. As a result,
only a collusion of all the clerks could determine the cryptographic seed values.
This eliminates the need to trust a single entity to keep this material secret and
prevents Kleptographic attacks.

Our construction results in ballot forms in which the cryptographic seed values
remain encrypted and can be decrypted on demand. Thus, the ballot forms with
the candidate ordering can be created and printed in the booth, so eliminating
chain of custody and chain voting threats.

The new construction uses ElGamal encryption and so is better suited to
using re-encryption mixes for the anonymising/tabulation phase. Earlier work
on robust ElGamal mixes may be found in [JJ01, Nef01, GJJS04]. The rather
special representation of the ballot receipt in Prêt à Voter, index value plus
cryptographic onion, means that it is not entirely straightforward to send such
terms through a re-encryption mix. We have shown how, for single candidate
selection and cyclic shifts of the candidate list at least, the ballot receipts can
be transformed into pure ElGamal terms and so are adapted to re-encryption
mixes. We have indicated how the approach may be generalised to deal with
alternative electoral methods.

This version of the scheme is, we believe, technically superior to the 2005
version in that it requires less trust assumptions and is more robust against a
number of threats. On the other hand, from a socio-technical point of view, it
may have certain disadvantages. The voter experience is a little more complex,
in particular the need for the cut-and-choose element on the voter protocol,
which could have usability implications as well as opening up possibilities of
“social engineering” style attacks, [KSW05]. Thus, it is possible that, for some
situations like general elections perhaps, in evaluating the trade-off between the
trust assumptions of Prêt à Voter 2005 and the usability issues of this scheme,
the former might be deemed more acceptable.
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Abstract. We consider the problem of efficient key management and user revo-
cation in cryptographic file systems that allow shared access to files. A
performance-efficient solution to user revocation in such systems is lazy revo-
cation, a method that delays the re-encryption of a file until the next write to
that file. We formalize the notion of key-updating schemes for lazy revocation,
an abstraction to manage cryptographic keys in file systems with lazy revocation,
and give a security definition for such schemes. We give two composition meth-
ods that combine two secure key-updating schemes into a new secure scheme that
permits a larger number of user revocations. We prove the security of two slightly
modified existing constructions and propose a novel binary tree construction that
is also provably secure in our model. Finally, we give a systematic analysis of
the computational and communication complexity of the three constructions and
show that the novel construction improves the previously known constructions.

1 Introduction

The recent trend of storing large amounts of data on high-speed, dedicated storage-area
networks (SANs) stimulates flexible methods for information sharing, but also raises
new security concerns. As the networked storage devices are subject to attacks, protect-
ing the confidentiality of stored data is highly desirable in such an environment. Several
cryptographic file systems have been designed for this purpose [15], [28], [23], [17],
but practical solutions for efficient key management and user revocation still need to be
developed further.

We consider cryptographic file systems that allow shared access to stored informa-
tion and that use untrusted storage devices. In such systems, we can aggregate files into
sets such that access permissions and ownership are managed at the level of these sets.
The users who have access to the files in a set form a group, managed by the owner of
the files, or the group owner. Initially, the same cryptographic key can be used to en-
crypt all files in a set, but upon revocation of a user from the group, the key needs to be
changed to prevent access of revoked users to the files. The group owner generates and
distributes this new key to the users in the group. There are two options for handling user
revocation, active and lazy revocation, which differ in the way that users are revoked
from a group. With active revocation, all files in a set are immediately re-encrypted
with the new encryption key. The amount of work caused by a single revocation with

D. Gollmann, J. Meier, and A. Sabelfeld (Eds.): ESORICS 2006, LNCS 4189, pp. 327–346, 2006.
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this method might, however, be prohibitive for large sets of files. With the alternative
method of lazy revocation, re-encryption of a file is delayed until the next write to that
file and, thus, users do not experience disruptions in the operation of the file system
caused by the immediate re-encryption of all files protected by the same revoked key.
In systems adopting lazy revocation, the files in a set might be encrypted with different
keys. Storing and distributing these keys becomes more difficult than in systems using
active revocation.

In this paper, we address the problem of efficient key management in cryptographic
file systems with lazy revocation. An immediate solution to this problem, adopted by
the first cryptographic file systems using delayed re-encryption [15], is to store all keys
for the files in a set at the group owner. However, we are interested in more efficient
methods, in which the number of stored keys is not proportional to the number of revo-
cations. We formalize the notion of key-updating schemes for lazy revocation and give
a rigorous security definition. In our model, a center (e.g., the group owner) initially
generates some state information, which takes the role of the master secret key. The
center state is updated at every revocation. We call the period of time between two re-
vocations a time interval. Upon a user request, the center uses its current local state to
derive a user key and gives that to the user. From the user key of some time interval, a
user must be able to extract the key for any previous time interval efficiently. Security
for key-updating schemes requires that any polynomial-time adversary with access to
the user key for a particular time interval does not obtain any information about the
keys for future time intervals. The keys generated by our key-updating schemes can be
used with a symmetric encryption algorithm to encrypt files for confidentiality or with a
message-authentication code to authenticate files for integrity protection. Independently
and concurrently to our work1 Fu, Kamara, and Kohno [16] have also formalized key-
updating schemes.

We describe two generic composition methods that combine two secure key updating
schemes into a new scheme in which the number of time intervals is either the sum or
the product of the number of time intervals of the initial schemes. Additionally, we in-
vestigate three constructions of key-updating schemes. The first scheme uses a chain of
pseudorandom generator applications and is related to existing methods using one-way
hash chains. It has constant update cost for the center, but the complexity of the user-
key derivation is linear in the total number of time intervals. The second scheme can be
based on arbitrary trapdoor permutations and generalizes the key rotation construction
of the Plutus file system [23]. It has constant update and user-key derivation times, but
the update algorithm uses a relatively expensive public-key operation. These two con-
structions require that the total number T of time intervals is polynomial in the security
parameter. Our third scheme uses a novel construction. It relies on a tree to derive the
keys at the leaves from the master key at the root. The tree can be seen as resulting from
the iterative application of the additive composition method and supports a practically
unbounded number of time intervals. The binary-tree construction balances the tradeoff
between the center-state update and user-key derivation algorithms (both of them have
logarithmic complexity in T ), at the expense of increasing the sizes of the user key and
center state by a logarithmic factor in T .

1 A preliminary version of this paper appears as [6].



Secure Key-Updating for Lazy Revocation 329

The rest of the paper is organized as follows. In Section 2 we give the definition of
security for key-updating schemes. In Section 3, we introduce the additive and multi-
plicative composition methods for secure key-updating schemes. The three construc-
tions and proofs for their security are presented in Section 4. A systematic analysis of
the computational and communication complexities of the three constructions is given
in Section 5, and an experimental evaluation is presented in Section 6. We compare our
scheme to related work in Section 7.

2 Formalizing Key-Updating Schemes

2.1 Definition of Key-Updating Schemes

In our model, we divide time into intervals, not necessarily of fixed length, and each
time interval is associated with a new key that can be used in a symmetric-key cryp-
tographic algorithm. In a key-updating scheme, the center generates initial state infor-
mation that is updated at each time interval, and from which the center can derive a
user key. The user key for interval t permits a user to derive the keys of previous time
intervals (ki for i ≤ t), but it should not give any information about keys of future time
intervals (ki for i > t).

We formalize key-updating schemes using the approach of modern cryptography and
denote the security parameter by κ. For simplicity, we assume that all the keys are bit
strings of length κ. The number of time intervals and the security parameter are given
as input to the initialization algorithm.

Definition 1 (Key-Updating Schemes). A key-updating scheme consists of four deter-
ministic polynomial time algorithms KU = (Init, Update, Derive, Extract) with the
following properties:

- The initialization algorithm, Init, takes as input the security parameter 1κ, the num-
ber of time intervals T and a random seed s ∈ {0, 1}l(κ) for a polynomial l(κ), and
outputs a bit string S0, called the initial center state.

- The key update algorithm, Update, takes as input the current time interval 0 ≤ t ≤
T − 1, the current center state St, and outputs the center state St+1 for the next
time interval.

- The user key derivation algorithm, Derive, is given as input a time interval 1 ≤ t ≤
T and the center state St, and outputs the user key Mt. The user key can be used
to derive all keys ki for 1 ≤ i ≤ t.

- The key extraction algorithm, Extract, is executed by the user and takes as input a
time interval 1 ≤ t ≤ T , the user key Mt for interval t as received from the center,
and a target time interval i with 1 ≤ i ≤ t. The algorithm outputs the key ki for
interval i.

W.l.o.g., we assume that the Update algorithm is run at least once after the Init algo-
rithm, before any user keys can be derived. The first time the Update algorithm is run,
it is given as input time interval t = 0. User keys and keys are associated with the time
intervals between 1 and T .
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2.2 Applications to Cryptographic File Systems

In a cryptographic file system adopting lazy revocation, the re-encryption of a file after a
revocation is delayed until the next write to that file. Similarly to the Plutus file system,
files can be divided into sets based on their access permissions, such that all files in a
set have the same permissions. Initially, all files in a set can be encrypted with the same
key. We assume that file owners are responsible for the generation and distribution of
keys to the authorized users, so file owners take the role of the center in our model of
key-updating schemes.

When a user is revoked from the group of users having access to the set of files, the file
owner runs the Update algorithm generating a new state and advancing the time interval.
The file owner then runs Derive and the new user key is distributed to all the users that
have now access permissions to the files. A user writing a file uses the encryption key
for the latest time interval, which can be efficiently extracted from the latest user key. To
decrypt a file, a user needs to know the version of the key that was used to encrypt it, and
extract the appropriate encryption key from the user key. The key version with which each
file is encrypted might, for example, be stored in the file i-node on the file server.

Assuming that the integrity of files is protected with a message-authentication code
(MAC), key-updating schemes can also be used to manage symmetric keys for authen-
tication. To guarantee independence of the keys used for confidentiality and integrity,
different instances of key-updating schemes have to be used for encryption and authen-
tication.

2.3 Security of Key-Updating Schemes

The definition of security for key-updating schemes requires that a polynomial-time
adversary with access to the user key for a time interval t is not able to derive any
information about the keys for the next time interval. The definition we give here is re-
lated to the definition of forward-secure pseudorandom generators given by Bellare and
Yee [8]. Formally, consider a probabilistic polynomial-time adversary A = (AU ,AG)
that participates in the following experiment:

Initialization: The initial center state is generated with the Init algorithm.
Key updating: The adversary adaptively picks a time interval t such that 0 ≤ t ≤ T−1

as follows. Starting with t = 0, 1, . . . , algorithm AU is given the user keys Mt for
all consecutive time intervals until AU decides to output stop or t becomes equal
to T − 1. We require that AU , a probabilistic polynomial-time algorithm, outputs
stop at least once before halting.AU also outputs some additional information z ∈
{0, 1}∗ that is given as input to algorithmAG .

Challenge: A challenge for the adversary is generated, which is either the key for
time interval t + 1 generated with the Update, Derive and Extract algorithms, or a
random bit string of length κ.

Guess: AG takes the challenge and z as inputs and outputs a bit b.

The key-updating scheme is secure if the advantage of the adversary of distinguishing
between the properly generated key for time interval t + 1 and the random key is only
negligibly larger than 1

2 . More formally, the definition of a secure key-updating scheme
is the following:
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Definition 2 (Security of Key-Updating Schemes). Let KU = (Init, Update, Derive,
Extract) be a key-updating scheme and A a polynomial-time adversary algorithm that
participates in one of the two experiments defined in Figure 1.

Expsku-0
KU,A(1κ, T ) Expsku-1

KU,A(1κ, T )
S0 ← Init(1κ, T ) S0 ← Init(1κ, T )
t ← 0 t ← 0
(d, z) ← AU (t,⊥,⊥) (d, z) ← AU (t,⊥,⊥)
while(d �= stop) and (t < T − 1) while(d �= stop) and (t < T − 1)

t ← t + 1 t ← t + 1
St ← Update(t − 1, St−1) St ← Update(t − 1, St−1)
Mt ← Derive(t, St) Mt ← Derive(t, St)
(d, z) ← AU (t, Mt, z) (d, z) ← AU (t, Mt, z)

St+1 ← Update(t, St) kt+1 ←R {0, 1}κ

Mt+1 ← Derive(t + 1, St+1) b ← AG(kt+1, z)
kt+1 ← Extract(t + 1, Mt+1, t + 1) return b
b ← AG(kt+1, z)
return b

Fig. 1. Experiments defining the security of key-updating schemes

The advantage of the adversary A = (AU ,AG) for KU is defined as

AdvskuKU,A(κ, T ) =
∣∣Pr

[
Expsku-1KU,A(1κ, T ) = 1

]
−Pr

[
Expsku-0KU,A(1κ, T ) = 1

]∣∣.
Without loss of generality, we can relate the success probability of adversary A of

distinguishing between the two experiments and its advantage as

Pr[A succeeds] =
1
2

[
1 + AdvskuKU,A(κ, T )

]
. (1)

The key-updating scheme KU is secure if for all polynomial-time adversariesA and all
T , there exists a negligible function ε such that AdvskuKU,A(κ, T ) = ε(κ).

Remark. The security notion we have defined is equivalent to a seemingly stronger
security definition, in which the adversary can choose the challenge time interval t∗

with the restriction that t∗ is greater than the time interval at which the adversary outputs
stop and that t∗ is polynomial in the security parameter. This second security definition
guarantees, intuitively, that the adversary is not gaining any information about the keys
of any future time intervals after it outputs stop.

3 Composition of Key-Updating Schemes

Let KU1 = (Init1, Update1, Derive1, Extract1) and KU2 = (Init2, Update2, Derive2,
Extract2) be two secure key-updating schemes using the same security parameter κ
with T1 and T2 time intervals, respectively. In this section, we show how to combine the
two schemes into a secure key-updating scheme KU = (Init, Update, Derive, Extract),
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which is either the additive or multiplicative composition of the two schemes with T =
T1 + T2 and T = T1 · T2 time intervals, respectively. Similar generic composition
methods have been given previously for forward-secure signature schemes [26].

For simplicity, we assume the length of the random seed in the Init algorithm of the
scheme KU to be κ for both composition methods. Let G : {0, 1}κ → {0, 1}l1(κ)+l2(κ)

be a pseudorandom generator; it can be used to expand a random seed of length κ into
two random bit strings of length l1(κ) and l2(κ), respectively, as needed for Init1 and
Init2. We write G(s) = G1(s)‖G2(s) with |G1(s)| = l1(κ) and |G2(s)| = l2(κ) for
s ∈ {0, 1}κ.

3.1 Additive Composition

The additive composition of two key-updating schemes uses the keys generated by the
first scheme for the first T1 time intervals and the keys generated by the second scheme
for the subsequent T2 time intervals. The user key for the first T1 intervals in KU is
the same as that of scheme KU1 for the same interval. For an interval t greater than
T1, the user key includes both the user key for interval t− T1 of scheme KU2, and the
user key for interval T1 of scheme KU1. The details of the additive composition method
are described in Figure 2. The security of the composition operation is analyzed in the
following theorem, whose proof is given in the full version of this paper [6].

Theorem 1. Suppose that KU1 = (Init1, Update1, Derive1, Extract1) and KU2 =
(Init2, Update2, Derive2, Extract2) are two secure key-updating schemes with T1 and
T2 time intervals, respectively, and that G is a pseudorandom generator as above. Then
KU = (Init, Update, Derive, Extract) described in Figure 2 denoted as KU1 ⊕ KU2 is
a secure key-updating scheme with T1 + T2 time intervals.

Init(1κ, T, s) Derive(t, (S1
t , S2

t ))
S1

0 ← Init1(1κ, T1, G1(s)) if t < T1

S2
0 ← Init2(1κ, T2, G2(s)) M1

t ← Derive1(t, S1
t )

return (S1
0 , S2

0) M2
t ← ⊥

else
M1

t ← Derive1(T1, S
1
t )

M2
t ← Derive2(t − T1, S

2
t )

return(M1
t , M2

t )
Update(t, (S1

t , S2
t )) Extract(t, (M1

t , M2
t ), i)

if t < T1 if i > T1

S1
t+1 ← Update1(t, S

1
t ) ki ← Extract2(t − T1, M

2
t , i− T1)

S2
t+1 ← S2

t else
else if t < T1

S1
t+1 ← S1

t ki ← Extract1(t, M1
t , i)

S2
t+1 ← Update2(t − T1, S

2
t ) else

return (S1
t+1, S

2
t+1) ki ← Extract1(T1, M

1
t , i)

return ki

Fig. 2. The additive composition of KU1 and KU2
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Extended Additive Composition. It is immediate to extend the additive composition to
construct a new scheme with T1 + T2 + 1 time intervals. The idea is to use the first
scheme for the keys of the first T1 intervals, the second scheme for the keys of the next
T2 intervals, and the seed s as the key for the (T1 +T2 +1)-th interval. By revealing the
seed s as the user key at interval T1 +T2 + 1, all previous keys of KU1 and KU2 can be
derived. This idea will be useful in our later construction of a binary tree key-updating
scheme. We call this composition method extended additive composition.

3.2 Multiplicative Composition

The idea behind the multiplicative composition operation is to use every key of the first
scheme to seed an instance of the second scheme. Thus, for each one of the T1 time
intervals of the first scheme, we generate an instance of the second scheme with T2
time intervals.

We denote a time interval t for 1 ≤ t ≤ T1 · T2 of scheme KU as a pair t = <i, j>,
where i and j are such that t = (i − 1)T2 + j for 1 ≤ i ≤ T1 and 1 ≤ j ≤ T2. The
Update algorithm is run initially for time interval t = 0, which will be expressed as
<0, 0>. The user key for a time interval t = <i, j> includes both the user key for time
interval i − 1 of scheme KU1 and the user key for time interval j of scheme KU2. A
user receiving M<i,j> can extract the key for any time interval <m,n> ≤ <i, j> by
first extracting the key K for time interval m of KU1 (this step needs to be performed
only if m < i), then using K to derive the initial state of the m-th instance of the
scheme KU2, and finally, deriving the key k<m,n>. The details of the multiplicative
composition method are shown in Figure 3.

Init(1κ, T, s) Derive(<i, j>, (S1
i−1, S

1
i , S2

j ))
S1

0 ← Init1(1κ, T1, G1(s)) if i > 1
S1

1 ← Update1(0, S1
0) M1

i−1 ← Derive1(i− 1, S1
i−1)

k1
1 ← Extract1(1, Derive1(1, S1

1), 1) else
S2

0 ← Init2(1κ, T2, G2(k1
1)) M1

i−1 ← ⊥
return (⊥, S1

0 , S2
0) M2

j ← Derive2(j, S2
j )

return (M1
i−1, M

2
j )

Update(<i, j>, (S1
i−1, S

1
i , S2

j )) Extract(<i, j>, (M1
i−1, M

2
j ), <m, n>)

if j = T2 if i = m
S1

i+1 ← Update1(i, S
1
i ) k<m,n> ← Extract2(j, M2

j , m)
k1

i+1 ← Extract1(i + 1, else
Derive1(i + 1, S1

i+1), i + 1) K ← Extract1(i − 1, M1
i−1, m)

S2
0 ← Init2(1κ, T2, G2(k1

i+1)) S2
0 ← Init2(1κ, T2, G2(K))

S2
1 ← Update2(0, S2

0) k<m,n> ← Extract2(T2, S
2
0 , n)

return (S1
i , S1

i+1, S
2
1) return k<m,n>

else
S2

j+1 ← Update2(j, S
2
j )

return (S1
i−1, S

1
i , S2

j+1)

Fig. 3. The multiplicative composition of KU1 and KU2
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The security of the multiplicative composition method is analyzed in the following
theorem, whose proof is given in the full version of this paper [6].

Theorem 2. Suppose that KU1 = (Init1, Update1, Derive1, Extract1) and KU2 =
(Init2, Update2, Derive2, Extract2) are two secure key-updating schemes with T1 and
T2 time intervals, respectively, and that G is a pseudorandom generator as above. Then
KU = (Init, Update, Derive, Extract) described in Figure 3 denoted as KU1 ⊗ KU2 is
a secure key-updating scheme with T1 · T2 time intervals.

4 Constructions

In this section, we describe three constructions of key-updating schemes with different
complexity and communication tradeoffs. The first two constructions are based on pre-
viously proposed methods [23,16]. We give cryptographic proofs that demonstrate the
security of the existing constructions after some subtle modifications. Additionally, we
propose a third construction that is more efficient than the known schemes. It uses a
binary tree to derive the user keys and is also provably secure in our model.

4.1 Chaining Construction (CKU)

In this construction, the center generates an initial random seed of length κ and applies
a pseudorandom generator iteratively i times to obtain the key for time interval T − i,
for 1 ≤ i ≤ T−1. This construction is inspired by a folklore method using a hash chain
for deriving the keys. A construction based on a hash chain can be proven secure if the
hash function h is modeled as a random oracle. To obtain a provably secure scheme in
the standard model, we replace the hash function with a pseudorandom generator.

Let G : {0, 1}κ → {0, 1}2κ be a pseudorandom generator. We write G(s) =
G1(s)‖G2(s) with |G1(s)| = |G2(s)| = κ for s ∈ {0, 1}κ. The algorithms of the
chaining construction, called CKU, are:

- Init(1κ, T, s) generates a random seed s0 of length κ from s and outputs S0 = s0.
- Update(t, St) copies the state St into St+1.
- Derive(t, St) and Extract(t,Mt, i) are given in Figure 4.

Derive(t, St) Extract(t, Mt, i)
BT+1 ← St (Bt, kt) ← Mt

for i = T downto t for j = t − 1 downto i
(Bi, ki) ← G(Bi+1) (Bj , kj) ← G(Bj+1)

return (Bt, kt) return ki

Fig. 4. The Derive(t, St) and Extract(t, Mt, i) algorithms of the chaining construction

This construction has constant center-state size and linear cost for the user-key deriva-
tion algorithm. An alternative construction with linear center-state size and constant
user-key derivation is to precompute all the keys ki and user keys Mi, for 1 ≤ i ≤ T
in the Init algorithm and store all of them in the initial center state S0. The security of
the chaining construction is given be the following theorem, whose proof is in the full
version of this paper [6].
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Theorem 3. Given a pseudorandom generator G, CKU is a secure key-updating
scheme.

4.2 Trapdoor Permutation Construction (TDKU)

In this construction, the center picks an initial random state that is updated at each time
interval by applying the inverse of a trapdoor permutation. The trapdoor is known only
to the center, but a user, given the state at a certain moment, can apply the permutation
iteratively to generate all previous states. The key for a time interval is generated by
applying a hash function, modeled as a random oracle, to the current state. This idea
underlies the key rotation mechanism of the Plutus file system [23], with the difference
that Plutus uses the output of an RSA trapdoor permutation directly for the encryption
key. We could not prove the security of this scheme in our model for key-updating
schemes, even when the trapdoor permutation is not arbitrary, but instantiated with the
RSA permutation.

This construction has the advantage that knowledge of the total number of time inter-
vals is not needed in advance; on the other hand, its security can only be proved in the
random oracle model. Let a family of trapdoor permutations be given such that the do-
main size of the permutations with security parameter κ is l(κ), for some polynomial l.
Let h : {0, 1}l(κ) → {0, 1}κ be a hash function modeled as a random oracle. The
detailed construction of the trapdoor permutation scheme, called TDKU, is presented
below:

- Init(1κ, T, s) generates a random s0 ←R {0, 1}l(κ) and a trapdoor permutation
f : {0, 1}l(κ) → {0, 1}l(κ) with trapdoor τ from seed s using a pseudorandom
generator. Then it outputs S0 = (s0, f, τ).

- Update(t, St) with St = (st, f, τ) computes st+1 = f−1(st) and outputs St+1 =
(st+1, f, τ).

- Derive(t, St) outputs Mt ← (st, f).
- Extract(t,Mt, i) applies the permutation iteratively t − i times to generate state
si = f t−i(Mt) and then outputs h(si).

The security of this construction is given be the following theorem, whose proof is
in the full version of this paper [6].

Theorem 4. Given a family of trapdoor permutations and a hash function h, TDKU is
a secure key-updating scheme in the random oracle model.

4.3 Tree Construction (TreeKU)

In the two schemes above, at least one of the algorithms Update, Derive and Extract
has worst-case complexity linear in the total number of time intervals. We present a tree
construction based on ideas of Canetti, Halevi and Katz [10] with constant complexity
for the Derive algorithm and logarithmic worst-case complexity in the number of time
intervals for the Update and Extract algorithms. Moreover, the amortized complexity of
the Update algorithm is constant. In this construction, the user key size is increased by
at most a logarithmic factor in T compared to the user key size of the two constructions
described above.
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Our tree-based key-updating scheme, called TreeKU, generates keys using a com-
plete binary tree with T nodes, assuming that T = 2d − 1 for some d ∈ Z. Each node
in the tree is associated with a time interval between 1 and T , a unique label in {0, 1}∗,
a tree-key in {0, 1}κ and an external key in {0, 1}κ such that:

1. Time intervals are assigned to tree nodes using post-order tree traversal, i.e., a node
corresponds to interval i if it is the i-th node in the post-order traversal of the tree.
We refer to the node associated with interval t as node t.

2. We define a function label that maps node t with 1 ≤ t ≤ T to its label in {0, 1}∗
as follows. The root of the tree is labeled by the empty string ε, and the left and
right children of a node with label � are labeled by �‖0 and by �‖1, respectively.
The parent of a node with label � is denoted by parent(�), thus parent(�‖0) =
parent(�‖1) = �. We denote the length of a label � by |�|.

3. The tree-key for the root node is chosen at random. The tree-keys for the two chil-
dren of an internal node in the tree are derived from the tree-key of the parent node
using a pseudorandom generatorG : {0, 1}κ → {0, 1}2κ. For an input s ∈ {0, 1}κ,
we write G(s) = G1(s)‖G2(s) with |G1(s)| = |G2(s)| = κ. If the tree-key for
the internal node with label � is denoted u�, then the tree-keys for its left and right
children are u�‖0 = G1(u�) and u�‖1 = G2(u�), respectively. This implies that
once the tree-key for a node is revealed, then the tree-keys of its children can be
computed, but knowing the tree-keys of both children of a node does not reveal any
information about the tree-key of the node.

4. The external key of a node t is the key kt output by the scheme to the application
for interval t. For a node t with tree-key ulabel(t), the external key kt is obtained by
computingFulabel(t)(1), where Fu(b) = F (u, b) and F : {0, 1}κ×{0, 1} → {0, 1}κ

is a pseudorandom function on bits.

We describe the four algorithms of the binary tree key-updating scheme:

- Init(1κ, T, s) generates the tree-key for the root node randomly, uT ←R {0, 1}κ,
using seed s, and outputs S0 = ({(ε, uT )}, ∅).

- Update(t, St) updates the state St = (Pt, Lt) to the next center state St+1 =
(Pt+1, Lt+1). The center state for interval t consists of two sets: Pt that contains
pairs of (label, tree-key) for all nodes on the path from the root to node t (including
node t), and Lt that contains label/tree-key pairs for all left siblings of the nodes in
Pt that are not in Pt.
We use several functions in the description of the Update algorithm. For a label �
and a set A of label/tree-key pairs, we define a function searchkey(�, A) that outputs
a tree-key u for which (�, u) ∈ A, if the label exists in the set, and ⊥ otherwise.
Given a label � and a set of label/tree-key pairsA, function rightsib(�, A) returns the
label and the tree-key of the right sibling of the node with label �, and, similarly,
function leftsib(�, A) returns the label and the tree-key of the left sibling of the
node with label � (assuming the labels and tree-keys of the siblings are in A). The
function leftkeys is given as input a label/tree-key pair of a node and returns all
label/tree-key pairs of the left-most nodes in the subtree rooted at the input node,
including label and tree-key of the input node.
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Update(t, (Pt, Lt))
if t = 0

P1 ← leftkeys(ε, uT )
L1 ← ∅

else
�t ← label(t)
ut ← searchkey(�t, Pt)
if �t ends in 0

(�s, us) ← rightsib(�t, Pt)
Pt+1 ← Pt \ {(�t, ut)} ∪ leftkeys(�s, us)
Lt+1 ← Lt ∪ {(�t, ut)}

else
(�s, us) ← leftsib(�t, Lt)
Pt+1 ← Pt \ {(�t, ut)}
Lt+1 ← Lt \ {(�s, us)}

return (Pt+1, Lt+1)

leftkeys(�, u)
A ← ∅
while |�| ≤ d

A ← A ∪ {(�, u)}
� ← �‖0
u ← G1(u)

return A

/* P1 contains the label/tree-key pairs of all the left-most nodes */
/* the set of left siblings is empty */

/* compute the label of node t */
/* compute the tree-key of node t */
/* t is the left child of its parent */
/* compute the label/tree-key pair of the right sibling of t */
/* update the label/tree-key pairs in Pt+1 */
/* add the label/tree-key pair of t to set of left siblings for t + 1 */
/* t is the right child of its parent */
/* compute the label/tree-key pair of the left sibling of t */
/* remove label/tree-key pair of t from Pt+1 */
/* remove label/tree-key pair of left sibling of t from Lt+1 */

/* initialize set A with the empty set */
/* advance to the left until we reach a leaf */
/* add the label and tree-key of the current node in A */
/* move to left child of the node with label p */
/* compute the tree-key of the left child */

Fig. 5. The Update(t, (Pt, Lt)) algorithm

The code for the Update and leftkeys algorithms is given in Figure 5. We omit the
details of functions searchkey, rightsib and leftsib. The Update algorithm distin-
guishes three cases:
1. If t = 0, the Update algorithm computes the label/tree-key pairs of all left-

most nodes in the complete tree using function leftkeys and stores them in P1.
The set L1 is empty in this case, as nodes in P1 do not have left siblings.

2. If t is the left child of its parent, the successor of node t in post-order traversal
is the left-most node in the subtree rooted at the right sibling t′ of node t.
Pt+1 contains all label/tree-key pairs in Pt except the tuple for node t, and, in
addition, all label/tree-key pairs for the left-most nodes in the subtree rooted at
t′, which are computed by leftkeys. The set of left siblings Lt+1 contains all
label/tree-key pairs from Lt and, in addition, the label/tree-key pair for node t.

3. If t is the right child of its parent, node t + 1 is its parent, so Pt+1 contains all
label/tree-key pairs from Pt except the tuple for node t, and Lt+1 contains all
the label/tree-key pairs in Lt except the pair for the left sibling of node t.

- Algorithm Derive(t, (Pt, Lt)) outputs the user tree-key Mt, which is the minimum
information needed to generate the set of tree-keys {ui : i ≤ t}. Since the tree-
key of any node reveals the tree-keys for all nodes in the subtree rooted at that
node, Mt consists of the label/tree-key pairs for the left siblings (if any) of all
nodes on the path from the root to the parent of node t and the label/tree-key pair
of node t. This information has already been pre-computed such that one can set
Mt ← {(label(t), ut)} ∪ Lt.

- Algorithm Extract(t,Mt, i) first finds the maximum predecessor of node i in post-
order traversal whose label/tree-key pair is included in the user tree-key Mt. Then
it computes the tree-keys for all nodes on the path from that predecessor to node i.
The external key ki is derived from the tree-key ui as ki = Fui(1) using the pseu-
dorandom function. The algorithm is in Figure 6.
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Extract(t, Mt, i)
�1 . . . �s ← label(i)
v ← s
� ← �1 . . . �v

while v > 0 and searchkey(�, Mt) = ⊥
v ← v − 1
� ← �1 . . . �v

for j = v + 1 to s
u�1...�j

← G�j
(u�1...�j−1 )

k�1...�s ← Fu�1...�s
(1)

return k�1...�s

/* the label of i has length s */

/* find a predecessor of i that is in Mt */

/* compute tree-keys of all nodes on path from predecessor to i */

/* return external key of node i */

Fig. 6. The Extract(t, Mt, i) algorithm

Analysis of Complexity. The worst-case complexity of the cryptographic operations
used in the Update and Extract algorithms is logarithmic in the number of time inter-
vals, and that of Derive is constant. However, it is easy to see that the key for each node
is computed exactly once if T updates are executed. This implies that the total cost of
all update operations is T pseudorandom-function applications, so the amortized cost
per update is constant. The size of the center state and the user key is proportional to
the height of the binary tree, so the worst-case space complexity is O(κ log2 T ) bits.

The security of the tree construction is given be the following theorem, whose proof
is in the full version of this paper [6].

Theorem 5. Given a pseudorandom generator G and a pseudorandom function F ,
TreeKU is a secure key-updating scheme.

An Incremental Tree Construction. We can construct an incremental tree scheme using
ideas from the generic forward-secure signature scheme of Malkin, Micciancio, and
Miner [26]. The incremental scheme does not require the total number of time intervals
to be known in advance.

Let TreeKU(i) be the binary tree construction with 2i−1 nodes. Then the incremen-
tal tree scheme is obtained by additively composing binary tree schemes with increasing
number of intervals: TreeKU(1) ⊕ TreeKU(2) ⊕ TreeKU(3) ⊕ . . . . The keys gener-
ated by the tree scheme TreeKU(i) correspond to the time intervals between 2i − i and
2i+1−i−2 in the incremental scheme. Once the intervals of the tree scheme TreeKU(i)
are exhausted, an instance of TreeKU(i + 1) is generated, if needed.

In addition to allowing a practically unbounded number of time intervals, this con-
struction has the property that the complexity of the Update, Derive and Extract algo-
rithms and the size of the center state and user key depend on the number of past time
intervals. Below we perform a detailed analysis of the cost of the scheme for an interval
t that belongs to TreeKU(i) with 2i − i ≤ t ≤ 2i+1 − i− 2:

1. The center state includes all the root keys of the previous i− 1 trees and the center
state for node t in TreeKU(i). In the worst-case, this equals (i − 1) + (2i − 1) =
3i − 2 = 32log2(t)3 − 2 tree-keys. Similarly, the user key for interval t includes
the user key of node t as in scheme TreeKU(i) and the root keys of the previous
i − 1 trees, in total (i − 1) + (i − 1) = 2i − 2 = 22log2(t)3 − 2 tree-keys. It
follows that the space complexity of the center state and the user key for interval t
is O(κ log2(t)) bits.



Secure Key-Updating for Lazy Revocation 339

2. The cost of both Update and Extract algorithms is at most i = 2log2(t)3 applica-
tions of the pseudorandom generator. The cost of Derive is constant, as in the tree
construction.

5 Performance of the Constructions

In this section we analyze the time complexity of the cryptographic operations and the
space complexity of the center and the user for the three proposed constructions. Recall
that all schemes generate keys of length κ. In analyzing the time complexity of the
algorithms, we specify what kind of operations we measure and distinguish public-key
operations (PK op.) from pseudorandom generator applications (PRG op.) because PK
operations are typically much more expensive than PRG applications. We omit the time
complexity of the Init algorithm, as it involves only the pseudorandom generator for all
schemes except for the trapdoor permutation scheme, in which Init also generates the
trapdoor permutation. The space complexities are measured in bits. Table 1 shows the
details for a given number T of time intervals.

Table 1. Worst-case time and space complexities of the constructions for T time intervals. ∗Note:
the amortized complexity of Update(t, St) in the binary tree scheme is constant.

CKU TDKU TreeKU
Update(t, St) time 0 1 PK op. O(log2 T ) PRG op.∗

Derive(t, St) time T − t PRG op. const. O(log2 T )
Extract(t, Mt, i) time t − i PRG op. t − i PK op. O(log2 T ) PRG op.

Center state size κ poly(κ) O(κ log2 T )
User key size κ κ O(κ log2 T )

In the chaining scheme CKU, the Update algorithm takes no work, but the Extract
and the Derive algorithms take linear work in the number of time intervals. On the other
hand, the trapdoor permutation scheme TDKU has efficient user-key derivation, which
involves only a copy operation, but the complexity of the Update algorithm is one appli-
cation of the trapdoor permutation inverse and that of the Extract(t,Mt, i) algorithm is
t− i applications of the trapdoor permutation. The tree-based scheme TreeKU balances
the tradeoffs between the complexity of the three algorithms, taking logarithmic work
in the number of time intervals for all three algorithms in the worst-case. The Derive al-
gorithm involves only O(log2 T ) copy operations, and Update and Extract algorithms
involveO(log2 T ) PRG operations. This comes at the cost of increasing the center-state
and user-key sizes toO(κ log2 T ). Note that the amortized cost of the Update algorithm
in the binary tree construction is constant.

As the chaining and the trapdoor permutation schemes have worst-case complexities
linear in T for at least one algorithm, both of them require the number of time intervals
to be rather small. In contrast, the binary tree construction can be used for a practically
unbounded number of time intervals.

In an application in which the number of time intervals in not known in advance, the
incremental tree scheme can be used. Its space and time complexities only depend on
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the number of past revocations and not on the total number of revocations supported.
The incremental tree construction is an interesting example of an additive composi-
tion of tree constructions with different number of intervals. Furthermore, our additive
and multiplicative composition methods allow the construction of new schemes starting
from the basic three constructions described in Section 4.

6 Experimental Evaluation

We have implemented the chaining, trapdoor, and tree constructions for 128-bit keys.
We have used the 128-bit AES block cipher to implement the pseudorandom generator
G as G(s) = AESs(0128)||AESs(1128) with |s| = 128 for the CKU and TreeKU
constructions of Sections 4.1 and 4.3. In construction TDKU from Section 4.2, we have
used the RSA permutation with a bit length of 1024 and public exponent 3 and the
SHA-1 hash function as the random oracle h.

We performed the following experiment. For a fixed total number of revocations T ,
the center first initializes the key-updating scheme. Then, the steps below are repeated
for t = 1, . . . , T :

– The center runs the Update and Derive algorithms to simulate one revocation.
– Given the user key for interval t, the user runs the Extract algorithm to obtain the

key k1 for the first time interval.

Note that the time to extract the key for the first interval is larger than the extraction
time for any other interval between 1 and t in all three constructions. Hence, the ex-
traction time for the first interval represents a worst-case measure. We measured the
performance using four metrics: the maximum and average Update and Derive time
for the center (over the T revocations), and the maximum and average Extract time for
clients to compute the key for the first time interval (from one of the T time intervals).
We ran our experiments on a 2.4 GHz Intel Xeon processor machine, running Linux
2.6. Our unoptimized implementation was written in C++ using gcc 3.2.1.

The results are presented in Figures 7, 8, and 9, respectively. The graphs show the
measured time as a function of the total number of revocations T , which ranges from
28 to 225 depending on the scheme. Note that the both axis are logarithmic and that the
vertical axis differs for the three constructions. In the chaining construction, the cost of
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both the center and client computation increases linearly with the total number of revo-
cations, as expected. In the trapdoor permutation construction, the center time is always
constant, but the extraction time grows linearly with the total number of revocations.
In the tree construction, all four metrics have a logarithmic dependence on the total
number of revocations. We observe that the tree construction performs several orders of
magnitude better than the other schemes.

Table 2 gives a direct comparison of the constructions in an experiment with 1024
revocations as above. It contains also the timing measurements for the first 1024 revo-
cations in the tree construction where the upper bound T on number of revocations was
set to a much larger value. This makes it possible to relate the tree construction to the
trapdoor permutation scheme, which has no fixed upper bound on the number of revo-
cations. It is evident that the tree scheme performs much better than the other schemes,
even with a bound on the number of revocations that allows a practically unlimited
number of them.

Table 2. Evaluation of the three constructions for 1024 revocations

Scheme T Maximum Time Average Time Maximum Time Average Time
Update+Derive (ms) Update+Derive (ms) Extract (ms) Extract (ms)

Chaining 1024 2.57 1.28 2.5 1.24
Trapdoor 1024 25.07 15.36 32.96 15.25

Tree 1024 0.079 0.015 0.025 0.006
Tree 216 0.142 0.015 0.018 0.0076
Tree 225 0.199 0.015 0.02 0.01

The space usage for T = 1024 is as follows. The center state is 16 bytes for the
chaining construction, 384 bytes for the trapdoor construction, and at most 328 bytes
for the tree scheme. The size of the user key is 32 bytes for the chaining construction,
128 bytes for the trapdoor construction, and at most 172 bytes for the tree scheme. In
general, for the tree scheme with depth d, the center state takes at most (2d − 1)(16 +
d/8) bytes, containing 2d−1 key value/key label pairs, assuming 16-byte keys and d-bit
labels. The user key size is at most d key/label pairs, which take d(16 + d/8) bytes.
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In summary, we note that the performance of the tree scheme is superior to the others.
The chaining construction has the smallest space requirements, but its computation cost
becomes prohibitive for large T . The trapdoor construction has sligthly smaller space
requirements than the tree scheme, but these savings are very small compared to the
additional computational overhead.

7 Related Work

Time-Evolving Cryptography. The notion of secure key-updating schemes is closely
related to forward- and backward-secure cryptographic primitives. Indeed, a secure key-
updating scheme is forward-secure as defined originally by Anderson [4], in the sense
that it maintains security in the time intervals following a key exposure. However, this
is the opposite of the forward security notion formalized by Bellare and Miner [7] and
used in subsequent work. Here we use the term forward security to refer to the latter
notion.

Time-evolving cryptography protects a cryptographic primitive against key exposure
by dividing the time into intervals and using a different secret key for every time inter-
val. Forward-secure primitives protect past uses of the secret key: if a device holding
all keys is compromised, the attacker can not have access to past keys. In the case of
forward-secure signatures, the attacker can not generate past signatures on behalf of the
user, and in the case of forward-secure encryption, the attacker can not decrypt old ci-
phertexts. There exist many efficient constructions of forward-secure signatures [7,2,21]
and several generic constructions [24,26]. Bellare and Yee [8] analyze forward-secure
private-key cryptographic primitives (forward-secure pseudorandom generators, mes-
sage authentication codes and symmetric encryption) and Canetti, Halevi and Katz [10]
construct the first forward-secure public-key encryption scheme.

Forward security has been combined with backward security in models that pro-
tect both the past and future time intervals, called key-insulated [13,14] and intrusion-
resilient models [22,12]. In both models, there is a center that interacts with the user
in the key update protocol. The basic key insulation model assumes that the center is
trusted and the user is compromised in at most t time intervals and guarantees that the
adversary does not gain information about the keys for the intervals the user is not com-
promised. A variant of this model, called strong key insulation, allows the compromise
of the center as well. Intrusion-resilience tolerates arbitrarily many break-ins into both
the center and the user, as long as the break-ins do not occur in the same time interval.
The relation between forward-secure, key-insulated and intrusion-resilient signatures
has been analyzed by Malkin, Obana and Yung [27]. A survey of forward-secure cryp-
tography is given by Itkis [20].

Re-keying, i.e., deriving new secret keys periodically from a master secret key, is
a standard method used by many applications. It has been formalized by Abdalla and
Bellare [1]. The notion of key-updating schemes that we define is closely related to
re-keying schemes, with the difference that in our model, we have the additional re-
quirement of being able to derive past keys efficiently.

Multicast Key Distribution. In key distribution schemes for multicast, a group controller
distributes a group encryption key to all users in a multicast group. The group of users
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is dynamic and each join or leave event requires the change of the encryption key. The
goal is to achieve both forward and backward security. In contrast, in our model of
key-updating schemes users should be able to derive past encryption keys efficiently.

A common key distribution model for multicast is that of key graphs, introduced by
Wong et al. [32] and used subsequently in many constructions [30], [29], [19],[18]. In
these schemes, each user knows its own secret key and, in addition, a subset of secret
keys used to generate the group encryption key and to perform fast update operations.
The relation between users and keys is modeled in a directed acyclic graphs, in which
the source nodes are the users, intermediary nodes are keys and the unique sink node is
the group encryption key. A path from a user node to the group key contains all the keys
known to that user. The complexity and communication cost of key update operations is
optimal for tree structures [31], and in this case it is logarithmic in the number of users in
the multicast group. We also use trees for generating keys, but our approach is different
in considering the nodes of the tree to be only keys, and not users. We obtain logarithmic
update cost in the number of revocations, not in the number of users in the group.

Key Management in Cryptographic Storage Systems. Early cryptographic file sys-
tems [9,11] did not address key management. Cepheus [15] is the first cryptographic
file system that considers sharing of files and introduces the idea of lazy revocation
for improving performance. However, key management in Cepheus is centralized by
using a trusted key server for key distribution. More recent cryptographic file systems,
such as Oceanstore [25] and Plutus [23], acknowledge the benefit of decentralized key
distribution and propose that key management is handled by file owners themselves.
For efficient operation, Plutus adopts a lazy revocation model and uses a key-updating
scheme based on RSA, as described in Section 4.2.

Farsite [3], SNAD [28] and SiRiUS [17] use public-key cryptography for key man-
agement. The group encryption key is encrypted with the public keys of all group mem-
bers and these lockboxes are stored on the storage servers. This approach simplifies key
management, but the key storage per group is proportional to the number of users in the
group. Neither of these systems addresses efficient user revocation.

Independently and concurrently to our work Fu, Kamara, and Kohno [16] have pro-
posed a cryptographic definition for key-updating schemes, which they call key re-
gression schemes. Key regression schemes are, in principle, equivalent to key-updating
schemes. Their work formalizes three key regression schemes: two constructions, one
using a hash function and one using a pseudo-random permutation, are essentially
equivalent to our chaining construction, and an RSA-based construction originating in
Plutus, which is equivalent to our trapdoor-permutation construction. Our composition
methods and the tree-based construction are novel contributions that go beyond their
work.

8 Conclusions

Motivated by the practical problem of efficient key management for cryptographic
file systems that adopt lazy revocation, we define formally the notion of key-updating
schemes for lazy revocation and its security. In addition, we give two methods for ad-
ditive and multiplicative composition of two secure key-updating scheme into a new
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scheme which can handle a larger number of user revocations, while preserving se-
curity. We also prove the security of two slightly modified existing constructions and
propose a new construction, the binary-tree scheme, that balances the tradeoffs of the
existing constructions. Finally, we provide a systematic analysis of the computational
and communication complexities of the three constructions.

We can extend the definition of key-updating schemes to support user keys for inter-
val t, from which only keys of the time intervals between i and t can be extracted, for
any 1 ≤ i ≤ t. This is useful in a model in which users joining the group at a later time
interval should not have access to past information. The extension can be incorporated
in the tree construction without additional cost, but the chaining and trapdoor permuta-
tion constructions do not work in this model because the user key reveals all previous
keys.

In a companion paper [5], we show how to extend secure key-updating schemes to
cryptosystems with lazy revocation, and introduce the notions of symmetric encryp-
tion, message-authentication codes, and signature schemes with lazy revocation. Fur-
thermore, we demonstrate that using these cryptosystems in some existing distributed
cryptographic file systems improves their efficiency and security.
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Abstract. Advances in networking technologies have triggered the “storage as a
service” (SAS) model. The SAS model allows content providers to leverage hard-
ware and software solutions provided by the storage service providers (SSPs),
without having to develop them on their own, thereby freeing them to concen-
trate on their core business. The SAS model is faced with at least two important
security issues: (i) How to maintain the confidentiality and integrity of files stored
at the SSPs? (ii) How to efficiently support flexible access control policies on the
file system? The former problem is handled using a cryptographic file system,
while the later problem is largely unexplored. In this paper, we propose secure,
efficient and scalable key management algorithms to support monotone access
structures on large file systems. We use key derivation algorithms to ensure that a
user who is authorized to access a file, can efficiently derive the file’s encryption
key. However, it is computationally infeasible for a user to guess the encryption
keys for those files that she is not authorized to access. We present concrete algo-
rithms to efficiently and scaleably support a discretionary access control model
(DAC) and handle dynamic access control updates & revocations. We also present
a prototype implementation of our proposal on a distributed file system. A trace
driven evaluation of our prototype shows that our algorithms meet the security
requirements while incurring a low performance overhead on the file system.

1 Introduction

The widespread availability of networks, such as the Internet, has prompted a prolif-
eration of both stationary and mobile devices capable of sharing and accessing data
across networks spanning multiple administrative domains. Today, efficient data stor-
age is vital for almost every scientific, academic, or business organization. Advances
in the networking technologies have triggered the “storage as a service” (SAS) model
[15][13]. The SAS model allows organizations to leverage hardware and software so-
lutions provided by third party storage service providers (SSPs), thereby freeing them
to concentrate on their core business. The SAS model decouples physical storage from
file management issues such as access control and thus allows the file system to scale
to a large number of users, files, and organizations. However, from the perspective of
the organization (content owner), the SAS model should address at least two important
security issues: (i) How to maintain the confidentiality & integrity of files stored at the
SSPs? (ii) How to securely and efficiently support flexible access control policies on
the file system?
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Cryptographic File Systems. Cryptographic file systems address the first problem.
These file systems essentially maintain the confidentiality and integrity of the file data
by storing it in an encrypted format at the SSPs. With the advent of high speed hard-
ware for encrypting and decrypting data, the overhead in a cryptographic file system
due to file encryption and decryption is affordably small. Examples of cryptographic
file systems include CFS [4], TCFS [7], CryptFS [29] and NCryptFS [28]. Examples of
wide-area distributed cryptographic file systems include Farsite [2] and cooperative file
system [8].

Access Control. Access control in a cryptographic file system translates into a secure
key management problem. Cryptographic access control [12] is achieved by distribut-
ing a file’s encryption key to only those users that are authorized to access that file.
A read/write access to the files stored at the SSP is granted to all principals, but only
those who know the key are able to decrypt the file data. However, there is an inher-
ent tension between the cost of key management and the flexibility of the access control
policies. At one extreme the access control matrix is highly flexible and can thus encode
arbitrary access control policies (static). An access control matrix [17] is (0, 1) matrix
MU×F , where U is a set of users and F is a set of files and Muf = 1 if and only if user
u can access file f . Implementing cryptographic access control would require one key
for every element Muf such that Muf = 1. This makes key management a challenging
performance and scalability problem in a large file system wherein, access permissions
may be dynamically granted and revoked.

Our Approach. The access control matrix representation of the access control rules
does not scale well with the number of users and the number of files in the system. A
very common strategy is to impose an access structure on the access control policies.
An access structure, as the name indicates, imposes a structure on the access control
policies. Given an access structure, can we perform efficient and scalable key manage-
ment without compromising the access control policies in the file system? We propose
to use an access structure to build a key derivation algorithm. The key derivation algo-
rithm uses a much smaller set of keys, but gives the same effect as having one key for
every Muf = 1. The key derivation algorithm guarantees that a user u can use its small
set of keys to efficiently derive the key for any file f if and only if Muf = 1.

Monotone Access Structure. In this paper we consider access control policies based
on monotone access structures. Most large enterprises, academic institutions, and mili-
tary organizations allow users to be categorized into user groups. For example, let {g1,
g2, g3} denote a set of three user groups. A user u can be a member of one or more
groups denoted by Gu. Access control policies are expressed as monotone Boolean ex-
pressions on user groups. For example, a file f may be tagged with a monotoneBf = g1
∧ (g2 ∨ g3). This would imply that a user u can access file f if and only if it belongs to
group g1 and either one of the groups g2 or g3. For example, if Gu1 = {g1, g3} and Gu2

= {g2, g3}, then user u1 can access file f , but not user u2. Monotone access structures
are a common place in role-based access control models [25]. In the RBAC model, each
role (say, a physician or a pharmacist) is associated with a set of credentials. Files are
associated with a monotone Boolean expression Bf on credentials. A role r can access
a file f if and only if the credentials for role r satisfies the monotone Bf .
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Our Contribution. In this paper, we propose secure, efficient and scalable key manage-
ment algorithms that support monotone access structures in a cryptographic file system.
(i) Number of Keys: We ensure that each user needs to maintain only a small number of
keys. It suffices for a user to maintain only one key per group that the user belongs to.
For example, a user u with Gu = {g1, g2} needs to maintain keys one key corresponding
to group g1 and group g2. (ii) Efficient Key Derivation: It is computationally easy for a
user to derive the keys for all files that she is authorized to access. For example, a user
who has the key for groups g1 and g2 can easily derive the encryption key for a file f
with Bf = g1 ∧ (g2 ∨ g3). (iii) Secure Key Derivation: It is computationally infeasible
for a user to derive the key for any file that she is not authorized to access. For exam-
ple, for a user who has the keys only for groups g2 and g3, it is infeasible to guess the
encryption key for a file f with Bf = g1 ∧ (g2 ∨ g3). (iv) Discretionary Access Control
(collusion resistance): It is computationally infeasible for two or more colluding users
to guess the encryption key for a file that none of them are independently authorized
to access. For example, two colluding users u1 with Gu1 = {g1} and u2 with Gu2 =
{g3} should not able to guess the encryption key for a file f with Bf = g1 ∧ (g2 ∨
g3). (v) Revocation: Our key management algorithms support dynamic revocations of a
user’s group membership through cryptographic leases. A lease permits a user u to be a
member of some group g from time a to time b. Our algorithms allow the lease duration
(a, b) to be highly fine grained (say, to a millisecond precision).

Paper Outline. The following sections of this paper are organized as follows. Sec-
tion 2 describes the SAS model and monotone access structures in detail. Section 3
presents a detailed design and analysis of our key management algorithms for imple-
menting discretionary access control using monotone access structures in cryptographic
file systems. Technical report [26] sketches an implementation of our key management
algorithms on a distributed file system followed by trace-driven evaluation in Section 4.
Finally, we present related work in Section 5 followed by a conclusion in Section 6.

2 Preliminaries

In this section, we present an overview of the SAS model. We explicitly specify the
roles played by the three key players in the SAS architecture: content provider, storage
service provider, and users. We also formally describe the notion of user groups and the
properties of monotone access structures on user groups.

2.1 SAS Model

The SAS model comprises of three entities: the content provider, the storage service
provider and the users.

Storage Service Providers (SSPs). Large SSPs like IBM and HP use high speed stor-
age area networks (SANs) to provide large and fast storage solutions for multiple or-
ganizations. The content provider encrypts files before storing them at a SSP. The SSP
serves only encrypted data to the users. The content provider does not trust the SSP
with the confidentiality and integrity of file data. However, the SSP is trusted to per-
form read and write operations on the encrypted files. For performance reasons, each
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file is divided into multiple data blocks that are encrypted separately. An encrypted data
block is the smallest granularity of data that can be read or written by a user or a content
provider.

Content Provider. The content provider is responsible for secure, efficient and scalable
key management. We assume that there is a secure channel between the group key man-
agement service and the users. This channel is used by the content provider to distribute
keys to the users. We assume that the channel between the content provider & the SSP
and that between the users & the SSP could be untrusted. An adversary would be able
to eavesdrop or corrupt data sent on these untrusted channels. The content provider also
includes a file key server. The users interact with the file key server to derive the encryp-
tion keys for the files they are authorized to access. The channel between the user and
the file key server may be untrusted. In the following sections of this paper, we present
an efficient, scalable and secure design for the file key server.

Users. We use an honest-but-curious model for the users. Content providers authorize
users to access certain files by securely distributing appropriate keys to them. Let K(f)
denote the encryption key used to encrypt file f . If a user u is authorized to access file f ,
then we assume that the user u would neither distribute the key K(f) nor the contents
of the file f to an unauthorized user. However, a user u′ who is not authorized to access
file f would be curious to know the file’s contents. We assume that unauthorized users
may collude with one another and with the SSP. Unauthorized users may eavesdrop or
corrupt the channel between an authorized user and the SSP. We use a discretionary ac-
cess control (DAC) model to formally study collusions amongst users. Under the DAC
model the set of files that is accessible to two colluding users u1 and u2 should be no
more than the union of the set of files accessible to the user u1 and the user u2. Equiv-
alently, if a file f is accessible neither to user u1 nor to user u2 then it should remain
inaccessible even when the users u1 and u2 collude with one another.

2.2 Monotone Access Structures

In this section, we describe monotone access structures based access control policies.
Our access control policies allow files to be tagged with monotone Boolean expressions
on user groups. Let G = {g1, g2, · · · , gs} denote a set of s user groups. A user may
be a member of one or more user groups. Each file f is associated with a monotone
Boolean expression Bf . For example, Bf = g1 ∧ (g2 ∨ g3) would mean that the file f is
accessible by a user u if and only if u is a member of group g1 and a member of either
group g2 or group g3.

We require that the Boolean expression Bf be a monotone. This assumption has sev-
eral consequences: (i) Let Gu denote the set of groups to which user u belongs. Let
Bf (Gu) denotes Bf (g1, g2, · · · , gs) where gi = 1 if the group gi ∈ Gu and gi = 0
otherwise. For two users u and v if Gu ⊆ Gv then Bf (Gu) ⇒ Bf (Gv). (ii) Let us
suppose that a user u is authorized to access a set of files F. If the user u were to obtain
membership to additional groups, it does not deny u access to any file f ∈ F (monotone
property). (iii) For all files f , Bf can be expressed using only ∧ and ∨ operators (with-
out the NOT (∼) operator) [18]. (iv) Access control policies specified using monotone
Boolean expressions are easily tractable. Let Gu denote the set of groups to which user
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Fig. 1. FSGuard Architecture

Table 1. Comparison of Key Management Algorithms

File Bf Gu Num keys Storage
Access Update Update per User Overhead

FSGuard 1cpu + 1net - - 4 1disk
Key-per-User - 103cpu + 10net 106cpu + 104net 1 20disk
Key-per-File - 103cpu + 10net 106cpu + 104net 104 1disk

u belongs. Then, one can efficiently determine whether the user u can access a file f by
evaluating the Boolean expression Bf (Gu). Note that evaluating a Boolean expression
on a given input can be accomplished in O(|Bf |) time, where |Bf | denotes the size of
the Boolean expression Bf .

3 User Groups

3.1 Overview

Figure 1 shows the entities involved in our design. The core component of our design
is the file key server. We use the file key server for securely, efficiently and scaleably
managing the file encryption keys. A high level description of our key management
algorithm is as follows. Each file f is encrypted with a key K(f). The key K(f) is
encrypted with a key encryption key KEK(f). The encrypted file is stored at the SSP.
The content owner stores the key encryption keys in the trusted file key server in a
compressed format. The key server can use the stored information to efficiently derive
the key encryption keys on the fly (Section 3.4) and distributes a secure transformation
of the KEKs to the users. A transformation on KEK(f) is secure if the transformed
version can be made publicly available (to all users and the SSP) without compromis-
ing the access control guarantees of the file system (Sections 3.2 and 3.3). We handle
dynamic revocations of file accesses to users using a novel authorization key tree [26].
For comparison purposes, we describe two simple key management algorithms in this
section: key-per-user and key-per-file.

Key-per-User. The key-per-user approach associates a secret key K(u) with user u.
For any file f , the key server determines the set of users that are permitted to access file
f based on the group membership of user u and the monotone Bf . For all users u that
can access file f , the key server stores EK(u)(KEK(f)) along with the attributes of
file f at the SSP. Note that EK(x) denotes a symmetric key encryption of input x using
an encryption algorithm E (like DES [10] or AES [21]) and key K . However, such an
implementation does not scale with the number of files and users in the system since
the key server has to store and maintain updates on KEK(f) for all f , Bf for all f ,
K(u) for all u, and Gu for all u. For example, if Gu changes for any u, the key server
needs to inspect all the files in the system before determining the set of files to which
the user u’s access needs to be granted or revoked. For all files f , whose access is either
granted to user u, the key server has to add EK(u)(KEK(f) to its attribute. For all files
f , whose access is revoked to user u, the key server has to update KEK(f) (to say,
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KEK ′(f)); the key server has to add EK(u′)(KEK ′(f)) for all other users u′ that are
allowed to access file f .

Key-per-File. The second approach is the key-per-file approach. This approach asso-
ciates a key K(f) with file f . For each user u, the key server determines the set of files
that the user is permitted to access based on the group membership of the user u and
the monotone Bf . We use the key server to distribute KEK(f) to all users that are
permitted to access the file f . We use a group key management protocol [20] to update
KEK(f) as the set of users permitted to access file f varies. However, the key-per-file
approach also suffers from similar scalability problems as the key-per-user approach.

