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Abstract. Peer-to-peer networks have been identified as promising architectural
concept for developing search scenarios across digital library collections. Dig-
ital libraries typically offer sophisticated search over their local content, how-
ever, search methods involving a network of such stand-alone components are
currently quite limited. We present an architecture for highly-efficient search
over digital library collections based on structured P2P networks. As the stan-
dard single-term indexing strategy faces significant scalability limitations in dis-
tributed environments, we propose a novel indexing strategy–key-based indexing.
The keys are term sets that appear in a restricted number of collection docu-
ments. Thus, they are discriminative with respect to the global document collec-
tion, and ensure scalable search costs. Moreover, key-based indexing computes
posting list joins during indexing time, which significantly improves query per-
formance. As search efficient solutions usually imply costly indexing procedures,
we present experimental results that show acceptable indexing costs while the
retrieval performance is comparable to the standard centralized solutions with
TF-IDF ranking.

1 Introduction

Research in the area of information retrieval has largely been motivated by the growth
of digital content provided by digital libraries (DLs). Today DLs offer sophisticated
retrieval features, however, search methods are typically bound to a single stand-alone
library. Recently, peer-to-peer (P2P) networks have been identified as promising ar-
chitectural concepts for integrating search facilities across DL collections [1, 2]. P2P
overlays are self-organizing systems for decentralized data management in distributed
environments. They can be seen as a common media for ‘advertising’ DL contents e.g.
to specialists in a particular area, or to the broader public. We argue that a wide range
of topic and genre specific P2P search engines can facilitate larger visibility of exist-
ing DLs while providing guaranties for objective search and ranking performance. Note
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that P2P networks cannot be centrally controlled: Peers are located in various domains
requiring minimal in place infrastructure and maintenance.

Full-text P2P search is currently an active research area as existing P2P solutions still
do not meet the requirements of relevance-based retrieval. It is a challenging problem
since search engines traditionally rely on central coordination, while P2P is inherently
decentralized. For example, global document collection statistics are not readily avail-
able in P2P environments, and naı̈ve broadcast solutions for acquiring such statistics
induce huge network traffic. In fact, scalability issues and potentially high bandwidth
consumption are one of the major obstacles for large-scale full-text P2P search [3].

In this paper we present an integrated architecture for information retrieval over tex-
tual DL collections. We assume DLs are cooperative and provide an index of a repre-
sentative sample of their collections, or supply documents they want to make searchable
through a P2P engine. In this way DLs can choose the content that becomes globally
available, which naturally resolves the problems related to restricted crawler access.
The architecture accommodates distributed indexing, search, retrieval, and ranking over
structured P2P networks by means of a common global inverted index, and serves as a
blueprint for our prototype system ALVIS PEERS, a full-text search engine designed to
offer highly-efficient search with retrieval quality comparable to centralized solutions.
It is the result of our research efforts within the project ALVIS1 that aims at building
an open-source semantic search engine with P2P and topic specific technology at its
core [4].

We propose a novel indexing scheme and design a distributed algorithm for main-
taining the global index in structured P2P networks. Our engine indexes keys—terms
and term sets appearing in a restricted number of global collection documents—while
keeping indexing at document granularity. Indexed keys are rare and discriminative
with respect to a global document collection. They represent selective queries read-
ily retrievable from the global P2P index, while search costs are significantly reduced
due to limited posting list size. As our engine provides highly-efficient search over a
global P2P network, the indexing procedure is costly. However, since DL collections
are rather static, it is appropriate to invest resources into the indexing procedure and
benefit largely from the search performance. We will show experimentally that, as we
carefully choose keys, the key indexing costs remain acceptable. The number of in-
dexed keys per peer is nearly constant for large document collections, as well as the
average posting list size when we keep the number of documents per peer constant and
increase the global collection by adding new peers. The bandwidth consumption during
retrieval is substantially smaller compared to single-term indexing, while the observed
retrieval quality (top-k precision) is comparable to the standard centralized solutions
with TF-IDF ranking. In contrast to the majority of published experimental results that
rely on simulations, our experiments have been performed using a fully fledged proto-
type system built on top of the P-Grid P2P platform2.

