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Abstract. We propose a probabilistic formulation of 3D segmentation
given a series of images from calibrated cameras. Instead of segmenting
each image separately in order to build a 3D surface consistent with
these segmentations, we compute the most probable surface that gives
rise to the images. Additionally, our method can reconstruct the mean
intensity and variance of the extracted object and background. Although
it is designed for scenes, where the objects can be distinguished visually
from the background (i.e. images of piecewise homogeneous regions),
the proposed algorithm can also cope with noisy data. We carry out the
numerical implementation in the level set framework. Our experiments on
synthetic data sets reveal favorable results compared to state-of-the-art
methods, in particular in terms of robustness to noise and initialization.

1 Introduction

Recovering the spatial structure of a scene from multiple views is one of the old-
est and most fundamental problems in computer vision with many applications
in computer graphics, robot navigation, object recognition, and tracking. The
literature on 3D reconstruction could be divided into four major classes: shape
from stereo, shading, texture, and silhouettes.

Stereovision requires to match points from different images that correspond
to the same point in the scene. The earliest algorithms that incorporate a large
number of views use carving techniques to obtain a volumetric representation
of the scene assuming Lambertian properties of the objects [18,10]. The space
carving framework suffers from several limitations. Once a voxel is carved away,
it cannot be recovered. Moreover, if one voxel is removed in error, further voxels
can be erroneously removed in a cascade effect. These limitations are partially
alleviated by the probabilistic space carving method [1]. Others have suggested
to guide a deformable surface model by a measure based on local correspondences
toward a steady state [6,5]. All these methods require a textured surface in order
to match points.

Shape from shading methods, on the other hand, are mainly designed for ho-
mogeneous objects [8,9]. They are based on the diffusing properties of Lamber-
tian surfaces and aim at reconstructing the object shape from light reflectance.
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A difficulty of this concept is the requirement of a known illumination model or
the necessity to estimate illumination together with the shape.

A similar problem appears with texture-based methods [12]. They need a
known texture pattern in order to reconstruct a 3D surface by means of its
distortion in the image.

In case of sparsely textured objects, which are known challenges to stereo-
and texture-based techniques, silhouettes exhibit the dominant image feature.
The algorithm presented in this paper belongs to this type of silhouette-based
techniques. Such methods usually try to estimate the visual hull of the observed
objects. The visual hull of an object is defined as the maximal shape that yields
the same silhouette as the observed object [11]. The earliest attempts use a vol-
umetric representation of the scene and are referred to as volume intersection
techniques in the literature. That is, the space is discretized by a fixed voxel grid
and each voxel is labeled as opaque or transparent. An early paper reporting a
volumetric representation of the visual hull is due to Martin and Aggarwal [13].
They segment the input images in advance by a simple intensity thresholding
and then back-project the estimated silhouettes to a surface representation. Since
then, silhouettes have been used in many different algorithms. Octree-based rep-
resentations have been employed by [15,19,7], and in [17] the authors presented
a Hough-like voting scheme that back-projects image features into a volumetric
space. In addition to volumetric approaches, some surface-based ones have been
presented. In [3] and [20] apparent contours are used to reconstruct a 3D shape.
Although the authors obtain better results, the reconstruction works only locally.

Yezzi and Soatto recently proposed stereoscopic segmentation as a variational
framework for global 3D region segmentation from a collection of images of a
scene [21]. They couple the segmentations of each image through the evolution
of a single 3D surface rather than separate 2D contours, which makes their
method robust to erroneous camera calibration. Upon a closer look, it turns out
that stereoscopic segmentation has certain limitations. Its main drawback is the
definition of the energy in the image domain that results in a very local evolution.
Consequently, it needs an accurate initialization in order to capture the correct
object topology. In addition, the algorithm is prone to noise as the strictly local
surface evolution is mainly determined by single camera observations.

