
Design, Implementation, and Evaluation of a
Wizard Tool for Setting Up Component-Based

Digital Libraries

Rodrygo L.T. Santos, Pablo A. Roberto,
Marcos André Gonçalves, and Alberto H.F. Laender

Department of Computer Science, Federal University of Minas Gerais
31270-901 Belo Horizonte MG, Brazil

{rodrygo, pabloa, mgoncalv, laender}@dcc.ufmg.br

Abstract. Although component-based architectures favor the building
and extension of digital libraries, the configuration of such systems is
not a trivial task. Our approach to simplify the tasks of constructing
and customizing component-based digital libraries is based on an as-
sistant tool: a setup wizard that segments those tasks into well-defined
steps and drives the user along these steps. For generality purposes, the
architecture of the wizard is based on the 5S framework and different
wizard versions can be specialized according to the pool of components
being configured. This paper describes the design and implementation of
this wizard, as well as usability experiments designed to evaluate it.

1 Introduction

The complexity of a digital library, with respect to its content and the range of
services it may provide, varies considerably. As an example of a simple system,
we could cite BDBComp (Biblioteca Digital Brasileira de Computação) [7], which
provides, basically, searching, browsing, and submission facilities. More complex
systems, such as CITIDEL (Computing and Information Technology Interactive
Digital Educational Library) [3], may also include additional services such as
advanced searching and browsing through unified collections, binding, discussion
lists, etc.

Many of the existing digital libraries are based on monolithic architectures
and their development projects are characterized by intensive cycles of design,
implementation and tests [13]. Several have been built from scratch, aiming to
meet the requirements of a particular community or organization [4].

The utilization of modular architectures, based on software components, be-
yond being a widely accepted software engineering practice, favors the inter-
operability of such systems at the levels of information exchange and service
collaboration [13].

However, although component-based architectures favor the building and ex-
tension of digital libraries, the configuration of such systems is not a trivial task.
In this case, the complexity falls on the configuration at the level of each com-
ponent and on the resolution of functional dependencies between components.

J. Gonzalo et al. (Eds.): ECDL 2006, LNCS 4172, pp. 135–146, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

136 R.L.T. Santos et al.

In existing systems, in general, such configurations are performed manually or
via command-line scripts. Both alternatives, however, seem inappropriate in a
broader context of digital libraries utilization. Instead, higher level techniques
to support the creation of complete digital libraries in a simple manner should
be investigated [14].

The approach taken in this paper for simplifying the tasks of constructing
and customizing digital libraries consists in segmenting such tasks into steps
and in driving the user along these steps. This approach is achieved through
the development of a digital library setup wizard running on top of a pool of
software components.

Wizards are applications specially suited for assisting users on the execution
of both complex and infrequent tasks, presenting such tasks as a series of well-
defined steps. Though efficient as assistant tools, such applications are not useful
for didactical purposes; on the contrary, they should be designed to hide most
of the complexity involved in the task to be accomplished. Besides, they should
provide a supplementary rather than substitutive way to accomplish the task,
so that they do not restrict its execution by specialist users [8].

This paper is organized as follows. In Section 2, the architecture of the wiz-
ard is described in details. Following, Section 3 shows some usage examples. In
Section 4, we discuss the usability experimental evaluation of the prototype de-
veloped. Section 5 discusses related work. Finally, Section 6 presents conclusions
and perspectives for future work.

2 Architecture Overview

In this section, we describe the architecture of the wizard, which basically fol-
lows the MVC (Model-View-Controller) framework [2] with the addition of a
persistence layer.

The model layer was primarily designed [12] based on configuration require-
ments gathered from the ODL (Open Digital Libraries) framework [14]. Later, it
was extended in order to support the configuration of different component pools.
Such extension was conceived inspired on the definition of a digital library from
the 5S (Streams, Structures, Spaces, Scenarios, Societies) framework [6]. Accord-
ingly to 5S, a typical digital library is informally defined as a set of mathematical
components (e.g., collections, services), each component being precisely defined
as functional compositions or set-based combinations of formal constructs from
the framework. Our configuration model was devised regarding the components
that make up a 5S-like digital library as configurable instances of software com-
ponents provided by a component pool. By “configurable instances”, we mean
software components whose behaviors are defined as sets of user-configurable
parameters.

