


Lecture Notes in Computer Science 4174
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Katrin Franke Klaus-Robert Müller
Bertram Nickolay Ralf Schäfer (Eds.)

Pattern Recognition

28th DAGM Symposium
Berlin, Germany, September 12-14, 2006
Proceedings

13



Volume Editors

Katrin Franke
Bertram Nickolay
Fraunhofer Institute for Production Systems and Design Technology (IPK)
Department of Security Technology, Pascalstr. 8-9, 10587 Berlin, Germany
E-mail: {katrin.franke, bertram.nickolay}@ipk.fraunhofer.de

Klaus-Robert Müller
Fraunhofer Institute for Computer Architecture and Software Technology (FIRST)
Department of Intelligent Data Analysis, Kekulestr. 7, 12489 Berlin, Germany
E-mail: klaus-robert.mueller@first.fraunhofer.de

Ralf Schäfer
Fraunhofer Institute for Information and Communication Technology
Heinrich Hertz Institute (HHI), Department of Electronic Imaging Technology
Einsteinufer 37, 10587 Berlin, Germany
E-mail: ralf.schaefer@hhi.fraunhofer.de

Library of Congress Control Number: 2006932037

CR Subject Classification (1998): I.5, I.4, I.3.5, I.2.10, I.2.6, F.2.2

LNCS Sublibrary: SL 6 – Image Processing, Computer Vision, Pattern Recognition,
and Graphics

ISSN 0302-9743
ISBN-10 3-540-44412-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-44412-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11861898 06/3142 5 4 3 2 1 0



Preface

This LNCS volume contains the papers presented at the 28th Annual Symposium
of the German Association for Pattern Recognition, DAGM 2006, held during
September 12-14, 2006 at Fraunhofer IPK in Berlin, Germany. This symposium
was jointly organized by the three Fraunhofer Institutes HHI, IPK and FIRST,
and it was a great honor for the organizers to host such a renowned, scientific
event.

In total, 171 papers from 29 countries were submitted, of which 76 ( 44%)
were accepted. We would therefore like to thank all the authors for submitting
their work and apologize that not all papers could be accepted. This record num-
ber of submissions is an acknowledgement of the high reputation of the DAGM
Symposium but at the same time it was a challenge for the Program Committee,
as all papers were reviewed by three experts. Therefore we are especially grateful
to the 62 members of the Program Committee for their remarkable effort and the
high quality as well as the timely delivery of the reviews. Out of the 76 accepted
papers, 31 were oral presentations and 45 were posters. However, this selection
does not imply any quality ranking but reflects the preference of the authors or
the clustering of certain topics.

It was also a special honor to have five very renowned invited speakers at
this conference:

– Gabriel Curio – Charité, Bernstein Center for Computational Neuroscience,
Berlin, Germany

– Thomas Hofmann – Technical University Darmstadt, Germany
– Thomas Huang – Beckman Institute, University of Illinois, USA
– Sebastian Thrun – Artificial Intelligence Lab, Stanford University, USA
– Patrice Simard – Document Processing and Understanding (DPU) Group -

Microsoft Research, Redmond, USA

These speakers presented their views on the state of the art in pattern recognition
and image processing.

One day prior to the symposium, there were four tutorials which gave an
in-depth insight into topics of current interest:

– “Elements of Geometric Computer Vision” by Andrea Fusiello – University
of Verona, Italy

– “Approximate Proabilistic Inference for Machine Learning” by Manfred Op-
per – Technical University Berlin, Germany

– “3D Camera Tracking, Reconstruction and View Synthesis at Interactive
Frame Rates” by Jan-Michael Frahm – University of North Carolina at
ChapelHill (UNC),USA;Jan-FrisoEvers-SenneandReinhardKoch–Christian-
Albrechts-University, Kiel, Germany

– “Level Set Methods in Computer Vision” by Daniel Cremers, Thomas Brox
and Kalin Kolev –University of Bonn, Germany



VI Preface

The organization of such an event is not possible without the effort and
the enthusiasm of the people involved. We would therefore like to thank all the
members of the Local Organizing Committee and the Local Steering Committee.
Moreover, special thanks go to Katrin Franke and Mario Köppen for managing
the reviewing process, for handling of the papers and for the preparation of the
book, to Elnaz Mazandarani for the maintenance of the conference system and
to Andrea Semionyk for the complete organization of the event.

We would also like to thank our sponsors Deutsche Telekom Laboratories,
Robert Bosch GmbH, Siemens AG, and idalab GmbH for their support of the
symposium. We hope that these proceedings, published in Springer’s Lecture
Notes in Computer Science as in previous symposia, will not only impact on
the current research of the readers, but will also represent important archival
material.

June 2006 Klaus-Robert Müller
Bertram Nickolay

Ralf Schäfer



Awards 2005

Olympus Prize

The Olympus Prize 2005 was awarded to:

Michael Felsberg and
Volker Roth

for their outstanding contributions to the area of image segmentation.

DAGM Prizes

The main prize for 2005 was awarded to:

Bodo Rosenhahn, Uwe G. Kersting, Andrew W. Smith,
Jason K. Gurney, Thomas Brox, Reinhard Klette

A System for Marker-less Human Motion Estimation

Further DAGM prizes for 2005 were awarded to:

Natalia Slesareva, Andrés Bruhn, Joachim Weickert

Optic Flow Goes Stereo: A Variational Method for Estimating Discontinuity-
Preserving Dense Disparity Maps

Matthias Heiler, Jens Keuchel, Christoph Schnörr

Semidefinite Clustering for Image Segmentation with A-priori Knowledge

Olaf Ronneberger, Janis Fehr, Hans Burkhardt

Voxel-Wise Gray Scale Invariants for Simultaneous Segmentation and
Classification

Christian Perwass, Christian Gebken, Gerald Sommer

Estimation of Geometric Entities and Operators from Uncertain Data
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Cloth X-Ray: MoCap of People Wearing Textiles . . . . . . . . . . . . . . . . . . . . . . 495
Bodo Rosenhahn, Uwe G. Kersting, Katie Powell,
Hans-Peter Seidel



XVIII Table of Contents

Unconstrained Multiple-People Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505
Daniel Rowe, Ian Reid, Jordi González,
Juan Jose Villanueva

Robust Non-rigid Object Tracking Using Point Distribution
Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515

Tom Mathes, Justus H. Piater

A Variational Approach to Joint Denoising, Edge Detection and Motion
Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525

Alexandru Telea, Tobias Preusser, Christoph Garbe, Marc Droske,
Martin Rumpf

Multi-step Multi-camera View Planning for Real-Time Visual Object
Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536

Benjamin Deutsch, Stefan Wenhardt, Heinrich Niemann

Pose Recognition

Nonparametric Density Estimation for Human Pose Tracking . . . . . . . . . . 546
Thomas Brox, Bodo Rosenhahn, Uwe G. Kersting,
Daniel Cremers

Learning to Mimic Motion of Human Arm and Hand Grabbing
for Constraint Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556

Stephan Al-Zubi, Gerald Sommer

Visual Hand Posture Recognition in Monocular Image
Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566

Thorsten Dick, Jörg Zieren, Karl-Friedrich Kraiss

Monocular Body Pose Estimation by Color Histograms
and Point Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576

Daniel Grest, Dennis Herzog, Reinhard Koch

Pose Estimation from Uncertain Omnidirectional Image Data Using
Line-Plane Correspondences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587

Christian Gebken, Antti Tolvanen, Gerald Sommer

Kernel Particle Filter for Visual Quality Inspection from Monocular
Intensity Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597
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Abstract. Ultrasound images are very noisy. Along with system noise,
a significant noise source is the speckle phenomenon, caused by interfer-
ence in the viewed object. Most past approaches for denoising ultrasound
images essentially blur the image, and they do not handle attenuation.
Our approach, on the contrary, does not blur the image and does handle
attenuation. Our denoising approach is based on frequency compounding,
in which images of the same object are acquired in different acoustic fre-
quencies, and then compounded. Existing frequency compounding meth-
ods have been based on simple averaging, and have achieved only limited
enhancement. The reason is that the statistical and physical characteris-
tics of the signal and noise vary with depth, and the noise is correlated.
Hence, we suggest a spatially varying frequency compounding, based on
understanding of these characteristics. Our method suppresses the var-
ious noise sources and recovers attenuated objects, while maintaining
high resolution.

1 Introduction

Ultrasound is an imaging technique that uses high frequency acoustic waves. It
is safe, suitable for many applications and is relatively cheap. It is used in sonar,
medical imaging and material science work. However, there are some problems
that interfere with the diagnosis. Fig. 1 illustrates some of these problems. The
most prominent problem, which distinguishes ultrasound from most imaging
techniques, is strong speckle noise. Speckles appear as grains of different sizes
and intensities, that result from the coherent nature of the ultrasound radia-
tion [2]. The speckle image is signal dependent. It is time invariant and thus
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Fig. 1. Problems that disrupt diagnosis in ultrasound imaging. The depth range is
0 − 12cm.

cannot be suppressed by temporal averaging. A second problem is attenuation.
The acoustic signal propagating in the medium is scattered and absorbed [2],
and hence attenuated. This phenomenon is more pronounced in high acoustic
frequencies. When the attenuated signal is amplified, it is accompanied by am-
plification of system noise, which is signal independent. Below a certain level
of signal to noise ratio (SNR), objects are overwhelmed by system noise, thus
amplification in post-processing does not reconstruct these objects.

Most past approaches for denoising ultrasound images have used standard
image reconstruction tools, such as weighted median filter [9], wavelet based
methods [4] [5], Gaussian non-linear filters [3] and anisotropic diffusion [14].
All these methods essentially blur the image. Moreover, they do not handle
spatially varying physical effects, as attenuation. Another approach is frequency
compounding,1 in which images of an object are acquired in different acoustic
frequencies, and then compounded [10]. Existing compounding methods [1] have
used simple processing methods such as pointwise arithmetic averaging, and have
achieved only limited enhancement.

In this paper we present a method that does not suffer from the mentioned dis-
advantages. It is based on frequency compounding, and the images are analyzed
in a stochastic manner. The stochastic denoising is spatially varying and it is
based on statistical and physical characteristics of the signal and noise as a func-
tion of depth and acoustic frequency. The stochastic denoising shows significant
speckle reduction, with no resolution loss, while deep objects are reconstructed
as well.

1 Spatial compounding is also possible. Yet, it introduces a complex registration prob-
lem, and it does not improve detection in deep regions.
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2 Theoretical Background

Let us first model blur. We assume the ultrasound images to be two-dimensional
(2D), given in their polar coordinates (r, θ). The r coordinate (radial axis) is
the axis of wave propagation, and θ (lateral axis) represents a serial scan of
the direction of the radiating ultrasound beam. The 2D signal measured by the
system is the result of a natural filtering of the 2D tissue reflectivity function
a0(r, θ) with a 2D point spread function (PSF). This PSF is space variant. In
particular, its lateral support changes with the depth r: the acoustic beam is
focused at a certain depth, where the lateral PSF is narrowest, while at other
depths this PSF gradually widens. Yet, in small regions we can assume this filter
to be space invariant. There, the measured signal is

aRF(r, θ) = a0(r, θ) ∗ h(r, θ) . (1)

Following [12], it is reasonable to assume the PSF to be separable. The PSF also
depends on system properties, such as acoustic frequency [2].

Image formation is also affected by attenuation of ultrasound in the
medium [2]. A general simple and effective model of the amplitude of the signal is

aRF(r, θ) = e−2αrfacoustica0(r, θ) ∗ h(r, θ) , (2)

where α is the attenuation coefficient of the acoustic amplitude, and facoustic is
the acoustic frequency. A rule of thumb [2] is: attenuation in tissue is approx-
imately 1dB/(cm ·MHz), for a signal going from a probe to the object and
then returning. It is clear from Eq. (2) that attenuation depends on the acoustic
frequency: high acoustic frequencies suffer from stronger attenuation and thus a
lower SNR, particularly at large depths. This is evident in Fig. 1

In ultrasound systems, the measured signal aRF undergoes several standard
conversion steps. First, attenuation is compensated for. Then, the acoustic mod-
ulation is extracted: note that aRF is a high-frquency (MHz) signal, which is
modulated by the tissue reflectivity function. To extract the tissue information,
the envelope of the attenuation-compensated aRF is detected, yielding

amagnitude(r, θ) =
∣∣envelope [e2αrfacoustic · aRF(r, θ)

]∣∣ , (3)

where envelope [g(r)] is an operator [2] that extracts the envelope of a modu-
lated wave g(r) (recall that r is the axis of wave propagation). Note that Eq. (3)
derives the modulus of the envelope, since the envelope is complex, in general.

Speckle Noise

Speckle noise has a granular texture, as presented in Fig. 2. Speckles degrade
the ability to resolve details and detect objects of size comparable to the speckle
size. This noise stems from point scatterers in an homogenous tissue, that cannot
be resolved by the ultrasound system. These point scatterers, which are much
smaller than the ultrasound wavelength, scatter the wave. Two or more waves
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High acoustic frequency Low acoustic frequency

Fig. 2. Speckle appearance of the same tissue in different acoustic frequencies. High
acoustic frequency speckles are smaller than the low acoustic frequency speckles.

travelling to the probe from such scatterers may interfere with each other, con-
structively or destructively, creating bright and dark spots, termed speckles. For
interference, the backscattered signal from the scatterers should overlap in time
and space. This happens when the distance between them is within the PSF
(radially and laterally) support. This is an important point to remember: the
speckle typical size is similar to the PSF support. Since the PSF changes with
depth, the statistics of this noise are space (depth)-variant. Furthermore, they
change when the acoustic frequency used to acquire the image changes, as shown
in Fig. 2, as the PSF does. We exploit these properties in this paper.

Speckle is generally modelled as multiplicative noise [7]. The overall detected
magnitude is

atotal(r, θ) = amagnitude(r, θ) · smagnitude(r, θ) + η(r, θ) , (4)

where the real number smagnitude represents real nonnegative speckle noise at
certain coordinates, and η represents system noise there. The system noise in-
creases with depth, due to the attenuation compensation done in Eq. (3). Still,
assume for a moment that the additive noise is sufficiently small compared to
the multiplicative noise. Then, a log operation on Eq. (4) transforms speckles to
additive noise

log
[
atotal(r, θ)

]︸ ︷︷ ︸ ≈ log
[
amagnitude(r, θ)

]︸ ︷︷ ︸ + log
[
smagnitude(r, θ)

]︸ ︷︷ ︸ .
alog = log(amagnitude) + slog

(5)

The logarithm operation is standard when displaying ultrasound images on a
computer screen [2], since the dynamic range of atotal is very large [2]. Therefore,
in the image used for display, the speckle noise is already additive.

3 Solution

Our solution is spatially varying frequency compounding, based on the best
linear unbiased estimator (BLUE), also known as Gauss-Markov or weighted
least squares (WLS) [8]. This stochastic method relies on the following principles:

– The compounding should be space (depth) variant, since the statistics of
noise change with the depth r, as the PSF.
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– In speckles, adjacent pixels are correlated [12]. Therefore, it is desirable that
compounding would account for this spatial correlation.

– Speckles in different images of the same object, acquired with different acous-
tic frequencies, are correlated [13]. Therefore, simple averaging is not very
efficient for speckle reduction. On the contrary, we should account for the
cross-correlation between different acoustic channels.

– The method is not intended for sharpening. Therefore, it does not include de-
blurring. Nevertheless, we do not want to further blur existing information.

– In general, deep objects are not visible in high acoustic frequency (due to in-
creased attenuation). However, thanks to our use of a low acoustic frequency
image in the compounding, we should end up seeing even the deepest objects.

– In general, spatial resolution is low, when using a low acoustic frequency (due
to a wider PSF). However, thanks to our use of a high acoustic frequency
image in the compounding, we should end up with high spatial resolution,
at least in close distance.

In the following we detail our solution.

3.1 Speckle Model

We refer to the signals amagnitude and alog as discrete N × 1 vectors. When
acquiring K images in different acoustic frequencies, then based on Eq. (5),⎛⎜⎜⎜⎜⎜⎝

alog
1

alog
2
...

alog
K

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
log amagnitude

1

log amagnitude
2

...
log amagnitude

K

⎞⎟⎟⎟⎟⎟⎠+

⎛⎜⎜⎜⎜⎜⎝
slog
1

slog
2
...

slog
K

⎞⎟⎟⎟⎟⎟⎠ . (6)

At this point we use the principle mentioned above, of not attempting to invert
blur, thus we do not consider the blur h in the reconstruction. Using a δ function
for h in Eq. (2) can estimate â0(r, θ) = e2αrfacousticaRF(r, θ). Therefore, we set

amagnitude
k ≈ |envelope (â0)| , (7)

for all k. Now, the frames amagnitude
k differ in the noise, which is indeed different,

especially the speckle noise. All frames include a similar object content, i.e.,

amagnitude
1 ≈ amagnitude

2 ≈ ... ≈ amagnitude
K = amagnitude , (8)

Hence, Eq. (6) reduces to⎛⎜⎜⎜⎜⎜⎝
alog

1

alog
2
...

alog
K

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
I

I
...
I

⎞⎟⎟⎟⎟⎟⎠ log
(
amagnitude

)
+

⎛⎜⎜⎜⎜⎜⎝
slog
1

slog
2
...

slog
K

⎞⎟⎟⎟⎟⎟⎠ . (9)
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3.2 BLUE

Consider data adata in the general linear model

adata = Ha + n , (10)

where H is a known KN×N matrix (operator), a is an N×1 vector of variables
to be estimated, and n is an N × 1 noise vector with zero mean and covariance
C. The Gauss-Markov theorem [8] states that the BLUE of a is

â = (HT C−1H)−1HT C−1adata . (11)

To apply the BLUE on Eq. (9), we substitute a = log
(
amagnitude

)
as in

Eqs. (10,11), while adata represents the vector on the left-hand-side of Eq. (9).
Now, the noise covariance matrix C used in Eq. (11) has the form

C =

⎛⎜⎜⎜⎜⎜⎜⎝
Cslog1 slog1

Cslog1 slog2
· · · Cslog1 slogK

Cslog2 slog1
Cslog2 slog2

· · · Cslog2 slogK

...
. . .

CslogK slog1
CslogK slog2

· · · CslogK slogK

⎞⎟⎟⎟⎟⎟⎟⎠ , (12)

where Cslogk slogi
is the cross-covariance matrix between two speckle images slog

k

and slog
i in different acoustic frequencies. Eq. (11) performs a linear combination

of all data adata (all pixels in all images) in order to estimate the value in
each pixel of â. Therefore, the BLUE may potentially perform deconvolution, in
addition to noise averaging. Nevertheless, in our case

H =
(
I, I, . . . , I

)T
, (13)

since we do not attempt deblurring. The BLUE exploits the correlation between
variables. This enables denoising based on partially correlated variables, in con-
trary to a simple average, which implicitly assumes uncorrelated variables.

3.3 Spatially Varying BLUE

To use the BLUE we need to know the noise mean and covariance (statistics),
in the set of images we use. When applying the method for noise reduction, we
need to consider the noise statistics. We estimate the covariance functions from
the data itself. We performed empirical measurements of these functions. This
empirical study revealed that the noise is not stationary. This is not surprising,
since according to [12], the auto and cross correlations of speckles depend on the
system PSF, which (Sec. 2) changes significantly with depth.

Let us first examine a certain block in the image. We can assume stationarity
within this block. However, the statistics change in different image regions. Is
there a need to divide the whole image to blocks, and measure the statistics
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Fig. 3. Estimating the spatially varying covariance matrix

within each of them? Practically, the answer is No. Since the statistics change
gradually, it is possible to examine a few blocks in the field of view (FOV) as
illustrated in the left side of Fig. 3, and measure the noise statistics only within
them. This processing is applied in the polar coordinate space, as illustrated in
Fig. 3. Then the speckle statistics around any point in the FOV can be deduced.
The measurement of the statistics in these few selected blocks is described in
Sec 3.4, as is the inference from these few blocks to any other region.

The BLUE requires the cross-correlation between different channels. As any
cross-correlation function, it depends on the lag between pixels. When taking
into account a maximum lag of dradial

max in the radial direction and a maximum
lag of dlateral

max in the lateral direction, the size of the covariance matrix equals(
dradial
max · dlateral

max ·K
)2. Empirical measurements that we performed in several im-

ages showed a fast decrease in the off-diagonal elements of Cslogk slogi
. We conclude

that the lengths of the spatial correlation are short. Hence, small lags are suffi-
cient to reflect the statistics. We are thus allowed to use small regions, for which
the radial maximum lag is ≈ 40 pixels corresponding to ≈ 1.5mm in our system.

We now have the statistics in a few blocks. Then, using interpolation, we infer
the statistics in any region centered on any pixel in the FOV. Subsequently, we
can apply the BLUE around each pixel in the image. In other words, around
each pixel, we define a small region, and since the noise statistics in this region
has been estimated in the previous steps, we can apply the BLUE for it, and
estimate log

(
amagnitude

)
at that location.

3.4 Measuring Statistics

We have seen in Sec. 3.3 that we use few small blocks in the image, to measure
the covariance matrix, which is spatially variant. We chose blocks in which there
is no meaningful object detail.2

2 Practically, we would not expect a physician to select such blocks manually in each
session. Hence, the typical covariance matrix can be learned using sets of typical
speckle images of arbitrary objects. This is a matter we intend for future research.
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Covariance depends on both lateral and radial lags. Furthermore, radial and
lateral correlations differ. Based on the separability of the PSF [12], the covari-
ance matrix is also separable [12]. For each matrix element [d, q]

Ĉ[d, q] = Ĉradial[d, q] · Ĉlateral[d, q] , (14)

where Ĉradial and Ĉlateral are the noise covariance matrices in the radial and
lateral directions, respectively. Both matrices are measured in a similar way.
For example, the cross covariance in the radial direction between two acoustic
frequencies k and i, is estimated as

Ĉradial
sksi

[d, d + dradial] = Z
∑

l {sk[l]− μ̂sk
}
{
si[l + dradial]− μ̂si

}
, (15)

where 0 ≤ d < L, l is a pixel index, dradial is the radial lag between pixels, Z is
a normalization factor, L is the block length and μ̂s is the estimated noise mean
(this mean is estimated using the same data). This estimator of the covariance
matrix is unbiased.

The estimated covariance functions of the selected blocks do not apply to
the entire radial dimension. We still need to evaluate it in between (see the
left side of Fig. 3). For this, we assume that between points in the FOV, the
statistics change gradually. Hence, we can fill the missing data by interpolation.
One can use interpolation methods of matrix-valued images [6], that preserve
the semi-definiteness of the covariance matrix.

4 Experiment

In the experiment, we used a commercial medical ultrasonic system, the GE
Vivid 3. The electronic signal generated by this system is a square burst with
duration of three half periods. The probes used are phased arrays by GE, named
3s and 5s. The algorithm was applied on data obtained from a tissue-mimicking
phantom, so that controlled and repeatable data can be generated. Fat was
placed on top of the phantom to demonstrate an attenuating layer. The ac-
quired images are presented in Fig. 1. One image was acquired with a burst
frequency of 1.5MHz and the 3s probe (referred to as low acoustic frequency
image). The second image was acquired with a burst frequency of 2.5MHz and
the 5s probe (referred to as high acoustic frequency image). As illustrated in
Fig. 2 speckle appearance of the same tissue changes in different acoustic fre-
quencies. Nevertheless, in the high acoustic frequency image, system noise is very
significant. We have direct access to aRF, received in MHz from the medium. We
then directly apply sampling, attenuation compensation, envelope detection and
log operation.

The input for the algorithm is alog
k . The BLUE was applied based on the

two images, as illustrated in Fig. 4. The stochastic reconstruction significantly
reduces speckle noise, along with high spatial resolution and reconstruction of
deep objects. A by-product of the stochastic reconstruction is system noise re-
duction, due to the weighted averaging of the images. The peak signal to noise



Ultrasound Image Denoising by Spatially Varying Frequency Compounding 9
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High spatial 
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of deep objects

Fig. 4. Stochastic reconstruction vs. simple averaging. The stochastic reconstruction
produces an image with speckle reduction, along with high spatial resolution and re-
construction of deep objects.

Table 1. In all depths, the PSNR obtained by stochastic reconstruction is higher than
the PSNR obtained by arithmetic mean

Depth (cm) Arithmetic mean Stochastic reconstruction
6 66 : 1 (18dB) 117 : 1 (21dB)
8 48 : 1 (17dB) 73 : 1 (19dB)
10 78 : 1 (19dB) 124 : 1 (21dB)

ratio (PSNR) was calculated. The results are presented in Table 1. The stochastic
reconstruction presents a higher PSNR in all depths.

5 Discussion

The method reduces noise of ultrasound images. It also exposes deep objects
while it maintains high resolution and does not blur the object to achieve denois-
ing. Our approach requires a fast acquisition of two or more acoustic frequencies.
There exists enabling technology [15] allowing that.

Future research can focus on the acquisition process as well as on the process-
ing. In particular, it is worth studying which acoustic frequencies are optimal in
this paradigm. In addition, more advanced mathematical tools can be used. For
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example, diffusion methods [14] and adaptive subdivision coupled to statistical
estimation [11] may be useful to this frequency compounding approach.

We wish to thank Zvi Friedman and Yonina Eldar for useful discussions.
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Abstract. A method for exploiting the information in low-level image segmen-
tations for the purpose of object recognition is presented. The key idea is to use
a whole ensemble of segmentations per image, computed on different random
samples of image sites. Along the boundaries of those segmentations that are
stable under the sampling process we extract strings of vectors that contain lo-
cal image descriptors like shape, texture and intensities. Pairs of such strings are
aligned, and based on the alignment scores a mixture model is trained which di-
vides the segments in an image into fore- and background. Given such candidate
foreground segments, we show that it is possible to build a state-of-the-art object
recognition system that exhibits excellent performance on a standard benchmark
database. This result shows that despite the inherent problems of low-level image
segmentation in poor data conditions, segmentation can indeed be a valuable tool
for object recognition in real-world images.