FSGuard. In this paper, we present our key management algorithms for implement-
ing discretionary access control using monotone access structures in a cryptographic
file system. As shown in Figure 1 our approach (FSGuard) does not require any com-
munication between the key server & the group key management service and the key
server & the SSP. Table 1 shows a rough cost comparison between our approach and
other approaches. Our approach incurs a small processing (cpu) and networking (net)
overhead for file accesses. The key-per-user and key-per-file approach incurs several
orders of magnitude higher cost for updating a file’s access control expression Bf

and updating a user’s group membership Gu. The average number of keys maintained
by one user in key-per-file approach is several orders of magnitude larger than our
approach and the key-per-user approach. The storage overhead at the SSP in the key-
per-user approach is at least one order of magnitude larger than our approach and the
key-per-file approach.

3.2 Basic Construction

In this section, we present a basic construction for building a secure transformation.
Recall that a transformation on KEK(f) is secure if the transformed version can be
made publicly available (to all users and the SSP) without compromising the access
control guarantees of the file system. The basic construction assumes that users do not
collude with one another and that the access control policies are static with respect to
time. Further, the basic construction incurs a heavy communication cost between the
key server and the group key management service. We remove these restrictions in later
Sections 3.3 and 3.4.

The key idea behind the basic construction is to transform the KEK(f) such that a
user u can reconstructKEK(f) if and only if the user u satisfies the condition Bf . Our
construction is based on generalized secret sharing scheme presented in [3]. We assume
that all keys are 128-bits long and all integer arithmetic is performed in a 128-bit integer
domain (modulo 2128). We use K(g) to denote the group key for group g. When a user
u joins group g, it gets the group key K(g) from the group key management service
via a secure channel. In this section, we assume a non-collusive setting: a user u knows
K(g) if and only if user u is a member of group g. We extend our algorithm to permit
collusions in Section 3.3.

Given a monotone Boolean expression Bf we mark the literals in the expression as
follows. The ith occurrence of a literal g in the expression Bf is marked as gi. For
example, Bf = (g1 ∨ g2) ∧ (g2 ∨ g3) ∧ (g3 ∨ g4) is marked as (g1

1 ∨ g1
2) ∧ (g2

2 ∨
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g1
3) ∧ (g2

3 ∨ g1
4). The key server published T (KEK(f), Bf), where the transformation

function T is recursively defined as follows:

T (x,A1 ∧A2) = T (x1, A1) ∪ T (x2, A2) such that x1 + x2 = x

T (x,A1 ∨A2) = T (x,A1) ∪ T (x,A2)
T (x, gi) = x + Hsalt(K(g), i)

The symbolsA1 and A2 denote arbitrary monotone Boolean expressions. The∪ denotes
the union operator and + denotes the modular addition operator on a 128-bit integer
domain. For the Boolean ∧ operator, we chose x1 and x2 randomly such that x1 + x2
= x. Observe that knowing only x1 or x2 does not give any information about x = x1
+ x2. Note that H denotes a keyed pseudo-random function (PRF) (like HMAC-MD5
or HMAC-SHA1 [16]). The salt value is randomly chosen per file and is stored at the
SSP along with the rest of the file f ’s attributes. The salt value is used as the key for
the PRF H . The above construction can be easily extended to cases where the function
T takes more than two arguments:

T (x,
n∧

i=1

Ai) =
n⋃

i=1

T (xi, Ai) such that
n∑

i=1

xi = x

T (x,
n∨

i=1

Ai) =
n⋃

i=1

T (x,Ai)

T (x, gi) = x + Hsalt(K(g), i)

Theorem 1. The transformation T described in Section 3.2 secure in the absence of
collusions amongst malicious users.

Drawbacks. While the basic construction presents a secure transformationT , it has sev-
eral drawbacks. First, the basic construction does not tolerate collusions among users.
A collusion between two users u1 and u2 may result in unauthorized privilege escala-
tion. For example, let us say that u1 is a member of group g1 and u2 is a member of
group g2. By colluding with one another, users u1 and u2 would be able to access a file
f with Bf = g1 ∧ g2, thereby violating the discretionary access control (DAC) model.
Recall that in a DAC model, the set of files that is accessible to two colluding users u1
and u2 should be no more than the union of the set of files accessible to the user u1
and the user u2. Second, the key server needs to know KEK(f) and Bf for all files
in the system. In a static setting, wherein KEK(f) and Bf do not change with time,
this incurs heavy storage costs at the key server. In a dynamic setting, this incurs heavy
communication, synchronization and consistency maintenance costs in addition to the
storage cost. Note that in a dynamic setting, the key server has to maintain up to date
information on KEK(f) and Bf for all files in the system.

3.3 Collusion Resistant Construction

In this section, we present techniques to tolerate malicious collusions between users.
The key problem with our basic construction (Section 3.2) is that the authorization in-
formation given to a user u3 that belongs to both groups g1 and g2 (namely, K(g1)
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and K(g2)) is simply the union of the authorization information given to a user u1
that belongs to group g1 (namely, K(g1)) and to a user u2 that belongs to group g2
(namely, K(g2)). We propose that when an user u joins a group g, it gets two pieces of
authorization information K(g) and K(u, g). The key K(u, g) binds user u to group g.
However, using randomly chosen values for K(u, g) does not scale with the number of
users, since the group key management service and our key server would have to main-
tain potentially |U | ∗ |G| keys, where |U | is the number of users and |G| is the number
of groups. We propose to mitigate this problem by choosing K(u, g) pseudo-randomly.
We derive K(u, g) as K(u, g) = HMK(u, g), where MK is the master key shared be-
tween the group management service and the key server. For notational simplicity, we
overload u and g to denote the u’s user identifier and g’s group identifier respectively.

Now, we modify the recursive definition of the transformation T described in Sec-
tion 3.2 as follows:

T (x, u,
n∧

i=1

Ai) =
n⋃

i=1

T (xi, u, Ai) such that
n∑

i=1

xi = x

T (x, u,
n∨

i=1

Ai) =
n⋃

i=1

T (x, u,Ai)

T (x, u, gi) = x + Hsalt(K(u, g), i)

Theorem 2. The transformation T described in Section 3.3 is secure and collusion
resistant.

3.4 Key Encryption Keys

We have so far described techniques to securely transform and distribute key encryp-
tion keys. However, a major scalability bottleneck still remains in the system. The key
server needs to know KEK(f) and Bf for all files in the file system. This incurs not
only heavy storage costs, but also incurs heavy communication costs to maintain the
consistency (up to date) of KEK(f) and Bf . In this section, we propose to circum-
vent this problem as follows. We propose to derive KEK(f) as a function of Bf .
Hence, when a user u requests for T (KEK(f), u, Bf), the key server first computes
KEK(f) as a function of Bf . Then, it uses the derived value for KEK(f) to construct
the T (KEK(f), u, Bf) as described in Section 3.3. In the following portions of this
section, we present a technique to derive KEK(f) from Bf . Our technique maintains
the semantic equivalence of monotone Boolean expressions, that is, for any two equiv-
alent but non-identical representations of a monotone Boolean function Bf and B′

f ,
KEK(Bf) = KEK(B′

f).

Preprocessing. Given a monotone Boolean expression Bf we normalize it as follows.
We express Bf in a minimal conjunctive normal form (CNF) as Bf = C1 ∧ C2 · · · ∧
Cn. C1 ∧ C2 · · · ∧ Cn is a minimal expression of Bf if for no 1 ≤ i, j ≤ n and i �= j,
Ci ⇒ Cj . Note that a monotone Boolean expression in its minimal form is unique up
to a permutation on the clauses and permutation of literals within a clause. If not, let us
suppose that Bf = C1 ∧ C2 · · · ∧ Cn = C′

1 ∧ C′
2 · · · ∧ C′

n′ be two distinct minimal



Key Derivation Algorithms for Monotone Access Structures 355

CNF representations of Bf . Then, there exists Ci such that Ci �= C′
j for all 1 ≤ j ≤

n′. Setting all the literals in Ci to false sets the expression Bf to false. Hence, for
C′

1 ∧ C′
2 · · · ∧ C′

n′ to be an equivalent representation, there has to exist C′
j such that

the literals in C′
j is a proper subset of the literals in Ci. Then, setting all the literals in

C′
j to false sets Bf to false. Hence, for C1 ∧ C2 · · · ∧ Cn to be an equivalent

representation, there has to exist Ci′ (i �= i′) such that the literals in Ci′ is a proper
subset of the literals in C′

j . Hence, the literals in Ci′ is a proper subset of the literals
in Ci, that is, Ci′ ⇒ Ci (i �= i′). This contradicts the fact that C1 ∧ C2 · · · ∧ Cn is
a minimal CNF representation of the monotone Boolean expression Bf . We normalize
the representation of each clause Ci as gi1 ∨ gi2 ∨ · · · ∨ gim such that ij < ij+1 for all
1 ≤ j < m.

Deriving KEK(f). We compute KEK(f) recursively as follows:

KC(Ci)=HMK(i1, i2, · · · , im) where Ci =gi1∨gi2∨· · ·∨gim and i1<i2< · · ·<im

KEK(Bf )=HMK(KC(C1)⊕KC(C2)⊕· · ·⊕KC(Cn)) where Bf =C1∧C2∧· · ·∧Cn

KEK(f)=HMK(KEK(Bf ), salt)

Note that MK is a master key used by the key server. The salt value is an auxiliary
attribute associated with the file f . The PRF H is neither commutative nor associative;
hence, we impose an arbitrary total order on groups using their group number. The ⊕
operator is both commutative and associative; hence, the order of the clauses in Bf does
not affect KEK(Bf ). Hence, given any two equivalent representations of a monotone
Boolean function Bf = B′

f , our algorithm computes the same key encryption key.

Security Analysis. It is easy to see that a user u who is authorized to access file f can
easily recover KEK(f) from T (KEK(f), u, Bf). Let us suppose that a user u is not
authorized to access file f . The user can present incorrect inputs since, the inputs are
not authenticated by the key server. Recall that the key server accepts three inputs salt,
u and Bf . Let us suppose that a user u sends an incorrect input u′. By the property of
the secure transformation function T (Section 3.3), the user u cannot guess KEK(f)
from T (KEK(f), u′, Bf ). Even if the users u and u′ were to collude, we have shown
in Section 3.3 that they can obtain KEK(f) if and only if either u or u′ is indeed
authorized to access the file f . Let us suppose that a user u sends an incorrect input B′

f .
By the description of our key derivation algorithm in this Section, using an incorrect
B′

f results in an incorrect KEK ′(f). Indeed the properties of the PRF H ensures that
the user u cannot guess KEK(f) from KEK ′(f). The same argument also applies if
the user u were to send an incorrect input salt′. Hence, given one or more outputs from
the key server, a user u can construct KEK(f) if and only if the user u is authorized
to access the file f , that is, Bf (Gu) = true.

The key server exports only one interface that accepts the file’s salt, u and Bf as in-
puts and returns a secure transformation of KEK(f), namely, T (KEK(f), u, Bf) as
output. The key server does not have to interact with either the group key management
service to maintain KEK(f) and Bf for all files f or Gu and K(u, g) for all users u
and groups g. This large minimizes the storage costs, communication costs, synchro-
nization and consistency management costs in a dynamic setting and largely improves
the scalability of the key server.
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Table 2. Parameters

Parameter Default Description
nf 107 number of files
nu 1000 number of users
ng 32 number of groups

nug zipf(1, 10) number of groups per user
nc zipf(2, 4) number of clauses in Bf

nl zipf(2, 4) number of literals per clause
δt 1 time granularity (seconds)
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4 Evaluation

In this section, we present a concrete evaluation of our prototype implementation. We
ran our prototype implementation on eight machines (550 MHz Intel Pentium III Xeon
processor running RedHat Linux 9.0) connected via a high speed 100 Mbps LAN. We
used six machines to operate as the file servers, one machines to operate as the client,
and one machine operates as the key server.

We compare our approach with two other approaches: key-per-user and key-per-file
approach (see Section 3.1). We evaluate the performance of our proposal using four per-
formance metrics: number of keys per user, storage cost at SSP, communication cost for
various file system operations (file access, file’s access control expression update, user’s
group membership update), and computation cost for various file system operations (file
access, file’s access control expression update, user’s group membership update). We
perform trace driven evaluations using the SPECsfs workload generator [1] of our ap-
proach to study the scalability of the key server and the performance overhead of our
approach on a cryptographic file system. We used a synthetic file system with 10 mil-
lion files, 1000 users, and 32 user groups. We assume that the group popularity follows
a Zipf distribution [24], that is, the number of users that are a member of group i (1 ≤ i
≤ 32) is proportional to 1

i . We assume that the number of clauses in any monotone Bf

follows a Zipf distribution between 2 to 4 and the number of literals per clause follows
a Zipf distribution between 2 to 4. Table 2 summarizes our main file system parameters.

4.1 Storage, Computation and Communication Costs

Number of Keys per User. In our first experiment, we measure the average number of
keys maintained by a user using the three approaches. As the number of keys per user
increases, so does the cost of managing those keys. Also, requiring a user to maintain
a large number of keys increases the risk of one more keys being lost or accidentally
leaked to an adversary. The key-per-user approach requires the user to store only one
key. Our approach requires the user to store one key per group; we found that the aver-
age number of keys per user was 3.78.

The key-per-file approach requires the user to store one key per file that it is permitted
to access. The average number of keys per user in this case is about 4.2 ∗ 105. [20][22]
propose techniques to cluster files (termed file groups) based on their similarity. One can
cluster files based on their access control expressionBf : all files in a cluster have identi-
cal (equivalent)Bf . We found that amongst 10 million files, there were 1.3∗105 unique
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monotones Bf : hence, we had 1.3 ∗ 105 file clusters with 1-337 files per cluster. We
found that even with the clustering mechanism, the number of keys per user was about
2.3 ∗ 104. Because of the practical infeasibility of the key-per-file approach, the rest of
our experiments focus exclusively on the key-per-user approach and our proposal.

Storage Cost as SSP. In our second experiment, we study the storage overhead at the
SSP for storing additional file attributes. The key-per-user approach requires that we
store EK(u)(K(f)) per file block for all users u that is permitted to access the file f .
Our approach stores only attribute EKEK(f)(K(f)) (16 Bytes). Under the default set-
tings described in Table 2, we found that the average number of users that can access
a file was 45.7. Hence, each file block (8 KB) stored on the SSP the key-per-user ap-
proach incurs about 45.7 * 16 Bytes = 731.2 Bytes overhead (8.9%), while our approach
(fsguard) incurs only a 16 Byte overhead (0.2%). As the number of users increase,
the size of attributes stored with a file increases. Figure 2 shows the average size of a
file’s attribute as the number of users varies. Observe that as the numbers of users be-
come 5000, the attribute size is about 4 KB. Using 8 KB file blocks, at least 50% of the
storage space on the SSP would be expended on storing file attributes.

Communication Cost. In our third experiment, we measure the communication cost
for three important operations: file access (read/write), update on a file’s access control
expression, and update on a user’s group memberships.

File Access (read/write). A file access in the key-per-user approach does not involve
any interaction between the user and the key server. The user fetches the file block and
EK(u)(K(f)) from the SSP and performs read/write operations on the block. On the
other hand, file access in our approach requires the user to interact with the key server if
the file encryption key K(f) is not available in the user’s local key cache. Observe that
the communication cost between the user and the key server is O(|Bf |), where |Bf |
denotes the number of literals in the monotone expression Bf . For example, |(g1 ∨ g2)
∧ (g1 ∨ g3)| = 4. Figure 3 shows the communication cost between the user and the key
server for different values of |Bf |. Observe that even for complex (large) monotones,
the communication cost is about a few hundred bytes.

File Access Control Expression Update. Let Bf and B′
f denote the old the new ac-

cess control expression for file f . In the key-per-user approach, the key server has to
determine the set of users U and U ′ whose group membership satisfies the expression
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Bf and B′
f respectively. For all u ∈ U ′ − U , the key server has to add EK(u)(K(f))

to the file f ’s attribute. For all u ∈ U −U ′, the key server has to remove EK(u)(K(f))
from the file f ’s attribute. On the next write operation on file f , the key server needs to
update K(f) to a new key K ′(f) and consequently add EK(u)(K ′(f)) for all u ∈ U ′

as attributes of file f . Note that the old attributes EK(u)(K(f)) for all u ∈ U can be
deleted by the SSP. Using our approach, an update to the file’s access control expres-
sion does not incur any communication cost. Recall that the interface exported by the
key server operates on Bf rather than f itself. Figure 4 shows the communication cost
between the key server and the SSP as nu, the number of users vary. Observe that as
the number of users increase, the communication cost on the key server increases. This
largely limits the scalability of the key server with the number of users in the file sys-
tem. Observe from Figures 3 and 4 that an update on a file’s access control expression
costs about 1000 times the cost of a file access incurred by our approach.

User Group Membership Update. Let us suppose that a user u’s group membership
changed from G to G′. In the key-per-user approach, the key server has to determine
the set of files F and F ′ whose access control expression is satisfied by group mem-
bership G and G′ respectively. For all files f ∈ F ′ − F , the key server has to add
EK(u)(K(f)) to the file f ’s attribute. For all files f ∈ F − F ′, the key server has to
remove EK(u)(K(f)) from the file f ’s attribute. On the next write operation on any file
f ∈ F −F ′, the key server needs to update K(f) to a new key K ′(f). Consequently the
key server has to add EK(u′)(K ′(f)) as an attribute for the file f for all users u′ that can
access file f . Using our approach, an addition to a user’s group membership requires an
interaction with the group key management service. Revocation of a group membership
does not require any communication using our algorithm in [26]. Figure 5 shows the
communication cost as nf , the number of files vary. Using the key-per-user approach,
the communication cost incurred in updating one user’s group membership grows lin-
early with the number of files in the system and is of the order of several megabytes.
This largely limits the scalability of the key server with the number of files in the sys-
tem. Observe from Figures 3 and 5 that an update on a user’s group membership costs
about million times the cost of a file access incurred by our approach.

Computation Cost. In our fourth experiment, we measure the computation cost for
three important operations: file access (read/write), update on a file’s access control ex-
pression, and update on a user’s group memberships. The computation cost is divided
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between the key server and the user. We computation cost is expressed in seconds as
measured using a 550 MHz Intel Pentium III Xeon processor running RedHat Linux
9.0. Figures 6, 7 and 8 shows the computation cost at the client and the key server for
the three operations listed above. Similar to the communication cost, our approach in-
curs computation cost only for file read/write operations. Further, this computation cost
is incurred only if the file’s key is not available in the user’s cache. The key-per-user
approach imposes heavy computation cost when a file’s access control expression is
updated or when a user’s group membership is updated. An update on a file’s access
control expression costs about 1000 times the cost of a file access incurred by our ap-
proach; an update on a user’s group membership costs about million times the cost of a
file access incurred by our approach.

5 Related Work

Advances in the networking technologies have triggered several networking services
such as: ‘software as a service’ also referred to as the application service provider (ASP)
model [14], ‘database as a service’ (DAS) [11] that permits organizations to outsource
their DBMS requirements, and ‘storage as service’ (SAS) model. The SAS model inher-
its all the advantages of the ASP model, indeed even more, given that a large number
of organizations have their own storage systems. This model allows organizations to
leverage hardware and software solutions provided by the service providers, without
having to develop them on their own, thereby freeing them to concentrate on their core
businesses. However, implementing flexible access control mechanisms and protecting
the confidentiality from a storage service provider (SSP) has been a critical problem in
the SAS model.

Cryptographic file systems like CFS [4], TCFS [7], CryptFS [29], NCryptFS [28],
Farsite [2], StegFS [19], cryptographic disk driver [9] and cooperative file system [8]
permit the file data to be kept confidential from the SSP. These file systems were de-
signed with the goal of data confidentiality, while balancing scalability, performance
and convenience. However, these systems were not designed with the goal of support-
ing flexible access control policies.

Cryptographic access control [12] make it possible for one to rely exclusively on
cryptography to ensure confidentiality and integrity of data stored in the system. Data
are encrypted as the applications store them on a server, which means that the storage
system only manages encrypted data. Read/Write access to the physical storage device
is granted to all principals (only those who know the key are able to decrypt the data).
Cryptographic access control has been deployed to maintain secrecy in group key man-
agement protocols [27][5][6][23]. However, the access control policies that could be
specified using cryptographic access control mechanisms were naive and inflexible. In
this paper we have proposed techniques to implement monotone structure based access
control policies in a cryptographic file system.

6 Conclusion

In this paper we have presented − secure, efficient and scalable mechanisms to enforce
discretionary access control using monotone access structures on a cryptographic file



360 M. Srivatsa and L. Liu

system. We have presented key derivation algorithms that guarantee that a user who is
authorized to access a file, can efficiently derive the file’s encryption key; while, it is
computationally infeasible for a user to guess the encryption keys associated with the
files that she is not authorized to access. We have also presented concrete algorithms to
support dynamic access control updates & revocations. We have also presented a pro-
totype implementation of our proposal on a distributed file system. A cost based eval-
uation of our system showed that our approach incurs lower key management, storage,
communication and computation cost when compared to the key-per-user and key-per-
file approach. A trace driven evaluation of our prototype showed that our algorithms
meet the security requirements while preserving the performance and scalability of the
file system.

Acknowledgements. This research is partially supported by NSF CNS CCR, NSF ITR,
DoE SciDAC, CERCS Research Grant, IBM Faculty Award, IBM SUR grant, and HP
Equipment Grant.
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Abstract. We present a computational analysis of basic Kerberos and
Kerberos with public-key authentication (PKINIT) in which we con-
sider authentication and key secrecy properties. Our proofs rely on the
Dolev-Yao style model of Backes, Pfitzmann and Waidner, which allows
for mapping results obtained symbolically within this model to cryp-
tographically sound proofs if certain assumptions are met. This is the
most complex fragment of an industrial protocol that has yet been ver-
ified at the computational level. Considering a recently fixed version of
PKINIT, we extend symbolic correctness results we previously attained
in the Dolev-Yao model to cryptographically sound results in the com-
putational model.

1 Introduction

Cryptographic protocols have traditionally been verified in one of two ways: the
first, known as the Dolev-Yao or symbolic approach, abstracts cryptographic
concepts into an algebra of symbolic messages [25]; the second, known as the
computational or cryptographic approach, retains the concrete view of messages
as bitstrings and cryptographic operations as algorithmic mappings between
bitstrings, while drawing security definitions from complexity theory [16,26,27].
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While proofs in the computational approach (with its much more comprehensive
adversary model) entail stronger security guarantees, verification methods based
on the Dolev-Yao abstraction have become efficient and robust enough to tackle
large commercial protocols, often even automatically [1,15,18,34].

Kerberos, a widely deployed protocol that allows a user to authenticate her-
self to multiple end servers based on a single login, constitutes one of the most
important examples that have been formally analyzed so far within the Dolev-
Yao approach. Kerberos 4, which was then the prevalent version, was verified
using the Isabelle theorem prover [15]. The currently predominant version, Ker-
beros 5 [39], has been extensively analyzed using the Dolev-Yao approach.This
analysis of Kerberos 5 showed that: a detailed specification of the core proto-
col enjoys the expected authentication and secrecy properties except for some
relatively innocuous anomalies [18]; “cross-realm” authentication in Kerberos
is correct when compared against its specification but has weaknesses in prac-
tice [21]; and discovered a serious attack against the then-current specification of
the public-key extension (PKINIT) of Kerberos [20]. The discovery of the attack
on PKINIT led to an immediate correction of the specification and a security
bulletin and patch for Microsoft Windows [36].

The proofs for both Kerberos 5 as well as the fixes to PKINIT are restricted
to the Dolev-Yao approach, and currently there does not exist a theorem which
allows for carrying the results of existing proofs of Kerberos over to the crypto-
graphic domain with its much more comprehensive adversary. Thus, despite the
extensive research dedicated to the Kerberos protocol, and despite its tremen-
dous importance in practice, it is still an open question whether an actual im-
plementation of Kerberos based on provably secure cryptographic primitives is
secure under cryptographic security definitions. We close this gap (at least par-
tially) by providing the first security proof of the core aspects of the Kerberos
protocol in the computational approach. More precisely, we show that core parts
of Kerberos 5 are secure against arbitrary active attacks if the Dolev-Yao-based
abstraction of the employed cryptography is implemented with actual crypto-
graphic primitives that satisfy the commonly accepted security notions under
active attacks, e.g., IND-CCA2 for public-key encryption.

Obviously, establishing a proof in the computational approach presupposes
dealing with cryptographic details such as computational restrictions and er-
ror probabilities, hence one naturally assumes that our proof heavily relies on
complexity theory and is far out of scope of current proof tools. However, our
proof is not performed from scratch in the cryptographic setting, but based on
the Dolev-Yao style model of Backes, Pfitzmann, and Waidner [8,12,13] (called
the BPW model henceforth), which provides cryptographically faithful symbolic
abstractions of cryptographic primitives, i.e., the abstractions can be securely
implemented using actual cryptography. Thus our proof itself is symbolic in
nature, but refers to primitives from the BPW model. Kerberos is the largest
and most complex protocol whose cryptographic security has so far been in-
ferred from a proof in this Dolev-Yao style approach. Earlier proofs in this
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approach were mainly for small examples of primarily academic interest, e.g., the
Needham-Schroeder-Lowe, the Otway-Rees, and the Yahalom protocols [4,7,11];
some similar work has been done on industrial protocols, e.g., [29], although none
that are as complex as Kerberos. We furthermore analyze the recently fixed ver-
sion of PKINIT and derive computational guarantees for it from a symbolic
proof based on the BPW model. Finally we also draw some lessons learned in
the process, which highlight areas where to focus research in order to simplify
the verification of large commercial protocols with computational security guar-
antees. In particular it would be desirable to devise suitable proof techniques
based on the BPW model for splitting large protocols into smaller pieces which
can then be analyzed modularly while still retaining the strong link between the
Dolev-Yao and the computational approach.

1.1 Related Work

Early work on linking Dolev-Yao models and cryptography [2,3,28] only con-
sidered passive attacks, and therefore cannot make general statements about
protocols. A cryptographic justification for a Dolev-Yao model in the sense of
simulatibility [40], i.e., under active attacks and within arbitrary surrounding
interactive protocols, was first given in [12] with extensions in [8,13]. Based on
that Dolev-Yao model, the well-known Needham-Schroeder-Lowe, Otway-Rees,
and Yahalom protocols were proved secure in [4,7,11]. All these protocols are
considerably simpler than Kerberos, which we analyze in this paper, and ar-
guably of much more limited practical interest. Some work has been done on
industrial protocols, such as 802.11i [29], although Kerberos is still a much more
complex protocol.

Laud [33] has presented a cryptographic underpinning for a Dolev-Yao model
of symmetric encryption under active attacks. His work is directly connected
with a formal proof tool, but it is specific to certain confidentiality properties
and protocol classes. Herzog et al. [30] and Micciancio and Warinschi [35] have
also given a cryptographic underpinning under active attacks. Their results are
narrower than those in [12] since they are specific for public-key encryption
and certain protocol classes, but consider slightly simpler real implementations.
Cortier and Warinschi [22] have shown that symbolically secret nonces are also
computationally secret, i.e., indistinguishable from a fresh random value given
the view of a cryptographic adversary. Backes and Pfitzmann [9] and Canetti
and Herzog [19] have established new symbolic criteria for proving a key crypto-
graphically secret. We stress that none of this work is comprehensive enough to
infer computational security guarantees of Kerberos based on an existing sym-
bolic proof; either they are missing suitable cryptographic primitives or rely on
slightly changed symbolic abstractions, e.g., as in [12].

Finally, there is also work on formulating syntactic calculi for dealing with
probability and polynomial-time considerations and encoding them into proof
tools, in particular [17,23,32,37]. This is orthogonal to the work of justifying
Dolev-Yao models.
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1.2 Structure of the Paper

We start in Sect. 2 with a review of Kerberos and its public-key extension
PKINIT. In Sect. 3, we recall the Dolev-Yao style model of Backes, Pfitzmann,
and Waidner (e.g., [6,8,13,14]), and apply it to the specification of Kerberos 5
and Public-key Kerberos (i.e., Kerberos with PKINIT). Section 4 proves secu-
rity results for these protocols and lift them to the computational level. Finally,
Sect. 5 summarizes this effort and outlines areas of future work.

2 Kerberos 5 and Its Public-Key Extension

The Kerberos protocol [38,39] allows a legitimate user to log on to her terminal
once a day (typically) and then transparently access all the networked resources
she needs for the rest of that day. Each time she wants to, e.g., retrieve a file from a
remote server, aKerberos client running onher behalf securely handles the required
authentication. The client acts behind the scenes, without any user intervention.

Kerberos comprises three subprotocols: the initial round of authentication,
in which the client obtains a credential that might be good for a full day; the
second round of authentication, in which she presents her first credential in
order to obtain a short-term credential (five-minute lifetime) to use a particular
network service; and the client’s interaction with the network service, in which
she presents her short-term credential in order to negotiate access to the service.

In the core specification of Kerberos 5 [39], all three subprotocols use sym-
metric (shared-key) cryptography. Since the initial specification of Kerberos 5,
the protocol has been extended by the definition of an alternate first round
which uses asymmetric (public-key) cryptography. This new subprotocol, called
PKINIT [31], may be used in two modes: “public-key encryption mode” and
“Diffie-Hellman (DH) mode.” In recent work [20], we showed that there was
an attack against the then-current draft specification of PKINIT when public-
key encryption mode was used and then symbolically proved the security of the
specification as it was revised in response to our attack. Here we study both
basic Kerberos (without PKINIT) and the public-key mode of PKINIT as it was
revised to prevent our attack.

Kerberos Basics. The client process—usually acting for a human user—inter-
acts with three other types of principals when using Kerberos 5 (with or without
PKINIT). The client’s goal is to be able to authenticate herself to various ap-
plication servers (e.g., email, file, and print servers). This is done by obtaining a
“ticket-granting ticket” (TGT) from a “Kerberos Authentication Server” (KAS)
and then presenting this to a “Ticket-Granting Server” (TGS) in order to obtain
a “service ticket” (ST), the credential that the client uses to authenticate herself
to the application server. A TGT might be valid for a day, and may be used to
obtain several STs for many different application servers from the TGS, while a
single ST is valid for a few minutes (although it may be used repeatedly) and is
used for a single application server. The KAS and the TGS are together known
as the “Key Distribution Center” (KDC).
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C KAS

• •�C, T, n1
n1

•
�
AK, tK

• � C,TGT , {AK, n1, tK , T}kC

Fig. 1. Message Flow in the Traditional AS Exchange, where TGT = {AK, C, tK}kT

The client’s interactions with the KAS, TGS, and application servers are called
the Authentication Service (AS), Ticket-Granting (TG), and Client-Server (CS)
exchanges, respectively. We will describe the AS exchange separately for basic
Kerberos and PKINIT; as PKINIT does not modify the other subprotocols, we
only need to describe them once.

The Traditional AS Exchange. The abstract structure of the AS exchange is
given in Fig. 1. A client C generates a fresh nonce n1 and sends it, together with
her own name and the name T of the TGS for whom she desires a TGT, to the
KAS K. This message is called the AS REQ message [39]. The KAS responds
by generating a fresh authentication key AK for use between the client and the
TGS and sending an AS REP message to the client. Within this message, AK is
sent back to the client in the encrypted message component {AK,n1, tK , T }kC ;
this also contains the nonce from the AS REQ, the KAS’s local time tK , and the
name of the TGS for whom the TGT was generated. (The AK and tK to the
right of the figure illustrate that these values are new between the two messages.)
This component is encrypted under a long-term key kC shared between C and
the KAS; this key is usually derived from the user’s password. This is the only
time that this key is used in a standard Kerberos run because later exchanges
use freshly generated keys. AK is also included in the ticket-granting ticket sent
alongside the message encrypted for the client. The TGT consists of AK,C, tK ,
where tK is K’s local time, encrypted under a long-term key kT shared between
the KAS and the TGS named in the request. The computational model we use
here does not support timestamps, so we will treat these as nonces; this does
not compromise our analysis as the timestamps that we include here are used
like nonces. Once the client has received this reply, she may undertake the
Ticket-Granting exchange.

It should be noted that the actual AS exchange, as well as the other exchanges
in Kerberos, is more complex than the abstract view given here. We refer the
reader to [39] for the complete specification of Kerberos 5, [31] for the specifi-
cation of PKINIT, and [18] for a formalization of Kerberos at an intermediate
level of detail.

The AS Exchange in PKINIT. PKINIT [31] is an extension to Kerberos 5
that uses public key cryptography to avoid shared secrets between a client and
KAS; it modifies the AS exchange but not other parts of the basic Kerberos 5



Cryptographically Sound Security Proofs for Basic and Public-Key Kerberos 367

C KAS

• •�
CertC , [tC , n2]skC

, C, T, n1n1,
n2, tC

•
�

k, AK
tK

• �
{{CertK , [k, ck]skK

}}pkC , C,TGT , {AK, n1, tK , T}k

Fig. 2. Message flow in the fixed version of PKINIT, where TGT = {AK, C, tK}kT

protocol. The long-term shared key (kC) in the traditional AS exchange is typ-
ically derived from a password, which limits the strength of the authentication
to the user’s ability to choose and remember good passwords; PKINIT does not
use kC and thus avoids this problem. Furthermore, if a public key infrastruc-
ture (PKI) is already in place, PKINIT allows network administrators to use it
rather than expending additional effort to manage users’ long-term keys as in
traditional Kerberos.

In PKINIT, the client C and the KAS possess independent public/secret key
pairs, (pkC , skC) and (pkK , skK), respectively. Certificate sets CertC and CertK

issued by a PKI independent from Kerberos are used to testify of the binding be-
tween each principal and her purported public key. This simplifies administration
as authentication decisions can now be made based on the trust the KDC holds
in just a few known certification authorities within the PKI, rather than keys
individually shared with each client (local policies can, however, still be installed
for user-by-user authentication). Dictionary attacks are defeated as user-chosen
passwords are replaced with automatically generated asymmetric keys.

PKINIT resembles the basic AS exchange in that the KAS generates a fresh
key AK for the client and TGS to use, and then the KAS transmits AK and
the TGT to the client. In public-key encryption mode, attacked and fixed in [20]
and now analyzed here, the key pairs are used for both signature and encryption.
The latter is designed to (indirectly) protect the confidentiality of AK, while the
former ensures its integrity.

Figure 2 illustrates the AS exchange when the fixed version (which defends
against the attack of [20]) of PKINIT is used. Here we use [m]sk for the digital
signature of message m with secret key sk, {{m}}pk for the encryption of m with
the public key pk, and {m}k for the encryption of m with the symmetric key k.

The first line of Fig. 2 shows our formalization of the AS REQ message that a
client C sends to a KAS K when using PKINIT. The last part of the message—
C, T,n1—is exactly as in the traditional AS REQ. The new data added by
PKINIT are the client’s certificates CertC and her signature (with her secret
key skC) over a timestamp tC and another nonce n2.

The second line in Fig. 2 shows our formalization of K’s response, which is
more complex than in basic Kerberos. The last part of the message—C, TGT,
{AK,n1, tK , T }k—is very similar to K’s reply in basic Kerberos; the difference
is that the symmetric key k protecting AK is now freshly generated by K and
is not a long-term shared key. Because k is freshly generated for the reply, it
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Fig. 3. Message flow in the TGS exchange, where TGT = {AK, C, tK}kT and ST =
{SK, C, tT }kS

must be communicated to C before she can learn AK. PKINIT does this by
adding the message {{CertK , [k, ck]skK

}}pkC . This contains K’s certificates and
his signature, using his secret key skK , over k and a keyed hash ck (‘checksum’
in the language of [39]) taken over the entire request from C using the key k;
all of this is encrypted under C’s public key pkC . The keyed hash ck binds this
response to the client’s request and was added in response to the attack we
discovered and reported in [20].

The Later Exchanges. After the client C has obtained the key AK and
the TGT, either through the basic AS exchange or the PKINIT AS exchange,
she then initiates the TGS exchange, shown in Fig. 3. The first line shows our
formalization of the client’s request, called a TGS REQ message; it contains the
TGT (which is opaque to the client), an authenticator {C, tC}AK , the name of
the server S for which C desires a service ticket, and C’s local time. Once the
TGS receives this message, he decrypts the TGT to learn AK and uses this
to decrypt the authenticator. Assuming his local policies for granting a service
ticket are satisfied (while we do not model these here, they might include whether
the request is sufficiently fresh), the TGS produces a fresh key SK for C and
S to share and sends this back to the client in a TGS REP message. The form
of this message is essentially the same as the AS REP message from the KAS
to C: it contains a ticket (now the service ticket, or ST, {SK,C, tT }kS instead
of the TGT) encrypted for the next server (now S instead of T ) and encrypted
data for C (now encrypted under AK instead of kC).

Finally, after using the AS exchange to obtain the key SK and the ST, the
client may use the CS exchange to authenticate herself to the end server. Fig-
ure 4 shows this exchange, including the optional reply from the server that
authenticates this server to the client. The client C starts by sending a mes-
sage (AP REQ) that is similar to the TGS REQ message of the previous round:
in contains the (service) ticket and an authenticator ({C, t′C}SK) that is en-
crypted under the key contained in the ST. The server S simply responds with
an AP REP message {t′C}SK containing the timestamp from the authenticator
encrypted under the key from the ST.

Attack on PKINIT. The attack that we found against the then-current spec-
ification of PKINIT was reported in [20]. This attack was possible because, at
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Fig. 4. Message flow in the CS exchange, where ST = {SK, C, tT }kS

the time, the reply from the KAS to the client contained [k,n2]skK
in place of

[k, ck]skK
. In particular, the KAS did not sign any data that depended upon the

client’s name. This allowed an attacker to copy a message from C to the KAS,
use this data in her own request to the KAS, read the reply from the KAS, and
then send this reply to C as though it was generated by the KAS for C (instead
of for the attacker). The effect of this attack was that the attacker could im-
personate the later servers (TGS and application servers) to the client, or she
could let the client continue the authentication process while the attacker gains
knowledge of all new keys shared by the client and various servers. In the latter
variation, the client would be authenticated as the attacker and not as C.

Security Properties. We now summarize the security properties that we prove
here at the symbolic level for both basic Kerberos and Kerberos with PKINIT;
the implications on the computational level are discussed in the subsequent sec-
tions. We have proved similar properties in symbolic terms using a formaliza-
tion in MSR for basic Kerberos [18] and for the AS exchange when PKINIT is
used [20]. The first property we prove here concerns the secrecy of keys, a notion
that is captured formally as Def. 1 in Sect. 4. This property may be summarized
as follows.

Property 1 (Key secrecy). For any honest client C and honest server S, if the
TGS T generates a symmetric key SK for C and S to use (in the CS-exchange),
then the intruder does not learn the key SK.

The second property we study here concerns entity authentication, formalized
as Def. 2 in Sect. 4. This property may be summarized as follows.

Property 2 (Authentication properties).

i. If a server S completes a run of Kerberos, apparently with C, then earlier:
C started the protocol with some KAS to get a ticket-granting ticket and
then requested a service ticket from some TGS.

ii. If a client C completes a run of Kerberos, apparently with server S, then S
sent a valid AP REP message to C.

Theorem 1 below shows that these properties hold for our symbolic formal-
izations of basic and public-key Kerberos in the BPW model. Theorem 2 shows
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that the authentication property holds as well for cryptographic implementations
of these protocols if provably secure primitives are used; the standard crypto-
graphic definition of key secrecy however turns out not to hold for cryptographic
implementations of Kerberos, which we further investigate below. Because au-
thentication can be shown to hold for Kerberos with PKINIT, it follows that
at the level of cryptographic implementation, the fixed specification of PKINIT
does indeed defend against the attack reported in [20].

3 The BPW Model

3.1 Review of the BPW Model

The BPW model introduced in [14] offers a deterministic Dolev-Yao style formal-
ism of cryptographic protocols with commands for a vast range of cryptographic
operations such as public-key, symmetric encryption/decryption, generation and
verification of digital signatures as well as message authentication codes, and
nonce generation. Every protocol participant is assigned a machine (an I/O au-
tomaton), which is connected to the machines of other protocol participants
and which executes the protocol for its user by interacting with the other ma-
chines (see Fig. 5). In this reactive scenario, semantics is based on state, i.e., of
who already knows which terms. The state is here represented by an abstract
“database” and handles to its entries: Each entry (denoted D[j]) of the database
has a type (e.g., “signature”) and pointers to its arguments (e.g., “private key”
and “message”). This corresponds to the way Dolev-Yao terms are represented.
Furthermore, each entry in the abstract database also comes with handles to
participants who have access to that entry. These handles determine the state.
The BPW model does not allow cheating: only if a participant has a handle
to the entry D[j] itself or to the right entries that could produce a handle to
D[j] can the participant learn the term stored in D[j]. For instance, if the BPW
model receives a command, e.g., from a user machine, to encrypt a message
m with key k, then it makes a new abstract database entry for the ciphertext
with a handle to the participant that sent the command and pointers to the
message and the key as arguments; only if a participant has handles to the ci-
phertext and also to the key can the participant ask for decryption. Furthermore,
if the BPW model receives the same encryption command a second time then
it will generate a new (different) entry for the ciphertext. This meets the fact
that secure encryption schemes are necessarily probabilistic. Entries are made
known to other participants by a send command, which adds handles to the
entry.

The BPW model is based on a detailed model of asynchronous reactive sys-
tems introduced in [40] and is represented as a deterministic machine THH (also
an I/O automaton), called trusted host, where H ⊂ {1, . . . ,n} denotes the set of
honest participants out of all m participants. This machine executes the com-
mands from the user machines, in particular including the commands for crypto-
graphic operations. A system consists of several possible structures. A structure
consists of a set M̂ of connected correct user machines and a subset S of the free
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Fig. 5. Overview of the Kerberos symbolic system

ports, i.e., S is the user interface of honest users. In order to analyze the security
of a structure (M̂ , S), an arbitrary probabilistic polynomial-time user machine
H is connected to the user interface S and a polynomial-time adversary machine
A is connected to all the other ports and H. This completes a structure into
a configuration of the system (see Fig. 5). The machine H represents all users.
A configuration is a runnable system, i.e., for each security parameter k, which
determines the input lengths (including the key length), one gets a well-defined
probability space of runs. To guarantee that the system is polynomially bounded
in the security parameter, the BPW model maintains length functions on the
entries of the abstract database. The view of H in a run is the restriction to
all inputs and outputs that H sees at the ports it connects to, together with its
internal states. Formally one defines the view viewconf (H) of H for a configura-
tion conf to be a family of random variables Xk where k denotes the security
parameter. For a given security parameter k, Xk maps runs of the configuration
to a view of H.

Corresponding to the BPW model, there exists a cryptographic implementa-
tion of the BPW model and a computational system, in which honest partici-
pants also operate via handles on cryptographic objects. However, the objects
are now bitstrings representing real cryptographic keys, ciphertexts, etc., acted
upon by interactive polynomial-time Turing machines (instead of the symbolic
machines and the trusted host). The implementation of the commands now uses
provably secure cryptographic primitives according to standard cryptographic
definitions (with small additions like type tagging and additional randomiza-
tion). In [8,12,13,14] it was established that the cryptographic implementation
of the BPW model is at least as secure as the BPW model, meaning that what-
ever an active adversary can do in the implementation can also be achieved by
another adversary in the BPW model, or the underlying cryptography can be
broken. More formally, a system Sys1 being at least as secure as another sys-
tem Sys2 means that for all probabilistic polynomial-time user H, for all prob-
abilistic polynomial-time adversary A1 and for every computational structure
(M̂1, S) ∈ Sys1, there exists a polynomial-time adversary A2 on a corresponding
symbolic structure (M̂2, S) ∈ Sys2 such that the view of H is computationally
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indistinguishable in both configurations. This captures the cryptographic notion
of reactive simulatability.

3.2 Public-Key Kerberos in the BPW Model

We now model the Kerberos protocol in the framework of [14] using the BPW
model. We write “:=” for deterministic assignment, “=” for testing for equality
and “←” for probabilistic assignment.

The descriptions of the symbolic systems of Kerberos 5 and PKINIT are very
similar, with the difference that the user machines follow different algorithms
for the two protocols. We denote Kerberos with PKINIT by “PK,” and basic
Kerberos by “K5.” If we let Kerb∈{PK, K5} then, as described in Sect. 3.1, for
each user u ∈ {1, . . . ,n} there is a protocol machine MKerb

u which executes the
protocol for u. There are also protocol machines for the KAS K and the TGT
T , denoted by MKerb

K and MKerb
T . Furthermore, if S1, . . . , Sl are the servers in

T ’s ‘realm1’, then there are server machines MKerb
S for S ∈ {S1, . . . , Sl}. Each

user machine is connected to the user via ports: A port for outputs to the user
and a port for inputs from the user, labeled KA outu! and KA inu?, respectively
(“KA” for“Key sharing and Authentication”). The ports for the server machines
are labeled similarly (see Fig. 5).

The behavior of the protocol machines is described in detail in [5]. In the
following, we comment on two algorithms of PKINIT (Fig. 6 and Fig. 7) . If, for
instance, a protocol machine MPK

u receives a message (new prot, PK, K, T ) at
KA inu? then it will execute Algorithm 1A (Fig. 6) to start a protocol run. We
give a description below. The state of the protocol machine MKerb

u consists of
the bitstring u and the sets Nonceu, Nonce2u, TGT icket, and Session KeysSu,
in which MKerb

u stores nonces, ticket-granting tickets, and the session keys for
server S, respectively. This is the information a client needs to remember during
a protocol run.

Only the machines of honest users u ∈ {1, . . . ,n} and honest servers S ∈
{S1, . . . , Sl} will be present in the protocol run, in addition to the machines for
K and T . The others are subsumed in the adversary. We denote byH ⊂ {1, . . . ,n,
K, T, S1, . . . , Sl} the honest participants, i.e., for v ∈ H the machine MKerb

v is
guaranteed to run correctly. And we assume that KAS K and TGS T are always
honest, i.e., K,T ∈ H.

Furthermore, given a set H of honest participants, with {K,T } ⊂ H ⊂
{1, . . . ,n, K, T, S1, . . . , Sl} the user interface of public-key Kerberos will be
the set SH := {KA outu!, KA inu? |u ∈ H \ {K,T }}. The symbolic system is
the set SysKerb, symb := {(M̂H, SH)}. Note that, since we are working in an asyn-
chronous system, we are replacing protocol timestamps by arbitrary messages
that we assume are known to the participants generating the timestamps (e.g.
nonces). All algorithms should immediately abort if a command to the BPW
model yields an error, e.g., if a decryption request fails.

1 I.e., administrative domain; we do not consider cross-realm authentication here,
although it has been analyzed symbolically in [21].
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Notation. The entries of the database D are all of the form (ind, type, arg,
hndu1 ,. . . ,hndum ,hnda, len), where H = {u1, . . . , um}. We denote by ↓ an error
element available to all ranges and domains of all functions and algorithms. So,
e.g., hnda =↓ means the adversary does not have a handle to the entry. For
entries x ∈ D, the index x.ind ∈ INDS consecutively numbers all entries in D.
The set INDS is isomorphic to N and is used to distinguish index arguments. We
write D[i] for the selection D[ind = i], i.e., it is used as a primary key attribute
of the database. The entry x.type ∈ typeset = {auth, cert, enc, nonce, list, pke,
pkse, sig, ske, skse,} identifies the type of x. Here ske/pke is a private/public
key pair and skse is a symmetric key which comes with a ‘public’ key pkse. This
“public key identifier” pkse cannot be used for any cryptographic operation but
works as a pointer to skse instead (see [7] for a more detailed explanation) . The
entry x.arg = (a1, . . . , aj) is a possibly empty list of arguments. Many values ai

are in INDS . x.hndu ∈ HNDS ∪ {↓} for u ∈ H ∪ {a} are handles by which
u knows this entry. We always use a superscript “hnd” for handles. x.len ∈ N0
denotes the “length” of the entry; it is computed by applying length functions
(mentioned in Sect. 3.1).

Initially, D is empty. THH has a counter size ∈ INDS for the current size of
D. For the handle attributes, it has counters currhndu initially 0. First we need
to add the symmetric keys shared exclusively by K and T , S and T . Public-key
Kerberos uses certificates; therefore, in this case all users need to know the public
key for certificate authorities and have their own public-key certificates signed
by a certificate authority. For simplicity we use only one certificate authority
CA. Therefore, we add to D an entry for the public key of CA with handles
to all users (i.e., to all user machines). For every user we add an entry for the
certificate of that user signed by the certificate authority with a handle to the
user (machine). In the case of Kerberos 5, we are adding entries for the key ku

shared exclusively by K and u, for all users u.

Example of Algorithms. Due to space constraints we are only going to ex-
amine PKINIT (Fig. 2) and explain the steps of its Algorithms 1A and 2 (Fig. 6
and Fig. 7) which are more complex than the algorithms in Kerberos 5. For
details on the definition of the used commands see [8,13,14]. For readability of
the figures, we noted on the right (in curly brackets) to which terms in the more
commonly used Dolev-Yao notation the terms in the algorithms correspond (≈).

Protocol start of PKINIT. In order to start a new PKINIT protocol, user u
inputs (new prot, PK, K, T ) at port KA inu?. Upon such an input, MPK

u runs
Algorithm 1A (Fig. 6) which prepares and sends the AS REQ to K using the
BPW model. MPK

u generates symbolic nonces in steps 1A.1 and 1A.2 by sending
the command gen nonce(). In step 1A.3 the command list( , ) concatenates tu
and nu,2 into a new list that is signed in step 1A.4 with u’s private key. Since we
are working in an asynchronous system, the timestamp tu is approximated by
some arbitrary message (e.g., by a nonce). The command store( ) in step 1A.5–6
makes entries in the database for the names of u and T . Handles for the names
u and T are returned, which are added to a list in the next step. MPK

u stores
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A) Input:(new prot, PK, K, T ) at KA inu? .

1. nu,1t
hnd
u ← gen nonce()

2. nhnd
u,2 ← gen nonce()

3. lhnd ← list(thnd
u , nhnd

u,2 ) {l ≈ (tC , n2)}
4. shnd ← sign(skehnd

u , lhnd) {s ≈ [tC , n2]skC
}

5. uhnd ← store(u)
6. T hnd ← store(T )
7. mhnd

1 ← list(certhnd
u , shnd, uhnd, T hnd, nhnd

u,1 ) {m1 ≈ CertC , [tC , n2]skC
, C, T, n1}

8. Nonceu := Nonceu ∪ {(nhnd
u,1 , mhnd

1 , K)}
9. send i(K, mhnd

1 )

B) Input:(continue prot, PK, T, S, AKhnd) at KS inu? for S ∈ {S1, ..., Sl}
1. if (� (TGT hnd, AKhnd, T ) ∈ TGT icketu) then
2. Abort
3. end if
4. zhnd ← list(uhnd, thnd

u ) {z ≈ C, tC}
5. authhnd ← sym encrypt(AKhnd, zhnd) {auth ≈ {C, tC}AK}
6. nhnd

u,3 ← gen nonce()
7. Nonce2u := Nonce2u ∪ {nhnd

u,3 , T, S)}
8. mhnd

2 ← list(TGT hnd, authhnd, Shnd, nhnd
u,3 ) {m2 ≈ TGT , {C, tC}AK , S, n3}

9. send i(T, mhnd
2 )

Fig. 6. Algorithm 1 of Public-key Kerberos: Evaluation of inputs from the user (starting
the AS and TG exchanges)

information in the set Nonceu, which it will need later in the protocol to verify
the message authentication code sent by K. In step 1A.8 Nonceu is updated.
Finally, in step 1A.9 the AS REQ is sent over an insecure (“i” for insecure)
channel.

Behavior of the KAS K in PKINIT. Upon input (v, K, i, mhnd) at port outK?
with v ∈ {1, ..,n}, the machine MPK

K runs Algorithm 2 (Fig. 7) which first
checks if the message m is a valid AS REQ and then prepares and sends the
corresponding AS REP. In order to verify that the input is a possible AS REQ,
the types of the input message m’s components are checked in steps 2.1–2.5. The
command retrieve(xhnd

i ) in step 2.3 returns the bitstring of the entry D[hndu =
xhnd

i ]. Next the machine verifies the received certificate x1 of v by checking
the signature of the certificate authority CA (steps 2.6–2.10). Then the machine
extracts the public key pkev out of v’s certificate with the command pk of cert( )
and uses this public key to verify the signature x2 received in the AS REQ (steps
2.11–2.16). In steps 2.17–2.21 the types of the message components of the signed
message y1 are checked, as well as the freshness of the nonce y12 by comparison
to nonces stored in Nonce3K . If the nonce is fresh then it will be stored in the
set Nonce3K in step 2.23 for freshness checks in future protocol runs. Finally,
in steps 2.24–2.36 MPK

K generates two symmetric keys k and AK, composes the
AS REP, and sends it to v over an insecure channel.
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Input:(v, K, i, mhnd) at outK? with v ∈ {1, ..., n}.
1. xhnd

i ← list proj(mhnd, i) for i = 1, ..., 5
2. typei ← get type(xhnd

i ) for i = 1, 2, 5 {x1 ≈ CertC , x2 ≈ [tC , n2]skC , x5 ≈ n1}
3. xi ← retrieve(xhnd

i ) for i = 3, 4 {x3 ≈ C, x4 ≈ T}
4. if (type1 �= cert) ∨ (type2 �= sig) ∨ (type5 �= Nonce) ∨ (x3 �= v)∨ (x4 �= T ) then
5. Abort
6. end if
7. vhnd ← store(v)
8. b ← verify cert(pkehnd

CA , xhnd
1 , vhnd)

9. if b = false then
10. Abort
11. end if
12. pkehnd

v ← pk of cert(pkehnd
CA , xhnd

1 )
13. type6 ← get type(pkehnd

v )
14. if (type6 �= pke) then
15. Abort
16. end if
17. yhnd

1 ← msg of sig(xhnd
2 ) {y1 ≈ tC , n2}

18. b ← verify(xhnd
2 , pkehnd

v , yhnd
1 ) {x2 ≈ [tC , n2]skC}

19. if b = false then
20. Abort
21. end if
22. yhnd

1i ← list proj(yhnd
1 , i) for i = 1, 2 {y11 ≈ tC , y12 ≈ n2}

23. type12 ← get type(yhnd
12 )

24. if (type12 �= nonce) ∨ ((yhnd
12 , .) ∈ Nonce3K) then

25. Abort
26. end if
27. Nonce3K := Nonce3K ∪ {(yhnd

12 , v)}
28. khnd ← gen symenc key()
29. AKhnd ← gen symenc key()
30. authhnd ← auth(khnd, mhnd) {auth ≈ ck}
31. zhnd

1 ← list(khnd, authhnd) {z1 ≈ k, ck}
32. shnd

2 ← sign(skehnd
K , zhnd

1 ) {s2 ≈ [k, ck]skK }
33. zhnd

2 ← list(certhnd
K , shnd

2 ) {z2 ≈ CertK , [k, ck]skK }
34. m21 ← encrypt(pkehnd

K , zhnd
2 ) {m21 ≈ {{CertK , [k, ck]skK }}pkC }

35. zhnd
3 ← list(AKhnd, xhnd

3 , thnd
K ) {z3 ≈ AK, C, tK , T}

36. TGT hnd ← sym encrypt(sksehnd
K,x4 , z

hnd
3 ) {TGT ≈ {AK, C, tK}kT }

37. zhnd
4 ← list(AKhnd, xhnd

5 , thnd
K , xhnd

4 ) {z4 ≈ AK, n1, tK , T}
38. m24 ← sym encrypt(khnd, zhnd

4 ) m24 ≈ {Ak, n1, tK , T}k}
39. mhnd

2 ← list(mhnd
21 , xhnd

3 , TGT hnd, mhnd
24 )

{m2 ≈ {{CertK , [k, ck]skK }}pkC , C, TGT, {Ak, n1, tK , T}k}
40. send i(v, mhnd

2 )

Fig. 7. Algorithm 2 of Public-key Kerberos: Behavior of the KAS
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4 Formal Results

4.1 Security in the Symbolic Setting

In order to use the BPW model to prove the computational security of Kerberos,
we first formalize the respective security properties and verify them in the BPW
model. We first prove that Kerberos keeps the symmetric key, which the TGS
T generated for use between user u and server S, symbolically secret from the
adversary. In order to prove this, we show that Kerberos also keeps the keys
generated by KAS K for the use between u and the TGS T secret. Furthermore,
we prove entity authentication of the user u to a server S (and subsequently
entity authentication of S to u). This form of authentication is weaker than the
authentication Kerberos offers, since we do not consider the purpose of times-
tamps in Kerberos. (Recall that timestamps are currently not included in the
BPW model.)

Secrecy and Authentication Requirements. We now define the notion of
key secrecy, which was informally captured already in Property 1 of Sect. 2, as
the following formal requirement in the language of the BPW model.

Definition 1 (Key secrecy requirement). For Kerb ∈{PK, K5} the secrecy
requirement ReqSec

Kerbis:
For all u ∈ H ∩ {1, . . . ,n}, and S ∈ H ∩ {S1, . . . , Sl}, and t1, t2, t3 ∈ N:

(t1 : KA outS ! (ok,Kerb, u, SKhnd)
∨ t2 : KA outu! (ok,Kerb, S, SKhnd)

⇒ t3 : D[hndu = SKhnd].hnda =↓

where t : D denotes the contents of database D at time t. Similarly t : p?m and
t : p!m denotes that message m occurs at input (respectively output) port p at
time t. As above PK refers to Public-key Kerberos and K5 to Kerberos 5. In the
next section Thm. 1 will show that the symbolic Kerberos systems specified in
Sect. 3.2 satisfy this notion of secrecy, and therefore Kerberos enjoys Property 1.

Next we define the notion of authentication in Property 2 in the language of
the BPW model.

Definition 2 (Authentication requirements). For Kerb ∈ {PK,K5}:
i. The authentication requirement ReqAuth1

Kerb is: For all v ∈ H ∩ {1, . . . ,n}, for
all S ∈ H ∩ {S1, . . . , Sl}, and K,T :

∃ t3 ∈ N. t3 : KA outS ! (ok,Kerb, v, SKhnd)
⇒ ∃ t1, t2 ∈ N with t1 < t2 < t3. t2 : KA inv! (continue prot,Kerb,T, S, ·)

∧ t1 : KA inv! (new prot,Kerb,K, T )

ii. The authentication requirement ReqAuth2
Kerb is: For all u ∈ H ∩ {1, . . . ,n}, for

all S ∈ H ∩ {S1, . . . , Sl}, and K,T :

∃ t2 ∈ N. t2 : KA outu! (ok,Kerb, S, SKhnd)
⇒ ∃ t1 ∈ N with t1 < t2. t1 : KA inS ! (ok,Kerb, u, SKhnd)
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iii. The overall authentication ReqAuth
Kerb for protocol Kerb is:

ReqAuth
Kerb := ReqAuth1

Kerb ∧ReqAuth2
Kerb

Theorem 1 will show that this notion of authentication is satisfied by the sym-
bolic Kerberos system. Therefore Kerberos has Property 2.

When proving that Kerberos has these properties, we will use the notion of a
system Sys perfectly fulfilling a requirement Req, Sys |=perf Req. This means the
property Req holds with probability one over the probability space of runs for
a fixed security parameter (as defined in Sect. 3.1). Later we will also need the
notion of a system Sys computationally fulfilling a requirement Req, Sys |=poly

Req, i.e., the property holds with negligible error probability for all polynomially
bounded users and adversaries (again, over the probability space of all runs for a
fixed security parameter). In particular, perfect fulfillment implies computational
fulfillment.

In order to prove Thm. 1, we first need to prove a number of auxiliary prop-
erties (previously called invariants in, e.g., [4,11]). Although these properties
are nearly identical for Kerberos 5 and Public-key Kerberos, their proofs had
to be carried out separately. We consider it interesting future work to augment
the BPW model with proof techniques that allow for conveniently analyzing
security protocols in a more modular manner. In fact, a higher degree of modu-
larity would simplify the proofs for each individual protocol as it could exploit
the highly modular structure of Kerberos; moreover, it would also simplify the
treatment of the numerous optional behaviors of this protocol.