The paper is structured as follows. Section 2 reviews the characteristics of P2P net-
works in the context of full-text search, while Section 3 presents our novel key-based
indexing strategy. Section 4 specifies the integrated architecture for P2P full-text search

1 http://www.alvis.info/
2 http://www.p-grid.org/
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and defines a distributed algorithm for building the key index. Experimental results in-
vestigating indexing costs and retrieval performance are presented in Sect. 5. Section 6
briefly covers related work, and we conclude the paper in Section 7.

2 Unstructured vs. Structured P2P

There are two main categories of P2P systems, unstructured and structured. In unstruc-
tured systems peers broadcast search requests in the network, which works well if used
to search for popular highly-replicated content. However, broadcast performs poorly if
used to search for rare items as many messages are sent through the network. More
advanced approaches restrict the amount of query messages by using random walks [5]
or special routing indexes, which maintain content models of neighboring peers in or-
der to determine routing paths for a query [6]. The second class is structured P2P, also
called structured overlay networks or distributed hash tables (DHT) [7, 8, 9]. In struc-
tured P2P, each peer is responsible for a subset of identifiers id in a common identifier
space. Multiple peers may be responsible for the same identifier space to achieve higher
reliability. All peers use an overlay routing protocol to forward messages for which they
are not responsible. To allow efficient routing, most DHTs maintain routing tables of
size O(log(N)) where N is the number of peers in the network. Starting at any peer
in the network, a message with any destination id can be routed in O(log(N)) overlay
hops to the peer responsible for id. Structured P2P overlay networks therefore exhibit
much lower bandwidth consumption for search compared to unstructured networks.
However, they are limited to exact-match key search. Please refer to [10] for a compre-
hensive analysis of generic P2P properties.

There are two architectural concepts for designing P2P search engines in the area of
information retrieval: a) local indexes in unstructured/hierarchical P2P networks, and
b) global index in structured P2P networks. The first strategy [6] divides documents
over the peer network, and each peer maintains the index of its local document collec-
tion. Such indexes are in principle independent, and a query is broadcasted to all the
peers in unstructured networks generating an enormous number of messages. To limit
the query traffic, the query can be answered at two levels, the peer and document level:
The first step locates a group of peers with potentially relevant document collections,
while in the second step the query is submitted to the peers, which then return answers
by querying their local indexes. The answers are subsequently merged to produce a
single ranked hit list. The second strategy [11] distributes the global document index
over a structured P2P network. Each peer is responsible for a part of the global vo-
cabulary and their associated posting lists. A posting list consists of references to the
documents that contain the associated index term. Queries are processed by retrieving
posting lists of the query terms from the P2P network. Our approach is based on the
second strategy.

3 Our Approach: Indexing Rare Keys

The key idea of our indexing strategy is to limit the posting list size of the global P2P in-
dex to a constant predefined value and extend the index vocabulary to improve retrieval
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effectiveness. Fig. 1 compares our rare-key indexing strategy to the standard single-term
indexing approach. It is visible that we trade in an increased index vocabulary for the
limited posting list size. As posting lists are extremely large for a single-term index,
the process of joining them at query time generates unacceptable network traffic, which
makes this approach practically unfeasible. On the other contrary, rare-key indexing
offers highly-efficient query performance as we limit the posting list size according to
network characteristics and intersect posting lists at indexing time.
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Fig. 1. The basic idea of indexing with rare keys

Let D be a global document collection, and T its single-term vocabulary. A key
k ∈ K consists of a set of terms {t1, t2, . . . , ts}, ti ∈ T , appearing within the same
document d ∈ D. The number of terms comprising a key is bounded, i.e. 1 ≤ s ≤
smax. The quality of a key k for a given document d with respect to indexing adequacy
is determined by its discriminative power. To be discriminative, a key k must be as
specific as possible with respect to d and the corresponding document collection D [12].
We categorize a key on the basis of its global document frequency (DF), and define a
threshold DFmax to divide the set of keys K into two disjoint classes, a set of rare
and frequent keys. If a key k appears in more than DFmax documents, i.e. DF (k) >
DFmax, the key is frequent, and has low discriminative power. Otherwise, k is rare and
specific with respect to the document collection.