The class diagram [11] in Fig. 1 shows a simplified view of the devised model.
As shown in the diagram, a digital library is implemented as a set of configurable
instances of provider components, among those supplied by the pool being used.
A provider may be typed either a repository or a service, according to its role

Design, Implementation, and Evaluation of a Wizard Tool 137

within the library. For orthogonality purposes, the digital library itself is also
implemented as a configurable instance of a component. Additionally, compo-
nents may be declared mandatory, as well as dependent on other components.
The configuration of each component is implemented as a set of parameters,
semantically organized into parameter groups. For validation purposes, each pa-
rameter is associated to an existing Java type; they may also have a default
value, in conformance with their defined type. Parameters may be also declared
mandatory (not null) and/or repeatable (with cardinality greater than one).

Repository

DigitalLibrary

1
1..n

1
1..n

Service1
0..n

1
0..n

Pool ParameterComponent1 0..n1 0..n 1 0..n1 0..n

dependency

Provider

Fig. 1. Class diagram for the model layer

View and controller layers are integrated – a common simplification of the
original MVC framework. They are responsible for handling user interactions,
performing the corresponding modifications to the configuration model and dis-
playing the updated model back to the user. Once user interactions are directly
transmitted to the model, users modify a clone rather than the original con-
figuration of each component. This allows users to cancel all the modifications
performed to a given component at any time.

The configuration interface is organized into steps, in a wizard-like fashion.
Each step comprises a major aspect of a digital library: the library itself, its
collections and/or metadata catalogs, and the services it may provide. In each
of these steps, the parameters associated to each of the components they list are
presented in dynamically created, tab-organized forms (Figs. 2, 3, and 4). Each
tab corresponds to a parameter group. Form elements are designed according
to the type of the parameter they represent: repeatable parameters are shown
as lists, parameters representing file descriptors present a file chooser dialog,
parameters with values restricted to an enumerable domain are displayed as a
combo box, strings and integers are simply shown as text fields. The semantics
of every parameter is displayed as a tooltip near the parameter label. Type-
checking is performed against every value entered by the user; in case of an
erroneous value, a corresponding exception is raised and the user is notified
about the error.

The persistence layer is responsible for loading and saving the components
configuration. Besides that, it is up to this layer the tasks of setting environment

138 R.L.T. Santos et al.

variables and preparing databases that support the execution of some compo-
nents. Its working scheme is based on two XML documents: a pool descriptor
and a configuration log. The pool descriptor document details every component
in the pool, including all configuration parameters associated to them. The de-
scription of each configuration parameter contains path entries of the form doc-
ument :xpath expression that uniquely locate the parameter in each of its source
documents. Since some path entries are dependent on auto-detected or user-
entered information, both only known at runtime (e.g., the base directory of the
wizard and the current digital library identifier), the pool descriptor document
also comprises a list of definitions to be used in path entries declaration. For
example, in the listing below, the path entry for the “libraryName” parameter
is declared relatively to the definitions “wizardHome” (auto-detected) and “li-
braryId” (user-entered). The other document, a configuration log, acts as a cache
for the persistence layer. It comprises information about the currently configured
digital libraries running in the server.

<component id="library" type="model.pool.library.DigitalLibrary">
<group>

<label>General Configuration</label>
<parameter id="libraryName" type="java.lang.String" mandatory="yes">
<path>

#wizardHome/res/libs.xml:/config/library[@id=’#libraryId’]/name
</path>
<default>My New Library</default>
<label>Library Name:</label>
<description>A human readable name for the library.</description>

</parameter>
...

Both XML documents are handled via DOM. Loading and saving of com-
ponents are performed through XPath expressions. Based on the specification
of each component (from the pool descriptor document), configured instances
of them are loaded into the digital library model; besides, a template of each
component is added to the model so that new instances of components can be
added later. Loading is performed in a lazy fashion, i.e., objects are created only
when needed. On the other hand, saving is only performed at the end of the
whole configuration task, as well as some additional tasks, such as environment
variables and database setup, performed via system calls.