In this paper, we propose a probabilistic Bayesian formulation of 3D recon-
struction which aims at estimating the most likely 3D shape given the observed
images. In contrast to stereoscopic segmentation, this yields a more global evo-
lution that makes better use of the available information from multiple cameras.
As a consequence, our method has a larger radius of convergence and is more
robust to noise than previous techniques.

Paper organization. In the next section, the probabilistic framework of the
proposed method is presented and discussed. A variational formulation and a
respective level set implementation are developed in Section 3. In Section 4 we
show experimental results. Finally, we provide a conclusion in Section 5.
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2 Probabilistic Volume Intersection

2.1 Bayesian Inference

Let V be a discretized volume and I1, . . . , In : Ω �→ R a collection of calibrated
input images with perspective projections π1, . . . , πn. Given the set of images,
we are looking for the most probable surface Ŝ that gives rise to these images,
that is

Ŝ = arg max
S∈Λ

P (S | {I1, . . . , In}), (1)

where Λ is the set of all closed surfaces lying inside of the volume V . By means
of the Bayes formula we obtain (omitting the normalization constant):

P (S | {I1, . . . , In}) ∝ P ({I1, . . . , In} | S) · P (S). (2)

Assuming that all voxels are independent leads to

P (S | {I1, . . . , In}) ∝
⎡
⎣ ∏

xijk∈V

P ( {Il(πl(xijk))}l=1,...,n | S)

⎤
⎦

dx

· P (S), (3)

where dx denotes the discretization step. The exponent dx is introduced to
ensure the correct continuum limit. The resulting expression is then invariant to
refinement of the grid.

According to a certain surface estimate S, the voxels can be divided into two
classes: lying inside an object or belonging to the background. Hence, the volume
V can be expressed as V = RS

obj ∪ RS
bck. Considering this partitioning, we can

proceed with

P (S | {I1, . . . , In}) ∝
⎡
⎣ ∏

xijk∈RS
obj

P ( {Il(πl(xijk))}l=1,...,n | xijk ∈ RS
obj)

⎤
⎦

dx

·

⎡
⎣ ∏

xijk∈RS
bck

P ( {Il(πl(xijk))}l=1,...,n | xijk ∈ RS
bck)

⎤
⎦

dx

· P (S).

To simplify the notation, we denote

Pobj(x) := P ( {Il(πl(x))}l=1,...,n | x ∈ RS
obj)

Pbck(x) := P ( {Il(πl(x))}l=1,...,n | x ∈ RS
bck)

(4)

for x ∈ V (see fig. 1) and come to the following expression

Ŝ = argmax
S∈Λ

⎡
⎣ ∏

xijk∈RS
obj

Pobj(xijk) ·
∏

xijk∈RS
bck

Pbck(xijk)

⎤
⎦

dx

· P (S). (5)
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(x)P , P (x)obj bck

Fig. 1. Volume representation. Two probabilities Pobj , Pbck are assigned to each voxel
for membership to one of the objects and background, respectively.

2.2 Joint Probabilities

In order to compute the joint probabilities P ( {Il(πl(x))}l=1,...,n | x ∈ RS
obj )

and P ( {Il(πl(x))}l=1,...,n | x ∈ RS
bck ), we have to combine information from

different images. This could be achieved by assuming independence of the image
observations yielding

Pobj(x) =
n∏

i=1

P (Ii(πi(x)) | x ∈ RS
obj)

Pbck(x) = 1 −
n∏

i=1

[
1 − P (Ii(πi(x)) | x ∈ RS

bck)
]
.