1 Introduction

The goal of image segmentation is the detection of meaningful structures from a clut-
tered scene. Most current segmentation techniques take a bottom-up approach, where
local image properties such as feature similarity (brightness, texture, motion etc) are
used to detect coherent units. Unfortunately, image segmentation becomes very diffi-
cult in poor data conditions like shadows, occlusions and noise. In such situations, the
detected coherent units often do not coincide with our perception of objects in a scene.

The automatic detection and recognition of visual objects in images, on the other
hand, has been among the prime objectives of computer vision for several decades.
Large intra-category variations of appearances and instantiations within object classes
turn learning category models into a key challenge. Therefore, common characteristics
of an object class have to be captured while offering invariance with respect to vari-
abilities or absence of these features. In principle, segmentation algorithms might help
to solve the object detection task by partitioning the image into meaningful parts that
might serve as the inputs of a classification system. Many papers on image segmenta-
tion contain statements of the form “segmentation is an important preprocessing step
for object recognition”. Due to the above limitations, however, the practical usefulness
of low-level segmentation algorithms for the purpose of object recognition is question-
able and, indeed, the currently best approaches to object recognition do not employ
low-level segmentation, see e.g. [1,2,3,4,5].
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In order to circumvent the obvious problems of segmentation, it has been proposed
to treat segmentation and recognition in an interleaved manner, e.g.[6]. Approaches of
this kind typically mix bottom-up strategies with top-down elements based on back-
propagating hypotheses about the objects down to the segmentation level. These meth-
ods seem to work well, if the initial segmentation is of “reasonable” quality, which is
often the case if one considers moving objects in videos where the motion information
supports the segmentation process. Good performance can also be achieved, if only a
small number of classes is considered for which relatively strong initial object hypothe-
ses can be build by including additional side information. For the task of detecting
objects in still images, however, the recognition performance of these methods is still
rather limited, particularly if there are many potential object classes.

Despite the generally poor quality of bottom-up segmentations in real-world images,
we demonstrate that it is possible to exploit low-level segmentations for building a very
powerful object recognition system. The key idea is to use not only one segmentation,
but a whole ensemble of segmentations which often captures at least parts of the objects
in a scene. Such partial matches of the objects boundaries can be successfully used for
discriminating between foreground/background segments.

Given the candidate foreground segments, we show that it is often possible to recog-
nize the object class. We propose two different approaches: the direct approach exclu-
sively relies on the low-level segmentations by computing majority votes over all stable
segments in an image, whereas the combined approach uses the predicted foreground
segments as input of a hierarchical classification scheme. The latter learns to group
parts of the image foreground segments into a hierarchy of category-specific composi-
tions, and binds them together using a probabilistic shape model to recognize objects
in scenes. The foundation for this approach is laid by the principle of compositionality
[7]: As observed in cognition in general and especially in human vision, complex enti-
ties are perceived as compositions of comparably few, simple, and widely usable parts.
Objects are represented based on their components and the relations between them.
Composition models bridge the semantic gap between low level image features and
high level scene categorizations [3,4] by establishing intermediate hidden layer repre-
sentations. Our experiments with the caltech 101 database [8] show that both the direct
and the combined approach allow us to build a highly competitive object recognition
system.

2 Ensembles of Low-Level Segmentations

For segmenting the images we use an adapted version of the algorithm proposed in
[9] which combines both the ideas of partitioning and feature combination/selection.
The latter aspect turns out to be very important for finding good segmentations, since
segment-specific information is often spread over different cues like color and texture.
The core of this algorithm consists of a Gaussian mixture model with built-in relevance
detection which automatically selects important features by maximizing a constrained
likelihood criterion. In order to find reasonable settings for the free model parameters,
we devise a resampling-based model selection strategy which follows largely [10,9].
The key idea is to draw resamples of the object set, to train the segmentation model
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on the individual resamples and to compare the resulting solutions. Adapted to our
image segmentation problem, this strategy translates into sampling different image sites,
inferring a segmentation on the basis of these sites and identifying stable segmentations
(i.e. those which can be reproduced on many different random samples of image sites).
We repeat this procedure for different numbers of mixture modes, and finally we receive
a stability-ranked list of prototypical segmentations, see [9] for further details.

In addition to selecting these stable segmentations, we also overlay all individual
segmentations to compute a probabilistic boundary map that encodes for each pixel its
probability of being part of a segment boundary, see figure 1 for a schematic overview.
Despite the fact that many individual segmentations are often of rather poor quality,
the ensemble approach has two important advantages: (i) Within the subgroup of stable
segmentations we often find relatively good partitions; (ii) the aggregated boundary
map typically captures many details of the object in the image. To highlight the latter
issue, we have additionally plotted the response of a Canny edge-detector in the right
panel of figure 1. Due to the local character of the edge detection process, the Canny
edges are much more noisy than the aggregated segment boundaries.

(Canny)

Fig. 1. Ensembles of segmentations. Left: input image and extracted features (top: three texture
channels, bottom: LUV color channels). Middle: resampled image sites and corresponding seg-
mentations. Top right: probabilistic boundary map found by overlaying all individual segment
boundaries. Bottom right: Canny-edges for comparison.

3 Foreground/Background Learning

In the following we assume that we are given a set of training images with category
labels. Additional information about the location of the objects, however, is not avail-
able. We further assume that there exists a background category with images that be-
long to none of the categories. Such a situation is e.g. given for the popular caltech
101 dataset [8] that contains images from 101 categories. For all experiments we used
the images from 20 categories in caltech 101: anchor, umbrella, barrel, trilobite, wrench,
windsor chair, tick, stapler, electric guitar, gramophone, stop sign, cup, lobster, crayfish, wa-
ter lilly, crab, starfish, wild cat, pyramid, pagoda. This choice was guided by two criteria:
we wanted a subset that is reasonably small (≈ 1000 images) to explore a new method
and that is sufficiently difficult to reliably evaluate the performance. The chosen cate-
gories are a mixture of artificial and natural object classes and they contain some classes
that are very difficult to separate like lobster and crayfish. From all classes we randomly
pick a training set of 25 images each. The remaining images are exclusively used for
performance evaluation.
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Based on ensembles of segmentations, we now introduce a method for identifying
foreground segments. This foreground learning takes place in a pairwise setting. We
first randomly pick two categories. For all training images belonging to these two cat-
egories, we consider all segmentations which exceed a certain stability threshold (see
section 2) and we extract the boundary of each connected component. On regularly
spaced points along these curves, vectors of local image descriptors are extracted. Thus,
each connected segment is represented as a string of vectors. The same procedure is ap-
plied to the training images in the background class. Putting all such strings together
we obtain a dataset consisting of n boundary strings from two categories and the back-
ground class. We then compute local string alignments for all pairs of these n strings.
The final (n× n) matrix of alignment scores is transformed into a valid Mercer kernel.
In order to discriminate between fore- and background segments, we learn a Gaus-
sian mixture model with three modes on these data which are represented by the kernel
matrix. The estimated membership probabilities in one of the modes are used for iden-
tifying foreground segments: those segments that have a high probability for the correct
image category are treated as foreground areas.

Boundary extraction and string representation. After the segmentation process, each
pixel in an image has a group label. In a first step, connected pixels which share the same
group label are extracted. For simplicity, we will refer to such connected groups of pix-
els as segments in the sequel. For each of these segments, we compute a chain-code
representation of the segment boundary. We call such a boundary closed if the segment
is entirely contained in the image, i.e. if it does not hit the image borders. For such
closed segments the boundary chain is extended to two full circulations, which guaran-
tees us that the alignment score between two such segments becomes independent of
the starting point (note that we use local alignments). If a segment is not closed, we
start at the image border and continue the chain until the border is hit again. Figure 2
depicts examples of such segment boundaries.

Fig. 2. Boundary extraction. Left: original image; middle: most stable segmentation; right: three
extracted segments (blue) and their boundaries (red).

On regular intervals along the segment boundaries, we then extract a vector of image
descriptors. The components of such a vector contain three different descriptor types:
a shape context histogram, a texture patch and a gray-value patch. The shape context
descriptor [11] consists of a log-polar histogram with 60 bins (10 angles, 6 scales)
which is centered at the current position along the boundary. Each bin represents the
(weighted) sum of those pixels in the map of aggregated segment boundaries which fall
into the bin-specific part of the polar histogram and which are “close” to the segment,
i.e. which lie in a close vicinity of the segment, see the green tube around the segment
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in figure 3. The texture- and gray-value patches consist of locally averaged values of
Gabor filter responses and image intensities respectively. In analogy to the shape context
descriptor, a polar grid is used for defining the areas over which the averaging takes
place. This polar geometry has the advantage that we can easily incorporate rotation
invariance into the alignment process by simply shifting the indices of the descriptors.

texture grey textureshapeshape grey

Fig. 3. String representation of segments. Left to right: chain of vectors containing local image
descriptors (schematic), segment boundary (red) and vicinity around the segment (green), polar
histogram of the shape context descriptor (yellow), polar gray-value patch, polar texture patch.

String alignments. Having extracted a string for each of the n segments, we then com-
pute the n × n matrix of pairwise local alignments by way of the Smith-Waterman
algorithm [12]. Contrary to the typical setting in which this algorithm is used, in our
case we do not have a fixed alphabet of symbols for which a predefined scoring table for
aligning pairs of these symbols is available. We rather have “strings” which are ordered
collections of vectors with real-valued entries. Instead of looking up the symbol-wise
scores in a table, in each step of the algorithm we evaluate a scoring function for two
vectors. The components of these vectors consist of 60 bins of a shape context his-
togram, 60 locally averaged texture measurements and 60 locally averaged gray-values.
Thus, a vector is composed of three subvectors v = (vshape, vtext, vgray)�

In the experiments below we use a simple aggregation of these three cues that com-
bines χ2 distances between shape context histograms with correlation scores for texture
and intensity patches: the scoring function for two vectors v1, v2 has the form

s(v1, v2) = a− b ·
(
Dχ2(vshape

1 , v
shape
2 ) +Dcc(vtext

1 , vtext
2 ) +Dcc(v

gray
1 , v

gray
2 )
)
, (1)

with the χ2 distance Dχ2(v1, v2) and the cross correlation distance Dcc(v1, v2) = 1−
|cor(v1, v2)|, with cor(v1, v2) being the correlation between the vectors v1 and v2.
Note that distances are transformed into similarities, so that a high score means that
two strings are similar. The constants a = 1/2, b = 1/3 were selected empirically.

Since the extracted segments often capture only parts of the objects, the alignment
scores are divided by the length of the alignment. In order to avoid high scores for very
short “random” alignments, we consider such length-normalized alignments as “valid”
only if the total alignment length exceed a certain threshold. In our experiments we
require that two strings must be aligned at more that 15 consecutive positions, otherwise
the score is down-weighted by a factor of ten. For a better geometric interpretation, we
have depicted such positions which align to each other in figure 4 below as blue lines.

To further decrease the sensitivity to local segmentation errors, we allow gaps in the
alignments. Such gaps are penalized by a predefined cost value g. In our experiments we



16 V. Roth and B. Ommer

use g = 0.1 which means that the current alignment score is decreased by 0.1 whenever
a position in one string is aligned with a gap in the other. For two strings x, y with
lengths l, l′ the alignment algorithm recursively fills the (l × l′) matrix F :

F (i, j) = max{0, F (i− 1, j − 1) + s(xi, yj), F (i− 1, j)− g, F (i, j − 1)− g}. (2)

Backtracking from the highest value in F yields the optimal alignment, see [12] for
details. Recall that the i-th position of string x is a shape/texture/intensity-vector, and
that s(·, ·) denotes the scoring function defined in (1). An example alignment matrix for
the categories “wrench” and “windsor chair” is depicted in the right panel of figure 4,
which shows a distinct block structure.

wrench chair backgr.

Fig. 4. String alignments. Left: alignment of two boundary strings (top: schematic, bottom: 2 seg-
ments from the “windsor chair” category). The blue lines connect aligned vectors. Right: pairwise
alignment matrix for segments from the categories “wrench”,“windsor chair” and “background”.

Detecting foreground segments. In the final step in our foreground-detection process a
Gaussian mixture model is learned for the n segments. These segments are represented
in form of a (n × n) matrix K of pairwise alignment scores. If this matrix would be
positive semidefinite we could identify it as a Mercer kernel and train a mixture model
in the kernel-induced space as proposed e.g. in [13]. It is well known that probabilistic
alignment models such as pair hidden Markov models produce scores which fulfill the
requirements of a valid Mercer kernel. For simplicity, however, we used a deterministic
alignment model which might violate the positive-semi-definiteness condition. More-
over, the length-normalization of scores can lead to additional negative eigenvalues of
K . In practice, however, we observe that there are typically only very few negative
eigenvalues which are all of small magnitude. In order to transform it into a valid Mer-
cer kernel, we use the kernel PCA idea [14] to find a decomposition K = V ΛV � with
a diagonal matrix Λ of eigenvalues. Discarding all negative eigenvalues we form a valid
kernel K ′ = V+Λ+V

�
+ .

Based on this kernel matrix K we now learn a Gaussian mixture model with 3 mix-
ture modes. For initialization we label all segments in an image according to its category
label, despite the fact that some segments might belong to the background class. Dur-
ing further iterations of the EM algorithm (see [13] for details), we re-estimate these
membership probabilities in one of the three classes (two categories + background) for
each segment. It is interesting that the selection of foreground segments does not vary
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significantly if different pairs of categories or if more than two categories are selected.
Examples of detected foreground segments are depicted in figure 5.

To predict foreground segments in the test images we first reduce the size of the
training set by extracting from each of the 25 training images per category only the two
highest scoring foreground segments. Based on the string representations of these 2 ·
25 · 20 segments (2 segments/image, 25 images/category, 20 categories), we compute a
new pairwise alignment matrix of size 1000× 1000 which now represents all training
images. Discarding negative eigenvalues we again arrive at a valid kernel matrix K ′ =
V+Λ+V

�
+ =: XX� that allows us to form a vectorial representation of the segments

as the rows of the matrix X . Based on this data matrix and the corresponding category
labels of the training images we learn a probabilistic 20-class kernel classifier. In the
experiments we used a multi-class variant of nonlinear kernel discriminant analysis
described in [15], which allows us to predict foreground segments in test images.

Fig. 5. Detecting foreground segments. From left to right in triplets: image, detected foreground
segment (the one with the highest probability), corresponding stable segmentation.

4 Object Recognition

In order to exploit the results of the foreground identification for the purpose of object
recognition, we use the classifier that was learned on the basis of the training images as
described above to predict foreground segments in the test images. For this purpose we
align each segment in a test image with all n = 1000 training segments. The resulting
1000-dimensional alignment vector is projected onto the set of eigenvectors V+ of K ′.
Appropriate scaling by the eigenvalues (see [14]) yields a vectorial representation xt of
the test segment, for which the classifier predicts a set of membership probabilities in
each of the 20 image categories. Segments that can be clearly assigned to one of the cat-
egories (i.e. which have a high membership probability) are considered as hypothetical
foreground segments in a test image.

These hypotheses are now used for predicting the category labels of the test images
in two different ways: the direct approach computes a weighted majority vote over all
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segments in a test image. When assigning each image the most probable category label,
the average retrieval rate of the direct approach is 58.3%. Among the two most probable
categories, we find the correct one in ≈ 71%, and among the three most probable in
≈ 79%. Taking into account that the direct approach only uses low-level segmentations
and that for roughly 1/4 of all images it seems to be very difficult to find any good
segmentations, these retrieval rates are amazingly high. For comparison: our reference
implementation [4] (which currently is one of the best methods on the caltech 101
database) achieves an average retrieval rate of 61.8% when trained exclusively on these
20 categories. For analyzing the effect of using many segmentations per image (we
used 100 in the experiments), we repeated the whole processing pipeline with only 5
segmentations per image. In this setting, the average retrieval rate drops down to 26%
which effectively demonstrates the advantage of using large ensembles.

The combined approach uses the boundaries of the predicted foreground segments
as input for a compositionality-based recognition system which implements a variant of
the model in [4]. The segment boundary contours are first split into shorter subcurves
before encoding them using localized feature histograms from [3]. Top-down group-
ing of segment boundaries yields compositions of curves with increased discriminative
power compared to their original constituents. The conceptual idea is to group image
parts not based on their similarity but based on the familiarity of their composition. As-
sume for the moment that groupings which are distinctive for categories have already
been learned from the training data. The objective of top-down grouping is then to form
a hierarchy of compositions by combining those constituents whose composition has
highest category posterior. The goal is now to automatically learn and represent mod-
els for top-down grouping in the case of large numbers of object classes. We tackle
this problem by first estimating category dependent co-occurrence statistics of fore-
ground curve segments in the training images. Using this distribution, the curves are
then grouped. The resulting compositions are used to update the previously estimated
category dependent grouping statistics and to learn a global shape model. This shape
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model is used for coupling all the established compositions in a final step. Due to limited
space we refer the interested reader to [4] for details about the model and its practical
implementation in form of a graphical model employing believe propagation.

Our first experiments with this combined approach yielded an average retrieval rate
of 62.3% which is at least competitive to the reference model [4] (however, the increase
in performance is probably not statistically significant). Figure 6 shows the correspond-
ing category confusion table. This result shows that despite the difficulties of low-level
segmentation, it is possible to exploit the information contained in ensembles of seg-
mentations for building state-of-the-art recognition systems.

5 Discussion

Despite the fact that bottom-up image segmentation is sometimes considered as an im-
portant preprocessing step for object recognition, the actual usefulness of such an ap-
proach in real-world recognition scenarios is still an ongoing debate. For real-world
scenes it is often difficult to find segmentations of sufficiently high quality that would
allow to reliably extract object-specific information like shape, color distribution, tex-
ture features etc. It is, thus, not surprising that the currently best object recognition
systems do not use low-level segmentations.

In this work we show that it is indeed possible to build state-of-the-art recognition
systems on the basis of low-level image segmentations. The key idea is to use not only
one single segmentation per image, but ensembles of many segmentations that are com-
puted on different random samples of image sites. Although most of the individual
segmentations might be of rather poor quality, the combination of many segmenta-
tions helps to overcome problems induced by poor data conditions in two ways: (i)
analyzing the variation of segmentation solutions under the sampling process, we can
identify subsets of stable segmentations that in many cases are of much higher quality
than single-segmentation solutions. (ii) Aggregating all segment boundaries, we build
probabilistic boundary maps. Compared with standard edge-detectors, the aggregated
segment boundaries often encode at least parts of the “true” objects in the image.

Segmentations that have been identified as stable are represented by local image de-
scriptors along their boundaries. These descriptors encode shape, intensities and texture
in the form of histograms of segment boundaries, gray-value patches and local Gabor
filter responses. Based on this string representation, all stable segments are compared
utilizing a string alignment algorithm. From the matrix of alignment scores, a Mercer
kernel is derived on which a (kernelized) Gaussian mixture model is trained which is
used to build hypotheses about foreground segments. The hypothetical foreground seg-
ments are then used for recognizing the objects in test images in two different ways: the
direct approach exclusively relies on the low-level segmentation information by build-
ing weighted majority votes over all segments in an image. In the combined approach,
the segment boundaries serve as inputs for a compositionality-based recognition system
which aggregates curves (or parts thereof) to category-specific compositions.

On a 20-category subset of the caltech 101 database we compare these two ap-
proaches with one of the currently best recognition systems which yields a retrieval rate
of 61.8 % on the considered images. We observe that even the direct approach which
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“naively” works on the segments without building any compositions achieves a very
good performance of 58.2% (a “bag-of features” approach on the hypothetical fore-
ground segments yields only 49%). First experiments with the combined approach even
slightly outperform the base-line system (although not in a statistically significant way).
As more important than the exact retrieval rates, however, we consider the following:
(i) Low-level segmentations can indeed be used for building competitive object recog-
nition systems for real-world images. (ii) The use of large ensembles of segmentations
is essential (otherwise the performance drops down significantly). (iii) A comparison
with the performance of the method from [4] indicates that the segmentation process
concentrates relevant image information in few boundary curves and mainly discards
non-discriminative image regions. (iv) We believe that both the direct- and the com-
bined approach can be substantially improved by systematically searching for advanced
local image descriptors and improved scoring functions in the alignment process.
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Abstract. In this paper we present a novel wavelet based method for edge pre-
serving noise reduction. In contrast to most common methods, the algorithm in-
troduced here does not work on single input data. It takes two or more spatially
identical images, which are both impaired by noise. Assuming the statistical inde-
pendence of noise in the different images, correlation computations can be used
in order to preserve structures while reducing noise. Different methods for cor-
relation analysis have been investigated, on the one hand based directly on the
original input images and on the other hand taking into account the wavelet rep-
resentation of the input data. The presented approach proves to be suited for the
application in computed tomography, where high noise reduction rates of approx-
imately 50% can be achieved without loss of structure information.

1 Introduction

Particularly in diagnostic imaging, data contains noise predominantly caused by quan-
tum statistics. A common problem in image processing, therefore, is the reduction of
this pixel noise. Several approaches for edge-preserving noise reduction are known. The
goal of all of these methods is to lower the noise power without averaging across edges.
Some popular examples are nonlinear diffusion filtering [1] and bilateral filtering [2],
which directly work in the spatial domain. Additional approaches exist that reduce noise
based on the frequency representation of the input data, in particular wavelet-domain
denoising techniques. Most of these algorithms are based on the observation that in-
formation and white noise can be separated using an orthogonal basis in the wavelet
domain, as described e.g. in [3]. Structures (such as edges) are located in a small num-
ber of dominant coefficients, while white noise, which is invariant to orthogonal trans-
formations and remains white noise in the wavelet domain, is spread across a range
of small coefficients. This observation dates back to the work of Donoho and John-
stone [4]. Using this knowledge, thresholding methods were introduced, which erase
insignificant coefficients but preserve those with larger values. Several techniques have
been developed to further improve the detection of edges and relevant image content,
for instance by comparing the detail coefficients at adjacent scales [5,6]. Most denois-
ing methods based on wavelets suffer from the limitation that they are only applicable
to white noise. A more robust algorithm which adapts itself to several types of noise is
for instance presented in [7].

Nevertheless, most existing methods for noise reduction work on single image data
and their ability to distinguish between information and noise, therefore, strongly de-
pends on the size and the contrast of image structures. In contrast, if two or more images
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are available, which show the same information but statistically independent noise, the
differentiation between signal and noise can be further improved [8]. By comparing
the input images either in spatial domain or on the basis of the wavelet coefficients,
frequency dependent weighting factors can be computed. These weighting factors are
then used to eliminate noise, whilst maintaining structural information in the wavelet
representation of the images. Reconstruction of the modified wavelet coefficients yields
an image with suppressed noise but including all structures detected as correlations
between the input images.

This paper is structured as follows: After summarizing the basic concepts of the
wavelet transformation in section 2 the noise reduction algorithm is introduced in detail
in section 3. In section 4 the achieved results for the specific applications in computed
tomography and fluoroscopy are presented.

2 Wavelet Transformation

Wavelets are generated from a single basis function ψ(t) called mother wavelet by
means of scaling and translation:

ψs,τ (t) =
1√
|s|

ψ

(
t− τ

s

)
; s, τ ∈ R, s �= 0, (1)

where s is the scaling parameter and τ is the translation parameter. Wavelets must have
zero mean and have bandpass like spectrum. For the computation of the discrete wavelet
transformation only discrete pairs of s and τ are used. Taking the discrete parameters

sj = 2−j and τk = k · sj = k · 2−j; j, k ∈ N0, (2)

where k is the translation and j the scale index, results in a dyadic sampling. Using these
parameters a family of wavelets, spanning the L2(R) can be derived from a mother
wavelet ψ(t) as follows:

ψj,k(t) =
√

2j ψ(2jt− k). (3)

The discrete wavelet transform (DWT) of a 1D function f(t) can then be computed by
projecting the function onto the set of wavelets:

cj,k =
∫ ∞

−∞
f(t)ψ∗

j,k(t)dt, (4)

where ψ∗
j,k(t) is the complex conjugate of ψj,k(t).

The algorithm introduced by Mallat [9], allows a fast computation of the discrete
dyadic wavelet transformation. The wavelet coefficients are computed by iteratively
decomposing the singnal into its high-pass filtered details and low-pass filtered approx-
imation, reducing the resolution of the signal in each iteration by a factor of two. It
can be shown that the discrete dyadic wavelet decomposition can be computed by an
iterated filter bank (see [10] for details).

When dealing with images the two-dimensional wavelet transformation needs to be
used. The one-dimensional transformation can be applied to the rows and the columns
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in succession, which is referred to as a separable two-dimensional wavelet transforma-
tion. After this decomposition four two-dimensional blocks of coefficients are available,
including on the one hand the lowpass filtered approximation image C and three detail
images Dx,Dy,Dxy. Analogously to the 1D case, the multiresolution wavelet decom-
position can be computed iteratively from the approximation coefficients.

At every decomposition level, the detail images include high frequency structure
information in horizontal, vertical and diagonal direction together with noise in the
respective frequency band. Goal of the noise suppression method is to detect those
detail coefficients which represent structure information. These coefficients should be
kept unchanged, while coefficients, which are due to noise should be eliminated or at
least be suppressed.

3 Filtering Algorithm

Fig. 1 shows a brief overview of the different steps used for the noise reduction algo-
rithm. Although the algorithm can also be extended to work with more than two input
images, without loss of generality, only the case of two images will be considered in
the following.