Specializing the wizard to assist the configuration of different component pools
can be done just by providing a description document for each pool to be con-
figured, as well as eventual accessory scripts for performing system calls. In fact,
during the development project, we produced wizard versions for two component
pools, namely, the ODL and WS-ODL frameworks.

3 Usage Examples

In this section, we show some usage examples of configuration tasks performed
with the aid of the wizard developed.

Design, Implementation, and Evaluation of a Wizard Tool 139

The initial step welcomes the user and states the purpose of the wizard. The
following step (Fig. 2) handles the digital library’s configuration. At this step,
previously configured digital libraries are listed by the wizard and the user can
choose to modify or even remove any of them. Besides, he/she can choose to
create a new digital library. Both library creation and modification are handled
by a component editor dialog. For instance, selecting “BDBComp” from the
list and clicking on “Details” opens this library’s configuration editor dialog.
This dialog comprises the digital library’ general configuration (e.g., the library’s
home directory, name, and description), as well as its hosting information (e.g.,
the server name and port number for the library’s application and presentation
layers). Selecting a digital library from the list enables the “Next” button on the
navigation bar.

Fig. 2. Configuring digital libraries

Clicking on “Next” drives the user to the following step (Fig. 3), which handles
the configuration of the digital library’s repositories. Similarly to the previous
step, this one shows a list of existing repositories under the currently selected
digital library so that the user can choose to modify or remove any of them. As in
the previous step, he/she can also add a new repository to the library. Clicking on
“Details” after selecting “BDBComp Repository” shows its configuration editor
dialog. Repositories’ configuration parameters include administrative data (e.g.,
repository administrators’ e-mails and password), hosting information and access
permissions (e.g., the repository’s server name and a list of hosts allowed to
access the repository), database connection and storage paths (e.g., the JDBC
driver used to connect to the repository’s database and the PID namespace
associated to records stored in the repository), etc. Since the whole configuration
is performed on the currently selected digital library and is only saved at the
end of the configuration task, clicking on “Back” warns the user that selecting
a new library to be configured implies discarding the current configuration. If

140 R.L.T. Santos et al.

there is at least one repository under the currently selected digital library, the
“Next” button is enabled and the user can go forth.

Fig. 3. Configuring repositories

The following step (Fig. 4) handles the configuration of the digital library’s
services. A list of all the services provided by the pool of components being used
is displayed – those already configured under the current library are marked.
Selecting any of the services displays its description on the right panel. Try-
ing to unmark a service which is an instance of a mandatory component raises
an exception, as well as trying to mark a service component which depends on
other components or to unmark a service component that other components de-
pend on. Selecting a service component which has additional parameters to be
configured enables the “Details” button. For instance, selecting “Browsing” and
clicking on “Details” launches this service’s configuration editor. Its configura-
tion includes navigational parameters, such as a list of dimensions for browsing
and the number of records to be displayed per page, and presentational parame-
ters, such as the XSL stylesheets to be used when displaying browsing results. As
another example, the “Searching” service’s configuration includes parsing and
indexation parameters, such as lists of delimiters, stopwords and fields to be
indexed, among others.

After configuring the services that will be offered by the digital library, the
user is driven to the penultimate step. This step summarizes all the configuration
performed so far, showing a list of repositories and services comprised by the
library being configured. If anything is wrong, the user can go back and correct
the proper parameters. Otherwise, clicking on “Configure” saves the current
digital library’s configuration and drives the user to the last step.

The last step (Fig. 5) notifies the user about the result of the whole configura-
tion task. If no problem has occurred while saving the configurations performed,
links to the digital library’s services are made available to the user.