(6)

Note the asymmetry in these expressions. The probability of a voxel being part
of the foreground is equal to the probability that all cameras observe this voxel
as foreground, whereas the probability of background membership describes the
probability of at least one camera seeing background. However, this model has
some disadvantages. In case of noisy images 0 < P ( Ii(πi(x)) | x ∈ RS

obj ) <

1 and 0 < P ( Ii(πi(x)) | x ∈ RS
bck ) < 1, in general. Hence, for n → ∞

the joint probability P ( {Il(πl(x))}l=1,...,n | x ∈ RS
obj ) will converge to 0 and

P ({Il(πl(x))}l=1,...,n |x ∈ RS
obj ) to 1. To dispose this bias for increasing number

of cameras, we have to take the dependency of the observations into account. In
our model we used the geometric mean of the single probabilities:

Pobj(x) = n

√√√√
n∏

i=1

P (Ii(πi(x)) | x ∈ RS
obj)

Pbck(x) = 1 − n

√√√√
n∏

i=1

[
1 − P (Ii(πi(x)) | x ∈ RS

bck)
]
.

(7)
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They are modeled by Gaussian densities

P (Ii(πi(x)) | x ∈ RS
obj) =

1√
2π · σ · e−

(Ii(πi(x))−μobj )2

2σ2

P (Ii(πi(x)) | x ∈ RS
bck) =

1√
2π · σ · e− (Ii(πi(x))−μbck)2

2σ2 ,
(8)

where μobj , μbck denote the mean intensities of object/background and σ is the
respective standard deviation. We update these values in the course of evolution
by projecting the current surface estimate onto the images as described in [21].
The standard deviation σ is set to the maximum of the deviations of the object
and background regions. Alternatively, above probabilities could be modeled
with two separate standard deviations. However, in our experiments the proposed
model resulted in a faster convergence.

3 Variational Framework

3.1 Variational Formulation

In this section we will convert the maximum a-posteriori estimation into an
energy minimization problem. Applying the negative logarithm to (5) yields in
a continuous formulation the following functional:

E(S) = −
∫

RS
obj

log Pobj(x) dx −
∫

RS
bck

log Pbck(x) dx − log P (S). (9)

Minimizing this energy functional is equivalent to maximizing the total a-
posteriori probability of all voxel assignments. The first two terms are related
to the external energy and measure the discrepancy between observed images
and images predicted by the model. The last term exhibits the internal energy
and describes the surface shape, thus allowing incorporation of prior knowledge
on the geometry. Note that the functional also incorporates the intensity means
and standard deviation, which are defined by the surface S. Since the unknowns,
surface and radiances, live in an infinite-dimensional space (there exist multiple
solutions S that explain the observed images), we need to impose regularization
in order to make the minimization problem well-posed. This can be achieved by
setting

P (S) = e−ν|S|, (10)

where ν is a weighting constant and |S| denotes the surface area. Inserting this
expression into the above functional yields

E(S) = −
∫

RS
obj

log Pobj(x) dx −
∫

RS
bck

log Pbck(x) dx + ν|S|. (11)

In order to reconstruct the smoothest surface consistent with the images, we
omit the data fidelity terms for points, which are visible from neither of the
cameras. This is not restrictive, since no data is available for such points.
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3.2 Level Set Implementation

The numerical implementation of the proposed energy functional (11) has been
carried out within the level set framework [4,14] due to its stability and ability
to handle topological changes automatically. In level set methods, the surface is
implicitly represented by a function φ : V �→ R, whose values are the distances
from the surface, and the interior and exterior of the surface are defined by
φ(x) < 0 and φ(x) ≥ 0, respectively. Hence, we can use the Heaviside function

H(z) =
{

1, if z ≥ 0
0, otherwise (12)

to access these two regions. Expressing the energy functional (11) with respect
to the level set function φ yields

E(φ) = −
∫

V

[log Pbck(x)H(φ(x)) + log Pobj(x)(1 − H(φ(x)))] dx

+ ν

∫

V

|∇H(φ(x))|dx.
(13)

This formulation has some nice properties. First, its Euler-Lagrange equations
are easy to compute since the implicit function φ occurs as an argument. Second,
it leads to a stable volume-based surface flow. A similar energy functional was
used in [2,16] for image segmentation purposes. The Euler-Lagrange equations
of (13) read

∂φ(x)
∂t

= δ(φ(x)) · [log Pbck(x) − log Pobj(x)] + νδ(φ(x)) · div

( ∇φ(x)
|∇φ(x)|

)
, (14)

where δ(·) denotes the Dirac function

δ(z) =
d

dz
H(z). (15)

In practice, smoothed versions of H(·) and δ(·) have to be applied [2].