A
Wavelet 

Decomposition

B
Wavelet 

Decomposition

Averaging Reconstruction RWeighting

Correlation

Analysis

A
Wavelet 

Decomposition

B
Wavelet 

Decomposition

Averaging Reconstruction RWeighting

Correlation

Analysis

Fig. 1. Overview of the noise reduction method

The two input images A and B are both decomposed into multiple frequency bands
by a 2D discrete dyadic wavelet transformation. Of course, for the reduction of high fre-
quency noise only those decomposition levels covering the frequency bands of the noise
spectrum are of interest. Therefore, it is not necessary to compute the wavelet decom-
position up to the coarsest scale. In our experiments, two to four decomposition levels
were sufficient. For each decomposition level a similarity matrix is computed based on
correlation analysis. The frequency dependent local discrepancy measurement can be
based directly on the comparison of the original input images or on the wavelet rep-
resentation of the input images. By the application of a predefined weighting function
to the computed similarity values a level dependent weighting factor is computed. The
resulting mask should preferably include ones in regions where structure information
has been detected and values smaller than one elsewhere. The averaged wavelet coeffi-
cients of the input images, i.e. the detail coefficients, can then be weighted according to
this mask. Averaging in the wavelet domain allows the computation of just one inverse
wavelet transformation in order to get a noise suppressed result image R.
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3.1 Correlation Analysis

Goal of the correlation analysis is to estimate the probability of a coefficient to corre-
spond to structural information. This estimate is based on the measurement of the local
homology of the input images. In the following, three different methods of similarity
computation will be introduced, measuring the similarity based on the original input
images, secondly based on the approximation coefficients and thirdly directly from the
detail coefficients. The core idea behind all of these methods is similar: For the three
blocks of detail coefficients Dx

l ,D
y
l ,D

xy
l of the wavelet decomposition, including hor-

izontal, vertical and diagonal details, a corresponding similarity matrix Sl is computed
for every level l up to the maximum decomposition level. Then, according to the defined
weighting function the detail coefficients are weighted with respect to their correspond-
ing values in the similarity matrix.

Correlation Coefficient Based Methods: One popular method for measuring the sim-
ilarity of noisy data is the computation of the empirical correlation coefficient [11]:

rxy =
∑n

i=1 (xi − x)(yi − y)√∑n
i=1 (xi − x)2

∑n
i=1 (yi − y)2

, (5)

where x = x1, x2, . . . , xn and y = y1, y2, . . . , yn are two sequences of data each with
n data points. The mean values of xi and yi are denoted as x and y. The empirical
correlation coefficient also known as Pearson’s correlation is independent from both
origin and scale and takes values out of the interval [−1; 1], whereas one means perfect
correlation, zero no correlation and minus one perfect anticorrelation.

This correlation coefficient can now be used in order to compute the local homol-
ogy between the input images, by taking blocks of pixels out of the two images and
computing the correlation coefficient (see Fig.2(a)). Of course, the pixels used for sim-
ilarity measurement at a respective position should be closely associated with the par-
ticular detail coefficient. This should later on be weighted according to the computed
similarity value. Preferably all pixels from the original input image, which influenced
the detail coefficient at the current position and scale, through the computation of the
wavelet decomposition, should be incorporated into the similarity computations. It is
clear that with increasing decomposition level the size of the pixel regions in the orig-
inal image must also increase. Additionally, it is necessary to take the length m of the
wavelet filters into consideration. Altogether, the number of pixels nl of the original
image influencing a coefficient at level l can be computed iteratively according to:

nl = 2 · nl−1 +m− 2; with n1 = m. (6)

With this size adaptation the application of the algorithm in combination with arbitrary
wavelets, which can be represented by FIR lowpass and highpass filters, becomes pos-
sible. However, the computational costs are quite high, because of the increasing size
of the pixel regions in dependence on the decomposition level.

Improved results can be achieved with respect to performance as well as image qual-
ity if the correlation computations are not based on the original input images but on the
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Fig. 2. Correlation computations based on correlation coefficients - (a) based on the original input
images, (b) based on the approximation images of the previous decomposition level

approximation images. The multiresolution wavelet decomposition is computed itera-
tively. Thus the detail coefficients at level l are gained from the approximation image
of the previous decomposition level. A very close connection between the detail co-
efficients and the computed similarity values can be obtained if the pixel regions are
also taken from the approximation images of the previous decomposition level. The ad-
vantage of this approach is that the size of the pixel regions no longer depends on the
decomposition level (see Fig.2(b)). Only the length of the wavelet filters needs to be
considered. The disadvantage is that the approximations at all scales need to be stored
for this method, although only the approximations of the maximum decomposition level
are needed for perfect reconstruction.

Both of the methods mentioned so far have to deal with the same problem. The image
regions are adjusted to the length of the filter used for analysis, but not to the coeffi-
cients of the filter. All intensity values within the considered pixel region are weighted
equally. The result is that edges of higher contrast dominate the correlation values, as
long as they occur within the region covered by the filter. However, if the filter coeffi-
cients should be taken into consideration all three blocks of detail coefficients must be
treated separately, because the corresponding 2D filters are different. A third alternative
method, where the similarity is directly computed from the detail coefficients circum-
vents this problem.

Gradient Approximation: The core idea behind the similarity measurement based on
detail coefficients at level l is to use the fact that horizontal and vertical detail coeffi-
cients Dx

l and Dy
l can be regarded as approximations of the partial derivatives of the

approximation image Cl−1. Coefficients in Dx
l show high values at positions where

high frequencies in x-direction are present and Dy
l where sudden changes in contrast

in y-direction can be found. If these two aspects are considered together, we get an
approximation of the gradient field of Cl−1:

∇Cl−1 =
(
∂Cl−1/∂x

∂Cl−1/∂y

)
≈
(

Dx
l

Dy
l

)
. (7)

The detail coefficients in x- and y-direction of both decompositions approximate the
gradient vectors with respect to equation (7). The similarity can then be measured by
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computing the angle between the corresponding gradient vectors [8]. The goal is to
obtain a similarity value in the range of [−1, 1], analogously to the correlation compu-
tations above. Therefore, we take the cosine of the angle resulting in:

Sl =
DA x

l DB x
l + DA y

l DB y
l√(

DA x
l

)2
+
(
DA y

l

)2
√(

DB x
l

)2
+
(
DB y

l

)2 , (8)

where the superscript A refers to the first and B to the second input image. The gra-
dient approximation method and the more time consuming computation of the correla-
tion coefficients explained above are closely related. Nevertheless, the approaches are
not identical and do not generally lead to the same results. The application of the al-
gorithm for noise reduction based on the gradient approximation, as introduced so far,
sometimes leads to visible artifacts in the resulting images. Fig. 3(b) and the difference
image Fig. 3(b) give an example where this problem can be seen in case of using the
Haar wavelet. Noticeably, the artifacts predominantly emerge where diagonal structures

(a) (b) (c)

Fig. 3. Artifacts due to weighting down correlated diagonal coefficients with gradient approxima-
tion method - (a) noise suppressed image with gradient approximation without separated treat-
ment of diagonal coefficients, (b) difference image to average of input images, (c) difference
image after special treatment of diagonal coefficients

appear in the image, and their shape generally enforces the assumption that diagonal co-
efficients at different decomposition levels are falsely weighted down. Reason for this
is that diagonal patterns exist, which lead to vanishing detail coefficients in x- and y-
direction. If the norm of one of the approximated gradient vectors is too small or even
zero, no reliable information about the existence of correlated diagonal structures can
be obtained from equation (8).

The simplest possibility for eliminating the artifacts is to weight only the detail co-
efficients Dx

l and Dy
l based on the similarity measurement Sl and leave the diagonal

coefficients Dxy
l unchanged. Of course this avoids artifacts in the resulting images,

but, unfortunately, noise included in the diagonal coefficients remains unchanged, lead-
ing to a lower signal-to-noise ratio for the denoised image. From equation (8), we can
recognize that the similarity value is computed only with respect to Dx

l and Dy
l . The
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diagonal coefficients do not influence the computation. However, the idea to extend the
approximated gradient vector (see equation (7)) by the diagonal coefficients to a three
dimensional vector does not lead to the desired improvements. In case of vanishing
detail coefficients in x- and y- direction, no quantitative relation between the diagonal
coefficients can be gained. Moreover, the extension of the approximated gradient vector
by the diagonal coefficient is not a suitable solution. A diagonal coefficient can be inter-
preted as second order derivative and is therefore very sensitive to noise. Mixing it with
the detail coefficients in x- and y-direction generally leads to less reliable similarity
measurements.

In order to avoid artifacts while still reducing noise in the diagonal coefficients, only
the detail coefficients Dx

l and Dy
l are weighted, depending on the similarity measure-

ment computed from equation (8). The diagonal detail coefficients are treated sepa-
rately. The weighting function for the diagonal coefficients is based on the correlation
analysis between DA xy

l and DB xy
l :

Sxy
l =

2DA xy
l DB xy

l(
DA xy

l

)2

+
(
DB xy

l

)2 . (9)

Using this extension for separated weighting of the diagonal coefficients, denoising
results are free of artifacts (see Fig.3(c)).

3.2 Weighting Function

The simplest possible method for weighting the coefficients is to use a thresholding
approach. If the similarity value Sl at position (x, y) is above a defined value τl, the
detail coefficients are kept unchanged, otherwise they are set to zero [8]. The weighting
function can be defined as

Wl(Sl(x, y)) =

{
1 if Sl(x, y) ≥ τl

0 otherwise
. (10)

However, the choice of an appropriate threshold very much depends on the noise level of
the input images. Therefore, with increasing noise level in the input images the thresh-
old should be set less strictly and with some tolerance. Preferably the threshold should
be chosen level dependent, meaning that the threshold should be abated for higher de-
composition levels. Generally the use of continuous weighing functions like

W powN
l (Sl(x, y)) =

(
1
2

(Sl(x, y) + 1)
)N

∈ [0, 1] , (11)

where no hard decision about the maintenance or the discardal of coefficients is re-
quired, leads to better results. The power N can also be chosen level adaptive.

4 Experimental Evaluation

4.1 Computed Tomography

One important application of the noise reduction algorithm introduced above can be
found in X-ray computed tomography (CT). In CT always a tradeoff between pixel
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noise, dose of radiation and image resolution must be found. Reducing the dose of
radiation for example by a factor of two increases the noise level in the images by a
factor of

√
2. Goal of the application of the noise reduction algorithm to CT images

is to achieve improved image qualtiy without increasing the dose of radiation, or, the
other way round, to reduce the dose of radiation without impairing image quality.

Spatially identical images with uncorrelated noise can be generated through separate
reconstruction from disjoint sets of projections. For example two images can be recon-
structed, each using only every second projection. Specifically, one image is computed
from the even, and the other one from the odd numbered projections. Due to the recon-
struction with only half of the projections, the noise level of the two generated images
increases by a factor of

√
2. By averaging the wavelet coefficients of the input images,

the result image corresponds to the image reconstructed with the complete set of projec-
tions, where additionally noise is reduced. Usually, a loss of image resolution through
splitting the projections into two halfs can be obviated because the overall number of
projections in CT can be assured to be high enough.

(a) (b)

Fig. 4. Application of the noise reduction algorithm to CT images - (a) average of input images
(standard deviation: σ ≈ 52 HU), (b) denoised result (σ ≈ 25 HU)

Fig.4(b) shows the noise suppressed result image in comparison to the average of
the input images Fig.4(a). It can be seen clearly that especially in homogeneous image
regions, as for example in the region of the liver, noise is reduced, while structures and
also small details are preserved. For clinical tests we used two CT slices, one from the
abdomen, the other from the thorax. For each slice the average image and nine differ-
ent configurations of denoised images were computed (see [12], [13] for details). The
nine noise suppressed images were compared to the average image by two radiologists
independently. All images of the tests were unlabeled. The result was that the average
of the input images has never been judged superior to the noise suppressed images. In
average the pixel noise σ in the noise suppressed images has been reduced by 50% in
comparison to the average of input images.

The different approaches for correlation analysis can be assessed by comparing the
difference images, which are presented in Fig.5. It can be seen that the correlation
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(a) (b) (c)

Fig. 5. Comparison of correlation analysis methods: difference images between result image and
the average of input images - (a) CC based on original images, (b) CC based on approximation
images, (c) gradient approximation

coefficient (CC) based method, where the pixel regions are taken from the original input
images is less precise than the other two approaches, because structure information is
also included in the difference images. The other two approaches lead to nearly the same
good results. In regions of edges no noise is reduced, but the quality of the edge is kept
unchanged. In the shown examples the Haar wavelet has been used. The experimental
results with different wavelets showed, that especially biorthogonal spline wavelets, like
the CDF9/7 wavelet [14], are well suited for the noise reduction algorithm.

4.2 Fluoroscopy

A second clinical application of the introduced method for noise reduction can be found
in fluoroscopy, where sequences of x-ray projections are acquired. Therefore, achieving
the maximum image quality with a minimum of radiation dose is required. In Fig.6 the
initial experimental results achieved for x-ray images of a human skull are presented.

(a) (b) (c)

Fig. 6. Application of the noise reduction method to fluoroscopy images of the human skull - (a)
average of input images, (b) denoised image, (c) difference image
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5 Conclusion

We presented a novel edge-preserving wavelet based method for noise reduction. The
algorithm works on two input images, which show the same information whereas the
noise between the input images is uncorrelated. Using this property, correlation compu-
tations can be used in order to differentiate between structures and noise. Three different
approaches of correlation analysis have been discussed. Especially the gradient approx-
imation approach with the introduced separated treatment of the diagonal wavelet co-
efficients allows an artifact free and computationally efficient noise suppression. The
application of the algorithm to computed tomography images showed that a noise re-
duction of approximately 50% is possible without loss of stucture information. Even
fine edges and small structures are preserved. For the application to fluoroscopy images
it must be assured that the patient does not move. Otherwise the method must be used
in combination with image registration algorithms.
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Template Based Gibbs Probability Distributions for
Texture Modeling and Segmentation

Dmitrij Schlesinger
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Abstract. We present a new approach for texture modeling, which joins two
ideas: well defined patterns used as "elementary texture elements" and statistical
modeling based on Gibbs probability distributions. The developed model is useful
for a wide range of textures. Within the scope of the method it is possible to pose
such tasks as e.g. learning the parameters of the prior model, texture synthesis and
texture segmentation in a very natural and good founded way. To solve these tasks
we propose approximative schemes based on the Gibbs Sampler combined with
the Expectation Maximization algorithm for learning. Preliminary experiments
show good performance and accuracy of the method.

1 Introduction

The aim of this paper is to develop a texture model, which allows to join the following
two ideas. The first one is built on assumptions, that:

– a given texture can be characterized by an "ideal pattern" (we will call it template),
which itself can be understood as a kind of image;

– the template (as well as the image to be processed) can be spatially transformed in
some well defined way;

– a textured image can be characterized by a distribution of transformed templates
over its domain.

The second idea is to use a statistical framework for modeling. We argue for that, first
of all because such modeling allows to pose tasks in a very reasonable and well founded
way. Another reason is that statistical approaches are already widely used for texture
modeling (see e.g. [5,6]), but very often without taking into account geometrical prop-
erties of a template (for instance only taking into account pairwise interactions between
pixels or only using templates to compute features). The third reason is that we wont
to consider spatial transformations of images, that can be described by means of a dis-
placement field. The latter can be very good modeled by Gibbs probability distributions
(see e.g. [2]). And last but not least, we would like to apply our approach to texture
segmentation. The segmentation task on its part can be posed (and often successfully
solved) e.g. as a Bayes decision task for appropriate chosen statistical models based on
Markov random fields (see e.g. [2,3,6]).

In this work we present a statistical texture model, which we call "Template based
Gibbs probability distribution". In the next section we give a formal definition of the
model followed by task formulations, appearing in that context. Based on the developed

K. Franke et al. (Eds.): DAGM 2006, LNCS 4174, pp. 31–40, 2006.
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model we formulate in Section 3 the task of unsupervised texture segmentation. In
Section 4 we give some preliminary results. Finally, we conclude with a discussion
about possible applications of the presented model and open questions.

2 The Model

We begin to explain the model by introducing an illustrative example. Typical images
of a well defined texture are wallpapers. Let us consider the "production process" of
wallpapers (see Fig. 1(a)). The image is produced by a roll, which is itself colored by a

(a) Roll (b) Torus

Fig. 1. Producing of wallpapers

predefined pattern. Let us generalize this a little bit, because in our case the pattern on
the roll should be periodic itself – i.e. the image should be periodic in two directions.
This can be done by replacing the roll by a torus as shown in Fig. 1(b). Formally the
torus can be understood as a "set of positions", equipped with a neighborhood struc-
ture. In our case a color value should be assigned in addition to each torus position –
thus specifying a pattern on the torus. Loosely speaking, such a torus together with its
pattern defines the painted texture. On the other hand, in order to define the produced
image uniquely, some "rolling parameters" should be given in addition. For instance, a
torus position can be specified for each pixel of the image. Such an assignment can be
understood as a "complete interpretation of the image by means of a given pattern". In
doing so, we account for deviations from the ideal rolling process. A "non ideal rolling
process" can be imagined as if the underlying sheet of paper would be stretched a little
bit during the rolling. Or equivalently, as if an ideal image would be spatially trans-
formed in addition by applying an elastic transformation – e.g. a smooth displacement
field. Therefore, the specification of the "rolling parameters" is not reducible to some
small set of parameters like rolling speed, initial position of the torus on the image or
similar. Summarized, a natural recognition task is to find the best interpretation (the cor-
responding torus position for each image pixel) given an image and a template (torus
with a pattern). The learning task would be to estimate for example the pattern on the
torus given an image.

Let us formalize all considerations made so far. We denote by R the set of image
pixels, where r = (i, j) ∈ R is a particular pixel. Furthermore, we define a neighborhood
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structure on the set of pixels by introducing the set of pairs E ⊂ {{r,r′}}. For instance
4-neighborhood can be used for this matter. We will understand the template as a set
K of positions, equipped with its own neighborhood structure, which corresponds to a
torus. We refer an element of the template as k = (i′, j′) ∈ K and call it state or label.
The set {(i′, j′) : i′ = 1 . . .n, j′ = 1 . . .m} of positions can be considered alternatively
as an orthogonal lattice, on which e.g. a usual 4-neighborhood structure is defined. In
addition the rows with i′ = 1 and i′ = n as well as the columns with j′ = 1 and j′ = m are
defined to be neighbors. A "complete interpretation" of the set R is a mapping (we will
call it position labeling) f : R→ K, which assigns one element k ∈ K of the template to
each pixel r ∈ R.

In the next step it is necessary to express in an appropriate manner, which labelings
should be considered as "good" ones and which not. A simple way is to follow the prin-
ciple: "two neighboring image pixels should be labeled by states, which are neighboring
(or at least not far from each other) on the torus". We prefer statistical modeling and
consider an a-priori probability distribution of labelings as a Gibbs probability distribu-
tion of second order as follows:

P( f ) =
1
Z ∏
{rr′}∈E

grr′
(

f (r), f (r′)
)

(1)

with the normalizing constant Z and functions grr′ : K ×K → R, which express our
assumptions about the "goodness" of labelings, i.e. follow the principle mentioned
above. In practice we use the following functions grr′ :

grr′(k,k
′) = exp

[
−

dist
(
(k +�k),k′

)
σg

]
, (2)

where dist(k1,k2) is the distance between two positions k1 and k2 (for instance the
squared length of the shortest line connecting positions k1 and k2 on the torus). The
label (k +�k) represents the "best choice" for the neighboring node r′ given a state k
in the node r. For horizontal edges (i.e. r′ = r +(0,1)) we use �k = (0,1), for vertical
ones (i.e. r′ = r +(1,0)) holds �k = (1,0).

The conditional probability distribution of observations (images) given a labeling is
defined as follows. Let us denote an image as a mapping x : R→ V , transforming the
set R of pixels into the set V of colors (grayvalues), x(r) = v ∈ V denotes the color in
the pixel r. We assume conditionally independent probability distribution

P(x | f ) = ∏
r∈R

q
(
x(r), f (r)

)
, (3)

where the function q : V ×K →R is the probability distribution P(v | k) to observe the
grayvalue v given the state k. At this point we would like to note, that all previous con-
siderations were made under the assumption, that there exists an ideal pattern (painted
on the torus). This can be easily generalized in the following way. Each position on the
torus can be characterized by a color distribution, rather than by a single "ideal" color.
As a special case one can consider e.g. a Gaussian probability distribution

q(v,k) = P(v | k) =
1√

2πσk
exp

[
− (v− μk)2

σ2
k

]
, (4)
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where μk and σk are the parameters of the Gaussian, "attached" to the state k. In this
case the mean value μk can be interpreted as an "ideal" (most probable) color at the
position k of the torus.

Summarized the joint probability distribution is defined by

P(x, f ) =
1
Z ∏
{rr′}∈E

grr′
(

f (r), f (r′)
)
·∏

r∈R
q
(
x(r), f (r)

)
. (5)

Now we are ready to formulate the tasks we are interested in. We will distinguish two
types of "basic" tasks, namely the recognition task and the learning task. Let us consider
the first one: find the best position labeling f for a given image x. We formulate this
problem as a Bayes decision task with respect to an additive cost function of the type
C( f , f ′) = ∑r c

(
f (r), f ′(r)

)
. This leads to the following decision strategy [7]. First, it

is necessary to compute the marginal a-posteriori probabilities for the states

P
(

f (r) = k | x
)

= ∑
f : f (r)=k

P( f | x), ∀r ∈ R, k ∈ K. (6)

Based on them the decision is obtained by solving for each pixel independently the local
optimization problem

f ∗(r) = arg min
k

∑
k′

P
(

f (r) = k′ | x
)
· c(k,k′). (7)

Let us consider the learning task, i.e. the task of template estimation given a textured
image. We follow the Maximum Likelihood principle, that is we maximize the prob-
ability of observation (of the image) with respect to the unknown parameters, which
are the conditional probability distributions q(v,k) = P(v | k) of grayvalues for each
position k:

P(x;q) = ∑
f

P( f ) ·P(x | f ;q)→max
q

. (8)

Since we can not perform the summation over all labelings we use the Expectation Max-
imization algorithm [1,9] for approximation. The standard approach gives1 for general
functions q

q(n+1)(v,k) ∼ ∑
r:x(r)=v

P
(

f (r) = k | x;q(n)), (9)

where P
(

f (r) = k | x;q(n)) are again the marginal a-posteriori probabilities of states in
the n-th iteration. Consequently we need these probabilities for both the recognition task
(7) and the learning task (8). Unfortunately, we do not know how to compute them in a
closed fashion. They can be however estimated approximately using the Gibbs Sampler
[4]. For details we refer to [2,3,8,10].

In practice it is not usefull to deal with functions q in general form, simply because
the number of free parameters grows very quickly with the size of the template. One
image is practically not enough to learn them all, especially taking into account, that

1 Since the corresponding derivation is rather standard, we omit details here. Similar applications
of the EM-algorithm with more details can be found e.g. in [3,8,10].
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the learning can be performed only approximately using the EM-scheme and the Gibbs
Sampler. Due to these reasons we use in practice Gaussian probability distributions (4)
for q. In this case the update step of the EM-algorithm is

μ (n+1)
k =

∑r x(r) ·P
(

f (r) = k | x; μ (n),σ (n)
)

∑r P
(

f (r) = k | x; μ (n),σ (n)
) ,

σ (n+1)
k =

√√√√∑r

(
x(r)− μ (n+1)

k

)2 ·P( f (r) = k | x; μ (n),σ (n)
)

∑r P
(

f (r) = k | x; μ (n),σ (n)
) . (10)

3 Texture Segmentation

In this section we apply our model for texture segmentation. We imagine the generative
model as follows. First, the segmentation is generated, i.e. a name (segment number) is
assigned to each pixel. Second, the position labelings f are filled in for each segment
separately using the basic model, considered in the previous section. At the last stage
the image x is generated given the segmentation and the position labeling. Summariz-
ing, we have to build a statistical model for triples "segmentation, position labeling,
observation".

First of all, let us introduce an additional field s : R→ L called segmentation field,
which maps the set R of nodes into the set L of segments. The a-priori probability
distribution for pairs (s, f ) is built by the following principle:

– If the segments s(r) and s(r′) in two neighboring pixels r and r′ are the same, the
functions grr′ (see (2)) from the basic model (5) are used.

– If the segments s(r) and s(r′) in two neighboring pixels r and r′ are different, a
constant function grr′ ≡ a is used, where the constant a represents the "penalty" for
two neighboring pixels if they are assigned to different segments.

Consequently the a-priori probability distribution is defined as

P(s, f ) =
1
Z ∏
{r,r′}∈E

ĝrr′
(
s(r),s(r′), f (r), f (r′)

)
, (11)

where functions ĝrr′ are

ĝrr′(l, l
′,k,k′) =

{
grr′(k,k′) if l = l′

a otherwise.
(12)

The conditional probability distribution should be changed in a similar way, taking
into account, that there are functions q for each segment (each segment is filled in with
its own texture):

P(x | f ,s) = ∏
r∈R

q̂
(
x(r), f (r),s(r)

)
. (13)

We would like to note, that for σg → ∞ in (2) (i.e. if the topology of the torus "does
not matter") this model becomes the usual Potts model for segmentation (see e.g. [3,6]).
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If the Gaussian probability distributions (4) are used, the conditional probability distri-
bution P(x | s) becomes conditionally independent with Gaussian mixtures for P(v | l).