Some of the key properties needed in the proof of Thm. 1, which formalizes
Properties 1 and 2, make authentication and confidentiality statements for the
first two rounds of Kerberos. These properties are described in English below;
they are formalized and proved in [5].

i) Authentication of KAS to client and Secrecy of AK: If a user u re-
ceives a valid AS REP message then this message was indeed generated
by K for u and an adversary cannot learn the symmetric keys contained in
this message.

ii) TGS Authentication of the TGT: If a TGS T receives a TGT and an
authenticator {v, tv}AK where the key AK and the username v are contained
in the TGT, then the TGT was generated by K and the authenticator was
created by v.

iii) Authentication of TGS to client and Secrecy of SK: If a user u re-
ceives a valid TGS REP then it was generated by T for u and S and no
adversary can learn the session key SK contained in this message.

iv) Server Authentication of the ST: If a server S receives an ST and an
authenticator {v, tv}SK where the key SK and the name v are contained in
the ST, then the ST was generated by T and the authenticator was created
by v.

We can now capture the security of Kerberos in the BPW model in the follow-
ing theorem, which says that Properties 1 and 2 hold symbolically for Kerberos.
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We show a proof excerpt in the case of Public-key Kerberos (the outline is anal-
ogous for Kerberos 5).

Theorem 1. (Security of the Kerberos Protocol based on the BPW Model)

– Let SysK5, symb be the symbolic Kerberos 5 system defined in Sect. 3.2, and
let ReqSec

K5and ReqAuth
K5 be the secrecy and authentication requirements defined

above. Then SysK5, symb |=perf ReqSec
K5 ∧ReqAuth

K5 .
– Let SysPK, symb be the symbolic Public-key Kerberos system, and let ReqSec

PK

and ReqAuth
PK be the secrecy and authentication requirements defined above.

Then SysPK, symb |=perf ReqSec
PK∧ ReqAuth

PK .

Proof (sketch). We assume that all parties are honest. If user u successfully ter-
minates a session run with a server S, i.e., there was an output (ok, PK, S, khnd)
at KA outu!, then the key k was stored in the set Session KeysSu. This implies
that the key was generated by T and sent to u in a valid TGS REP. By auxiliary
property iv), an adversary cannot learn k. The case that S successfully termi-
nates a session run is analogous. This shows the key secrecy property ReqSec

PK .
As for the authentication property ReqAuth1

PK , if server S successfully terminates
a session with u, i.e., there was an output (ok, PK, u, khnd) at KA outS !, then
S must have received a ticket generated by T (for S and u) and also a matching
authenticator generated by user u (by auxiliary property iv)). But the ticket
will only be generated if u sends the appropriate request to T , i.e., there was an
input (continue prot,PK, T , S, AKhnd) at KA inu?. The request, on the other
hand, contains a TGT that was generated by K for u (by auxiliary property
ii)), therefore u must have sent an request to K. In particular, there had been
an input (new prot, PK, K, T ) at KA inu?. As for the authentication property
ReqAuth2

PK , if the user u successfully terminates a session with server S, i.e., there
was an output (ok, PK, S, khnd) at KA outu!, then it must have received a mes-
sage encrypted under k that does not contain u’s name. The key k was contained
in a valid TGS REP and was therefore generated by T , by auxiliary property
iii). Only T , u, or S could know the key k, but only S uses this key to encrypt
and send a message that u received. On the other hand, S follows sending such
a message immediately by an output (ok, PK, u, khnd) at KA outS !. �

This proof shares similarities with the Dolev-Yao style proofs of analogous prop-
erties for Kerberos 5 and PKINIT using the MSR framework [18,20]. The two
approaches are similar in the sense that both reconstruct a necessary trace back-
ward from an end state, and in that they rely on some form of induction (based
on rank/co-rank functions in MSR). In future work, we plan to draw a formal
comparison between these two Dolev-Yao encodings of a protocol, and the proof
techniques they support.

4.2 Security in the Cryptographic Setting

The results of [14] allow us to take the authentication results in Thm. 1 and
derive a corresponding authentication results for a cryptographic implementation
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of Kerberos. Just as Property 2 holds symbolically for Kerberos, this shows
that it holds in a cryptographic implementation as well. In particular, entity
authentication between a user and a server in Kerberos holds with overwhelming
probability (over the probability space of runs). However, symbolic results on key
secrecy can only be carried over to cryptographic implementations if the protocol
satisfies certain additional conditions. Kerberos unfortunately does not fulfill
these definitions, and it can easily be shown that cryptographic implementations
of Kerberos do not fulfill the standard notion of cryptographic key secrecy, see
below. This yields the following theorem.

Theorem 2. (Computational security of the Kerberos protocol)

– Let SysK5, comp denote the computational Kerberos 5 system implemented
with provable secure cryptographic primitives. Then SysK5, comp |=poly

ReqAuth
K5 .

– Let SysPK, comp denote the computational Public-key Kerberos system im-
plemented with provable secure cryptographic primitives. Then SysPK, comp

|=poly ReqAuth
PK .

Proof (Sketch for public-key Kerberos). By Thm. 1, we know that SysPK, id

|=perf ReqAuth
PK . And, as we mentioned earlier, the cryptographic implementation

of the BPW model (using provably secure cryptographic primitives) is at least
as secure as the BPW model, Syscry, comp ≥poly

sec Syscry, id. After checking that
the “Commitment Problem” does not occur in the protocol, we can use the
Preservation of Integrity Properties Theorem from [6] to automatically obtain
Thm. 2.

The Commitment Problem occurs when keys that have been used for cryp-
tographic work are revealed later in the protocol. If the simulator in [14] (with
which one can simulate a computational adversary attack on the symbolic sys-
tem) learns in some abstract way that e.g. a ciphertext was sent, the simulator
generates a distinguishable ciphertext without knowing the symmetric key nor
the plaintext. If the symmetric key is revealed later in the protocol then the
trouble for the simulator will be to generate a suitable symmetric key that de-
crypts the ciphertext into the correct plaintext. This is typically an impossible
task. In order for the simulation with the BPW model to work, one thus needs
to check that the Commitment Problem does not occur in the protocol. �

As far as key secrecy is concerned, it can be proven that the adversary attack-
ing the cryptographic implementation does not learn the secret key string as a
whole. However, it does not necessarily rule out that an adversary will be able to
distinguish the key from other fresh random keys, as required by the definition
of cryptographic key secrecy. This definition of secrecy says that an adversary
cannot learn any partial information about such a key and is hence considerably
stronger than requiring that an adversary cannot obtain the whole key. For Ker-
beros we can show that the key SK does not satisfy cryptographic key secrecy
after the last round of Kerberos, i.e., SK is distinguishable from other fresh
random keys. It should also be noted that this key SK is still indistinguishable
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from random after the second round but before the start of the third round of
Kerberos. We have the following proposition.

Proposition 1. a) Kerberos does not offer cryptographic key secrecy for the key
SK generated by the TGS T for the use between client C and server S after the
start of the last round of Kerberos.

b) After the TGS exchange and before the start of the CS exchange the key
SK generated by the TGS T is still cryptographically secret.

Proof. a) To see that Kerberos does not offer cryptographic key secrecy for
SK after the start of the third round, note that the key SK is used in the
protocol for symmetric encryption. As symmetric encryption always provides
partial information to an adversary if the adversary also knows the message
that was encrypted. An adversary can exploit this to distinguish the key SK as
follows: the adversary first completes a regular Kerberos execution between C
and S learning the message {C, t′}SK encrypted under the unknown key SK.
The adversary will also learn a bounded time period TP (of a few seconds) in
which the timestamp t′ was generated. Next a bit b is flipped and the adversary
receives a key k, where k = SK for b = 0 and k is a fresh random key for b = 1.
The adversary now attempts to decrypt {C, t′}SK with k yielding a message m.
If m �= C, t for a timestamp t then the adversary guesses b = 1. If m = C, t
for a timestamp t then the adversary checks whether t ∈ TP or not. If t /∈ TP
then the adversary guesses b = 1 otherwise the adversary guesses b = 0. The
probability of the adversary guessing correctly is then 1 − ε, where ε is the
probability that for random keys k, SK the ciphertext {C, t′}SK decrypted with
k is C, t with t ∈ TP . Clearly, ε is negligible (since the length of the time period
TP does not depend on the security parameter). Hence, SK is distinguishable
and cryptographic key secrecy does not hold.

b) However, before the third round has been started the key SK is not only
unknown to the adversary but, in particular, SK has not been used for symmet-
ric encryption yet. We can therefore invoke the key secrecy preservation theorem
of [9], which states that a key that is symbolically secret and symbolically un-
used is also cryptographically secret. This allows us to conclude that SK is
cryptographically secret from the adversary.

For similar reasons, we also have the following proposition

Proposition 2. a) Kerberos does not offer cryptographic key secrecy for the key
AK generated by the KAS K for the use between client C and TGS T after the
start of the second round of Kerberos.

b) After the AS exchange and before the start of the TGS exchange the key
AK generated by the KAS K is still cryptographically secret.

Finally, we note the following

Remark 1. Kerberos allows the client or the server to generate a sub-session
key [39]. This optional key, which can then be used for the encryption of further
communication between the two parties, is cryptographically secret as it can
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be proven symbolically secret and symbolically unused. This proof can easily be
conducted symbolically similar to Thm. 1, and then the key secrecy preservation
theorem of [10] can be used to automatically obtain a proof of cryptographic key
secrecy for the optional sub-key. Note that this preservation theorem could not
be used for proving cryptographic key secrecy for the main key as this key is
already used within the key exchange protocol.

5 Conclusions and Future Work

In this paper, we have exploited the Dolev-Yao style model of Backes, Pfitzmann,
and Waidner [8,12,13] to obtain the first computational proof of authentication
for the core exchanges of the Kerberos protocol and its extension to public
keys (PKINIT). Although the proofs sketched here are conducted symbolically,
grounding the analysis on the BPW model automatically lifts the results to
the computational level, assuming that all cryptography is implemented using
provably secure primitives. Cryptographic key secrecy in the sense of indistin-
guishability of the exchanged key from a random key could only be established
for the optional sub-key exchanged in Kerberos while for the actually exchanged
key, cryptographic key secrecy could be proven not to hold.

Potentially promising future work includes the augmentation of the BPW
model with specialized proof techniques that allow for conveniently performing
modular proofs. Such techniques would provide a simple and elegant way to
integrate the numerous optional behaviors supported by Kerberos and nearly all
commercial protocols; for example, this would facilitate the analysis of DH mode
in PKINIT which is part of our ongoing work. We intend to tackle the invention
of such proof techniques that are specifically tailored towards the BPW model
in the near future, e.g., by exploiting recent ideas from [24]. Another potential
improvement we plan to pursue in the near future is to augment the BPW model
with timestamps; this would in particular allow us to establish authentication
properties that go beyond entity authentication [18,20,21]. A further item on
our research agenda is to fully understand the relation between the symbolic
correctness proof for Kerberos 5 presented here and the corresponding results
achieved in the MSR framework [18,20].
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Abstract. Secrecy and authenticity properties of protocols are mutu-
ally dependent: every authentication is based on some secrets, and ev-
ery secret must be authenticated. This interdependency is a significant
source of complexity in reasoning about security. We describe a method
to simplify it, by encapsulating the authenticity assumptions needed in
the proofs of secrecy. This complements the method for encapsulating
the secrecy assumptions in proofs of authenticity, presented in [1]. While
logically straightforward, this idea of encapsulation in general, and the
present treatment of secrecy in particular, allow formulating scalable
and reusable reasoning patterns about the families of protocols of prac-
tical interest. The approach evolved as a design strategy in the Proto-
col Derivation Assistant (Pda), a semantically based environment and
toolkit for derivational approach to security [2,3].

1 Introduction

All secure communication on public networks begins with key establishment.
Many diverse key distribution and key agreement schemes have evolved, with
subtle, complex, and sometimes unclear security properties Since they are critical
for the functioning of the networks, it is desirable to establish their provable,
rather than just empirical security.

1.1 Derivational Approach to Security

Practical methods for proving security evolve slowly. While most branches of
engineering largely consist of methodologies for building complex systems from
simple components, formulating the incremental and compositional methods for
security engineering has been a challenging task: in general, security properties
are not preserved under composition.

Although not straightforward, the progress towards methods for the incremen-
tal design and analysis of security protocols has been steady. The present work
is a part of a continued effort towards capturing and formalizing a sound part of
the incremental practices of security engineering, and supporting it in a seman-
tically based integrated development environment for secure systems [2,3]. The
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logic of [4,5] is a protocol analysis logic which incorporates incremental practices
of security engineering such as refinement and composition. In [6] we developed
a streamlined and simplified version of the authentication fragment of the logic
in [4,5], that was still sufficient to uncover a flaw an IETF standardized protocol,
that had already undergone extensive formal analysis. This led us to the idea,
presented in [1], that many authentication proofs can be simplified, by encapsu-
lating the needed secrecy requirements, and leaving them as open assumptions,
to be discharged in separate proof modules. In the present work we present a
secrecy logic, intended to support these separate proofs of secrecy properties.
This time, the authentication assumptions, needed for secrets, are encapsulated,
and left as open assumptions.

1.2 Encapsulation Trick

An important source of complexity in reasoning about security is the mutual de-
pendancy of secrecy and authenticity: every secret must be authenticated, and
every authentication must be based on a secret. This feedback loop of positive
and negative knowledge statements, logical weaving and interleaving of authen-
tication and secrecy, often generates confusion. The method of encapsulation
allows us to untie some such knots, and to make some general patterns of formal
reasoning actually and unexpectedly simpler then the informal counterparts,
which were their source.

In previous work [1], we simplified authenticity proofs by encapsulating the se-
crecy assumptions on which they depended: e.g., an assumption that a key, used
for authentication, was uncompromised, was simply left open, to be discharged
in a separate proof module. A more common approach would have been to un-
fold the proof that the key remains secret within the given protocol. This proof
would require an assumption that the key was authenticated — and this assump-
tion would then usually be left open, as an assumption about the infrastructure.
The authentication performed in the analyzed protocol would thus be reduced
to another authentication, performed in the preceding key establishment pro-
tocol. While this approach is reasonable, unfolding a secrecy proof within each
authenticity proof, and vice versa, does seem to complicate things, and does not
seem necessary. In some cases, reducing authentications to the relevant secrecy
assumptions, that encapsulate their own authenticity assumptions, often allows
considerably simpler, and more insightful proofs.

Outline of the Paper. We present a method to derive secrecy properties of key
establishment protocols, while assuming, and encapsulating for later implemen-
tation, the needed authentication properties of their components. Section 2 opens
the exposition with an informal overview of the counterpart of this approach,
where the authentication properties are derived, while the secrecy properties are
assumed and encapsulated. An outline of the general framework used in proto-
col derivations is in the Appendix. Section 3 introduces the relations needed for
modeling secrecy, and the derivation rules needed for proving it. Section 4 pro-
vides a method for proving a family of inductive statements to which the crucial
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rule reduces the secrecy statements. Section 5 presents the basic derivation tem-
plates for two key establishment patterns: key distribution and key agreement.
Section 6 concludes the paper with a summary of its contributions.

2 Overview of Authentication with Encapsulated Secrecy

The goal of an authentication protocol Q for a group G is to realize the authen-
tication predicate

AuthQ(G) = ∀XY ∈ G. L
Q
X ≈ L

Q
Y

where L
Q
X is the complete view of the principal X at the final state of the

protocol Q. The relation ≈ requires the views to be equal, except for the last
send-receive pair, which the sender cannot ascertain. The predicate AuthQ(G)
thus formalizes entity authentication through “matching histories”, introduced
in [7] and formalized in [8]. Message authentication can be captured in a similar
way, by requiring that principals’ records match when restricted to the actions
containing the relevant term:

AuthQ(t;G) = ∀XY ∈ G.
(
L
Q
X � t

)
≈

(
L
Q
Y � t

)
To represent, say, a freshly generated value, we take t to be a variable x bound
by an action (νx) in Q. Its propagation is tracked through the send, receive and
assign actions in the various runs, and its authenticity means that the various
principals’ views of this coincide at the final state of each run. For a set of terms
Θ, we abbreviate Auth(Θ;G) =

∧
t∈Θ Auth(t;G).

In general, the complete view L
σ

X of the principal X at the state σ is obtained
by applying the available authentication axioms and logical rules to the (incom-
plete) view Lσ

X , which consists of the actions observed by X up to σ. The views
grow as the runs progress. Each principal directly observes only her own actions
(and the actions of her subprincipals); but the authentication axioms allow her
to draw conclusions about the actions of others, roughly in the form: “If I am
receiving this message, someone must have sent it.”

The authentication axioms are subsumed under the authentication template

A : ∀x. Φ(x) ∧ ((fABx))A =⇒ Ψ(x) ∧ 〈〈fABx〉〉B< < ((fABx))A (au)

instantiated to particular formulas Φ and Ψ . Here ((t))A means “A receives a
message containing t”, and 〈〈t〉〉A(<) means “A sends (originates) a message
containing t” [6]. The prefix “A :” means that the schema is used in A’s local
reasoning. The most important instance of this schema is the challenge-response
axiom

A : (νx)A

(
〈〈cABx〉〉A < ((rABx))A

=⇒ 〈〈cABx〉〉A < ((cABx))B < 〈〈rABx〉〉B< < ((rABx))A

)
(cr)
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obtained by setting

fABx = rABx

Φ(x) = New(x) ∧ 〈〈cABx〉〉A < ((rABx))A

Ψ(x) = ((cABx))B < 〈〈rABx〉〉B

in (au), and abbreviating “∀x. New(x) ⇒” to “(νx)”. This axiom allows a prin-
cipal A, who can only observe her own actions, to draw conclusions about B’s
actions, using the assumption that no one but B could have transformed cABx
to rABx. Axiom (cr) should thus be construed as a specification of the prop-
erty of the challenge-response functions c and r, required for the authentication.
This property is simply asserted (postulated) for the abstract challenge-response
protocol, but the task is to refine this protocol, and implement c and r as more
concrete cryptographic functions, which come with their own axioms, from which
(cr) can then be derived as a theorem [6,1]. This is where the encapsulated secrecy
assumptions enter scene. For instance, when the challenge-response functions are
implemented as

cABx = x

rABx = SB(A, x)

where SB is B’s signature, then axiom (cr) is implied by the statement that this
signature is B’s secret, i.e. that only he can generate it:

A : 〈〈SBx〉〉X< =⇒ X = B

And this, furthermore, can only be true if the session where B’s signature is
established has been authenticated, so that no other principal can come in pos-
session of his signature. And that authentication depended on some previous
secrets, and so on.

In general, given a protocol refinement Q(f) −→ Q(F/f), where an abstract
function f is implemented as a more concrete function F , refining the authenti-
cation proof often requires an additional assumption that the function F , used
to authenticate group G, is G’s secret

AuthQ(f)(G) ∧ SecrQ(F/f)(F ;G) =⇒ AuthQ(F/f)(G)

For instance, when the abstract response function rAB is refined to signature
SB, axiom (cr) will be satisfied because SB is B’s secret, and no one else could
generate his signed response.

Similarly, in order to derive a secrecy property of a refinement F of an abstract
operation f in a protocol Q, we shall often need the authenticity assumption, in
the form

SecrQ(f)(f ;G) ∧ AuthQ(F/f)(F ;G) =⇒ SecrQ(F/f)(F ;G)

The goal of the rest of the paper is to make this precise.
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3 Modeling Secrecy

In this section we introduce the conceptual and notational infrastructure needed
for the formal definition of secrecy and the rules for deriving it. There are several
layers of structure, and the tempo is brisk: the details must be left for the
subsequent sections.

3.1 Order and Security

The simplest process model suitable for capturing the various aspects of security
seems to be the based on partial orders, or more precisely partially ordered
multisets (pomsets) [9]. It extends the trace based models, such as strand spaces
[10], and simplifies the process-calculus based models.

While authenticity is achieved through partial ordering of actions, secrecy
is concerned with the computability relation between terms, as they propagate
through communication. The abstract pomset model, used for deriving authen-
ticity, is now extended by an abstract computability relation. This will suffice
for secrecy derivations. The model (outlined in the Appendix) consisted of:

– partial order of terms and subterms (T ,�),
– partial order of principals and subprincipals (W ,�),
– set of actions A generated over the terms,
– processes as partially ordered multisets of actions [9], i.e. maps L L−→ A×W ,

where L is a partial order, and
– runs, which extend processes by assigning to each receive action a unique

send action

Now we add:

– partial order Γ � Θ between finite sets Γ,Θ ⊆ T , meaning that each term
t ∈ Θ can be computed from a tuple1 of terms g ∈ Γ .

In the present paper, we study the useful symbolic interpretations of com-
putability relation.

3.2 Symbolic Computability

In general, the computability relation among the terms used in a protocol can
be given by rewrite rules, e.g.

x, y � 〈x, y〉 〈x, y〉 � x, y k, x � Ekx k,Ekx � x

where 〈x, y〉 represents a pairing operation, and Ekx the encryption of x by
k. Abadi and Rogaway [11] use such computability relation. Paulson’s analz
operator [12] corresponds to the closure Γ� = {t ∈ T | Γ � t} for the special case
of the theory of encryption and tupling. More generally, given an algebraic theory
1 We often abbreviate g1, g2, . . . , gn to g.
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T with a signature ΣT , and the set of derived operations ΣT , the computability
relation can be defined by

Γ � Θ ⇐⇒ ∀t ∈ Θ∃g ∈ Γ∃ϕ ∈ ΣT . T |= (t = ϕg)

In words, for every element t ∈ Θ we can find a tuple g ∈ Γ and an alge-
braic operation ϕ, such that the equation t = ϕg can be proven in algebra T .
The rewrite rules given above are obtained for the algebraic theory T over the
signature ΣT =

{
〈−,−〉, π1, π2, E,D

}
and the equations

π1〈x, y〉 = x π2〈x, y〉 = y Dk(Ekx) = x

where we make the restriction that πi is applied only to the result of concate-
nation and Dk is applied only to the result of applying Ek. 2 Note that the
encryption E and decryption D are presented as curried binary operations on
keys and messages. This will simplify notation in the sequel: e.g. the encryption
and decryption by a key k become unary operations

Notation. It is convenient to extend the computability relation from the ele-
ments of T to functions f : T −→ T , as follows:

Γ � f = ∀x. Γ, x � fx

Γ � f−1 = ∀x. Γ, fx � x

Γ, f � t = ∀Ξ. Γ,Ξ � f ⇒ Γ,Ξ � t

Γ, f−1 � t = ∀Ξ. Γ,Ξ � f−1 ⇒ Γ,Ξ � t

This extends to sets of functions in the obvious way. E.g., if EG = {EX : T →
T |X ∈ G} is a family of public key encryptions for the principals from some
group G ⊆ W , then Γ � E−1

G means that the keys to decrypt the messages
encrypted by any of EX ∈ EG can be computed from Γ .

For an algebraic theory T with signature ΣT , the above definition of com-
putability implies that x � fx, i.e. � f , holds for every f ∈ ΣT .

Finally, each order relation induces a closure operator on sets of terms:

Γ� = {t ∈ T | Γ � t} Γ� = {t ∈ T | ∃u ∈ Γ. u + t}

3.3 Guard Relation

A set of sets of terms G ∈ ℘℘T is said to guard a term t with respect to a set
of terms Υ ⊆ T if every computation of t from Υ must traverse some Γ ∈ G, i.e.

G guardsΥ Θ = ∀t ∈ Θ∃Γ ∈ G∀Ξ ⊆ Υ. Ξ � t ⇒ Ξ � Γ

We say that G guards Θ in a process L if it guards it with respect to the set of
terms Υ = TL which become computable to all observers in any run of L.
2 We note that without such restrictions, not only are the theories not equivalent, but

as pointed out in [13], it is possible to have protocols that are secure in the rewrite
theory that are not secure in the algebraic theory.



390 D. Pavlovic and C. Meadows

This notion is implicit in many symbolic analyses of secrecy. Since the envi-
ronment Υ depends on the possible runs of L (of which there can be many!),
proving that a term is guarded can be complex. Our approach is to prove that
guardedness is satisfied if certain syntactic conditions on the runs that are easy
to verify using the authentication logic are also satisfied. This allows us to en-
capsulate the complex secrecy proofs as well. A framework for a large class of
such proofs is presented in section 4.

3.4 Secrecy Predicates and Rules

The information available to a principal A ∈ W at a state3 σ in a run � of a
process L L−→ A×W is conveniently subdivided into

– a view Lσ
A : Lσ

A −→ A × W	A, which is the restriction of the run L =
〈LA, LW〉 : L� −→ A×W to the actions executed before the state σ by A’s
subprincipals, i.e. to the subposet Lσ

A = {ξ ∈ L� | ξ ≤ �σ ∧ LWξ � A}, and
– an environment Γ σ

A, which consists of the fresh variables from σ2
A and the

terms which occur in σ3
A, which together capture all terms that A has gen-

erated, received or computed up to the state σ.

Secrecy of a set of terms Θ for a group G ⊆ W at a state σ is then defined4

Haveσ(Θ;G) = ∀X ∈ G. Γ σ
X � Θ

Onlyσ(Θ;G) = ∀X ∈ W∀t ∈ Θ. Γ σ
X � t =⇒ X ∈ G

Secrσ(Θ;G) = Haveσ(Θ;G) ∧Onlyσ(Θ;G)
= ∀X ∈ W∀t ∈ Θ. Γ σ

X � t ⇐⇒ X ∈ G

Lemma 1. (a) For Φ ∈ {Have,Only, Secr} holds

Φ(Θ1;G) ∧ Φ(Θ2;G) ⇐⇒ Φ(Θ1 ∪Θ2;G)

and therefore

Θ1 ⊇ Θ2 =⇒ Φ(Θ1;G) ⇒ Φ(Θ2;G)

(b) Furthermore

Have(Θ;G1) ∧Have(Θ;G2) ⇐⇒ Have(Θ;G1 ∪G2)
Only(Θ;G1) ∧ Only(Θ;G2) ⇐⇒ Only(Θ;G1 ∩G2)

and therefore

G1 ⊇ G2 =⇒ Have(Θ;G1) ⇒ Have(Θ;G2) ∧ Only(Θ;G2) ⇒ Only(Θ;G1)

3 The definitions are in the Appendix.
4 Note that Only(Θ; G) is logically equivalent to ∀X ∈ W(∃t ∈ Θ. Γ σ

X � t) =⇒ X ∈ G.
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Notation. It will be convenient to introduce the relation of relative comput-
ability

Ξ �σ
A Θ = Ξ,Γ σ

A � Θ

We write Ξ �QA Θ and Ξ �A Θ for computability in all runs of a protocol Q. We
also elide the empty set, and write �σ

A Θ instead of ∅ �σ
A Θ. For a group G ⊆ W ,

we write

Ξ �G Θ = ∀X ∈ G. Ξ �X Θ

Rules. The basic steps in the derivations of secrecy will be

Haveσ(Ξ;G) Ξ �σ
G Θ

(have)
Haveσ(Θ;G)

Onlyσ(Ξi;Gi)
∣∣n
i=1 {Ξi}n

i=1 guards Θ
(only)

Onlyσ(Θ;
n
∪

i=1
Gi)

Secrσ(Ξi;Gi)
∣∣n
i=1 Ξi �σ

Gi
Θ

∣∣n
i=1 {Ξi}n

i=1 guards Θ
(secr)

Secrσ(Θ;
n
∪

i=1
Gi)

4 Proving Guards

In this section, we explore the ways in which the guarding assumptions of (only)
and (secr) can often be proved.

In practice, guards are often realized using functions which are hard to invert,
or functions which are easy to invert with a key, but hard to invert without
it. In modern cryptography, such functions are developed as one-way functions,
and as trapdoor functions respectively [14, 2.4]. Very roughly, the idea is that
the output of a one-way function does not contribute to computations that may
yield its input

Γ, Fk � k =⇒ Γ � k

whereas a trapdoor function allows computing a part m of its input only if
another part k, called trapdoor, is also computable

Γ,Ekm � m =⇒ Γ � k ∨ Γ � m

However, these formulations abstract away the fact that a function may not be
invertible on its own, but may become invertible in a context, via equations like
Dk(Ekx) = x. The definitions that we propose below capture this fact, but re-
main an algebraic approximation, inevitably crude, of concepts that essentially
involve probabilistic computation. However, this initial simplification seems nec-
essary for incremental proofs of secrecy, and open for refinements to more precise
models.
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4.1 Guarding by One-Way Functions

Fix a term algebra T , given with a subterm relation �, a set of function symbols
Σ, and a computability relation �.

If f ∈ Σ is a function symbol of arity n and i ≤ n, we call a pair 〈f, i〉 a
position, and denote by f(σ)i a term in the form fs1s2 . . . si−1σsi+1 . . . sn, i.e.
where σ occurs as i-th argument of f .

Definition 1. Given sets Υ,Θ ⊆ T of terms and a set Π ⊆ Σ×N of positions,
we extract the Υ -terms which occur in Θ just in the Π-positions by the operator

parΥ (Θ, Π) = σ ∈ Υ \Θ | ∀t ∈ Θ∀s � t∀f ∈ Σ∀i ∈ N. s = f(σ)i ⇒ 〈f, i〉 ∈ Π

The context Υ is often all of the term algebra T , or the set T �
L of the subterms

from the set TL of the terms that may be sent in runs of the process L. We write
parL(Θ,Π) = parT �

L
(Θ,Π), and par(Θ,Π) = parT (Θ,Π).

Definition 2. A term σ is purged from a position 〈f, i〉 in the terms of Θ by
replacing in every t ∈ Θ, all occurrences of σ as i-th argument of f by a fresh
variable x, not occurring in Θ. Formally,

purσ(Θ, 〈f, i〉) =
{
t[f(x)i] | t[f(σ)i] ∈ Θ

}
where t[f(σ)i] displays all the occurrences of f(σ)i in t. Then purΥ (Θ,Π) is
obtained by sequentially purging all σ ∈ Υ the �-maximal ones first.

Note that, if σ never occurs in a position from Π , then purΥ (Θ,Π) = ∅.
Lemma 2. The operation purΥ (Θ,Π) is well defined: the order of purges of the
individual terms σ ∈ Θ does not matter, as long as the maximal terms are purged
first.

Proof. This follows from the fact that two terms are either disjoint, or one is
entirely contained in another.

Definition 3. A position set Π is said to be one-way if it satisfies

Onwy(Π) = ∀Θ ∀σ ∈ par(Θ,Π). Θ � σ =⇒ purσ(Θ,Π) � σ

We write Onwy(f, i) instead of Onwy({〈f, i〉}), and we write Onwy(f) instead of
Onwy({〈f, 1〉, . . . , 〈f,n〉}), where f is an n-ary function symbol.

Lemma 3. For the function E, with the computability relation as defined in sec.
3.2, holds Onwy(E, 1) ∧ ¬Onwy(E, 2).

Proof. The second conjunct is a consequence of the rewrite k,Ekm � m. For
the proof of the first, let D = Γ1 � . . . � Γn � σ ∈ par(Θ, 〈E, 1〉) where Γ1 ⊆ Θ
and each �-step consists of a single application of a rewrite rule. We want to
show that if D is a derivation, then so is the result of applying the purge function
to each term in D. The proof will be by induction on the length of D. The result
clearly holds when the length of D is one. Suppose the result holds for length
less than n. Suppose purσ(Θ,Π) �� σ. Then one of the steps Γi in D must be of
the form S ∪ {σ, Eσy} � S ∪ {σ, Eσ, y} or S ∪ {σ, y} � S ∪ {σ, y, Eσy}. Then
Γ1 � . . . � Γi is a derivation of σ, and we are done.
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Definition 4. We say that t is only sent under one-way functions in the runs
of a process L if there is a one-way position set Π such that t ∈ par(TL,Π),
where TL is the set of terms of L.

A term t is protected in L if it is only sent under one-way functions, or not
at all. The set of the terms protected in L is thus

protL(Θ,Π) = parL(TL,Π) ∪ (T \ T �
L )

Proposition 1. If a term t is only sent under one-way functions in the runs of
a process L, then t cannot be derived by the observers of these runs. Formally,

Onwy(Π) ∧ t ∈ parL(ΓX ,Π) =⇒ ΓX �� t

Proof. Suppose that t is derivable from the terms Θ in a run. By the definition
of Onwy, purt(Θ,Π) � t. But by assumption, t does not appear in purt(Θ,Π).
Since t is an atomic term, that means that t cannot be derived from purt(Θ,Π),
and so it cannot be derived from Θ.

Corollary 1. If a term t is protected in a process L, and in the initial envi-
ronments of all principals, then no run of L will make it computable for any
principal for which it was not computable initially, before any runs of L, i.e.

Onwy(Π) ∧ t ∈ protL(TL,Π) ∧ ∀X ∈ W. t ∈ protL(Γ ι
X ,Π) =⇒ Only(t;Gt)

where Gt = {X ∈ W | Γ ι
X � t}.

Proposition 2. Let L be a process, and let k be an atomic term which only
appears as the first argument of E in any term in the runs of L. Then, k cannot
be derived by the observers of these runs.

Proof. Since k is atomic, and the � relation introduces no new variables on the
right-hand side, the fact that k does not appear in any element of purk(TL, 〈E, 1〉)
implies purk(TL, 〈E, 1〉) �� k. Since 〈E, 1〉 is one-way (by lemma 3), definition 3
yields Θ �� k.

Remark. If Θ = {E(Fkm)n}, and Onwy(E, 1), then Θ �� Fkm. Note, however
that this does not imply Θ �� k, since the algebraic theory may include, e.g. the
equation E(Fxy)z = x. However, if Onwy{〈E, 1〉, 〈F, 1〉}, then Θ �� k can indeed
be proven.

4.2 Guarding by Trapdoor Functions

Definition 5. Given sets Υ,Θ ⊆ T and Ψ ⊆ Σ × N × N, with the projections
Ψ0 = {〈f, i〉 | ∃k. 〈f, i, k〉 ∈ Ψ} and Ψ1 = {〈f, k〉 | ∃i. 〈f, i, k〉 ∈ Ψ}, then the
operator

padΥ (Θ,Ψ) =
{
〈σ, κ〉 ∈ Υ 2 \Θ2 | ∀t ∈ Θ∀s � t∀f ∈ Σ∀i ∈ N.

(
s = f(σ)i

⇒ ∃k ∈ N. 〈f, i, k〉 ∈ Ψ ∧ s = f(κ)k

)}
extracts just those pairs of terms 〈σ, κ〉 ∈ Υ 2 where σ only occurs in a Ψ0-position,
if κ occurs in a Ψ1-position within the same subterm.
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Like before, pad(Θ,Ψ) stands for padT (Θ,Ψ). We further define

msgΥ (Θ,Ψ) = parΥ (Θ,Ψ0) keyΥ (Θ,Ψ)σ = {κ | 〈σ, κ〉 ∈ padΥ (Θ,Ψ)
}

Definition 6. We say that Ψ ⊆ Σ×N×N is a trapdoor set if for every 〈f, i, j〉 ∈
Ψ holds that whenever an 〈f, i〉-subterm σ can be extracted from f(σ)i, then some
〈f, j〉-subterm κ must also be computable. Formally,

Trap(Ψ) = ∀Θ ∀σ ∈ msg(Θ,Ψ). Θ � σ =⇒ ∃κ ∈ key(Θ,Ψ)σ. Θ � κ

We abbreviate Trap({〈f, i, k〉}) to Trap(f, i, k), and for n-ary f write Trap(f, k)
instead of Trap({〈f, 1, k〉, . . . , 〈f,n, k〉}).

Proposition 3. The function E from sec. 3.2 satisfies Trap(E, 2, 1).

Proof. Let Θ be a set of terms, Π = 〈E, 1〉, and σ ∈ msg(Θ,Ψ) such that Θ � σ
but Θ �� g for any g ∈ key(Θ,Ψ). Let T be a sequence T1 � . . . � Tn � σ where
T1 ⊆ Θ and each � step consists of a single application of a rewrite rule. Then
some Ti must be of the form S ∪{k,Eky} � S ∪{k,Eky, y} where σ � y. Hence
Θ � k and k ∈ key(Θ,Ψ), contradicting our assumption.

The following three results follow directly from the definitions, so we omit their
proofs.

Lemma 4. For every Θ and a trapdoor set Ψ holds{
key(Θ,Ψ)σ | σ ∈ msg(Θ,Ψ)

}
guardsΘ msg(Θ,Ψ)

Proposition 4. If a term σ is only sent under trapdoor functions in the runs of
a process L, then every computation leading to σ must pass through a trapdoor
κ. Formally,

Trap(Ψ) ∧ σ ∈ msg(T , Ψ) =⇒ key(T , Ψ)σ �= ∅.

Corollary 2. If a term σ is only sent under trapdoor functions in the runs of
a process L, and if all of its trapdoors are contained in Γ , then σ is guarded by
Γ , i.e.

Trap(Ψ) ∧ σ ∈ msg(TL, Ψ) ∧ key(TL, Ψ)σ ⊆ Γ =⇒ {Γ} guardsL σ

Remark. One-way functions implement a simple form of guarding, where s is
guarded by the function symbol f in the term fs. Trapdoor functions implement
guarding where s can be extracted from a term fst only if t is known. Equations
between terms lead to more complicated forms of guarding. E.g., if g∧(−) is a
one-way function satisfying (g∧y)∧z = (g∧z)∧y, then z cannot be extracted from
(g∧y)∧z, but this term can be computed without knowing z, from {g∧z, y}.
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5 Secrecy Derivations

5.1 Key Distribution

Consider the abstract key distribution protocol KD[A,B, S]

A S B

◦ A,B �� ◦
νx

��◦ ◦gSAx�� gSBx �� ◦

The principal A here requests a key to communicate with B and the server S
generates a fresh key and distributes it, guarded by the functions gSA and gSB.
The desired secrecy property is that at the final state of KD, only A,B and S
have x, provided that they are honest.

To assure this, we impose the following axioms

∀Y ∈ W. Secrι(gSY , g
−1
SY ;S,Y ) (sg)

AuthKD(gSA, g
−1
SA, gSB, g

−1
SB;A,B, S) (ag)

AuthKD(x;A,B, S) (ax)

which say (sg) that at the initial state ι, only S and Y can construct and remove
gSY , and (ag,ax) that A,B and S can each ascertain that there are no undesired
flows involving g’s and x. The desired secrecy property is now obtained using
the secrecy rule

(sg) ∧ (ag)
=====================
SecrKD(g−1

SY ; S, Y )
Y ∈{A,B}

gSY x ∈ Γ KD
S,Y Y ∈{A,B}

g−1
SX �S,Y x

Y ∈{A,B}

(ax) ∧ H(A, B, S)
====================
{g−1

SA}, {g−1
SB} guards x

SecrKD(x; A,B, S)

where H(A,B, S) is the usual honesty assumption, that principals act according
to the protocol. To see how (ax)∧H(A,B, S) implies that

{
{g−1

SA}, {g
−1
SB}

}
guards

x, recall that Auth(x;A,B, S) means that
(
LA � x

)
≈

(
LS � x

)
≈

(
LB � x

)
, at

the final state of KD. In other words, all three principals A,B and S can in each
run of KD establish the same complete view of all of their actions with the terms
containing x. Of course, each of them observes only her own actions, but the
assumption Auth(x;A,B, S) asserts that this suffices to allow each of them to
also prove the exact order of actions of the other two. In particular, A and B
can both prove that S has only sent gSAx and gSBx, and nothing else.

In this reasoning, the authentication assumptions are encapsulated in axioms
(ag) and (ax), which postulate that there are no runs viewed differently by dif-
ferent principals. This means that neither of them can be proven, nor needs to
be proven, for the abstract protocol. They just specify requirements which the
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implementations of the abstract protocol need to satisfy. This is analogous to
the derivational approach to authentication, where the axiom (cr) specifies the
required property of the challenge-response functions c and r, as an implemen-
tation task. The task here is to implement the guard function g, and discharge
the open authenticity assumption. The abstract secrecy property of KD, proven
above, must be preserved and realized through such implementations.

Refining KD. Suppose that we are given an encryption algorithm E, with the
decryption algorithm D, and a symmetric key kSY shared by the server S with
every Y ∈ W. Assume that these data satisfy the following axioms5

Onwy〈E, 1〉 (oE)

Trap〈E, 2, 1〉 (tE)

∀Y ∈ W.Secrι(kSY ;S,Y ) (sk)

First Try. Setting gSY x = EkSY x, one can easily derive (sg) from (sk), and the
secrecy of kSY follows from (sk), (oE), and AuthKD(kSY ; Y, S). However, (ag)6
and (ax) are not satisfied, because gSY = EkSY allows runs which may leave
each principal with a different view, e.g.

A S C

◦ A,B �� ◦

��◦
νx

��

◦A,C��

◦ ◦EkSAx�� EkSCx �� ◦

Here S does not know that A wanted to speak to B, A does not know that C
participates the run, and B does not know that anything happened at all.

Second Try. The principal A needs to prove (ax) that S has only sent x in the
two tokens, intended for A and B, guarded by gSA or gSB; and (ag) that the
guards have not been compromised. Since A does not have g−1

SB, she cannot check
(ax) directly. So she must check it indirectly, relying for the authentications (ag)
and (ax) on the information received from S. This idea is realized by adding
peer’s identity in the term gSAx, constructed by S for A. Ditto for gSBx.

Proposition 5. The protocol KD, with axioms (sg,ag,ax), can be refined by
setting

gSAx = EkSABx gSBx = EkSBAx

5 For simplicity, the term algebra is here untyped, and any term can be used as a key;
typing can be introduced as needed.

6 Note that Trap〈E, 2, 1〉 implies Auth(Ek, Ek−1) ⇐⇒ Auth(k).
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provided that (oE) Onwy〈E, 1〉, (tE) Trap〈E, 2, 1〉, and (sk) Secrι(kSY ;S,Y ),Y ∈
{A,B} are satisfied. Under these assumptions, the proof of KD’s secrecy property
specializes to its refinement.

The validity of (sg) follows as in the first try. The validity of (ag) and (ax) follows
from the honesty assumption: if A receives EkSABx, then the presence of B in
that message means the only other token that the honest server S would send is
EkSBAx.

5.2 Key Agreement

The generic key agreement protocol KA is based on abstract public key infras-
tructure: each principal X ∈ W is given a long term private key aX , correspond-
ing to a public key pX , as well as an “address book” {(Y, pY )}Y ∈W of public
keys of all principals. This means that the view Γ σ

X for every σ and X con-
tains {aX , (Y, pY ) | Y ∈ W}. But the participants of the abstract key agreement
protocol KA[A0, A1] only need to know each other’s public key, so it becomes

A0[a0, (A1, p1)] A1[a1, (A0, p0)]

◦
νx0

��◦ m1:=F a0x0 �� ◦
νx1

��◦ ◦m0:=F a1x1��

K0a0x0m0 K1a1x1m1

Besides the displayed secret data, the operations F and Ki may also depend on
the public data (but this clutters notation and plays no role in the reasoning).
The following axioms are imposed:

Onwy(F ) (oF)

∀X ∈ W. Secrι(aX ; X) (sa)

AuthKA(a0, x0, a1, x1;A0, A1) (aax)
K0a0x0(Fa1x1) = K1a1x1(Fa0x0) (agr){

{a0, x0}, {a1, x1}
}

guards {K0a0x0m0,K1a1x1m1} (gua)

The secrecy rule now gives

(oF) ∧ (sa) ∧ (aax) ∧ H(A0, A1)
========================

SecrKA(ai, xi;Ai)
∣∣
i∈{0,1}

mi ∈ ΓKA
Ai

∣∣
i∈{0,1}

ai, xi �Ai Kiaiximi

∣∣
i∈{0,1} (gua)

SecrKA(K0a0x0m0,K1a1x1m1;A0, A1)

It further follows from (aax) that the messages Fa0x0 and Fa1x1 are exchanged
as desired and assigned to m1 and m0 respectively. Axiom (agr) then implies
that at the final state of KA, the secret keys K0a0x0m0 and K1a1x1m1 agree,
and yield the key k = K0a0x0m0 = K0a1x1m1. This is the desired outcome of
the protocol.
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Refining KA. The abstract KA-scheme subsumes the large family of protocols
arising from Diffie and Hellman’s paradigm [15]. It includes the MTI family
and their descendants, UM, KEA, MQV and others. In combination with other
security components, they are used in several widely used protocol suites [16,17].

The minimal algebraic structure needed for the DH-style key agreement is a
multiplicative group G with a binary operation (−∧−) : G×G −→ G, satisfying

x∧1 = x (eq1)

(x∧y)∧z = (x∧z)∧y (eq2)

Onwy(x∧) (dl){
{x∧y, z}, {x∧z, y}

}
guardsKA

{
(x∧y)∧z, (x∧z)∧y

}
(cdh)

Axiom (dl) is the abstract version of the Discrete Logarithm (DL) assumption,
and (cdh) is related to the Computational Diffie-Hellman (CDH) assumption.

Besides the group G, the assumed infrastructure includes a chosen element
g ∈ G, intended to generate a large subgroup of G. For each principal X ∈ W,
the public key pX , corresponding to the long-term private key aX is now specified
in the form pX = g∧aX . So for all X and σ, the view Γ σ

X now contains aX , g
and {(Y, g∧aY )}Y ∈W .

The DH-style key agreement protocols now fall into two subfamilies, depending
on whether the key derivation functions K0 and K1 are the same or not.

Asymmetric Key Derivation. Given functions H0 and H1, that satisfy

H0a0x0(Fa1x1) = H1a1x1(Fa0x0) (agrH){
{a0, x0}, {a1, x1}

}
guards {H0a0x0(Fa1x1), H1a1x1(Fa0x0)} (guaH)

setting

K0axm = J(H0axm)(H1axm) K1axm = J(H1axm)(H0axm)

validates (agr) and (gua). This subsumes the general scheme of the first two MTI
protocols [18]

protocol Fax Jxy H0axm H1axm

MTI/A(f) g∧(fax) x · y p∧(fax) m∧a
MTI/B(f) p∧(fax) x · y g∧(fax) m∧(1/a)

The variable p still denotes peer’s public key. When proving (agr), substitute
each pi by g∧ai. The original MTI protocols are obtained by setting fxy = xi ·y.
For i = 1, replacing the function Jxy = xy in MTI/A by Jxy = x+y and extend-
ing the group axioms with ring axioms yields the core of the KEA protocol; taking
Jxy to append and then hash x and y yields the core of the “Unified Model”
protocol (UM). The security properties gained by these variations, discussed in
[19,17], are beyond the scope of our current axioms, but can be captured in
refinements.
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Symmetric Key Derivation. Given a function K, satisfying

Ka0x0(Fa1x1) = Ka1x1(Fa0x0) (agrK){
{a0, x0}, {a1, x1}

}
guards {Ka0x0(Fa1x1),Ka1x1(Fa0x0)} (guaK)

can, of course, implement both K0 and K1 in the protocol KA. This subsumes
the third MTI protocol, and the scheme which we denote MQV/D.

protocol Fax Kaxm

MTI/C(f) p∧(fax)
(
m∧(1/a)

)∧(fax)
MQV/D(f) g∧(fax) (Rpm)∧

(
ra(fax)

)
where R and r are required to satisfy

x∧(ryz) = R(x∧y)(x∧z) (agrR)

{a, x} guards ra(fax) (guar)

Instantiating to Rxy = (x∧y) · y and rxy = x · (g∧y) + y validates these axioms
and gives the MQV protocol [20,21], but there are other interesting choices.
Instantiating Rxy = rxy = fxy = y yields the DH protocol, which, of course,
does not validate (guar).

Proposition 6. The protocol KA, with axioms (oF,sa,aax,agr,gua), can be re-
fined as above, using the asymmetric key derivation functions H0, H1, or the
symmetric key derivation scheme K, provided that axioms (oF,sa,aax,agrX,guaX)
hold for X ∈ {H,K}.

Using the algebraic structure satisfying (eq1,eq2,cdh,dl), the protocols MTI/A,
MTI/B,UM and KEA can be obtained as further refinements of the asymmetric
scheme, whereas the protocols MTI/C and MQV/D are further refinements of the
symmetric scheme, assuming, in the latter case, also (agrR,guar).

The generic secrecy property, proven for the protocol KD, is inherited by all
of its refinements.

6 Conclusions

The main contribution of this work is an extension of the framework for compos-
ing and refining security protocols, that allows proofs of the secrecy properties
realized by the protocols. The secrecy concepts are defined in terms of the ab-
stract computability relation, and the secrecy derivations are built from the rules
derivable from the minimal assumptions about this relation. The secrecy prop-
erties are derived from the axioms attached to the basic protocol components.
The axioms specify the requirements/assumptions that need to be discharged
through refinement and implementation of abstract operations. Some axioms
encapsulate the authenticity assumptions. Since they embody a different, logi-
cally dual concern from secrecy, these assumptions are cumbersome to realize
concurrently with it. Encapsulating them in some cases significantly simplifies
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the secrecy proofs. The genericity of the approach allows reusable treatment of
broad families of related protocols. All derivations are stored, and were originally
constructed, in the prototype version of a software tool, which is freely available
for download [3]. The structure of the presented modeling methodology is very
much influenced by its role of the semantical underpinning of this tool.

There are also interesting further directions to be explored. Although our
initial explorations in this area are based on a symbolic model, there is no need
to limit ourselves in this direction. Indeed, we could develop different secrecy
logics with different semantics based on, for example, information-theoretic or
computational aspects of cryptography, depending on the types of cryptosystems
being used. The ability to derive and employ different secrecy logics would allow
us to develop a pluggable semantics for cryptographic protocol analysis that
would allow us to reason over multiple domains.

Acknowledgements. We thank Carolyn Talcott for careful reading and many
useful comments.
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Appendix: Protocol Derivation System

Syntactic Categories: Conceptually, authenticity and secrecy are dual, in the
sense that authenticity says that some principals know something, while secrecy
says that that they do not know something else. Formally, though, both secrecy
and authenticity can be analyzed in terms of partial ordering: principals authen-
ticate each other by establishing the same order of their joint actions, whereas
the failures of secrecy can be viewed as connecting some data that are known,
and some that should not be known through a relation of computability, which
is transitive and reflexive. So we reason over several partially ordered syntactic
categories:

– data are represented as terms from an algebra T , given with an abstract
subterm relation �;
• to support information-theoretic security analyses, T must be given with

a frequency distribution Prob : T −→ [0, 1];
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• to support computational security analyses, besides the frequency dis-
tribution, T must be given with a representation T −→ Σ∗ of terms as
strings (usually from the alphabet Σ = {0, 1}), available for processing
e.g. by turing machines;

– principals are collected in the set W ordered by the relation �, which may
be interpreted as “speaks for” [23,24] or “acts for” [25], etc.

– actions are generated from terms and principals by the constructors including

action constructor form meaning

send T ×W2 〈〉
↪→ A 〈t : A→ B〉 the term t is sent, purportedly

from A to B

receive VarT × Var2W
()
↪→ A (x : Y → Z)

a term, source and destination
are received into the variables x,
Y , and Z

match T ×ΣT × VarW
(/)
↪→ A (t/p(x))

the term t is matched with the
pattern p(x)

new VarT
(ν)
↪→ A (νx) a fresh value is created and stored

in the variable x

We often use partial descriptions, and elide e.g. the source and the destination
of a message, as in 〈t〉, or (y). For simplicity, we also omit the explicit type
structure. However, all term variables are assumed to be local to a principal,
and thus come with a map VarT −→ W ; each principal is assumed to have an
infinite supply of local variables.

Execution Model: Processes are represented as partially ordered multisets
(pomsets [9]) of actions attributed to principals. More precisely, a process is an

assignment L
L �� A×W such that (a) (L, <) is a well-founded partial order,

and (b) p < q implies LW(p) � LW(q) or LW(p) 
 LW(q). We abuse notation
and write an action p ∈ L such that LAp = a and LWp = A as aA ∈ L, or even
a, although, of course, several elements of L may correspond to the same action
by the same principal.

A run � extends a process L by a choice of communication links, which assign
to each receive action a unique send action. Formally, a run is thus a pair

� = 〈L, √
: recvs(L) −→ sends(L)〉 (x : Y → Z)A �→ 〈t : S → R〉B

such that
√

(x) �> (x). A run � thus induces the partially ordered set L�, obtained
by extending the ordering of L by

√
(x) < (x). One can thus think of a run as

the pomset extension L ↪→ L�, where each receive action (x) from L has in L� a
chosen predecessor 〈t〉 =

√
(x). This is, of course, just another formalization of

Lamport’s ordering of actions [26]. The resulting model is also similar, and has
been influenced by strand spaces and bundles [10].

The actions in a run � = 〈L,√〉 are then executed in order: each a ∈ L can be
executed only after all b < a have been executed. Executing an action changes
state. A state of a run � is a triple σ = 〈σ1,σ2,σ3〉, where

– σ1 ⊃ L� is a poset, extending each maximal chain of L� by exactly one
element, denoted �, that marks the execution point;
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– σ2 = {x1, . . . , xm} is a finite set of the variables bound to freshly generated
nonces or keys,

– σ3 = {y1 := t1, . . . yn := tn} is a finite set of the assignments, that result
from the executed actions; formally, it can be viewed as a partial map from
the variables yi to the terms ti, such that its domain {y1 . . . yn} is disjoint
from σ2 = {x1 . . . xm}.

As always, the variables are taken up to renaming (i.e. modulo α-conversion).
At the initial state ι of every run �, all the markers in ι1 are set below the

minimal elements of L�, and ι2 = ι3 = ∅.If the execution of the run � has reached
a state σ, the transition σ −→ τ proceeds as follows7:

action if in σ1 and if then set τ3 to set τ2 to and in τ1

send 
〈t〉C FV (t) ⊆ σ2 σ3 σ2 〈t〉
C
receive 
(x)D

√
(x)D = 〈t〉C

∧ x �∈ σ2 σ3 ∪ {x := t} σ2 (x)

D

match 
(t/p(x))D
t = p(u)
∧ x �∈ σ2 σ3 ∪ {x := t} σ2 (t/p(x))


D

new 
(νx)D x �∈ σ2 σ3 σ2 ∪ {x} (νx)

D

The local state σA is the part of the state σ that can be observed by the
principal A. Its components are thus

– the poset σ1
A ⊆ σ1, spanned8 by the actions of A;

– the set σ2
A obtained by restricting σ2 to A’s local variables, and

– the partial map σ3
A, obtained by restricting σ3 to A’s local variables.

A protocol is a specification of a process and a nonempty set of desired
runs. The participants of a protocol are usually called roles, and are denoted
by the variables for principals. Since the pomset representing a run extends the
pomset representing a process, and the restriction of the run to the process is
usually obvious, a protocol is usually specified just by its desired runs. Such a
specification should thus be construed as a proof task: show that the principals
can prove that the run which they participated is as desired.

7 For compactness of the table, we omit the source and the destination fields, which
are just passed from the received message to the receiving variables.

8 Just like σ1 is a �-marking of L	, σ1
A is a �-marking of L	

A = {ξ ∈ L	 | LWξ = A}.
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Abstract. Automated tools such as model checkers and theorem provers for the
analysis of security protocols typically abstract from cryptography by Dolev-Yao
models, i.e., abstract term algebras replace the real cryptographic operations. Re-
cently it was shown that in essence this approach is cryptographically sound for
certain operations like signing and encryption. The strongest results show this
in the sense of blackbox reactive simulatability (BRSIM)/UC with only small
changes to both Dolev-Yao models and natural implementations. This notion es-
sentially means the preservation of arbitrary security properties under active at-
tacks in arbitrary protocol environments.

We show that it is impossible to extend the strong BRSIM/UC results to usual
Dolev-Yao models of hash functions in the general case. These models treat hash
functions as free operators of the term algebra. This result does not depend on any
restriction of the real hash function; even probabilistic hashing is covered. In con-
trast, we show that these models are sound in the same strict sense in the random
oracle model of cryptography. For the standard model of cryptography, we also
discuss several conceivable restrictions and extensions to the Dolev-Yao models
and classify them into possible and impossible cases in the strong BRSIM/UC
sense.

1 Introduction

Tools for proving security protocols typically abstract from cryptography by determin-
istic operations on abstract terms and simple cancellation rules. An example term is
Epkew (hash(signsksu

(m, N1), N2)), where m denotes a payload message and N1, N2
two nonces, i.e., representations of fresh random numbers. We wrote the keys as in-
dices only for readability; formally they are normal operands in the term. A typical
cancellation rule is Dske(Epke(m)) = m for corresponding keys. The proof tools han-
dle these terms symbolically, i.e., they never evaluate them to bitstrings. In other words,
the tools perform abstract algebraic manipulations on trees consisting of operators and
base messages, using only the cancellation rules, the message-construction rules of a
particular protocol, and abstract models of networks and adversaries. Such abstractions,
although different in details, are collectively called Dolev-Yao models after their first
authors [23].

It is not obvious that a proof in a Dolev-Yao model implies security with respect to
real cryptographic definitions. Recently, this long-standing gap was essentially closed
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by proving that an almost normal Dolev-Yao model of several important cryptographic
system types can be implemented with real cryptographic systems secure according
to standard cryptographic definitions in a way that offers blackbox reactive simulata-
bility [8]. We abbreviate blackbox reactive simulatability by BRSIM in the following.
This security (in other words soundness) notion essentially means that one system, here
the cryptographic realization, can be plugged into arbitrary protocols instead of another
system, here the Dolev-Yao model, without any noticeable difference [35,36]. Essen-
tially the same notion is also called UC for its universal composition properties [16].1

In other words, this result shows that the Dolev-Yao model as such can serve as an
ideal functionality that is correctly implemented by a real functionality given by ac-
tual cryptographic systems. Extensions of this BRSIM/UC result to more cryptographic
primitives were presented in [9,6], uses in protocol proofs in [5,3,4], stronger links to
conventional Dolev-Yao-style type systems in [29], and an integration into the Isabelle
theorem prover in [37]. Earlier results on relating Dolev-Yao models and real cryp-
tography considered passive attacks only [2,1,27]. Later papers [31,28,18] consider to
what extent restrictions to weaker security properties, such as integrity only, and/or less
general protocol classes, e.g., a specific class of key exchange protocols, allow simpli-
fications compared with [8]. 2

No prior paper relating Dolev-Yao models and cryptography considers hashing or
one-way functions although they are important operators in automated proof tools based
on Dolev-Yao models, e.g., [30,34,13,11]. (A very recent report does, but only under
passive attacks [24].) The standard model is that hash is a free operator in the term
algebra, i.e., there is no inverse operator, nor any other cancellation rule with operators
like E and D. Only a party who knows or guesses a potentially hashed term t can test
whether hashing t equals a given hash term h. The goal of our paper is to close this gap,
and to study how the soundness results in the sense of BRSIM/UC can be extended
when hash or one-way functions are added to a Dolev-Yao model and its cryptographic
implementation. In the following, we only speak of hash functions since the standard
Dolev-Yao model for the two classes is the same.

1.1 Our Contributions

It turns out that proving BRSIM/UC soundness for Dolev-Yao models with hash func-
tions is impossible in a general way. Note that the question is not whether a hash func-
tion is a good and generally usable cryptographic primitive by itself, but only whether
its idealization as a free operator in a term algebra, or a similar plausible idealization,
is sound in this strong and pluggable sense. Prior work showed that certain (classes

1 Recent revisions of the long version of [16] also contain an explicit blackbox version of UC,
which is proven to be equivalent to UC. A similar equivalence was first shown in the long
version of [35] for universal and blackbox synchronous reactive simulatability.

2 There is also work on formulating syntactic calculi for dealing with probabilism
and polynomial-time considerations and encoding them into proof tools, in particu-
lar [32,33,26,22,14]. This is orthogonal to the work of justifying Dolev-Yao models, which
offer a higher level of abstraction and thus much simpler proofs where applicable, so that
proofs of larger systems can be automated.
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of) ideal functionalities are not BRSIM/UC-securely realizable, e.g., for bit commit-
ments [17], coin tossing, zero knowledge, and oblivious transfer [16], classes of secure
multi-party computation [19] and certain game-based definitions [21]. However, none
of these works investigated a Dolev-Yao model. Impossibility of BRSIM/UC soundness
of a Dolev-Yao model with XOR was shown in [7]. For our case of hashes, the reasons
for impossibility and thus the proofs are quite different. Furthermore, the proofs in [7]
are reduction proofs, essentially saying that if an idealization of XOR and other cryp-
tographic operations is soundly implementable in the sense of BRSIM/UC, it can be
used to compute cryptographic algorithms and is therefore not intuitively Dolev-Yao. In
contrast, we obtain absolute impossibility results. We achieve this by making stronger
definitions on what makes an ideal functionality of hashing and other cryptographic
operations a Dolev-Yao model.