4 Experiments

In Fig. 2 we show results obtained with the proposed algorithm applied to 20
noisy images, four of which are depicted in Fig. 2(a). Fig. 2(c) visualizes the final
result from multiple viewing directions. Obviously, our method is able to deal
with noise as well as lighting effects and leads to an accurate reconstruction of
the two balls. In order to emphasize its robustness a reconstruction generated
by carving techniques is presented for comparison. For the sake of fairness we
added an identical smoothness term in the implementation of the shape carving
method. The estimated mean intensities computed by our algorithm were used
for segmenting the input images separately and independently. As clearly visible
in Fig. 2(d), this approach is susceptible to noise and shading effects, since only
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(a)

(b)

(c)

(d)

Fig. 2. Reconstruction of two spheres. (a) 4 out of 20 input images disturbed by noise,
(b) surface during evolution, (c) reconstructed surface obtained with our probabilistic
method, (d) result obtained with carving techniques.

single observations are taken into account for deciding whether a voxel should
be carved away or not. In contrast, our method is quite robust to noise due to
the averaging effect of integrating data from all views.

Fig. 3 demonstrates the ability of the proposed method to reconstruct com-
plex topologies starting with an arbitrary initialization as opposed to stereo-
scopic segmentation, which requires an approximation of the real topology, as
stated in [21]. The reconstructions of a torus obtained with our method and with
stereoscopic segmentation from the same initial surface are depicted in Fig. 3(c)
and Fig. 3(d), respectively. Note that, similar to stereoscopic segmentation, our
method is bidirectional, i.e., surfaces can evolve inward as well as outward. In
addition, our formulation leads to a surface evolution that allows for bigger
time steps. In contrast to stereoscopic segmentation, the time step size is only
restricted by the smoothness constraint.
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(a)

(b)

(c)

(d)

Fig. 3. Reconstruction of a torus. (a) 4 out of 20 input images, (b) surface during
evolution, (c) reconstructed surface obtained with our method, (d) result obtained
with stereoscopic segmentation [21] from the same initialization.

Finally, Fig. 4 illustrates the behavior of the presented algorithm when applied
to a data set that exhibits ambiguous silhouette information. The cameras are
arranged in such a way that none of them can see the bottom of the vase. Due
to the geometric prior, the lacking information results in the smoothest shape
that is photometrically consistent with the data (note the flat bottom and the
neck of the vase).

All illustrated results were obtained from 20 images with 640×480 pixels using
a C++ implementation running on a Pentium IV with 3.4GHz. All cameras
were situated on a bounding sphere enclosing the scene. For a cubic grid of
128 × 128 × 128 the algorithm takes between 20 and 30 minutes to converge,
which is about a factor 3 faster than stereoscopic segmentation. Moreover, it
can still be substantially accelerated when replacing our preliminary surface
projection algorithm by a more sophisticated implementation.
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(a)

(b)

Fig. 4. Reconstruction of a vase. (a) 4 out of 20 input images. Due to the rotational
symmetry and the arrangement of the cameras, most images look the same. (b) Re-
constructed surface from multiple views.

5 Summary

We have presented a new variational approach to reconstruct smooth shapes from
a number of calibrated camera views. The variational formulation is derived from
a probabilistic setting via Bayesian inference and uses the level set framework to
represent the sought object surface. The mean radiance of object and background
are estimated together with the surface. In comparison to previous methods, the
probabilistic derivation and formulation of the energy on the volumetric instead
of the image domain provides faster convergence and better robustness to noise
or other violations of the assumption of constant object radiance. Moreover, the
optimization is less prone to accurate initializations and allows to reconstruct
more complex topologies. These properties have been confirmed in experimental
evaluation. Future work is focused on applications to real data sets.
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