We formulate the task of texture segmentation as Bayes decision task with respect
to the additive delta function C(s,s′) = ∑r 1I

(
s(r) �= s′(r)

)
for misclassification of seg-

ments, ignoring the correctedness of recognition of the position labeling f (since it is
not necessary to make a decision about position labeling in context of the segmentation
problem). In this case the task is to find the most probable segment for each pixel:

s∗(r) = arg max
l

P
(
s(r) = l | x

)
∀r ∈ R (14)

with the marginal a-posteriori probabilities for segments

P
(
s(r) = l | x

)
∼ ∑

s:s(r)=l
∑

f

P(s, f ) ·P(x | s, f ). (15)

We estimate these probabilities in the same manner as for P
(

f (r) = k | x
)

using the
Gibbs Sampler.

4 Results

First of all, we would like to present an example for texture parameters learning. In
Fig. 2 an image of a real texture is shown. In Fig. 2(c) one of generated position la-
belings f is presented, where the states are encoded as gray values in an illustrative
manner, shown in Fig. 2(d). The estimated templates are given in Fig. 2(e) and 2(f)
(the dispersion map is scaled to fit into the grayvalue range 0 . . .256). To give more
impression, we present also an artificially generated image (see Fig. 2(b)) produced in
the following way. For each pixel r the most probable grayvalue for the corresponding
label f (r) is chosen – i.e. the grayvalue in a pixel r is set to μ f (r). We will refer images
generated in such a manner as "reconstructed images". In our opinion the reconstructed
texture in the Fig. 2(b) looks very realistic.

The results of texture segmentation for an artificial image are presented in Fig. 3.
The original image Fig. 3(a) was produced as follows. Firstly, a manually painted bi-
nary image was chosen as the true segmentation. Each segment was then filled in with
different textures. These textures were in addition manually normalized in such a way,
that their histograms "look similar". Therefore, it was practically not possible to seg-
ment the image correctly without taking into account texture information. The textures
were pre-learned using texture examples (i.e. images, consisting of only one texture).
Then, the Gibbs Sampler was started with pre-learned templates and randomly cho-
sen segmentation s and position labeling f . During the sampling process the templates
were further learned by (10) in an unsupervised manner. At the same time the relative
frequencies of occurrences of labels (histograms to estimate the marginal probabilities
P
(
s(r) = l | x

)
for segments) were observed, based on which the final decision for seg-

mentation was made for each pixel. The resulting segmentation (overlaid with the true
segmentation) is shown in Fig. 3(c). The pixels, where the resulting segmentation is not
correct, are depicted by gray color. The total percentage of misclassified pixels is 1.2%.
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(a) Original texture (b) Reconstructed texture

(c) Position labeling

(d) Encoding

(e) Template: μ (f) Template: σ

Fig. 2. Example of a texture

(a) Original image (b) Position labeling (c) Segmentation

Fig. 3. Texture segmentation, an artificial example
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(a) Original image (b) Reconstructed image

(c) Position labeling (d) Segmentation

(e) 1-th: μ (f) 1-th: σ (g) 2-th: μ (h) 2-th: σ (i) 3-th: μ (j) 3-th: σ

Fig. 4. Texture segmentation, a real example

Finally we tested our method for a real segmentation task, shown in Fig. 4. We would
like to note especially, that the model was able to produce more or less reasonable re-
sults even in the situation, where the textures, presented in the image, do not correspond
exactly to the model. This is clearly visible for the "grass" texture (shown with gray
color in Fig. 4(d)). The parameters of this texture were obtained by the EM-algorithm
in a way, which can be characterized as "the best possible way in the scope of the used
model" – since this texture can not be represented adequately by the model (see the
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reconstructed image in Fig. 4(b)), an almost homogenous coloring combined with hight
dispersion values was estimated (see Fig. 4(g) and 4(h)).

5 Conclusion

In this work we presented a statistical texture model. Typical tasks were considered
such as e.g. learning of model parameters, texture segmentation etc.

We would like to point out, that the aim of this paper was to develop just a model, but
not algorithms or methods for some particular tasks. It is easy to see, that many other
tasks can be formulated in terms of our model in a very natural way. For example those
tasks can be considered, where not the processed image itself (or its interpretation) is
of interest, but just the texture parameters, such as e.g. the size of the template, color
distribution on the template etc. Another interesting task is to estimate parameters of
template distribution over the image, such as density, characteristical lengths, regularity
etc. Related practical tasks appear for instance in medical imaging, microscopy, inspec-
tion and other applications, where the processed image consists of a "large number of
very similar objects".

The main question we would like to discuss in that context is the following. In this
work we did not consider in detail certain model parameters, like e.g. the size of the
etalon, types of the used functions grr′ and qr in (5), possible cost functions for the
recognition task (7) etc. On the other hand, for a particular application it is almost
always necessary to "specialize" the general model in some reasonable way to reach
good performance, because general models in their pure form are often not able to
produce good practical results. In that situation the explanation of the model would be
not complete without further recommendations about possibilities to use our method in
particular applications, i.e. possibilities to incorporate additional a-priori knowledge in
the model.

The main direction to do that is based on the fact, that the template itself can be
considered as a kind of image (with its own neighborhood structure, coloring properties
etc.). This means, that many general image processing methods can be applied directly
to the used template (rather than to the processed image). For example, some additional
coloring properties of the template can be required – e.g. that the neighboring color
values (or color distributions) should be "similar", an implicit color reduction can be
performed by fixing the number of color values in the etalon etc. Another possibility
is to require, that the shape of the template should have some predefined form, mod-
eling this form by splines, active contours, levelsets etc. The coloring of the template
can be for instance defined as a color function, given up to a relatively small number of
parameters. Furthermore the coloring of the template can be modeled e.g. using Gibbs
probability distributions for images in a classical manner. In this case the template can
be considered as a random variable rather than a parameter of the whole probability
distribution. Consequently it becomes possible to incorporate additional a-priori knowl-
edge about the template by introducing an a-priori probability distribution over the set
of templates, instead of simply fixing it or learning it according to the Maximum Like-
lihood principle (which corresponds in fact to the maximum a-posteriori decision with
respect to parameters).
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The above considerations relate to the conditional probability distribution, i.e. the
part of the model, which is determined by the template. Another way to specialize the
model is to change the a-priori part in a way, that it would fit better a particular appli-
cation. In this paper we considered e.g. only very simple functions grr′ . For a particular
application it would be obviously profitable to choose the type of these functions, taking
into account special properties of the problem.

As we can see, there are many ways to use the developed model for different prob-
lems. Further developments of the model, precise examinations of the above mentioned
possibilities as well as generalizations and specializations will be subject of future work.
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Abstract. Methods based on pairwise similarity relations have been
successfully applied to unsupervised image segmentation problems. One
major drawback of such approaches is their computational demand which
scales quadratically with the number of pixels. Adaptations to increase
the efficiency have been presented, but the quality of the results obtained
with those techniques tends to decrease. The contribution of this work
is to address this tradeoff for a recent convex relaxation approach for
image partitioning. We propose a combination of two techniques that
results in a method which is both efficient and yields robust segmenta-
tions. The main idea is to use a probabilistic sampling method in a first
step to obtain a fast segmentation of the image by approximating the
solution of the convex relaxation. Repeating this process several times
for different samplings, we obtain multiple different partitionings of the
same image. In the second step we combine these segmentations by using
a meta-clustering algorithm, which gives a robust final result that does
not critically depend on the selected sample points.

1 Introduction

Unsupervised image segmentation is of essential relevance for many computer
vision applications. The goal is to find groups of similar image elements (usually
the pixels) according to some locally extracted low-level cues like brightness,
color, texture, etc., without having any prototypical information available. In this
context, research has recently focused on techniques that are based on pairwise
similarities [1,2,3,4]. As the input data is encoded directly in the similarity values,
these approaches offer more flexibility than methods that operate on feature
vectors, since no assumptions on the distribution of the data points are necessary
[5]. Interpreting the similarity values as weighted edges connecting the pixels,
segmentation can be formulated as a graph partitioning problem (Section 2).
Depending on how the corresponding extremal cuts are defined and computed,
this results in spectral relaxation [1,6,7], convex relaxation [4], deterministic
annealing [2], or stochastic clustering approaches [3].

However, pairwise segmentation techniques have one major handicap: with
increasing image size, they soon become computationally infeasible in terms of
memory and solution time as the required number of similarity values grows
quadratically with the number of pixels. Different suggestions have been made
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to overcome this problem. One idea is to replace pixels as the basic image fea-
tures by larger coherent patches [8,4,7]. However, this introduces the question of
how to aggregate pixels appropriately without loosing valuable information and
destroying the optimal cuts. Another common approach is to revert to sparse
graph representations where only pixels in a certain neighborhood are connected
to each other [2,1]. While especially spectral methods benefit from this idea by
using special eigenvector calculations, the convex relaxation technique we will
consider here does not since it still needs to compute dense matrices. Besides,
sparse representations may result in oversegmentation of large homogeneous re-
gions, as long-range connections are not considered appropriately [5].

In this work, we investigate the Nyström method as an alternative technique
that is based on probabilistic sampling of the input data: picking only a small
random subset of the image pixels, a small scale partitioning problem is defined
that can be solved efficiently. Since the number of coherent parts in an image is
typically much lower than the number of pixels, this solution usually generalizes
well to a solution of the full original problem. While the Nyström method has
recently been applied successfully for normalized cuts [5] and kernel-based learn-
ing tasks [9,10], our contribution consists in adopting it in the context of convex
relaxation methods for image segmentation (Section 3). Related approaches use
probabilistic SVD techniques [11] or multiplicative weights updating [12] for
computing fast approximations of semidefinite programming relaxations.

While probabilistic sampling is appealing concerning computational efficiency,
it also results in a decrease of the segmentation quality. Our second contribution
addresses this tradeoff by suggesting to compute multiple partitionings of the
same image based on different samplings, and combining them afterwards to
obtain a final, more robust segmentation that depends less critically on the
selected sample points. This idea of building cluster ensembles has become a
very active field of research recently (see [13,14,15] and references therein). In this
work, we will employ the meta-clustering algorithm (MCLA) proposed in [13],
which is based on directly “clustering clusters” (Section 4), and which has proven
to be a strong competitor in comparison to other aggregation techniques [15].
Moreover, this method has the advantage that it does not rely on representing the
individual segmentations by co-association matrices containing non-zero entries
for every pair of pixels that belong to the same group. Since these matrices are
prohibitively large for image segmentation problems, corresponding approaches
[13,16,15] cannot be applied in our context.

Experimental results given in Section 5 demonstrate that by combining the
probabilistic Nyström approach for pairwise grouping with the MCLA ensemble
technique, we obtain fast and stable image segmentations.

2 Graph-Based Image Partitioning

Unsupervised image segmentation problems based on pairwise similarities can be
interpreted as graph partitioning problems. Representing the image by a graph
G(V,E) with |V | = n vertices corresponding to the image pixels, the entries
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of the symmetric similarity matrix W ∈ Rn×n define pairwise edge weights
wij ∈ R

+
0 that are usually obtained from a specific combination of feature values

like position, brightness, color, texture, etc. Finding a reasonable segmentation
then corresponds to seeking ‘good’ cuts through this graph. More specifically,
in the binary case (which is also considered in this work) the graph is split into
two coherent parts S and S = V \S by minimizing a suitable cost function f(S)
which depends on the weight of the corresponding cut: cut(S) =

∑
i∈S,j∈S wij .

If a partition is represented by an indicator vector x ∈ {−1,+1}n with xi = 1
for i ∈ S, and L = D −W denotes the Laplacian matrix of the graph (D is the
diagonal matrix with the vertex-degrees di =

∑
j∈V wij on its diagonal), we can

write the weight of a binary cut as

cut(x) =
1
4
x�Lx. (1)

A segmentation into multiple parts can be obtained by applying the binary
method hierarchically to the obtained segments.

Since directly minimizing the cut-weight (1) favors separating small sets of
isolated vertices from the rest of the graph [7], different measures f(S) have
been proposed in the literature to prevent such unbalanced partitionings. A
very popular approach is to scale the cut value (1) appropriately, which leads
to optimization criteria like normalized cuts [1,5], average cuts [6], or ratio cuts
[8], that often can be solved approximately by efficient eigenvector calculations.

In this work, we revert to an alternative technique that is based on a classical
idea from spectral graph theory: instead of scaling the cut value, an additional
balancing constraint is introduced. This leads to the following equivalent problem
formulations [4]:

min
x∈{−1,+1}n

x�Lx

s.t. c�x = 0
⇐⇒

max
x∈{−1,+1}n

x�Wx

s.t. c�x = 0,
(2)

where c ∈ R
n denotes a fixed weight vector. The equivalence of the two problems

is easily seen since x�Lx = x�Dx− x�Wx =
∑

i di − x�Wx for binary vectors
x ∈ {−1,+1}n. It may be criticized that this approach is too restrictive since it
only admits cuts of a specific vertex balance; however, during the following so-
lution process the balancing constraint is relaxed intrinsically and merely serves
as a bias to guide the search to meaningful segmentations.

In order to solve the combinatorial problem (2), we use the convex relax-
ation method proposed in [4]. First, the problem variables are lifted into a
higher dimensional matrix space by rewriting the objective function as x�Wx =
tr(Wxx�) and replacing the positive semidefinite rank one matrix xx� by an ar-
bitrary positive semidefinite matrix X ∈ Sn

+. Lifting the constraints in a similar
way, we obtain the following relaxation of (2):

max
X∈Sn

+

tr(WX)

s.t. tr(cc�X) = 0
Xii = 1 i = 1, . . . , n.

(3)
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This problem is a semidefinite program (SDP), which due to its convexity can
be solved to arbitrary precision in polynomial time using standard interior point
methods (cf. [17]). In a last step we recover a binary solution x from the solution
matrix X based on the randomized-hyperplane technique introduced in [18].
Since we are going to partition images on the basis of pixels, we set c = e =
(1, . . . , 1)� in (2), which results in graph vertices of equal importance.

3 Probabilistic Approximation

As already stated in the introduction, graph-based partitioning methods soon
become intractable with increasing image size. In order to reduce the compu-
tational effort we employ an idea that is derived from the Nyström method,
a technique for fast computation of low-rank matrix approximations which is
based on probabilistically sampling the matrix entries [5,10]. In our context, this
translates into picking a small random subset of the image pixels to implicitly
approximate the huge similarity matrix W ∈ Rn×n with a matrix Ŵ of con-
siderably lower rank s � n, for which an approximate solution of the original
partitioning problem can be deduced efficiently.

To motivate this idea, we first show that the original partitioning problem (2)
can also be interpreted as a special matrix approximation problem. To this end,
observe that the Frobenius norm ‖xxT ‖2F = n2 is constant for each partitioning
vector x ∈ {−1,+1}n. Comparing the rank one matrix xxT with the similarity
matrix W then results in

‖W − xxT ‖2F = ‖W‖2F + ‖xxT ‖2F − 2 tr(WxxT ) = ‖W‖2F + n2 − 2xTWx.

Hence, as ‖W‖2F is also constant, problem (2) is equivalent to seeking the best
rank one approximation to W in Frobenius norm (subject to additional con-
straints). This suggests to replace the probably full-rank matrix W by an ap-
propriate low-rank approximation before applying the relaxation (3): without
changing the problem setting too drastically, the approximation process is sim-
plified significantly in this way.

As a first step, the Nyström method requires to pick a fixed number s of
suitable sample points. Since a uniform distribution of the input data is an
adequate assumption for dense similarity matrices [19], we simply select s pixels
independently at random from the image. Assuming without loss of generality
that the samples precede the remaining points, we can subdivide the symmetric
similarity matrix W into smaller submatrices:

W =
(
A B
B� C

)
,

with A ∈ Rs×s, B ∈ Rs×n−s and C ∈ Rn−s×n−s. Hence, A represents the
similarities among the random samples, whereas B contains the weights between
the samples and the remaining points.

The Nyström method now uses the sampled n× s submatrix S := (A B)� to
directly approximate the complete similarity matrix W with a rank-s matrix Ŵ
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by implicitly approximating the large submatrix C of unknown similarity values
with the matrix B�A−1B:

W ≈ Ŵ =
(
A B
B� B�A−1B

)
=
(
A
B�

)
A−1
(
A B
)

= SA−1S�. (4)

The big advantage of this idea is that the eigenvalue decomposition of the ap-
proximating matrix Ŵ = Q̂sΣ̂sQ̂

�
s (where Σ̂s ∈ Rs×s and Q̂s ∈ Rn×s only

contain the nonzero eigenvalues and the corresponding eigenvectors) can be cal-
culated very efficiently: Considering the eigenvalue decomposition PΣP� of the
s× s matrix

W̃ := A+A− 1
2BB�A− 1

2 = A− 1
2S�SA− 1

2 , (5)

it is easy to verify that the eigenvalues of W̃ and Ŵ coincide, Σ̂s = Σ, and that

Q̂s = SA− 1
2PΣ− 1

2 . (6)

Hence, this technique yields a fast approximation of the original similarity matrix
W by approximating its eigenvectors.

A crucial aspect of the Nyström method is the calculation of the inverse A−1

and the square root A
1
2 of the submatrix A: if A is singular or has negative

eigenvalues, then these matrices are not defined. As a remedy for these cases,
Fowlkes et al. [5] propose to use the pseudoinverse instead of the inverse (if any of
the eigenvalues of A are zero) or to apply a modified technique that does not need
to calculate the square root A

1
2 (if A is indefinite). However, besides increasing

the computational effort, these modifications may lead to a significant loss in
numerical precision, and thus should only be applied when necessary [5]. We
will therefore assume that the similarity matrix W and with it the submatrix A
are positive definite, which guarantees that both the inverse A−1 and the square
root A

1
2 exist. In general, this is not a rigorous restriction since most common

similarity measures are derived as kernel functions. Even if this is not the case,
we can simply modify W by adding a multiple of the identity matrix, W + γI
with γ ∈ R+ large enough to ensure positive definiteness without changing the
eigen-structure of W .

In order to apply the Nyström method to the SDP relaxation approach (3),
we first replace the similarity matrix W by the low-rank approximation Ŵ from
(4), and then compute a corresponding low-rank approximation X̂ to the so-
lution X∗ of (3) by means of the small matrix W̃ given in (5). To this end,
we use the fact that during the final step of the SDP method, the randomized
hyperplane technique [18] reduces the rank of the optimal solution X∗ based on
its Cholesky decomposition X∗ = GG�. We therefore suggest to compute the
low-rank approximation X̂ by finding an appropriate approximative Cholesky
factor Ĝ ∈ Rn×s, so that X̂ = ĜĜ�. If we define Ĝ = SA− 1

2 G̃ in analogy to
computing the eigenvectors Q̂s of Ŵ in (6), the objective function of the SDP
relaxation (3) can be approximated as:

tr(WX) ≈ tr(Ŵ X̂) = tr(SA−1S�ĜĜ�) = tr(SA−1S�SA− 1
2 G̃G̃�A− 1

2S�)

= tr((A− 1
2S�SA− 1

2 )(A− 1
2S�SA− 1

2 )G̃G̃�) = tr(W̃ 2X̃).
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Hence, we propose to compute the approximative Cholesky factor Ĝ from the
Cholesky factor G̃ of the small matrix X̃ := G̃G̃� that is obtained as the optimal
solution of the following small-size version of the SDP problem (3):

max
X̃∈Ss

+

tr(W̃ 2X̃)

s.t. tr(ee�X̃) = 0

X̃ii = 1 i = 1, . . . , s.

(7)

Since the unit norm constraint on the rows Gi of the original Cholesky factor
G required by 1 = Xii = GiG

�
i = ‖Gi‖2 = 1 is not necessarily satisfied by the

approximation Ĝ, we additionally normalize its rows. In the last step, a corre-
sponding binary solution is calculated by adapting the randomized hyperplane
technique: using random vectors r from the unit sphere in Rs, we obtain binary
vectors x = sgn(Ĝr) ∈ {−1,+1}n, from which we pick the best one according to
an adjusted version x�Sxs of the objective function. Here, xs ∈ Rs denotes the
vector that only contains the first s entries of x.

4 Aggregation to Ensemble Solutions

Although the probabilistic approximation technique presented in the last section
yields satisfactory segmentations, these are usually noisy and depend strongly
on the choice of the samples. However, the gain in efficiency allows us to com-
pute several solutions based on different samplings, and to merge the resulting
segmentations to a final, more robust and less noisy ensemble solution.

To this end, we employ the meta-clustering algorithm (MCLA) presented by
Strehl and Ghosh [13]. The basic idea of this method is to consider each cluster
of the set of sampling-based segmentations as an object, find groups of similar
objects (“clustering clusters”) and label the original pixels by assigning them
to the group in which they participate most strongly. On order to solve this
partitioning problem, Strehl and Ghosh define a meta-graph G′(V ′, E′) with the
extracted clusters of the segmentations as meta-vertices V ′, i.e. for m differ-
ent segmentations each containing k clusters we obtain mk meta-vertices. The
pairwise meta-edges (p, q) ∈ E′ are weighted proportionally to the pixel overlap
between the corresponding clusters V ′

p and V ′
q by computing the ratio between

their intersection and their union: w′
pq = |V ′

p ∩ V ′
q |/|V ′

p ∪ V ′
q |. Since the individ-

ual clusters of one segmentation do not overlap, this results in an m-partite
meta-graph.

This meta-graph G′ is then partitioned into k′ balanced meta-clusters, where
we set k′ = k to obtain the same number of clusters as in the individual sampling-
based segmentations. While for this purpose, we could use generalizations of
the methods presented in Section 2, we follow the suggestion in [13] and use
the partitioning package METIS [20]. For every pixel i, its level of association
ai(Cl) ≤ 1 with each meta-cluster Cl is computed by summing the occurrences
of i in the clusters V ′

p ∈ Cl and dividing by |Cl|. In the last step, each pixel is
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assigned to the meta-cluster Cl for which ai(Cl) is maximal. Although this may
result in fewer than k parts, we note that MCLA yields a stable aggregation of
the different segmentations.

5 Experimental Results

In order to obtain suitable similarity values for the following experiments, we
consider feature vectors yi for the image pixels i that contain the color in the
perceptually uniform L*u*v* space along with the position of i within the image.
The position is included here to encode some spatial information, since the need
for dense similarity matrices prohibits using small neighborhood structures for
this purpose. The corresponding similarity values wij are then calculated from
the Mahalanobis distances between these (appropriately scaled) feature vectors
as wij = exp(− 1

2 (yi − yj)�Σ−1(yi − yj)), which results in a positive definite
similarity matrix W . While more intricate similarity measures could be used
within our framework, such an investigation is beyond the scope of this paper.
Besides computing MCLA ensembles for the sampling-based convex relaxation
(SDP) method, we also apply it to the Nyström approximation to normalized
cuts as described in [5] for comparison.

In a first experiment, we test the quality of the ensemble approach on the small
artificial point set depicted in Figure 1, left, which contains n = 200 points dis-
tributed equally over two spiral-shaped clusters. The complexity of this problem
setting (based on point positions only) is indicated by the solutions obtained
with both convex relaxation and normalized cuts, which do not reproduce the
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Fig. 1. Performance of the sampling-ensemble combination for an artificial
point set, containing two spiral-shaped clusters. The box-plots indicate the distribution
of the differences between the solution on the complete point set (shown on the left)
and the approximative solutions obtained for different numbers of resamplings (for
fixed sample number s = 30). The last figure indicates the high quality of the final
aggregated results.
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original Nyström approximations for SDP SDP ensemble

Fig. 2. Segmentation based on different samplings. The smoothed ensemble so-
lution is much more appealing than the individual segmentations.

Original SDP ensemble Ncut ensemble

Fig. 3. Ensemble solutions obtained from 11 different hierarchical segmentations,
with Nyström approximations being based on less than 1% of the pixels

spirals exactly. Figure 1, right, gives the performance results based on changing
the number of resamplings while keeping the number of samples s fixed. The
box-plots show that the individual sampling-based SDP solutions have a high
variability, with a median error value slightly below 0.1. The important point,
however, is that the aggregation results in a solution that is better than the
average sampled solution, and for which the error converges to zero with in-
creasing number of resamplings (last plot on the right). In comparison to that,
Nyström-based normalized cut solutions are less variable, which results in en-
semble solutions of the same quality as the average sampling-based clusterings.
This is due to the very accurate approximation of the leading eigenvectors in
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this case, which reproduces the spiral structure and hence prevents appropriate
clustering of the eigenvector entries. However, the robustness of the ensemble
results is also approved by normalized cuts.

To evaluate the performance for large real world scenes, we use images from
the Berkeley segmentation dataset [21]. In order to produce partitionings into
more than two segments, we employ hierarchical segmentation for a fixed number
of segments (k = 6). In each step, we randomly pick s = 100 sample pixels, which
corresponds to less than 1% of the entire image. The final ensemble result ob-
tained from 11 different sampling-based solutions is additionally smoothed with
a small linear filter to remove remaining noise. Figure 2 gives an example that
demonstrates the power of the aggregation process: in comparison to the individ-
ual segmentations, the combined result is much more appealing and robust. The
results in Figure 3 reveal that the Nyström approximations for both the convex
relaxation approach as well as for normalized cuts give satisfactory aggregated
segmentations. The main objects were found, with only a few inaccurate edges
that are mainly due to the fact that we only use basic color information without
any particular effort to tune the scaling parameters or the hierarchical process.
Concerning the computational effort, it took just about 90 seconds for the SDP
relaxation and 20 seconds for normalized cuts to find the individual sampling-
based segmentations. In comparison to that, the final aggregation process with
an average duration of 15 seconds is negligible.