Design, Implementation, and Evaluation of a Wizard Tool 141

Fig. 4. Configuring services

Fig. 5. Configuration completion

4 System Evaluation

In order to evaluate the usability of our tool, we have conducted a series of
experiments involving four users from Computer Science (CS) and four from
Library and Information Science (LIS). The experiments included performing
two configuration tasks and filling in an evaluation questionnaire. Both tasks
highly explore all interface elements of the wizard, such as lists and file choosers.
The first and simpler task, aimed at helping users to get familiar with the tool,
consisted of modifying a few parameters of a pre-configured digital library. The
second and more complex one consisted of configuring a whole library from
scratch. Since the wizard prototype we tested was running on top of the WS-

142 R.L.T. Santos et al.

ODL framework [10], we designed this second task to be comparable to the one
performed at a command-line installation test conducted with that framework.
Though data insertion is considered out of the scope of our tool but is performed
in the command-line installation experiments of WS-ODL, the comparison was
still possible since they measured the installation time at distinct checkpoints,
allowing us to discard data insertion time while comparing the overall times.
Table 1 shows the completion time and correctness from the two experiments
conducted with the wizard prototype (namely, tasks #1 and #2), as well as
those for the users who also performed the command-line driven configuration
experiment (task #2c). For comparison purposes, the performance of an expert
user – the developers of the wizard and the WS-ODL framework – is also shown
at the end of the table. Time is displayed in the form hh:mm:ss and correct-
ness stands for the number of correctly executed items in the configuration task
divided by the total number of items in that task.

Table 1. Completion time and correctness per task

Completion Time Correctness
User Task #1 Task #2 Task #2c Task #1 Task #2 Task #2c

CS #1 00:05:16 00:10:48 – 1.00 1.00 –
CS #2 00:07:27 00:17:36 – 1.00 0.96 –
CS #3 00:07:26 00:08:09 01:36:00 1.00 1.00 0.78
CS #4 00:07:54 00:09:10 01:12:00 0.92 1.00 0.88
CS Mean 00:07:01 00:11:26 01:24:00 0.98 0.99 0.83
CS Std. Dev. 00:01:11 00:04:15 00:16:58 0.04 0.02 0.07
LIS #1 00:15:59 00:20:38 – 1.00 0.96 –
LIS #2 00:08:01 00:17:22 01:36:00 1.00 1.00 0.55
LIS #3 00:08:59 00:16:11 – 1.00 1.00 –
LIS #4 00:11:21 00:20:03 01:35:00 1.00 0.82 0.69
LIS Mean 00:11:05 00:18:33 01:35:30 1.00 0.95 0.62
LIS Std. Dev. 00:03:33 00:02:08 00:00:42 0.00 0.09 0.10
Global Mean 00:09:03 00:15:00 01:29:45 0.99 0.97 0.72
Global Std. Dev. 00:03:17 00:04:55 00:11:51 0.03 0.06 0.14
Expert 00:01:53 00:04:33 00:37:00 1.00 1.00 1.00

Comparing the wizard-guided and the command-line driven approaches for
task #2 shows that configuring WS-ODL components with the aid of the wizard
is much faster (about 500%, on average) than manually (hypothesis accepted
by statistical analysis: t test with α = 0.05). Configuration correctness is also
substantially increased (about 34%, on average) with the aid of the wizard (hy-
pothesis accepted by statistical analysis: t test with α = 0.05). This is mainly
due to the type-checking and component dependency checker systems of the
wizard. Fastness and correctness attest the effectiveness of the wizard against
the command-line driven approach. Effectiveness was also subjectively rated by
users who participated in both tasks and measured based on a 5-point bipolar

Design, Implementation, and Evaluation of a Wizard Tool 143

scale, ranging from 1 (worst rating) to 5 (best rating). On average, the effective-
ness of the wizard-guided approach, in terms of easing the configuration task,
was rated 4.5.

The learnability of the tool was also derived from Table 1. For such, we de-
vised two measures: configuration efficiency and expertise. Efficiency stands for
the total number of items in the task divided by the overall task completion
time. Expertise measures how close the user’s completion time is to the expert’s
completion time. Table 2 shows the values for these two learnability measures.
Efficiency is measured in terms of task items performed per minute.