It is important to note that there is so far no rigorous definition of “any Dolev-Yao
model” in the literature that is independent of specific underlying system models such
as CSP, π-calculus, IO automata, or strand spaces. For positive results, this is not a
problem. However, an impossibility result that only holds for one such model would
not be very convincing. (In particular, the closest model to build on would be that from
[8], and due to syntax idiosyncrasies many people find it hard to transfer basic ideas
from that model to others.) Hence, instead of proving impossibility for one specific
Dolev-Yao model, we will only make certain assumptions on the Dolev-Yao model;
we believe they are fulfilled by all such models existing so far. Essentially we only
assume that the hash functions are abstracted as free operators as informally explained
above, that they are applicable to arbitrary terms, and that the model contains some
other typical operators and base types.

One reason (but not the only one) for the impossibility in the general case is that
hash functions, at least those with a one-way property, are by nature committing, i.e., if
one first gets h = hash(m) and later m one can validate whether indeed h = hash(m).
It is well known that such a commitment property often causes problems in proofs of
BRSIM/UC: If the simulator has to simulate a bitstring for h before knowing m, then
whatever it picks will most likely not match m. Thus the simulation fails if m is later
revealed. In some cases, the commitment problem can be circumvented by using non-
standard models of cryptography, e.g., the random oracle model [12] or the common
random string model, cf. [17]. Indeed we can show BRSIM/UC for the standard Dolev-
Yao model of hashes if the cryptographic realization of the hash function is treated as a
random oracle.

We can also consider probabilistic hashing [15,20]. First, it is not an alternative for
justifying the Dolev-Yao abstraction of hashing by a free operator in the sense of BR-
SIM/UC: Instead one needs hash and verify operators that cancel, similar to authen-
tication. (Even for the purely passive case this extension is made in [24].) Moreover,
hashing the same message must produce a fresh term each time, similar to standard
models of nonces, or the Dolev-Yao style model of probabilistic encryption in [8]. This
freshness is needed because it is distinguishable in the real system whether a message
was hashed twice, or whether an existing hash value was forwarded. Hence the imple-
mentation would be incorrect in the sense of BRSIM/UC if this were not possible in the
ideal, Dolev-Yao style system. Even then, however, our impossibility results hold; we
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sketch this extension below. Roughly, this is so because probabilistic hashing mainly
improves the secrecy of the hashed message; however, the imperfect secrecy offered by
deterministic hash functions is not an argument in our counterexamples.

For the standard model of cryptography, the next question is whether certain
restrictions on the use of hash functions enable a BRSIM/UC soundness result. One
option is to restrict the types of terms that can be hashed, in particular to forbid the
hashing of payloads. By “payload” we mean an application message, e.g., an email
text or the amount and currency of a payment in a payment protocol that uses the
cryptographic functionality. Technically, payloads play a special role (as m in the
example of the commitment problem shows) because they are known outside the
cryptographic system and thus can typically not be modified by the simulator, in
contrast to nonces, keys, etc. As to practical usage, this restriction is serious but not
unreasonable; e.g., key exchange protocols typically do not use general payloads, and
indeed [18] relies on their absence. However, we still obtain an impossibility result if
excluding payloads is the only restriction on hashable terms. The basic idea in that case
is that by constructing large enough terms, the users of the cryptographic system can
simulate payloads. Another conceivable restriction is therefore on the size of hashable
terms. Again this restriction is serious (e.g., general hash chains and trees are now
excluded) but not unreasonable because many protocols only use rather small terms.
In fact, for the restriction to hashing single nonces, we obtain a positive result, but so
far not for any other type of restriction to small terms. This result may seem surprising:
A typical counterargument is “how can this be true if we allow real hash functions
that leak parts of the message?” The point is that nonces are system-internal, and
thus leaking bits about them is not harmful by itself as long as the application-level
properties of the Dolev-Yao model remain fulfilled, i.e., essentially that the adversary
cannot guess nonces of which it has only seen hash values. Clearly this argument does
not hold for payloads, and it also does not hold for keys, because leaking key bits
would harm later key usage. An example of protocols that use hashing only for single
nonces are protocols that use hashing only for one-time signatures.

Another restriction is to give up the ideal secrecy property of the hash functions, i.e.,
to give at least the ideal adversary an operator that inverts hash. The technical motiva-
tion is that this clearly prevents the commitment problem. On the application side, this
restriction excludes all protocols where one-wayness is the core property for which a
hash function is used. However, there are protocols where shortening of messages with
collision resistance is the core property desired; here such a model could be used. Note
that in a Dolev-Yao model we can have collision freeness, i.e., no equality between
hashes of different terms, without secrecy. The realization of such an operator by a real
cryptographic function would of course still have to be collision-resistant and thus one-
way if it is sufficiently shortening. Anyway, we still obtain an impossibility result in this
case: No shortening hash function exists that enables a secure realization of a Dolev-
Yao model with hashes even without secrecy. If we combine giving up secrecy with not
hashing payloads and only terms of constant size, then we obtain a positive result.

Of course the restrictions that we considered are not the only conceivable ones; in
particular it may be interesting to find other positive cases in the standard model of
cryptography than the two that we prove. Furthermore, we do not exclude that even the
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standard Dolev-Yao model of hashes may be sound with respect to weaker soundness
definitions.

2 Summary of Reactive Simulatability/UC, Also with Random
Oracle

As our results are for the security definitions of BRSIM/UC, we first briefly review
this notion. BRSIM/UC is used for comparing an ideal and a real system with respect
to security [35,36,16]. We believe that our following results are independent of the
small differences between the definition styles and therefore write “BRSIM/UC” and
similar term pairs like “ideal system/functionality”. For the actual results, we have to
use a specific formalism, and we use that from [36]. Here one speaks of ideal and real
systems (the functionalities and protocols of UC). The ideal system is often called TH
for “trusted host”, see Figure 1, and the protocol machines of the real system are often
called Mu, where u is a user index. The ideal or real system interacts with arbitrary
so-called honest users, often collectively denoted by a machine H; this corresponds to
potential protocols or human users to whom the functionality is offered. Furthermore,
the ideal or real system interacts with an adversary, often denoted by A, who is often
given more power than the honest users; in particular in real systems A typically controls
the network. A and H can interact; this corresponds to known- and chosen-message
attacks etc.

A

H

M1 Mn

H

TH
A

Sim
&

RO

RO

...

Fig. 1. Overview of blackbox reactive simulatability with a real system on the left and an ideal
system on the right, and a potential random oracle. The views of H must be indistinguishable.

Reactive simulatability between the real and ideal system essentially means that for
every attack on the real system there exists an equivalent attack on the ideal system.
More specifically, blackbox reactive simulatability (BRSIM) states that there exists a
simulator Sim that can use an arbitrary real adversary as a blackbox, such that arbitrary
honest users cannot distinguish whether they interact with the real system and the real
adversary, or with the ideal system and the simulator with its blackbox. Indistinguisha-
bility, here applied to the two families of views of the honest users, is the well-known
notion from [38]. We always assume that all parties are polynomial-time. The original
formulation of BRSIM as sketched above would allow the simulator to also modify the
interaction between A and H; however, all known positive BRSIM proofs work as in
Figure 1. The reason is similar to why all known positive RSIM proofs are BRSIM
proofs: It is hard to make concrete use of the communication of two unknown machines
A and H just as of the program text of the unknown machine A. We therefore show
impossibility for this usual, stronger notion of BRSIM. Moreover, the blackbox version
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of UC also does not allow the simulator access to the corresponding interaction (called
adversary and environment there), i.e., it corresponds to Figure 1 immediately.

A formal representation of random oracles in the UC notation was given in [25].
This can be used one-to-one in the BRSIM terminology. In a real system, each machine
has distinguished connections for querying the random oracle RO, which is the usual
stateful machine from [12] that generates a random string as “hash value” for each
message m when it is first queried about m. In the ideal system with a simulator, these
distinguished connections connect to the simulator, i.e., the simulator learns every query
to the random oracle and can give arbitrary answers. This is also shown in Figure 1.3

3 Informal Overview of the Impossibility Proofs

In this section, we present our results as proof sketches with a minimum amount of
notation. Later we define more notation and precise assumptions, and then extend the
proof sketches to full proofs. A reader with a specific Dolev-Yao model in mind and not
interested in the generalization to “arbitrary Dolev-Yao-like models” should be able to
see already in this section that the results could be instantiated for that model.

In the following, messages may occur in several representations, which we distin-
guish by superscripts. We write terms in the Dolev-Yao sense without superscript, e.g.,
h := hash(m) for a hash term. The real cryptographic versions get a superscript r, e.g.,
hr := hashr(mr) for the corresponding real bitstring, computed by applying a real hash
function hashr to the real representation mr of m. The users and adversaries may con-
cretely address the terms/bitstrings in yet another way when interacting with the real or
ideal functionality (hopefully indistinguishably, hence we need only one notation); we
write these representations with superscripts u for honest user u and a for the adversary.
(Using the actual terms as these representations is a special case.) In the figures we
write Hu for the actual user u, which is a part of the global H in Figure 1.

3.1 Scenarios with Payloads

Our first scenario in Figure 2 demonstrates that the real hash function hashr must at least
be collision-resistant in order to offer a sound implementation of a Dolev-Yao model
with hashes and payloads. This is not surprising, but we need the collision resistance
in the next proofs. The proof idea is that otherwise the adversary can find two colliding
payloads mr and m∗r and send their hash hr to an honest party u. It also exchanges mr

and m∗r secretly with the user u outside the system. Recall that such outside exchanges
are allowed for chosen-message attacks etc. and that the notion of BRSIM/UC consid-
ered here does not allow the simulator to learn or change them, i.e., it must produce
an overall indistinguishable view for H and A; we denote these outside exchanges by
dashed arrows in the interaction figures.

3 Alternatively, one could use a correct random oracle also in the ideal system and only allow
the simulator to eavesdrop the queries of some or all parties. However, this weakens the power
of the simulator considerably, and most of our impossibility proofs for the standard model of
cryptography would hold for this model with only minor changes. Thus the strength of the
simulator means a certain weakness in our positive results, but the need for this is another
indicator that the impossibility problems are strong.
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huhr := hashr(mr)
= hashr(m*r)

hu

is_hash_of(mr, hu)
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mr, m*r
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is_hash_of(m*r, hu)
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mr, m*r

is_hash_of(mr, hu)

y
is_hash_of(m*r, hu)

y*

hr := hashr(mr)
= hashr(m*r)

Fig. 2. Counterexample with payload hashing for not collision-resistant hash function

Then user u uses the ideal or real functionality to check whether the message received
through the system is the hash of both payloads. In the real system (on the left in all
our interaction figures), the answer is true both times by the choice of hr. However, the
ideal collision freeness of the ideal system (on the right in all our interaction figures)
does not allow this; hence the ideal and the real system are distinguishable.

The major challenge in formalizing this proof sketch is in the treatment of payloads,
because most Dolev-Yao models do not put the actual payloads into the terms. Below
we make precise assumptions on this treatment and define the ideal collision freeness,
and then turn this sketch into a proof.

Our second scenario in Figure 3 demonstrates that even with a collision-resistant
function hashr, a sound implementation of a Dolev-Yao model with hashes and pay-
loads is impossible if the ideal Dolev-Yao functionality offers ideal secrecy. By ideal
secrecy we mean that an adversary who obtains the hash of an otherwise unknown term
cannot do better than comparing this hash with self-made hashes of guessed terms. The
scenario is that an honest party u selects a random payload mr of length 2k (where k
is the security parameter), sends it to the adversary outside the system, and sends the
hash of this payload to the adversary through the ideal or real system. From the real
system, the adversary gets the real hash hr := hashr(mr), tests whether this is indeed
the correct hash value of the payload, and tells the result to u outside the system. By the
ideal secrecy, the simulator Sim for the ideal system cannot find out more about mr than
excluding polynomially many guesses. Using the collision resistance of the real hash
function, we show that Sim can consequently only guess hr with negligible probability,
and thus cannot simulate this scenario correctly.

The technical difficulties with the full proof for this scenario lie in an appropriate
formulation of the ideal secrecy, independent of one specific Dolev-Yao model.

Our third scenario in Figure 4 demonstrates that omitting the ideal secrecy require-
ment does not help as long as the real hash function is shortening as well as collision-
resistant, and thus one-way. Here the real adversary agrees on a random payload mr

with an honest user u outside the system, and sends its hash hr to u through the system.
The user tests, using the ideal or real functionality, whether the obtained message is
indeed a hash of mr. In the real system, the output is clearly true. The best way for the



Limits of the BRSIM/UC Soundness of Dolev-Yao Models with Hashes 411

hr

Mu AHu

hr

THHu Sim

hasend(v, hash(m)u)
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hr = hashr(mr)?
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hr = hashr(mr)?
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Fig. 3. Counterexample with payload hashing and ideal secrecy for collision-resistant hash func-
tion

simulator to cause the same output from the ideal functionality would be to send the
term h = hash(m) via TH in the first step. However, this would require guessing mr

and thus breaking the one-way property of hashr.
The difficulty with the full proof for this scenario, besides the question of payload

representations as in the first scenario, is that hash(m) is not the only term that causes
the output true. For instance, D(E(hash(m))) or hash(D(E(m))) for en- and decryption
operators E and D are other such terms. We therefore have to be careful in how we
can argue that every successful strategy for the simulator really leads to a successful
algorithm that extracts mr and thus breaks the one-way property.

3.2 Scenarios Without Payloads

After showing that payloads and hashes in Dolev-Yao models lead to comprehensive
impossibility results for secure realizations in the sense of BRSIM/UC, we consider
restricted Dolev-Yao models without payloads. However, as long as this is the only
restriction, we still prove impossibility. The basic proof idea is to let the users and
the adversary simulate payloads by encoding them into the structure of long terms.
Concretely, we use a list of 2k nonces and encode a payload as a bit vector b that
selects a sublist of these nonces. Instead of nonces, any other type can be used of which
one can generate 2k instances that are ideally different, e.g., keys.

With a scenario similar to Figure 2, only adding the random choice of the nonces
for the encoding, we show that a hash function must be collision-resistant on these bit
vectors in order to offer a BRSIM/UC-sound implementation of a Dolev-Yao model
with hashes and lists of nonces. Then with a scenario similar to Figure 3, we show that
if ideal secrecy is offered no sound implementation exists at all. With a scenario similar
to Figure 4, we show that even without ideal secrecy, no sufficiently shortening hash
function, in particular one whose output length depends only on the security parameter,
yields a sound implementation.

3.3 Probabilistic Hash Functions

Finally, we sketch why the scenarios show impossibility also for probabilistic hash-
ing: The real hash function hashr can simply be probabilistic now. On the user side,
checking whether a received term or message is the hash of a known message is already
written is hash of; this is suitable also to express the new verification procedure. On
the adversary side in Figure 3, the test “hr = hashr(mr)?” must be replaced by a call
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Fig. 4. Counterexample with payload hashing for shortening hash function

to the real verification algorithm. Everything else remains the same. For readability, we
do not make these extensions in the following formal part, but stick to the standard free
hash operator.

4 Assumptions on Dolev-Yao Models for Our Impossibility Results

As explained in the introduction, we would like to work out the impossibility proofs
sketched in Section 3 not only for one specific Dolev-Yao model (then we could simply
use an arbitrary definition from the literature and would not need our own definitions),
but for all of them. However, “all Dolev-Yao models” is not a notion that anyone tried to
formalize before. Hence we now characterize Dolev-Yao models and their realizations
by weak rigorous requirements. In other words, we define common properties that are
fulfilled by all standard Dolev-Yao models, and hopefully also by all other conceivable
variants that might count as Dolev-Yao models. This makes our impossibility results as
strong as possible.

4.1 Minimum Assumptions on a Dolev-Yao Model with Hashes

In this section we describe the functionality that we assume every Dolev-Yao system
with hashes offers. We start with the basic notions of terms, including a hash operator.
Recall that hash is essentially a free operator in the term algebra of typical Dolev-Yao
models. However, we do not define this strong freeness, but only a weaker property,
ideal collision freeness (both because this makes our results stronger, and because not
all Dolev-Yao models are actually defined as initial models of an equational specifica-
tion).

Definition 1 (Terms of a Dolev-Yao Model with Hashes). We require that we can
derive definitions of the following concepts from a Dolev-Yao model with hashes:

a. A set Terms denoting the overall set of valid terms. We speak of atoms and op-
erators denoting the potential leaves and inner nodes, respectively, of the terms
considered as trees. The terms, atoms and operators may be typed. There is an
equivalence relation “≡” on Terms . We call (Terms,≡) the term algebra.4

4 Clearly syntactic term equality “=” implies equivalence. Typically “≡” is constructed from
cancellation rules.
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b. A unary operator hash, which fulfils ideal collision freeness, i.e., hash(t) ≡
hash(t′) ⇒ t ≡ t′ for all t, t′ ∈ Terms .

c. A set Hashable Terms ⊆ Terms of the terms that are valid operands of the op-
erator hash. We speak of a model with unrestricted hashing if Hashable Terms =
Terms .

d. A list operator (possibly implemented by repeated pairing in the original syntax).
Two lists are equivalent iff all their corresponding elements are. �

Next we define some minimum actions that the users and the adversary can carry out on
the terms, and the results of these actions. In our context, this is the basis for showing
that our impossibility scenarios are at least executable in every Dolev-Yao model (which
probably nobody doubted).

While our notion of term representations tu for individual users is certainly more
general than notions that may be familiar to some readers, and thus can only strengthen
our impossibility results, let us briefly motivate how it relates to such notions: An im-
portant concept in Dolev-Yao models is that of terms t constructible for some user u or
the adversary (by applying operators and cancellation rules to previously known mes-
sages); however, the syntax for this concept varies considerably. Some high-level repre-
sentations simply use t itself in the protocol representations (e.g., “hash(m)” even when
someone who does not know m forwards this term). More detailed representations, e.g.,
in CSP or π-calculus, typically use the concepts of variables inherent to these calculi,
usually by matching received messages with a pattern describing the expected message
format, and then using the pattern variables in subsequent message constructions. The
syntax explicitly made for BRSIM/UC of the Dolev-Yao-style model in [8] uses local
variables called handles and explicit parsing of received messages. The syntax from all
these models can easily be mapped to that in our following definition.

We do not need a full definition of how a user acquires term representations. How-
ever, we define that terms can be sent and that the ideal adversary controls the network
as usual in Dolev-Yao models. Furthermore we define that users can hash terms and
compare whether one term is the hash of another term. In some, but not all, Dolev-Yao
models this comparison can be made by using a general equality operator corresponding
to the term equivalence≡.

Definition 2 (Actions on a Dolev-Yao Model with Hashes). Users and the ideal ad-
versary can make at least the following inputs into the ideal functionality of a Dolev-Yao
model with hashes, with the described results.

a. If an honest user u inputs send(v, tu) for a term representation tu, this leads to an
output receive(u, v, ta) for the adversary.

b. If the adversary inputs send(u, v, ta) for a term representation ta, this leads to an
output receive(u, tv) for user v (i.e., the adversary impersonates u).

c. If a user u (honest or the adversary represented by u = a) has a term represen-
tation tu, then it also has a representation for the term hash(t). (Typically this is
something like the string “hash(tu)”.)

d. An input is hash of(tu, hu) by a user u (honest or a) leads to a Boolean output y
for user u with y = true iff h ≡ hash(t). �
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4.2 Payload Assumptions

All Dolev-Yao models in real proof tools have at least payload messages, nonces, and
keys as atoms. However, as payloads are particularly problematic in simulations and
some protocol classes do not need general payloads, we define Dolev-Yao models with
and without them. A payload m models an application message, i.e., its cryptographic
realization mr can be an arbitrary bitstring; examples are emails, payment messages,
and digital pictures. In this sense, our scenarios in Section 3 are perfectly natural: The
users and the adversary select payloads as arbitrary bitstrings. However, the internal
representation of payloads in the terms in Dolev-Yao proof tools is usually a constant
supply of payload names or a nonce-like construction of fresh names. We therefore
assume that the full ideal functionality maintains a translation table between the real
payloads that occur in a system execution and their internal representations.5

Definition 3 (Payloads in Dolev-Yao Models in the BRSIM/UC Setting). A Dolev-
Yao model with payloads allows us to derive a type (subset) payload in the set Terms .
In every execution, every occurring payload term has a fixed realization mr, and mr =
m′r implies m ≡ m′. The range of payload realizations mr is at least {0, 1}2k. A real
payload mr can always be used as an input representation mu by every user. �

We now consider how secret a hashed term is in a Dolev-Yao model when the adversary
learns its hash. We only need this in our second scenario, where we want to show that
an adversary receiving a (representation of) a term t = hash(m) containing a payload
m cannot get significant information about the real payload mr and thus its real hash.
In normal Dolev-Yao models, the hash operator is free, and thus there is no inverse
operator that the adversary can use to extract m, nor a sequence of such operators. In
addition, in many Dolev-Yao models one would represent the initial situation where the
adversary does not know m by not giving the adversary any representation of m, thus
excluding any possibility that the adversary guesses m. With such a strong assumption
the impossibility proof would be easy. However, we allow the more realistic case that
the adversary might guess payloads (as, e.g., in [8]). Furthermore, we only make the
minimum assumption that payloads are secret in hash terms except for this guessing.

Definition 4 (Ideal Secrecy of New Payloads). A Dolev-Yao model with hashes of-
fers ideal secrecy of new payloads iff the following holds: If user u inputs send(v, hu)
where h = hash(m) for a newly chosen payload mr (i.e., one that was not input to
the Dolev-Yao model before), then the ideal adversary, from its output receive(u, v, ha)
and without further involvement of the user H, cannot obtain more information about
mr than by learning for x bitstrings m′r whether m′r = mr (in addition to its a-priori

5 As an additional motivation for this assumption, recall that we want to compare the Dolev-
Yao model and its cryptographic realization in the sense of BRSIM/UC. Thus they must offer
the same syntactic user interfaces, i.e., in- and output formats. This holds for all definition
variants of BRSIM/UC. In particular, in Figure 1 this is the interface between TH or M1, . . . ,
Mn, respectively, and the entirety of honest users H. In [16], it is the input and output formats
of the ideal and real functionality. Syntactically different user interfaces would either simply
prevent the same users from using alternatively the real or the ideal system, or lead to trivial
distinguishability.
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information), if it interacts at most x times with the ideal system and thus in particular
if it runs in time x. �

Finally, we define the weak freeness property of Dolev-Yao hashes that we need for the
third scenario. Essentially this is that without knowing a payload m or its real represen-
tation mr one cannot construct a term equivalent to hash(m). Like other definitions of
“knowledge” in cryptography, this is done by defining that the capability to construct
such a term implies the capability to find out mr. This reduction is done constructively
by an extractor algorithm.

Definition 5 (Minimum Non-Constructibility of Unknown Payload Hashes). A
Dolev-Yao model with hashes offers minimum non-constructibility of unknown pay-
load hashes if there exists a polynomial-time algorithm Ext, called extractor, such that
the following holds: If the ideal adversary (for simplicity at the system start) makes a
sequence of inputs and then sends a term t to an honest user such that t ≡ hash(m) for
a payload m, then the extractor, given the transcript of the ideal adversary’s in- and
outputs, outputs mr. �

For Dolev-Yao models with well-defined and constructible normalizations of terms, the
extractor is essentially this normalization: It constructs t and the relation of payload
terms and their representations from the transcript (typically the transcript is simply of
the form “send(v, ta)” where payloads in ta are in their real representation) and normal-
izes t; the result is hash(m), from which mr can be looked up. This clearly holds for
typical Dolev-Yao models that only have constructors and destructors like encryption
and decryption. It gets more complex in Dolev-Yao models with algebraic operations
like XOR; however, specifically XOR is known not to be realizable in BRSIM/UC [7].

4.3 Nonce List Assumptions

For the case without payloads, our scenarios use lists of nonces. We therefore define
what we assume about nonces (lists are already in Definition 1). The first assumption
is extremely simple and normal, except that some basic Dolev-Yao models only allow
a fixed number of nonces, while we need at least 2k (as does every Dolev-Yao model
suitable for arguing about an unbounded number of sessions).

Definition 6 (Nonces in Dolev-Yao Models). A Dolev-Yao model with nonce lists al-
lows us to derive a type (subset) nonce in the set Terms . Every participant can use,
or explicitly generate, at least 2k new nonces (we do not need a fixed syntax for this
generation); such nonces are pairwise not equivalent. �

The next definition extends the ideal secrecy of hashed terms, which we earlier defined
only for new payloads, to new lists of nonces. More precisely, we define that an ideal
hash term does not divulge which of the many potential sublists of a list of nonces
was hashed. (We make these weak special assumptions to strengthen the impossibility
results, and to avoid complex considerations about prior knowledge in the general case.)

Definition 7 (Ideal Secrecy of New Nonce Lists). A Dolev-Yao model with hashes
offers ideal secrecy of new nonce lists iff the following holds: Let user u generate 2k
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new nonces n = (n1, . . . ,n2k) and potentially send them to the adversary, select a
random bit vector b = (b1, . . . , b2k) R← {0, 1}2k, and input send(v, (hash(b 4 n))u)
where b4n denotes the sublist consisting of the nonces ni with bi = 1. Then the ideal
adversary, from its output receive(u, v, ha) and without further interaction with the user
u, cannot obtain more information about b than by learning for x bit vectors b′ whether
b′ = b, if it interacts at most x times with the ideal system and thus in particular if it
runs in time x. �

Finally, we define that the ideal adversary cannot construct a hash over a sublist of
nonces without knowing which sublist of the nonces it is using.

Definition 8 (Minimum Non-Constructibility of Unknown Nonce-list Hashes). A
Dolev-Yao model with hashes offers minimum non-constructibility of unknown nonce-
list hashes if there exists a polynomial-time algorithm Ext, called extractor, such that
the following holds: If the ideal adversary (for simplicity at the system start) makes a
sequence of inputs and then sends a list n of 2k pairwise different nonces and a term h
to an honest user such that h ≡ hash(b4n), then the extractor, given the transcript of
the ideal adversary’s in- and outputs, outputs b. �

Again, the existence of such an extractor is clear for Dolev-Yao models with a normal-
ization algorithm because the term hash(b 4 n) cannot be further reduced and is thus
the normal form of every equivalent term. Given the overall list of nonces n, which the
ideal adversary sent separately, the selection of nonces in this term and thus b can be
read off.

4.4 Minimum Assumptions on a Cryptographic Realization

A general characteristics of real systems is that they are distributed. This means that
each participant u has its own machine, here called Mu, and the machines are only
connected by channels that offer well-defined possibilities for observations and manip-
ulations by a real adversary. Specifically for the realization of Dolev-Yao models with
hashes, we make the following (natural) minimum assumptions in the standard model
of cryptography: Real channels are insecure; the input to send a term t leads to actual
sending of a bitstring tr; and hash terms are realized by applying a fixed (hash) function
to the realization of the contained terms.

Definition 9 (Realization of a Dolev-Yao Model with Hashes). In a realization of
a Dolev-Yao model with hashes in the standard model of cryptography, an input
send(v, tu) to a machine Mu releases a bitstring tr to the real adversary, such that
within one execution of the system t ≡ t′ ⇒ tr = t′

r for all terms t, t′. There must be a
deterministic, polynomial-time function hashr such that (hash(t))r = hashr(tr) for all
t ∈ Hashable Terms . An input is hash of(tu, hu) to a machine Mu leads to the output
true iff hashr(tr) = hr.

For nonces, there must be a probabilistic polynomial-time algorithm Gn that is used
to generate nr when it is needed for a new nonce n, and 2k executions of Gn must yield
pairwise different results nr

1, . . . , nr
2k with overwhelming probability. �
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In realizations with type tagging we can consider an original cryptographic hash func-
tion together with the type tag as hashr. Note that we made no assumptions on the
cryptographic properties of hashr and only a weak one on Gn; we will show that neither
“good” nor “bad” realizations lead to soundness in the sense of BRSIM/UC. 6

5 Details of the Impossibility Proofs

We now present the missing details for the impossibility proof sketches in Section 3,
using the definitions from Section 4.

5.1 Unsoundness of Dolev-Yao Models with Payloads

The first scenario from Section 3.1 becomes the following lemma. Its proof is contained
in the long version [10].

Lemma 1. (Collision Resistance of the Real Hash Function) If a Dolev-Yao model with
hashes and payloads (Definitions 1 to 3) has a realization in the standard model of
cryptography (Definition 9) that is secure in the sense of BRSIM/UC, then the hash
function hashr in this realization is collision-resistant. For simplicity we define here
that a collision for security parameter k consists of two messages of length 2k. �

The second scenario from Section 3.1 together with this lemma gives us the following
theorem.

Theorem 1. (Unsoundness of Dolev-Yao Models with Hashes and Ideal Secrecy of New
Payloads) No Dolev-Yao model with hashes and ideal secrecy of new payloads (Defini-
tions 1 to 4) has a realization in the standard model of cryptography (Definition 9) that
is secure in the sense of BRSIM/UC. �

Proof. Assume that a Dolev-Yao model and a realization as specified in the theorem
exist. By Lemma 1, the hash function hashr in the realization must be collision-resistant.
Then δ(k) := maxhr∈{0,1}∗(Pr[hashr(mr) = hr :: mr R← {0, 1}2k]) is negligible (as
a function of k), because otherwise two random messages of length 2k are a collision
with not negligible probability. We elaborate our second scenario in Figure 3: The user
Hu chooses the payload as mr R← {0, 1}2k. By Definitions 2 and 3, the adversary and
the user can indeed act as described in Section 3.1, and by Definition 9, the output
for A in the real system is hashr(mr). In the ideal system, the simulator Sim gets an
output receive(u, v, ha) from the Dolev-Yao model TH and has to produce a string hr

for the adversary. For indistinguishability, this string must fulfill hr = hashr(mr) with
overwhelming probability.

Definition 4 is applicable and implies that Sim (which acts as the ideal adversary
here), with x calls to TH, cannot obtain more information about mr than by learning

6 In computational considerations about hashr we allow hashr to depend on the security param-
eter k, which is fixed in each system execution. To allow collision resistance in the sense of the
typical cryptographic definition, it should even depend on a key pk chosen at the beginning of
each system execution; our proofs could easily be adapted to this case.
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for x bitstrings m′r whether m′r = mr. As mr is uniformly random, the probability
that Sim hits m′r = mr in this process is x/22k, where x is polynomial because Sim
is polynomial-time. Thus this probability is negligible. In the other case, the optimal
choice of hr for Sim is the most likely hash value over the remaining 22k − x possible
payloads. The probability that this value is correct is at most δ(k)22k/(22k − x). This
is negligible because x is polynomial. �
Next we consider the case without secrecy of hashed terms, but with the additional
assumption that the output length of the real hash function depends only on the secu-
rity parameter, not on the input length. (Weaker definitions of significantly shortening
hash functions would also suffice.) The third scenario from Section 3.1 together with
Lemma 1 gives us the following theorem.

Theorem 2. (Unsoundness of Dolev-Yao Models with Hashes and Payloads without
Secrecy) No Dolev-Yao model with hashes and payloads, even without ideal secrecy,
but with minimum non-constructibility of unknown payload hashes, (Definitions 1 to 3
and 5) has a realization in the standard model of cryptography (Definition 9) that is
secure in the sense of BRSIM/UC and where the real hash function is shortening. For
simplicity, we require that the range of a shortening hash function is {0, 1}k. �

Proof. Assume that a Dolev-Yao model and a realization as specified in the theorem
exist. By Lemma 1, the hash function hashr in the realization must be collision-resistant.
As hashr is also shortening, it is one-way. (Otherwise the following algorithm finds a
collision with not negligible probability: Select a random payload mr R← {0, 1}2k, use
the assumed inversion algorithm Aowf to find a preimage m′r of hashr(mr), and output
mr and m′r if they are unequal. This holds because all payloads, except less than 2k

and thus negligibly many, collide with another one. If Aowf succeeds for such a payload
mr, then with probability at least 1/2 we have m′r �= mr.)

We now elaborate our third scenario in Figure 4. By Definitions 2 and 3, the adver-
sary and the user can indeed act as described in Section 3.1, and by Definition 9 the
output for Hu in the real system is indeed true. By the assumption of the proof, the
simulator can achieve the same result in the ideal system with overwhelming probabil-
ity. Hence it makes an input send(v, u, ha) where, by Definition 2, h ≡ hash(m) for
the term m that is realized as mr. Definition 5 is applicable to our scenario and essen-
tially states that Sim, which acts as the ideal adversary, must know mr for this. More
precisely, we use the postulated extractor Ext to extract mr from the transcript of Sim
whenever Sim is successful. This gives us an inversion algorithm Aowf for the function
hashr that succeeds with not negligible probability, in contradiction to the one-wayness
of hashr. Concretely, Aowf is the combination of TH, Sim and Ext. This is indeed a non-
interactive algorithm as required in the definition of one-wayness: Sim initially gets
one input hr and TH has no input so far. Then Sim and TH interact with each other, but
interaction with H or A would be distinguishable from the real system. �

5.2 Unsoundness Without Payloads

Now we work out the scenarios for restricted Dolev-Yao models without payloads. As
sketched in Section 3.2, we proceed similar to the scenarios with payloads, letting the
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users and the adversary replace payloads by bit vectors that select sublists of nonces.
For this, we first define collision resistance and one-wayness with respect to the bit
vectors.

Definition 10 (Bit-vector Collision Resistance and One-Wayness). Let a Dolev-Yao
model with hashes and a realization in the standard model of cryptography with the
hash function hashr be given (Definitions 1, 2, and 9). We say that hashr is bit-
vector collision-resistant if every polynomial-time adversary can only find a list nr =
(nr

1, . . . ,n
r
2k) of 2k pairwise different real nonces and bit vectors b �= b∗ ∈ {0, 1}2k

with hashr(b 4 nr) = hashr(b∗ 4 nr) with negligible probability, where b 4 nr for a
bit vector b = b1, . . . , b2k denotes the sublist consisting of the nonces nr

i with bi = 1.
We say that hashr is bit-vector one-way if every polynomial-time algorithm Aowf , on

input hr := hashr(b 4 nr) for random b R← {0, 1}2k and real nonces generated with
Gn, can only output a bit vector b∗ ∈ {0, 1}2k with hr = hashr(b∗4nr) with negligible
probability.

Lemma 2. (Bit-vector Collision Resistance of the Real Hash Function) If a Dolev-
Yao model with hashes and nonces (Definitions 1, 2, and 6) where Hashable Terms
contains at least all lists of up to 2k nonces has a realization in the standard model
of cryptography (Definition 9) that is secure in the sense of BRSIM/UC, then the hash
function hashr in this realization is bit-vector collision-resistant. �

The proofs of this lemma and the two following theorems are postponed to the long
version [10].

Theorem 3. (Unsoundness of Dolev-Yao Models with Hashes and Ideal Secrecy of New
Nonce Lists) No Dolev-Yao model with hashes and ideal secrecy of new nonce lists
(Definitions 1, 2, 6, and 7) has a realization in the standard model of cryptography
(Definition 9) that is secure in the sense of BRSIM/UC. �

Theorem 4. (Unsoundness of Dolev-Yao Models with Hashes and Nonce Lists without
Secrecy) Let a Dolev-Yao model with hashes be given whose set Hashable Terms con-
tains at least all lists of up to 2k nonces, and where minimum non-constructibility of
unknown nonce-list hashes holds (Definitions 1, 2, 6, and 8). Then no cryptographic
implementation in the standard model of cryptography (Definition 9) with a shortening
real hash function is sound in the sense of BRSIM/UC. �

6 Soundness Results

In this section we show that Dolev-Yao-style hashes can be proven sound in the random
oracle model, and under specific restrictions on the usage of hash functions or their
properties in the ideal system even in the standard model of cryptography.

6.1 Soundness of Dolev-Yao Models with Hashes in the Random Oracle Setting

The first soundness result states that normal Dolev-Yao models without specific re-
strictions can be proven sound in the random oracle model. As an overall result for
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an operator-rich Dolev-Yao model with hashes, this requires an underlying Dolev-Yao
model with the other usual cryptographic operators and a realization secure in the sense
of BRSIM/UC. Hence we have to use that of [8]. However, what happens specifically
with the hashes can be explained well without specific notation from [8]. We sketch this
in this section, leaving more details to the long version of this paper [10].

The Dolev-Yao functionality is that of a free hash operator with unrestricted hashing
and with ideal secrecy in the typical sense that the adversary, upon learning a hash value,
has no deconstruction operator or other ways to obtain information about the contained
term except by the input is hash of for comparing a message and a potential hash.
The only additional power that the ideal adversary gets compared with honest users
is to make hashes with unknown preimages, i.e., terms that could be written hash(?).
The preimages will remain unknown forever; that this works in the realization is a
consequence of the random oracle model.

In the cryptographic realization, the operator hash is essentially realized by the
random oracle. The only addition is that the bitstrings are typed, i.e., the realization
hash(t)r of a hash term is the pair (‘hash’,RO(tr)) where ‘hash’ is a fixed string and
RO abbreviates the result of a (stateful) random oracle call.

Our security claim is that this realization is as secure as this ideal Dolev-Yao-style
system in the sense of BRSIM/UC in the random oracle model; see Section 2. The proof
of the theorem can be found in the long version [10].

Theorem 5. (Soundness of a Dolev-Yao Model with Hashes in the Random Oracle
Model) A Dolev-Yao model with unrestricted hashing and secrecy of hashed terms can
be securely implemented by a canonical cryptographic realization in the sense of BR-
SIM/UC in the random oracle model. Both the Dolev-Yao model and cryptographic
realization are defined in detail in the long version [10]. �

6.2 Soundness Results in the Standard Model

Finally, we briefly present two restricted but still practically useful types of Dolev-Yao
models with hashes that have secure realizations even in the standard model of cryp-
tography. Both models allow the ideal adversary to construct hash terms with unknown
preimages, i.e., terms hash(?). In contrast to the model in Section 6.1, the adversary can
later provide a preimage for such a term. Both realizations require a collision-resistant
hash function; in the first case the hash function must also be one-way.

The first type of Dolev-Yao model gives up the ideal secrecy, and can then work with
a significant class of hashable terms. By the size of a term t we mean the number of
nodes in the tree representation of t.

Theorem 6. (Soundness Without Payloads or Secrecy for Constant-Sized Terms) A
Dolev-Yao model without secrecy of hashed terms where terms in Hashable Terms
do not contain payloads and are at most of a constant size l can be securely realized
in the sense of BRSIM/UC with arbitrary collision-resistant, one-way hash functions in
the standard model of cryptography. �

We believe that this theorem can be extended to terms that contain payloads, but only
together with fresh nonces that remain secret, but the overhead of such a condition that



Limits of the BRSIM/UC Soundness of Dolev-Yao Models with Hashes 421

must be defined over an overall system execution does not seem justified because the
case is of limited usefulness: Such a nonce cannot be sent over an insecure channel, and
thus unless a secret channel is available no other party can do anything with such a hash
term, such as test if for correctness.

The second theorem offers the ideal secrecy of typical Dolev-Yao models of hashing,
but only individual nonces can be hashed, as for instance in one-time signatures. Recall
from the introduction that while this may seem surprising given that real hash functions
(even probabilistic ones) do not offer perfect secrecy, it is correct because nonces are
system-internal objects whose Dolev-Yao abstraction essentially only requires fresh-
ness and unguessability of the nonces as a whole.

Theorem 7. (Soundness With Secrecy for Nonce Hashing) A Dolev-Yao model with
secrecy of hashed terms and where the set Hashable Terms contains only individual
nonces can be securely realized in the sense of BRSIM/UC with arbitrary collision-
resistant hash functions in the standard model of cryptography. �

Similar to the random oracle case, for the precise model we rely on the existing Dolev-
Yao model of [8] and extend it with hashes. The detailed models and sketches of both
proofs are given in the long version [10].

7 Conclusion

We have investigated whether Dolev-Yao models with hashes or one-way functions can
be realized in the sense of BRSIM/UC, i.e., such that the Dolev-Yao model is regarded
as an ideal functionality that is securely implemented by its realization. We have shown
that this is not possible for the standard type of such Dolev-Yao models where hashing
is a free operator. This impossibility result holds for all polynomial-time computable
functions in the role of the real hash function.

We then considered restrictions and extensions of the Dolev-Yao model or its ideal
properties that have a potential to simplify simulations. For these, we obtained addi-
tional BRSIM/UC impossibility results: First, modeling probabilistic hashing makes no
difference. Secondly, it does not help if no payloads can be hashed, but only crypto-
graphic terms (in fact, lists of nonces are sufficient). Thirdly, even if we give up the
ideal secrecy property of hashes (retaining the ideal collision freeness so that the model
is still reasonable), we obtain BRSIM/UC impossibility for all realizations of the hash
operator by polynomial-time computable functions whose output length is independent
of the input length, and thus for all typical real hash functions. This is the first impossi-
bility proof for a Dolev-Yao model that does not assume any ideal secrecy property.

On the positive side, we showed that a BRSIM/UC-sound realization of standard
Dolev-Yao hashes is possible in the random oracle model. we also obtain BRSIM/UC
soundness in the standard model of cryptography for two cases: One includes ideal se-
crecy, but only allows hashing of single nonces, e.g., for the use in one-time signatures.
The other gives up ideal secrecy, but allows hashing of arbitrary cryptographic terms,
i.e., terms without payloads, up to an arbitrary but constant size.
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Abstract. Simulatability has established itself as a salient notion for defining
and proving the security of cryptographic protocols since it entails strong security
and compositionality guarantees, which are achieved by universally quantifying
over all environmental behaviors of the analyzed protocol. As a consequence,
however, protocols that are secure except for certain environmental behaviors are
not simulatable, even if these behaviors are efficiently identifiable and thus can
be prevented by the surrounding protocol.

We propose a relaxation of simulatability by conditioning the permitted envi-
ronmental behaviors, i.e., simulation is only required for environmental behaviors
that fulfill explicitly stated constraints. This yields a more fine-grained security
definition that is achievable for several protocols for which unconditional simu-
latability is too strict a notion, or at lower cost for the underlying cryptographic
primitives. Although imposing restrictions on the environment destroys uncon-
ditional composability in general, we show that the composition of a large class
of conditionally simulatable protocols yields protocols that are again simulatable
under suitable conditions. This even holds for the case of cyclic assume-guarantee
conditions where protocols only guarantee suitable behavior if they themselves
are offered certain guarantees. Furthermore, composing several commonly inves-
tigated protocol classes with conditionally simulatable subprotocols yields proto-
cols that are again simulatable in the standard, unconditional sense.

1 Introduction

As a tool to define and prove the security of cryptographic protocols, the concept of
simulatability has a long history, e.g., [34,23,22,11,30]. In recent years, in particu-
lar the general simulatability frameworks of reactive simulatability [8,6] and universal
composability [14,15] proved useful for analyzing security properties of cryptographic
protocols in distributed systems. In such a simulatability framework, a protocol is com-
pared to an ideal specification of the respective protocol task, usually given by a single
machine called trusted host that is immune to any adversarial attacks by construction.
A protocol is said to be secure, if for every adversary interacting with the real proto-
col there exists another adversary interacting with the ideal specification such that no
protocol environment can distinguish the ideal specification (with the ideal adversary)
from the real implementation (with the real adversary). This essentially means that ev-
ery attack that an adversary may successfully mount against the real implementation

D. Gollmann, J. Meier, and A. Sabelfeld (Eds.): ESORICS 2006, LNCS 4189, pp. 424–443, 2006.
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can be mounted as well against the ideal specification. In that sense, the real protocol is
at least as secure as the ideal specification.

This definition is very appealing due to its simplicity, and at the same time it provides
very strong security guarantees. Specifically, both mentioned frameworks allow for very
general composition theorems (see, e.g., [32,14,7]). In a nutshell, these theorems guar-
antee that a secure protocol can be composed with arbitrary other protocols and still
retains its security. These strong results are essentially entailed by the universal quan-
tification over all protocol environments. However, such strong compositionality prop-
erties are bought at the price that several protocol tasks are not securely realizable at all
in the sense of simulatability. This includes important cryptographic tasks such as bit
commitment, zero-knowledge, oblivious transfer [16,14], and (authenticated) Byzan-
tine agreement [29], classes of secure multi-party computation [17], classes of function-
alities that fulfill certain game-based definitions [18], and Dolev-Yao style abstractions
of symmetric encryption, XOR, and hash functions [3,4,9].

This nuisance led to several attempts to weaken the simulatability definition, either
by strengthening the ideal adversary or by limiting the attack capabilities of the real ad-
versary, which, however, results in restricted adversary models and thus in less realistic
scenarios. A more detailed review of related work is given below.

Our Contribution. In this paper, we also endeavor to circumvent a specific class of
the aforementioned impossibility results, namely those that arise due to certain envi-
ronmental behaviors that cannot be properly simulated. The prime example contained
in this class is Dolev-Yao style symmetric encryption, i.e., symbolic abstractions of
symmetric encryption as constructors of a term algebra with a small set of algebraic
properties. This kind of encryption can only be correctly simulated if the protocol using
the encryption scheme does not cause a so-called commitment problem. Our approach
for circumventing impossibility in these cases does however not follow the prevalent
idea of augmenting or constraining the capabilities of the adversary. Instead, we limit
the number of protocol environments in which a protocol is required to be secure.
This idea applies particularly nicely to protocols that can be securely realized except
for certain distinguished environmental behaviors, especially if these behaviors are ef-
ficiently identifiable and thus can be prevented by the surrounding protocol; among
others, Dolev-Yao style symmetric encryption is of this kind. The resulting security
notion is named conditional reactive simulatability. In addition to circumvent known
impossibility results for unconditional simulatability, the notion of conditional reactive
simulatability may also allow for securely realizing ideal functionalities at lower cost
on the underlying cryptographic primitives. For instance, if Dolev-Yao style symmetric
encryption permits the construction of key cycles, e.g., encrypting a key with itself, it is
only securely realizable by encryption schemes that fulfill certain strong, non-standard
assumptions such as dynamic KDM security [5]. When, however, conditioning the func-
tionality to those cases that exclude key cycles, successful simulation based on weaker,
more standard security notions such as IND-CCA2 security is possible.

Despite imposing restrictions on the surrounding protocol and thus giving up the
universal quantification of environments that allows for general compositionality, we
show that the notion of conditional reactive simulatability still entails strong composi-
tionality guarantees. More specifically, we prove that if one composes protocols each



426 M. Backes et al.

of which is conditionally simulatable provided that their surrounding protocol fulfills
an arbitrary trace property, and if these properties do not give rise to cyclic dependen-
cies, then the composition of these protocols is conditionally simulatable under natural
conditions on the (overall) surrounding protocol. Technically, the theorem establishes a
cryptographic statement on the acyclic composition of assume-guarantee specifications,
i.e., specifications that guarantee suitable behaviors only if they themselves are offered
suitable guarantees. Assume-guarantee specifications have been well investigated in the
past, mostly for non-security-specific contexts [31,26,1,20] but also specifically for se-
curity aspects [24] (but without investigations of simulatability and composition). The
postulation of acyclicity applies to most cases in practice, e.g., to protocols that pro-
vide specific security guarantees to their subprotocols without making these guarantees
dependent on the outputs they obtain from these subprotocols.

Interestingly, we can even prove compositionality for cyclic dependencies of such
specifications, i.e., compositions of protocols that mutually promise to adhere to a cer-
tain behavior only if they mutually receive guarantees from each other. This case is
technically more demanding since an inductive proof by proceeding through the acyclic
dependency graph as done in the proof of the acyclic case is no longer possible. In fact,
it is easy to show that for cyclic dependencies, subprotocols that are conditionally sim-
ulatable under arbitrary trace properties might not be securely composable. However,
we prove that the theorem for the acyclic case can be carried over to the cyclic case if
the constraints imposed on protocols for conditional simulatability are safety properties.
Safety properties arguably constitute the most important class of properties for which
conditional simulatability is used, especially since liveness properties usually cannot be
achieved unless one additionally constraints the adversary to fair scheduling.

Finally, we note that composing protocol classes with conditionally simulatable sub-
protocols can yield protocols that are simulatable in the standard, unconditional sense.

Our results are formalized in the Reactive Simulatability framework. However, we
do not use any specific characteristics of this framework, so our results can naturally be
carried over to the Universal Composability framework.

Related Work. There have been several attempts to relax simulatability to avoid im-
possibility results. The work closest to ours is the work on proving Dolev-Yao style
symmetric encryption sound in the sense of simulatability [3]. There it was shown that
Dolev-Yao style symmetric encryption can be securely realized if the environmental
protocol does not cause the commitment problem and in addition key cycles are ex-
cluded. This definition thus constitutes a special case of conditional reactive simulata-
bility yet without investigating more general conditions or corresponding composition-
ality aspects. Nevertheless, our work is inspired by their idea of augmenting simulata-
bility with conditions on environments.

The impossibility of simulating a specific bit commitment was shown in [16]. The
remedy proposed there was to augment the real protocol with certain “helping trusted
hosts” which are, by definition, immune to any attack on the real protocol; thus, ef-
fectively this weakens the real adversary. More specifically, [16] presented simulatably
secure protocols for bit commitment and zero-knowledge. However, these protocols
rely on a so-called Common Reference String (CRS), which is a form of a trusted setup
assumption on the protocol participants. In a similar vein, [17] shows that basically
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every trusted host can be realized using a CRS as a helper functionality. One point of
criticism against the CRS approach is that the proposed protocols lose security in a for-
mal and also very intuitive sense as soon as the CRS setup assumption is invalidated.
The related approach [25] uses a Random Oracle (RO) instead of a CRS to help real
protocols achieve simulatable security. The benefit of their construction is that the pro-
posed protocols retain at least classical (i.e., non-simulatable) security properties when
the RO assumption is invalidated. However, also there, simulatability in the original
sense is lost as soon as this happens.

In [33], the real and ideal adversaries are equipped with a so-called imaginary angel.
This is an oracle that (selectively) solves a certain class of hard computational problems
for the adversary. Under a very strong computational assumption, this notion could be
shown to avoid known impossibility results for simulatability. Yet, as the imaginary
angels behave in a very specific way tailored towards precisely circumventing these
impossibility results, e.g., these angels make their response dependent on the set of
corrupted parties, the model might be considered unintuitive.

In [10], it is shown how to realize any trusted host in a simulatable manner, if the ideal
adversary is freed from some of its computational restrictions. However, it is substantial
that in their security notion, the ideal adversary is not restricted to polynomial-time, but
the real adversary is. So in particular, the security notion they consider is not transitive
and it is generally not easy in their framework to construct larger protocols modularly.

Outline. We first review the underlying Reactive Simulatability framework in Section 2
and subsequently define the more fine-grained version of conditional reactive simulata-
bility in Section 3. The bulk of the paper is dedicated to the investigation of the com-
positionality aspects of this new security notion for both acyclic and cyclic assume-
guarantee conditions, which is done in Section 4. The usefulness of conditional reactive
simulatability is further exemplified in Section 5 by showing how this notion can be
exploited to cryptographically justify common idealizations of cryptography. Section 6
concludes. More details and proofs can be found in our technical report [2].

2 Review of the Reactive Simulatability Framework

Our work builds upon the Reactive Simulatability framework. We will briefly review
relevant definitions and refer the reader to [8] for details.

2.1 Overall Framework

A protocol is modeled as a structure (M, S) consisting of a set of protocol machines and
a set of service ports, to which the protocol user connects1. Machines are probabilistic,
polynomial-time I/O automata, and are connected by ports. The model differentiates in-
ports and out-ports, where each out-port is connected to exactly one in-port by naming
convention. Moreover, in- and out-ports may be service or non-service ports. In what

1 Actually, a structure represents a protocol in a specific corruption situation. To handle different
corruption situations, systems (i.e., sets of structures) are used. However, in the style of [8,19],
we concentrate on a given specific corruption situation for ease of presentation.
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follows, by Sin we denote the service in-ports of S and by SC,out the complement of
M ’s service out-ports, i.e., the set of service in-ports of machines M connects to.

Two structures (M1, S1) and (M2, S2) are composable iff they connect through their
respective service ports only. Their composition is given by (M1 ∪ M2, S) where S
includes all ports from S1 and S2 that are not connected to another machine in M1∪M2.

A set of machines M is closed iff all ports are connected to corresponding ports of
machines that are in the same set. A structure can be complemented to a closed set by
a so-called honest user H and an adversary A, where H connects to service ports only,
and A connects to all remaining open ports, and both machines may interact. The tuple
(M, S,H,A) is then called a configuration of (M, S) where one of the machines H or
A plays the role of the master scheduler, i.e., if no machine was activated by receiving
a message, the master schedule is activated. A closed set C is a runnable system. The
transcript of a single run is called a trace (often denoted by t and decorations thereof)
and is defined to be a sequence of transitions performed by the machines. A transition
of a machine M is of the form (p, s, s′, p′) where p describes the in-ports of M along
with the current message written on these ports, s is the current configuration of M , s′

is a successor configuration (computed depending on p and s), and p′ are the out-ports
along with the output produced. We denote by runC,k the distribution of traces induced
by runs of C with security parameter k. The restriction t2S of a trace t to a set of in-ports
S is defined in the obvious way. (Note that t2S only depends on the first component (p)
of the transitions of t). Now, runC,k2S denotes the distribution of the traces induced by
runs of C with security parameter k when restricted to S. The restriction of a trace t to
a machine M is obtained from t by removing all transitions not done by M. Now, the
distribution of such traces given k is denoted by viewC,k(M). We refer to the k-indexed
family {viewC,k(M)}k of these views by viewC(M).

2.2 Simulatability

Simulatability is used in different areas of cryptography. Informally speaking, for reac-
tive systems it says that whatever might happen to a protocol (M, S) can also happen
to another protocol (M ′, S). Here both protocols need to have the same set of service
ports S to allow for a meaningful comparison. Typically, (M ′, S) is an idealization, or
specification, of the protocol task that (M, S) is to implement. We therefore call (M, S)
the real and (M ′, S) the ideal protocol. (Typically, the ideal protocol consists only of
a single machine TH, a trusted host, that guarantees an ideal behaviour to a user of the
protocol.) For simulatability one requires that for every configuration (M, S,H,A), with
honest user H and real adversary A, there is a configuration (M ′, S,H,A′) of (M ′, S),
with the same honest user H and a (possibly different) ideal adversary A′, such that H
cannot distinguish both scenarios. This is illustrated in Figure 1.

The notion that H cannot distinguish both scenarios is captured by the notion of com-
putational indistinguishability: Two families (vark)k∈N, (var′k)k∈N of random variables
on common domains Dk are computationally indistinguishable (“≈”) if no polynomial-
time algorithm can distinguish both distributions with non-negligible probability, i.e., if
for all polynomial-time algorithms Dis the following holds:∣∣Pr

[
Dis(1k, vark) = 1

]
− Pr

[
Dis(1k, vark) = 1

]∣∣ is negligible in k,
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∀

∀ ∃
HH

A A′M1 M2 TH

S S

Fig. 1. Simulatability: The two views of H must be indistinguishable

where a function g : N → R≥0 is said to be negligible iff for all positive polynomials
Q, ∃k0∀k ≥ k0 : g(k) ≤ 1/Q(k).

Definition 1 (Reactive Simulatability). Let structures (M, S) and (M ′, S) with iden-
tical sets of service ports be given. We write (M, S) ≥poly

sec (M ′, S), where≥poly
sec is read

as computationally at least as secure as or securely realizes, if for every configuration
conf = (M, S,H,A), there exists a configuration conf ′ = (M ′, S,H,A′) (with the
same H) such that

view conf (H) ≈ view conf ′(H).

One also defines universal simulatability, where A′ in conf ′ does not depend on H, i.e.,
the order of quantifiers is reversed, and blackbox simulatability, where A′ is the compo-
sition of a fixed part Sim (the simulator) and A. In the sequel, we omit the superscript
poly.

3 Conditional Reactive Simulatability

Reactive simulatability (Definition 1) permits configurations with arbitrary honest users
H (satisfying some syntactic requirements on ports). In other words, reactive simulata-
bility requires a faithful simulation of the combination of the real adversary and real
protocol by the ideal adversary and ideal protocol for every honest user. This universal
quantification over all honest users allows for a general composition theorem [32,7],
which says that if protocol (M, S) is as secure as protocol (M ′, S), then (M, S) can
be substituted for (M ′, S) in any larger protocol without invalidating simulatability.
For this type of compositional property, simulatability can even be shown to be neces-
sary [28].

However, reactive simulatability may be too strict in certain practical scenarios: The
simulation might fail for certain honest users, but in the application under consideration
such users may not occur since the protocol in question may always be used in a cer-
tain (secure) way. For example, consider Dolev-Yao style symmetric encryption. It was
shown in [3] that this kind of encryption is not securely realizable in the sense of reac-
tive simulatability, due to the so-called commitment problem: If an encrypted message
is sent to the adversary, where the adversary neither knows the message nor the key, the
best the simulator can do is to create a new key and encrypt a random message with
this key. If later the message becomes known, indistinguishability guarantees that the
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simulation is still correct. However, if later the key becomes known, the simulator has to
come up with a suitable key that decrypts the chosen ciphertext to the correct message.
This is not possible in general. However, in the application under consideration the way
Dolev-Yao style symmetric encryption is used, e.g., by a larger protocol (representing
the honest user), may guarantee that the encryption key is never exposed. It turns out
that in this situation faithful simulation is still possible.

Following this idea, we propose a relaxation of reactive simulatability, called con-
ditional reactive simulatability, where instead of quantifying over all honest users, we
quantify only over those honest users which satisfy a certain condition. In this way trou-
blesome honest users which would not occur in the application anyway can be ruled out.

The conditions on honest users are expressed in terms of what we call predicates. A
predicate, which is defined with respect to a set S of ports (typically service in-ports), is
a set of sequences of bit strings for every port of S. Using predicates, we can restrict the
kind and the order of messages on ports of S in a run of a system. To formally define
these predicates, we need the following notation: For sets A and B, we denote by BA

the set of mappings from A to B. If A is a finite set, then the elements of BA can be
considered to be tuples where every component is an element of B and corresponds to
an element of A. For i ≥ 0 and a set A, we denote by Ai the set of all words over A of
length i. Now, predicates are defined as follows:

Definition 2 (Predicates). Let S be a set of ports. We call a set π with

π ⊆
⋃
i≥0

(({0, 1}∗)S)i.

a predicate π over S if the following conditions are satisfied:

1. If π = s1 · · · si, sj ∈ ({0, 1}∗)S , then we have that for every j ∈ {1, . . . , i} there
exists p ∈ S such that sj(p) �= ε, i.e., for every sj at least one port contains a
non-empty message.

2. π is decidable in polynomial-time, i.e., there is a probabilistic polynomial-time al-
gorithm that, on input t, outputs whether or not t ∈ π.

We call t ∈ π an S-trace.

Instead of a single predicate, one could also consider a family of predicates indexed
by the security parameter. However, for the application presented in this paper, simple
predicates suffice. Also, all results presented in this paper easily carry over to the case
of families of predicates.

We will use the following notation. We write π = true for a predicate π over S with
π =

⋃
i≥0(({0, 1}∗)S)i. Furthermore, for two predicates π1 and π2 over two disjoint

port sets S1 and S2, we write π1 ∧ π2 for the predicate containing all (S1 ∪ S2)-traces
such that for every trace in π1 ∧ π2 its restriction to S1 and S2 belongs to π1 and π2,
respectively.2 Intuitively, π1 ∧ π2 represents the conjunction of π1 and π2.

An S-trace t′ is a prefix of an S-trace t if there exist t′′ such that t = t′ · t′′ where ‘·’
denotes concatenation. A predicate π over S is prefix-closed iff for every S-trace t ∈ π

2 In run restricted to some port set S, all entries with inputs only in non-S ports are deleted.
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every prefix of t belongs to π as well. We also call such a predicate a safety property
since once it is violates it stays violated.