6 Conclusion

In this paper, we have demonstrated the power of combining a sampling-based
approximation method with a cluster aggregation procedure for unsupervised
image segmentation. While the computational effort is greatly reduced by revert-
ing to the Nyström method for computing individual partitionings, the arising
problems concerning sample selection and inaccuracy are effectively dealt with
during the following merging process. Experimental results reveal that robust
image segmentations of appealing quality are obtained with this approach.

Our technique offers several directions for future research: For example, it
would be useful to employ other cues like texture or edge separation to compute
additional approximate segmentations as a basis of the aggregation process. In
contrast to approaches that combine different cues before computing the segmen-
tation, our ensemble technique does not require weighting the features against
each other, but simply aggregates the results after segmenting the image. In
this context, it might also be beneficial to merge solutions that besides different
samplings are based on different parameter settings or similarity calculations.
Moreover, the association values produced by MCLA provide a measure of con-
fidence for each pixel to belong to a segment. These confidence values yield
important information on the stability of the result, and can be used to mod-
ify the sample distributions for subsequent steps by moving more samples to
currently unstable segment boundaries.
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Diffusion-Like Reconstruction Schemes from
Linear Data Models
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Abstract. In this paper we extend anisotropic diffusion with a diffusion
tensor to be applicable to data that is well modeled by linear models. We
focus on its variational theory, and investigate simple discretizations and
their performance on synthetic data fulfilling the underlying linear mod-
els. To this end, we first show that standard anisotropic diffusion with a
diffusion tensor is directly linked to a data model describing single orien-
tations. In the case of spatio-temporal data this model is the well known
brightness constancy constraint equation often used to estimate optical
flow. Using this observation, we construct extended anisotropic diffusion
schemes that are based on more general linear models. These schemes
can be thought of as higher order anisotropic diffusion. As an example
we construct schemes for noise reduction in the case of two orientations
in 2d images. By comparison to the denoising result via standard sin-
gle orientation anisotropic diffusion, we demonstrate the better suited
behavior of the novel schemes for double orientation data.

1 Introduction

Anisotropic diffusion has been widely used in computer vision and image process-
ing (see [13,26] for recent overviews). It is a scale-space and image reconstruction
technique and has been used for e.g. image inpainting, super-resolution, noise re-
moval, or reduction of JPEG artifacts (e.g. [24] and many others). In this paper
we introduce a diffusion-like process that can be thought of as higher order
anisotropic diffusion. As example application we select image reconstruction,
especially noise removal, because its performance is simple to evaluate and visu-
alize (even though the currently best performing image denoising algorithm [15]
is not of diffusion type). Other denoising methods are closely related to diffusion
such as bilateral filtering [23], or channel smoothing [5].

The basic idea of diffusion-based denoising is to smooth a degraded original
image by applying a nonlinear diffusion process whose diffusion tensor allows
oriented, anisotropic smoothing. Depending on the choice of the so-called edge-
stopping function ρ [4] not only smoothing, but also sharpening of structures can
be achieved [25]. One of the most common ways to construct a diffusion tensor is
to calculate the structure tensor [3,9] and exchange its eigenvalues μi by means
of an edge stopping function ρ(μi) (cmp. [25]). We will show that this way to
construct a diffusion tensor is an approximation of the diffusion tensor we derive
via a variational approach using a single orientation model (cmp. Sec. 2).

K. Franke et al. (Eds.): DAGM 2006, LNCS 4174, pp. 51–60, 2006.
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Several publications show how to construct diffusion schemes in a principled
way. They introduce knowledge about the data to be restored via training data
[17,18,27]. While [18,27] propose learning schemes to select an edge-stopping
function, [17] also constructs the filters used in a diffusion-like scheme. In stan-
dard diffusion schemes the applied filters are first order derivatives. However the
scheme put forward in [17] only extends nonlinear diffusion with a scalar diffu-
sivity as introduced by [14]. This is in contrast to our scheme which does allow
directed filtering like tensor driven anisotropic diffusion does.

All the above mentioned denoising schemes are based on the general idea to
average over data that belongs to the same population (except maybe [17]). In
many cases additional knowledge about the data is available in form of linear
models. Such linear models have been proposed for e.g. optical flow [6] with phys-
ical brightness changes [8] and multiple orientations or motions [21,10]. Many
PDEs known from physics are also of this linear type. To the best of the authors
knowledge there is no reconstruction method currently available that allows to
use such model knowledge. In this paper we introduce diffusion-like schemes
respecting given linear models (cmp. Sec. 3).

There are many different implementation approaches to numerically solve (or
simulate) anisotropic diffusion. We use simple two-level explicit finite-difference
schemes. But besides this, there are e.g. three-level [7], multigrid [1] or spectral
methods [7], finite elements with grid adaptation [16] and many more. We have
not implemented all these schemes, giving a ’best performing’ implementation is
beyond the scope of this paper. But as numerical implementation is critical for
performance, we implemented for each model – single and double orientation –
two similar schemes each and selected the best scheme for further tests.

The contributions of this paper are: a ) a novel derivation of standard an-
isotropic diffusion with a diffusion tensor from a cost function, b ) a theory for
extension of this tensorbased diffusion to general linear models, c ) an example
using a double orientation model (X-junctions), d ) a simple way to discretize
such an extended diffusion, e ) a rudimental performance evaluation on simple
synthetic X-junction data as an experimental proof of concept.

2 Variational Derivation of Tensorbased Diffusion

The aim of the scheme to derive is to reconstruct the ’underlying’, ’real’ data
g from measured data f . Let f and g be 3-dimensional. A usual reconstruction
approach is to assume that g is a smooth function. A membrane-like behavior
of g can be achieved by minimizing the cost function

E(g) =
∫

Ω

(g − f)2 + α|∇g|2dx (1)

where ∇ = (∂x1 , ..., ∂x3)T is the gradient operator in 3-dimensions. The positive
weight α forces the solution to be smoother when α becomes larger. The first
term in Eq. 1 is usually called data term, the second one smoothness term. An
extension of this constraint has been proposed by Mumford and Shah [11]. Its
connection to (not tensor driven) anisotropic diffusion can be found in [20].
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2.1 Smoothness Via a Linear Model

In this section we show that the well known brightness constancy constraint
equation (BCCE, defined below) leads to tensorbased anisotropic diffusion, when
used as a smoothness constraint in a cost function. Although our experiments
in Sec. 4 are all done using 2d images, we use a 3d formulation here, because in
this form the BCCE is most well known.

Let us assume that g is a densely sampled image sequence, thus x1 = x,
x2 = y, and x3 = t. In contrast to the above membrane assumption let us
further assume that g should fulfill the BCCE

∂xgdx + ∂ygdy + ∂tgdt = 0 ⇔ ∇T gu = 0 (2)

where u = (dx,dy, dt)T is a parameter vector. This is a typical linear model,
where linear means linear in u. In order to avoid the trivial solution u = 0 one
usually either defines |u| = 1 or dt = 1. Here we prefer the first assumption,
because it is more clearly related to orientation estimation. From this vector
optical flow, i.e. x- and y-displacements ux and uy, respectively, can be calculated
via ux = dx/dt and uy = dy/dt. There are many ways to estimate such a
parameter vector (see e.g. [2]). For now let us assume we know the probability
distribution p(u) at each pixel and thus could give its expectation value < u >.
We can then formulate the cost function

E(g) =
∫

Ω

(g − f)2dx + α

∫
Ω

< (∇T gu)2 > dx (3)

To the best of the authors knowledge using expectation values in a cost function
in this way is new. The solution g̃ minimizing E has to fulfill the variational
condition δE(g̃) = 0, where δ is a variation. The variation of E gives us

δE(g)=
∫

Ω
2(g − f)δgdx + α

∫
Ω

< 2(∇T gu)uT > ∇δgdx (4)

In the last term on the right hand side ∇δg can not be determined, thus we
partially integrate this term. Please note that each partial integration step flips
the sign of this term. For odd order derivative filters like the ones in ∇ this is
equivalent to mirroring the filter. This will be important later. We get

δE(g)=
∫

Ω
2(g − f)δgdx − α

∫
Ω
∇T < 2(∇T gu)u > δgdx

=
∫

Ω
2(g − f)δgdx − 2α

∫
Ω
∇T < uuT > ∇gδgdx

(5)

Thus the Euler-Lagrange equation g̃ has to fulfill is

0 = (g̃ − f) − α∇T < uuT > ∇g̃ (6)

< uuT > is a square, symmetric, positive semidefinite matrix. From Eq. 6 we
derive the update equation

∂tg = (f − g) − α∇̄T < uuT > ∇g (7)

where g is treated as a volume and ∂t is the derivative with respect to the
’iteration time’ of the scheme (not to be confused with the time in an image
sequence), and ∇̄ = −∇ is a mirrored version of ∇. This equation describes
anisotropic diffusion of g with diffusion tensor < uuT >. The data term acts as
a (grey value) source.
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2.2 Approximation of the Diffusion Tensor

A standard procedure to get a diffusion tensor is to first calculate the structure
tensor J [3,9] (also a square, symmetric, positive semidefinite matrix)

J(x) =
∫

w(x − x′)(∇g(x′))(∇T g(x′))dx′ (8)

where w is a smoothing kernel, in our case a 5-tab Gaussian (variance σ = 1)
applied in all dimensions. Then one exchanges its eigenvalues μi by means of an
edge stopping function ρ(μi) (cmp. [25]). We will now show that such a diffusion
tensor approximates < uuT >. Being a square, symmetric matrix < uuT > is
diagonalizable with eigenvalues λi. The eigenvector corresponding to its largest
eigenvalue will be close to < u >. In fact if p(u) is symmetric around < u >,
< u > is exactly an eigenvector of < uuT >.

For local orientation or optical flow estimation using Eq. 2, we may calculate
grey value derivatives gx, gy, gt for all pixels via suitable convolution kernels. For
each pixel we get a constraint equation with several unknowns, i.e. the parameter
vector u. In order to solve for these unknowns, we assume that all equations in
a local neighborhood are solved by the same u, giving us an over determined
system of equations. It is well known that the eigenvector with respect to the
smallest eigenvalue of the structure tensor J is a weighted total least squares
solution uTLS of this system (see e.g. [9]). If more than one eigenvalue is close
to zero, uTLS can be any linear combination of the corresponding eigenvectors.
A detailed error analysis for uTLS can be found in [12].

We see that if eigenvector uTLS is a good approximation of < u > the struc-
ture tensor J has approximately the same eigensystem as < uuT >. But when
the eigenvalues μi of J are small, the eigenvalues λi of < uuT > are large and
vice versa. Thus we may approximate < uuT > by taking the structure tensor
and exchanging its eigenvalues by

λi = ρi(μi) (9)

where the functions ρi decay monotonically and ρi(0) = 1. These ρ-functions are
usually selected heuristically. In [18] they are linked to image statistics. In this
paper we stick with the structure tensor and heuristics for ρi, because it is not the
aim to derive the best possible < uuT >. We rather want to demonstrate how
to incorporate more complex linear models into a diffusion-like reconstruction
scheme. This is done in Sec. 3.

2.3 Discretization of Anisotropic Diffusion

We want to compare to anisotropic diffusion in the experiments on 2d images.
Thus we give two discretization schemes for the smoothness term in Eq. 7 (cmp.
[19]). The model equation in 2d is

∇T gp = 0 (10)

with ∇ = (∂x, ∂y). We discretize ∇ using separable convolution filters

∂x = Dx ∗ Sy ∂y = Sx ∗ Dy (11)
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where lower indices give the application direction, D is a 1d first order derivative
filter and S is a 1d smoother. For the calculation of ∇ and ∇̄ in Eq. 7 we
investigate 2 filter sets, i.e. 2 schemes. The first one we call 2× 2

D = [1,−1, 0] S = [0.5, 0.5, 0] (12)

We write the 2-tab filters as 3-tab filters in order to have the storage point
(middle of the filter) well defined, also for the mirrored version ∇̄. The second
scheme we call 3× 3

D = [0.5, 0,−0.5] S = [0.1839, 0.6322, 0.1839] (13)

The resulting explicit update scheme using D̄ = ∇̄ is defined below in Eq. 26.
The diffusion tensor < uuT > in Eq. 7 we approximate in both schemes via

the structure tensor J (Eq. 8) as proposed in Sec. 2.2. There, gradient ∇g is
calculated using separable 5 × 5 filters (cmp. Eq. 11) optimized for accurate
single orientation estimation

D = [0.08382, 0.3323, 0.0,−0.3323,−0.08382]
S = [0.02342, 0.2416, 0.4700, 0.2416, 0.02342]

(14)

J is then converted into a diffusion tensor via Eq. 9 and

ρ(μ) =
{

1 for μ ≤ σ
1 − exp −c

μ−σ
else (15)

as proposed in [19].

3 Diffusion Extended

3.1 General Linear Models

The single orientation model ∇T gu = 0 (cmp. Eq. 2) above can be rewritten as

(DT g)p = 0 (16)

where p is the parameter vector and D is an operator vector applied to the data
g. In Eq. 2 we have p = u and D = ∇. For any linear model that can be written
in the form Eq. 16, we can construct a diffusion-like reconstruction scheme as
done for the single orientation model above via the cost function (cmp. Eq. 3)

E(g) =
∫

Ω

(g − f)2dx + α

∫
Ω

< ((DT g)p)2 > dx (17)

As above the solution g̃ minimizing E has to fulfill the variational condition
δE(g̃) = 0 (cmp. Eq. 4)

δE(g)=
∫

Ω
2(g − f)δgdx + α

∫
Ω

< 2(DT gp)pT > Dδgdx (18)

The expression Dδg can not be evaluated. But we can express D via a series of
partial derivative operators (or equivalently express Dg as a Taylor series, D and
δ commutate). For each term in the series we get a term in the integral which
we partially integrate. For each partial integration step the sign of the respective
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term flips. Thus terms with odd derivatives have negative sign, terms with even
derivatives have positive sign. This behavior can be reproduced by mirroring of
each derivative operator, i.e. by mirroring D around its center (cmp. [27] eq. 14).
Thus the corresponding Euler-Lagrange equation g̃ has to fulfill is

0 = (g̃ − f) − αD̄T < ppT > Dg̃ (19)

where D̄ is a mirrored version of D. The expression <ppT > again is a square,
symmetric, positive semidefinite matrix. Analog to the approach in Sec. 2.2 we
can approximate it via the extended structure tensor JD

JD(x) =
∫

w(x − x′)(Dg(x′))(DT g(x′))dx′ (20)

belonging to the model (DT g)p = 0 and exchange the eigenvalues μi of JD via
Eq. 9.

3.2 Diffusion with Two Orientations

In this example, we construct a diffusion-like scheme for enhancement of trans-
parently overlayed structures resulting in two local orientations in 2d data. The
linear model describing this is (cmp. [22], eq. 11)

∂xxgp1 + ∂xygp2 + ∂yygp3 = 0 or DT gp = 0 (21)

where D = (∂xx, ∂xy, ∂yy)T is an operator vector containing second order partial
derivative operators, g is the image data and p is a parameter vector (containing
mixed orientation parameters, that we do not need to disentangle, cmp. [22]).
This operator vector D is now plugged into Eq. 19. Further < ppT > in that
equation is replaced by the extended structure tensor from Eq. 20 with eigen-
values exchanged via Eq. 9 and edge stopping function Eq. 15.

As above the discretization of D is done using separable convolution filters

∂xx = Lx ∗ Sy ∂xy = Dx ∗ Dy ∂yy = Sx ∗ Ly (22)

where lower indices give the application direction, L is a discrete 1d second order
derivative, S is a 1d smoother and D is a 1d first order derivative filter.

For the calculation of D and D̄ in Eq. 19 we investigate 2 schemes. The first
one we call 2×2, because the first order derivative and smoother are 2-tab filters

L = [1,−2, 1] D = [1,−1, 0] S = [0.5, 0.5, 0] (23)

We write the 2-tab filters as 3-tab filters in order to have the storage point
(middle of the filter) well defined, also for the mirrored version D̄. The second
scheme we call 3× 3

L = [1,−2, 1] D = [0.5, 0,−0.5] S = [0.21478, 0.57044, 0.21478] (24)

The extended structure tensor JD (Eq. 20) needed to approximate < ppT > in
Eq. 19 is calculated using 5× 5 filters optimized for accurate double orientation
estimation

L = [0.2068, 0.1729, −0.7593, 0.1729, 0.2068]
D = [0.06295, 0.3741, 0,−0.3741,−0.06295]
S = [0.01531, 0.2316, 0.5062, 0.2316, 0.01531]

(25)

The resulting update scheme is defined below in Eq. 26.
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4 Experiments

In this section we compare denoising results using double orientation schemes
(Sec. 3.2) and standard anisotropic diffusion schemes (Sec. 2.3).

4.1 Approach

In the variational derivations above we showed how to construct a data term and
a smoothness term. Using the data term together with a quadratic smoothness
term yields a convex regularizer with a single global minimum. In contrast to
this, it is also common in the diffusion community to omit the data term and
use an Euler-forward update scheme

gt+τ = gt − τD̄T < ppT > Dg̃t (26)

where the upper index t indicates the diffusion time and τ is a (small) time
step (cmp. Eq. 7). Then the initial data g0 has to be the noisy (or otherwise
corrupted) data f and the smoothing process has to be stopped manually or due
to some criterion. In the experiments shown here we do not use the data term
and run the smoothing process as long as the peak signal to noise ratio (PSNR,
cmp. [15])

PSNR = 20 log
255

||g − g0||2 (27)

raises. This is practicable because in all experiments we have ground truth data
g0 (not to be confused with initial noisy image g0 from Eq. 26) available. The
parameters in the ρ-function (Eq. 15) were σ = 1e−8 (fixed) and c was optimized
using gradient ascent on the PSNR, starting with c = 15.

4.2 Results

We focus on denoising of data where a linear model describing the signal is
available, namely 2d double orientation signals. All images are 8bit scalar data
in the range interval [0, 255].

The first image we focus on is a synthetic image, where vertical and diago-
nal lines are non-transparently superimposed (see Fig. 1a). We added Gaussian
noise with standard deviation σ ∈ {10, 20, 30, 40, 50, 60} (see e.g. Fig. 1b,e). We
then applied standard anisotropic diffusion (2 × 2 and 3 × 3 schemes) and our
novel diffusion using the double orientation model in 2d (also 2 × 2 and 3 × 3
schemes). The resulting PSNR values are shown in Tab. 1. We observe, that
standard anisotropic diffusion gives best results when using the 2 × 2-scheme.
The novel scheme gives best results when using the 3 × 3-scheme. In addition
the novel schemes outperform standard anisotropic diffusion, the more, the more
structural information is available, i.e. for low noise levels. Thus for smoothing
of X-junctions the novel scheme outperforms diffusion.

This is even more prominent, when the transparent overlay model is com-
pletely fulfilled (see Fig. 2a ). Exemplarily we show the reconstructions and op-
timum PSNR values (Fig. 2c –f ) for noise levels σ = 10 (PSNR=28.1, cmp.
Fig. 2b ) and σ = 30 (PSNR=18.7, cmp. Fig. 2e ).
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a original b noise σ = 10 c aniso. diff., σ = 10 d novel, σ = 10

e noise σ = 30 f aniso. diff., σ = 30 g novel, σ = 30

Fig. 1. Nontransparently superimposed lines. aOriginal image, b ,e noise added,
c ,f reconstruction using standard anisotropic diffusion (2 × 2 scheme, zoomed in for
better display), d ,g reconstruction using the novel scheme (3 × 3 scheme, zoomed in
for better display).

a original b noise σ = 10 c aniso. diff., σ = 10 d novel, σ = 10

e noise σ = 30 f aniso. diff., σ = 30 g novel, σ = 30

Fig. 2. Transparently superimposed 1d structures. aOriginal image, b ,e noise added
(σ = 10, PSNR=28.1 and σ = 30, PSNR=18.7), c ,f reconstruction using stan-
dard anisotropic diffusion (2 × 2 scheme, zoomed in for better display, cPSNR=31.3,
f PSNR=25.7), d ,g reconstruction using the novel scheme (3 × 3 scheme, zoomed in
for better display, dPSNR=35.1, g PSNR=27.3).
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Table 1. PSNR values for all tested schemes and all noise levels added to the image
in Fig. 1a

aniso. diff. new scheme
noise (PSNR) 2 × 2 3 × 3 2 × 2 3 × 3
σ = 10 (28.1) 33.1 31.2 34.1 36.0
σ = 20 (22.1) 29.1 26.9 29.4 31.8
σ = 30 (18.7) 26.7 24.4 26.6 28.9
σ = 40 (16.2) 24.1 22.4 23.9 25.7
σ = 50 (14.6) 22.5 20.9 22.2 23.6
σ = 60 (13.2) 20.8 19.5 20.5 21.5

5 Summary, Conclusions and Future Work

In this paper we introduced diffusion-like schemes respecting general linear mod-
els. These schemes are derived via a variational approach using expectation val-
ues of parameter vectors in cost functions in a novel way. The resulting diffusion
tensor or extended diffusion tensor < ppT > has been shown to be well ap-
proximated by a diffusion tensor derived via a structure tensor (as common
in literature). Using this framework, we constructed a reconstruction scheme
respecting two orientations simultaneously. When data belongs to this model,
e.g. X-junctions or edges in transparent overlays, the proposed scheme outper-
forms anisotropic diffusion. Y-junctions, more general texture or ’natural images’
have to be modeled by richer models. Our two orientations approach therefore
does not outperform specialized state of the art denoising schemes like [15].
But we want to emphasize that diffusion-like processes not only can be used
for denoising, but also for other applications as stated in the introduction (cmp.
e.g. [24]). Results shown in Sec. 4 demonstrate the good performance of the novel
algorithms for the special case of double orientations. What is more, they are a
proof of concept backing the new theory.

In usual data most areas show no or single orientations, two or more orienta-
tions are less prominent. Thus, in future work, we will look into model selection
and switching, mainly for speed up. In addition, the proposed model is a 2d two
orientations model which we will extend to 2d three orientations (for texture)
and 3d two orientations (for transparent motion). The usage of other models,
like motion and brightness changes will also be of interest.
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Abstract. Ring artifacts can occur in reconstructed images from X-ray
microtomography as full or partial circles centred on the rotation axis. In
this paper, a 2D method is proposed that reduces these ring artifacts in
the reconstructed images. The method consists of two main parts. First,
the artifacts are localised in the image using local orientation estimation
of the image structures and filtering to find ring patterns in the orien-
tation information. Second, the map of the located artifacts is used to
calculate a correction image using normalised convolution. The method
is evaluated on 2D images from volume data of paper fibre imaged at the
European Synchrotron Radiation Facility (ESRF) with high resolution
X-ray microtomography. The results show that the proposed method re-
duces the artifacts and restores the pixel values for all types of partial
and complete ring artifacts where the signal is not completely saturated.

1 Introduction

In X-ray microtomography images from third generation scanning systems, ring
artifacts can sometimes occur as partial or full rings centred on the rotation
axis in the reconstructed volumes. The ring artifacts are superimposed on the
original pixel values and both positive and negative erroneous values influence
further processing and measurements in the volumes.

Ring artifacts can originate from a number of sources. The rings can be due
to defective detector elements or shifts in the output from individual detector
elements or sets of detectors [1]. The third generation scanning systems are
highly sensitive to detector flaws because the same detector element measures
the signal at a given radius. Ring artifacts can also occur due to variations or
imperfections in the incoming beam [2], or be due to variations in the beam
together with effects of the point spread function of the detector elements [3].

Calibration of the tomography system is necessary for the ring artifacts to be
reduced in the reconstructed images. A common method to reduce the ring arti-
facts is flat-field correction [1,3], where the radiographs are corrected using one
image of the beam without the sample and one dark image without the beam.
This method is often not enough to reduce the rings fully. Some tomography sys-
tems use translations of the detector to reduce the part of the ring artifacts that
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is due to the defective detector elements [4]. A method using time-delay inte-
gration to remove the problems with the miscalibrations is described in [5]. The
ring artifacts can also be reduced by filtering methods before the reconstruction
of the images [6,7].

Methods for reduction of the ring artifacts in the reconstructed images are
rarely described in the literature, but one such method is presented in [8], where
the reconstructed image is transformed to polar coordinates and the ring artifacts
occur as line artifacts. Correction is done in polar coordinates with no distinction
between pixels with and without artifacts. The rings are also assumed to be full
circles.

In this paper, a method that reduces both full and partial ring artifacts in
X-ray microtomography images is presented. The method is applied on the recon-
structed images. The pixels that are affected by ring artifacts are first detected
and the erroneous pixel values are then adjusted to reduce the ring artifacts.
Calculation of a correction image is done in polar coordinates for fast calcula-
tion, but the original image resolution is preserved, as the correction part of the
method is done in the original pixel coordinates. The important features of this
method are that only pixels with estimated artifacts are altered in the correction
step, that it uses local correction to remove both partial and full ring artifacts
and that it does not alter the original resolution of the image through interpo-
lation. As the artifacts occur on planes perpendicular to the rotation axis of the
scanning system, the proposed method is in 2D. The method assumes a known
centre of rotation from the reconstruction of the image data and that the image
structures has a faster variation than the ring artifacts when following a circle
with a given radius.

The correction part of the proposed method can be used as a stand alone
method to remove ring artifacts. It will give a reasonable ring artifact reduction
if it can be assumed that all pixels on any circle contain ring artifacts and that
the contrast of the depicted object is not sensitive to alterations of the original
pixel values. This reduced method is not applicable if a restoration to original
pixel values is the aim of the ring artifact reduction.