Although the size of the key vocabulary is bounded for a bounded collection size of
limited size documents, there are many term combinations that form potential rare keys
and special filtering methods are needed to reduce the key vocabulary to a practically
manageable size. We currently use the proximity and redundancy filter to produce
highly-discriminative keys (HDKs) indexed by our search engine. Proximity filter uses
textual context to reduce the size of the rare key vocabulary and retains keys built of
terms appearing in the same textual context—a document window of predefined size
w—because words appearing close in documents are good candidates to appear to-
gether in a query. The analysis presented in [13] reports the importance of text passages
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that are more responsive to particular user needs than the full document. Redundancy
filter removes supersets of rare keys from the vocabulary as such keys are redundant
and only increase the vocabulary size without improving retrieval performance. There-
fore, all properly contained term subsets in rare keys are frequent, and we call such
keys intrinsically rare (i-rare) keys. Proximity filtering strongly depends on the win-
dow size and document characteristics. Although it seems intuitive that it would remove
most keys, our experiments show the great importance of the redundancy filter which
removes many keys after proximity filtering (e.g. 83% of 2-term and 99% of 3-term
keys). By applying both the proximity and redundancy filter to rare keys, we obtain
a significantly smaller set of HDKs compared to the theoretical value, as reported in
Section 5.

As our engine indexes keys, it is essential to map queries to keys for an effective
retrieval performance. We will now discuss the problem of finding, given a query Q =
{t1, t2, . . . , tq}, ti ∈ T , the corresponding relevant keys in the HDK index. A perfect
situation occurs when {t1, t2, . . . , tq} is an HDK, in other words, a user has posed
a good discriminative query for the indexed document collection: The posting list is
readily available and is simply retrieved from the global index. However, this may not
happen with all user queries. Therefore, we use terms and term sets from Q to form
potential HDKs. We extract all the subsets of smax, (smax − 1) , . . . , 1 terms from the
query Q to retrieve the posting lists associated with the corresponding keys, and provide
a union of retrieved posting lists as an answer to Q. In fact, we first check smax-term
combinations, and if all of them retrieve posting list, we stop the procedure because
there will be no (smax − 1)-term HDKs. For example, for a query Q = {t1, t2, t3}
and smax = 2, possible 2-term keys are {t1, t2}, {t1, t3}, and {t2, t3}. If we retrieve
postings for {t1, t2} and {t1, t3}, there is no need to check whether {t1}, {t2}, or {t3}
are indexed because i-rare keys cannot be subsets of other i-rare keys. If we retrieve a
posting only for {t1, t2}, we still need to check {t3}, as it may be an HDK. A similar
query mapping principle has recently been proposed for structuring user queries into
smaller maximal term sets [14].

However, users may still pose queries containing only frequent keys, or some query
terms may not be covered by HDKs. A valid option is to notify a user that his/her query
in non-discriminative with respect to the document collection, and provide support for
refining the query. We have also devised two other possible strategies to improve the
retrieval performance in such cases: The first strategy uses distributional semantics [15]
to find semantically similar terms to query terms, while the second strategy indexes k-
best documents for frequent keys, as the size of the frequent key vocabulary is less than
1% of the HDK size. We leave further analysis of the two strategies for future work.

4 Architecture

We assume an environment comprising a set of M independent DLs hosting local doc-
ument collections and willing to make a part of their collections searchable through a
global distributed index. Each DL is a standalone component that can index and search
its local document collection, and therefore provide (a part of) its local single-term
index as a contribution to the global index. A structured P2P network with N peers is
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available to share a global index, and offer efficient search over the global collection
composed of documents contributed by M DLs.