Now, we say that a set of machines M fulfills a predicate π over a set of ports S, if in
runs of M with any other set of machines the sequences of messages written on ports in
S belong to π. More precisely, it suffices if this is true with overwhelming probability:

Definition 3 (Predicate Fulfillment). Let M be a set of machines with service ports
S and let π be a predicate over a subset S′ of the ports SC,out of machines to which
machines in M connect. Then, M fulfills π if for any set of machines M such that
C := {M,M} is closed,

Prt←runC,k
[(t2S′) ∈ π] is overwhelming as a function in k.

We are now ready to present the definition of conditional reactive simulatability.

Definition 4 (Conditional Reactive Simulatability). Let structures (M, S) and
(M ′, S) with identical set S of service ports be given, and let π be a predicate over
a subset of the service in-ports of S. We say that (M, S) is at least as secure as (or
realizes) (M ′, S) under condition π (written (M, S) ≥π

sec (M ′, S)) if for every con-
figuration conf = (M, S,H,A) such that H fulfills π, there exists a configuration
conf ′ = (M ′, S,H,A′) (with the same H) such that

view conf (H) ≈ view conf ′(H).

Conditional universal simulatability and conditional blackbox simulatability are de-
fined with the obvious modifications.

4 Composition Under Conditional Reactive Simulatability

In this section, we present composition theorems for conditional reactive simulatabil-
ity. As mentioned in the introduction, when composing protocols which assume certain
conditions (predicates) to hold on their service in-ports and in turn guarantee certain
conditions (predicates) to hold on service in-ports of other protocols, cyclic dependen-
cies may occur. In what follows, we first introduce the general setting (Section 4.2) and
then present general composition theorems both for the acyclic and cyclic case (Sec-
tion 4.2 and 4.3). While for the acyclic case no restrictions on predicates are put, for the
cyclic case we require predicates to be safety properties.

4.1 The General Setting

One would expect that a protocol M0 (for brevity we omit the service ports) that is sim-
ulatable under condition π can be securely composed with a protocol M1 that fulfills
π. In some applications, the larger protocol M1 may fulfill π only if M1 itself is used
in a “sane” way, i.e., a predicate, say τ , is fulfilled on the service in-ports of M1. Then,
one would expect that M0 securely composes with M1 as long as τ is fulfilled. More
generally, we consider the composition of several protocols with assume-guarantee con-
ditions among them. In what follows, this is formalized.

Let π and τ be predicates over Sπ and Sτ , respectively, and let t be a trace. We say
that t satisfies τ → π if t2Sτ∈ τ implies t2Sπ∈ π.
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Definition 5 (Conditional Predicate Fulfillment). Let M be a set of machines with
service ports S, τ be a predicate over a subset Sτ of Sin, and π be a predicate over a
subset Sπ of SC,out.

Then, M fulfills π under condition τ if τ → π is satisfied with overwhelming proba-
bility no matter with which machines M interacts, i.e., for all sets M of machines such
that C := {M,M} is closed, we have that

Prt←runC,k
[t satisfies τ → π] is overwhelming as a function in k.

In what follows, for every i = 1, . . . ,n, let Pi := (Mi, Si) and P ′
i := (M ′

i , Si) be
real and ideal protocols, respectively. We consider the following predicates for these
protocols.

Let τ j
i be a predicate over SC,out

j ∩Sin
i (service in-ports of Pi to which Pj connects)

and τH
i be a predicate over Sin

i \
⋃n

j=1 S
C,out
j (service in-ports of Pi to which no other

protocol connects). Intuitively, τ j
i denotes the guarantees the ith protocol expects from

the jth one. Analogously, τH
i specifies the guarantees the ith protocol expects from H.

(Note that H may connect to all service in-ports of Pi the other protocols do not connect
to.) We denote by

τi = τH
i ∧

∧
j �=i

τ j
i (1)

the guarantees the ith protocol expects from other protocols. Note that τi is a predicate
over Sin

i .
Similarly, we now define the guarantees the ith protocol provides to other protocols.

Let πj
i be a predicate over SC,out

i ∩ Sin
j (service in-ports of Pj to which Pi connects).

Intuitively, πj
i denotes the guarantees the ith protocol gives to the jth one. Note that we

do not consider a predicate πH
i . This simplifies our presentation and is without loss of

generality since we are only interested in the compositionality properties of the com-
posed protocol. We denote by

πi =
∧
j �=i

πj
i . (2)

the guarantees the ith protocol provides to other protocols. Note that πi is a predicate
over

⋃
j �=i(S

C,out
i ∩ Sin

j ).
In order for the composition theorems to hold, we clearly need that

πi
j ⊆ τ j

i , (3)

i.e., the guarantees τ j
i the ith protocol expects from the jth one are actually met by the

guarantees πi
j the jth protocol offers to the ith protocol.

Obviously, in the setting above the guarantees among the protocols may be cyclic:
the ith protocol provides guarantee πj

i (and hence, τ i
j ) to the jth protocol only if the

jth protocol guarantees τ j
i , and vice versa, i.e., the jth protocol provides guarantee πi

j

(and hence, τ j
i ) to the ith protocol only if the ith protocol guarantees τ i

j . Hence, in case

τ i
j �= true and τ j

i �= true the dependencies between the ith and jth protocol are
cyclic. The following is a concrete example.
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Example 1. Say that an encryption system P1 guarantees that the secret key is not out-
put in plain as long as this secret key is not submitted as part of a plaintext for en-
cryption. However, a larger protocol P2 that uses that encryption system might want
to encrypt plaintexts multiple times, possibly tagged with some syntactic type informa-
tion. In particular, as long as no ciphertext itself contains the secret key in plain, this
secret key will not be submitted for encryption. In other words, there is a mutual de-
pendency between P1 and P2. (Obviously, in this particular case secure composition is
possible.)

More generally, cyclic dependencies are defined as follows: Let the (directed) depen-
dency graph G = (V,E) be given by

V = {V1, . . . , Vn}, E = {(Vi, Vj) : τ j
i �= true}. (4)

If G is acyclic, we say that the dependencies between the protocols are acyclic or non-
mutual, and otherwise, we say that they are cyclic or mutual.

In the following two subsections, we prove theorems for securely composing pro-
tocols, both in the case of acyclic and cyclic dependencies between the protocols. In
these theorems we need to argue that the condition τi the ith protocol expects to be
satisfied are in fact fulfilled when composing all protocols. In case of acyclic dependen-
cies between the protocols, this is possible because the fulfillment of τi can be traced
back to the conditions satisfied by other protocols or the honest users. In case of cyclic
dependencies this is in general not possible because one runs into cycles. However, as
we will see, if the predicates involved are safety properties, cyclic dependencies can be
resolved. We note that the predicates informally stated in Example 1 are in fact safety
predicates.

4.2 Composition in the Acyclic Case

In this section, we prove the following general composition theorem for the case of
acyclic dependencies between the protocols.

Theorem 1. For every i = 1, . . . ,n, let Pi = (Mi, Si) and P ′
i = (M ′

i , Si) be protocols
as introduced above with Pi ≥τi

sec P ′
i , and assume that M ′

i fulfills πi under condition τi

where πi and τi are defined as above and condition (3) is satisfied. If the dependencies
between the protocols are acyclic, we have, for every i, that

P1|| . . . ||Pn ≥τ
sec P1|| . . . ||Pi−1||P ′

i ||Pi+1|| . . . ||Pn, (5)

where τ :=
∧n

j=1 τ
H
j . Moreover,

P1|| . . . ||Pn ≥τ
sec P ′

1|| . . . ||P ′
n. (6)

�

Before we prove this theorem, we present useful corollaries of this theorem. The first
corollary considers the case of two protocols and it easily follows from Theorem 1 using
that P2 ≥sec P2.
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Corollary 1 (Conditional Subroutine Composition). Assume that P1 ≥π
sec P ′

1. Let
P2 = (M2, S2) be a protocol such that M2 i) connects to all ports over which π is
defined and ii) fulfills π under condition τ where τ is a predicate over the service in-
ports of P2 to which P1 does not connect. Then,

P1||P2 ≥τ
sec P ′

1||P2.

If τ = true, i.e., M2 fulfills π unconditionally, we obtain

P1||P2 ≥sec P ′
1||P2.

�

Theorem 1 also allows to combine two protocols that are not connected via service
ports:

Corollary 2 (Parallel Composition). Assume that P1 ≥π1
sec P ′

1 and P2 ≥π2
sec P2 such

that P1 and P2 are not connected via service ports. Then,

P1||P2 ≥π1∧π2
sec P ′

1||P ′
2.

�

Proof of Theorem 1. The proof relies on the following definition:

Definition 6. Let M, τ, π be as in Definition 5. Then, M fulfills π under enforced con-
dition τ if the predicate π is true with overwhelming probability when M interacts
with machines that fulfill τ , i.e., for all sets M of machines that fulfill τ and such that
C := {M,M} is closed, it holds that

Prt←runC,k
[t satisfies π] is overwhelming as a function in k.

Obviously, if M fulfills π under condition τ , then M fulfills π under enforced con-
dition τ .

As a preparation for our proof, note that for i = 1, . . . ,n, both M ′
i and Mi fulfill πi

under enforced condition τi. For M ′
i , this is clear by assumption, and for Mi it follows

from Mi ≥τ
sec M ′

i . (Assuming that it is not true for Mi, one obtains an honest user
which cannot be simulated, contradicting the assumption that Mi ≥τ

sec M ′
i .) Now fix

i ∈ {1, . . . ,n} and set

P̃i := P1|| . . . ||Pn and P̃ ′
i := P1|| . . . ||Pi−1||P ′

i ||Pi+1|| . . . ||Pn.

Theorem statement (5): We need to show that for every configuration conf = (P̃i,H,A)
of P̃i, where H fulfills τ , there is a valid configuration conf ′ = (P̃ ′

i ,H,A
′) of P̃ ′

i with
the same H such that

view conf (H) ≈ view conf ′(H). (7)

Step 1: We construct a new user Hi as a combination of H with all protocol machines
Mj except for Mi. Note that Hi is polynomial-time, so in any case, conf i := (Pi,Hi,A)
is a configuration of Pi.
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Hi fulfills τi: Note that this statement makes sense because Hi connects to all of Mi’s
service ports. Due to space limitations, the somewhat technical proof is only presented
in the technical report [2]. In this proof we use that Mi fulfills πi under enforced con-
dition τi.

Step 2: Now, since Hi fulfills τi, the conditional simulatability of Mi guarantees the
existence of a configuration conf ′i := (P ′

i ,Hi,A′) with

view conf i
(Hi) ≈ view conf ′

i
(Hi).

In particular, this yields

view conf i
(H) ≈ view conf ′

i
(H) (8)

for the submachine H of Hi.

Step 3: Decomposing Hi into H and the machines Mj (j �= i) yields a valid configura-
tion (P̃ ′

i ,H,A
′) of protocol P̃ ′

i such that (7) follows from (8) as desired.

Theorem statement (6): We show

P ′
1|| . . . ||P ′

i−1||Pi . . . ||Pn ≥τ
sec P ′

1|| . . . ||P ′
i ||Pi+1 . . . ||Pn (9)

for i = 1, . . . ,n by repeatedly applying (5). The case i = 1 is directly implied by (5),
and for i > 1, all Pj with j < i can be set to P ′

j . Then by transitivity, (9) implies (6),
which completes the proof. �

4.3 Dealing with Mutual Dependencies – Composition in the Cyclic Case

In this section, we show that protocols can securely be composed even in case of cyclic
dependencies given that the predicates considered are safety properties.

Theorem 2. For every i = 1, . . . ,n, let Pi = (Mi, Si) and P ′
i = (M ′

i , Si) be protocols
as introduced in Section 4.1 with Pi ≥τi

sec P ′
i , and assume that M ′

i and Mi fulfills πi

under condition τi where πi and τi are defined as in Section 4.1 and condition (3) is
satisfied. Also, assume that all predicates τ j

i , τH
i , and πj

i are safety properties. Then,
for all i, we have:

P1|| . . . ||Pn ≥τ
sec P1|| . . . ||Pi−1||P ′

i ||Pi+1|| . . . ||Pn, (10)

where τ :=
∧n

j=1 τ
H
j . Moreover,

P1|| . . . ||Pn ≥τ
sec P ′

1|| . . . ||P ′
n. (11)

�

We note that in Theorem 2 the requirement that Mi fulfills πi under condition τi can
be dispensed with if service out-ports are scheduled locally (which in most scenarios
is the case): The reason is that, as in the proof of Theorem 1, it easily follows that if
M ′

i fulfills πi under condition τi, then Mi fulfills πi under enforced condition τi. Now,
it is not hard to see that if service out-ports are scheduled locally, then the notion of
Definition 6 implies the one of Definition 5. Hence, Mi fulfills πi under condition τi.
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Proof of Theorem 2. For the proof of Theorem 2, we need some terminology. For a
trace t and predicates τ and π such that τ and π are safety properties, we say that t
satisfies τ → π at any time if t′ satisfies τ → π for every prefix t′ of t.

Definition 7. Let M, π, τ be as in Definition 5 such that π and τ are safety properties.
Then, M fulfills π under condition τ at any time if the predicate τ → π is satisfied at
any time with overwhelming probability, no matter with which machines M interacts,
i.e., for all sets M such that C := {M,M} is closed, it holds that

Prt←runC,k
[t satisfies τ → π at any time] is overwhelming as a function in k. (12)

We can show that the above notion is equivalent to the one defined in Definition 5.

Lemma 1. Let M , π, and τ be as in Definition 7, and such that M contains no master
scheduler. Then we have that M fulfills π under condition τ at any time iff M fulfills π
under condition τ . �

Proof. The implication from left to right is obvious. To see the converse direction,
let M be a set of machines such that C = {M,M} is closed and let the poly-
nomial p(k) bound the runtime of M . (Note that M necessarily contains a mas-
ter scheduler.) First, by definition, if a trace t of C does not satisfy τ → π
at any time, then there exists a prefix t′ of t which does not satisfy τ → π,
i.e., t′2Sτ∈ τ but t′2Sπ /∈ π. Let t′ be of minimal length with this property. It
is easy to see that the last transition of t′ must be a transition of M . Now, as-
sume that (12) is not satisfied, i.e., Prt←runC,k

[t does not satisfy τ → π at any time]
is a non-negligible function in k. Consider the machine M

∗
which simulates M but at

the beginning randomly chooses a position i ∈ {1, . . . , p(k) + 1} and when activated
for the ith time it stops (simulating M ). Let C∗ = {M,M

∗}. Intuitively, M
∗

has
a high probability to stop a run of C∗ exactly when the trace produced so far does
not satisfy τ → π. In fact, using that (12) is not satisfied it is easy to verify that
Prt←runC∗,k

[t does not satisfy τ → π] is a non-negligible function in k. This implies
that M does not fulfill π under condition τ . �

We can now prove Theorem 2. For an overview of the proof, see Figure 2. We first prove
(10), from which then (11) follows as in the proof of Theorem 1. Fix i ∈ {1, . . . ,n}
and set

P̃i := P1|| . . . ||Pn and P̃ ′
i := P1|| . . . ||Pi−1||P ′

i ||Pi+1|| . . . ||Pn.

We need to show that for every configuration conf = (P̃i,H,A) of P̃i, where H fulfills
τ , there is a valid configuration conf ′ = (P̃ ′

i ,H,A
′) of P̃ ′

i with the same H, such that

view conf (H) ≈ view conf ′(H). (13)

Step 1: We construct a new user Hi as a combination of H with all protocol machines
Mj except for Mi. Note that Hi is polynomial-time, so in any case, conf i := (Pi,Hi,A)
is a configuration of Pi.
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Fig. 2. Overview of the proof of Theorem 2

Step 2: We modify Hi into a new user H∗
i such that H∗

i fulfills τi. This is done by substi-
tuting all sets of submachines Mj (j �= i) of Hi by sets of machines M∗

j that fulfill their
respective predicates πj without any preconditions. More specifically, M∗

j simulates
Mj and in addition checks whether τj is fulfilled, i.e., whether the observed sequence
of inputs on in-ports of Mj lies in τj . By assumption, this can be done efficiently. If τj

is not fulfilled, then M∗
j halts immediately.

First claim regarding H∗
i : We claim that the view of the submachine H of Hi is not

changed (non-negligibly) by this modification, i.e., we claim

view conf i
(H) ≈ view conf ∗

i
(H) (14)

where conf ∗
i = (Pi,H∗

i ,A).
Assume for contradiction that (14) does not hold. Then the probability that some τj

(j �= i) is not fulfilled in a run of conf i is non-negligible (since otherwise, conf i and
conf ∗i behave identical). Let j be such that τj is with non-negligible probability the first
of all predicates τ� (1 ≤ � ≤ n) to become false in a run of conf i. By “first”, we mean
that there is a prefix of the considered run that does not lie in τj , but all shorter prefixes
lie in all τ�. (Note that by the prefix-closeness of all τ� such a prefix must exist for some
j.)

Because of (1), there is thus a τr
j (with r ∈ {1, . . . ,n,H} \ {j}) such that with

non-negligible probability, τr
j becomes false before any other predicate τ�, � �= j, and

τr′
j , r′ �= r, does. As r = H directly contradicts the assumption on H, we may assume
r �= H.

Now by assumption, Mr fulfills πr, and thus, by (3) and (1), also τr
j under condition

τr (in the sense of Definition 5). By Lemma 1 and the just derived statement about
τr
j , this implies that with non-negligible probability, τr is false before τj is. This is a

contradiction to the choice of j.
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Second claim regarding H∗
i : We claim that H∗

i fulfills τi (without any precondition).
By (1) and the assumption on H, it suffices to prove that for any j �= i, M∗

j fulfills τ j
i

without any precondition. Now since Mj fulfills πj under condition τj , it also does so
at any time (Lemma 1). That is, it holds with overwhelming probability that at any point
during a run of Mj , πj is true unless τj becomes false.

By construction, M∗
j and Mj behave identically unless τj becomes false. That is, also

M∗
j fulfills πj under condition τj at any time. In particular, by definition of M∗

j , with
overwhelming probability πj is true when M∗

j halts. It is also easy to see that πj cannot

become false after M∗
j has halted. Hence, M∗

j fulfills πj , and thus, τ j
i unconditionally.

Step 3: As H∗
i fulfills τi, the conditional simulatability of Mi guarantees the existence

of a configuration conf ∗i
′ := (P ′

i ,H
∗
i ,A

′) with

viewconf ∗
i
(H∗

i ) ≈ view conf ∗
i

′(H∗
i ).

In particular, this yields

view conf ∗
i
(H) ≈ view conf ∗

i
′(H) (15)

for the submachine H of H∗
i .

Step 4: We substitute H∗
i again by Hi. Since, by assumption, M ′

i fulfills πi under con-
dition τi, analogously to Step 2 we can show that

view conf ∗
i

′(H) ≈ view conf ′
i
(H) (16)

where conf ′
i = (P ′

i ,Hi,A′).

Step 5: Decomposing Hi into H and the machines Mj (j �= i) yields a valid configura-
tion (P̃ ′

i ,H,A
′) of protocol P̃ ′

i such that (13) and thus (10) follows from (14), (15) and
(16) as desired. �

5 Applications and Examples

In this section, we provide examples substantiating the claim that conditional reactive
simulatability constitutes a suitable security notion for circumventing known impos-
sibility results of simulating interesting abstractions of cryptography. In addition, we
illustrate that imposing suitable constraints on the environment may allow for a simu-
lation proof based on much weaker assumptions on the underlying cryptography. Gen-
erally speaking, conditional reactive simulatability allows for exploiting knowledge of
which protocol class will use the protocol under investigation, resulting in more fine-
grained reasoning about cryptographic protocols.

More specifically, we prove that Dolev-Yao style abstractions of symmetric encryp-
tion can be correctly simulated by conditioning environments to those cases that do not
cause a so-called commitment problem. For unconditional simulatability, Dolev-Yao
style symmetric encryption is known not to be simulatable at all [3]. If one further con-
straints the environment not to create key cycles, e.g., encrypting a key with itself, we
can even establish conditional simulatability based on considerably weaker assumptions
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on the underlying cryptographic encryption scheme. Finally, we show that conditional
simulatability may naturally entail unconditional simulatability for composed protocols
again.

5.1 Conditional Simulatability of Dolev-Yao Style Symmetric Encryption

For Dolev-Yao style symmetric encryption, the following so-called commitment prob-
lem inherently prevents the successful application of unconditional reactive simulatabil-
ity. The ideal encryption system must somehow allow that secret keys are sent from one
participant to another. This is used for example in key-exchange protocols. If the ideal
system simply allows keys to be sent at any time (and typical Dolev-Yao models do al-
low all valid terms to be sent at any time), the following problem can occur: An honest
participant first sends a ciphertext such that the adversary can see it, and later sends both
the contained plaintext and the key. This behavior may even be reasonably designed into
protocols, e.g., the ciphertext might be an encrypted bet that is later opened. The simu-
lator will first learn in some abstract way that a ciphertext was sent and has to simulate
it by some bitstring, which the adversary sees. Later the simulator sees abstractly that a
key becomes known and that the ciphertext contains a specific application message. It
cannot change the application message, thus it must simulate a key that decrypts the old
ciphertext bitstring (produced without knowledge of the application message) to this
specific message.

We omit a rigorous definition of the absence of the commitment problem for Dolev-
Yao style symmetric encryption as given in [3,5] but only give an informal definition
for the sake of readability:

Definition 8 (No Commitment Property of Dolev-Yao Style Symmetric Encryp-
tion, informally). The No Commitment property NoComm of Dolev-Yao style symmet-
ric encryption consists of those traces of Dolev-Yao style symmetric encryption that
satisfy the following trace predicate: If a term is encrypted at time t1 in this trace by an
honest user u with secret key sk , and at this time sk is not known to the adversary, then
the adversary does not learn the key sk at any future time t2 in this trace.

Technically, the requirement that an adversary does not learn certain keys relies on
the state of the Dolev-Yao model which keeps track of who knows which term; thus
Definition 8 is syntactically not a predicate in the sense of Definition 2. However, those
parts of the state that capture if an adversary already knows keys generated by honest
users are uniquely determined by the preceding inputs at the service in-ports. Thus
NoComm can naturally be recast as a property that is only defined at the service in-ports
of the Dolev-Yao model and thus as a predicate in the sense of Definition 2 (however
with a much more tedious notation).

The main result of [5] provides a simulation for those cases in which NoComm is ful-
filled provided that the cryptographic encryption scheme fulfills the notion of dynamic
KDM security [5]. We can now rephrase their result in our formalism to benefit from the
compositionality guarantees entailed by our composition theorems. In the following, let
({THcry_sym,id

H }, SH) and ({Mcry_sym,real
E,u | u ∈ H}, SH) denote the Dolev-Yao model of

symmetric encryption and its cryptographic realization from [3,5], respectively, for a
setH ⊆ {1, . . . ,n} of honest users, and an encryption scheme E .
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Theorem 3 (Conditional Reactive Simulatability of Dolev-Yao Style Symmetric
Encryption). For all symmetric encryption schemes E that satisfy dynamic KDM se-
curity, and for all setsH ⊆ {1, . . . ,n} of honest users, the realization of the Dolev-Yao
model is at least as secure as the Dolev-Yao model under condition NoComm, i.e.,
({Mcry_sym,real

E,u | u ∈ H}, SH) ≥NoComm
sec ({THcry_sym,id

H }, SH). �

5.2 Securely Realizing Dolev-Yao Style Symmetric Encryption with Weaker
Cryptography

While Theorem 3 shows that Dolev-Yao style symmetric encryption can be condi-
tionally simulated by excluding the commitment property, it still relies on the strong
assumption that the underlying encryption scheme satisfies dynamic KDM security –
a very strong, non-standard notion for which no realization in the standard model of
cryptography is known. However, it turns out that this strong notion is only necessary
to deal with the quite exotic case that symmetric keys are encrypted in a cyclic manner,
e.g., a key with itself. Most protocols however avoid such constructions by definition,
and indeed further constraining simulatability to traces that do not contain key cycles
yields a simulatability result based on considerably weaker assumptions on the under-
lying encryption scheme. More precisely, it suffices that the encryption scheme satis-
fies indistinguishability under adaptive chosen-ciphertext attacks as well as integrity of
ciphertexts. This is the standard security definition of authenticated symmetric encryp-
tion [13,12], and efficient symmetric encryptions schemes provably secure in this sense
exist under reasonable assumptions [21,27].

Definition 9 (No Key Cycles for Dolev-Yao Style Symmetric Encryption, infor-
mally). The No Key Cycles property NoKeyCycles of Dolev-Yao style symmetric en-
cryption consists of those traces of Dolev-Yao style symmetric encryption in which hon-
est users do not create encryptions E(ski,mi) such that ski+1 is a subterm of mi for
i = 0, . . . , j − 1 for some j, and sk0 is a subterm of mj .

Theorem 4 (Conditional Reactive Simulatability of Dolev-Yao Style Symmetric
Encryption w/o Key Cycles). For all authenticated symmetric encryption schemes E
and all sets H ⊆ {1, . . . ,n} of honest users, the realization of the Dolev-Yao model is
at least as secure as the Dolev-Yao model under condition NoComm ∧ NoKeyCycles,
i.e., ({Mcry_sym,real

E,u | u ∈ H}, SH) ≥NoComm∧NoKeyCycles
sec ({THcry_sym,id

H }, SH). �

5.3 Simulatable Protocols from Conditionally Simulatable Subprotocols

We finally illustrate, exploiting Corollary 1, that conditional simulatability can often
be turned into unconditional simulatability again (and in fact, it seems hard to come
up with a non-artificial example for which Corollary 1 does not apply). Consider a
secure channel between two parties that uses Dolev-Yao style symmetric encryption
as a subprimitive, which itself is only conditionally simulatable. The secure channel
consists of two machines M1 and M2. M1 expects a message m as input at a service port
in?, and encrypts this message with a symmetric key k shared with M2. The encryption
is computed using Dolev-Yao style symmetric encryption as a subprimitive, i.e., m
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is output at a service port enc_out1! and the resulting encryption e is obtained at a
service port enc_in1?. M2 outputs the message at a service port out!. We do not give
a rigorous definition of this behavior here since this would presuppose introducing a
significant amount of notion from [3] but it should be clear already that this secure
channel neither causes a commitment problem nor any key cycles by construction. Let
(M sc, Ssc) := ({M1,M2}, {in?, out!, enc_out1!, enc_in1?}) denote the secure channel.

Theorem 5. For all authenticated symmetric encryption schemes E , and for
H = {1, 2}, the secure channel based on the realization is unconditionally
at least as secure as the secure channel based on the Dolev-Yao model, i.e.,
(M sc, Ssc)||({Mcry_sym,real

E,u | u ∈ H}, SH) ≥sec (M sc, Ssc)||({THcry_sym,id
H }, SH). �

6 Conclusion

We presented a relaxation of simulatability, one of the central concepts of modern cryp-
tography for defining and analyzing the security of multi-party protocols, by permitting
to constrain environments to adhere to certain behaviors. The resulting notion is called
conditional reactive simulatability. It constitutes a more fine-grained security notion that
is achievable i) for protocols for which traditional simulatability is too strong a notion,
and ii) based on weaker requirements on the underlying cryptography. In addition, con-
ditional reactive simulatability maintains the interesting property that for various proto-
col classes, composition of conditionally simulatable protocols yield protocols that are
simulatable in the traditional sense.

We furthermore showed that despite imposing restrictions on the surrounding pro-
tocol and thus giving up the universal quantification of environments that naturally
allowed for compositionality proofs in earlier works, the notion of conditional reac-
tive simulatability still entails strong compositionality guarantees. In particular, this
holds for the common case of composing so-called assume-guarantee specifications,
i.e., specifications that are known to behave properly if offered suitable inputs, pro-
vided that these assumptions and guarantees constitute arbitrary trace properties that do
not give rise to cyclic dependencies. We further investigated the theoretically more de-
manding (but arguably practically less interesting) case of cyclic dependencies among
such specifications and proved a similar composition theorem under the additional as-
sumption that conditions are expressible as safety properties.

Acknowledgments. We thank Martín Abadi for interesting discussions.
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Abstract. With the growing trend towards the use of web applications
the danger posed by cross site scripting vulnerabilities gains severity. The
most serious threats resulting from cross site scripting vulnerabilities are
session hijacking attacks: Exploits that steal or fraudulently use the vic-
tim’s identity. In this paper we classify currently known attack methods
to enable the development of countermeasures against this threat. By
close examination of the resulting attack classes, we identify the web
application’s characteristics which are responsible for enabling the sin-
gle attack methods: The availability of session tokens via JavaScript,
the pre-knowledge of the application’s URLs and the implicit trust re-
lationship between webpages of same origin. Building on this work we
introduce three novel server side techniques to prevent session hijack-
ing attacks. Each proposed countermeasure removes one of the identified
prerequisites of the attack classes. SessionSafe, a combination of the pro-
posed methods, protects the web application by removing the fundamen-
tal requirements of session hijacking attacks, thus disabling the attacks
reliably.

1 Introduction

Web applications as frontends for online services enjoy an ever growing popu-
larity. In addition, a general direction towards web applications replacing tra-
ditional client side executables can be observed during the last years. Email,
banking, project management or business services move from specialized pro-
grams to the web browser.

In close connection to this trend, web application vulnerabilities move from be-
ing mere annoyances towards posing severe threats. With companies like Google
and Yahoo starting to integrate various web applications under one authentica-
tion process the impact of single vulnerabilities even increases, as one weakness
could now endanger a whole range of different applications. One of the most
common threats is session hijacking, an attack method that targets the victim’s
identity. Session hijacking is often feasible because web applications frequently
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suffer from cross site scripting (XSS) vulnerabilities. In most cases one single
XSS vulnerability suffices to compromise the entire application.

Even though XSS is known at least since the year 2000 [4], this class of weak-
nesses is still a serious issue. In 2005 alone 167 XSS vulnerabilities have been
reported to the BugTraq mailing list. Also, the year 2005 brought a shift to
more sophisticated XSS attacks: In July 2005 Anton Rager presented the XSS
proxy, a tool that allowed for the first time a systematic, semi automatic ex-
ploitation of XSS vulnerabilities [18]. Wade Alcorn described in September 2005
an XSS virus that is able to self propagate from server to server, provided all
these servers run the same vulnerable web application [2]. Finally, in October
2005 the self replicating “mySpace XSS worm” infected more than one million
user profiles [19]. While the cause of XSS vulnerabilities is almost always insuf-
ficient output sanitization in connection with handling of user provided input
strings, ensuring the absence of this flaw is of growing difficulty. Today’s web
applications are complex. They often consist of numerous different server side
technologies, legacy code and third party components. Thus, enforcing consistent
input handling a non-trivial task. In this paper we describe a novel approach to
protect web applications against XSS session hijacking attacks. Instead concen-
trating on user input, we disable session hijacking by removing the attacks’ basic
requirements.

The remainder of the paper is organized as follows. Section 2 discusses web
application security topics that are relevant for the proposed methods. Section 3
describes and classifies currently known XSS session hijacking attacks. In Section
4 follows a description of our countermeasures; those countermeasures then will
be discussed in Section 5. Finally, after looking at related work in Section 6, we
conclude in Section 7.

2 Technical Background
2.1 Session Management
Because of http’s stateless nature [7] web applications that require authentica-
tion need to implement additional measures to keep their users authenticated.
To achieve this, session identifiers (SID) are used: After a successful authentica-
tion the web application generates the SID and transmits it to the client. Every
following http request that contains this SID is regarded as belonging to this par-
ticular user. Thus the SID is a credential that both identifies and authenticates
the user. The protection of this information is therefore essential for the security
of the application. There are three methods of implementing SIDs: inclusion of
the identifier in the URL, communication of the identifier via POST parameters
or storing the identifier in browser cookies:

URL query strings: The SID is included in every URL that points to a
resource of the web application: <a href="some page?SID=g2k42a">...</a>

POST parameters: Instead of using hyperlinks for the navigation through
the application HTML forms are used. In this case, the SID is stored in a hidden
form field. Whenever a navigation is initiated, the according HTML form is
submitted, thus sending the SID as part of the request’s body.
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Cookies: Using cookies for SID storage is broadly used in today’s web ap-
plications. Web browser cookies technology [14] provides persistent data storage
on the client side. A cookie is a data set consisting at least of the cookie’s name,
value and domain. It is sent by the web server as part of an http response message
using the Set-Cookie header field. The cookie’s domain property is controlled by
the URL of the http response that is responsible for setting the cookie. The prop-
erty’s value must be a valid domain suffix of the response’s full domain and con-
tain at least the top level domain (tld) and the original domain. The cookie’s do-
main property is used to determine in which http requests the cookie is included.
Whenever the web browser accesses a webpage that lies in the domain of the
cookie (the domain value of the cookie is a valid domain suffix of the page’s URL),
the cookie is automatically included in the http request using the Cookie field.

2.2 Cross Site Scripting

Cross Site Scripting (XSS) denotes a class of attacks. These attacks are possible,
if a web application allows the inclusion of insufficiently filtered data into web
pages. If a web application fails to remove HTML tags and to encode special
characters like ", ’, < or > from user provided strings, an attacker will be capable
of inserting malicious script code into webpages. Consequently, this script code is
executed by the victim’s web browser and runs therefore in the victim’s security
context. Even though XSS is not necessarily limited to JavaScript, attacks may
also use other embedded scripting languages, this paper focuses its description of
attacks and countermeasures on JavaScript. While completely removing scripting
code through output filtering is feasible to disarm XSS threats posed by more
obscure client side scripting languages like VBScript, this procedure is not an
option in the case of JavaScript. JavaScript is ubiquitous, deeply integrated
in common DHTML techniques and used on the vast majority of websites. A
rogue JavaScript has almost unlimited power over the webpage it is contained
in. Malicious scripts can, for example, change the appearance of the page, steal
cookies, or redirect form actions to steal sensitive information (see Section 3 and
[9] for further details).

2.3 JavaScript Security Aspects

JavaScript contains semantics of object oriented programming as well as as-
pects that are usually found in functional languages. In this paper we describe
JavaScript from an object orientated point of view. JavaScript in webpages is
executed “sandboxed”: It has no access to the browser’s host system and only
limited access to the web browser’s properties. JavaScript’s capabilities to ma-
nipulate the appearance and semantics of a webpage are provided through the
global object document which is a reference to the root element of the page’s
DOM tree [11]. A script can create, delete or alter most of the tree’s elements.
JavaScript 1.5 has been standardized by ECMA as “ECMAScript” [6] in 1999.

The same-origin policy: The “same-origin policy” defines what is accessi-
ble by a JavaScript. A JavaScript is only allowed read and/or write access to



SessionSafe: Implementing XSS Immune Session Handling 447

properties of windows or documents that have the same origin as the script itself.
The origin of an element is defined by specific elements of the URL it has been
loaded from: The host, the port and the protocol [8]. While port and protocol
are fixed characteristics, JavaScript can influence the host property to mitigate
this policy. This is possible because a webpage’s host value is reflected in its
DOM tree as the domain attribute of the document object. JavaScript is allowed
to set this property to a valid domain suffix of the original host. For example, a
JavaScript could change document.domain from www.example.org to the suffix
example.org. JavaScript is not allowed to change it into containing only the top
level domain (i.e. .org) or some arbitrary domain value. The same-origin policy
defines also which cookies are accessible by JavaScript.

Public, privileged and private members in JavaScript objects: A lit-
tle known fact is, that JavaScript supports information hiding via encapsulation.
The reason for this obscurity is that JavaScript does not provide access specifiers
like “private” to implement encapsulation. Encapsulation in JavaScript is imple-
mented via the scope of a variable. Depending on the context in which a variable
or a method is created, its visibility and its access rights are defined [6]. From
an object oriented point of view this translates to three access levels: “public”,
“privileged” and “private” [5]: “Public” members of objects are accessible from
the outside. They are either defined by prototype functions [6] or created as
anonymous functions and added to the object after object creation. Either way:
They are created within the global scope of the object’s surroundings. Public
methods cannot access private members. “Private” members are only accessible
by private or privileged methods in the same object. They are defined on object
creation and only exist in the local scope of the object. Private methods can-
not be redefined from the outside after object creation. “Privileged” methods
are accessible from the outside. They can read and write private variables and
call private methods. Privileged methods have to be defined on object creation
and exist therefore in the local scope of the object. The keyword this is used
to export the methods to the global scope, so that they can be accessed from
outside the object. If a privileged method is redefined from the outside after
object creation, it will become part of the global scope and its state will change
therefore to “public”.

3 A Classification of XSS Session Hijacking Attacks

All currently known XSS session hijacking attack methods can be assigned to
one of the following different classes: “Session ID theft”, “Browser Hijacking”
and “Background XSS Propagation”.

3.1 Session ID Theft

As described in Section 2.1, web applications usually employ a SID to track the
authenticated state of a user. Every request that contains this SID is regarded
as belonging to the authenticated user. If an attacker can exploit an XSS vul-
nerability of the web application, he might use a malicious JavaScript to steal
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Fig. 1. The three classes of XSS session hijacking attacks [24]

the user’s SID. It does not matter which of the methods described in Section 2.1
of SID storage is used by the application - in all these cases the attacking script
is able to obtain the SID. The attacking script is now able to communicate the
SID over the internet to the attacker. As long as the SID is valid, the attacker
is now able to impersonate the attacked client [13].

3.2 Browser Hijacking

This method of session hijacking does not require the communication of the SID
over the internet. The whole attack takes place in the victim’s browser. Modern
web browsers provide the XMLHttpRequest object, which can be used to place
GET and POST requests to URLs, that satisfy the same-origin policy. Instead
of transferring the SID or other authentication credentials to the attacker, the
“Browser Hijacking” attack uses this ability to place a series of http requests
to the web application. The application’s server cannot differentiate between
regular, user initiated requests and the requests that are placed by the script. The
malicious script is therefore capable of acting under the identity of the user and
commit arbitrary actions on the web application. In 2005 the so called “mySpace
Worm” employed this technique to create a self replicating JavaScript worm that
infected approximately one million profiles on the website myspace.com [19].

3.3 Background XSS Propagation

Usually not all pages of a web application are vulnerable to cross site scripting.
For the attacks described above, it is sufficient that the user visits only one
vulnerable page in which a malicious script has been inserted. However, other
attack scenarios require the existence of a JavaScript on a certain webpage to
work. For example, even when credit card information has been submitted it
is seldom displayed in the web browser. In order to steal this information a
malicious script would have to access the HTML form that is used to enter it.
Let us assume the following scenario: Webpage A of the application is vulnerable
against XSS whereas webpage B is not. Furthermore, webpage B is the page
containing the credit card entry form. To steal the credit card information, the
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attacker would have to propagate the XSS attack from page A to page B. There
are two techniques that allow this attack:

Propagation via iframe inclusion: In this case, the XSS replaces the dis-
played page with an iframe that takes over the whole browser window. Further-
more, the attacking script causes the iframe to display the attacked webpage,
thus creating the impression that noting has happened. From now on every user
navigation is done inside the iframe. While the user keeps on using the applica-
tion, the attacking script is still active in the document that contains the iframe.
As long as the user does not leave the application’s domain, the malicious script
is able to monitor the user’s surfing and to include further scripts in the webpages
that are displayed inside the iframe. A related attack is described in [18].

Propagation via pop under windows: A second way of XSS propagation
can be implemented using “pop under” windows. The term “pop under” window
denotes the method of opening a second browser window that immediately sends
itself to the background. On sufficiently fast computers users often fail to notice
the opening of such an unwanted window. The attacking script opens such a
window and inserts script code in the new window’s body. The new window has
a link to the DOM tree of the original document (the father window) via the
window.opener property. This link stays valid as long as the domain property
of the father window does not change, even after the user resumes navigating
through the web application. The script that was included in the new window
is therefore able to monitor the user’s behavior and include arbitrary scripts in
web pages of the application that are visited during the user’s session.

4 Countermeasures Against Session Hijacking

In the next Sections we propose countermeasures against the described session
hijacking attacks. Each of these countermeasures is designed to disarm at least
one of the specified threats.

4.1 Session ID Protection Through Deferred Loading

The main idea of the proposed technique is twofold: For one, we store the SID
in such a way that malicious JavaScript code bound by the “same-origin policy”
is not able to access it any longer. Secondly, we introduce a deferred process of
loading the webpage, so that security sensitive actions can be done, while the
page is still in a trustworthy state. This deferred loading process also guarantees
the avoidance of timing problems.

To successfully protect the SID, it has to be kept out of reach for any
JavaScript that is embedded into the webpage. For this reason, we store the SID
in a cookie that does not belong to the webpage’s domain. Instead, the cookie
is stored for a different (sub-)domain that is also under the control of the web
application. In the following paragraphs the main web application will reside
on www.example.org, while the cookies will be set for secure.example.org.
The domain secure.example.org is hosted on the same server as the main web
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application. Server scripts of the main web application have to be able to share
data and/or communicate with the server scripts on secure.example.org for
this technique to work. On the secure domain only two simple server scripts
exist: getCookie.ext and setCookie.ext. Both are only used to transport the
cookie data. The data that they respond is irrelevant - in the following descrip-
tion they return a 1 by 1 pixel image.

To carry out the deferred loading process we introduce the “PageLoader”.
The PageLoader is a JavaScript that has the purpose to manage the cookie
transport and to load the webpage’s content. To transport the cookie data from
the client to the server it includes an image with the getCookie.ext script as
URL. For setting a cookie it does the same with the setCookie.ext script. To
display the webpage’s body the PageLoader requests the body data using the
XMLHttpRequest object. In the following specifications the abbreviations “RQ”
and “RP” denote respectively “http request” and “http response”.

Getting the cookie data. The process of transferring an existing cookie
from the client to the server is straight forward. In the following scenario the
client web browser already possesses a cookie for the domain secure.example.
org. The loading of a webpage for which a cookie has been set consists of the
following steps (see figure 1.a):

1. The client’s web browser sends an http request for www.example.org/
index.ext (RQ1).

2. The web server replies with a small HTML page that only contains the
PageLoader (RP1).

3. The PageLoader includes the getCookie.ext image in the DOM tree of
the webpage. This causes the client’s web browser to request the image
from the server (RQ2). The cookie containing the SID that is stored for
secure.example.org is included in this request automatically.

4. The PageLoader also requests the webpage’s body using the XMLHttpRe-
quest object (RQ3). This http request happens parallel to the http request
for the getCookie.ext image.

5. The web server waits with the answer to RQ3 until it has received and
processed the request for the getCookie.ext image. According to the cookie
data that this request contained, the web server is able to compute and send
the webpage’s body (RP2).

6. The PageLoader receives the body of the webpage and uses the
document.write method to display the data.

The web server has to be able to identify that the last two http requests (RQ2
and RQ3) where initiated by the same PageLoader and therefore came from the
same client. For this reason the PageLoader uses a request ID (RID) that is
included in the URLs of the request RQ2 and RQ3. The RID is used by the web
server to synchronize the request data between the domains www and secure.

Setting a cookie: The usually preceding process of transferring existing
cookie data from the client to the server, as described above, is left out for
brevity. With this simplification the setting of a cookie consists of the following
steps (see figure 1.b):



SessionSafe: Implementing XSS Immune Session Handling 451

a. Getting a cookie b. Setting a cookie

Fig. 2. schematic view of the processes

1. The client’s web browser sends an http request for www.example.org/
index.ext (RQ1).

2. The web server replies with the PageLoader (RP1) and the PageLoader
subsequently requests the body data (RQ2).

3. The web server computes the request RQ2. Because of the outcome of the
computation the server decides to place a cookie. The server replies with
“SETCOOKIE” to the PageLoader’s request for the body data (RP2).

4. The PageLoader receives the “SETCOOKIE” token and includes the
setCookie.ext image in the DOM tree of the webpage. This causes the
client’s web browser to request the image from the server (RQ3).

5. The PageLoader also requests the webpage’s body once more (RQ4). This http
request happens parallel to the http request for the setCookie.ext image.

6. The web server receives the request for the image and includes the cookie data
in the response (RP3). The web server marks the RID as “used” (see below).

7. The web server waits with the answer to RQ4 until it successfully delivered
the setCookie.ext image to the client. After the image request has been
processed the body data gets sent (RP4).

There is an important timing aspect to take into consideration: The
PageLoader should not display the HTML body data before the cookie setting
process is finished, and the web server should never reply more than once to a
setCookie.ext request containing the same RID value. Otherwise, the security
advantage of the proposed method would be lost, because after the HTML body
data is displayed in the client’s browser a malicious JavaScript might be exe-
cuted. This script then could read the DOM tree to obtain the full URL of the
setCookie.ext image and communicate this information via the internet to the
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attacker. If at this point of time the web server still treats this image URL (more
precise: the RID value) as valid, the attacker would be able to successfully re-
quest the image including the cookie data from the web server. If no invalidation
of the RID happens, the described technique will only shift the attack target
from losing the cookie value to losing the RID value. For the same reason the
RID value must be random and of sufficient length in order to prevent guessing
attacks. Because of the restrictions posed by the same-origin policy, the cook-
ies stored for secure.example.org are not accessible by JavaScript embedded
into a page from www.example.org. Furthermore, JavaScript is not allowed to
change document.domain to secure.example.org because this value is not a
valid domain suffix of the original host value www.example.org. The secure sub-
domain only contains the two specified server scripts for cookie transportation.
The reply data of these server scripts does not contain any dynamic data. Thus,
an XSS attack on secure.example.org is not feasible. Therefore, the proposed
technique successfully prevents cookie stealing attacks without limiting cookie
usage.

4.2 One-Time URLs

To defend against browser hijacking (see 3.2) we have to remove the fundamental
basis of this attack class. Every browser hijacking attack has one characteristic
in common: The attacking script submits one or more http requests to the server
and potentially parses the server’s response. The basis for this attack is there-
fore the attacker’s knowledge of the web application’s URLs. The main idea of
the proposed countermeasure is to enhance the application’s URLs with a se-
cret component which cannot be known, obtained, or guessed by the attacking
JavaScript. As long as the server responds only to requests for URLs with a
valid secret component, the attacker is unable to execute a browser hijacking
attack.

To determine the requirements for successful URL hiding we have to examine
the abilities of rogue JavaScript. The secret URL component has to satisfy the
following limitations:

– It has to be unguessable.
– It must not be stored in an HTML element, e.g. a hidden form field.

JavaScript can access the DOM tree and therefore is able to obtain any
information that is included in the HTML code.

– It must not be stored in public JavaScript variables. All JavaScript code
in one webpage exists in the same namespace. Therefore, a malicious script
is able to execute any existing JavaScript function and read any available
public variable.

– It must not be hard coded in JavaScript. Every JavaScript element (i.e. ob-
ject, function or variable) natively supports the function toString() which
per default returns the source code of the element. Malicious script could
use this function to parse code for embedded information.
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– It has to be valid only once. Otherwise, the attacker’s script could use the
value of document.location to emulate the loading process of the displayed
page.

Thus, the only place to keep data protected from malicious JavaScript is a
private variable of a JavaScript object. In the following paragraphs we show
how this approach can be implemented. We only describe this implementation
in respect of randomizing hyperlink URLs. The randomization of HTML forms
is left out for brevity - the applicable technique is equivalent.

The URLRandomizer Object: Our approach uses a URL GET parameter
called “rnonce” to implement the URL randomization. Only URLs containing a
valid rnonce are treated as authorized by the web server. To conduct the actual
randomization of the URLs we introduce the URLRandomizer, a JavaScript
object included in every webpage. As introduced above, the URLRandomizer
object contains a private variable that holds all valid randomization data. Dur-
ing object creation the URLRandomizer requests from the web server a list of
valid nonces for the webpage’s URLs. This request has to be done as a separate
http request on runtime. Otherwise, the list of valid nonce would be part of the
source code of the HTML page and therefore unprotected against XSS attacks.
The URLRandomizer object also possesses a privileged method called “go()”
that has the purpose to direct the browser to new URLs. This method is called
by hyperlinks that point to URLs that require randomization:

<a href="#" onclick="URLRandomizer.go(’placeOrder.ext’);">Order</a>

The “go()” method uses the function parameter and the object’s private random-
ization data to generate a URL that includes a valid rnonce. This URL is imme-
diately assigned to the global attribute document.location causing the client’s
web browser to navigate to that URL. Listing 1 shows a sketch of the URL-
Randomizer’s go() function. In this code “validNonces” is a private hashtable
containing the valid randomization data.

� �
this .go = function (path ){

nonce = validNonces [path ];
document.location =

"http ://www.example.org/"+path+"?rnonce="+nonce;
}

� �
Listing 1.1. sketch of the URLRandomizers go() function

Timing aspects: As mentioned above, the URLRandomizer obtains the valid
randomization data from the server by requesting it via http. This leads to
the following requirement: The URL that is used to get this data also has to
be randomized and limited to one time use. It is furthermore important, that
the URLRandomizer object is created early during the HTML parsing process
and that the randomization data is requested on object creation. Otherwise,
malicious JavaScript could examine the source code of the URLRandomizer to
obtain the URL for the randomization data and request it before the legitimate
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object does. As long as the definition and creation of the URLRandomizer object
is the first JavaScript code that is encountered in the parsing process, this kind
of timing attack cannot happen.

Entering the randomized domain: It has to be ensured that the first
webpage, which contains the URLRandomizer object, was not requested by a
potential malicious JavaScript, but by a proper user of the web application.
Therefore, an interactive process that cannot be imitated by a program is re-
quired for the transition. The natural solution for this problem is combining the
changeover to one-time URLs with the web application’s authentication process.
In situations where no authentication takes place CAPTCHA (Completely Au-
tomated Public Turing-Test to Tell Computers and Humans Apart) technology
[23] can be employed for the transition. If no interactive boundary exists between
the realms of static and one-time URLs, a malicious JavaScript would be able to
request the URL of the entry point to the web application and parse its HTML
source code. This way the script is able to acquire the URL that is used by the
URLRandomizer to get the randomization data.

Disadvantages of this approach: The proposed method poses some re-
strictions that break common web browser functionality: Because it is forbidden
to use a random nonce more than once, the web server regards every http re-
quest that includes a invalidated nonce as a potential security breach. Depend-
ing on the security policy such a request may result in the termination of the
authenticated session. Therefore, every usage of the web browser’s “Back” or
“Reload” buttons pose a problem because these buttons cause the web browser
to reload pages with invalid nonces in their URLs. A web application using one-
time URLs should be verbose about these restrictions and provide appropriate
custom “Back” and “Reload” buttons as part of the application’s GUI. It is
also impossible to set bookmarks for URLs that lie in the randomized area of
the web application, as the URL of such a bookmark would contain an invalid
random nonce. Other issues, e.g. the opening of new browser windows, can be
solved using DHTML techniques. Because of the described restrictions, a limita-
tion on the usage of one-time URLs for only security sensitive parts of the web
application may be recommendable.

Alternative solutions: Some of the limitations mentioned above exist be-
cause the proposed URLRandomizer object is implemented in JavaScript. As
described above the separation of two different JavaScript objects running in the
same security context is a complex and limited task. Especially the constraint
that a random nonce can be used only once is due to the described problems. An
alternative approach would be using a technology that can be separated cleanly
from potential malicious JavaScript. There are two technologies that might be
suitable candidates: Java applets [22] and Adobe Flash [1]. Both technologies
have characteristics that suggest that they might be suitable for implementing
the URL randomizing functionality: They provide a runtime in the web browser
for client side code which is separated from the JavaScript runtime, they possess
interfaces to the web browser’s controls, they are able to export functionality to
JavaScript routines and they are widely deployed in today’s web browsers. Before



SessionSafe: Implementing XSS Immune Session Handling 455

implementing such an solution, the security properties of the two technologies
have to be examined closely, especially in respect of the attacker’s capability to
include a malicious Java or Flash object in the attacked web page.

4.3 Subdomain Switching

The underlying fact which is exploited by the attacks described in Section 3.3
is, that webpages with the same origin implicitly trust each other. Because of
this circumstance rogue iframes or background windows are capable of inserting
malicious scripts in pages that would not be vulnerable otherwise. As years of
security research have taught us, implicit trust is seldom a good idea - instead
explicit trust should be the default policy. To remove this implicit trust between
individual webpages that belong to the same web application, we have to en-
sure that no trust relationship between these pages induced by the same-origin
policy exists: As long as the document.domain property for every page differs,
background XSS propagation attacks are impossible.

To achieve this trust removal, we introduce additional subdomains to the web
application. These subdomains are all mapped to the same server scripts. Every
link included into a webpage directs to a URL with a subdomain that differs from
the domain of the containing webpage. For example a webpage loaded from http:
//s1.www.example.org only contains links to http://s2.www.example.org.
Links from s2.www.example.org would go to s3.www... and so on. As a result
every single page possesses a different document.domain value. In cases where a
page A explicitly wants to create a trust relationship to a second page B, pages
A and B can change their document.domain setting to exclude the additional
subdomain.

Tracking subdomain usage: As mentioned above, all added subdomains
map to the same server scripts. Therefore, the URL http://s01.www.example.
org/order.ext points to the same resource as for example the URL http://
s99.www.example.org/order.ext. The subdomains have no semantic function;
they are only used to undermine the implicit trust relationship. If a malicious
script rewrites all URLs in a page to match the script’s document.domain value,
the web application will still function correctly and a background propagation
attack will again be possible. For this reason, the web server has to keep track
which mapping between URLs and subdomains have been assigned to a user’s
session.

Implementation aspects: The implementation of the subdomains is highly
dependent on the application server used. For our implementation we used the
Apache web server [16] which allows the usage of wildcards in the definition of
subdomain names. Consequently, we had unlimited supply of applicable sub-
domain names. This allows the choice between random subdomain names or
incrementing the subdomain identifier (s0001.www links to s0002.www which
links to s0003.www and so on). On application servers that do not offer such an
option and where therefore the number of available subdomain names is limited,
the web application has to be examined closely. It has to be determined how
many subdomains are required and how the mapping between URLs and sub-
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domains should be implemented. These decisions are specific for each respective
web application.

5 Discussion

5.1 Combination of the Methods

Before implementing the countermeasures described in Section 4, the web ap-
plication’s security requirements and environment limitations have to be exam-
ined. A combination of all three proposed methods provides complete protection
against all known session hijacking attacks: The Deferred Loading Process pre-
vents the unauthorized transmission of SID information. Subdomain Switching
limits the impact of XSS vulnerabilities to only the vulnerable pages. Further-
more Browser Hijacking attacks that rely on the attacker’s capability to access
the content of the attack’s http responses are also prevented as the XMLHttpRe-
quest object is bound by the same origin policy: With Subdomain Switching in
effect the attacking script would have to employ iframe or image inclusion to
create the attack’s http request. One-Time URLs prevent all Browser Hijack-
ing attacks. Furthermore Session Riding [20] attacks would also be impossible
as this attack class also relies on the attacker’s prior knowledge of the applica-
tion’s URLs. It is strongly advisable to implement all three methods if possible.
Otherwise, the targeted security advantage might be lost in most scenarios.

5.2 Limitations

As shown above, a combination of the countermeasures protect against the ses-
sion hijacking attacks described in Section 3. However, on the actual vulnerable
page in which the XSS code is included, the script still has some capabilities, e.g
altering the page’s appearance or redirecting form actions. Thus, especially web-
pages that include HTML forms should be inspected thoroughly for potential
weaknesses even if the described techniques were implemented.

The described techniques are not meant to replace input checking and output
sanitation completely. They rather provide an additional layer of protection to
mitigate the consequences of occurring XSS vulnerabilities.

5.3 Transparent Implementation

An implementation of the proposed methods that is transparent to existing web
applications is desirable. Such an implementation would allow to protect legacy
applications without code changes.

Deferred Loading: There are no dependencies between the deferred loading
process and the content of the application’s webpages. Therefore, a transparent
implementation of this method is feasible. It can be realized using an http proxy
positioned before the server scripts: The proxy intercepts all incoming and out-
going http messages. Prior to transferring the request to the actual server scripts,
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Fig. 3. Transparent implementation of the “get cookie” process

the “get cookie” process is executed (see figure 3). Before sending the http re-
sponse to the client, all included cookies are stripped from the response and send
to the client via the “set cookie” process.

One-Time URLs and Subdomain Switching: We only describe the prob-
lems in respect to One-Time URLs. Most of these issues also concern Subdo-
main Switching, while Subdomain Switching does not pose additional difficulties.
A transparent implementation of these methods also would employ proxy like
functionality. All incoming requests are examined whether their URLs are valid,
i.e. contain a valid random nonce. All outgoing HTML data is modified to use
the specified URLs. Implementing such a proxy is difficult because all applica-
tion local URLs have to be rewritten for using the randomizer object. While
standard HTML forms and hyperlinks pose no special challenge, prior existing
JavaScript may be harder to deal with. All JavaScript functions that assign
values to document.location or open new windows have to be located and
modified. Also all existing onclick and onsubmit events have to be rewritten.
Furthermore, HTML code might include external referenced JavaScript libraries,
which have to be processed as well. Because of these problems, a web application
that is protected by such a solution has to be examined and tested thoroughly.
Therefore, an implementation of the proposed methods as a library for hyperlink
and form creation is preferable.

5.4 Future Work

It still has to be specified how the proposed methods can be integrated into
established frameworks and application servers. Such an integration is the pre-
requisite for examinations concerning performance issues and backwards com-
patibility. Recently we finished developing a transparent solution as described in
Section 5.3 for the J2EE framework [24]. This implementation will be the basis
for further investigations .
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6 Related Work

The first line of defense against XSS attacks is input filtering. As long as
JavaScript code is properly stripped from all user provided strings and special
characters are correctly encoded, XSS attacks are impossible. However, imple-
menting correct input filtering is a non-trivial task. For example, in 2005 an XSS
input filter was added to the PHPNuke content management system that still
was vulnerable against numerous known XSS attack vectors [3].

Scott and Sharp [21] describe an application level firewall which is positioned
in front of the web server. The firewall’s ruleset is defined in a specialized security
policy description language. According to this ruleset incoming user data (via
POST, GET and cookie values) are sanitized. Only requests to URLs for which
policies have been defined are passed to the web server. The Sanctum AppShield
Firewall is another server side proxy solution [13]. AppShield executes default
filter operations on all user provided data in order to remove potential XSS at-
tacks. Opposed to Scott and Sharp’s approach, AppShield requires no application
specific configuration which makes it easy to install but less powerful.

Kirda et al. proposed “Noxes”, a client side personal firewall [12]. Noxes pre-
vents XSS induced information leakage, e.g. stealing of cookie data, by selectively
disallowing http requests to resources that do not belong to the web application’s
domain. The firewall’s ruleset is a combination of automatically constructed and
manually configured rules. Noxes does not offer protection against bowser hi-
jacking attacks.

“Taint analysis” is a method for data flow tracking in web applications. All
user controlled data is marked as “tainted”. Only if the data passes sanitizing
functions its status will change to “untainted”. If a web application tries to
include tainted data into a webpage a warning will be generated. Taint analysis
was first introduced by Perl’s taint mode [15]. In 2005 Huang et al. presented
with WEBSSARI a tool that provides static taint analysis for PHP [10].

Microsoft introduced an “http only” option for cookies with their web browser
Internet Explorer 6 SP1 [17]. Cookies that are set with this option are not
accessible by JavaScript and therefore safe against XSS attacks. The http only
option is not standardized and until now there are no plans to do so. It is
therefore uncertain if and when other web browsers will implement support for
this option.

7 Conclusion

In this paper we presented SessionSafe, a combination of three methods that
successfully prohibits all currently known XSS session hijacking attacks.

To achieve this, we classified currently known methods for session hijacking.
Through a systematic examination of the resulting attack classes, we identified
the basic requirements for each of these attack methodologies: SID accessibility
in the case of Session ID Theft, prior knowledge of URLs in the case of Browser
Hijacking and implicit trust between webpages in the case of Background XSS
Propagation.



SessionSafe: Implementing XSS Immune Session Handling 459

There are only two instruments provided by the web browser architecture
that can be used to enforce access restrictions in connection with JavaScript:
The same-origin policy and private members in JavaScript objects. Using the
knowledge gained by the classification, we were able to apply these security
mechanisms to remove the attack classes’ foundations: To undermine the SID
accessibility, the SID is kept in a cookie which belongs to a different subdomain
than the main web application. To achieve this, we developed a deferred load-
ing process which allows to execute the cookie transport while the web page is
still in a trustworthy state. To undermine the pre-knowledge of the application’s
URLs, valid One-Time URLs are hidden inside private members of the URL-
Randomizer JavaScript object. Finally, additional subdomains are introduced
by Subdomain Switching, in order to create a separate security domain for every
single webpage. This measure employs the same-origin policy to limit the im-
pact of XSS attacks to the vulnerable pages only. Consequently, each proposed
countermeasure removes the fundamental necessities of one of the attack classes,
hence disabling it reliably. By preventing session hijacking, a large slice of the
attack surface of XSS can be removed.