2 Method

The method consists of two main parts, finding the ring artifacts and correcting
them. It can be further decomposed into the following steps:

– Estimate the local orientation in the image, using a representation of orien-
tation with a structure tensor in each pixel. (Section 2.1)

– Find orientations in the tensor field that correspond to circular patterns
around the known rotation axis and create a certainty map with the proba-
bility of each pixel to contain a ring artifact. (Section 2.2)

– Calculate a correction image from the certainty map and the original image
using normalised convolution. (Section 2.3)

– Correct the original image by removing the estimated correction image. (Sec-
tion 2.4)
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For some illustrative experiments and how to choose the parameters for specific
applications, see Section 3.

2.1 Orientation Estimation

The first step in the method is local orientation estimation in all pixels in the
image. Local orientation derived from a pixel neighbourhood can be represented
with an orientation tensor. The tensor representation that is used here is thor-
oughly described in [9]. The orientation is defined as the main direction in which
the signal varies in a neighbourhood around a pixel.

Each neighbourhood is assumed to contain signal energy in only one direction,
i.e., the signal is assumed to be locally simple. The image is convolved with a
set of phase invariant quadrature filters. The filter outputs are combined into a
tensor, which is a 2 × 2 symmetrical matrix, and the eigensystem of this tensor
describe the local orientation in the neighbourhood. The eigenvector with the
largest corresponding eigenvalue represents the estimated local orientation. If
the signal in the neighbourhood is not simple, the tensor will not have one single
dominant orientation, but be more isotropic.

A certainty value for the local orientation in each neighbourhood can be esti-
mated using the isotropy of the tensor, i.e., the strength of the local orientation.
The certainty value ct,

0 ≤ ct =
l1 − l2
l1

≤ 1 (1)

is calculated for each tensor, where l1 is the largest eigenvalue and l2 is the sec-
ond largest eigenvalue of the tensor eigensystem. A large value indicates strong
directional information and a small value indicates weak directional information.

2.2 Artifact Identification

Ring artifacts can be identified in the tensor field using the first eigenvector,
that represents the local orientation in the pixel, and the corresponding cer-
tainty value, ct. Since the centre of rotation is known and the ring artifacts are
centred around this point, this can be used to find patterns corresponding to
ring artifacts. A vector field with normalised vectors from the centre of rotation
is created. The rings can be found where the absolute value of the scalar prod-
uct between each of these vectors and the first eigenvector in the corresponding
pixel gives a high response. Since the scalar product is a cosine function, it is
sharpened to reduce high responses from structures that are not oriented along
part of a circle as,

cr = |r̂ · ê1|n, (2)

where r̂ is the normalised vector from the centre of rotation, ê1 is the normalised
first eigenvector of the tensor in the pixel and n is a positive scalar. To further
reduce high responses from areas where the estimated orientation is not strong,
cr is multiplied with the corresponding certainty value of the orientation in the
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pixel, ct, to generate a certainty map. This certainty map contains a certainty
value for each pixel that corresponds to the probability of the pixel to be influ-
enced by a ring artifact.

The certainty map is transformed to polar coordinates using the same image
resolution for the radial direction as for the Cartesian coordinates and dense in-
terpolation in the angular direction to preserve the resolution of the pixels that
are furthest from the centre of rotation. The certainty map is smoothed using
a one pixel wide kernel in the radial direction and a fixed length in Cartesian
coordinates for the kernel length in the angular direction. The smoothing is per-
formed to ensure that pixels with both ring artifacts and actual image structures
is included in the calculation of the correction image, even though these local
neighbourhoods may contain weak directional information due to contradicting
information about the local orientation.

2.3 Correction Image Generation

A correction image for the ring artifacts is created in polar coordinates using
normalised convolution [9,10]. The normalised convolution uses the smoothed
certainty map in polar coordinates, C̃, to create the correction image for the
ring artifacts as,

Ĩerr =
a ∗ C̃Ĩin

a ∗ C̃
, (3)

where Ĩerr is the correction image, Ĩin is the input image and a is an applicability
function, all in polar coordinates. The original image is interpolated in the same
manner as the certainty map.

The applicability function used in this step is a kernel that is one pixel wide in
the radial direction and has fixed length in Cartesian coordinates for the length
in the angular direction. The same filter as in Section 2.2 can be used. The kernel
must be longer than the image structures it is used to enhance, to ensure that
the mean value is that of the artifact and not the local mean of any real object.
Partial artifacts are not reduced well if the filter is too long. The pixels close to
the centre of rotation must be treated separately, using shorter filters, if partial
artifacts are to be reduced for these pixels. For full ring artifacts this is not a
problem, since the kernel will cover the full circle.

The normalised convolution can be used as a stand alone method to remove
the ring artifacts if an actual restoration of the image intensities is not necessary.
If the certainty map is set to one for all pixels, the normalised convolution is
reduced to regular convolution along the radii. In that case, the correction image
will not only be calculated using pixels that contain artifacts but of all pixels
covered by the applicability function. Hence the correction step will also correct
all pixels regardless of their certainty to contain an artifact.

2.4 Artifact Correction

The estimated correction image and the certainty map are transformed to Carte-
sian coordinates before the correction step, here denoted Ierr and C. As the ring
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artifacts are superimposed on the original image, Iin, each pixel value can be
corrected by subtracting the estimated error as,

icorr = iin − c(ierr −m) (4)

where c is the pixel value in the certainty map C and icorr, iin and ierr denotes
the pixel values in the respective images. The mean value of the ring artifacts,
m, is normally set to half the dynamic range of the image. In this step, the
multiplication by c is done to ensure areas without artifacts are not changed.
The certainty values can be mapped towards higher values before the correction,
for a full recovery of the ring artifacts. If the mapping is not used, weak rings
are often not well reduced.

3 Experiments and Results

The proposed method is evaluated on a set of microtomographic images. How to
choose parameters when using the proposed method is presented in Section 3.2
and examples of results are found in Section 3.3.

3.1 The Images

The test images used for evaluation of the method are 2D slices from a set of
volume images of paper scanned at the European Synchrotron Radiation Facility
(ESRF) in Grenoble, France. The paper samples were imaged in absorption
mode at beamline ID19 using synchrotron X-ray microtomography. The size
of a volume element (voxel) in the 3D images is 0.7μm × 0.7μm × 0.7μm. A
cylindrical region of interest, see Figure 1, with a diameter of 1.43mm and a
height dependent on the sample thickness was imaged for each sample. The
resolution of the images is 2048 × 2048 × the sample thickness. The dynamic
range of the images is 8 bits. All volume images contain ring artifacts to different
degrees, from partial to full ring artifacts seen as wave-like patterns in slices
perpendicular to the rotation axis, see Figure 1 and 2 (left column). In the set of
2D images used for the evaluation of the method both images with and without
artifacts are present.

3.2 Parameters for Images of Paper Fibre

The parameters in the proposed method are adapted to the image of interest
using some prior information about the image. The knowledge that is needed for
adapting the parameters are the centre of rotation from the reconstruction of
the image and the approximate width of the ring artifacts in the radial direction,
measured in pixels. The model of the rings also assumes a slower variation of
the rings in the angular direction than of the actual image data.

Four quadrature filters were used in the experiments. The filters were opti-
mised [9] to generate small errors in both the spatial and the Fourier domain.
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The approximate size of the ring artifacts is used to choose a proper bandwidth
and centre frequency for the quadrature filters in the orientation estimation. A
relative bandwidth of 3 octaves and a centre frequency of π/6 radians were used
for the radial function of the quadrature filters. The scalar n was set to 10. This
parameter is also chosen dependent on the size of the ring artifacts. If the ring
artifacts are strong and the orientation estimates give high answers for all the
artifacts, n should be large to reduce high answers from other structures which
are partly aligned as the ring artifacts. If n is smaller the certainty map is more
blurred but the method can correct weak artifacts with low response from the
quadrature filters better.

The length of the applicability function, a, in the experiments was 300 pixels
in Cartesian coordinates. The length is a trade off between a good approximation
of the artifact and an effective reduction of partial rings. The same applicability
function was used to smooth the certainty map before the normalised convolu-
tion. For the radii close to the origin all kernel lengths in the angular direction
longer than half the size of the image in the angular direction was truncated to
the same length.

In the correction step, the certainty map was mapped towards higher certain-
ties to allow the original pixel values to change more and make sure that all of
the detected ring artifacts was removed. This also allows for some of the artifact
free pixels to be slightly altered. Here multiplication by a factor 3 and truncation
to 1 for values above 1 was used as the mapping.

The parameter m was set to half the dynamic range of the image, in this case
128. It can also be set to the mean value of the image intensities in the volume
if half the dynamic range is far from the actual mean of the artifacts.

When adjusting the parameters for new data sets using images with the same
resolution of the image structures, the length of the applicability function and
the mapping of the certainty values are the two parameters that are used to tune
the method for better performance. None of the parameters presented here is
sensitive to changes and experiments with similar parameter setups also yield a
good reduction of the ring artifacts.

3.3 Results

Results from the experiments using the proposed method for ring artifact re-
duction with the parameters from Section 3.2 is seen in Figure 1 and 2. The
original images are to the left and the filtered images with reduced ring artifacts
to the right. The proposed method reduces the rings and preserves the image
contrast. Structures that have the same local orientation as the ring artifacts
can be affected by the method, but as can be seen here it is not a problem for
this type of images.

Figure 3 shows an example of a partly saturated ring artifact. This type of
artifact is also reduced by the proposed method, but restoration to original pixel
values is not possible for all parts of the artifact, since the saturation of the
image has caused a loss of information in some pixels.
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Fig. 1. (Top) A slice perpendicular to the rotation axis with ring artifacts. (Bottom)
Corrected ring artifacts using the proposed method.
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Fig. 2. (Left column) Ring artifacts occurring in slices perpendicular to the rotation
axis in reconstructed volumes of microtomography images of paper. Note that these im-
ages are cropped. (Right column) Corrected ring artifacts using the proposed method.
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(a) (b)

Fig. 3. (a) A partly saturated ring artifact occurring in a microtomography image
of paper. (b) Corrected image. As can be seen, the loss of information due to the
saturation limits the restoration to original pixel values.

4 Discussion

An automatic 2D image analysis method for reduction of full and partial ring
artifacts in reconstructed high resolution X-ray microtomography images is pro-
posed in this paper. The method can be used not only for X-ray microtomogra-
phy images but for any projection reconstruction data with ring artifacts. The
centre of rotation must be known and the ring artifacts are assumed to have a
slower variation than the image structures when following a circle with a given
radius.

The method is evaluated on a set of 2D slices from volume images of paper
fibre imaged with X-ray microtomography. As can be seen in Section 3.3, the
method performs well on different types of ring artifacts that occur in these
volumes. One possible drawback of the method is that image structures having
a local orientation equal to the ring artifacts can be affected. The smoothing
of the certainty map before the normalised convolution reduces the probability
of these false corrections. As can be seen from the results, the original image
structures are well preserved for further image processing and measurements.

The proposed method is fast since it uses linear filtering in polar coordinates
to build the correction image. The same procedure in Cartesian coordinates
is more time consuming. The main features of the proposed method are local
correction to remove both partial and full rings, no interpolation of the original
image data, and correction only of pixels that contain ring artifacts.

As some pixels in the partly saturated ring artifacts have lost all the informa-
tion about the original depicted object, these pixels can not be recovered by the
proposed method. Pixels that are close to saturation are also difficult to recover
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correctly. This problem needs to be addressed in future work. Pixel values from
neighbouring pixels could be used for restoration of these values using normalised
convolution in 3D. This is feasible if the image is assumed to be varying slowly
compared to the saturated artifact width in the radial direction.
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Abstract. Recently, the Phase Field Method has shown to be a power-
ful tool for variational image segmentation. In this paper, we present a
novel multi-phase model for probability based image segmentation. By
interpreting the phase fields as probabilities of pixels belonging to a cer-
tain phase, we obtain the model formulation by maximizing the mutual
information between image features and the phase fields. For optimizing
the model, we derive the Euler Lagrange equations and present their
efficient implementation by using a narrow band scheme. We present ex-
perimental results on segmenting synthetic, medical and natural images.

1 Introduction

Image segmentation is one of the best studied but still unsolved low level vision
problems. Its primal goal is to partition a given image domain Ω into K non-
overlapping regions Ωi, i = 1 . . .K, so that the objects covered by each region
share some specific properties.

The active contour or snake model, introduced by Kass Witkin and Terzopou-
los [1], has shown to be a powerful tool for image segmentation. The major (tech-
nical) difficulty of active contours is to properly represent the interface of the
contour. Basically, there are two concepts for interface representation. In an ex-
plicit representation, the points belonging to the interface are spatially sampled.
Although this representation is very efficient in both memory and computational
terms, it has drawbacks with respect to topological changes and strong curva-
tures. In an implicit representation, the interface is defined as the isocontour of
a higher-dimensional function. Hence, topological changes can be handled in a
very natural way [2].

The Level Set Method, introduced by Osher and Sethian [3] is based on such
an implicit representation. The moving front (interface) is defined by the roots
of a continuous function φ. For computational simplicity, the level set function
is chosen as a signed distance function. For the task of image segmentation,
numerous variants, involving image gradients (e.g. [4]) and region based forces

� This work was supported by the Austrian Science Fund (FWF) under the grant
P17066-N04.
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(e.g. [5]) have been proposed to drive the front to the desired image boundaries.
Although the level set method has been proven to be a robust numerical tool for
a great number of applications, it also has some significant disadvantages [2]:

– The numerical solution of the level set equation is obtained by a forward
Euler method with a global time step restriction and thus converges slowly.

– The interface of the level set function has to be tracked explicitly.
– For numerical stability, the level set function should periodically be reini-

tialized to a signed distance function.
– Multiple regions and open curves (curves having ends) cannot be handled in

a straight-forward manner.

The Variational approach, which is closely related to the level set method, is
based on defining an appropriate energy functional whose minimizer is an op-
timal solution to a given image. The celebrated Mumford-Shah segmentation
model [6] was one of the first models for variational image segmentation. In its
original setting, the Mumford-Shah functional is hard to minimize, due to the
lacking convexity and regularity of the edge-length term. A solution was pre-
sented by Ambrosio and Tortorelli [7] via Γ -convergence, where the edge set
is represented by means of a phase field z ∈ [0, 1]. Suppose, z = 1 almost ev-
erywhere and sharply drops down to 0 in a ε-neighborhood around the edges.
Furthermore, consider the following energy:

Lz,ε =
∫

Ω

ε|∇z|2dx +
∫

Ω

(1− z)2

4ε
dx , (1)

where ε is the phase field parameter which controls the size of the transition
band. The remarkable result, associated with this energy is that Lz,ε converges
to the edge length, as ε→ 0+. It should also be noted, that this type of energy
is not limited to closed curves, as it is the case for level set functions. Another
possibility is to represent the edges as the transition of a phase field w, having
two distinct phases [8], [9]. The Energy associated with this two-phase model is

Lw,ε =
∫

Ω

ε|∇w|2dx +
∫

Ω

(w(1 − w))2

ε
dx (2)

The difference between (1) and (2) mainly consists of the type of function used
in the second term. The former one uses a single well potential with a well at
1, the latter one uses a double well potential with equidepth wells at 0 and 1.
Deriving the Euler Lagrange equation of (2), one obtains the so-called Allen-
Cahn equation [10]

∂Lw,ε

∂w
≡ ∂w

∂t
= −2εΔw +

2
ε
w(1 − w)(1 − 2w) . (3)

In has been shown that this equation approximates the motion of an interface
by its mean curvature as ε→ 0+, which is important to get smooth boundaries
[11]. The approximative formulation (3), offers some potential advantages:
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– The explicit tracking of the moving interface (as it is the case for the level
set method) is completely avoided.

– Since the phase fields energies (e.g. (2)) are quadratic, they can be solved
by fast state-of-the-art solvers.

– Curves having edges or ends can easily be represented.
– The phase field parameter ε can also be used for multiscale analysis (e.g.

[12]).

In this paper we utilize the phase field approach to derive a very general segmen-
tation model which can easily handle multiple regions. In contrast to the level
set method, where the level set function defines clear cut boundaries between
the regions, we interpret the phase fields as probabilities of pixels belonging to
regions (inspired by [13]). This model is very general, since it allows pixel to
belong to several regions. In Section 2 we derive the model formulation based on
maximizing the mutual information between the phase fields and a probability
function based on image features. Although we aim for being very general, we
demonstrate that even using simple Gaussian functions as a prior for the image
features is sufficient for a large number of segmentation problems while having
the advantage of being very cheap in terms of computational costs. For opti-
mization, we derive the Euler Lagrange equations of the model and show how
they can be solved via alternating minimization. In Section 3 we present a fast
and robust narrow band scheme to compute the model. In Section 4, the model
is validated by different numerical experiments including natural and medical
images. As a byproduct, we show that the pixel probabilities can also be used
for border matting of objects having fuzzy boundaries. In the last Section we
give some concluding remarks and present some ideas for future directions.

2 Segmentation Model

Consider a random variable P ∈ {1, . . . ,K} of region labels and a vector P(x) =
(p1(x), . . . , pK(x))T ∈ RK , describing the probability that a pixel x ∈ Ω ⊆ Rn

belongs to region Ω�, where Ω = ∪�Ω� and ∩�Ω� = ∅ for � ∈ [1, . . . ,K]. This
leads to the following partition of the image domain Ω:

Ω(x) =
K∑

�=1

p�(x) ≡ 1 , p� ≥ 0 (4)

where K is the number of image regions. Furthermore, let F ⊆ Rm be a random
vector describing image features e.g. RGB channels of a color image. A segmen-
tation is said to be optimal with respect to F , if the information of F which
is covered by P is maximal. This can be achieved by maximizing the mutual
information between F and P .

I(F ;P) = H(F)−H(F |P) , (5)

where H(·) and H(· | ·) denote the entropy and the conditional entropy. This
criterion was also used by the authors of [14] and [15] but it is important to
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note, that our model is more general since it allows each pixel to belong to
several regions with a certain probability.

Since H(F) is independent of the region labels, maximizing (5) can be turned
into minimizing H(F |P). In order to obtain smooth boundaries, we addition-
ally penalize the objective function by the phase field energy (2) which has, in a
slightly different form, also been used in [13] for “Soft-Mumford-Shah” segmen-
tation. Hence, the objective function we wish to minimize is

E = H(F |P) + αLP,ε , (6)

where

LP,ε =
K∑

�=1

∫
Ω

ε|∇p�|2 +
(p�(1− p�))2

ε
dx , (7)

with the constraints that
K∑

�=1

p� = 1 and p� ≥ 0 (8)

The parameter α is used to control the influence of the phase field energy term.
By the weak law of large numbers, the entropy term H(F |P) can be approxi-
mated by (up to negligible constants)

H̃(F |P) = −
K∑

�=1

∫
Ω

p� log (Prob(F |P = �)) dx . (9)

2.1 Parametric Versus Non-parametric Density Estimation

Evaluating (9) requires the estimation of Prob(F |P = �). This can either be
done by assuming a certain probability density function or by a non-parametric
density estimator. Although non-parametric density estimation would be prefer-
able, we decided to use parametric models. The main reason is the reduced
computational complexity which becomes significant for 3D segmentation prob-
lems. Moreover, we found that even using single Gaussians for each region is
sufficient for a great number of segmentation tasks. However, we emphasize that
our image model easily generalizes to more complex models such as Gaussian
Mixture Models [16] or non-parametric density estimators [17].

For this paper, as mentioned above, we proceed by assuming that each com-
ponent of F follows a Gaussian probability density functions (PDFs), each as-
sociated with region Ω�.

G�(s,μ�,Σ�) =
1

(2π)m/2|Σ�|1/2
exp
(
−1

2
(s− μ�)

T Σ−1
� (s− μ�)

)
, (10)

where μ�, Σ� are the m×1 mean vector and the m×m covariance matrix. With
this (9) becomes (up to negligible constants)

H̃(F |P) =
K∑

�=1

∫
Ω

p�

(
(s(x)− μ�)T Σ−1

� (s(x) − μ�) + log(|Σ�|)
)

dx , (11)
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where s(x) is the feature vector at pixel position x. By substituting (11) into (6)
we have the complete energy functional of our segmentation model:

E = H̃(F |P) + αLP,ε , (12)

2.2 Optimization of the Constraint Energy Functional

The minimization of (12) requires the estimation of the parametersΘ = {μ�,Σ�},
� ∈ [1, . . . ,K], describing the Gaussian PDFs and the estimation of the optimal
pixel ownership P(x). This multivariate optimization problem is solved via the
alternating minimization algorithm (AM), which is a well established technique.
Since the AM algorithm works iteratively, the estimation of the parameters and
the pixel ownerships at the n-th iteration are denoted as Θ(n) and P(n).

Given a pixel ownership P(n)(x), the currently optimal parameters Θ(n) of
the Gaussian PDFs are estimated by solving

Θ(n) = argminΘ{E(Θ |P(n),F)}. (13)

Deriving the Euler Lagrange equations of (12) with respect to Θ = {μ�,Σ�},
one arrives at the following equations:

μ
(n)
� =

1∫
Ω
p
(n)
� (x)dx

∫
Ω

p
(n)
� (x) s(x)dx (14)

and

Σ
(n)
� =

1∫
Ω
p
(n)
� (x)dx

∫
Ω

p
(n)
� (x)(s(x) − μ

(n)
� ) (s(x)− μ

(n)
� )T dx (15)

Subsequently, based on the optimal estimation of Θ, the optimal pixel ownership
for the next iteration is obtained by

P(n+1) = argminP{E(P |Θ(n),F)}. (16)

Since the different pixel ownerships p� are related to each other by the constraint
(8) they have to cooperate with each other. To satisfy the constraint

∑K
�=1 p� =

1, we introduce a Lagrange multiplier λ and proceed by solving the following
equations

∂

∂p�

{
E + λ

(
K∑

�=1

p� − 1

)}
= 0 . (17)

As a result, we get λ = − 1
K

∑K
�=1

∂E
∂p�

. By substituting λ into (17) we obtain the
gradient of the constrained energy functional

∂E

∂p�
=

∂E

∂p�
− 1
K

K∑
�=1

∂E

∂p�
= 0 . (18)
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The expressions ∂E
∂p�

are given by the gradients of the unconstrained energy
functional which yield

∂E

∂p�
= h� + α

(
−2εΔp� +

2
ε
p�(1− p�)(1 − 2p�)

)
, (19)

where h� =
(
(s(x)− μ�)T Σ−1

� (s(x)− μ�) + log(|Σ�|)
)
. So far, we have not in-

troduced the second constraint, namely p� ≥ 0. We found that it is easier to
explicitely deal with this during the optimization procedure rather than intro-
ducing an additional Lagrange multiplier.

3 Fast and Robust Implementation

Before we start to implement our model, we briefly recall the notation used for
image discretization, which will be used throughout the rest of the paper. We are
using a 2D Cartesian grid which is defined as {(xi, yj) | 1 ≤ i ≤M, 1 ≤ j ≤ N}.
For convenience, we are using a uniform grid, for which all the subintervalls
�x = [xi+1 − xi] and �y = [yj+1 − yj ] are equal in size. By definition, the use
of a Cartesian grid implies a rectangular domain Ω = [x1, xM ]× [y1, yN ].

3.1 Discretization of the Euler Lagrange Equations

The implementation of (14) and (15) is straight-forward and does not require
further explanations. For a solution of (18), we are using standard Gauss-Seidel
iterations of the following approximated Newton-type descent scheme:

(p�)
(k+1)
i,j = (p�)

(k)
i,j −

1
(τ�)i,j

(
∂E

∂p�

)(k)

i,j

. (20)

Due to (18), we only have to discretize (19) which is given by(
∂E

∂p�

)
i,j

= (h�)i,j + α

(
−2ε(Δp�)i,j +

2
ε
((p�)i,j − 3(p�)2i,j + 2(p�)3i,j)

)
, (21)

where (Δp�)i,j = ((p�)i+1,j +(p�)i−1,j +(p�)i,j+1 +(p�)i,j−1− 4(p�)i,j) is a finite
difference approximation of the Laplace operator. The parameters (τ�)i,j are
approximations of the second order derivatives of the energy functional and are
given by

(τ�)i,j =
∂

∂(p�)i,j

(
∂E

∂p�

)
i,j

= α

(
8ε+

2
ε

(
1− 6(p�)i,j + 6(p�)2i,j

))
(22)

As mentioned in the previous section, we need to ensure p� ≥ 0 during the
Gauss-Seidel iterations. For this purpose, we use the following rule: First, we
compute the values (p�)

(k+1)
i,j , according to (20). Second, if the new values do

not satisfy the constraint (p�)
(k+1)
i,j ≥ 0, we set (τ�)i,j = (p�)i,j/

(
∂E/∂p�

)(k)

i,j
.
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Finally, we choose τi,j = min{(τ�)i,j} and set (τ�)i,j = τi,j for all � ∈ [i, . . . ,K].
Concerning the stability of the scheme, we can easily derive a lower bound of the
phase field parameter ε. Since p� ∈ [0, 1], we have infp�

{τ�} = 0.5. If we require
τ� > 0, we get ε2 > 1/8. We also found that just a few iterations (5-10) are
sufficient in order to approximately solve (18) for one step of the AM algorithm.

3.2 Fast Narrow Band Implementation

The AM algorithm described above has a computational complexity of O(N2),
where N is the size along one dimension of the image. If we restrict the compu-
tations to a narrow band, located around the transition of the phase fields, the
computational complexity could be reduced to O(kN), where k is the width of
the narrow band. This concept has also been used in the context of level sets
[18] and has shown to substantially reduce the computational costs, especially in
the context of 3D applications. We propose the following algorithm to generate
the narrow band of the phase field.

1. Choose all potential transition points: N0 = {(xi, yj) | (∇p�)2i,j < γ }, where
γ is a small fixed threshold (e.g. γ = 0.05).