Fig. 2. An overview of the P2P architecture for digital libraries

The high-level architecture of our P2P search engine is presented in Fig. 2. DLs
interact with peers to submit an index and to send a query to the engine. A peer can
be regarded as an entry point to a distributed index, and a P2P network as a scalable
and efficient media for sharing information about DL content. The architecture is lay-
ered to enable clean separation of different concepts related to P2P networks, docu-
ment and content modeling, and the applied retrieval model [16]. As the global index is
key-based, the system is decomposed into the following four layers: 1) transport layer
(TCP/UDP) providing the means for host communication; 2) P2P layer building a dis-
tributed hash table and storing global index entries; 3) HDK layer for building a key
vocabulary and corresponding posting lists, and mapping queries to keys; and 4) Rank-
ing layer that implements distributed document ranking.

Each peer incorporates a local and global system view. The HDK layer focuses on
the local view and builds the key index from a received single-term index for a DL’s
local collection. The received single-term index must contain a positional index needed
for key computation, and may provide DL’s relevance scores for (term, document) pairs.
The P2P layer provides a global system view by maintaining the global key index with
information about rare and frequent keys. Global index entries have the following struc-
ture {k, DF (k), P eerList(k), Posting(k)}, where DF (k) is the key’s global docu-
ment frequency, PeerList(k) is the list of peers that have reported local document
frequencies df(k), and Posting(k) is the k’s global posting list. The Posting(k) is
null in case k is frequent.

4.1 Distributed Indexing

The indexing process is triggered when a DL inserts a single-term index or document
collection into the P2P search engine. Since the indexing process is computationally
intensive, peers share computational load and build the HDK vocabulary in parallel.
Each peer creates HDKs from the received index, inserts local document frequencies
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for HDKs it considers locally i-rare or frequent, and subsequently inserts posting lists
for globally i-rare keys into the P2P overlay. The P2P layer stores posting lists for
globally i-rare keys, maintains the global key vocabulary with global DFs, and notifies
the HDK layer when i-rare keys become frequent due to addition of new documents.

Algorithm 1 defines the process of computing HDKs locally by peer Pi at its HDK
layer. It is performed in levels by computing single-term, 2-term, . . . , smax-term keys.
The peer stores a set of potentially i-rare keys in Kir, and globally frequent keys in
Kfreq. Note that a locally frequent key is also globally frequent, but each locally rare
key may become globally frequent. The P2P overlay is aware when a key becomes
frequent, and notifies interested peers from the PeerList(k).

The algorithm starts by inserting local document frequencies for the single-term vo-
cabulary Ti and classifying terms as frequent or rare. Note that a peer is notified when
its locally rare keys become globally frequent, which depends on the HDK computation
process performed by other peers. Next, Pi re-checks single-term DFs, and inserts post-
ing lists for the rare ones into the P2P overlay. The approach is tolerant to erroneous
insertions of posting lists for frequent keys: The P2P overlay disregards the received
posting list, updates the global document frequency of a key, and notifies a peer that the
key is frequent.

For determining multi-term i-rare keys, the algorithm uses term locations from the
received single-term index. A potential term combination needs to appear within a pre-
defined window, next the redundancy property is checked, and if a key passes both
filters, it is an HDK candidate. It’s global frequency is updated in the P2P overlay, but
the HDK layer at this point updates its posting list only locally. The global posting list
will be updated subsequently in case the key was not reported globally frequent by the
P2P layer.

4.2 Distributed Retrieval

The query and retrieval scenario involves all four architectural layers. A query is sub-
mitted through a peer’s remote interface to the HDK layer which maps query terms to
HDKs as discussed in Section 3. The HDK layer retrieves posting lists associated with
relevant HDKs from the global P2P index. The received posting lists are merged, and
submitted to the ranking layer. The ranking layer ranks documents, and must be de-
signed to provide relevance scores with the minimal network usage. There are a num-
ber of ranking techniques the proposed architecture can accommodate, but here we only
sketch an approach using content-based ranking since distributed ranking is outside the
scope of this paper.