The proposed countermeasures do not pose limitations on the development of
web applications and only moderate restrictions on web GUI functionality. They
can be implemented as an integral component of the application server and thus
easily be integrated in the development or deployment process.
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Abstract. While processor based systems often enforce memory pro-
tection to prevent the unintended sharing of data between processes,
current systems built around reconfigurable hardware typically offer no
such protection. Several reconfigurable cores are often integrated onto a
single chip where they share external resources such as memory. While
this enables small form factor and low cost designs, it opens up the op-
portunity for modules to intercept or even interfere with the operation
of one another. We investigate the design and synthesis of a memory
protection mechanism capable of enforcing policies expressed as a formal
language. Our approach includes a specialized compiler that translates
a policy of legal sharing to reconfigurable logic blocks which can be di-
rectly transferred to an FPGA. The efficiency of our access language
design flow is evaluated in terms of area and cycle time across a variety
of security scenarios.

Keywords: Computer Security, Embedded Systems, Reference Moni-
tors, Separation Kernels, Security Policies, Policy Languages.

1 Introduction

Reconfigurable hardware is at the heart of many high performance embedded
systems. Satellites, set-top boxes, electrical power grids, and the Mars Rover all
rely on Field Programmable Gate Arrays (FPGAs) to perform their respective
functions. The bit-level reconfigurability of these devices can be used to imple-
ment highly optimized circuits for everything from encryption to FFT, or even
entire customized processors. Because one device is used for so many different
functions, special-purpose circuits can be developed and deployed at a fraction
of the cost associated with custom fabrication. Furthermore, if the design needs
to be updated, the logic on an FPGA board can even be changed in the field.
These advantages of reconfigurable devices have resulted in their proliferation
into critical systems, yet many of the security primitives which software designers
take for granted are simply nonexistent.

Due to Moore’s law, digital systems today have enough transistors on a sin-
gle chip to implement over 200 separate RISC processors. Increased levels of
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integration are inevitable, and reconfigurable systems are no different. Current
reconfigurable systems-on-chip include diverse elements such as specialized mul-
tiplier units, integrated memory tiles, multiple fully programmable processor
cores, and a sea of reconfigurable gates capable of implementing significant ASIC
or custom data-path functionality. The complexity of these systems and the lack
of separation between different hardware modules has increased the possibil-
ity that security vulnerabilities may surface in one or more components, which
could threaten the entire device. New methods that can provide separation and
security in highly integrated reconfigurable devices are needed.

One of the most critical aspects of separation that needs to be addressed
is in the management of external resources such as off-chip DRAM. While a
processor will typically use virtual memory and TLBs to enforce some form
of memory protection, reconfigurable devices usually operate in the physical
addresses space with no operating system support. Lacking these mechanisms,
any hardware module can read or write to the memory of any other module at
any time, whether purposefully, accidentally, or maliciously. This situation calls
for a memory access policy that all modules on chip must obey. In this paper we
present a method that utilizes the reconfigurable nature of field programmable
devices to provide a mechanism to enforce such a policy.

In the context of this paper, a memory access policy is a formal descrip-
tion that establishes what accesses to memory are legal and which are not. Our
method rests on the ability to formally describe the access policy using a special-
ized language. We present a set of tools through which the policy description can
be automatically transformed and directly synthesized to a circuit. This circuit,
represented as a bit-stream, can then be loaded into a reconfigurable hardware
module and used as an execution monitor to analyze memory accesses and en-
force the policy.

The techniques presented in this paper are steps towards a cohesive method-
ology for those seeking to build reconfigurable systems with modules acting at
different security clearance levels on a single chip. In order for such a method-
ology to be adopted by the embedded design community it is critical that the
resulting hardware is both high performance and low overhead. Furthermore, it
is important that our methods are both formally grounded and yet understand-
able to those outside the security discipline. Throughout this paper we strive
to strike a balance between engineering and formal evaluation. Specifically, this
paper makes the following contributions:

– We specify a memory access policy language, based on formal regular lan-
guages, which expresses the set of legal accesses and allowed policy
transitions.

– We demonstrate how our language can express classical security scenarios,
such as compartmentalization, secure hand-offs, Chinese walls, access control
lists and an example of redaction.

– We present a policy compiler that translates an access policy described in
this language into a synthesizable hardware module.
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– We evaluate the effectiveness and efficiency of this novel enforcement mecha-
nism by synthesizing several policies down to a modern FPGA and analyzing
the area and performance.

2 Reconfigurable Systems

Increasingly we are seeing reconfigurable devices emerge as the flexible and high-
performance workhorses inside a variety of high performance embedded com-
puting systems [4,6,8,15,20,29]. The power of reconfigurable systems lies in the
immense amount of flexibility that is provided. Designs can be customized down
to the level of individual bits and logic gates. They combine the post-fabrication
programmability of software running on a general purpose processor with the
spatial computational style most commonly employed in hardware designs [8].
Reconfigurable systems use programmability and regularity to create a flexible
computing fabric that can lower design costs, reduce system complexity, and
decrease time to market, while achieving 100x performance gain per unit sili-
con as compared to a similar microprocessor [5,7,33]. The growing popularity
of reconfigurable logic has forced practitioners to start to consider the security
implications, yet the resource constrained nature of embedded systems is a chal-
lenge to providing a high level of security [16]. To provide a security technique
that can be used in practice, it must be both robust and efficient.

Protecting Memory on an FPGA. A successful run-time management sys-
tem must protect different logical modules from interfering, intercepting, or cor-
rupting any use of a shared resource. On an embedded system, the primary re-
source of concern is memory. Whether it is on-chip block RAM, off-chip DRAM,
or backing-store such as Flash, a serious issue in the design of any high perfor-
mance secure system is the allocation and reallocation of memory in a way that
is efficient, flexible, and protected. On a high performance processor, security
domains may be enforced through the use of a page table. Superpages, which
are very large memory pages, can also be used to provide memory protection,
and their large size makes it possible for the TLB to have a lower miss rate [22].
Segmented Memory [27] and Mondrian Memory Protection [35], a finer-grained
scheme, address the inefficiency of providing memory protection at the granular-
ity of a page (or a superpage) by allowing different protection domains to have
different permissions on the same memory region.

While a TLB may be used to speed up page table accesses, this requires addi-
tional associative memory (not available on FPGAs) and greatly decreases the
performance of the system in the worst case. Therefore, few embedded proces-
sors and even fewer reconfigurable devices support even this most basic method
of protection. Instead, reconfigurable architectures on the market today sup-
port a simple linear addressing scheme that exactly mirrors the physical mem-
ory. Hence, on a modern FPGA the memory is essentially flat and
unprotected.

Preventing unauthorized accesses to memory is fundamental to both effective
debugging and computer security. Even if the system is not under attack, many
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of the most insidious bugs are a result of errant memory accesses which affect
multiple sub-systems. Ensuring protection and separation of memory when mul-
tiple concurrent logic modules are active requires a new mechanism to ensure
that the security properties of the system are enforced.

To provide separation in memory between multiple different interacting mod-
ules, we adapt some of the key concepts from separation kernels. Rushby origi-
nally proposed that a separation kernel [12] [18] [24] [25] creates within a single
shared machine an environment which supports the various components of the
system, and it provides the communication channels between them in such a
way that individual components of the system cannot distinguish this shared
environment from a physically distributed one. A separation kernel divides all
resources under its control into blocks such that the actions of a subject in
one block are isolated from (viz., cannot be detected by or communicated to) a
subject in another block, unless an explicit means for that communication has
been established. For a multilevel secure system, each block typically represents
a different classification level. Unfortunately, separation kernels have high over-
head and complexity due to the need to implement software virtualization, and
the design complexity of modern out-of-order CPUs makes it difficult to imple-
ment separation kernels with a verifiable level of trust. A solution is needed
that is located somewhere along a continuum between the two extremes of
physical separation and software separation in order to have the best of both
worlds.

We propose that the reconfigurable nature of FPGAs offers a new method by
which the fine grain control of access to off-chip memory is possible. By build-
ing a specialized circuit that recognizes a language of legal accesses, and then
by realizing that circuit directly onto the reconfigurable device as a specialized
state machine, every memory access can be checked with only a small addi-
tional latency. Although incorporating the enforcement module into a separate
hardware module would lessen the impact of covert channel attacks, this would
introduce additional latency. We describe techniques we are working on to isolate
the enforcement module in Section 5.2.

3 Policy Description and Synthesis

While reconfigurable systems typically do not have traditional memory protec-
tion enforcement mechanisms, the programmable nature of the devices means
that we can build whatever mechanisms we need as long as they can be im-
plemented efficiently. In fact, we exploit the fine grain re-programmability of
FPGAs to provide word-level stateful memory protection by implementing a
compiler that can translate a memory access policy directly into a circuit. The
enforcement mechanisms generated by our compiler will help prevent a corrupted
module or processor from compromising other modules on the FPGA with which
it shares memory.
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We begin with an explanation of our memory access policies, and we describe
how a policy can be expressed and then compiled down to a synthesizable mod-
ule. In this section we explain both the high level policy description and the
automated sequence of steps, or design flow, for converting a memory access
policy into a hardware enforcement module.

3.1 Memory Access Policy

Once a high level policy is developed based on the requirements of the system
and the organizational security policy [32], it must be expressed in a concrete
form to allow engineers to build enforcement mechanisms. In the context of this
paper we concentrate on policies as they relate to memory accesses. In particular,
the enforcement mechanisms we consider in this paper belong to the Execution
Monitoring (EM) class [30], which monitor the execution of a target, which in our
case is one or more modules on the FPGA. An execution monitor must be able to
monitor all memory accesses and able to halt or block the execution of the target
if it attempts to violate the security policy. Allowing a misbehaving module to
continue executing might let it use the state of the enforcement mechanism as a
covert channel. In addition, all modules must be isolated from the enforcement
mechanism so that they cannot interfere with the DFA transitions. We discuss
techniques for module isolation in Section 5.2. The enforcement mechanism is
also a Reference Validation Mechanism (RVM) [3]. Although Erlingsson et al.
have proposed the idea of merging the reference monitor in-line with the target
system [9], in a system with multiple interacting cores, this approach has the
drawback that the reference monitors are distributed, which is problematic for
stateful policies. Although there exist security policies that execution monitors
are incapable of enforcing, such as information flow policies [26], we argue that
in the future our execution monitors could be combined with static analysis
techniques to enforce a more broad range of policies if required. We therefore
begin by describing a well defined method for describing memory access policies.

The goal of our memory access policy description is to precisely describe the
set of legal memory access patterns, specifically those that can be recognized
by an execution monitor capable of tracking address ranges of arbitrary size.
Furthermore, it should be possible to describe complex behaviors such as sharing,
exclusivity, and atomicity, in an understandable fashion. An engineer can then
write a policy description in our input form (as a series of productions) and
have it transformed automatically to an extended type of regular expression. By
extending regular languages to fit our needs we can have a human-readable input
format, and we can build off of theoretical contributions which have created a
path to state machines and hardware [1].

There are three pieces of information that we will incorporate into our ex-
ecution monitor. The Accessing Modules (M) are the unique identifiers for a
specific principal on the chip, such as a specific intellectual property core or one
of the on-chip processors. Throughout this paper we simply refer to these units
of separation of the FPGA as Modules. The Access Methods (A) are typically
Read and Write, but may include special memory operators such as zeroing or
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incrementing if required. The set P is a partitioning of physical memory into
ranges. The Memory Range Specifier (R in P ) describes a physical address or
set of physical addresses to which a specific permission can be assigned. Our
language describes an access policy through a sequence of productions, which
specify the relationship between principals ( M : modules ), access rights ( A:
read, write, etc.), and objects ( R: memory ranges1).

The terminals of the language are memory accesses descriptors which ascribe
a specific right to a specific module for a specific object for the duration of the
next memory access. Formally, the terminals of the productions are tuples of the
form (M, A,R), and the universe of tuples forms an alphabet Σ = M×A×R. The
memory access policy description precisely defines a formal language L ⊆ Σ∗
which is almost always infinite (unless the device only supports a fixed number
of accesses). L needs to satisfy the property that ∀xt | t ∈ Σ, xt ∈ L : x ∈ L.
This has the effect that any legal access pattern will be incrementally recognized
as legal along the way.

One thing to note is that memory accesses refer to a specific memory address,
while memory access descriptors are defined over the set of all memory ranges
R. A memory access (M, A, k), where k is a particular address, is contained in
a memory access descriptor (M ′, A′, R) iff M = M ′, A = A′, and Rlow ≤ k ≤
Rhigh. A sequence of memory accesses a = a0, a1, ..., an is said to be legal iff
∃s = s0, s1, ..., sn ∈ L s.t. ∀0≤i≤n si contains ai. In order to turn this into an
enforceable method we need two things.

1. A method by which L can be precisely defined
2. An automatically created circuit which recognizes memory access sequences

that are legal under L

We begin with a description of the first item through the use of a simple
example. Consider a very straightforward compartmentalization policy. Module1
is only allowed to access memory in the range of [0x8e7b008,0x8e7b00f], and
Module2 is only allowed to access memory in the range of [0x8e7b018,0x8e7b01b].
Figure 2 shows this memory access policy expressed as a set of productions.

Each of these productions is a re-writing rule as in a standard grammar. The
non-terminal Policy is the start symbol of the grammar and defines the overall
access policy. Note that Policy is essentially a regular expression that describes
L. Through the use of a grammar we allow the hierarchical composition of more
complex policies. In this case Access1 and Access2 are simple access descriptors,
but in general they could be more complex expressions that recognize a set of
legal memory access.

Since we eventually want to compile the access policy to hardware, we limit
our language to constructs with computational power no greater than a regu-
lar expression [19] with the added ability to detect ranges. Although a regular
language must have a type-3 grammar in the Chomsky hierarchy, it is inconve-
nient for security administrators to express policies in right-linear or left-linear
form. Since a language can be recognized by many grammars, any grammar that
1 An interval of the address space including high (Rhigh) and low (Rlow) bounds.
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can be transformed into type-3 form is acceptable. This transformation can be
accomplished by extracting first terminals from non-terminals.

Note that the atomic unit of enforcement is an address range, and that the
ranges are of arbitrary size. The smallest granularity that we enforce currently
is at the word boundary, and we can support any sized range from a single word
to the entire address space. There is no reason that ranges have to be of the
same size or even close, unlike pages. We will later show how this ability can be
used to set up special control words that help in securely coordinating between
modules.

Although we are restricted to policies that are equivalent to a finite automata
with range checking, we have constructed many example policies including com-
partmentalization and Chinese wall in order to demonstrate the versatility and
efficiency of our approach. In Section 4.4 we describe a “redaction policy,” in
which modules with multiple security clearance levels are interacting within a
single embedded system. However, now that we have introduced our memory
access policy specification language, we describe how it can be transformed au-
tomatically to an efficient circuit for implementation on an FPGA.

3.2 Hardware Synthesis

We have developed a policy compiler that converts an access policy, as described
above, into a circuit that can be loaded onto an FPGA to serve as the enforce-
ment module. At a high level the technique partitions the module into two parts,
range discovery and language recognition.

3.3 Design Flow Details

Access Policy – To describe the process of transforming a policy to a circuit,
we consider a simple compartmentalization policy with two modules, which can
only access their own single range:

Access → {Module1,rw,Range1} | {Module2,rw,Range2};
Policy → (Access)*;

Building and Transforming a Parse Tree – Next, we use Lex [17] and Yacc [14]
to build a parse tree from our security policy. Internal nodes represent operators
such as concatenation, alternation, and repetition. Figure 1 shows the parse tree
for our example policy.

We must then transform the parse tree into a large single production with
no non-terminals on the right hand side, from which we can generate a regular
expression. This process of macro expansion requires an iterative replacement of
all the non-terminals in the policy. We apply the productions to the parse tree
by substituting the left hand side of each production with its right hand side.
Figure 1 shows the transformed parse tree for our policy.

Building the Regular Expression – Next, we find the subtree corresponding to
Policy and traverse this subtree to obtain the regular expression. By this stage
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Fig. 1. Our policy compiler translates the policy to a regular expression by building,
transforming, and traversing a parse tree. From the regular expression, an NFA is
constructed, which is then converted into a minimized DFA.

we have completely eliminated all of the non-terminals, and we are left with a
single regular expression which can then be converted to an NFA. The regular
expression for our access policy is: (({Module1, rw, Range1}) | ({Module2, rw,
Range2}))*.

Constructing the NFA – Once the regular expression has been formed, an NFA
can be constructed from this regular expression using Thompson’s Algorithm
[1]. Figure 1 shows the NFA for our policy.

Converting the NFA to a DFA – From this NFA we can construct a DFA through
subset construction [1]. Following the creation of the DFA, we apply Hopcroft’s
Partitioning Algorithm [1] as implemented by Grail [23] to minimize the DFA.
Figure 1 shows the minimized DFA for our policy on the right.

Processing the Ranges – Before we can convert the DFA into Verilog, we must
perform some processing on the ranges so that the circuit can efficiently deter-
mine which range contains a given address. Our system converts the ranges to
an internal format using don’t care bits. For example, 10XX can be 1000, 1001,
1010, or 1011, which is the range [8,11]. Hardware can be easily synthesized to
check if an address is within a particular range by performing a bit-wise XOR on
just the significant bits.2 Using this optimization, any aligned power of two range
can be efficiently described, and any non-power of two range can be converted
into a covering set of O(log2 |range|) power of two ranges. For example the range
[7,12] (0111, 1000, 1001, 1010, 1011, 1100) is not an aligned power of two range
but can be converted to a set of aligned power of two ranges: {[7,7],[8,11],[12,12]}
(or equivalently {0111|10XX|1100}).

Converting the DFA to Verilog – Because state machines are a very common
hardware primitive, there are well-established methods of translating a descrip-
2 This is equivalent to performing a bit-wise XOR, masking the lower bits, and testing

for non-zero except that in hardware the masking is unnecessary.
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tion of state transitions into a hardware description language such as Verilog.
Figure 3 shows the hardware module we wish to build. There are three inputs:
the module ID, the op {read, write, etc.}, and the address. The output is a single
bit: 1 for grant and 0 for deny. The DFA transitions are the concatenation of
the module ID, op, and a range ID bit vector. The range ID bit vector contains
one bit for each range ID in the policy. The hardware will check all the
ranges in parallel and set to 1 the bit corresponding to the range ID
that contains the input address. If there is no transition for an input char-
acter, the machine always transitions to the rejecting state, which is a “dummy”
sink state. This is important for security because an attacker might try to insert
illegal characters into the input.

State Machine Synthesis. The final step in the design flow is the actual conver-
sion of Verilog code to a bit-stream that can be loaded onto an FPGA. Using
the Quartus tools from Altera, which does synthesis, optimization, and place-
and-route, we turn each machine into an actual implementation. After testing
the circuit to verify that it accepts a sample of valid accesses and rejects invalid
accesses, we are ready to measure the area and cycle time of our design.

4 Example Applications

To further demonstrate the usefulness of our language, we use it to express sev-
eral different policies. We have already demonstrated how to compartmentalize
access to different modules, and it is trivial to extend the above policy to in-
clude overlapping ranges, shared regions, and most any static policy. The true

Class1  Module1 | Module2;

Class2  Module3 | Module4;

List1  Class1 | Class2;

List2  Class2;

Access1  {List1, r w, Range1} ;

Access2  {List2, r w, Range2} ;

Pol i cy  (Access1 | Access2) *;

Access Control:

Module1|2  Module1 | Module2;

Access1  { Module1, r w, Range1} | {Module1|2, r w, Range2} ;

Access2  { Module2, r w, (Range1|Range2)} ;

Tr igger  { Module1, r w, Range2} ;

Pol i cy  (Access1*) (  | Tr igger (Access2  )*);

Secure Hand-Off:

rw  r | w;

Range1  [0x8e7b008,0x8e7b00f ];

Range2  [0x8e7b018,0x8e7b01b];

Access1  { Module1, r w, Range1} ;

Access2  { Module2, r w, Range2} ;

Pol i cy  (Access1 | Access2)* ;

Access1  { Module1, r w, (Range1 | Range3)}* ;

Access2  { Module1, r w, (Range1 | Range4)}* ;

Access3  { Module1, r w, (Range2 | Range3)}* ;

Access4  { Module1, r w, (Range2 | Range4)}* ;

Pol i cy  Access1 | Access2 | Access3 | Access4;

rw  r | w;

Access2  { Module1, r w, Range1} | {Module1, r, Range3} | { Module2, r w, Range2} | {Module2, w, Range4} | { Module3, r w, Range3} ;

Access1  { Module2, r, Range3} | Access2;

Tr igger  { Module1, w, Range4} ;

Clear  { Module3, z, Range3} ;

SteadyState  (Access2 | Clear Access1* Tr igger )* ;

Pol i cy   | Access1 | Access1* Tr igger SteadyState | Access1 * Tr igger SteadyState Clear Access1* ;

Redaction:

Compartmentalization:

Chinese Wall:

 *

Fig. 2. Several example policies expressed in our language
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power of our system comes from the description of stateful policies that involve
revocation or conditional access. In particular we demonstrate how data may be
securely handed off between modules, and we also show the Chinese wall policy.
Before we do that let us first discuss another more traditional example: access
control lists.

4.1 Access Control List

A secure system that employs access control lists will associate every object in the
system with a list of principals along with the rights of each principal to access the
object. For example, suppose our system has two objects, Range1 and Range2.
Class1 is a class of principals (Module1 and Module2), and Class2 is another
class of principals (Module3 and Module4). Either Class1 or Class2 may access
Range1, but only Class2 may access Range2. Figure 2 shows this policy.

In general, since access control list policies are stateless, the resulting DFA
will have one state, and the number of transitions will be the sum of the number
of principals that may access each object. In this example, Module1, Module2,
Module3, and Module4 may access Range1, and Module3 and Module4 may
access Range2. The total number of transitions in this example is 4+2=6.

4.2 Secure Hand-Off

Many protocols require the ability to securely hand-off information from one
party to another. Embedded systems often implement these protocols, and our
language makes these transfers possible. Rather than requiring large communi-
cation buffers or multiple copies of the data, we can simply transfer the control
of a specified range of data from one module to the next. For example, suppose
Module1 wants to securely hand-off some data to Module2. Module1 writes some
data to memory, to which it must have exclusive access, and then Module2 reads
the data from memory. Rather than communicating the data, an access policy
can be compiled that will allow the critical transition of permissions in synchro-
nization with the hand-off. Using formal languages to express security policies
makes such a temporal hand-off possible.

After a certain trigger event occurs, it is possible to revoke the permissions
of a module so that it may no longer access one or more ranges. Consider the
example policy in Figure 2. At first, Module1 can access Range1 or Range2, and
Module2 can access Range2. However, the first time Module1 accesses Range2
(indicating that Module1 is ready to hand off), Access1 is deactivated by this
trigger event, revoking the permissions for Module1 from both Ranges. As a
result of the trigger, Module2 has exclusive access to Range1 and Range2.

4.3 Chinese Wall

Another security scenario that can be efficiently expressed using a policy lan-
guage is the Chinese wall. Consider an example of this scenario, in which a lawyer
who looks at the set of documents of Company1 should not view the set of files
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of Company2 if Company1 and Company2 are in the same conflict-of-interest
class. This lawyer may also view the files of Company3 provided that Company3
belongs to a different conflict-of-interest class than Company1 and Company2.
Figure 2 shows a Chinese wall security policy expressed in our language. There
are two conflict-of-interest classes. One contains Range1 and Range2, and the
other contains Range3 and Range4. For simplicity, we have restricted this policy
to one module.

In general, for Chinese wall security policies, the number of states scales ex-
ponentially in the number of conflict-of-interest classes. This occurs because the
number of possible legal accesses is the product of the number of sets in each
conflict-of-interest class. The number of transitions also scales exponentially in
the number of classes for the same reason. Fortunately, the number of states
scales linearly in both the number of sets and the number of modules. Even bet-
ter, the number of states is not affected by the number of ranges. The number
of transitions scales linearly in the number of sets, ranges, and modules.

4.4 Redaction

Our security language can also be used to enforce instances of redaction [28], even
at very high throughputs (such as for video). Military hardware such as avionics
[34] may contain components with different clearance levels, and a component
with a top secret clearance must not leak sensitive information to a component
with a lower clearance [31]. Figure 5 shows the architecture of a redaction sce-
nario that is based on separation. A multilevel database contains both Top Secret
and Unclassified data. Module1 has a top secret (TS) clearance, but Module2
has an unclassified (U) clearance. Module1 and Module2 are initially compart-
mentalized, since they have different clearance levels. Therefore, Range1 belongs
to Module1, and Range2 belongs to Module2. Module3 acts as a trusted server
of information contained in the database, and this server must have a security
label range from U to TS. Range3 is temporary storage used for holding infor-
mation that has just been retrieved from the database by the trusted server.
Range4 (the control word) is used for performing database queries: a module
writes to Range4 to request that Module3 retrieve some information from the
database and then write the query result to temporary storage. Any database
query performed by Module2 must have all TS data redacted by the trusted
server. If a request is made by Module1 for top secret information, it is neces-
sary to revoke Module2’s read access to the temporary storage, and this access
must not be reinstated until the trusted server zeroes out the sensitive informa-
tion contained in temporary storage. Figure 2 shows our redaction policy, and
Figure 4 shows the DFA that recognizes this policy. State 1 corresponds to a less
restrictive mode (Access1), and State 0 corresponds to a more restrictive mode
(Access2). The Trigger event causes the state machine to transition from State
1 to State 0, and the Clear event causes the machine to transition from State 0
to State 1. In general, the DFA for a redaction policy will have one state for each
access mode. For example, if we have three different modules that each have a
different clearance level, there will be three access modes and three states.
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Fig. 5. A redaction architecture. IP stands for Intellectual Property.

5 Integration and Evaluation

Now that we have described several different memory access policies that could
be enforced using a stateful monitor, we need to demonstrate that such systems
could be efficiently realized on reconfigurable hardware.

5.1 Enforcement Architecture

The placement of the enforcement mechanism can have a significant impact on
the performance of the memory system. Figure 6 shows two architectures for
the enforcement mechanism which assumes that modules on the FPGA can only
access shared memory via the bus. In the figure on the left, the enforcement
mechanism (E) sits between the memory and the bus, which means that every
access must pass through the enforcement mechanism before going to memory. In
the case of a read, the request cannot proceed to memory until the enforcement
mechanism approves the access. This results in a large delay which is the sum of
the time to determine the legality of the access and the memory latency. We can
mitigate this problem by having the enforcement mechanism snoop on the bus or
through the use of various caching mechanisms for keeping track of accesses that
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have already been approved. This scenario is shown in the figure on the right. In
the case of a read, the request is sent to memory, and the memory access occurs
in parallel with the task of determining the legality of the read. A buffer (B)
holds the data until the enforcement mechanism grants approval, at which time
the data is sent across the bus. In the case of a write, the data to be written is
stored in the buffer until the enforcement mechanism grants approval, at which
time the write request is sent to memory. Thus, both architectures provide to the
enforcement mechanism the isolation and omnipotence required of a reference
or execution monitor.

Since a module may be sending sensitive data over the bus, it is necessary to
prevent other modules from accessing the bus at the same time. We address this
problem by placing an arbiter between each module and the bus. In a system
with two modules, the arbiters will allow one module to access the bus on even
clock cycles and the other module to access the bus on odd clock cycles.

BusBus

MM M

E B

11 M22

E

MEMMEM

Arbiter Arbiter Arbiter Arbiter

Fig. 6. Two alternative architectures for
the enforcement mechanism
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Fig. 7. DFA Transitions versus number of
ranges for compartmentalization

5.2 Isolation of the Reference Monitor

It is critical that the reference module be isolated from other modules on the
FPGA. Ensuring the physical separation of the modules entails distributing the
computation spatially. We are working on methods to ensure that modules are
placed in separate spatial areas and that there are no extraneous connections
between the modules. Although we are working on addressing this problem by
developing techniques that work at the gate level, this work is beyond the scope
of this paper. In our attack model, there may be malicious modules or remote
attacks that originate from the network, but we assume that the attacker does
not have physical access to the device.

5.3 Evaluation

Of the different policies we discussed in Section 4, we focus primarily on char-
acterizing compartmentalization as this isolates the effect of range detection on
system efficiency. Rather than tying our results to the particular reconfigurable
system prototype we are developing, we quantify the results of our design flow on
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a randomly generated set of ranges over which we enforce compartmentalization.
The range matching constitutes the majority of the hardware complexity (as-
suming there are a large number of ranges), and there has already been a great
deal of work in the CAD community on efficient state machine synthesis [21].

To obtain data detailing the timing and resource usage of our range match-
ing state machines, we ran the memory access policy description through our
front-end and synthesized3 the results with Quartus II 4.2 [2]. Compilations are
optimized for the target FPGA device (Altera Stratix EPS1S10F484C5), which
has 10,570 available logic cells, and Quartus will utilize as many of these cells
as possible.

5.4 Synthesis Results

In general, a DFA for a compartmentalization policy always has exactly one state,
and there is one transition for each {ModuleID,op,RangeID} tuple. Figure 7
shows that there is a linear relationship between the number of transitions and
the number of ranges.

Figure 8 shows that the area of the resulting circuit scales linearly with the
number of ranges for the compartmentalization policy. The slope is approxi-
mately four logic cells for every range. Figure 9 shows the cycle time (Tclock) for
machines of various sizes, and Figure 10 shows the setup time (Tsu), which is
primarily the time to determine the range to which the input address belongs.
Tclock is primarily the time for one DFA transition, and it is very close to the
maximum frequency of this particular Altera Stratix device. Although Tclock is
relatively stable, Tsu increases linearly with the number of ranges. Fortunately,
Tsu can be reduced by pipelining the circuitry that determines what range con-
tains the input address.

Figure 11 shows the area of the circuits resulting from the example policies
presented in this paper. These circuits are much smaller in area than the series of
compartmentalization circuits above because the example policies have very few
ranges. The complexity of the circuit is a combination of the number of ranges
and the number of DFA states and transitions. Since the circuit for the Chinese
wall policy has the most states, transitions, and ranges, it has the greatest area,
followed by redaction, secure hand-off, access control list, and compartmental-
ization. Figure 12 shows that the cycle time is greatest for redaction, followed
by compartmentalization, Chinese wall, secure hand-off, and access control list.
Figure 13 shows that the setup time is greatest for redaction, followed by Chinese
wall, compartmentalization, access control list, and secure hand-off.

5.5 Impact of the Reference Monitor on System Performance

FPGAs do not operate at high frequency. Since they operate at a lower fre-
quency, they achieve their performance from spatial parallelism. FPGA appli-
cations such as DSPs, signal processing, and intrusion detection systems are
3 The back-end handles netlist creation, placement, routing, and optimization for both

timing and area.
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Fig. 8. Circuit area versus
number of ranges. There is
a nearly linear relationship
between the circuit area
and the number of ranges.

0

1

2

3

4

5

6

7

8

0 100 200 300 400 500 600 700

Number of Ranges

C
y

c
le

 T
im

e
 (

n
s

)

 

Fig. 9. Cycle time versus
number of ranges. There is
a nearly constant relation-
ship between the cycle time
and the number of ranges.
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Fig. 10. Setup time versus
number of ranges. There is
a nearly linear relationship
between the setup time and
the number of ranges.
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Fig. 11. Circuit area ver-
sus access policy. The area
is related to the number
of states, transitions, and
ranges. The circuit area is
greatest for the Chinese
wall policy.
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Fig. 12. Cycle time for
each access policy. Cy-
cle time is greatest for
redaction, followed by com-
partmentalization, Chinese
wall, secure hand-off, and
access control list.
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Fig. 13. Setup time for
each access policy. Setup
time is greatest for redac-
tion, followed by Chinese
wall, compartmentaliza-
tion, access control list,
and secure hand-off.

throughput-driven and therefore are latency-insensitive. These applications are
designed using careful scheduling and pipelining techniques. For these reasons,
we argue that our technique does not impact the performance significantly. For
example, since an FPGA operating at 200MHz will have a cycle time of 5ns, our
reference monitor only adds at most a two cycle delay in this case.

6 Conclusions

Reconfigurable systems are blurring the line between hardware and software,
and they represent a large and growing market. Due to the increased use of
reconfigurable logic in mission-critical applications, a new set of synthesizable
security techniques is needed to prevent improper memory sharing and to con-
tain memory bugs in these physically addressed embedded systems. We have
demonstrated a method and language for specifying access policies that can be
used as both a description of legal access patterns and as an input specification
for direct synthesis to a reconfigurable logic module. Our architecture ensures
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that the policy module is invoked for every memory access, and we are cur-
rently developing gate-level techniques to ensure the physical isolation of the
policy module.

The formal access policy language provides a convenient and precise way to
describe the fine-grained memory separation of modules on an FPGA. The flex-
ibility of our language allows modules to communicate with each other securely
by precisely transferring the privilege to access a buffer from one module to
another. We have used our policy compiler to translate a variety of security
policies to hardware enforcement modules, and we have analyzed the area and
performance of these circuits. Our synthesis data show that the enforcement
module is both efficient and scalable in the number of ranges that must be rec-
ognized. In addition to the reconfigurable domain, our methods can be applied
to systems-on-a-chip as part of a more general scheme.

Since usability is fundamental to system security [13] [11], we plan to pro-
vide an incremental method of constructing mathematically precise policies by
building on the policy engineering work of Fong et al. [10]. In a correctly formed
policy, there should be no intersection between legal and illegal behavior. Our
tools will allow a policy engineer to check whether there is any conflict between
a policy under construction that specifies legal behavior and a specific instance
of behavior that is known to be illegal. If a conflict exists, the tool will inform
the policy engineer of the exact problem that needs to be fixed.
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Abstract. Data confidentiality is a major concern in database systems. Encryp-
tion is a useful tool for protecting the confidentiality of sensitive data. However,
when data is encrypted, performing queries becomes more challenging. In this pa-
per, we study efficient and provably secure methods for queries on encrypted data
stored in an outsourced database that may be susceptible to compromise. Specifi-
cally, we show that, in our system, even if an intruder breaks into the database and
observes some interactions between the database and its users, he only learns very
little about the data stored in the database and the queries performed on the data.

Our work consists of several components. First, we consider databases in
which each attribute has a finite domain and give a basic solution for certain
kinds of queries on such databases. Then, we present two enhanced solutions,
one with a stronger security guarantee and the other with accelerated queries. In
addition to providing proofs of our security guarantees, we provide empirical per-
formance evaluations. Our experiments demonstrate that our solutions are fast on
large-sized real data.

1 Introduction

As anyone who reads newspapers is aware, there have been a staggering number of data
breaches reported in the last two years. Some of the largest of these revealed sensitive
information of millions of individuals. For example, in June 2005, names and credit
card numbers of more than 40 million MasterCard cardholders were exposed [12]. In
May 2006, disks containing the names, social security numbers, and dates of birth of
more than 26 million United States veterans were stolen from the home of an employee
of the Department of Veterans Affairs [29]. In the wrong hands, this kind of sensitive
information can be to carry out identity theft and other fraudulent activities that harm
the individuals involved and have a large cost to society.

Techniques such as access control, intrusion detection, and policies about how data
is to be used attempt to prevent such thefts and intrusion. However, existing techniques
cannot ensure that a database is fully immune to intrusion and unauthorized access.

Encryption is a well-studied technique to protect sensitive data [13] so that even if
a database is compromised by an intruder, data remains protected even in the event
that a database is successfully attacked or stolen. Provided that the encryption is done
properly and the decryption keys are not also accessible to the attacker, encryption can
provide protection to the individuals whose sensitive data is stored in the databases,
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reduce the legal liability of the data owners, and reduce the cost to society of fraud and
identity theft.

While encrypting the data provides important protection, encrypted data is much less
convenient to use encrypted data than to use cleartext data. Specifically, in a database
that stores encrypted data, how can queries be processed? If a database user fully trusts
the database server, she can simply send the encryption key to the database server to-
gether with her query. However, because the database may be compromised at some
point during such an interaction, revealing the key to the database server is at the risk of
leaking all sensitive data to an intruder. Theoretically, if efficiency was not a concern, a
user could retrieve all encrypted tables from the database, decrypt the tables, and then
perform queries on the cleartext tables. However, this is clearly impractical when we
take efficiency into consideration.

In this paper, we investigate efficient methods for processing queries on encrypted
data in such a way that the data remains secure even if the database server may be com-
promised at some point by an intruder. Such methods are very useful in strengthening
the protection of sensitive data in databases.

1.1 Related Work

Various methods have been proposed recently for securing databases in various set-
tings [7,27,30,22,25,21]. In particular, encryption is an important technique to protect
sensitive data [13]. An analysis of how to encrypt and securely store data in relational
database management systems has been given in [24]. Recognizing the importance of
encryption techniques, some database vendors have included encryption functionality in
their products [1,2]. By considering different privacy policies for different data records,
Hippocratic databases, which combine privacy policies with sensitive data, are very
useful in preventing unauthorized users from accessing sensitive data [3].

With data stored in an encrypted form, a crucial question is how to perform queries.
Hacigumus et al. [19] studied querying encrypted data in the database-as-service (DAS)
model where sensitive data is outsourced to an untrusted server [20]. Their solution
divides attribute domains into partitions and maps partitions ids to random numbers
to achieve privacy. This idea is simple, practical, and elegant. However, it relies on
an implicit tradeoff between privacy and efficiency. Specifically, if the partitions are
larger, then less information is leaked, but the database server needs to send more false
positives (i.e., data that should not have been in the results of queries) to the user. If
the partitions are smaller, then the database server needs to send fewer false positives,
but more information is leaked. (This issue is further explored in [23].) Furthermore,
no precise quantifications are given of either of the information leak relative to the
size of partitions or of the amount of communication overhead. In comparison, the
solutions we provide in this paper do not have such a tradeoff; our solutions enjoy
strong privacy without wasting communication resources on false positives; our security
guarantee is precisely quantified using a cryptographic measure. Another issue is that,
although the partition ids in [19] can be used for indexing to speed up queries, such an
index can incur inference and linking attacks as is pointed out in [11]. In comparison,
our solution in Section 5 speeds up queries using metadata without introducing any
additional information leakage.
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Agrawal et al. [4] propose a solution for range queries on numerical data that allows
convenient indexing. Their solution is built on an encoding that preserves the order of
the numerical data in each column. Consequently, if a database intruder observes the
encrypted data, he learns the order of all cells in every column, which is a significant
amount of information. They give no rigorous analysis quantifying the information leak
of their solution. In comparison, in this paper we show that our solutions reveal only a
small amount (as quantified in later sections) of information to a potential intruder.

In the scenario considered in [4,24], the adversary is modeled to have access to the
data storage and has no access to the transmitted messages between the users and the
database. In the setting of DAS model [19], since the database server is untrusted, the
server itself is a potential adversary who tries to breach the data privacy. The server has
access to all encrypted data and all the transmitted messages between the users and the
server. In this sense, the server has the strongest power to breach data privacy. In com-
parison, we model that the adversary can have access to all encrypted data in the server,
and he also can monitor some transmitted messages (up to t queries) between the server
and the users. We give the details of the attack (or adversary) model in Section 2.1, and
we also prove the security properties of our solutions under the adversary model.

The study of “search on encrypted data” is closely related to our work. Specifically,
Song, Wagner, and Perrig [28] propose practical techniques for finding keywords in en-
crypted files, which allow a user, when given a trapdoor for a keyword, to check the
existence of the key word in a file. But their solution needs to scan the entire file se-
quentially and no provably secure index technique is provided. A follow-up by Chang
and Mitzenmacher [9] has interesting analysis but their solution is restricted to search-
ing for a keyword chosen from a pre-determined set. Boneh et al. present a searchable
public key scheme [6]; the scenario they considered is analogous to that of [28] but uses
public-key encryption rather than symmetric-key encryption. In the same scenario, Goh
demonstrates a method for secure indexes using Bloom filters [15]. These solutions are
possibly useful in searching for keywords in a file; however, it is unclear how to apply
them to the problem of efficiently querying encrypted relational databases. Yet another
piece of related work is by Feigenbaum et al. [14], in which an encryption scheme was
proposed to efficiently retrieve tuples from a look-up dictionary by using hash func-
tions. The basic idea is that a tuple can only be retrieved if a valid key is provided.

In contrast to the goals of our work, private information retrieval [10,8,26] is de-
signed to hide entirely from the database which queries a user is making. As we discuss
later, we take a more pragmatic view that allows more efficient solutions.

1.2 Our Contributions

In this paper, we address the problem of performing queries on an encrypted database.
We consider a pragmatic notion of privacy that trades off a small amount of privacy for
a gain in efficiency. Specifically, in our solutions all data is stored and processed in its
encrypted form. We note that given any solution that returns a response to a query to
the user consisting of precisely the encryptions in the database of the items that match
the query, this solution leaks the location of the returned cells to an attacker with access
to the database. Similarly, even if a solution were to return different encryptions of
the matching items, if the database is able to access only those cells, then the location
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of those cells is revealed. In order to admit the most efficient solutions, we therefore
consider this information to be the “minimum information revelation,” as described
in more detail in Section 2. We allow solutions that leak this minimum information
revelation, while we seek to prevent leakage of any additional information.

The contributions of this paper can be summarized as follows.

– We present a basic solution for simple queries (Section 3). We give a rigorous secu-
rity analysis to show that, beyond the minimum information revelation, our solution
only reveals very little information, namely which attributes are tested in the “where”
condition. Our security guarantee is quantitative and cryptographically strong.

– We present a solution with enhanced security (Section 4). We show that, for a broad
class of tables, this solution reveals nothing beyond the minimum information rev-
elation.

– We present a solution that adds metadata to further speed up queries (Section 5).
– Compared with previous solutions, an advantage of our schemes is that a database

user does not need to maintain a large amount of confidential information (like the
partitioning ids in [19] or the large keys in [4]). In our schemes, a user only needs
to store several secret keys that amount to at most tens of bytes. Thus the storage
overhead on the user side is negligible.

2 Technical Preliminaries

We consider a system as illustrated in Figure 1. In this system, data is encrypted and
stored in tables. In the front end, when the user has a query, the query is translated to
one or more messages that are sent to the database. Upon receiving the message(s), the
database finds the appropriate encrypted cells and returns them to the front end. Finally,
the front end decrypts the received cells. For ease of presentation, we do not distinguish
the human user from the front end program; when we say “user,” we mean the human
user plus the front end program.

Encrypted tables and
metadata

Front end 
Database server 

Query
translator

Secret keys

   Result 
  decryptor 

Translated queries

Plain queries 

User
Encrypted  results Results

Fig. 1. Overall architecture

2.1 Trust and Attack Model

In this paper, we focus on the possibility that an intruder might successfully attack the
database server. The goal of our work is that an intruder who has complete access to
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the database server for some time should learn very little about the data stored in the
database and the queries performed on the data. Our trust and attack model is as follows:

1. We do not fully trust the database server because it may be vulnerable to intrusion.
Furthermore, we assume that, once a database intruder breaks into the database,
he can observe not only the encrypted data in the database, but can also control
the whole database system for a time interval. During the time interval, a number
of query messages sent by the user, as well as the database’s processing of these
queries, can be observed by the intruder. We note that assumption that an intruder
can only control the whole database system for only a bounded time period is rea-
sonable, for example, in the setting that a database administrator can physically
reset the database server from time to time or when intrusions are detected.

2. We assume the communication channel between the user and the database is secure,
as there exist standard protocols to secure it—e.g., SSL and IPsec. We also trust
the user’s front-end program; protecting the front-end program against intrusion is
outside of the scope of this paper.

3. We require all data and metadata, including user logs and scheme metadata, to be
stored encrypted. (Otherwise, these may open the door for intruders.)

2.2 Table and Queries

We consider a database represented by a table T and we discuss queries performed on
T . Suppose that T has n rows (i.e., n records) and m columns (i.e., m attributes). We
denote by Ti,j the cell at the intersection of the ith row and the jth column; we also
refer to (i, j) as the coordinates of the cell. We denote the ith row by Ti. Each attribute
of the table has a finite domain. For the jth attribute Aj , we denote the domain by Dj .

As we have mentioned, we store our tables in an encrypted form. More precisely, for
a table T , we store an encrypted table T ′ in the database, where each T ′

i,j is an encryp-
tion of Ti,j . Without loss of generality, we assume that each cell Ti,j of the plaintext
table is a bitstring of exactly k1 bits—that is, ∀j ∈ [1,m], Dj ⊆ {0, 1}k1. (We can al-
ways encode any value of an attribute as a sufficiently long bitstring.) When we encrypt
a cell, the encryption algorithm appends a random string of k2 bits to the plaintext.1

Hence, the input to the encryption algorithm is a k0-bit string, where k0 = k1 + k2. For
simplicity (and following the practice of most symmetric encryption schemes), we as-
sume the output of the encryption algorithm and the encryption key are k0-bit strings as
well. We therefore note that k0 should be chosen to be long enough to resist brute-force
key search attacks.

Suppose that a user intends to perform a query Q on the table T . As discussed earlier,
in this paper, in order to allow solutions that are as efficient as possible, we consider
query protocols that return to the user precisely the set of encrypted cells stored in the
database that satisfy the condition of the query, with the same encryptions as in T ′.
We call such query protocols precise query protocols. Denote by R(Q) the set of co-
ordinates of the cells satisfying the condition of query Q— i.e., the cells satisfying the
condition of query Q are {T ′

i,j : (i, j) ∈ R(Q)}. Clearly, in any precise query protocol,

1 As explained in more detail in Section 3, the purpose of using a random string is that multiple
occurrences of a plaintext should lead to different ciphertexts.
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if there is a database intrusion of the type discussed in Section 2.1, then R(Q) is always
revealed to the intruder. This is because the intruder can simply check T ′ to see which
encrypted cells are in the returned result. Therefore, we say R(Q) is the minimum infor-
mation revelation of query Q. We allow solutions that reveal this minimum information
revelation; we seek solutions that do not yield any additional information.

2.3 Privacy-Preserving Queries

We give a cryptographic definition of privacy-preserving query protocols. In particular,
we consider that an intruder may observe up to t queries Q1, . . . ,Qt, where t is a poly-
nomially bounded function of k0. We quantify the information leaked by the protocol
using a random variable α. Specifically, we say the protocol only reveals α beyond the
minimum information revelation if, after these queries are processed, what the database
intruder has observed can be simulated by a probabilistic polynomial-time algorithm
using only α, R(Q), and the encrypted table. For simplicity, we only provide here a
definition of a privacy-preserving one-round query protocol. It is straightforward to ex-
tend this definition to multi-round query protocols.

Definition 1. (Privacy-Preserving Query) A one-round query protocol reveals only α
beyond the minimum information revelation if for any polynomial poly() and all suf-
ficiently large k0, there exists a probabilistic polynomial-time algorithm S (called a
simulator) such that for any t < poly(k0), any polynomial-size circuit family {Ak0},
any polynomial p(), and any Q1, . . . ,Qt,

|Pr[Ak0(Q1, . . . ,Qt, q1, . . . , qt, T
′) = 1]−

Pr[Ak0 (Q1, . . . ,Qt,S(α,R(Q1), . . . , R(Qt), T ′)) = 1]| < 1/p(k0).

A query protocol is ideally private if it reveals nothing beyond the minimum informa-
tion revelation.

The above definition can be viewed as an adaptation of the definition of secure protocol
in the semi-honest model (i.e., assuming the intruder does not modify the database soft-
ware but attempts to violate data privacy by analyzing what he observes) [17]. However,
note that a secure one-round query protocol as defined here remains secure even in the
case the intruder is fully malicious (i.e., even when the intruder modifies the database
software such that the database deviates from the protocol). The reason is that the the
database’s behavior does not affect the user’s behavior in this case.

3 Basic Solution

In this section, we give a basic solution for queries of the format “select . . . from T where
Aj = v,” where v ∈ Dj is a constant. We provide rigorous cryptographic specifications
and proofs.

3.1 Solution Overview

Our basic idea is to encode each cell in a special redundant form. Specifically, for each
cell Ti,j , the encrypted cell T ′

i,j = (T ′
i,j〈1〉, T ′

i,j〈2〉) has two parts. The first part T ′
i,j〈1〉,
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is a simple encryption of Ti,j using a block cipher E(); the second part, T ′
i,j〈2〉, is a

“checksum” that, together with the first part, enables the database to check whether
this cell satisfies the condition of the query or not. T ′

i,j〈1〉 and T ′
i,j〈2〉 satisfy a secret

equation determined by the value of Ti,j . When the database is given the equation cor-
responding to value v, it can easily check whether a cell satisfies the condition or not
by substituting the two parts of the encrypted cell into the equation.

The remaining question is what equation to use as the secret equation. We use the
following simple equation:

Ef(Ti,j)(T ′
i,j〈1〉) = T ′

i,j〈2〉,
where f is a function. When the user has a query with conditionAj = v, she only needs
to send f(v) to the database so that the database can check, for each i, whether

Ef(v)(T ′
i,j〈1〉) = T ′

i,j〈2〉
holds. It should be infeasible to derive v from f(v) because otherwise an intruder learns
v when observing f(v). To achieve this goal, we define f(·) to be an encryption of v
using the block cipher E(·). Additional care needs to be taken when we use the block
cipher E. As previously mentioned, we append a random string to Ti,j before apply-
ing E to obtain T ′

i,j〈1〉; this is done in order to prevent the database from being able
to determine whether two cells have the same contents. Additionally, in order to avoid
having the same f(v) for different attributes, we append j to f(v) before applying E.

3.2 Solution Details

Data Format. Let E(·) be a symmetric encryption algorithm whose key space, plaintext
space, and ciphertext space are all {0, 1}k0 . We often use the notation ES(M1,M2) to
denote a message (M1,M2) encrypted using secret key S, where M1 (resp., M2) is ei-
ther a k1-bit (resp., k2-bit) string. We denote the corresponding decryption algorithm by
D, and we assume that the key generation algorithm simply picks a uniformly random
key from the key space {0, 1}k0 .

To create the table T in the database, the user first picks two secret keys s1, s2 from
{0, 1}k0 independently and uniformly. The user keeps s1, s2 secret. For each cell Ti,j ,
the user picks ri,j from {0, 1}k2 uniformly at random and stores

T ′(i, j)
�
= (T ′(i, j)〈1〉, T ′(i, j)〈2〉)
= (Es1 (Ti,j , ri,j), EEs2 (Ti,j ,j)(Es1(Ti,j , ri,j)))

Query Protocol. Denote by Aj the jth attribute of T . Suppose there is a query select
Aj1 ,. . . , Aj�

from T where Aj0 = v. To carry out this query, the user computes q =
Es2(v, j0) and sends j0, q, and (j1, . . . , j�) to the database.

For i = 1, . . . ,n, the database tests whether T ′
i,j0
〈2〉 = Eq(T ′

i,j0
〈1〉) holds. For any

i such that the above equation holds, the database returns T ′
i,j1〈1〉, . . . , T ′

i,j�
〈1〉 to the

user. The user decrypts each received cell using secret key s1 and discards the k2-bit
tail of the cleartext.

In our scheme, note that each encrypted cell with the same plaintext value has a
different encryption. Thus if an intruder breaks into the database and sees the encrypted
table, he cannot tell whether two cells have the same plaintext value or not.
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3.3 Security Analysis

We can prove the security of our scheme by using standard cryptographic techniques.
Recall that for security we need to consider t queries. Suppose the uth query (1 ≤ u ≤
t) is of the format “select Aju,1 ,. . . , Aju,�

from T where Aju,0 = vu.” We show that our
basic solution only reveals j1,0, . . . , jt,0 beyond the minimum information revelation.
That is, the only extra information leakage by the basic solution is which attributes are
tested in the “where” conditions.

The security of our scheme derives from the security of the block cipher we use. In
cryptography, secure block ciphers are modeled as pseudorandom permutations [18].
Here, encryption key of the block cipher is the random seed for the pseudorandom
permutation. For each value of the key, the mapping from the cleartext blocks to the
ciphertext blocks is the permutation indexed by the value of the seed. In the following
theorem, we assume the block cipher we use satisfies this security requirement.

Theorem 1. If the block cipher E is a pseudorandom permutation (with the encryp-
tion key as the random seed), the basic protocol reveals only j1,0, . . . , jt,0 beyond the
minimum information revelation.

Proof. We construct a simulator S as follows. First, let R1(Qu) = {i : (i, j) ∈ R(Qu)}
and R2(Qu) = {j : (i, j) ∈ R(Qu)}. Then, for any u ∈ {1, · · · , t}, if there exists
u′ < u such that ju,0 = ju′,0 and that R1(Qu) = R1(Qu′), S sets qu = qu′ . otherwise,
S chooses qu from {0, 1}k0 − {qu′ : u′ < u ∧ ju,0 = ju′,0} uniformly at random.
Next, for i = 1 through n and j = 1 through m, S chooses T ′

i,j〈1〉 uniformly and
independently from {0, 1}k0 . For u = 1 through t, for each i ∈ R1(Qu), S computes

T ′
i,ju,0 〈2〉 = Equ

(T ′
i,ju,0 〈1〉).

For any pair (i, j) for which T ′
i,j〈2〉 has not been defined, S chooses T ′

i,j〈2〉 from
{0, 1}k0 uniformly and independently. Finally, S outputs q1, . . . , qt, T ′. The indistin-
guishability by polynomial-size algorithms follows from the pseudorandomness of E.

In this setting, even if the intruder has access to the whole database, the intruder can
learn nothing about the encrypted data. By combining j1,0, · · · , jt,o with the minimum
information revelation, an intruder can derive some statistical information about the
underlying data or the queries (Theorem 1 does catch this case). In Section 4, we present
a solution that leaks less information to make such attacks more difficult.

3.4 Performance Evaluations

To evaluate the efficiency of our basic solution in practice, we implemented the ba-
sic solution. Our experiments use the Nursery dataset from the UCI machine learning
repository [5]. The Nursery dataset is a table with eight categorical attributes and one
class attribute. There are 12,960 records in total. The total number of data cells is about
100, 000. The only change we made to the Nursery dataset is that we added an ID
attribute to the Nursery dataset so that the table would have a primary key.

Because the time spent on communication is highly dependent on the network band-
width, we focus on the computational overhead and ignore the communication over-
head. The experimental environment is the NetBSD operating system running on an
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Fig. 2. Query time in the basic solution

AMD Athlon 2GHz processors with 512M memory. For the block cipher, we use the
Blowfish symmetric encryption algorithm with a 64-bit block size (i.e., k0 = 64).

Clearly, the overhead to encrypt a database is linear in the size of the database.
Specifically, in our experiments it took only 25 seconds to encrypt the entire Nurs-
ery dataset. On average, encrypting a single record requires only 0.25 milliseconds.
Figure 2 shows the time consumed by four SELECT queries. Those queries are SE-
LECT ∗ FROM Nursery WHERE Parent=usual, WHERE Class=recommend, WHERE
Class=very recom and WHERE Class=priority.

For each query, the database server needs almost the same amount of time for com-
putation (about 16 seconds). The user’s computational time depends on the number of
returned records from the database. In the first query, only 2 records are returned, and so
the computational time by the user is extremely small. In contrast, the last two queries
return 4320 and 3266 records, respectively. Therefore, the computational time of the
user in each of these two queries is about 4 seconds.

4 Solution with Enhanced Security

In this section, we enhance the security of the basic solution so that the query protocol
reveals less information. For a broad class of tables, we can show our solution with
enhanced security is ideally private.

4.1 Solution Overview

Recall that the basic solution reveals which attributes are tested in the “where” con-
ditions. Our goal is to hide this information (or at least part of this information). A
straightforward way for doing this is to randomly permute the attributes in the encrypted
table, in order to make it difficult for a database intruder to determine which attributes
are tested.
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There remains the question of which distribution to use for the random permutation.
If the distribution has a large probability mass on some specific permutations, then the
intruder can guess the permutation with a good probability. So the ideal distribution
is the uniform distribution. However, if the permutation is chosen uniformly from all
permutations of the attributes, the user needs to “memorize” where each attribute is
after the permutation. When the number of attributes is large, this is a heavy burden for
the user. To eliminate this problem, we use a pseudorandom permutation, which is by
definition indistinguishable from a uniformly random permutation [16]. The advantage
of this approach is that it requires the user to memorize the random seed.

In fact, we note that we do not need to permute all the attributes in the encrypted ta-
ble. For each (i, j), we can keep T ′

i,j〈1〉 as defined in the basic solution; we only need to
permute the equations satisfied by T ′

i,j〈1〉 and T ′
i,j〈2〉 because only these equations are

tested when there is a query. Specifically, the equation satisfied by T ′
i,j〈1〉 and T ′

i,j〈2〉
is no longer decided by the value Ti,j; instead, it is decided by Ti,πS(j), where πS()
is a pseudorandom permutation. Consequently, when there is a query whose condition
involves attribute Aj , the database actually tests an equation on attribute Aπ−1

S (j).

4.2 Solution Details

Data Format. Let πS() be a pseudorandom permutation on {1, · · · ,m} for a uniformly
random seed S ∈ {0, 1}k0 . To store the table T in the database, the user first picks secret
keys s1, s2, s

′
2 from {0, 1}k0 independently and uniformly. The user keeps s1, s2, and

s′2 secret. For each cell Ti,j , the user picks ri,j from {0, 1}k2 uniformly at random,
computes ĵ = πs′

2
(j) and stores

T ′(i, j)
�
= (T ′(i, j)〈1〉, T ′(i, j)〈2〉)
= (Es1(Ti,j , ri,j), EEs2(Ti,ĵ,j)(Es1 (Ti,j , ri,j))),

Query Protocol. Suppose there is a query select Aj1 ,. . . ,Aj�
from T where Aj0 = v. To

carry out this query, the user computes j′0 = π−1
s′
2

(j0) and q = Es2(v, j′0), then sends

j′0, q, (j1, . . . , j�) to the database.
For i = 1, . . . ,n, the database tests whether T ′

i,j′
0
〈2〉 = Eq(T ′

i,j′
0
〈1〉) holds. For any

i such that the above equation holds, the database returns T ′
i,j1
〈1〉, . . . , T ′

i,j�
〈1〉 to the

user. The user decrypts each received cell using secret key s1 and discards the k2-bit
tail of the cleartext.

4.3 Security Analysis

Again, recall that for security we need to consider t queries, where the uth query (1 ≤
u ≤ t) is of the format “select Aju,1 ,. . . , Aju,�

from T where Aju,0 = vu.” We introduce
a new variable that represents whether two queries involve testing the same attribute:
for u, u′ ∈ [1, t], we define

εu,u′ =
{

1 if ju,0 = ju′,0
0 otherwise.
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Using this new variable, we can quantify the security guarantee of our solution with
enhanced security. Furthermore, we are able to show that our solution with enhanced
security becomes ideally private if the table belongs to a broad class, which we call
the non-coinciding tables. Intuitively, a table is non-coinciding if any two queries that
test different attributes do not have exactly the same result. More formally, we have the
following.

Definition 2. A table T is non-coinciding if for any j �= j′, any v ∈ Aj , v′ ∈ Aj′ ,

{i : Ti,j = v} �= {i : Ti,j′ = v′}.

Theorem 2. Suppose that the block cipher E() is a pseudorandom permutation (with
the encryption key as the random seed). Then the query protocol with enhanced security
reveals only εu,u′ for u, u′ ∈ [1, j]. When the table T is non-coinciding, the query
protocol with enhanced security is ideally private.