2. The narrow band N is generated by extending N0 to a predefined width by
solving the Eikonal equation [18] up to a fixed stopping value ( e.g. tmax = 5).

The narrow band variants of (14) and (15) are straight-forward and thus omit-
ted. To efficiently update the covariance we use the well known property of the
covariance matrix, Σ = E[ssT ] − μμT . The narrow band variant of (18) is ob-
tained by simply restricting (20) to the points of the narrow band. Hence, we
have reduced the computational complexity to O(kN) for each iteration of the
AM algorithm. After a few iterations of the AM algorithm, the narrow band has
to be updated, which is done by the same procedure.

4 Experimental Results

In order to show the wide applicability of the proposed segmentation model, we
have tested our algorithm on several images. For all experiments we used ε = 2.0.
Fig. 1 shows the two-phase segmentation of the corpus callosum from a brain
MRI. As a single feature we used just the image intensity. The parameter α was
set to 15. This example shows, that using simple Gaussian PDFs is sufficient to
distinguish the object from a complex background. Moreover, due to our narrow
band formulation, only pixels contained in the transition between the phases are
taken into account, which essentially increases the robustness of our algorithm.
Fig. 2 shows the segmentation of a person from a color image. We used a three-
dimensional feature vector composed of the RGB channels. The parameter α was
set to 20. This shows, that our model easily generalizes to higher dimensional
feature vectors. Fig. 3 shows the segmentation of two textured image with 5
phases. The parameter α was set to 20. For the first image, the feature vector
was based only on pixel intensities. For the second, more challenging image, we
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extended the feature vector by using the coefficients of the first level of a Haar-
wavelet transform. Fig. 4 shows a three-phase segmentation of a natural image.
The parameter α was set to 20. The objects koala, trunk and leaves are fairly
good extracted.

(a) (b) (c) (d)

Fig. 1. Segmentation of the corpus callosum from a brain MRI. (a) Initial, (b) inter-
mediate (30 iterations) and (c) final segmentation (100 iterations). (d) Phase field of
the final segmentation.

(a) (b) (c)

Fig. 2. Segmentation of a person from a color image. (a) Original image, (b) final phase
field (60 iterations) and (c) extracted person using pixel probabilities of the phase field.

(a) (b)

Fig. 3. Segmentation of textured images using 5 phases. The original images are shown
with superimposed boundaries of the segmentation result.

4.1 Automatic Border Matting

Fig. 5 shows the segmentation of a fox sitting in the grass. The parameter α
was set to 20. Since the fox apparently does not have clear-cut boundaries,
one can not define a hard transition between fox and grass. As a byproduct
of our method, we directly obtain matted boundaries of the object by using
the pixel probabilities of the phase field. Moreover, the border matting of our
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(a) (b) (c) (d)

Fig. 4. Three-phase segmentation of natural image. (a) Original image. (b)-(d) Ex-
tracted objects: koala, trunk and leaves.

(a) (b) (c) (d)

Fig. 5. Segmentation of an object having fuzzy boundaries. (a) Original image, (b)
final phase field, (c) extracted object by using phase field probabilities and (d) detail
view of (c).

model works adaptively, which means that the transition width of the phase
field is automatically adapted to the appearance of the object boundary. This
is in contrast to other methods such as [19], where border matting has to be
performed in an extra step.

5 Conclusion

A probability based multi-phase model for variational image segmentation was
presented in this paper. The model deals with phase fields, which are interpreted
as the probabilities of pixels belonging to regions. The model formulation is de-
rived by maximizing the mutual information between the phase fields and a
PDF based on image features. We demonstrated, that this model is very gen-
eral and can easily deal with multiple regions. For optimization, we derived
its Euler-Lagrange equations and presented a fast and robust narrow band im-
plementation of them. In order to show the wide applicability of the model,
the algorithm was tested on several images with the same parameter settings.
Additionally, we showed that the phase fields can easily be utilized to automat-
ically obtain matted boundaries of fuzzy objects. As discussed in Section 2.1 we
use simple multivariate Gaussians for density estimation, but it is clear that in
order to handle more complex cases (illumination changes, texture) more sophis-
ticated models are required. Additionally, when dealing with PDFs, the spatial
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dependence of the features inside the regions is completely ignored. So far, the
number of regions are user-specified, but it can be automated using mulitiscale
patch statistics [13]. Future work will mainly concentrate on this issues.
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Provably Correct Edgel Linking and
Subpixel Boundary Reconstruction
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Abstract. Existing methods for segmentation by edgel linking are based
on heuristics and give no guarantee for a topologically correct result. In
this paper, we propose an edgel linking algorithm based on a new sam-
pling theorem for shape digitization, which guarantees a topologically
correct reconstruction of regions and boundaries if the edgels approx-
imate true object edges with a known maximal error. Experiments on
real and generated images demonstrate the good performance of the new
method and confirm the predictions of our theory.

1 Introduction

The question, whether or when a computed image segmentation corresponds
closely to the underlying real-world partitioning, is fundamental to image un-
derstanding. A number of partial results have been obtained in the past, but
they are not sufficiently realistic to model many actual imaging situations, since
they do not allow measurement errors.

The analysis we are going to present is based on a clear distinction between the
ideal geometric image, which cannot be observed in practice, and the actually
available digital image. The geometric image has infinite resolution (i.e. is an
analog function) and can be thought of as the projection of a 3-dimensional
scene, although we do not consider the details of the projection in this work.
Instead, we think of the analog image as a given geometric partitioning of the
plane into distinct regions. The interior of each region is described by some simple
function (e.g. a constant), but the transitions between regions are discontinuous.
This ideal analog image is then transformed into a digital image by a real camera.
Beyond geometric projection, a real camera is characterized by its point spread
function, the sampling grid and its quantization and noise models. The partition
of the geometric image must be inferred from the limited information in the
digital image. We ask how accurate this reconstruction can be.

Recently we developed a geometric sampling theorem which assumes that
sampling points (edgels) are placed roughly along the contour of the regions
to be segmented. The edgels can be obtained by an arbitrary edge detector, as
long as the accuracy of the detected edges is known. In this paper, we compare
common edge detectors in the context of our theory and show how to use them
for generating a topologically correct image segmentation.
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2 The Boundary Reconstruction Algorithm

We consider the task of reconstructing the boundary of a partition of the Eu-
clidean plane from a sampled representation. The plane partition P to be re-
covered is defined by a finite set of points P = {pi ∈ R2} and a set of pairwise
disjoint arcs connecting these points. The union of the points and arcs is the
boundary of the partition B = P ∪ A, and the regions R = {ri} are the con-
nected components (maximal connected sets) of the complement of B.

Previous proofs about topologically correct reconstruction were restricted to
binary partitions. That is, one can assign two labels (foreground and background)
to the regions such that every arc is in the closure of exactly one foreground and
one background region. Examples are r-regular partitions in [8, 6, 5, 9] and r-
halfregular partitions in [10]. Both are too restrictive for practical use (see [11]
for details). In this paper we use a more general class of feasible plane partitions:

Definition 1. A plane partition P is called r-stable when its boundary B can
be dilated with a closed disc of radius s without changing its homotopy type for
any s ≤ r. We say two points x1, x2 ∈ B delimit a (θ, d)-spike, if the distance
from x1 to x2 is at most d and if every path on B from x1 to x2 contains at
least one point with ∠x1yx2 < θ. We say that P has no (θ, d)-spikes if no pair
of boundary points x1, x2 ∈ B delimits a (θ, d)-spike.

Thus a plane partition is r-stable if we can replace an infinitely thin bound-
ary with a strip of width 2r such that the number and enclosure hierarchy of
the resulting regions is preserved. In particular, “waists” are forbidden, whereas
junctions are allowed, see Fig. 1. Obviously, an r-stable plane partition has no
(π, 2r)-spikes. Intuitively, two points delimit a (θ, d)-spike, if the shortest bound-
ary path between them does not differ too much from a straight line – it lies
inside the shaded region in Fig. 2. In order to digitize such plane partitions, we
approximate the boundary of the partition with a finite set of adaptively placed
sampling points. The sampling points should be “near” the boundary:

Definition 2. A finite set of sampling points S = {si ∈ R
2} is called a (p, q)-

sampling of the boundary B when the distance of every boundary point b ∈ B
to the nearest point in S is at most p, and the distance of every sampling point
s ∈ S to the nearest point in B is at most q. The points in S are called edgels.

The Hausdorff distance dH(B,S) between the boundary and the sampling points
is max(p, q). The exact values of p and q depend on where the edgels come
from. This is discussed in detail in section 4. Our new edgel linking algorithm is
essentially a hysteresis thresholding on the sizes of Delaunay triangles:

1. Compute the Delaunay triangulation D of the edgels S.
2. Mark all triangles in D (including their edges) with a circumradius < α.
3. Additionally mark Delaunay edges whose circumcircle contains no edgel

and has a radius smaller than α.
4. Find connected components of unmarked triangles and edges.
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Fig. 1. An r-stable plane partition does
not change the homotopy type when di-
lated with a disc of radius of at most r
(light gray), while dilations with bigger
radius (dark gray) may connect different
arcs as marked by the circle (see Def. 1)

yd θ

x1

x2 d
2 sin θ

2

Fig. 2. Any point which encloses an an-
gle of at least θ with x1 and x2 must
lie inside the shaded region. The shown
y is the one with the maximal distance
to the nearer one of x1 and x2. Thus
there is a path from x1 to x2 inside the
shaded region and each of its points has
a distance of at most d

2 sin θ
2
.

5. For each component from step 4 which does not contain any triangle with a
circumradius of at least β, mark all its triangles and edges.

The union of marked triangles and edges is a simplicial complex which we denote
(α, β)-boundary reconstruction from the edgels. The components of its comple-
ment are called (α, β)-holes. Under certain conditions, these holes exactly corre-
spond to the regions of the original r-stable plane partition, as proven in [11]:

Theorem 1 (boundary sampling theorem). Let P be an r-stable plane par-
tition, and S a (p, q)-sampling of P’s boundary B. Then the (α, β)-boundary
reconstruction R defined by S is homotopy equivalent to B, and the (α, β)-holes
of R are topologically equivalent to the regions ri of P, provided the following
conditions are met:

1. p < α ≤ r − q
2. β = α + p+ q
3. every region ri contains an open γ-disc with γ ≥ β + q > 2(p+ q).

3 Boundary Thinning and Neighborhood Relations

Since the (α, β)-boundary reconstruction may contain triangles, it is not in gen-
eral thin (i.e. locally 1-dimensional). However, many algorithms that build upon
segmentation results cannot handle partially thick boundary representations.
Therefore we propose a topology preserving boundary thinning. We call an edge
in the (α, β)-boundary reconstruction simple if its removal does not change the
topology of the reconstructed regions. Simple edges can be easily recognized: they
bound an (α, β)-hole on one side and a triangle in the boundary reconstruction
on the other. Thinning removes all simple edges iteratively:

1. Find all simple edges of the given (α, β)-boundary reconstruction and put
them in a priority queue (the sorting is discussed below).
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Fig. 3. left: original; center : (α, β)-boundary reconstruction; right : minimal reconstruc-
tion after thinning. (Edgels from Canny’s algorithm on a color gradient)

2. As long as the queue is not empty, fetch an edge from the queue and remove
it from the boundary reconstruction if it is still simple (it may have lost this
property after removal of other edges). Put the edges in the triangle of the
removed edge in the queue if they have now become simple.

As far as region topology is concerned, the ordering of the edgels in the priority
queue is arbitrary. For example, we can measure the contrast (image gradient)
along each edge and remove weak edges first. A particularly interesting ordering
is defined by the length of the edges:

Definition 3. A (not necessarily unique) minimal boundary reconstruction is
obtained from an (α, β)-boundary reconstruction by means of topology-preserving
thinning where the longest edges are removed first.

The resulting boundaries are illustrated in Fig. 3. Since region topology is pre-
served, the minimal boundary reconstruction is homotopy equivalent to the
boundary B of the original plane partition ∂P . The two boundaries are not
in general topologically equivalent, because the adjacency relations between re-
gions may differ (see below for details), and the reconstruction may contain short
edges, which end in the interior of a region (they can also be removed iteratively).

Since the minimal boundary reconstruction is the shortest possible one with
correct topology, the surviving edges connect edgels closest to each other. Neigh-
boring edgels therefore align in an optimal way on the thinned boundary. The
length dmax of the longest surviving edge is a measure of the density of the
boundary sampling. The maximum distance p between a true boundary point
and the nearest edgel may be much larger than dmax/2 if the displacement of
neighboring edgels is highly correlated as is usually the case in practice. For
example, edgels along a circular arc are consistently biased toward the concave
side of the curve. When we set α′ = dmax/2+ ε < p (with arbitrarily small ε), an
(α′, β) reconstruction of the edgel set is still correct in the sense of theorem 1:
since the minimal reconstruction is a subset of the (α′, β) reconstruction, no true
regions can get merged. Since α′ < α, no region can get lost, and since β remained
unchanged, no additional holes can be created. In fact, β′ = α′ + p+ q < 2p+ q
would have been sufficient.
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(a) (b)

Fig. 4. Narrow spikes can lead to a boundary reconstruction where originally uncon-
nected regions (a) look like they had a common boundary edge (b)

Theorem 1 does not guarantee that the neighborhood relations between re-
constructed regions are the same as of the original regions, as can be seen in
Fig. 4. The following theorem shows that neighborhood relations are preserved
when the boundary arcs are long enough and free of (θ, d)-spikes:

Theorem 2. Let P be an r-stable plane partition with regions ri and boundary
B having no (θ, d)-spikes. Further, let S be a (p, q)-sampling of B and R the
(α, β)-boundary reconstruction of S with regions hi, such that all requirements
of theorem 1 are fulfilled. Si = ∂hi ∩S denotes the set of edgels on the boundary
of hi. When d ≥ 2 (α+ q) and p′ := d/

(
2 sin θ

2

)
+ q the following holds:

1. If the distance between the two nearest edgels of Si and Sj exceeds 2p′, the
corresponding original regions ri, rj are not adjacent, i.e. ∂ri ∩ ∂rj = ∅.

2. When there exists a point x with dH(x, Si) ≤ p′, dH(x, Sj) ≤ p′ and
dH(x, Sk) > 2p′ for all k �= i, j, the original regions ri, rj are arc-adjacent.

3. If two regions ri, rj have a distance greater than 2 (p′ + q), the conditions of
item 1 are always fulfilled.

4. If two regions ri, rj have a common boundary point x such that dH(x, rk) >
3p′ for all k �= i, j, the conditions of item 2 are always fulfilled, i.e. adjacency
of ri and rj can be detected in the boundary reconstruction.

Proof. (1) For any st ∈ Si let xt ∈ ∂ri be the nearest boundary point. Then for
any two st1 , st2 being connected by a line segment of ∂hi, the distance between
xt1 and xt2 is smaller than 2 (α + q). Since (θ, d)-spikes do not exist, the distance
of each point of ∂ri to the nearest xt cannot exceed d/

(
2 sin θ

2

)
and thus the

distance of ∂ri to ∂hi is bounded by p′. The same holds for hj . When the shortest
distance between Si and Sj is larger than 2p′, ∂ri and ∂rj cannot intersect.
(2) Both Si and Sj intersect the disc B0

p′(x). Since dH(x, Sk) > 2p′ for every
k �= i, j, no part of ∂rk can intersect B0

p′(x). Thus ri and rj are the only regions
which intersect B0

p′(x), which is only possible when they have a common edge.
(3) Since the distance between ri and rj exceeds 2 (p′ + q), Si, Sj have to be
more than 2p′ away from each other.
(4) Due to the absence of (θ, d)-spikes, the distance dH(x, Sk), k �= i, j must be
greater than 2p′. For the same reasons, dH(x, Si) ≤ p′ and dH(x, Sj) ≤ p′. ��

It follows that if every junction of P has degree 3, the boundary sampling only
needs to be sufficiently accurate (i.e. p, q, and α are sufficiently small) in order
to reconstruct not only the topology of every region of a plane partition, but
also the complete neighborhood relations, i.e. a complete combinatorial map [2]
encoding P ’s abstract topology, without any error.
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(a) (b) (c)

Fig. 5. The interpixel boundary (dashed) can be extracted from the subset digitization
(a). It includes both the midcrack digitization (b) and the endcrack digitization (c).

4 Application to Popular Segmentation Schemes

In order to apply our boundary reconstruction algorithm, we can derive correct
choices for α and β from the error bounds p and q of the edgel detector. First,
let us pretend that we have access to the exact projected image, i.e. to the plane
partition P . One possibility to digitize this partition is the so-called subset digi-
tization: We assign the same label to two pixels iff their centers are in the same
region. Then, interpixel edges (crack edges) can be defined between pixel facets
with different labels, see Fig. 5a. Crack edges give rise to two natural kinds of
edgels: endcrack and midcrack edgels (located on the end or center points of the
cracks respectively, Fig. 5b and c). When the boundaries of the plane partition are
free of (θ, d)-spikes, the following bounds can be derived [11]: q = h√

2
(endcrack)

and q = h
2 (midcrack) and p = q +

(
h
2 + q

)
/ sin θ

2 (both cases), where h ≤ d
1+

√
2

is the required pixel distance. For example, when h = 1 and the plane partition
has no (60◦, d)-spikes with d > 2.4, we get p ≈ 1.31, q ≈ 0.7 for endcrack and
p = 1, q = 0.5 for midcrack digitization, i.e. the latter is more accurate.

Many segmentation algorithms (e.g. zero-crossing-based edge detectors and
the watershed algorithm) compute image labelings similar to subset digitization,
which can be used to define endcrack and midcrack edgels. However, their error
bounds differ from the ideal ones obtained above. To quantify these differences,
we model the transformation from analog to digital images in real cameras:

fij = (PSF � f(x, y))ij + nij (1)

where f(x, y) is the ideal geometric image, PSF is the point spread function,
subscripts denote sampling, and nij is additive Gaussian noise (quantization
is neglected). The PSF (which shall be band-limited) suppresses high spatial
frequencies and the resulting smooth transitions between regions allow for sub-
pixel accurate edge localization. On the other hand, systematic localization errors
are introduced because blurring distorts edges. Noise causes additional statistical
errors in p and q. We estimate these errors for a number of exemplary edge
detectors: we consider two variants of the Haralick detector as representatives
of zero-crossing-based algorithms, and three variants of Canny’s algorithm to
exemplify ridge-based edge detection. Haralick [4] defines edgels at the zero-
crossing of the second derivative along the gradient direction:

b = f2
xfxx + 2fxfyfxy + f2

yfyy
!= 0 (2)
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(a) (b) (c) (d)

Fig. 6. Edgels and boundary reconstruction using α = 1.55, β = 2: (a) midcrack variant
and (b) subpixel variant of Haralicks algorithm. Note the lower density and higher
displacement of the former. (c) Parabola and (d) spline variant of Canny’s algorithm.
Red dots indicate the ground-truth corner locations.

provided that the third derivative along the same direction is negative (indicating
a local gradient maximum), and the gradient magnitude is above a threshold.
Crack edges between positive and negative pixels of b where the constraints are
fulfilled define a set of midcrack edgels. Their fixed accuracy can be improved
when a continuous function b̃ is computed by spline interpolation of b, and edgels
are located in b̃ by means of Newton iteration along the gradient direction. In
our implementation of this variant, edgels are placed roughly at a distance of
0.1 pixels along the edge, Fig. 6a, b.

In contrast, Canny’s algorithm [3] uses the gradient magnitude
√
f2

x + f2
y

and looks for relative maxima along the gradient direction. Better localization
(significantly smaller q) is achieved by either computing the maximum of an ap-
proximating parabola accross the edge, or by Newton iterations on a continously
interpolated version of the gradient image, Fig. 6c and d. We estimate p and q
on a large number of images created by numerical solution of the convolution
integral (1) at various angles and grid positions, Fig. 6. Derivatives are computed
by Gaussian filters at scale σE , and the PSF is also Gaussian with scale σPSF.
To avoid aliasing we use σE ≥ 1 and σPSF = 1 (cf. [12]).

First, consider straight edges. A radial symmetric PSF does not distort
straight edges and q should be close to zero (non-zero values reflect discrep-
ancies between the computational theory and its actual realization). Subpixel
methods achieve q � 0.05 pixels. With the exception of the subpixel Haralick
operator (which places edgels very densely), p roughly equals the pixel radius.
Row 1 in Table 1 lists the maximum errors we found.

The effect of image noise on straight edge localization was analysed by
Canny [3]. When the noise is Gaussian distributed with zero mean and stan-
dard deviation sN , the expected error (in pixels) is

E[ξ] =
sN

a

√
6

4

(
1 +

σ2
PSF

σ2
E

)3/2

(3)

where a is the height of the step, and a/sN is the signal-to-noise ratio (SNR).
When σPSF ≈ σE , we get E[ξ] ≈ 1.7 sN

a . For σE → ∞, the error approaches
0.6 sN

a (the common belief that the error increases with σE is only justified in
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Table 1. Experimental estimates of the maximum errors p and q (pixels). Theoretical
predictions are given in brackets. Unless noted, there was no noise and σPSF = σE = 1.

Canny (pixel

coordinates)

Canny

(parabola)

Canny

(spline)

Haralick

(midcrack)

Haralick

(spline)

p q p q p q p q p q

straight line 0.79 0.70 0.71 0.05 0.75 0.02 0.70 0.47 0.19 0.46

[0.7] [0.0] [0.0] [0.5] [0.0]

straight line 1.0 0.82 0.81 0.47 0.92 0.57 0.90 0.93 0.63 0.85

SNR = 10 [0.52] [0.52] [0.52]

straight line 1.0 0.81 1.0 0.28 1.0 0.28 0.79 0.73 0.57 0.81

σE = 2, SNR = 10 [0.26] [0.26] [0.26]

disc, radius = 4 0.73 0.73 0.25 0.74 0.29

[0.2] [0.2]

corner, 90◦ 1.58 0.84 1.38 0.76 1.34 0.69 1.52 0.93 1.15 0.71

[0.71] [0.71] [0.71] [0.71] [0.71]

corner, 15◦ 4.03 1.3 3.99 0.92 3.96 0.94 3.39 1.33 3.96 1.3

[3.1] [3.1] [3.1] [3.1] [3.1]

junction, degree=3 2.70 1.56 2.66 1.15 2.70 1.40 2.25 1.81 2.20 1.71

1D). In typical images a
sN

is between 5 and 100. The expected statistical error
is then below 0.2 pixels, and the maximum error does not exceed 3E[ξ] = 0.6
pixels with probability 0.997. Rows 2 and 3 of Table 1 confirm these predictions.

Smoothing of curved boundaries with the PSF results in biased edgel posi-
tions. The gradient magnitude of a disc with radius ρ and contrast a is [1]

g(r) = |a| ρ
σ2

e−
r2+ρ2

2σ2 I1

( rρ
σ2

)
(4)

where r is the distance from the center of the disc, I1 is the modified Bessel
function of order 1, and σ2 = σ2

PSF + σ2
e is the combined scale of the PSF and

edge operator. The bias depends on the curvature radius ρ and the scale σ. It is
directed towards the concave side of the curve when σ < 0.8ρ (which is true in
most practical situations). Row 4 of Table 1 compares theoretical predictions and
experimental estimates for ρ = 4. It can be seen that the best methods (using
spline interpolation and Newton iterations) are very close to the theoretical limit.

A bias toward the concave side of the contour is also observed at corners. Its
magnitude depends on σ and the corner angle ϕ and is maximal along the bisec-
tor of the corner. The gradient maximum along the bisector (i.e. the estimated
edge location) is the solution of the implicit equation [7]

1
2πσ2

e−
r2

2σ2 −
(
tan
(ϕ

2

))2 r

2

(
1 + erf

(
r√
2σ

))
= 0 (5)

where erf is the error function. The sharper the corner, the higher the bias.
E.g. for ϕ = 90◦, 45◦, 15◦ it is approximately 0.5σ, 1.2σ, and 2.2σ. Rows 5 and
6 in Table 1 show that actual errors are even higher than theory predicts.

The situation at junctions is even more complicated. The large number of
degrees of freedom (angles, intensities) does not allow the error to be described
in a compact way. The algorithms considered here are usually unable to close all
contours near a junction. The remaining gaps also cause p to attain quite large
values, as row 7 of Table 1 shows.
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α = 0.1 α = 0.7 α = 1.2 α = 1.7

Fig. 7. Chinese character (white: contours extracted by levelcontour tracing [13]),
(α, β)-boundary reconstructions with increasing values of α (red : before thinning,
black : minimal boundary reconstruction).

Fig. 8. Left: original image and ROI; center: (α, β)-boundary reconstruction from sub-
pixel Canny edgels (black and gray), thinned reconstruction (black only) and additional
edgels to be added (red); right: modified reconstruction including new edgels

Fig. 3 and Fig. 7 show results of α, β-reconstruction in two real images. Re-
gion topology is correctly recovered when α and β are properly chosen. Since
edgels are considered as isolated points, our new algorithm also facilitates the
combination of edgels from different sources, cf. Fig. 8: The edgels computed by
Canny’s algorithm are not very accurate near corners and junctions, and this re-
quires large α and β causing the reconstruction to be thick in problematic areas
(gray). In a second step, a maximum likelihood junction position is computed
from the gradient magnitudes and directions at the edgels in a neighborhood of
each thick area, resulting in the red points. These points are simply added to
the set of edgels, and the reconstruction from the new set is much more accurate
than the original one.