As the P2P index maintains global DFs for all frequent and rare terms, DFs for
the vocabulary T are readily available in the index and may be retrieved to be used
for ranking. Term frequencies are local document-related values that are also used for
computing content-based relevance scores. As DLs provide either a single-term index
or original documents when initiating the indexing procedure, the indexing peer can use
them to extract/compute document-related term statistics. Consequently, we can rank an
answer set using a relevance ranking scheme that relies on global document frequencies
and term frequencies, without knowing the total global document size, as this parameter
is typically used to normalize the scores.
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Algorithm 1. Computing HDKs at peer Pi

1: for s = 1 to smax do
2: Ks

ir ← ∅
3: Ks

freq(s) ← ∅
4: if s = 1 then
5: /* process single-term keys */
6: for all tk ∈ Ti do
7: P2P.updateDF(key)
8: if df(tk) ≤ DFmax then
9: Ks

ir ← Ks
ir(s) ∪ tk

10: else
11: Ks

freq ← Ks
freq ∪ tk

12: end if
13: end for
14: else
15: /* generate new keys from frequent keys*/
16: for all key = (tk1 , . . . , tks−1) ∈ Ks−1

freq do
17: /* process each document in the key posting list to create a set of potential term

combinations */
18: for all dj ∈ localPostingList(key) do
19: for all tks ∈ windowOf(key) do
20: newKey = concat(key, tks )
21: if checkRedundancy(newKey) then
22: Ks

ir ← Ks
ir ∪ newKey

23: P2P.updateDF(newKey)
24: updateLocalPostingList(newKey, dj)
25: end if
26: end for
27: end for
28: end for
29: end if
30: /* update global key frequency and insert posting list for i-rare*/
31: for all key ∈ (Ks

ir ∪ Ks
freq) do

32: if DF (key) > DFmax then
33: /* key is globally frequent */
34: Ks

ir ← Ks
ir\key

35: Ks
freq(s) ← Ks

freq ∪ key
36: else
37: P2P.insertPostingList(key)
38: end if
39: end for
40: end for

5 Experimental Evaluation

Experimental setup. The experiments were carried out using a subset of news articles
from the Reuters corpus3. The documents in our test collection contain between 70 and

3 http://about.reuters.com/researchandstandards/corpus/
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3000 words, while the average number of terms in a document is 170, and the average
number of unique terms is 102. To simulate the evolution of a P2P system, i.e. peers
joining the network and increasing the document collection, we started the experiment
with 2 peers, and added additional 2 peers at each new experimental run. Each peer
contributes with 5000 documents to the global collection, and computes HDKs for its
local documents. Therefore, the initial global document collection for 2 peers is 10,000
documents, and it is augmented by the new 10,000 documents at each experimental run.
The maximum number of peers is 16 hosting in total the global collection of 80,000
documents. The experiments were performed on our campus intranet. Each peer runs
on a Linux RedHat PC with 1GB of main memory connected by a 100 Mbit Ethernet.
The prototype system is implemented in Java.

Performance analysis. Experiments investigate the number of keys generated by our
HDK algorithm, and the resulting average posting list size maintained by the P2P net-
work. All documents were pre-processed: First we removed 250 common English stop
words and applied the Porter stemmer, and then we removed 100 extremely frequent
terms (e.g. the term ‘reuters’ appears in all the news). The DFmax is set to 250 and
500, smax is 3, and w = 20 for the proximity filter.
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Figure 3 shows the total number of HDKs stored per peer for DFmax = 250 and
DFmax = 500. As expected, an increased value of DFmax results in decreased key
vocabulary. Both experimentally obtained result sequences exhibit a logarithmic growth
and are expected to converge to a constant value because the number of generated term
combinations is limited by the proximity window and the total key vocabulary size
grows linearly with the global collection size for large collections. The number of keys
is quite large compared to the single-term vocabulary, but we expect to benefit from the
query performance.

Figure 4 shows the average posting list size for the HDK and single-term index-
ing. As the average posting list size for HDK indexing remains constant, the expected
bandwidth consumption is significantly smaller than for the single-term index exhibit-
ing a linear increase.

For the retrieval performance evaluations, we have created a total of 200 queries by
randomly choosing 2 to 3 terms from the news titles. Because of the lack of relevance
judgments for our query set, we compared the retrieval performance to a centralized
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baseline4 by indexing the collection using both single-term and HDK indexing with
deferent DFmax values (200, 250, 500). Then for each query we compared the top
20 documents retrieved by our prototype and by the baseline, both hit lists have been
ranked using TF-IDF. We are interested in the high-end ranking as typical users are
often interested only in the top 20 results. Two metrics are used to compare the result
sets: the first one is the overlap between our system and the centralized baseline, and
the second one is the average number of posting lists transmitted during retrieval.