Proof. We construct a simulator S as follows. First, recall that R1(Qu) = {i : (i, j) ∈
R(Qu)} and R2(Qu) = {j : (i, j) ∈ R(Qu)}. For u = 1 through t, if there exists
u′ < u such that εu,u′ = 1 and that R1(Qu) = R1(Qu′), S sets qu = qu′ and j′u,0 =
j′u′,0; if there exists u′ < u such that εu,u′ = 1 and that R1(Qu) �= R1(Qu′), S
chooses qu from {0, 1}k0 − {qu′ : u′ < u ∧ εu,u′ = 1} uniformly at random and sets
j′u,0 = j′u′,0; otherwise, S chooses qu from {0, 1}k0 uniformly at random, and j′u,0 from
[1,m] − {j′u′,0 : u′ < u} uniformly at random. Next, for i = 1 through n and j = 1
through m, S chooses T ′

i,j〈1〉 uniformly and independently from {0, 1}k0. For u = 1
through t, for each i ∈ R1(Qu), S computes

T ′
i,j′

u,0
〈2〉 = Equ

(T ′
i,j′

u,0
〈1〉).

For each pair (i, j) such that T ′
i,j〈2〉 has not been defined, S chooses T ′

i,j〈2〉 from
{0, 1}k0 uniformly and independently. Finally, S outputs q1, . . . , qt, T ′. The indistin-
guishability by polynomial-size circuits follows from the pseudorandomness of E().

When T is non-coinciding, in the above proof we can replace εu,u′ = 1 with
R1(Qu) = R1(Qu′). Because these two conditions are equivalent, this replacement
does not change the output of the simulator. On the other hand, because εu,u′ is no
longer needed by the simulator, we have shown the protocol is ideally private.

5 Query Speedup Using Metadata

In the two solutions we have presented, performing a query on the encrypted table
requires testing each row of the table. Clearly, this is very inefficient in large-size
databases. In this section, we consider a modification to the basic solution that dras-
tically speeds up queries. It is easy to make a similar modification to the solution with
enhanced security.

5.1 Solution Overview

We can significantly improve the efficiency if we are able to replace the sequential
search in the basic solution with a binary search. However, our basic solution finds the
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appropriate rows by testing an equation, while a binary search cannot be used to find
the items that satisfy an equation.

To sidestep this difficulty, we add some metadata to eliminate the need for testing
an equation2. Specifically, for each cell in the column, we add a tag and a link. The
tag is decided by the value of the cell; the link points to the cell. We sort the metadata
according to the order of the tags. When there is a query on the attribute, the user sends
the appropriate tag to the database so that the database can perform a binary search on
the tags.

We illustrate the concept with a simple example, shown in Figure 3. Consider a col-
umn of four cells with values 977, 204, 403, 155. We compute four tag values based on
the corresponding cell values. Suppose that the tags we get are 3, 7, 4, 8. We sort the tags
to get a list: 3, 4, 7, 8. After we add links to the corresponding cells, we finally get: (3,
link to cell “977”), (4, link to cell “403”), (7, link to cell “204”), (8, link to cell “155”).

Metadata Table

977

204

403

155

3

4

7

8

Fig. 3. Example of metadata

Nevertheless, there is a question of multiple occurrences of a single value: if multi-
ple cells in the column have the same value, how do we choose the tags for these cells?
Clearly, we cannot use the same tag for these cells; otherwise, when the database in-
truder looks at the tags, he can recognize cells with the same value. In fact, it should be
hard for the intruder to find out which tags correspond to the same cell value. On the
other hand, it should be easy for the user to derive the entire set of tags corresponding
to a single value.

We resolve this dilemma using a two-step mapping. In the first step, we map a cell
value Ti,j to an intermediate value Hi,j whose range is much larger. Then the Hi,j’s
are sparse in their range, which means around each value of Hi,j there is typically a
large “blank” space. Consequently, to represent multiple occurrences of the same cell
value Ti,j , we can use multiple points starting from Hi,j . In the second step, we map
these intermediate points to tags such that the continuous intermediate points become
random-looking tags. See Figure 4 for an illustration. In our design, the first step of
mapping (from the cell value to the intermediate value) is implemented using an en-
cryption of the cell value (appended with a k2-bit 0 so that the input to the cipher is k0

2 The functionality of these metadata is analogous to indices in traditional database systems—to
help speed up queries. However, since the structure and usage of these metadata are different
from that of traditional indices (e.g., B+-trees), we do not call them indices. Note that indices
like B+-trees cannot be used in our scenario.
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Fig. 4. Two-step mapping from cell values to tags

bits), where the encryption key is kept by the user. The second step of mapping (from
the intermediate value to the tag) is implemented using another encryption, where the
key is again kept by the user. Since the database intruder does not know the two encryp-
tion keys, he cannot figure out which cell value corresponds to which tag, or which of
the tags correspond to the same cell value. On the other hand, when there is a query,
the user can simply send the database the tags for the cell value in the query; then the
database can easily locate the rows satisfying the condition of this query.

Note that, for the convenience of queries, we should keep a counter of the occur-
rences of each cell value; otherwise, when the user has a query, he cannot know how
many intermediate values (and thus how many tags) he should compute. Clearly such
counters should be encrypted and stored in the database, where the encryption key is
kept by the user. Each encrypted counter should be kept together with the corresponding
intermediate value (of the first occurrence of the cell value), so that it can be identified
by the user. When the database intruder observes encrypted metadata, he does not know
which cell value corresponds to which intermediate value and therefore does not know
which cell value corresponds to the encrypted counter.

5.2 Solution Details

Metadata Format. To speed up queries on attribute Aj , the user picks keys s3, s4, s5 ∈
{0, 1}k0 independently and uniformly. For i = 1, . . . ,n, the user computes

Hi,j = Es3(Ti,j , 0).

For each value of each attribute, the user keeps a counter of the number of occurrences.
If this is the ci,j th occurrence of the value Ti,j in the attribute Aj , the user computes

Ii,j = Es4((Hi,j + ci,j) mod 2k0).

When Ii,j ’s have been computed for all i’s, suppose the final value of the counter is
cj(v) for each value v. Then the user encrypts cj(v) using secret key k5:

Cj(v) = Ek5(cj(v), 0).
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The user stores L = {(Ii,j , link to row T ′
i )}i∈[1,n] and

B
�
= {(Bx〈1〉, Bx〈2〉)}x∈[1, |{Ti,j :i∈[1,n]}|]

= {(Es3(v, 0), Cj(v))}v∈{Ti,j :i∈[1,n]}

in the database as metadata for queries on attribute Aj . Note that L should be sorted in
an increasing order of Ii,j . The user keeps s3, s4, and s5 secret.

Query Protocol. Now suppose there is a query select Aj1 ,. . . , Aj�
from T where Aj =

v. To carry out this query, the user first computes h = Es3(v, 0) and sends h to the
database. The database finds x such that Bx〈1〉 = h and sends the corresponding C =
Bx〈2〉 back to the user. The user then decrypts C (and discards the k2-bit tail) to get
cj(v), the overall number of occurrences of v. For c = 1, . . . , cj(v), the user computes

Ic = Es4((h + c) mod 2k0),

and sends Ic to the database. Since L is sorted in the increasing order of Ic, the database
can easily locate Ic and find the link corresponding to Ic. For each row T ′

i pointed by
these links, the database sends the encrypted cells T ′

i,j1
〈1〉, . . . , T ′

i,j�
〈1〉 to the user.

Finally, the user decrypts each received cell using secret key s1 and discards the k2-bit
tail of the cleartext.

5.3 Performance Evaluation

To evaluate the speedup of our solution, we measured the query time on the same dataset
used for testing the basic solution. Figure 5 compares the metadata generation time for
four different attributes: ClassLabel, Finance, Parents, and ID. The metadata generation
time depends on not only the number of rows in the table, but also the domain size of
the attribute (more precisely, the number of the different values that actually appear in
the attribute). In the attributes we experimented with, ClassLabel, Finance, and Parents
have small domain sizes; the metadata generation time for each of them is about 6
seconds. In contrast, generating metadata on ID attribute needs about twice as much
time because is the ID attribute has a large domain.

Figure 6 compares the query time of the basic solution and that of the solution
with metadata. with the following four queries that are to select all records where
Class=recommend, where Class=very recom, where Parent=usual, and where
ID=1000. The results of the first and the fourth queries have only 2 and 1 record, re-
spectively. For such queries, the solution with metadata is so fast that the query time can
hardly be seen in the figure. The other two queries have more records in their results: the
second query has 328 records in its result and our solution with metadata saves about
94% of the query time; the third query has 4320 records in its result and our solution
with metadata saves about 79% of the query time. Clearly, the trend is that the solution
with metadata gains more in efficiency if there are fewer records in the query result.
However, even for a query with a large number of records in the result, the solution
with metadata is much faster than the basic solution.
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6 Conclusions

In this paper, we have investigated privacy-preserving queries on encrypted data. In par-
ticular, we present privacy-preserving protocols for certain types of queries. Although
the supported queries are limited, our main goal in this paper is to provide rigorous,
quantitative (and cryptographically strong) security.

We note that, in general, it is difficult to evaluate the correctness and security of a new
design if no quantitative analysis of information leakage is given. It is therefore benefi-
cial to introduce quantitative measures of privacy such as those we have introduced. It
is our hope that these measures may be useful elsewhere.

For many practical database applications, more complex queries than those consid-
ered in this paper must be supported. A future research topic is to extend the work in
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this paper to allow more complex queries. Ideally, the extension should maintain strong,
quantifiable security while achieving efficiency for complex queries.
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Abstract. The use of different network security components, such as firewalls
and network intrusion detection systems (NIDSs), is the dominant method to sur-
vey and guarantee the security policy in current corporate networks. On the one
hand, firewalls are traditional security components which provide means to filter
traffic within corporate networks, as well as to police the incoming and outcom-
ing interaction with the Internet. On the other hand, NIDSs are complementary
security components used to enhance the visibility level of the network, point-
ing to malicious or anomalous traffic. To properly configure both firewalls and
NIDSs, it is necessary to use several sets of filtering and alerting rules. Neverthe-
less, the existence of anomalies between those rules, particularly in distributed
multi-component scenarios, is very likely to degrade the network security policy.
The discovering and removal of these anomalies is a serious and complex prob-
lem to solve. In this paper, we present a set of algorithms for such a management.

1 Introduction

Generally, once a security administrator has specified a security policy, he or she aims
to enforce it in the information system to be protected. This enforcement consists in dis-
tributing the security rules expressed in this policy over different security components
of the information system – such as firewalls, intrusion detection systems (IDSs), intru-
sion prevention systems (IPSs), proxies, etc – both at application, system, and network
level. This implies cohesion of the security functions supplied by these components. In
other words, security rules deployed over the different components must be consistent,
not redundant and, as far as possible, optimal.

An approach based on a formal security policy refinement mechanism (using for in-
stance abstract machines grounded on set theory and first order logic) ensures cohesion,
completeness and optimization as built-in properties. Unfortunately, in most cases, such
an approach has not a wide follow and the policy is more often than not empirically de-
ployed based on security administrator expertise and flair. It is then advisable to analyze
the security rules deployed to detect and correct some policy anomalies – often referred
in the literature as intra- and inter-configuration anomalies [4].

These anomalies might be the origin of security holes and/or heaviness of intrusion
prevention and detection processes. Firewalls [6] and network intrusion detection sys-
tems (NIDSs) [12] are the most commonly used security components and, in this paper,
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we focus particularly on their security rules. Firewalls are prevention devices ensuring
the access control. They manage the traffic between the public network and the private
network zones on one hand and between private zones in the local network in the other
hand. The undesirable traffic is blocked or deviated by such a component. NIDSs are
detection devices ensuring a monitoring role. They are components that supervise the
traffic and generate alerts in the case of suspicious traffic. The attributes used to block
or to generate alerts are almost the same. The challenge, when these two kinds of com-
ponents coexist in the security architecture of an information system is then to avoid
inter-configuration anomalies.

In [7, 8], we presented an audit process to manage intra-firewall policy anomalies, in
order to detect and remove anomalies within the set of rules of a given firewall. This
audit process is based on the existence of relationships between the condition attributes
of the filtering rules, such as coincidence, disjunction, and inclusion, and proposes a
transformation process which derives from an initial set of rules – with potential policy
anomalies – to an equivalent one which is completely free of errors. Furthermore, the
resulting rules are completely disjoint, i.e., the ordering of rules is no longer relevant.

In this paper, we extend our proposal of detecting and removing intra-firewall policy
anomalies [7, 8], to a distributed setup where both firewalls and NIDSs are in charge
of the network security policy. This way, assuming that the role of both prevention
and detection of network attacks is assigned to several components, our objective is
to avoid intra and inter-component anomalies between filtering and alerting rules. The
proposed approach is based on the similarity between the parameters of a filtering rule
and those of an alerting rule. This way, we can check whether there are errors in those
configurations regarding the policy deployment over each component which matches
the same traffic.

The advantages of our proposal are threefold. First, as opposite to the related work we
show in Section 6, our approach not only considers the analysis of relationships between
rules two by two but also a complete analysis of the whole set of rules. This way, those
conflicts due to the union of rules that are not detected by other proposals (such as
[2, 3, 9]) are properly discovered by our intra- and inter-component algorithms. Second,
after applying our intra-component algorithms the resulting rules of each component are
totally disjoint, i.e., the ordering of rules is no longer relevant. Hence, one can perform
a second rewriting of rules in a close or open manner, generating a configuration that
only contains deny (or alert) rules if the component default policy is open, and accept
(or pass) rules if the default policy is close (cf. Section 3.1). Third, we also present
in this paper a network model to determine which components are crossed by a given
packet knowing its source and destination, as well as other network properties. Thanks
to this model, our approach better defines all the set of anomalies studied in the related
work. Furthermore the lack of this model in other approaches, such as [2, 3], may lead
to inappropriate decisions.

The rest of this paper is organized as follows. Section 2 starts by introducing a net-
work model that is further used in Section 3 and Section 4 when presenting, respec-
tively, our intra and inter-component anomaly’s classifications and algorithms. Section
5 overviews the performance of our proposed algorithms. Section 6 shows an analysis
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of some related work. Finally Section 7 closes the paper with some conclusions and
gives an outlook on future work.

2 Network Model

The purpose of our network model is to determine which components within the net-
work are crossed by a given packet, knowing its source and destination. It is defined as
follows. First, and concerning the traffic flowing from two different zones of the dis-
tributed policy scenario, we may determine the set of components that are crossed by
this flow. Regarding the scenario shown in Figure 1, for example, the set of components
crossed by the network traffic flowing from zone external network to zone private3
equals [C1,C2,C4], and the set of components crossed by the network traffic flowing
from zone private3 to zone private2 equals [C4,C2,C3].

Let C be a set of components and let Z be a set of zones. We assume that each pair
of zones in Z are mutually disjoint, i.e., if zi ∈ Z and zj ∈ Z then zi∩ zj = ∅. We then
define the predicate connected(c1, c2) as a symmetric and anti-reflexive function which
becomes true whether there exists, at least, one interface connecting component c1 to
component c2. On the other hand, we define the predicate adjacent(c, z) as a relation
between components and zones which becomes true whether the zone z is interfaced to
component c. Referring to Figure 1, we can verify that predicates connected(C1, C2)
and connected(C1, C3), as well as adjacent(C1,DMZ), adjacent(C2, private1),
adjacent(C3,DMZ), and so on, become true.

We then define the set of paths, P , as follows. If c ∈ C then [c] ∈ P is an atomic path.
Similarly, if [p.c1] ∈ P (be “.” a concatenation functor) and c2 ∈ C, such that c2 /∈ p
and connected(c1, c2), then [p.c1.c2] ∈ P . This way, we can notice that, concerning
Figure 1, [C1, C2, C4] ∈ P and [C1, C3] ∈ P .

Fig. 1. Simple distributed policy setup

Let us now define a set of functions related with the order between paths. We first
define functions first, last, and the order functor between paths. We define functions
first and last, respectively, from P in C, such that if p is a path, then first(p) corre-
sponds to the first component in the path, and last(p) corresponds to the last component
in the path. We then define the order functor between paths as p1 ≤ p2, such that path
p1 is shorter than p2, and where all the components within p1 are also within p2. We
also define the predicates isF irewall(c) and isNIDS(c) which become true whether
the component c is, respectively, a firewall or a NIDS.
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Two additional functions are route and minimal route. We first define function
route from Z to Z in 2P , such that p ∈ route(z1, z2) iff the path p connects zone
z1 to zone z2. Formally, we define that p ∈ route(z1, z2) iff adjacent(first(p), z1)
and adjacent(last(p), z2). Similarly, we then define minimal route from Z to Z
in 2P , such that p ∈ minimal route(z1, z2) iff the following conditions hold: (1)
p ∈ route(z1, z2); (2) There does not exist p′ ∈ route(z1, z2) such that p′ < p.
Regarding Figure 1, we can verify that the minimal route from zone private3
to zone private2 equals [C4, C2, C3], i.e., minimal route(private3, private2) =
{[C4, C2, C3]}.

Let us finally conclude this section by defining the predicate affects(Z,Ac) as a
boolean expression which becomes true whether there is, at least, an element z ∈ Z
such that the configuration of z is vulnerable to the attack category Ac ∈ V , where
V is a vulnerability set built from a vulnerability database, such as CVE/CAN [11] or
OSVDB [13].

3 Intra-component Analysis

In this section we extend our previous work on analysis of network access control rules
for the configuration of firewalls [7, 8], concentrating on anomalies that may also arise
in NIDS setups. In particular, a new case of anomaly is pointed out (cf. Intra-Component
Irrelevance) and the associated code of our intra-component algorithms has been prop-
erly revised1.

For our work, we define the security rules of both firewalls and NIDSs as filtering
and alerting rules, respectively. In turn, both filtering and alerting rules are specific
cases of a more general configuration rule, which typically defines a decision (such
as deny, alert, accept, or pass) that applies over a set of condition attributes, such as
protocol, source, destination, classification, and so on. We define a general configura-
tion rule as follows:

Ri : {conditioni} → decisioni (1)

where i is the relative position of the rule within the set of rules, {conditioni} is the
conjunctive set of condition attributes such that {conditioni} equals C1∧C2∧...∧Cp –
being p the number of condition attributes of the given rule – and decision is a boolean
value in {true, false}.

We shall notice that the decision of a filtering rule will be positive (true) whether it
applies to a specific value related to deny (or filter) the traffic it matches, and will be neg-
ative (false) whether it applies to a specific value related to accept (or ignore) the traffic
it matches. Similarly, the decision of an alerting rule will be positive (true) whether it
applies to a specific value related to alert (or warn) about the traffic it matches, and will
be negative (false) whether it applies to a specific value related to pass (or ignore) the
traffic it matches.

1 Because of the similarity between the revision and the previous work already covered in [7, 8],
we move our intra-component audit algorithms to Appendix A. Their correctness and com-
plexity can also be found in [7, 8].
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Let us continue by classifying the complete set of anomalies that can occur within
a single component configuration. An example for each anomaly will be illustrated
through the sample scenario shown in Figure 2.

(a) Example scenario of a filtering policy.

(b) Example scenario of an alerting policy.

Fig. 2. Example filtering and alerting policies

Intra-component Shadowing. A configuration rule Ri is shadowed in a set of config-
uration rules R whether such a rule never applies because all the packets that Ri may
match, are previously matched by another rule, or combination of rules, with higher
priority. Regarding Figure 2, rule C1{R6} is shadowed by the union of rules C1{R3}
and C1{R5}.

Intra-component Redundancy. A configuration rule Ri is redundant in a set of con-
figuration rules R whether the following conditions hold: (1) Ri is not shadowed by any
other rule or set of rules; (2) when removing Ri from R, the security policy does not
change. For instance, referring to Figure 2, rule C1{R4} is redundant, since the over-
lapping between rules C1{R3} and C1{R5} is equivalent to the police of rule C1{R4}.

Intra-component Irrelevance. A configuration rule Ri is irrelevant in a set of config-
uration rules R if one of the following conditions holds:

(1) Both source and destination address are within the same zone. For instance, rule
C1{R1} is irrelevant since the source of its address, external network, as well as its
destination, is the same.
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(2) The component is not within the minimal route that connects the source zone,
concerning the irrelevant rule which causes the anomaly, to the destination zone. Hence,
the rule is irrelevant since it matches traffic which does not flow through this compo-
nent. Rule C1{R2}, for example, is irrelevant since component C1 is not in the path
which corresponds to the minimal route between the source zone unix network to the
destination zone windows network.

(3) The component is a nids, i.e., the predicate isNIDS(c) (cf. Section 2) becomes
true, and, at least, one of the condition attributes in Ri is related with a classification of
attack Ac which does not affect the destination zone of such a rule – i.e., the predicate
affects(zd, Ac) becomes false. Regarding Figure 2, we can see that rule C2{R2} is
irrelevant since the nodes in the destination zone unix network are not affected by
vulnerabilities classified as winnuke.

3.1 Default Policies

Each component implements a positive (i.e., close) or negative (i.e., open) default pol-
icy. In the positive policy, the default policy is to alert or to deny a packet when any
configuration rule applies. Conversely, the negative policy will accept or pass a packet
when no rule applies.

After rewriting the rules with the intra-component-auditalgorithms (cf. Appendix A),
we can actually remove every rule whose decision is pass or accept if the default policy
of this component is negative (else this rule is redundant with the default policy) and,
similarly, we can remove every rule whose decision is deny or alert if the default policy
is positive. Thus, we can consider that our proposed intra-component-audit algorithm
generates a configuration that only contains positive rules if the component default pol-
icy is negative, and negative rules if the default policy is positive.

4 Inter-component Analysis

The objective of the inter-component audit algorithms is the complete detection of pol-
icy anomalies that could exist in a multi-component policy, i.e., to discover and warn
the security officer about potential anomalies between policies of different components.

The main hypotheses to deploy our algorithms hold the following: (1) An upstream
network traffic flows away from the closest component to the origin of this traffic (i.e.,
the most-upstream component [3]) towards the closest component to the remote des-
tination (i.e., the most-downstream component [3]); (2) Every component’s policy in
the network has been rewritten using the intra-component algorithms defined in Ap-
pendix A, i.e., it does not contain intra-component anomalies and the rules within such
a policy are completely independent between them.

4.1 Inter-component Anomalies Classification

In this section, we classify the complete set of anomalies that can occur within a multi-
component policy. Our classification is based on the network model presented in Sec-
tion 2. An example for each anomaly will be illustrated through the distributed multi-
component policy setup shown in Figure 3.
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Fig. 3. An example for a distributed network policy setup

Inter-component Shadowing. A shadowing anomaly occurs between two components
whether the following conditions hold: (1) The most-upstream component is a firewall;
(2) The downstream component, where the anomaly is detected, does not block or report
(completely or partially) traffic that is blocked (explicitly, by means of positive rules;
or implicitly, by means of its default policy), by the most-upstream component.

The explicit shadowing as result of the union of rules C6{R7} and C6{R8} to the
traffic that the component C3 matches by means of rule C3{R1} is a proper exam-
ple of full shadowing between a firewall and a NIDS. Similarly, the anomaly between
rules C3{R2} and C6{R8} shows an example of an explicit partial shadowing anomaly
between a firewall and a NIDS.

On the other hand, the implicit shadowing between the rule C1{R5} and the de-
fault policy of component C2 is a proper example of implicit full shadowing between
two firewalls. Finally, the anomaly between the rule C1{R6}, C2{R1}, and the default
policy of component C2 shows an example of an implicit partial shadowing anomaly
between two firewalls.

Inter-component Redundancy. A redundancy anomaly occurs between two compo-
nents whether the following conditions hold: (1) The most-upstream component is a
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firewall; (2) The downstream component, where the anomaly is detected, blocks or re-
ports (completely or partially) traffic that is blocked by the most-upstream component.

Rules C5{R3} and C6{R1} show a proper example of full redundancy between two
firewalls, whereas rules C4{R3} and C6{R5} show an example of full redundancy be-
tween a firewall and a NIDS. Similarly, rules C5{R4} and C6{R2} show a proper ex-
ample of partial redundancy between two firewalls, whereas rulesC4{R4} andC6{R6}
show an example of partial redundancy between a firewall and a NIDS.

Sometimes, this kind of redundancy is expressly introduced by network administra-
tors (e.g., to guarantee the forbidden traffic will not reach the destination). Nonetheless,
it is important to discover it since, if such a rule is applied, we may conclude that at
least one of the redundant components is wrongly working.

Inter-component Misconnection. A misconnection anomaly occurs between two
components whether the following conditions hold: (1) The most-upstream component
is a firewall; (2) the most-upstream firewall permits (explicitly, by means of negative
rules; or implicitly, through its default policy) all the traffic – or just a part of it – that is
denied or alerted by a downstream component.

An explicit misconnection anomaly between two firewalls is shown through the
rules C5{R1} and C2{R2} (full misconnection); and the rules C5{R2} and C2{R2}
(partial misconnection). An implicit misconnection anomaly between two firewalls is
also shown by the rule C1{R5} and the default policy of firewall C2 (full misconnec-
tion); and the rules C1{R6} and C2{R1}, together with the default policy of C2 (par-
tial misconnection). Similarly, the pair of rules C4{R1}-C2{R5} and the pair of rules
C4{R2}-C2{R5} show, respectively, an explicit example of full and partial misconnec-
tion anomaly between a firewall and a NIDS. Finally, the rule C4{R5} together with the
negative policy of the firewall C2 shows an example of implicit misconnection anomaly
between a firewall and a NIDS.

4.2 Inter-component Analysis Algorithms

For reasons of clarity, we split the whole analysis process in four different algorithms.
The input for the first algorithm (cf. Algorithm 5) is the set of components C, such that
for all c ∈ C, we note c[rules] as the set of configuration rules of component c, and
c[policy] ∈ {true, false} as the default policy of such a component c. In turn, each rule
r ∈ c[rules] consists of a boolean expression over the attributes szone (source zone),
dzone (destination zone), sport (source port), dport (destination port), protocol, and
decision (true or false).

Let us recall here the functions source(r) = szone and dest(r) = dzone. Thus,
we compute for each component c ∈ C and for each rule r ∈ c[rules], each one of
the source zones z1 ∈ Zs and destination zones z2 ∈ Zd – whose intersection with
respectively szone and dzone is not empty – which become, together with a refer-
ence to each component c and each rule r, the input for the second algorithm (i.e.,
Algorithm 6).

Once in Algorithm 6, we compute the minimal route of components that connects
zone z1 to z2, i.e., [C1, C2, . . . , Cn] ∈ minimal route(z1, z2). Then, we decompose
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the set of components inside each path in downstream path (pathd) and upstream path
(pathu). To do so, we use the implicit functions head and tail. The first component
cd ∈ pathd, and the last component cu ∈ pathu are passed, respectively, as argument
to the last two algorithms (i.e., Algorithm 7 and Algorithm 8) in order to conclude the
set of necessary checks that guarantee the audit process2.

Let us conclude by giving an outlook in Figure 4 to the set of warnings after the
execution of Algorithm 5 over the scenario of Figure 3:

C1{R3} − C6{R3, R4}: Full Shadowing
C1{R4} − C6{R4}: Partial Shadowing
C1{R5} − C2{pol.}: Full Shadowing
C1{R6} − C2{R1, pol.}: Partial Shadowing
C2{R3} − C1{pol.}: Full Misconnection
C2{R4} − C1{R7, pol.}: Partial Misconnection
C3{R1} − C6{R7, R8}: Full Shadowing
C3{R2} − C6{R8}: Partial Shadowing
C4{R1} − C2{R5}: Full Misconnection

C4{R2} − C2{R5}: Partial Misconnection
C4{R3} − C6{R5}: Full Redundancy
C4{R4} − C6{R6}: Partial Redundancy
C4{R5} − C6{pol.}: Full Misconnection
C5{R1} − C2{R2}: Full Misconnection
C5{R2} − C2{R2}: Partial Misconnection
C5{R3} − C6{R1}: Full Redundancy
C5{R4} − C6{R2}: Partial Redundancy
C5{R5} − C6{pol.}: Full Misconnection

Fig. 4. Execution of Algorithm 5 over the scenario of Figure 3

2 The operator “�” within algorithms 7 and 8 denotes that two rules ri and rj are correlated if
every attribute in Ri has a non empty intersection with the corresponding attribute in Rj .
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5 Performance Evaluation

In this section, we present an evaluation of the performance of MIRAGE (which stands
for MIsconfiguRAtion manaGEr), a software prototype that implements the intra and
inter-firewall algorithms presented in sections 3 and 4. MIRAGE has been developed
using PHP, a scripting language that is especially suited for web services development
and can be embedded into HTML for the construction of client-side GUI based appli-
cations [5]. MIRAGE can be locally or remotely executed by using a HTTP server and
a web browser.

Inspired by the experiments done in [3], we evaluated our algorithms through a set of
experiments over two different IPv4 real networks. The topology for the first network
consisted of a single firewall based Netfilter [16], and a single NIDS based on Snort
[15] – connected to three different zones with more than 50 hosts. The topology for the
second network consisted of six different components – based on netfilter, ipfilter [14],
and snort [15] – protecting six different zones with more than 200 hosts. The whole
of these experiments were carried out on an Intel-Pentium M 1.4 GHz processor with
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Fig. 5. Evaluation of our set of intra- and inter-component algorithms



506 J.G. Alfaro, F. Cuppens, and N. Cuppens-Boulahia

512 MB RAM, running Debian GNU/Linux 2.6.8, and using Apache/1.3 with PHP/4.3
configured.

During a first phase, we measured the memory space and the processing time needed
to perform Algorithm 4 over several sets of IPv4 policies for the first IPv4 network,
according to the three following security officer profiles: beginner, intermediate, and
expert – where the probability to have overlaps between rules increases from 5% to
90%. The results of these measurements are plotted in Figure 5(a) and Figure 5(b).
Though those plots reflect strong memory and process time requirements, we consider
they are reasonable for off-line analysis, since it is not part of the critical performance
of a single component.

We conducted, in a second phase, similar experiments to measure the performance
and scalability of Algorithm 5 through a progressive increment of auto-generated rules,
firewalls and zones for the second network. The results of these measurements are
plotted in Figure 5(c) and Figure 5(d). Similarly to the intra-component evaluation,
we consider these requirements very reasonable for off-line inter-component
analysis.

6 Related Work

Some related proposals to our work, such as [1, 9, 2, 10, 3, 4], provide means to directly
manage the discovery of anomalies from the components’ configuration. For instance,
the authors in [1] consider that, in a configuration set, two rules are in conflict when
the first rule in order matches some packets that match the second rule, and the sec-
ond rule also matches some of the packets that match the first rule. This approach is
very limited since it just detects a particular case of ambiguity within a single compo-
nent configuration. Furthermore, it does not provide detection on multiple-component
configurations.

In [9], two cases of anomalies are considered. First, a rule Rj is defined as backward
redundant iff there exists another rule Ri with higher priority in order such that all the
packets that match rule Rj also match rule Ri. Second, a rule Ri is defined as forward
redundant iff there exists another rule Rj with the same decision and less priority in
order such that the following conditions hold: (1) all the packets that match Ri also
match Rj ; (2) for each rule Rk between Ri and Rj , and that matches all the packets
that also match rule Ri, Rk has the same decision as Ri. Although this approach seems
to head in the right direction, we consider it as incomplete, since it does not detect
all the possible cases of intra-component anomalies (as we define in this paper). For
instance, given the set of rules shown in Figure 6(a), since R2 comes after R1, rule R2
only applies over the interval [51, 70] – i.e., R2 is not necessary, since, if we remove this
rule from the configuration, the filtering policy does not change. The detection proposal,
as defined in [9], cannot detect the redundancy of rule R2 within the configuration of
such a given firewall. Furthermore, neither [9] nor [10] provide detection on multiple-
component configurations.

To our best knowledge, the approach presented in [2, 3, 4] propose the most efficient
set of techniques and algorithms to detect policy anomalies in both single and multi-
firewall configuration setups. In addition to the discovery process, their approach also
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R1 : s ∈ [10, 50] → deny
R2 : s ∈ [40, 70] → accept
R3 : s ∈ [50, 80] → accept

(a) Set of rules A

R1 : s ∈ [10, 50] → accept
R2 : s ∈ [40, 90] → accept
R3 : s ∈ [30, 80] → deny

(b) Set of rules B

Fig. 6. Example of some firewall configurations

attempts an optimal insertion of arbitrary rules into an existing configuration, through
a tree based representation of the filtering criteria. Nonetheless, and even though the
efficiency of their proposed discovering algorithms and techniques is very promising,
we also consider this approach as incomplete. First, their intra- and inter-component
discovery approach is not complete since, given a single- or multiple-component secu-
rity policy, their detection algorithms are based on the analysis of relationships between
rules two by two. This way, errors due to the union of rules are not explicitly considered
(as our approach does). The set of rules shown in Figure 6(b), for example, may lead
their discovery algorithms to inappropriate decisions. The approach defined in [2] can-
not detect that rule R3 will be never applied due to the union of rules R1 and R2. Just
a correlation signal – that is obviously a weaker signal than a shadowing one – would
be labeled. Though in [3] the authors pointed out to this problematic, claiming that they
break down the initial set of rules into an equivalent set of rules free of overlaps between
rules, no specific algorithms have been provided for solving it in [2, 3, 4].

Second, their inter-component discovery approach considers as anomalies some sit-
uations that, from our point of view, must be suited to avoid inconsistent decisions
between components used in the same policy to control or survey to different zones.
For instance, given the following scenario:

FW1 FW2

111.222.1.[0,255]111.222.0.[0,255]

FW1{R1} : p = tcp s  any  d  111.222.1.0/24  dport = 80  deny

FW2{R1} : p = tcp s  111.222.1.0/24  d  111.222.1.0/24  dport = 80  deny

external

network DMZ private

their algorithms will inappropriately report a redundancy anomaly between filtering
rules FW1{R1} and FW2{R1}. This is because rule FW1{R1} matches every packet
that also FW2{R1} does. As a consequence, [2] considers rule FW2{R1} as redun-
dant since packets denied by this rule are already denied by rule FW1{R1}. However,
this conclusion is not appropriate because rule FW1{R1} applies to packets from the
external zone to the private zone whereas rule FW2{R1} applies to packets from the
DMZ zone to the private zone. So, rule FW2{R1} is useful and cannot be removed.
Though in [2, 3] the authors claim that their analysis technique marks every rule that is
used on a network path, no specific algorithms have been provided for doing so. The
main advantage of our proposal over their approach is that it includes a model of the
traffic which flows through each component. We consider this is necessary to draw the
right conclusion in this case.



508 J.G. Alfaro, F. Cuppens, and N. Cuppens-Boulahia

Finally, although in [4] the authors consider their work as sufficiently general to be
used for verifying many other filtering based security policies such as intrusion detec-
tion and prevention systems, no specific mechanisms have been provided for doing so.

7 Conclusions

In this paper we presented an audit process to set a distributed security scenario com-
posed of both firewalls and network intrusion detection systems (NIDSs) free of anoma-
lies. Our audit process has been presented in two main blocks. We first presented, in
Section 3, a set of algorithms for intra-component analysis, according to the discov-
ering and removal of policy anomalies over single-component environments. We then
presented, in Section 4, a set of algorithms for inter-component analysis, in order to
detect and warn the security officer about the complete existence of anomalies over a
multi-component environment.

Some advantages of our approach are the following. First, our intra-firewall trans-
formation process verifies that the resulting rules are completely independent between
them. Otherwise, each rule considered as useless during the process is reported to the
security officer, in order to verify the correctness of the whole process. Second, we
can perform a second rewriting of rules, generating a configuration that only contains
positive rules if the component default policy is negative, and negative rules if the de-
fault policy is positive. Third, the network model presented in Section 2 allows us to
determine which components are crossed by a given packet knowing its source and des-
tination, as well as other network properties. Thanks to this model, our approach better
defines all the set of anomalies studied in the related work, and it reports, moreover, two
new anomalies (irrelevance and misconnection) not reported, as defined in this paper,
in none of the other approaches. Furthermore, and as pointed out in Section 6, the lack
of this model in [2, 3, 4] leads to inappropriate decisions.

The implementation of our approach in a software prototype demonstrates the prac-
ticability of our work. We shortly discussed this implementation, based on a scripting
language [5], and presented an evaluation of its performance. Although these experi-
mental results show that our algorithms have strong requirements, we believe that these
requirements are reasonable for off-line analysis, since it is not part of the critical per-
formance of the audited component.

As future work, we are currently studying the anomaly problems of security rules in
the case where the security architecture includes firewalls, IDS/IPS, and IPSec devices.
Though there is a real similarity between the parameters of those devices’ rules, more
investigation has to be done in order to extend our proposal. In parallel to this work, we
are also considering to extend our approach to the analysis of stateful policies.
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A Intra-component Algorithms

Our proposed audit process is a way to alert the security officer in charge of the net-
work about these configuration errors, as well as to remove all the useless rules in the
initial firewall configuration. The data to be used for the detection process is the fol-
lowing. A set of rules R as a list of initial size n, where n equals count(R), and where
each element is an associative array with the strings condition, decision, shadowing,
redundancy, and irrelevance as keys to access each necessary value.

For reasons of clarity, we assume one can access a linked-list through the opera-
tor Ri, where i is the relative position regarding the initial list size – count(R). We
also assume one can add new values to the list as any other normal variable does
(element ← value), as well as to remove elements through the addition of an empty
set (element ← ∅). The internal order of elements from the linked-list R keeps with
the relative ordering of rules.

Each element Ri[condition] is a boolean expression over p possible attributes. To
simplify, we only consider as attributes the following ones: szone (source zone), dzone
(destination zone), sport (source port), dport (destination port), protocol, and
attack class – or Ac for short – which will be empty whether the component is a
firewall. In turn, each element Ri[decision] is a boolean variable whose values are
in {true, false}. Elements Ri[shadowing], Ri[redundancy], and Ri[irrelevance]
are boolean variables in {true, false} – which will be initialized to false by de-
fault.

We split the whole process in four different algorithms. The first algorithm (cf. Al-
gorithm 1) is an auxiliary function whose input is two rules, A and B. Once executed,
this auxiliary function returns a further rule, C, whose set of condition attributes is
the exclusion of the set of conditions from A over B. In order to simplify the repre-
sentation of this algorithm, we use the notation Ai as an abbreviation of the variable
A[condition][i], and the notation Bi as an abbreviation of the variable B[condition][i]
– where i in [1, p].

The second algorithm (cf. Algorithm 2) is a boolean function in {true, false}which
applies the necessary verifications to decide whether a rule r is irrelevant for the config-
uration of a component c. To properly execute such an algorithm, let us define
source(r) as a function in Z such that source(r) = szone, and dest(r) as a func-
tion in Z such that dest(r) = dzone.

The third algorithm (cf. Algorithm 3) is a boolean function in {true, false} which,
in turn, applies the transformation exclusion (Algorithm 1) over a set of configuration
rules to check whether the rule obtained as a parameter is potentially redundant.

The last algorithm (cf. Algorithm 4) performs the whole process of detecting and
removing the complete set of intra-component anomalies. This process is split in three
different phases. During the first phase, a set of shadowing rules are detected and re-
moved from a top-bottom scope, by iteratively applying Algorithm 1 – when the de-
cision field of the two rules is different. Let us notice that this stage of detecting and
removing shadowed rules is applied before the detection and removal of proper redun-
dant and irrelevant rules.

The resulting set of rules is then used when applying the second phase, also from
a top-bottom scope. This stage is performed to detect and remove proper redundant
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rules, through an iterative call to Algorithm 3 (i.e., testRedundancy), as well as to detect
and remove all the further shadowed rules remaining during the latter process. Finally,
during a third phase the whole set of non-empty rules is analyzed in order to detect and
remove irrelevance, through an iterative call to Algorithm 2 (i.e., testIrrelevance).
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Abstract. In this work, a vulnerability in iterative servers is described
and exploited. The vulnerability is related to the possibility of acquiring
some statistics about the time between two consecutive service responses
generated by the server under the condition that the server has always re-
quests to serve. By exploiting this knowledge, an intruder is able to carry
out a DoS attack characterized by a relatively low-rate traffic destined to
the server. Besides the presentation of the vulnerability, an implementa-
tion of the attack has been simulated and tested in a real environment.
The results obtained show an important impact in the performance of
the service provided by the server to legitimate users (DoS attack) while
a low effort, in terms of volume of generated traffic, is necessary for the
attacker. Besides, this attack compares favourably with a naive (brute-
force) attack with the same traffic rate. Therefore, the proposed attack
would easily pass through most of current IDSs, designed to detect high
volumes of traffic.

1 Introduction

The impact of Denial of Service (DoS) attacks in current networked systems
is awesome, posing a very serious problem in many environments, both in eco-
nomical and in performance sense [1]. The threat is specially overwhelming in
Internet, with millions of interconnected systems and a practical lack of en-
forcement authorities. Furthermore, the possibility of performing the attack in
a distributed way (DDoS, Distributed DoS) according to various methodologies
[2], increases the risks and makes even more difficult the adoption of preventive
and/or corrective measures. Recent incidents involving large-scale attacks that
affected important Internet sites [3] [4] [5] demonstrate the vulnerability of the
networks and services to this kind of attacks and its pernicious effects.

DoS attacks try to exhaust some resources in the target system with the aim of
either reducing or subverting the availability of a service provided by the target.
The intruders usually achieve their goal either by sending to the victim a stream
of packets that exhausts its network bandwidth or connectivity, or exploiting a
discovered vulnerability, causing an access denial to the regular clients [2].
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Close to the evolution of the DoS attacks, many proposals have also appeared
for preventing and detecting them. Many of the preventive measures are appli-
cable to mitigate DoS attacks, like egress or ingress filtering [6] [7], disabling
unused services [8], changing IP address, disabling IP broadcasts, load balanc-
ing, or honeypots [9]. However, although prevention approaches offer increased
security, they can never completely remove the threat as the systems are always
vulnerable to new attacks. On the other hand, it is advisable to establish an
intrusion detection system (IDS) [10] capable of detecting the attacks. Although
various approaches described in the bibliography [11] [12] [13] try to discover
DoS attacks, most of them rely on the identification of the attack with tech-
niques that are based on the hypothesis that a high rate flooding is going to be
received from the intruder or intruders.

In this paper, a vulnerability in iterative servers is detected and exploited.
This vulnerability allows an intruder to carry out an application level DoS at-
tack [14] characterized by the use of a low-rate traffic against a server. Due to
this fact, the attack would be capable of bypassing the detection mechanisms
that rely on high-bandwidth traffic analysis. An attack with similar rate charac-
teristics is described by Kuzmanovic et. al [15]. Although the attack presented
here resembles in some aspects the previously cited one, there are key differences
between them. First, both attacks take advantage of a vulnerability caused by
the knowledge of a specific time value in the functioning of a protocol or ap-
plication, allowing an ON/OFF attack that results in low-rate traffic but with
high efficiency in service denial. However, the attack presented in [15] is TCP-
targeted, while the proposed here threatens the application layer. Furthermore,
Kuzmanovic’s attack generates outages in a link, trying to trigger TCP’s con-
gestion control mechanism, while ours simply tries to overflow a single service
running in a server. In other words, no noticeable effect on network traffic is
expected. On the other hand, the proposed attack would not affect other ser-
vices or users within the same network or host, as Kuzmanovic’s does. There
are also differences in the vulnerabilities exploited in both attacks. In the TCP-
targeted low-rate case, the knowledge of the RTO timer for congestion control
implemented in TCP is exploited, whilst in the iterative server case the inter-
output times are the key to build the attack, as it will be presented in Section
3. But the main difference between both attacks lies in the fact that during
the TCP-targeted attack, the link is only busy in the outages periods, while in
the new proposal the server is always busy in processing service requests from
the intruder, causing the legitimate users the perception that the server is not
reachable. This last feature is similar to the behaviour of the Naptha attack [16],
although the main difference is that Naptha is a brute-force attack executed with
high rate traffic, while this attack uses low-rate traffic.

The rest of the article is structured as follows. Section 2 describes the scenario
of the attack and the hypothesis about its behaviour enabling the vulnerability.
Next, a validation of the hypothesis backing up the claimed vulnerability is
presented. Section 3 describes the details and phases of the proposed attack,
which is evaluated both by means of simulations and in a real environment in
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Section 4. Besides, Section 4 shows the comparison of the proposed attack with a
brute-force attack with the same rate of attack packets. Finally, some conclusions
and further work to be carried out are compiled in Section 5.

2 Scenario and Vulnerability Analysis

The scenario to be considered for the analysis is a generic client-server configu-
ration in which the server is going to receive aggregated traffic from legitimate
users and from intruders. From our point of view, an iterative server is a black
box system which acts in the usual way, that is, the server receives requests from
the clients and responds them after some processing. Only after the processing
of a request will the processor take a new petition (iterative operation). Thus,
the existence of a finite length queue in which incoming requests are queued up
while awaiting for the server to process them in a FIFO discipline is assumed.
Therefore, the overall behaviour is that each request packet emitted by a client is
first queued in the server and, after some time, processed and responded by the
server. The possibility of rejecting an incoming request due to a queue overflow
is also considered. Whether the rejection of a request packet is observable or not
is irrelevant for our experiments.

The main objective of a DoS attack in this scenario is to keep the queue full of
request from the attacker. This fact will avoid the acceptance of request packets
from other (legitimate) users, thus causing a denial of service to these users.
Usually, the DoS event is carried out by means of a so called brute-force attack,
that is, the intruder or intruders send as many requests as they can with the aim
of either obtaining the bulk of the queue positions or saturating the network.
Our objective will be similar: to ”capture” all the queue positions, but emitting a
reduced number of requests, what is done by choosing the key instants at which
they should be sent.

Therefore, the key to succeed in our approach of attacking the service is by
forecasting the optimum instants at which a request should be made in order
to acquire a just freed position in a previously full queue. This way, the attack
would eventually capture all the positions and generate a denial of the service to
legitimate users. Obviously, a main question remains unanswered: is it possible
to forecast the instants at which the server is going to get a request from the
input queue and, therefore, generate a free position? Our hypothesis is that,
under certain circumstances, and by simple inspection of the outputs generated
by the server, this is possible. In fact, this is the argued vulnerability.

2.1 Timing of the Outputs

In order to predict the instants at which a position is freed and, therefore, is
available for the first request received, we need to review the operation of an
iterative server in a more formal way, as follows.

A service request enters the system. If the service queue has free positions, the
request is queued. Otherwise, an overflow event occurs and a denial of service is



Assessment of a Vulnerability in Iterative Servers 515

perceived by the user. The request will stay in the service queue during a queue
time, tq, awaiting for its turn to be served. Afterwards, it will be processed
by the service module during a service time, ts. This time would have been
employed in parsing the data, in a complex calculation or simply in building up
the answer. Finally, once the processing is completed, the corresponding answer
to the input request is generated and sent. Following, the next request in the
queue is obtained to be processed. At this point, a free position in the queue is
generated.

Our main hypothesis is that the service time is a random process, Ts that
can be modeled by a distribution function. At this point, some studies suggest
behaviours that depend upon the nature of the service [17]. Furthermore, various
authors report different distributions even for the same service, depending on
the network and other additional factors [18]. Nevertheless, it is not necessary
to know the overall statistics of the service to carry out the proposed attack.
The only needed knowledge concerns the statistics related to the processing and
responses to the requests made by the intruder. In this context, if all the packets
sent by the intruder contains the same request, it would be expectable to re-
quire the same service time. Obviously, many factors external to the service but
related with the server itself will introduce some degree of variability. We lean
on the central limit theorem [19] to characterize the model of this behaviour in
a sufficiently complex system, e.g. a computer running a server, where a lot of
variables are involved, as a normal distribution. Anyway, as the purpose of this
paper is to show the existence of the vulnerability, which is solely based on the
possibility of estimating the expected value for the service time, E[ts], and ac-
cording to the central limit theorem, we use a normal distribution N (ts, var[ts])
to check our hypothesis. This approach allows us to consider the effects of the
variance due to different CPU loads, occupation in the service network, etc. The
behaviour of the queue time is irrelevant from our point of view, as will be argued
hereafter. On the other hand, as it will be pointed later on, the attack procedure
includes a mechanism to resynchronize its timing, which reduces the impact of
the requests made by the legitimate users on the evolution of the attack and the
relevance of the real distribution function of the service time. That is to say, we
only need to model the distribution of the service time for the attack packets
jointly with a mechanism to recover from mistakes.

The potential exploit that allows an intruder to carry out the attack is based
on the knowledge about the statistics of the inter-output time of the server, τ ,
defined as the time elapsed between two consecutive outputs or answers provided
by the server. With the knowledge of this time, the intruder can evaluate the
timing at which free positions are generated.

For clarity, let us examine a case of study in which fixed service times are
considered. Although, at first glance, this could seem a very restrictive case, it
will be shown that the results are valid for more complex cases in which the
service time is a random variable, as discussed above.

The scenario of interest is that in which the queue is always kept occupied
with, at least, one pending request. Under this consideration, the behaviour of
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Fig. 1. Time diagram for the processing of the requests carried out by the server
(bottom) and the associated timing of the generated outputs (top). In black, processing
time; in gray, queue time.

the inter-output time, assuming fixed service times, can be described as follows
(Fig. 1). Let us suppose a queue with N positions which is initially full of re-
quests. At time t = 0, one of the pending requests is extracted from the queue
and processed by the server. After ts, an output is generated (vertical bar in
the time diagram) and the next request is selected for its processing. Again,
after ts, a new answer is provided and the process is repeated while there are
pending requests in the queue. Therefore, for this scenario, the time between two
consecutive outputs from the server is equal to the service time, ts. This rate of
outputs will be maintained under the single condition that there always exists a
pending request in the queue.

If, as previously hypothesized, the service time responds to a normal distri-
bution, the inter-output time, τ , will behave as

τ = N (ts, var[ts]) (1)

As it can be seen, the queue time is not relevant, as it does not influence the
timing of the outputs.

The distribution of the inter-output time could be estimated by a potential
intruder by sending various requests close enough in time so as to occupy contigu-
ous positions in the buffer. In a first approach, the time between two consecutive
responses received by the attacker would provide the required information. By
repeating this procedure, the potential attacker can collect enough information
as to characterize the inter-output time distribution. Anyway, an effect that has
not been previously considered appears in this mechanism. Both the requests
and the answers must traverse the network to reach its destinations. Therefore,
the round trip time (RTT) plays a role in the determination of the timings. Con-
cretely, the variability of the RTT can produce deviations in the inter-output
times. This way, the variance of the inter-output time perceived by a user, τuser ,
will be affected by the variance of the RTT. Assuming that the service times and
RTT are statistically independent variables, and that RTT can also be described
by a normal distribution function, the perceived inter-output time will be:

τuser = N (t̄s, var[ts] + var[RTT ]) (2)
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Experimental Validation by Simulation. In order to validate our hypothesis
concerning inter-output time distribution, various simulation experiments have
been carried out. For this purpose, Network Simulator (NS2) [20] have been used
to check whether the assumption that inter-output time approximates to Eq. (2)
is correct or not.

In a first set of experiments, an scenario with fixed service time has been
considered. As expected, the distribution of the inter-output time, τ , behaves as
predicted while there is at least one pending request in the queue.

In a second set of simulations, some scenarios in which the service time ts
and the round trip time RTT are modelled with normal distributions have been
considered. The obtained results show low deviations in the behaviour of the
system from that predicted theoretically.

As an example, Fig. 2 shows the results of one of the simulations in which the
queue is always full of requests, what is achieved by sending request packets at
a higher rate than the service rate of the server. The service time and RTT are
supposed to be N (1.5 s, 0.02 s) and N (0.6 s, 0.02 s), respectively, so that the
inter-output time distribution is expected to be N (1.5s, 0.04) (see Fig. 2.a). The
simulation results provide a mean value of 1.52 seconds and a variance of 0.041
seconds for the inter-output time, with a distribution that can be approximated
by a normal distribution (Fig. 2.b). This fact have been tested through goodness
of fit tests as the Kolmogorov-Smirnoff test [21].

On the other hand, Fig. 3 shows the results of another example in which the
queue can become momentarily empty. The inter-output times and the occupa-
tion of the buffer are represented in the main axis and in the secondary axis
(dashed lines), respectively, in Figure 3.a. For the same input parameters as in
the previous example, the mean value obtained for the inter-output time is 1.536
s with variance 0.114. The deviation from theoretical results is greater than in
the previous experiment due to the values generated when the buffer has no re-
quests. In fact, the goodness of fit tests provide poor estimators for the obtained
distribution when compared to a normal distribution. It is easily tested that
the periods with no requests in the queue result in higher values for the inter-
output times, greatly modifying the distribution of the samples. Therefore, the
inter-output times becomes unpredictable if the queue becomes empty and the
scenario of interest is that in which the queue has always at least one pending
request, as previously stated.

These experiments show that, even in simulated scenarios where the service
time is variable, the inter-output time could still be predictable in some circum-
stances for a possible intruder to build up an attack based on this knowledge.

3 Low-Rate Attack Specification

As previously stated, the objective of the denial of service attack is to maintain
the input queue of the target server full of requests coming from the attacker
or attackers. This way, legitimate users are not going to be able to queue their
requests, thus experimenting a denial of the service given by the server appli-
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Fig. 2. Simulation of inter-output time with flooded service buffer: a) inter-output time
values, and b) histogram of the samples

cation. This is achieved by making a prediction regarding the instants at which
the server is going to answer the requests, that is, when an output is going to
be generated. The intruder will flood the service queue only during a short pe-
riod of time around the predicted output time, resulting in an overall low-rate
flood experienced by the destination network. Therefore, the attack will follow
an OFF/ON scheme, as described next.

The proposed attack strategy consists in the succession of consecutive periods
composed by an interval of inactivity, offtime, followed by an interval of activ-
ity, ontime, as depicted in Fig. 4. The attack waveform is characterized by the
following parameters:

– Estimated mean inter-output time (E[τuser ]): it is an estimation of τuser

made by the intruder.
– Interval (Δ): period of time elapsed between the sending of two consecutive

attack packets during ontime.
– Ontime time (tontime): time during which an attempt to flood the service

queue is made by emitting request packets, at a rate given by 1/Δ. The
duration of ontime should be proportional to the variance of τuser . It is
centered around E[τuser ].
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Fig. 3. Simulation of inter-output time with the possibility of empty queue: a) Inter-
output time values and buffer occupation level, b) histogram of the samples

– Offtime time (tofftime): time during which there is no transmission of attack
packets. Its duration should be

tofftime = E[τuser ]− tontime/2−RTT · δ (3)

where δ is equal to 0 if no response is received (a previous failure of the
attacker in a seizure or loss of a packet) and 1 otherwise. This accounts for
the delay among the emission of a packet and the reception of the response.

Both offtime and ontime are adjusted so that the generation of the output by
the server and the reception of the requests from the intruder are synchronized.
For this, the round trip time (RTT) has to be considered, as it represents the
delay in the transmission from the server to the client and viceversa. Therefore,
two points-of-view (server’s and intruder’s) should be considered in order to
establish the timings and synchronization of the sendings. The descriptions made
up to now have considered the server’s point-of-view, i.e. all the events and
sequences of events are timed according to the server’s local clock. However,
the communication among the server and the intruder will experience a delay
due to the RTT which can make observation of the sequence of events slightly
different. As an example, if an attack packet is due in the server at a given time,
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Fig. 4. Attack specification: Attack waveform and parameters

the intruder has to provide for it in advance (the packet should be sent RTT/2
time units before). Those effects will be considered in the following explanations
concerning the attack execution.

The attack presents two phases. In the first phase, an attempt to capture all
the positions in the queue is launched. After that, the attack tries to keep all the
captured positions by sending a new request in such a way that it arrives at the
server in the minimum time after the position becomes free, which is achieved by
using the attack waveform in synchrony with the outputs from the server, as will
be explained in the next paragraphs. For the first phase, a brute-force attack could
be used although the same results can be achieved by using the attack mechanism
proposed in the next paragraph. This alternative will achieve the aim in a longer
time but reduces the chances of detection by an IDS rate-based mechanism.

The attack is composed by a continuous sequence of the attack waveform
previously described, plus a mechanism to resynchronize the ontime periods or,
equivalently, to restart the offtime period, just in case a response is received.
Therefore, the execution of the attack can be explained as follows (Fig. 5). Just
after the reception of an answer packet from the server (A1), the intruder sends
a request packet (R1) and the offtime period starts. At the end of this period,
the ontime period starts by emitting a new request packet (R2). While in the
ontime period, another request packet is sent every interval (R3 and R4). At
the end of the ontime period a new offtime starts inmediately, considering δ = 0
in Eq. 3. On the reception of an answer packet during offtime (packet A2), a
request packet is sent (R5) and the offtime period is restarted with the value
given by using δ = 1 in Eq. 3. If an answer packet had been received while in the
ontime period, an additional request packet would have been sent, the ontime
period would have been finished and the offtime period would have been started
with δ = 1 (not depicted in Fig. 5). This way, a request packet is sent whenever
an answer is received. This is done to reduce the probability of losing the free
position due to its capture by a legitimate user.

Finally, two comments about the behaviour of the attack should be pointed
out. First, according to the described attack procedure, the intruder will flood
the service queue only during a short period of time around the predicted output
time, resulting in an overall low-rate flood experienced by the destination net-
work. On the other hand, the behaviour during the flooding (ontime period) is
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designed to send packets that must arrive at the server at the precise time. Obvi-
ously, this can be made from a single attacker or in a distributed way, becoming
a DDoS in the last case.

4 Experimental Results

In this section, the attack behaviour is evaluated and its impact analyzed. The
attack has been tested in a simulated scenario, by using Network Simulator 2,
as well as in a real environment.

Prior to the evaluation of the attack, some indicators are going to be defined
in order to measure the attack performance.

4.1 Performance Indicators

The parameters of interest are:

– Percentage of seizures (S): percentage of the seizures in the server that
corresponds to the attacker.

– Effort of the attack (E): percentage of request packets emitted by the in-
truder, related to the total number of packets that can be accepted by the
server.

– User success percentage (U): percentage of seizures made by the legitimate
clients related to the total number of requests generated by them.

– Overflow percentage (O): percentage of unattended requests due to full queue
condition related to the total number of received requests.

It should be noticed that not all the parameters are observable by the agents
in the scenario. For example, only the effort of the attack is observable by the
intruder during the attack due to the fact that only the server knows the total
number of packets and seizures generated in the observation period.

The aim of the attack should be to minimize the user perception of the avail-
ability of the server (U). This can be achieved by maximizing S, due to the fact
that if the server is engaged more time with intruder requests, the user success
percentage (U) will be lower. Besides, in order not to be detected by any active
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Fig. 6. User success and effective effort for 25 different configurations (tontime and Δ
values) of the low-rate attack

intrusion detection system, the attack should also minimize its effort E. Mini-
mizing E will contribute to a lower overflow O in the server, thus making the
attack more undetectable.

4.2 Simulated Scenario

We are interested in discovering how effective the low-rate DoS attack can be-
come. For that, a set of attacks has been analyzed in the simulator. The obtained
results are really worrying due to the high effectiveness demonstrated.

As an example, in what follows the results obtained from one attack simulation
composed by 1332 outputs are discussed. The attack has been launched against a
server with ts = 3.0 seconds and var(ts) = 0.2 seconds. The traffic generated by
the user is enough by itself to keep the server busy all the time. The parameters
of the attack for this example are: tontime = 0.6 s, tofftime = 2.7 s, and Δ = 0.3 s.
Round trip time has been set to N (0.6s, 0.2). As expected, a very high efficiency
is obtained: S = 94% and U = 9%, which implies that only a 9.04 percent of
the user requests are attended by the server. On the other hand, the overflow
percentage O = 77% indicates that the traffic offered to the server by both
the legitimate users and the intruders is about four times its capacity. In other
words, only 22.9% of the requests are attended.

It is possible to adjust the effort of the attack (E) and, therefore, the ability to
bypass an IDS system able to detect attacks on a given rate, by reducing ontime
time and/or increasing interval at the expense of decreasing the effectiveness of
the attack. In this context, Fig. 6 shows the variety of obtained vaules for the
user success percentage and the effort for 25 possible settings for the attack to
the previously defined server.

4.3 Comparison with a Naive Attack

The proposed attack strategy has to be measured not only in terms of effective-
ness, according to the proposed indicators, but also in comparison with a naive
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Fig. 7. Naive attack vs. proposed attack user success percentage values for three dif-
ferent efforts (packets rates)

attack. By naive attack we mean an attack with the same objective (to seize
all the positions in the buffer) but carried out by simply sending packets in a
fixed rate or randomly. Therefore, a naive attack is, in some sense, a brute-force
attack, as it lacks any intelligence about the server’s behaviour and is based in
the exhaustion of the server’s capabilities. However, we prefer the term ”naive”
as opposed to ”brute-force” due to the fact that we are considering relatively
low-rates for the attack.