Table 2. Efficiency and expertise per task

Efficiency Expertise
User Task #1 Task #2 Task #2c Task #1 Task #2 Task #2c

CS #1 2.47 2.59 – 0.36 0.42 –
CS #2 1.74 1.59 – 0.25 0.26 –
CS #3 1.75 3.44 0.93 0.25 0.56 0.39
CS #4 1.65 3.05 1.24 0.24 0.50 0.51
CS Mean 1.90 2.67 1.08 0.28 0.43 0.45
CS Std. Dev. 0.38 0.80 0.22 0.06 0.13 0.09
LIS #1 0.81 1.36 – 0.12 0.22 –
LIS #2 1.62 1.61 0.93 0.23 0.26 0.39
LIS #3 1.45 1.73 – 0.21 0.28 –
LIS #4 1.15 1.40 0.94 0.17 0.23 0.39
LIS Mean 1.26 1.52 0.93 0.18 0.25 0.39
LIS Std. Dev. 0.36 0.18 0.01 0.05 0.03 0.00
Global Mean 1.58 2.10 1.01 0.23 0.34 0.42
Global Std. Dev. 0.48 0.81 0.15 0.07 0.13 0.06
Expert 6.90 6.15 2.41 1.00 1.00 1.00

From Table 2, we can see that, in most cases (CS #2 and LIS #2 are the
only exceptions), configuration efficiency is increased (about 33%, on average)
from task #1 to task #2. Here we regard all task items as equally difficult, what
is quite reasonable once all of them consist of setting configuration parameters.
Also, the few items that differ in difficulty (e.g., choosing a file in a dialog or
adding an item to a list) are homogeneously distributed across the two tasks.
Expertise – another learnability indicator – is also increased (about 49%, on
average) from task #1 to task #2, what could show that the wizard is easy to
learn. However, the hypotheses of efficiency and expertise growth from task #1
to task #2 were rejected by statistical analysis (t test with α = 0.05), what
suggests that perhaps task #1 was not enough for users to become familiar with
the tool.

From the questionnaire filled in by the users who performed the wizard-guided
configuration tasks, we devised other two metrics: didactical applicability and
satisfaction, both measured based on 5-point bipolar scales, ranging from 1
(worst rating) to 5 (best rating). On average, in terms of understanding of the

144 R.L.T. Santos et al.

concepts being configured (i.e., concepts pertaining to the domain of the com-
ponent pool on top of which the wizard is running), the didactical applicability
of the wizard was subjectively rated 3.75. This was an unexpected yet not un-
welcome high value, since the design of wizards is not intended for didactical
purposes. Satisfaction was measured in terms of comfort and ease of use. On
average, users subjectively rated them 4.25 and 4, respectively.

5 Related Work

There are several works found in the literature that deal with component-based
frameworks for building digital libraries. As far as we know, however, there are
few works related specifically to the task of configuring such systems. In this
section, we present four works that fall into the latter category.

5SGraph [15], a tool based on the 5S framework, provides a visual interface
for conceptual modeling of digital libraries from a predefined metamodel. In the
modeling task, the user interacts with the tool by incrementally constructing a
tree where each node, picked from the metamodel, represents a construct of the
digital library being modeled. Differently from the other works presented here,
this one has a didactical goal: to teach the 5S theory.

BLOX [5] is a tool that hides most of the complexity involved in the task of
configuring distributed component-based digital libraries. However, as occurs in
5SGraph, users interact with this tool in a flexible manner: its interface comprises
a set of windows, each one representing the configuration of an ODL component.

The Greenstone suite [1] incorporates a wizard that allows non-specialist users
to create and organize digital collections from local or remote documents. Driving
the user step by step, this tool gets information such as the name and the purpose
of the collection, administrator’s e-mail, existing collections to serve as a model,
base directories or URL’s, etc. This tool, on the other hand, does not deal with
the configuration of service provider components.

Finally, the OAIB application (Open Archives in a Box) [9], based on the
COCOA framework (Components for Constructing Open Archives), provides
a wizard for configuring metadata catalogs stored in RDBMS’s. Its interface
consists of a series of tabs where each tab presents different configuration options.
Similarly to the wizard provided by the Greenstone suite, this one does not deal
with the configuration of service providers.

Table 3 summarizes the characteristics of all these tools, comparing them to
the ones present in our wizard.

Table 3. Wizard vs. related tools

Wizard 5SGraph BLOX Greenstone OAIB
task configuration modeling configuration configuration configuration
objects components 5S constructs components collections catalogs
interaction guided flexible flexible guided guided
didactical no yes no no no

Design, Implementation, and Evaluation of a Wizard Tool 145

6 Conclusions and Future Work

This paper has presented a wizard tool for setting up component-based digital
libraries. The tool is aimed at assisting users in the nontrivial task of configuring
software components in order to build a fully functional digital library. The archi-
tecture of the wizard comprises a generic model layer for the purpose of support-
ing the configuration of different component pools upon minimal specialization.