Table 1. Retrieval quality of HDK indexing compared to the centralized TF-IDF system

Overlap ratio on top20 Transmitted postings
single-term (TF-IDF) 100 % 3052.675
HDK, DFmax = 500 94.34% 232.925 (7.63%)
HDK, DFmax = 250 85.88% 96.91 (3.17%)
HDK, DFmax = 200 83.06% 75.37 (2.47%)

Table 1 presents our findings related to retrieval performance for the collection of
30,000 documents over 6 peers. The results show an extreme reduction of the average
number of transmitted postings per query of the HDK compared to a naı̈ve P2P ap-
proach with single-term indexing which compensates for the increased indexing costs.
The results show acceptable retrieval performance of the HDK approach. As expected,
the retrieval performance is better for larger DFmax as we are getting closer to the
single-term indexing, but the average number of transmitted postings also increases,
although it is still significantly smaller compared to the single-term case.

6 Related Work

Full-text P2P search is investigated in two overlapping domains: DLs and the Web.
There is an ongoing debate on the feasibility of P2P Web search for scalability reasons.
In [3] it is shown that the naı̈ve use of unstructured or structured overlay networks is
practically infeasible for the Web, since the generated traffic required for indexing and
search exceeds the available Internet capacity. Thus different schemes have been de-
vised to make P2P Web search feasible. Several approaches target at a term-to-peer in-
dexing strategy, where the unit of indexing are peers rather than individual documents:
PlanetP [17] gossips compressed information about peers’ collections in an unstruc-
tured P2P network, while MINERVA [18] maintains a global index with peer collection
statistics in a structured P2P overlay to facilitate the peer selection process.

As DLs represent only a small fraction of the entire Web space, the feasibility of
full-text P2P search across DL collections is not in question. Hierarchical solutions
have been investigated for federated search where a backbone P2P network maintains
a directory service to route queries to peers with relevant content [6, 1]. A recently pro-
posed solution uses collection-wide statistics to update routing indexes dynamically at
query time, and reports low traffic overheads for the Zipf-distribution queries after the

4 Terrier search engine, http://ir.dcs.gla.ac.uk/terrier/
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initial ‘learning phase’ [19]. These solutions are orthogonal to our approach since they
are designed for unstructured P2P networks with the low-cost indexing schemes, while
the processing and major network traffic is generated during the query phase. Our tech-
nique is costly in terms of indexing, however, it offers highly-efficient and responsive
querying performance. It is comparable to solutions for distributed top-k retrieval that
aim at minimizing query costs by transmitting a limited number of postings [19, 20].
However, the major difference is our novel indexing strategy. The HDK approach is
not the only indexing strategy that uses term sets as indexing features. The set-based
model [21] indexes term sets occurring in queries, and exploits term correlations to re-
duce the number of indexed term sets. The authors report significant gains in terms of
retrieval precision and average query processing time, while the increased index pro-
cessing time is acceptable. In contrast to our indexing scheme, the set-based model has
been used to index frequent term sets and is designed for a centralized setting.

7 Conclusion

We have presented a P2P architecture for information retrieval across digital library
collections. It relies on a novel indexing strategy that indexes rare terms and term sets
to limit the bandwidth consumption during querying and enable scalable and highly-
efficient search performance. As a proof of concept, we have implemented a prototype
system following the presented architectural design, and performed experiments to in-
vestigate query performance and indexing costs. Our experiments have demonstrated
significant benefits of the HDK approach in terms of reduced networking costs and the
feasibility of the proposed indexing strategy for P2P environments. Our future work will
further investigate techniques for reducing the cost of the proposed indexing strategy,
e.g., by using query statistics, or query-driven indexing. We will perform experiments
with larger and various document collections, and increased size of the peer network
to confirm existing positive results related to both the networking costs and retrieval
performance.
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