The proposed attack would become useless if its figures does not improve
those from the performance of a naive attack with a similar rate. The experi-
mental results (Fig. 7) suggest an important impact in the expected behaviour
when using the knowledge of the estimated inter-output time. As shown, the
user success percentage of the proposed attack is about 20% lower, in absolute
terms, when compared with the naive attack for the same effort of the attack.
That’s to say, the same rate of attack packets provides better results in denying
requests from legitimate users when using the proposed dynamics for the attack.
Furthermore, the difference for U between the naive and the proposed strategies
increases as the attack rate (effort) decreases. This is an expected result; when
using high rates both kinds of attacks should get the same performance due to
the fact that the rate of arrivals at the server will be enough to saturate the
capacity by itself (becoming, in this case, a brute-force attack).

4.4 Real Scenario

The proposed attack has been also tested in a controlled real environment to
check its validity. The selected server is an Apache web server that keeps the
condition of serving requests in an iterative way ("ThreadsPerChild= 1”). Al-
though we positively know this is not a realistic scenario, as most of web servers
are concurrent instead of being iterative, there exist some reasons for considering
it. First, the argued vulnerability is present in every iterative server under the
single condition of a predictable time distribution of the inter-output time or,
equivalently, of the service time. In our opinion, this makes the iterative web
server valid to test the behaviour of the proposed attack. Second, our interest is
to extend this kind of study to concurrent servers, mainly to web servers, which
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Table 1. Real and simulated attack performance

ts ta U O S E

3 3.5 Simulated 10.4 71.4 90.5 260.8
Real 9.8 69.4 91.4 239.7

5 6 Simulated 5.7 67.7 94.2 213.1
Real 7.8 67.6 92.5 212.4

10 12 Simulated 3.0 64.4 97.2 198.3
Real 6.4 65.5 94.3 201.6

15 17 Simulated 3.0 66.6 96.8 197.5
Real 2.5 65.6 97.7 198.2

20 22 Simulated 3.0 65.0 97.2 197.5
Real 4.3 65.1 96.0 196.2

25 28 Simulated 1.8 64.6 98.0 197.9
Real 1.8 65.4 98.3 197.9

makes the iterative web server an interesting starting point. Furthermore, the
next steps in our research, still in preliminary stages, confirm the existence of
the vulnerability in concurrent servers.

We have considered that a client’s petition consists in a connection request.
The attack establishes connections and sends no messages on them, letting the
web server to close the connection after a timeout period specified by the Apache
directive "Timeout", which corresponds to the service time, ts, in our model.
Although it could be argued that there is no variance in the service time, it is
not true due to two main reasons: there still exists some variability due to the
processing of the connection request and, mainly, due to the variability in the
RTT.

The real scenario is analogous to that one considered for the theoretical
analysis. The user traffic has been generated following a Poisson process. A
piece of software launches the attack from a single source. Both legitimate user
and intruder traffic flows traverse a WAN network to reach the server, with
a round trip time N (17 ms, 0.05 ms). Traces on the users and the intruder
side have been issued for collecting the necessary data to calculate the attack
indicators.

Table 1 shows some experimental results with a comparison among real and
predicted values for different service times (ts) and user traffic arrival rates (ta).
These rates have been selected in such a way that there is no congestion on the
server if the attack is not carried out. The parameters of the attack have been
tuned to tontime = 0.4 s and Δ = 0.4 s for all the experiments.

We can even obtain better results in efficiency (lower U and higher S, with
lower O) for the attack in a real environment in some cases. Two conclusions
can be derived from these results: a) All the experiments we have made un-
der simulation seem to provide results that are good approximations of the be-
haviour in real environments, and b) the real impact of the attack can be very
high, showing that these vulnerabilities could be easily exploited in iterative
servers.
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5 Conclusions

In this work, a vulnerability present in iterative servers is described. It consists
in the possibility that a potential attacker becomes aware about the statistics
of the inter-output time of a given server. This vulnerability allows an intruder
to perform a denial of service attack against an iterative server. The attack
could be designed to nearly or completely saturate the capacity of the target
system but, as a difference from the generalized brute force DoS attacks, it uses
a relatively low-rate traffic to achieve its goals. Moreover, it is possible to tune
the attack parameters in order to select the appropriate values for efficiency
and load generated in the server. This distinctive characteristic could allow the
attack to bypass, in many cases, existent IDS systems based on rate thresholds,
becoming a non-detectable threat.

As a difference from other existent low-rate DoS attacks, this one threatens
the application level, maintains the server engaged serving intruder requests and
gets advantage of the knowledge of the inter-output time of the target server.
This is opposed to the TCP-targeted low-rate attack defined in [15], that relies
on selectively saturating the link in order to trigger TCP’s congestion control
mechanism. However, it has some common features with [15], what points out
the existence of a new family of DoS attacks, characterized by the fact that they
rely on vulnerabilities that consist in the a-priori knowledge of one timer of a
protocol or end-system behaviour, and that allow the intruder to carry out the
DoS attack with a low-rate traffic.

The fundamentals and details of the design of a possible exploit have been
explained. We have demonstrated that this attack can be easily carried out and
that it can obtain very efficient results. The potential risk presented by the attack
is really worrying, due to the fact that it could behave very similar to legacy
users, bypassing IDS systems and possibly affecting many services in a server.

The extension of this kind of attacks to concurrent servers is being researched
jointly with a mathematical framework able to model the described behaviour.
The preliminary experimental results obtained up to now show evidences of the
existence of a analogous vulnerability in concurrent servers. On the other hand,
the mathematical model under study points out some possible improvements in
the proposed attack, which makes the associated threat more awesome.
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5. D. Moore, G. Voelker, S. Savage: Inferring Internet Denial of Service activity,
Proceedings of the USENIX Security Symposium, Washington, DC, USA, 2001,
pp. 9-22.

6. P. Ferguson, D. Senie: Network ingress filtering: defeating Denial of Service attacks
which employ IP source address spoofing, in: RFC 2827, 2001.

7. Global Incident analysis Center: Special Notice - Egress filtering. Available from
<http://www.sans.org/y2k/egress.htm>.

8. X.Geng, A.B.Whinston: Defeating Distributed Denial of Service attacks, IEEE IT
Professional 2(4)(2000) 36-42.

9. N. Weiler: Honeypots for Distributed Denial of Service, Proceedings of the Eleventh
IEEE International Workshops Enabling Technologies: Infrastructure for Collabo-
rative Enterprises 2002, Pitsburgh, PA, USA, June 2002, pp. 109-114.

10. S. Axelsson: Intrusion detection systems: A survey and taxonomy. Technical Report
99-15, Department of Computer Engineering, Chalmers Univ., Mar. 2000.

11. R. R. Talpade, G. Kim, and S. Khurana: NOMAD: Traffic-based network monitor-
ing framework for anomaly detection. Proc. of IEEE Symposium on Computers
and Communications, pages 442–451, 1999.

12. J. Cabrera et al.: Proactive detection of distributed denial of service attacks using
MIB traffic variables - a feasibility study. Proc. of the IFIP/IEEE International
Symposium on Integrated Network Management, 2001.

13. J. Mirkovic, G. Prier, and P. Reiher: Attacking DDoS at the source. Proc.of ICNP
2002, pages 312–321, 2002.

14. C. Douligeris and A. Mitrokotsa: DDoS attacks and defense mechanisms: classifi-
cation and state-of-the-art. Comput. Networks, 44(5):643–666, 2004.

15. A. Kuzmanovic and E. Knightly: Low rate TCP-targeted denial of service attacks
(The shrew vs. the mice and elephants). Proc. ACM SIGCOMM’03, pages 75–86,
Aug. 2003.

16. SANS Institute: NAPTHA: A new type of Denial of Service Attack. Available at
http://rr.sans.org/threats/naptha2.php.

17. A. Adas, Traffic models in broadband networks, IEEE commun. Mag. 35 (7) (1997)
82-89.

18. M. Izquierdo, D. Reeves, A survey of statistical source models for variable-bit-rate
compressed video, in Multimedia systems, pp. 199-213, Springer Verlag, Berlin,
1999.

19. R.E. Walpole, R.H. Myers, and S. L. Myers, Probability and Statistics for Engineers
and Scientists, Sixth Edition, Prentice Hall College Div, 1997. ISBN: 0138402086

20. K. Fall and K. Varadhan: The ns manual. Available at http://www.isi.edu/
nsnam/ns/.

21. R. D’Agostino, M. Stephens, Goodness-of-Fit Techniques. Marcel Dekker, Inc.
(1986).



Towards an Information-Theoretic Framework
for Analyzing Intrusion Detection Systems

Guofei Gu1, Prahlad Fogla1, David Dagon1, Wenke Lee1, and Boris Skoric2

1 Georgia Institute of Technology, USA
{guofei, prahlad, dagon, wenke}@cc.gatech.edu

2 Philips Research Laboratories, Netherlands
boris.skoric@philips.com

Abstract. IDS research still needs to strengthen mathematical foundations and
theoretic guidelines. In this paper, we build a formal framework, based on
information theory, for analyzing and quantifying the effectiveness of an IDS.
We firstly present a formal IDS model, then analyze it following an information-
theoretic approach. Thus, we propose a set of information-theoretic metrics
that can quantitatively measure the effectiveness of an IDS in terms of feature
representation capability, classification information loss, and overall intrusion
detection capability. We establish a link to relate these metrics, and prove a
fundamental upper bound on the intrusion detection capability of an IDS. Our
framework is a practical theory which is data trace driven and evaluation oriented
in this area. In addition to grounding IDS research on a mathematical theory for
formal study, this framework provides practical guidelines for IDS fine-tuning,
evaluation and design, that is, the provided set of metrics greatly facilitates a
static/dynamic fine-tuning of an IDS to achieve optimal operation and a fine-
grained means to evaluate IDS performance and improve IDS design. We conduct
experiments to demonstrate the utility of our framework in practice.

1 Introduction

As an essential component of the defense-in-depth strategy, intrusion detection systems
(IDSs) have achieved more and more attention in both academic and industry. A number
of IDSs have been developed in the last two decades [8]. Research work in the IDS field
mainly focuses on how to construct a new detector based on some new idea so that the
IDS can detect certain attacks with reasonable accuracy (in terms of false positives and
false negatives). These are important topics, of course. However, very little work has
been conducted on the fundamental theory. As a result, unlike cryptography, which
now has a solid mathematical ground based on probability theory and the random
oracle model, the IDS community still lacks a mathematical foundation that can be
used to reason about the effectiveness of an IDS formally and practically. It is definitely
necessary to base IDS research on a solid mathematical background [19] that can
lead to a better understanding, evaluation, and design of an IDS. Such a theoretic
framework should be mathematically sound, and useful in analyzing and quantifying
the effectiveness of an IDS in both theory and practice.

In this paper, we investigate a novel theoretic framework for IDS research based
on information theory. The basic observation is that, the intrusion detection process is
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actually a series of data processing and transformation procedures. This motivates us to
use information theory, which is successfully applied in the area of communication
(which is also a data/signal processing and transformation process), to study the
efficiency of the intrusion detection process. We significantly extend our previous
work on an information-theoretic measure of the intrusion detection capability [10],
which only treats the IDS as a black box and measures the overall performance. In
this paper, we further look into the basic components and architecture of an IDS,
and apply information-theoretic analysis on the detailed intrusion detection procedure.
Specifically, we make the following contributions in this paper:

1. We present a formal model of an IDS in Section 2 using an eight-tuple repre-
sentation containing four data structures and four algorithms, which are used in three
procedures, i.e., feature selection, profiling, and detection. This IDS model unifies
signature-based and anomaly-based IDSs, thus, we can reason about all these IDSs
using the same analytical approach. We also show how existing realistic IDSs such as
PAYL [31] and Snort [26] fit into our model.

2. We perform a fine-grained information-theoretic analysis on the IDS model in
Section 4. The detection procedure can be considered as a Markov transition chain
in which two algorithms, i.e., a data reduction and representation algorithm R and
a classification algorithm C, are sequentially applied. This establishes a connection
between intrusion detection and information theory. Further, we present a series of
information-theoretic metrics that can quantitatively measure the effectiveness
of an IDS and its components. We define the measures of feature representation
capability (CR), classification information loss (LC), as well as the overall intrusion
detection capability (CID, [10]). We establish a link among these metrics, and prove
a fundamental upper bound of CID . The task of the IDS is to faithfully reflect the
ground truth about intrusion information in observed data. If we assume the original
ground truth information is 1 (normalized), when the data reduction and representation
algorithm R is applied, this information is reduced to CR. After the classification
algorithm C is performed, there is further LC amount of information loss. The end result
is CID , the overall capability of the IDS. We also discuss how the metrics can be used
in a robust way to tolerate uncertainties and possible estimation errors of parameters in
practice.

3. This framework provides practical guidelines for fine-tuning, evaluation and
design of IDSs. With the help of CID, one can select the optimal operating point (where
CID is maximized) for an IDS, and we provide a concrete example for dynamically
fine-tuning PAYL [31]. With the whole set of metrics, we provide a fine-grained
analysis and quantification on the effectiveness of an IDS and its components. This
yields a guideline for IDS design improvement, in particular, whether and how the
feature representation or classification algorithm is (the bottleneck) to be improved.
Experiments are conducted to show the utility of our framework in Section 5.

Note that in this paper we are not dealing with other important IDS performance
issues, such as resilience to stress [25] and ability to resist attacks directed at the
IDS [24,23]. These are different research topics beyond the scope of this paper. Also
we are not trying to address cost related issues in IDS analysis because cost factor is
subjective, but we are building an objective theoretic framework. Finally, we need to
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point out that although our technique/framework may be applicable to other domains
(e.g., to analyze a general classifier), we focus on the intrusion detection (specifically
network-based intrusion detection) field.

2 Modeling an Intrusion Detection System

In order to formally reason and analyze an IDS, we firstly present a formal model of
the IDS. Briefly, an IDS is represented as an eight-tuple (D,Σ,F,K,S,R,P , C), in
which the first four items are data structures, and the last four are algorithms. Note that
whenever we analyze and evaluate any IDS, we cannot talk about it without dealing
with its data source. After all, our IDS model and framework are data trace driven and
evaluation oriented.

D: the data source that an IDS will examine and analyze. Essentially this is a stream
of consecutive data units. Since each IDS has its own unit of analysis, e.g., packet
level or flow level for a network-based IDS (NIDS), without loss of generality, we
define D = (D1,D2, ...) where Di is an analysis unit of data for the target IDS and
Di ∈ {d1, d2, ...}, dj is the possible data unit. For example, an NIDS uses network
traffic (packet stream), so the data source is a packet stream P = (P1,P2, ...). For a
host-based IDS (HIDS) using system call sequence, the data source is a system call
stream C = (C1, C2, ...). In this paper, we mainly take network data as our example,
and packet as our data unit.

Σ: a finite set of data states indicating whether the data unit Di is normal or
anomalous (or further what type of intrusion). For convenience, we define an IDS
oracle OracleIDS which accepts any query with data unit Di, and outputs an indication
whether the unit is normal or anomalous. The IDS oracle knows the ground truth so it
will always tell the truth1. Then for every data unit Di, its state is OracleIDS(Di). The
space of this state set is finite. For anomaly detection,Σ = {Normal, Anomalous}, or
simply Σ = {N, A}, or Σ = {0, 1} where 0 denotes normal and 1 denotes anomalous.
For misuse detection, we can let Σ = {Normal, AttackType1, AttackType2, ...}, or
Σ = {N, A1, A2, ...}.

F: a feature vector contains a finite number of features, formally F =< f1, f2, ...,
fn >. Every feature is a meaningful attribute of a data unit. For example, f1 could be the
protocol type (TCP, UDP, ICMP, etc.), f2 could be the port number. Each feature has its
own meaningful domain (called feature space) which is a set of discrete or continuous
values (either numerical or nominal). The full range of F is the product of the ranges of
all the features. We denote it as Range(F ) = f1 × f2...× fn.

K: the knowledge base about the profiles of normal/anomalous data. This knowledge
base consists of profiling model (stored in some data structures) of normal and/or attack
information. The detailed structure ofK is possibly different for every IDS. It could be a
tree, a Markov model, a Petri net, a rule set, a signature base, etc. For a signature-based
NIDS, K is its rule set which contains only the attack profiling model (i.e., intrusion
signatures). For an anomaly NIDS, K is mainly the profile of the normal traffic. Any
activity that deviates the normal profile is considered as anomaly.

1 In real evaluation of any IDS, since we should always know the ground truth of data, we are
acting as the IDS oracle in these cases.
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S: feature selection algorithm. Given some D and the corresponding states
OracleIDS(D) (note sometimes only partial or even no such state information avail-
able), this algorithm should return several features fi for the IDS to use. Although there
is some preliminary effort to automatically generate worm signature [14,22] for misuse
IDSs as part of their features, generally speaking S still highly depends on domain
knowledge and is normally conducted manually. The automatic selection or generation
of features for both anomaly and misuse IDSs remains a grand challenge. The quality of
features is one of the most important factors that will affect the effectiveness of an IDS.

(a) Feature selection
procedure

(b) Profiling/training
procedure

(c) Detection procedure

Fig. 1. Three IDS procedures

R: data reduction and representation algorithm. When processing data, the IDS will
firstly reduce the data and represent it in the feature space. This is a mapping/transition
function, mapping the given data to a proper feature vector representation, namelyR :
D→F.
P : profiling algorithm, which is the procedure of generating the profiling knowledge

base K. Given all the feature vector representations of data and their corresponding
states, this algorithm will return the profiling knowledge base K.
C: classification algorithm. It is a mapping/transition function that maps the feature

vector representation of given data to some states (it will also use the profiling base K

in classification decision). Formally, C : F → Σ.
Most IDSs work in three steps.
1. Feature selection procedure (Fig.1(a)). When we are developing an IDS, this is one

of the first steps. Once the proper feature set is defined, it will be used in the following
procedures. Normally, the feature selection procedure is conducted once, only during
development.

2. Profiling procedure (Fig.1(b), sometimes also called training procedure2). We
will run P (also involving R) on a sufficiently large amount of training data and
get the profiling knowledge base K. Normally this procedure is performed once,
only during development/training. In some situation, this procedure can be performed
dynamically/periodically to update K.

3. Detection procedure (Fig.1(c)). In this procedure, the IDS is used to detect
intrusions in the data stream. This is the most important and frequently used procedure.
We will perform an information-theoretic analysis on this procedure in Section 4.

2 Some unsupervised learning based approach may skip this step.
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Our IDS model unifies anomaly detection and misuse detection. In Appendix 7, we
examine two representative IDSs, i.e., PAYL(Payload Anomaly Detection [31]) and
Snort [26], to show how real world IDSs fit into our model.

3 Information Theory Background

Prior to introducing our information-theoretic framework for IDSs, we will first review
a few basic concepts in information theory [6] to assist readers to follow our analysis.

Entropy: The entropy (or self-information) H(X) of a discrete random variable X
is defined as H(X) = −

∑
x p(x) log p(x). This definition, also known as Shannon

entropy, measures the uncertainty of X . A smaller value of H(X) indicates that X is
less uncertain (more regular). The definition of entropy can also be easily extended to
the case of jointly distributed random variables.

Conditional entropy: The conditional entropy H(X |Y ) is defined as H(X |Y ) =
−

∑
y

∑
x p(x, y) log p(x|y). It is the amount of information uncertainty of X after

Y is seen. One can show that H(X |Y )=0 if and only if the value of X is completely
determined by the value of Y . Conversely, H(X |Y )=H(X) if and only if X and Y are
completely independent. The conditional entropy H(X |Y ) has the following property:
0 ≤ H(X |Y ) ≤ H(X).

Mutual information: Assume two random variablesX and Y with a joint probability
mass function p(x, y) and marginal probability mass functions p(x) and p(y). The
mutual information I(X ;Y ) is defined as I(X ;Y ) =

∑
x

∑
y p(x, y) log p(x,y)

p(x)p(y) . It
is the amount of reduction of uncertainty in X after Y is known, H(X |Y ) being the
remaining uncertainty. It tells us the amount of information shared between two random
variables X and Y . I(X ;Y ) = 0 if and only if X and Y are independent. Obviously,
I(X ;Y )=I(Y ;X).

There is a nice relationship between entropy, conditional entropy and mutual infor-
mation, i.e., I(X ;Y ) = H(X) − H(X |Y ) = H(Y ) − H(Y |X). That is, I(X ;Y )
corresponds to the intersection of the information in X with the information in Y .
Clearly, 0 ≤ I(X ;Y ) ≤ H(X).

4 An Information-Theoretic Framework for Analyzing IDSs

The detection procedure (Fig.1(c)) of an IDS is the most important process for us to
analyze. For simplicity, we will assume an anomaly NIDS with Σ = {N, A} in all the
following analysis (the analysis can be extended to an IDS with more than two states).

We firstly introduce three random variables Xo, Zo,Y . Xo represents all possible
input data units to the IDS. It can take value in {d1, d2, ...} with some probability.
Xo is the data stream D = (D1,D2, ...). Zo (taking value in Range(F ) with
some probability) is the intermediate representation of the data unit using the given
feature set (performingR). Zo is the feature representation stream (Zo

1 , Zo
2 , ...) where

Zo
i = R(Di). Y (taking value in Σ with some probability) is the output alert of the

IDS (the classification result of the IDS). Y is the alert stream (Y1,Y2, ...) where
Yi = C(R(Di)). Note that here we assume there is always an IDS output (decision)
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(a) Original model (b) Abstract model (c) Clustered model

Fig. 2. Intrusion Detection Procedure: An Information-Theoretic View

corresponding to each input. Although a real IDS only needs to output alerts when
there is an intrusion, this does not affect our analysis.

Thus, the detection process is the Markov chain of Xo → Zo → Y (data→
representation→alert) as shown in Fig.2(a), which we refer to as the original model. The
input data are processed in sequence through two algorithms, R and C. The mapping
from Xo to Zo is the result ofR. The mapping from Zo to Y is the result of C.

The simple observation of this Markov chain data processing procedure motivates us
to use information theory to analyze the process. Intuitively, we can roughly consider
R as an encoding algorithm that uses feature vector to encode the original data unit.
And then, C, as a decoding algorithm, decodes the feature representation to an output of
the IDS. We should point out that although R and C resemble encoding and decoding
procedures, they are not exactly the strict encoding and decoding schemes. In informa-
tion theory, either encoding or decoding needs an encoding/decoding table containing
all possible codewords for all possible source codes, so it can ensure a perfect encoding
and decoding (without error or ambiguity). In the case of intrusion detection, we cannot
enumerate all the possible input data units (source codes) and feature representations
(code words), nor can we afford to store such a huge encoding/decoding table. As a
result, both R and C algorithms can only work roughly correct, i.e., these algorithms
may not guarantee errorless information transmission. We can analyze and quantify the
effectiveness of this information transmission using information-theoretic metrics.

It is still a little hard to practically measure the effectiveness of the intrusion detection
process based on the original model in Fig.2(a), because this model involves too many
states in Xo and Zo. We can hardly enumerate all the states and practically measure the
transition probabilities. However, we notice that the purpose of an IDS is not to identify
the original input data unit, but to identify the state of the data unit. That is, we are
interested in only limited states of the data, i.e., Σ. We can group the input data to their
states. This greatly simplifies the original model and our practical analysis. Similar idea
can also be applied to the feature representation. Thus, we will introduce two simplified
models step by step in the next paragraphs.

4.1 Abstract Model Analysis

First, we introduce a new random variable X to replace Xo in our analysis. X takes
values in Σ, which represents the state of all possible input data unit to the IDS, with
certain probabilities. X is the state stream (X1,X2, ...) where Xi = OracleIDS(Di).
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As the first step of our simplification, we ignore the intermediate feature representa-
tion process (that is, we ignore Zo, and only consider X , Y ). We treat an IDS as a black
box and thus, introduce our first simplified model, i.e., the abstract model in Fig.2(b),
as firstly shown in [10]. In this abstract model, Σ = {N, A}. We can denote transition
probabilities between X and Y using false positive rate (FP , P (Y = A|X = N),
denoted as α) and false negative rate (FN ,P (Y = N |X = A), denoted as β). Thus,
we have an abstract model of intrusion detection with a very simple Markov transition
matrix between X and Y . The capability of an IDS to classify the input events correctly
(i.e., faithfully reflect the “truth” about the input) can be measured using (normalized)
mutual information, which captures the reduction of original uncertainty (intrusion or
normal) given that the IDS alerts are known.

Definition 1. Intrusion detection capability CID is defined as the normalized mutual
information between X and Y [10], i.e., CID = I(X;Y )

H(X) .

We can easily derive CID = I(X;Y )
H(X) = H(X)−H(X|Y )

H(X) = 1 − H(X|Y )
H(X) . Since 0 ≤

H(X |Y ) ≤ H(X), we get 0 ≤ CID ≤ 1.
Intuitively, CID is interpreted as how much (normalized) ground truth information

an IDS can identify. For example, CID = 0.8 means that the IDS identifies 0.8 bit
of ground truth information assuming the original ground truth contains information
1. It indicates how well an IDS can distinguish normal from anomaly and distinguish
anomaly from normal. In other words, it is an objective trade-off between FP and FN .

CID has several nice properties [10]: (1) it naturally takes into account all the
important aspects of detection capability (if we expand the equation of CID), i.e., false
positive rate, false negative rate, positive predictive value (PPV , or Bayes detection
rate [3]), negative predictive value (NPV ), and base rate (the probability of intrusion
P (X = A), denoted as B); (2) it objectively provides an intrinsic measure of intrusion
detection capability; (3) CID yields a series of related information-theoretic metrics,
which will be discussed soon. This gives a fine-grained measure of the basic architecture
and components of an IDS; (4) it is very sensitive to IDS operation parameters such as
α, β, which can demonstrate the effect of the subtle changes of an IDS.

[10] has showed that CID is more sensitive than some existing metrics
(PPV, NPV ), however, comparison with the probability of error Pe = P r(Y �= X)
(which is another metric to define how Y is different from X) is missing. Now
we demonstrate that CID is also more sensitive to operation parameters than Pe in
reasonable situations in which the base rate is very low [3]. For Σ = {N, A}, we can
derive Pe = Bβ + (1 − B)α. Similarly we can express the formula of CID using
B, α, β. Since both Pe and CID have the same scale (value range [0,1]), it is fair to
compare their sensitivities. To compare the sensitivities of CID and Pe, we perform a
differential analysis of B, α, β to study the effect of changing these parameters on Pe

and CID. For most IDSs and their operation environments, base rate and false positive
rate are very low [3] so we can assume B 5 1 and α 5 1.

Fig.3 shows the partial differential analysis (in absolute value) on different metrics.
We only need to care about the absolute value of the derivatives. A larger derivative
value shows more sensitivity to changes. For all the cases in Fig.3(a)(b)(c), a change in
B, α or β results in very tiny change in Pe. Only when α > 0.1, the derivative of Pe on
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α begins to be greater than that of CID . But for real world IDSs, it is very unlikely to
have a false positive higher than 10%. (For example, it is quite reasonable to have more
than one million packets per day in an enterprise network. If a packet level IDS has a
false positive rate of 10%, this will generate more than 100,000 false positives per day!)
Clearly, from Fig.3 we can see that CID is more sensitive to changes in B, α, β than
Pe (several orders of magnitude more sensitive).
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Fig. 3. Partial differential analysis (in absolute value). In every situation CID has the highest
sensitivity compared to Pe, except in (b) when α > 0.1 (which is unlikely, in practice every IDS
should have a much smaller false positive rate than 10%). For realistic situations, its derivative is
always higher (several orders of magnitude) than Pe.

4.2 Clustered Model Analysis

In the previous abstract model, we have clustered numerous states in Xo into a smaller
set of states in X . As a next step, we reconsider the intermediate feature representation
Zo. Using similar simplification techniques, we will cluster numerous states in Zo

into a smaller set. Specifically, we cluster the feature representation vectors to only
three states, {N, U, A}. We can imagine that the IDS Oracle is labeling each feature
representation vector Fi, denoted as L(Fi) ∈ {N, U, A}. State N means the feature
representation vector is from and only from the data unit which is normal. If the feature
vector is from and only from data unit which is anomaly, then this is labeled as A.
Those feature vectors that can be from both normal and anomalous data have the state
U (means undistinguishable). Formally,

L(Fi) = N ⇔ ∀Dj ,R(Dj) = Fi, OracleIDS(Dj) = N
L(Fi) = A ⇔ ∀Dj ,R(Dj) = Fi, OracleIDS(Dj)=A
L(Fi)=U ⇔ ∃D1 �= D2,R(D1)=Fi,R(D2)=Fi, OracleIDS(D1)=N,OracleIDS(D2)=A

We use a new random variable Z to replace Zo. Z denotes the clustered feature
representation state, and Z ∈ {N, U, A}. Thus, we can slightly change the original
transition model (Fig.2(a)) to a new one (Fig.2(c)).

In this clustered model, we can perform a fine-grained information-theoretic analysis
on the intrusion detection procedure. Instead of viewing the IDS as a black box in the
abstract model (Fig.2(b)) , we will analyze and reason about the basic architecture and
components of an IDS. Here we have three random variables X, Z,Y , which form a
Markov chain in the order X→Z →Y .
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In this detailed model, we first consider the transition from X to Z . Here we can
define a metric which measures the capability of feature representation. The definition
is also the normalized mutual information, similar to the definition of CID.

Definition 2. We define the feature representation capability CR as the normalized
mutual information between X and Z , i.e., CR = I(X;Z)

H(X) .

Clearly CR is also a measure of the capability ofR. Similar to CID, 0 ≤ CR ≤ 1.
A larger CR means a better feature representation capability. If CR = 1, then we

say the IDS has an ideal feature representation capability. Intuitively this is saying that
there is no information loss during the first transition from X to Z .

If there are some feature vectors with state U , it is hard to distinguish whether they
are from normal or anomalous data only given the feature vectors (note that for C, the
feature representation vector is the only input). Intuitively, when transition from X to
Z , we lose the “information”. Information-theoretically, we will have a smaller CR.
Ideally, if the feature set has a perfect feature representation capability, we will have no
feature vector with state U , which also means P (Z = U |X = x) = 0 for ∀x ∈ Σ.
In this case, we get the identical distribution of X and Z , so we get CR = 1. Then the
model is much simplified as well as the abstract model in Fig.2(b).

Now let us consider the transition from Z to Y . In order to measure how good C
is, we expect that there will be less information loss after the classification algorithm.
Note here we do not simply use the normalized mutual information between Z and Y
because actually in this transition, from Z to Y , we still need to involveX , otherwise we
cannot know how good Y is (the classification result) according to X . Let us consider a
new random variable Y X which is the joint probability distribution of X and Y . Then
the mutual information difference between (Y X , Z) (i.e., I(X,Y ; Z)) and (Y, Z) (i.e.,
I(Y, Z)) is the proper measure of classification information loss of C. We will soon see
this definition also yields another nice property stated in Theorem 1.

Definition 3. We define the classification information loss LC as the normalized infor-
mation loss between I(X,Y ; Z) and I(Y ; Z), i.e., LC = I(X,Y ;Z)−I(Y ;Z)

H(X) .

Because of the chain rule for information process, I(X ; Z|Y ) = I(X,Y ; Z)−I(Y ; Z),
we can also write LC as LC = I(X;Z|Y )

H(X) .
Since I(X ; Z|Y ) = H(X |Y ) − H(X |Y, Z) ≤ H(X |Y ) ≤ H(X), we know that

0 ≤ LC ≤ 1.
We always expect that C does a good job so as to have less information loss. Thus, a

smaller LC means a better classification algorithm. If LC = 0, then we say the IDS has
an ideal classification algorithm C (so ideal classification information loss).

Now we have two new metrics CR and LC which can measure the feature representa-
tion capability and the classification information loss. The following theorem provides
a nice relationship between these two metrics and CID .

Theorem 1. The intrusion detection capability CID is equal to the feature representa-
tion capability CR minus the classification information loss LC , i.e., CID = CR−LC .
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Proof. Since X, Z,Y form a Markov chain in the order X → Z → Y , the conditional
distribution of Y depends only on Z and is conditionally independent on X. We can get
I(X ;Y |Z) = 0 in this case (because X and Y are conditionally independent given Z).

Using the chain rule, we can expand mutual information in two different ways.

I(X ; Z,Y ) = I(X ;Y ) + I(X ; Z|Y )
= I(X ; Z) + I(X ;Y |Z)

Applying the fact that I(X ;Y |Z) = 0, we can get I(X ;Y ) = I(X ; Z)−I(X ; Z|Y ).
Divided by H(X), we get CID = CR − LC . �

We already know CID is the fraction of ground truth information identified by the IDS.
If we assume the original ground truth information is 1 (normalized), whenR is applied,
this information will be reduced to CR. After C is performed, we will further lose LC

amount of information due to the classification algorithm. So finally we can get CID

amount of information. If both CR and LC are ideal, then the IDS has an ideal intrusion
detection capability (CID = 1).

From this theorem, clearly we have CR ≥ LC because CID ≥ 0. Also we can obtain
the following corollary easily.

Corollary 1. For an IDS, the intrusion detection capability is no more than its feature
representation capability,i.e., CID ≤ CR.

This establishes an upper bound of CID for an IDS. For any given IDS, CID can never
exceed CR. Once the feature set and R are given, the upper bound of CID is also
established no matter how good C is.

4.3 Implication and Discussion

Implication for Fine-Tuning, Fine-Grained Evaluation and Improvement of IDSs.
Now we can perform a fine-grained evaluation of IDSs using a set of information-
theoretic metrics, CR, LC , as well as CID . We can compare different IDSs, not only in
terms of the overall performance, but also the performance of their specific components.

The overall measure, CID, is surely very useful. We can fine-tune an IDS to some
configuration that maximizes the CID so that we have an optimal operation point.
Section 5 will show a concrete example to demonstrate the static and dynamic fine-
tuning of an IDS based on CID.

CR can help us evaluate whether the features in use have a good representation
capability or not, independent of the classification algorithm. An ideal feature set should
have no information loss during the process, i.e., there should be no “undistinguishable”
feature representation vector. Once there exist some, they will definitely be classified
to one output category although they are actually from two different input category
(normal and anomaly). Here we lose the information, and the lost information will
never come back or be complemented by further process (classification algorithm).

If we do find some undistinguishable state (conflicts), we need to further recon-
sider/reselect the features (refine F). For example, we can carefully add more features
so that the existing undistinguishable state will become distinguishable. (The original
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distinguishable states are still distinguishable). Thus, we can improve CR and avoid
information loss in the first process (X → Z). Note that only simply adding more
features does not guarantee increasing accuracy (decreasing LC) in the testing data,
which is known as “overfitting” problem in machine learning literature, because the
change of the feature set may also affect the accuracy of the classification algorithm.
As a result, when adding more features, we increase the upper bound of CID (i.e., CR),
but we still need to do some possible adjustment/change on classification algorithm to
make sure that LC does not increase, so that we can improve the final CID .

In most cases when we compare two different IDSs, they can have different feature
sets and different classification algorithms. With our framework, we can tell their fine-
grained performance difference. For example, the reason why one IDS is less capable
(lower CID) than another one can be mainly because its poor feature representation
capability or classification information loss. Knowing the exact reason will point out
future improvement direction (bottleneck) of IDS design. We have shown this using an
example in experiment 4 of Section 5.

In practical evaluation, CID and CR are easy to measure because the distribution,
transition probabilities from X to Y in Fig.2(b) and the ones from X to Z in Fig.2(c)
are easy to obtain in evaluation data. We may not need to directly calculate LC , but
simply apply Theorem 1 to compute LC = CR − CID.

Implication for IDS Design.
Feature F and algorithm R requirement: Feature selection is very important for

any IDS. CR is the first quantitative measure of its representation capability. If features
are not carefully selected, the information will be lost when R is applied. Once CR

becomes lower, CID will also decrease no matter how good LC is.
An IDS will not have a good representation capability if different types of data are

represented in the same feature vector. It will misclassify some events because in the
first transition process (X →Z), these different type of events cannot be distinguished
from each other in terms of the feature vector representation (e.g., for Snort, some
normal packets may match the same rule of some attack; for PAYL, the frequency vector
of byte sequence for some attacks may be within the range of normal profile).

A lower feature representation capability CR normally implies two possible reasons,
either features are not well selected or R is not well designed. So we are left with
two possible ways to improve CR. (1) Re-select the feature set or at least carefully
add more features (this implies a better feature selection algorithm S). For example,
a context-aware Bro [27] is better than the one without considering context because it
essentially adds new features (about the context). (2) Well implemented data reduction
and representation algorithm R will also improve CR than poorly designed R. For
instance, in network intrusion detection, when using full assembling, protocol parsing
R, an IDS may achieve better CR. Traffic normalization [11] is another good example
of a betterR.

Knowledge base K requirement: Since knowledge base K is used in the procedure
of C, an accurate (complete and general) K is an important factor to improve the
performance of classification algorithm C, so as to improve LC . For a signature based
IDS, it is important to make sure the signature set is accurate and covering as many
as possible known attacks. This directly affects the quality of K, and C. For anomaly
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detection, an exact profiling of large amount of normal data is the key to improve the
quality of K and C.

Realtime requirement on algorithms: The four algorithms in an IDS have different
realtime requirement. S,P are off-line algorithms, so there is fewer runtime speed
requirement. However, for algorithm R and C, they are mostly used online, so they
should be efficiently implemented.

Finally, we should note that most of the implications are not surprising facts. They
can be used as a sanity test for the correctness of any IDS model and theory. Our IDS
model and information-theoretic framework nicely confirm them.

Prior and Transition Probabilities.
Static situation: When evaluating IDSs, we should always have the data set with

detailed ground truth knowledge. Thus, from the evaluation data we can easily find out
the base rate (fraction of intrusion) and measure all the transition probabilities (α, β,
etc.) in Fig.2 (b) and (c).

Error bound and confidence: Machine learning researchers have given some bounds
with certain confidence on the estimation of true error based on an observed error over
a sample of data [21]. Given an observed sample error es, with approximately N% (e.g.

99%) probability, the true error et will lie in the interval es ± zN

√
es(1−es)

n , where
n is the number of records in sample data, zN is a constant related to the confidence
interval N% we want to reach. For example, if we want approximately 99% confidence
intervals then zN = 2.58. Since the possible difference between testing data and real
data is a general problem for every data-centric evaluation research, we are not trying to
solve this problem in this paper. In practice, we can assume the transition probabilities
are relatively stable (such as α, β) with reasonable high confidence, if the testing data
is a representative sample of the real situation.

Base rate estimation: In the real world, the base rate may vary in different situations.
Here we give a heuristic approach to estimate the base rate. Once we have the estimated
FP (α), FN (β), we can approximately estimate the base rate in real traffic as follows.
All we need is an alert rate (ra) of the IDS (the fraction of generated alerts over total
data). As we know this alert rate can be computed as ra = B(1−β)+(1−B)α. So we
can approximately estimated the base rate as B = ra−α

1−β−α , which provides us a good
estimation of the real base rate. It is easy to prove that this is an unbiased estimator for
B. In the next section, we will show how to use this estimation to dynamically fine-tune
an IDS to keep it working on optimal operation points.

Towards a robust consideration: Our framework can also be easily analyzed with a
robust consideration. For a robust evaluation with uncertain parameters in real world,
we consider the real B, α, β can deviate from our estimation to some certain degree
(a range). Thus, we release the assumptions in all above sections. Now instead of
calculating CID, CR, LC with a static setting of B, α, β, we use a range of these
parameters (to tolerate largest possible estimation error bound), and among all possible
results, we take the worst values (stands for the worst cases with all possible situation of
B, α, β as we expect) as the final resulting metric. By doing this, we are actually finding
the best performing IDS against the worst situation (with the worst possible estimation
error bound), instead of finding the best performing IDS on average (this is similar to
the idea in [5]). Thus, we can make sure that this final measure (say, CID) is robust in
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sense that it is the low bound in all cases of possible estimated range of parameters. This
will help if one is really concerned about the (large) estimation errors and uncertainties
of the parameters in practice. The IDS is guaranteed to be better than this robust metric
given the largest possible estimation error bound.

5 Experiments

In this section, we describe the experiments we conducted to show how our information-
theoretic framework is useful for fine-tuning an IDS in the real world, and we also show
how a fine-grained measurement of IDSs is helpful for improving IDS design.

5.1 Dynamically Fine-Tuning an IDS

Fine-tuning an IDS is an important and non-trivial task, especially for anomaly-based
IDSs. We can use CID as a yardstick to find an operation point yielding the best trade-
off between FP and FN (best is in terms of the intrinsic ability of the IDS to classify
input data). Specifically, we firstly change the threshold of the anomaly IDS so that
we can achieve different FP and FN pairs, and create an ROC curve. Then, we can
calculate corresponding CID for every point in the ROC. We select the point with
the highest CID , and the threshold corresponding to this point provides the optimal
threshold for use.

To demonstrate this, we select an anomaly IDS, PAYL [31], as our example. PAYL
requires a threshold for determining whether the observed byte frequencies vary signif-
icantly from a trained model. For example, a threshold of 256 allows each character in
an observed payload to vary within one standard deviation of the model. We collected
a HTTP trace at a web server from our campus backbone network. Since PAYL only
handles the HTTP requests from client to the server, we filter out all the outgoing HTTP
responses. The trace data set only consists of incoming HTTP requests, approximately
7.5 million packets. We also filtered the trace set through to remove known attacks, and
equally split the trace into three sets: training set, testing set 1, and testing set 2. We
injected numerous HTTP attacks into the testing set, using tools such as Nikto [29].

In our first experiment, we train PAYL on the training set, and test it on testing
set 1. The purpose is to choose an optimal threshold as the static operation point for
PAYL in our testing environment. The base rate in testing set 1 is B = 0.00081699.
The result is shown in Fig.4(a). We see that for the testing trace, as the threshold
drops, CID reaches a peak and then drops, while the ROC curve (shown in the
top graph) continues to slowly increase. The maximum point of CID corresponds to
<α = 0.0016053, 1−β = 0.9824>, and the corresponding threshold is 480. This tells
us that PAYL works optimal in sense of intrusion detection capability at this threshold
in our testing data. Without our information-theoretic guideline CID , it is not clear how
to choose an optimal operation point from the ROC curve.

Experiment 1 finds optimal threshold in testing set 1. If the base rate in testing set 1
is representative to the real situation, then it is perfect. However, in real world situation,
the base rate may vary from time to time. If we fix the operation point at a certain
threshold, then in other testing data, we may not always achieve optimal CID when
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Fig. 4. Fine-tuning PAYL in static and dynamic situations. In experiment 1, CID can tell the
optimal operation point, while a pure ROC curve cannot. In experiment 2, CIDAuto outperforms
other schemes in terms of achieving optimal operation points dynamically in different base rate
situations.

the base rate varies. To address this problem, we introduce a new dynamic fine-tuning
scheme that can be adaptive to any real situation. In previous section, we have discussed
an unbiased estimation of base rate, i.e., B = ra−α

1−β−α . If we divide the time series into
many intervals, at each interval n, we estimate Bn, and then choose optimal operation
point at this base rate to maximize CID . By dynamically fine-tuning the IDS, we ensure
the IDS always operates on optimal points. Thus, we get a self-adaptive, self-tuning
version of the IDS, which is very useful in practice.

We conduct a second experiment to investigate the effectiveness of dynamic fine-
tuning. In experiment 2, we use the same training set in experiment 1. For the testing
set, we inject different amount of attacks into testing set 2, and generate two new testing
set 2A and 2B. They contain the same normal data but different amount of attacks, so
their base rates are different from testing set 1. Specifically, B2A = 0.00077256, which
is only slightly different from testing set 1, B2B = 0.00044488, which is almost half of
that in testing set 1. We modified PAYL to deploy a dynamic fine-tuning using CID as
the guideline. And we denote this scheme as CIDAuto scheme. We compare the results
to the cases when we fix the threshold at some certain values from 416 to 544. We also
compare with the original automatic threshold adjusting scheme provided by PAYL
(denoted as PaylAuto). This scheme is to adjust the threshold in testing to control the
alarm rate below certain value (0.001 in PAYL’s setting). Once the alarm rate is stable
low for some time, then the threshold is fixed during the rest of the testing.

The results of experiment 2 are shown in Fig.4(b). CIDAuto outperforms all other
schemes in all cases, i.e., it outputs the highest CID in both two testing sets 2A and
2B. Fixing threshold at 480 as in experiment 1 still achieves satisfied result but not
the optimal one because the base rate varies. Fixing threshold at 480 scheme gives the
second highest CID in test 2B, less than CIDAuto. Fixing threshold at 448 achieves
the second highest CID in test 2A, still less than CIDAuto. In both testing sets, the
PaylAuto scheme runs with a final stable threshold at 376, and this scheme has the
highest FP and lowest CID (which is not good).

Our experiments clearly demonstrate the usefulness of CID in dynamic fine-tuning
of IDSs.
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5.2 Fine-Grained Evaluation and Design Improvement of IDSs

In this section, we will show how our framework can be used for a fine-grained
evaluation of IDSs and how we can improve the design. As a motivating example, we
will use several machine learning based IDSs in this experiment, because they have a
clear architecture and we can easily manipulate them as we want to change features or
classification algorithms. Thus, it is much easier for readers to understand the usefulness
of our framework.

In [17], Lee and Stolfo proposed three categories of features to be used by IDSs, i.e.,
9 basic features of individual TCP connections, 13 content features within a connection
suggested by domain knowledge, and 19 traffic features computed using a two-second
time window. Using these total 41 features, they processed data set from 1998 DARPA
Intrusion Detection Evaluation program [18]. The processed data are available known
as KDD cup 1999 data set [1]. Every connection record is labeled as N (normal) or A
(anomalous). The training set has 494,020 connection records. The testing data set has
311,029 records, among which 250,436 are anomalous. Obviously we can see that the
distribution (of normal and anomalous data) in the testing data is not good because the
base rate is so high (about 0.8) and obviously not a reasonable operation environment.
Only for the purpose of providing a reasonable base rate, we artificially duplicate the
normal connections 4000 times, so that the base rate B = 250436/(4000 ∗ 60593 +
250436) ≈ 0.001 is more reasonable. Note that our duplicating normal data does not
affect other parameters such as α, β.

We have noticed the critique [20] on the DARPA data set and the limit of the KDD
data set. However, since our purpose is not to design a new IDS nor to conduct an official
testing evaluation, we merely take them as a (public available) platform to demonstrate
our framework. In this sense, we think the data are still valid to achieve our goal. We
also plan to conduct more experiments using more real world IDSs on real world data
to demonstrate our framework in the future.

In experiment 3, we use all 41 features (denoted as feature set 1). For the classifica-
tion algorithm C, we choose three different machine learning algorithms, i.e., decision
tree (specifically, we use C4.5 [21]), Naive Bayes classifier, and SVM (Support Vector
Machine [30]). All of them have been successfully applied to intrusion detection [2,13].
Since they are standard machine learning classification algorithms that are well docu-
mented in [21,30], we skip the details of these algorithms in this paper. The result of
experiment 3 is shown in Table 1.

Form Table 1, we can see that in the transition X → Z , these 41 feature set
does not provide an ideal feature representation capability (i.e., CR = 0.9644 < 1).
Specifically, we measure the transition probabilities P (Z = U |X = N) ≈ 0.12 and
P (Z = U |X = A) ≈ 0.030319. When further analyzing the state U in detail, we
surprisingly find that all of the U states are caused by snmpgetattack (one kind of
R2L attack), i.e., 7,593 (out of total 7,741) snmpgetattack connection records have
the same feature representations with some normal data. In other words, only from these
feature representation, one cannot distinguish these snmpgetattack from normal
traffic. So we already have information loss at the data reduction and representation
process. For the classification process, SVM has the lowest classification information
loss (LC = 0.4002, much lower than other two algorithms). Thus, SVM finally outputs
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Table 1. Experiment 3: a fine-grained evaluation

IDS α β CID CR LC

Feature set 1 with C4.5 0.017609 0.089676 0.4258 0.9644 0.5386
Feature set 1 with Naive Bayes 0.025713 0.099802 0.3756 0.9644 0.5888
Feature set 1 with SVM 0.0036473 0.12397 0.5642 0.9644 0.4002

CID = 0.5642, which means on average, SVM can achieve slightly more than half of
the original ground truth ‘information’. The other two algorithms get less than half.

Experiment 3 clearly shows that the feature set in use still has room to improve
because the feature representation capability is not ideal (a simple possible solution to
improve CR is to add one more feature which can distinguish these snmpgetattack
from normal traffic, e.g., SNMP protocol or not). We are the first to provide a quan-
titative measure of such capability. We also quantitatively compare the classification
information loss of different machine learning algorithms such as SVM, decision tree
and Naive Bayes. The result shows SVM has the least classification information loss in
the data set.

In practice, more likely we will have IDSs with different feature sets and different
classification algorithms. In these cases, we can first compare them using the overall
intrusion detection capability (CID). Moreover, we can further (fine-grained) compare
their feature representation capability and classification information loss. It will help
us understand why an IDS is better, i.e., mainly due to its CR or LC . This not only
helps us evaluate IDSs (especially when the IDSs have similar overall CID), but
also indicates the direction for further improvement and tuning of IDS design. To
demonstrate this point, we conduct experiment 4. We choose two different feature sets
and two different classification algorithms to form two IDSs: one uses feature set 2
(including 9 basic features and 13 content features) and C4.5 classification algorithm,
the other uses feature set 3 (including 9 basic features and 19 traffic features) and Naive
Bayes classifier. For feature set 2, we get the transition probabilities P (Z = U |X =
N) ≈ 0.2021, P (Z = U |X = A) ≈ 0.1892 in testing set, and CR = 0.8092.
For feature set 3, we get the transition probabilities P (Z = U |X = N) ≈ 0.12,
P (Z = U |X = A) ≈ 0.030319, and CR = 0.9644.

The experiment result is shown in Table 2. We can see that the two IDSs have
similar CID (IDS1 is slightly better). But by further exploring the components of
these IDSs, we find IDS1 has a much worse CR but a better LC . On the contrary,
IDS2 has a better CR but the classification algorithm is very poor (causing larger
classification information loss). This fine-grained analysis indicates the bottleneck and
further improvement direction for IDS2 is mainly on classification algorithm, while for
IDS1 is primarily a better feature set (since its CR is too low compared to that of IDS2).
Following this direction, we do another experiment with indicated improvements. When
IDS1 improves its feature set (classification algorithm unchanged) by simply adding
more traffic features to become feature set 1, we can get a better CID = 0.4258,
which is higher than the original 0.4002. By improving IDS2’s classification algorithm
(use c4.5 to substitute Naive Bayes in our experiment, feature set unchanged), we can
improve the CID from 0.3875 to 0.4255.
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Table 2. Experiment 4. The fine-grained analysis indicates the improvement direction for each
IDS.

IDS α β CID CR LC

IDS1(with feature set 2 and C4.5) 0.023699 0.079437 0.4002 0.8092 0.4090
IDS2(with feature set 3 and Naive Bayes) 0.022577 0.10329 0.3875 0.9644 0.5769

IDS1(after improving feature set) 0.017609 0.089676 0.4258 0.9644 0.5386
IDS2(after improving classification algorithm) 0.017576 0.090374 0.4255 0.9644 0.5389

The above example clearly demonstrates that fine-grained analysis can indicate our
further (component) improvement direction for the design of IDSs.

6 Related Work

Intrusion detection is a field of active research for more than two decades. However,
there is still little work on fundamental (theoretical) research, and there is still a huge
gap between theory and practice.

For theoretical studies of intrusion detection, in 1987, Denning [9] was the first
to systematically introduce an intrusion detection model, and also proposed several
statistical models to build normal profiles. Later, Helman and Liepins [12] studied
some statistical foundations of audit trail analysis for intrusion detection. Axelsson [4]
pointed out that results from detection and estimation theory may be used in the IDS
research. However, it is unclear how these similarities can benefit IDS evaluation and
design. Song et al. [28] used ACL2 theorem prover for the analysis of IDSs that employ
declarative rules for attack recognition by proving the specifications satisfy the policy
with various assumptions. This approach is only useful for a certain type of IDSs,
i.e., specification-based intrusion detection. In contrast, our framework is general to
all types of IDSs. Recently, Di Crescenzo et al. [7] proposed a theory for IDSs based
on both complexity-theoretic notions and well-known notions in cryptography (such
as computational indistinguishability). Cardenas et al. [5] proposed a framework for
IDS evaluation (not analysis) by viewing it as a multi-criteria optimization problem and
gave two approaches: expected cost, and a new trade-off curve (IDOC) considering both
the detection rate and the Bayes detection rate. Different from these existing work, our
framework is an objective (without taking subject cost factors), natural and fine-grained
approach with information-theoretic grounding. Besides, we established a clear and
detailed IDS model, and provided an entire framework to analyze components inside
an IDS and improve the design of IDSs.

Information-theoretic metrics have been widely applied in many fields. For instance,
in the machine learning area, there are well-known algorithms (such as C4.5 [21]) that
use information gain as a criterion to select features. [15] proposed to use entropy as
a measure of distributions of packet features (IP addresses and ports) to identify and
classify anomaly network traffic volumes. Lee et al. [16] applied information theoretic
measurement to describe the characteristics of audit data set, suggested the appropriate
anomaly detection model, and explained the performance of the models. This paper is
a significant improvement and extension on our previous work [10], in which CID was
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firstly proposed as a measure of the overall intrusion detection capability by viewing the
whole IDS as a black box. An overall measure of the IDS is useful, but it cannot measure
the performance of each component of the IDS. In this paper, we looked into the detailed
processes within an IDS and performed a white box information-theoretic analysis on
the components of the IDS. Thus, we built a complete framework. In addition, we
demonstrated fine-tuning an IDS in both static and dynamic cases. We also showed how
to use our framework to evaluate IDSs in a fine-grained way and improve the design of
IDSs with experiments.

7 Conclusion and Future Work

In the paper, we established a formal framework for analyzing IDSs based on informa-
tion theory. As a practical theory, it is data trace driven and evaluation oriented. Within
our framework, the analysis of anomaly based and signature based IDSs can be unified.
In addition to providing a better understanding of IDSs grounded on information theory,
the framework also facilitates a static/dynamic fine-tuning of an IDS to achieve optimal
operation, a better or finer-grained means to evaluate IDS performance and improve
IDS design. Our framework provided intrusion detection research a solid mathematic
basis and opened the door for the study of many open problems.

This paper is only a preliminary start in the field. There are many topics for possible
future work. One is to use more information theory, e.g., channel capacity models, to
further study the effect of multiple processes/layers/sensors of the IDS architecture.
Thus, we can analyze and improve both internal and external designs of the IDSs by
extending our current framework. We will also further study robust ways of applying
the framework.
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Appendix: How Real World IDSs Fit into Our Model

Table 3 shows how PAYL and Snort3 fit into our model.

Table 3. Modeling PAYL and Snort

PAYL model
D Packet sequence (P1, P2, ...)
Σ {N, A}, only indicates normal or anomalous.
F A character frequency vector < fre0, fre1, ..., fre255 >, here frei is the frequency of char i in the payload of the

packet.
K For each specific observed length i of each port j, Mij stores the mean and standard deviation of the frequency for each

distinct byte.
S Manually examines exploits and finds out the importance of byte frequency.
R Scans each incoming payload of the packet, computes its byte value distribution.
P Runs R on large normal data set to generate normal profile (K) of the frequency.
C For each new payload distribution given by R, compares against model Mij . If their Mahalanobis distance significantly

deviates from the normal threshold, flags the packet as anomalous and generates an alert.

Snort model
D Packet sequence (P1, P2, ...)
Σ {N, A1, A2, ...}. N is the normal state. Ai is the type of attack that can be detected by Snort, e.g.,

WEB-IIS .asp HTTP header buffer overflow attempt. Currently Snort can detect over three thousand
attacks.

F Feature vector such as <srcIP, dstIP, dstPort, payload containing ’|3A|’ or not,
payload containing ’|00|’ or not, ...>. Many of the features are boolean values to indicate whether
the payload contains some substring (part of the intrusion signatures) or not.

K The rule set of Snort.
S Manually examines exploits and finds out most common strings in intrusions.
R Grinders the packet, preprocesses (defragmentation, assembling, etc.). If possible, uses string matching to explore feature

space according to the rule set. Due to the implementation of Snort, R does not need to represent the packet into the whole
feature space. Instead, R can stop when the packet is represented to some subset of features (matching a certain rule).

P Manually extracts signatures of intrusions and generates the rule set.
C Although C is not clearly separated from R in the implementation of Snort, we can consider it as a simple exact matching

in knowledge base K (as 1-nearest neighbor searching in the rule set for the exact rule).

3 There is no clear separation between R and C in the implementation of Snort. But we can still
model the whole process into two algorithms. K is used in the whole process.
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Maciá-Fernández, G. 512
Maruyama, H. 65
Meadows, C. 384
Mellado, D. 192
Milhau, M. 97
Mishina, T. 65
Montaner, J. 81

Naumann, D.A. 279

Oprea, A. 327

Pavlovic, D. 384
Pfenning, F. 297
Pfitzmann, B. 404
Piattini, M. 192
Prasad, S. 461

Reiter, M.K. 1, 297
Reps, T. 156
Ryan, P.Y.A. 313

Santen, T. 225
Scedrov, A. 362



548 Author Index

Schneider, S.A. 313
Schwoon, S. 156
Seki, H. 263
Sherwood, T. 461
Shmatikov, V. 18
Skoric, B. 527
Srivatsa, M. 347
Stubblebine, S. 156

Takata, Y. 263
Tsay, J.-K. 362

van Buuren, R. 81

Waidner, M. 404
Wang, H. 156, 207
Wang, J. 263
Wang, M.-H. 18
Wang, S.H. 49
Watanabe, Y. 65
Wright, R.N. 479

Yang, Z. 479
Yoshihama, S. 65

Zhao, X.-B. 145
Zhong, S. 479


	Frontmatter
	Finding Peer-to-Peer File-Sharing Using Coarse Network Behaviors
	Timing Analysis in Low-Latency Mix Networks: Attacks and Defenses
	TrustedPals: Secure Multiparty Computation Implemented with Smart Cards
	Private Information Retrieval Using Trusted Hardware
	Bridging the Gap Between Inter-communication Boundary and Internal Trusted Components
	License Transfer in OMA-DRM
	Enhanced Security Architecture for Music Distribution on Mobile
	A Formal Model of Access Control for Mobile Interactive Devices
	Discretionary Capability Confinement
	Minimal Threshold Closure
	Reducing the Dependence of SPKI/SDSI on PKI
	Delegation in Role-Based Access Control
	Applying a Security Requirements Engineering Process
	Modeling and Evaluating the Survivability of an Intrusion Tolerant Database System
	A Formal Framework for Confidentiality-Preserving Refinement
	Timing-Sensitive Information Flow Analysis for Synchronous Systems
	HBAC: A Model for History-Based Access Control and Its Model Checking
	From Coupling Relations to Mated Invariants for Checking Information Flow
	A Linear Logic of Authorization and Knowledge
	Pr\^{e}t \`{a} Voter with Re-encryption Mixes
	Secure Key-Updating for Lazy Revocation
	Key Derivation Algorithms for Monotone Access Structures in Cryptographic File Systems
	Cryptographically Sound Security Proofs for Basic and Public-Key Kerberos
	Deriving Secrecy in Key Establishment Protocols
	Limits of the BRSIM/UC Soundness of Dolev-Yao Models with Hashes
	Conditional Reactive Simulatability
	SessionSafe: Implementing XSS Immune Session Handling
	Policy-Driven Memory Protection for Reconfigurable Hardware
	Privacy-Preserving Queries on Encrypted Data
	Analysis of Policy Anomalies on Distributed Network Security Setups
	Assessment of a Vulnerability in Iterative Servers Enabling Low-Rate DoS Attacks
	Towards an Information-Theoretic Framework for Analyzing Intrusion Detection Systems
	Backmatter


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