The paper has also presented a usability experimental evaluation of a pro-
totype running on top of the WS-ODL framework. Despite the relatively small
number of users, the results (statistically meaningful) show that our approach is
quite effective in easing the task of configuring that framework by hiding most
of the complexity involved in the configuration task.

As future work, we plan to extend the wizard tool in order to support the cus-
tomization of user interfaces and workflows. Though its comfort and ease of use
have been well-rated, we plan to further enhance some interface aspects of the
wizard based on users’ suggestions and observations we made during the exper-
iment sessions, in order to improve the overall learnability of the tool. Also, we
intend to perform additional experiments in order to compare the guided and
flexible interaction approaches, as provided by the wizard and the BLOX tool
(for instance), respectively. In the near future, we plan to incorporate the wizard
to the WS-ODL framework. Additionally, prototype versions for other compo-
nent pools could be produced in order to test and expand the generality of the
model layer.

Acknowledgments

This work was partially supported by CNPq funded projects I3DL and 5S/VQ.
Authors would like to thank Allan J. C. Silva for his valuable help on statistical
analysis of our experimental evaluation.

References

1. Buchanan, G., Bainbridge, D., Don, K. J., Witten, I. H.: A new framework for
building digital library collections. In: Proceedings of the 5th ACM-IEEE Joint
Conference on Digital Libraries (2005) 25–31

2. Burbeck, S.: Applications Programming in Smalltalk-80: How to use Model-View-
Controller (MVC), tech. report. Softsmarts Inc. (1987)

3. CITIDEL. http://www.citidel.org, March (2006)
4. Digital Libraries in a Box. http://dlbox.nudl.org, March (2006)
5. Eyambe, L., Suleman, H.: A Digital Library Component Assembly Environment.

In: Proceedings of the 2004 Annual Research Conference of the SAICSIT on IT
Research in Developing Countries (2004) 15–22

6. Gonçalves, M. A., Fox, E. A., Watson, L. T., Kipp, N.: Streams, Structures, Spaces,
Scenarios, Societies (5S): A Formal Model for Digital Libraries. ACM Transactions
on Information Systems 22 (2004) 270–312

146 R.L.T. Santos et al.

7. Laender, A. H. F., Gonçalves, M. A., Roberto, P. A.: BDBComp: Building a Digital
Library for the Brazilian Computer Science Community. In: Proceedings of the 4th
ACM-IEEE Joint Conference on Digital Libraries (2004) 23–24

8. MSDN. http://msdn.microsoft.com/library/en-us/dnwue/html/ch13h.asp, March
(2006)

9. Open Archives in a Box. http://dlt.ncsa.uiuc.edu/oaib, March (2006)
10. Roberto, P. A.: Um Arcabouço Baseado em Componentes, Serviços Web e Ar-

quivos Abertos para Construção de Bibliotecas Digitais. Master’s thesis, Federal
University of Minas Gerais (2006)

11. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference
Manual. Addison-Wesley Professional (2004)

12. Santos, R. L. T.: Um Assistente para Configuração de Bibliotecas Digitais Compo-
nentizadas. In: I Workshop in Digital Libraries, Proceedings of the XX Brazilian
Symposium on Databases (2005) 11–20

13. Suleman, H., Fox, E. A.: A Framework for Building Open Digital Libraries. D-Lib
Magazine 7 (2001)

14. Suleman, H., Feng, K., Mhlongo, S., Omar, M.: Flexing Digital Library Systems. In:
Proceedings of the 8th International Conference on Asian Digital Libraries (2005)
33–37

15. Zhu, Q., Gonçalves, M. A., Shen, R., Cassell, L., Fox, E. A.: Visual Semantic
Modeling of Digital Libraries. In: Proceedings of the 7th European Conference on
Digital Libraries (2003) 325–337

	Introduction
	Architecture Overview
	Usage Examples
	System Evaluation
	Related Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