5 Conclusions

To our knowledge, this paper exploits the first geometric sampling theorem which
explicitly considers measurement errors. We carefully derive the theoretical prop-
erties of several well-known edge detectors in order to apply our new theorem
and demonstrate theoretically correct edgel linking. The resulting segmentations
are similar to what one gets from traditional heuristic linking, but their prop-
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erties can now be formally proven thanks to their theoretical basis in Delaunay
triangulation. The key to these advancements has been the shift of attention
from region-based digitization models to edge based ones: the assumption that
no sampling points are in the interior of any region (beyond the known error
bound) allows us to reliably recover region and boundary connectivity.

We demonstrated that many known digitization and segmentation methods
can be analyzed and applied in the new framework by simply determining their
error bounds. We can predict whether a given image will be handled properly by
an algorithm with a certain error bound. When the error increases, the perfor-
mance degrades gracefully: first, the recovered boundary becomes thick when the
detailed curve shape or junction connectivity can no longer be unambiguously
determined. Then, regions get split at too narrow waists, and finally too small
regions will be lost (cf. Fig. 7). When additional edgels are added within the
thick part of the (α, β)-boundary reconstruction, the accuracy parameters p and
q will never increase. This opens up new possibilities for algorithm combination.
For example, one could start with an edge detector and a large α which produces
thick boundaries near corners and junctions. Additional edgels can then be com-
puted by a corner detector whose output is confined to these areas, so that it
cannot produce false positives within regions. In fact, false positives (large q)
and false negatives (large p) are the major difficulties in our new algorithm. We
are currently investigating how these can be recognized and removed.
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Abstract. This contribution presents a variation of the Wiener filter
criterion, i.e. minimizing the mean squared error, by combining it with
the main principle of normalized convolution, i.e. the introduction of
prior information in the filter process via the certainty map. Thus, we
are able to optimize a filter according to the signal and noise character-
istics while preserving edges in images. In spite of its low computational
costs the proposed filter schemes outperforms state of the art filter meth-
ods working also in the spatial domain. Furthermore, the Wiener filter
paradigm is extended from scalar valued data to tensor valued data.

1 Introduction

De-noising of images is still a challenging problem in image processing. Amongst
linear image de-noising methods, Wiener filtering[1] is known to be the optimal
estimator for the true underlying image. However, Wiener filtering as a linear
and shift invariant filter scheme is often assumed to be unsuitable for images
containing edges. In order to cope with edges in images, nonlinear image de-
noising methods have been extensively examined. We list here diffusion based
methods [2], variational methods like total variation [3], mean shift filtering [4],
channel smoothing [5], wavelet based methods [6] or combinations of different
methods [7,8]. In the context of mixed methods, Wiener filtering has again ob-
tained attention when a combination with wavelet decomposition leads to one
of the best image de-noising approaches [7]. However, the method proposed in
[7] is rather time consuming due to the transformation and re-transformation
step from the image in the wavelet domain and vice versa. We are aiming at
a fast and reliable method that directly works in the image domain. In this
contribution we show how to combine Wiener filter theory with the idea of nor-
malized convolution [9] such that the assumed disadvantages of Wiener filtering
mentioned above do not occur. Furthermore, the proposed filter does not only
preserve edges, is easy to implement, fast and has only a few number of free
parameter, but it also outperforms other spatial de-noising techniques like non-
linear diffusion [2]. The main idea of almost all edge preserving filter techniques
is to smooth the image in its homogenous regions and to reduce or even stop
the smoothing at edges. A famous example is the nonlinear diffusion scheme [2]

K. Franke et al. (Eds.): DAGM 2006, LNCS 4174, pp. 91–100, 2006.
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where the diffusion process is driven by the gradient of the underlying image.
This principle should also work for Wiener filtering where in homogenous regions
the optimal linear filter is applied and in the presence of edge it is stopped. In
this contribution we show how to design such an edge-preserving filter. Tensor
valued image processing has raised much attention in the last couple of years.
Therefore, we restrict our filter approach not only to scalar valued image data
but consider tensor valued data as well. In fact, most relevant tensors for image
processing are positive (semi-) definite matrices. These occur in orientation or
motion estimation (structure tensor) [10,11], image de-noising and scale space
theory (structure tensors in coherence enhancing diffusion filtering), in statistical
description of images or in diffusion tensor magnetic resonance images. Classi-
cal approaches to tensor image regularization are commonly done by smoothing
the tensor field by a Gaussian filter. Besides the drawback that this method
blurs the edges, it is quite arbitrary. The size of the averaging mask as well as
the shape have to be chosen ad hoc and thus are not optimized for the cur-
rent tensor field. Recent approaches trying to handle the problem of blurring
structures are either motivated from a deterministic point of view, e.g. they
use nonlinear [12] diffusion PDE’s to smooth tensor fields, regularization based
approaches [13] or classical statistics, i.e. robust estimation [14] or normalized
convolution or adaptive anisotropic Gaussian filtering [15]. The Bayesian esti-
mation approaches to tensor fields which has been proposed so far [16,17,18]
differs from our Wiener filter approach in terms of computational costs (the
Gibbs sampler as well as the simulated annealing algorithm is applied) and in
the ability to preserve edges. The main challenge of all tensor processing meth-
ods is that the processed tensors are again positive definite. Since the set of
positive definite matrices does not form a vector space, simple operations like
subtraction lead out of this space. Different strategies have been proposed to
cope with this problem in different methods of processing tensor valued data. In
a variational approach [13] to tensor smoothing, the different matrix elements
are not different treated as scalar valued data. In order to keep the tensors
positive definite, the processed tensors are projected back into the set of pos-
itive definite matrices for every iteration step in the iterative solution scheme
of the corresponding Euler Lagrange equations. In the same paper [13] another
approach has been proposed that incorporates additional constraints into the
variational approach forcing the processed tensor valued data to stay within the
set of positive definite matrices. Generally, these strategies can be classified into
two groups. The first group handles tensor valued images like scalar valued data
combined with some projection scheme which maps the processed tensor field
back into the set of positive definite tensors [13] or with some sort of test if
the processed tensors meet the positive definite requirements [16,17,18]. If not
the tensors are processed so long as it fullfils the requirement. The second ap-
proach designs the methods such that the processed tensor field is again positive
(semi-)definite [12]. Our approach belongs to the second approach, designing
the filter such that the processed tensors remain in the set of positive definite
matrices.
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2 Designing the Edge Preserving Wiener Filter

In the following, we present the edge preserving optimal estimator for scalar and
tensor valued data. This estimator is a combination of the classical Wiener filter
[1] with the main idea of normalized convolution [9], i.e. giving pixels different
weights. This idea has already exploited to interpolate missing pixels in images
[19]. Besides obtaining an interpolation scheme which is optimized according to
the signal and noise characteristics, the approach in [19] is superior to normalized
convolution in that known pixel values remain unchanged while in normalized
convolution also pixels that are known are affected by blurring effects. In this
contribution, we use the advantage of both concepts, the Wiener filtering, i.e.
adapting the filter to the signal and noise statistics, and normalized convolution,
i.e. the ability to design edge preserving filters, to derive an edge preserving signal
and noise adapted filter denoted as the edge preserving Wiener (EPW-) filter
in the following. Starting with filtering scalar valued images, we generalize this
concept later to tensor valued data.

2.1 The Signal and Noise Model

The observed image signal z at position i, j in a two-dimensional image is mod-
eled by the sum of the ideal (noise free) signal s and a noise term v For the subse-
quent steps, it is convenient to arrange s, v, and z in vectors s ∈ IRN ,v ∈ IRN

and z ∈ IRN , where N is the number of pixels. Furthermore, the image could
be degraded by a linear transformation K, denoted as the observation matrix

z = Ks + v . (1)

This model is commonly used in estimation theory (see e.g. [20]) to model the
linear disturbing of the image by blurring effects (modeled by K) and additive
noise (modeled by v). Missing data could be modeled by setting the correspond-
ing entries in the observation matrix K to zero [19]. In this contribution, we
extend this approach to arbitrary real values between zero and one representing
our belief into the corresponding observed image value. For the tensor valued
case, we apply the model according to equ.(1) to the components of the corre-
sponding tensors.

2.2 The Scalar Valued Edge Preserving Wiener Filter

The estimation of a true underlying image value sj at position j from a linear
but not shift invariant filtering of the observable image z can be written in the
form ŝj = mT

j z . Our task is to choose mj in such a way that the filtered
output ŝj approximates, on an average, the desired output sj for the error-
free case as closely as possible in the least mean squares sense. Therefore, it is
necessary to model the statistical properties of the signal and the noise processes,
respectively. Let the noise vector v ∈ IRN be a zero-mean random vector with
covariance matrix Cv ∈ IRN×N (which is in this case equal to its correlation
matrix Rv). Furthermore, we assume that the process that generates the signal
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s ∈ IRN can be described by the expectation ws = E [s] of the signal vector,
and its autocorrelation matrix Rs. Furthermore, let Rssj ∈ IR1×N denote the
correlation matrix between the image value sj and the whole image s. The
filter mj is then determined by minimizing the mean squared error between the
estimated signal value and the actual one

mj = arg min
m̃j

{
E
[
||m̃T

j z − sj ||2
]}

. (2)

Knowing the second order statistical moments for both the noise and signal as
well as the observation matrix, the Gauss-Markov theorem delivers the optimal
filter (for a detailed derivative of mean squared error based filters see e.g. [20])

mj =
(
KjRsKT

j + Rv

)−1
KjRssj . (3)

In following, we discuss the extension of this concept to matrix valued data.

2.3 The Tensor Valued Edge Preserving Wiener Filter

As already mentioned in the introduction, most important tensors for image
processing are square positive (semi-)definite matrices denoted by P (n) in the
following where n is the size of the matrix. This set of tensors does not form a
subspace of the tensor vector space. For example, multiplying a positive definite
matrix by −1 yields a negative definite matrix and hence leads out of the set
P (n). Thus, applying image processing techniques to P (n) requires additional
care since even simple linear operations might destroy the basic structure of
the data. In [21] the proposed nonlinear diffusion scheme is shown to preserve
positiveness of the processed tensor field. An equivalent proof based on discrete
filtering can be found in [12] which uses the fact that the proposed diffusion
filters are convex filters. This is also the basis for the design of our tensor valued
EPW-filter, i.e. we design the tensor valued EPW-filter as a convex filter. A map
F : IRN → IRN is denoted as a convex filter (see e.g. [22]) if for each z ∈ IRN

there are weights wij(z) with

(Fz)k =
N∑

t=1

wkt(z)zt, wtk(z) ≥ 0 ∀k,
N∑

t=1

wkt(z) = 1 . (4)

If each component of the tensor-field is processed with the same convex filter,
it is simple to prove the positiveness of the processed tensor field. Let Aj , j ∈
(1, 2, ..., n) be a set of positive (semi-) definite matrices P (N) , i.e. zT Ajz ≥ 0
for all j and z unequal zero. Applying a convex filter to each component of the
tensor field {Aj} yields again a positive (semi-)definite tensor field {Ãt}

zT Ãtz =
∑
mn

zmãtmnzn =
∑
smn

zmwsasmnzn (5)

=
∑
smn

wszmasmnzn =
∑

s

ws︸︷︷︸
≥0

zT Asz︸ ︷︷ ︸
≥0

≥ 0 . (6)



The Edge Preserving Wiener Filter for Scalar and Tensor Valued Images 95

This implies that we have to model each matrix component by the same process
and thus use the same statistical model as in the scalar case for each matrix
element. We have to design a filter mask whose sum is equal one and where
each element is non-negative. The first requirement can easily be obtained by
a proper normalization. The second requirement is not guaranteed by (2). In
order to keep each element non-negative, further constraints are introduced to
the optimization procedure

mj = arg min
m̃j

{
E
[
||m̃T

j z − sj ||2
]}

such that (mj)k ≥ 0 . (7)

In contrast to equ.(2), a closed form solution does not exist for the non-negative
least squares problem and numerical methods (chapter 23, pp. 161 in [23]) need
to be applied.

2.4 Certainty Maps for Scalar and Tensor Valued Images

The certainty of an image value, being in our case either a gray value or a
symmetric positive matrix, depends on the prior knowledge about these entities.
Take for example the pixels outside the image border. Since no information
about the gray values at these positions is available, the most reasonable we can
do is to set the corresponding entries in the observation matrix K equal zero.
For generating a general certainty map for entities inside the image domain
we describe a similar approach proposed by Westin et al. [24] for normalized
convolution which is sketched in the following. Let z̃j and T̃j denotes a smoothed
image value (e.g. by Gaussian filtering) at position j. For each position i, we
label the certainty of its neighborhood values j ∈ Ni (Ni: neighborhood system
of position i) by cij = exp

(
−α(zi − z̃j)2

)
where the contrast parameter α is

optimized from training data. In case of tensor valued data we have to introduce
a scalar product 〈·, ·〉 in the tensor space in order to measure magnitude as well
as orientation deviations between neighborhood tensors. The angular certainty
caij and the magnitude certainty cmij are defined by

caij = 〈T̂i,
ˆ̃Tj〉β1 , cmij = exp

(
−β2

(
||Ti|| − ||T̃j ||

)2
)

, (8)

where T̂j = Tj/||Tj || denotes the normalized tensors and β1, β2 are again
contrast parameters. The final tensor valued certainty ctij is then obtained from
the product of angular and magnitude certainty ctij = caijcmij . The idea of
these certainty definitions is the reduction of the influence of outliers as well as
the prevention of filter blurring across edges.

3 Algorithmic Aspects

In this section several practical issues of the EPW-filter implementation are dis-
cussed. Figure 3.1 (upper images and lower left) shows some of the estimated
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autocorrelation functions (ACFs) of training images1. The ACFs of all train-
ing images have more or less the same characteristic shape. Thus, modeling all
images by a common generating process is appropriate. We choose an isotropic
first order autoregressive model with the ACF ϕss(x) = exp(−γ|x|) commonly
used to characterize the global image statistics. In figure 3.1 the average over 20
ACFs of training images is depicted showing the similarity to the ACF model
quite well. The parameter γ of the ACF model is optimized according to the
training data. We emphasize that the filters given by equ.(3) as well as equ.(7)
do not depend on the absolute powers σ2

s, σ2
v of the signal and noise processes

but only on their ratio α = σ2
v/σ
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Fig. 3.1. Upper rows: autocorrelation functions (ACF) estimated from training im-
ages; lower left: ACF estimated from a training image; lower middle: average over the
ACFs of 20 training images; lower right: model ACF ϕss(x) = exp(−γ|x|)

Thus, we can normalize the ACF and the filter mask in equ.(3) yields

mj =
(
KjR̂sKT

j + αR̂v

)−1

KjR̂ssj . (9)

with normalized correlation matrices R̂s, R̂v and R̂ssj .

4 Experimental Results

The experiments will demonstrate the performance of the EPW-filter on scalar
valued data as well as demonstrate the edge preserving property of the ten-
sor valued filter. In the scalar valued case we compare our method with the
locally adaptive Wiener filter (matlab implementation, see also pp. 536-540 in
[25]), with isotropic nonlinear and anisotropic (coherence enhancing) nonlinear
filtering (We use the matlab toolbox ’nonlinear diffusion toolbox’ by Frederico
1 All 20 training images have been taken from the USC-SIPI image database:

’http://sipi.usc.edu/database/’
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D’Almeida). First, we corrupted the test images by additive Gaussian noise with
three noise levels (σv = 10, 15, 20). The noise is modeled as identical independent
distributed, i.e. the correlation matrix of the noise process is given by Rv = σ2

vI.
Then, for every test image the noise has been estimated according to [25] (see
also the Wiener filter matlab implementation). Then, training images have been
corrupted by the estimated noise strength and all free parameters of the four
different tested methods have been optimized from the training data and after-
wards applied to the corresponding test image. Thus, the method for estimating
the true underlying images is fully automatic. Table 4.1 shows the result of the
experiments where the performance of the individual de-noising methods as well
as the amount of noise of the input image have been measured with the peak
signal to noise ratio (PSNR). For all three noise levels as well as for all test
images our EPW-filter outperforms the other three de-noising methods. Figure
4.1 gives a visual impression of the four different de-noising methods showing a
cutout of the original image ’peppers’, the image corrupted by noise (σv = 20)
and the four de-noised images. In order to demonstrate the edge preserving prop-
erty of the tensor valued EPW-filter, a simple tensor field has been generated.
Each component of the positive definite matrices has been corrupted by additive
independent normally distributed noise (figure 4.2, upper right). The noise cor-
rupted tensor field has then been filtered with the EPW-filter for the contrast
parameters β1 = 0, β2 = 0 (figure 4.2, lower left) and β1 = 6, β2 = 1 (figure 4.2,
lower right) showing clearly its edge preserving property.

Fig. 4.1. Upper left: original image; upper middle: image corrupted by Gaussian noise;
upper right: nonlinear diffusion filtered image; lower left: anisotropic nonlinear filtered
image; lower middle: Wiener filtered image; lower right: edge preserving Wiener filtered
image
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Fig. 4.2. Upper left: original tensor field; upper right: left tensor field corrupted by
additive Gaussian noise (σv = 0.3 on each matrix element); lower left: processed tensor
field by our EPW-filter with β1, β2 = 0; lower right: EPW-filter with β1 = 6, β2 = 1

Table 4.1. Results of the de-noising experiment. All test images have been corrupted
by additive Gaussian noise with three different noise levels (28.1 dB, 24.6 dB, 22.2
dB). Four different de-noising techniques have been applied: NID: nonlinear isotropic
diffusion filter; NAD: nonlinear anisotropic diffusion filter; W: local adaptive Wiener
filter; EPW: edge preserving Wiener filter); fingerp.: fingerprint; moons.: moon-surface.

Method Input PSNR lena boat camera fingerp. house moons. peppers bird
NID 22.1 30.4 28.3 27.2 25.6 30.2 30.4 29.3 32.0
NAD 22.1 29.5 28.4 26.6 27.7 29.5 29.1 28.7 29.9
W 22.1 30.1 28.2 27.4 24.3 29.4 30.1 28.9 31.1
EPW 22.1 31.2 29.3 28.2 27.9 31.3 31.0 30.5 32.8
NID 24.6 31.4 28.9 27.7 27.0 31.4 31.1 30.5 33.5
NAD 24.6 31.4 29.8 27.4 28.6 31.2 30.9 30.1 32.0
W 24.6 31.4 29.2 28.4 24.6 30.6 31.1 30.0 32.7
EPW 24.6 32.5 30.0 28.8 28.9 32.5 31.9 31.4 34.5
NID 28.1 32.2 29.5 28.2 28.4 32.5 31.7 31.7 34.9
NAD 28.1 33.4 31.2 28.2 29.5 33.5 32.8 31.6 34.6
W 28.1 32.8 30.2 29.3 24.9 32.1 32.5 31.3 34.6
EPW 28.1 33.5 31.6 29.6 29.9 33.6 33.0 32.5 36.1
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5 Summary and Conclusion

We combined the edge preserving idea of normalized convolution with the op-
timal estimation property of Wiener filtering deriving a filter method which
considers the signal and noise characteristics as well as preserves edges. Our
method is fast (requiring only the computation of the certainty map, the filter
design and a sequence of linear filtering afterwards) and outperforms not only
the locally adapted Wiener filter but also nonlinear methods like anisotropic
and nonlinear diffusion filtering. We combined the principle of convex filtering
and optimal linear Bayesian estimation to an optimal linear estimator for tensor
valued data.
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Abstract. Weighted averaging filters and nonlinear partial differential
equations (PDEs) are two popular concepts for discontinuity-preserving
denoising. In this paper we investigate novel relations between these fil-
ter classes: We deduce new PDEs as the scaling limit of the spatial step
size of discrete weighted averaging methods. In the one-dimensional set-
ting, a simple weighted averaging of both neighbouring pixels leads to a
modified Perona-Malik-type PDE with an additional acceleration factor
that provides sharper edges. A similar approach in the two-dimensional
setting yields PDEs that lack rotation invariance. This explains a typical
shortcoming of many averaging filters in 2-D. We propose a modification
leading to a novel, anisotropic PDE that is invariant under rotations.
By means of the example of the bilateral filter, we show that involving
a larger number of neighbouring pixels improves rotational invariance
in a natural way and leads to the same PDE formulation. Numerical
examples are presented that illustrate the usefulness of these processes.

1 Introduction

Adaptive averaging filters belong to the simplest and most effective tools for
image processing. Since taking the average of the grey values of all pixels in
a certain spatial neighbourhood is an intuitive concept, already early methods
in image processing use averaging filters: For example, in the beginning of the
1980s, Lee presented an averaging filter for image denoising [1]. In the litera-
ture, there is a whole variety of methods which use the concept of averaging
pixel grey values with weights depending on their tonal1 and spatial distance.
Some examples are adaptive smoothing [2] by Saint-Marc et al., adaptive weights
smoothing [3] by Polzehl and Spokoiny, or the W-estimator [4] by Winkler et
al. While many averaging filters work iteratively by applying small stencils, the
bilateral filter of Tomasi and Manduchi [5,6] in its original form is an example
for a noniterative averaging method: They proposed to use just one iteration
of an averaging scheme with a large stencil. Applications for other tasks than
image denoising are investigated by Smith and Brady with the SUSAN filter [7].
1 The tonal difference denotes the difference of grey values.

K. Franke et al. (Eds.): DAGM 2006, LNCS 4174, pp. 101–110, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Many local adaptive filters have been introduced in an intuitive manner. Re-
search on finding a systematic theoretical foundation for them started much
more recently: Barash [8], for instance, investigated connections between bilat-
eral filtering and nonlinear diffusion with a scalar-valued diffusivity, and Mrázek
et al. [9] have introduced a common framework for a number of adaptive fil-
ters that is based on minimising suitable energy functions. An overview over
several neighbourhood filtering techniques has been given by Buades et al. [10].
They start with integral formulations of neighbouring filters and relate them to
methods based on PDEs [10].

In general, PDE approximations of discrete averaging filters can be useful to
study the evolution of the results under iterated filtering, to prove equivalence
between seemingly different methods, and to investigate why and how a discrete
filter deviates from a rotationally invariant behaviour. Last but not least, these
scaling limits can also lead to novel PDEs with interesting properties.

The goal of our paper is to perform novel scaling limits of a specific class of
discrete adaptive averaging methods. This class includes local filters as well as
more global representatives such as bilateral filtering.

This paper is organised as follows: In Section 2 we start with a fully dis-
crete averaging filter and describe how a scaling limit of it can be related to
an accelerated variant of the Perona-Malik filter. These ideas are extended to
the two-dimensional case in Section 3. They motivate the use of an anisotropic
filter similar to the diffusion filter in [11]. In Section 4 we extract the same filter
as scaling limit of bilateral filtering. Numerical examples in Section 5 juxtapose
the behaviour of the scaling limits to the averaging filters they originate from.
Section 6 concludes the paper with a summary.

2 Averaging Filters and Scaling Limits in 1-D

Derivation of the Scaling Limit. We start with the consideration of an iter-
ative weighted averaging filter of the form

u0
i = fi

uk+1
i =

g
(∣∣∣uk

i+1−uk
i

h

∣∣∣)uk
i+1 + g

(∣∣∣uk
i−1−uk

i

h

∣∣∣) uk
i−1

g
(∣∣∣uk

i+1−uk
i

h

∣∣∣)+ g
(∣∣∣uk

i−1−uk
i

h

∣∣∣) (1)

where f ∈ R
n is an initial signal and uk denotes the processed signal at iteration

k ∈ N0. For each pixel uk+1
i , the filter takes the direct neighbours uk

i−1 and uk
i+1

into account for averaging. At the boundaries, we assume mirroring boundary
conditions, that means we have two dummy pixels uk

0 := uk
1 and uk

n+1 := uk
n.

Typically one chooses a decreasing positive function g such that the denominator
cannot be zero. This also implies that we always have convex combinations
which guarantees a maximum-minimum principle for the filter. One may use
e.g. the same function g as the diffusivities in nonlinear diffusion filtering [12],
for instance g(s) =

(
1 + s2/λ2

)−1
. We observe that the weights depend on the
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tonal distance between the pixel and its direct neighbours divided by the spatial
step size h > 0 between the two pixels. We introduce the abbreviations gk

i+ 1
2

:=

g
(∣∣∣uk

i+1−uk
i

h

∣∣∣) and rewrite (1) as
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) (4)

In this last form we notice that the iterative scheme contains finite differences
which approximate spatial derivatives of u. Now we assume that u and g are
sufficiently smooth to perform a Taylor expansion. For example, there appears
uk

i+1−uk
i

h = ∂xu
k
i+ 1

2
+ O(h2) in the scheme. Together with the abbreviations in-

troduced above this yields

gk
i+ 1

2
+gk

i− 1
2

= g

(∣∣∣∣∣uk
i+1 − uk

i
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∣∣∣∣∣
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(∣∣∣∣∣uk
i − uk

i−1

h

∣∣∣∣∣
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= 2g
(
|∂xu

k
i |
)
+O(h2) (5)

and thus we can write

uk+1
i = uk

i +
∂x

(
g(|∂xu

k
i |)∂xu

)
+O(h2)

1
h2

(
2g(|∂xuk

i |) +O(h2)
) . (6)

To understand the iteration indices k+1 and k as discrete samples of a continuous
time variable t we introduce a temporal step size τ > 0. Division of both sides
by τ leads to the equation

uk+1
i − uk

i

τ
=

∂x

(
g(|∂xu

k
i |)∂xu

)
+O(h2)

τ
h2

(
2g(|∂xuk

i |) +O(h2)
) (7)

where the left-hand side is an approximation for the temporal derivative ∂tu at
time level k with an error in the order O(τ). We set the ratio between h and τ
such that τ

h2 = 1
2 and let h tend to zero. Then (7) approximates

∂tu =
1

g(|∂xu|)
∂x (g(|∂xu|) ∂xu) (8)

with an error in the order of O(τ +h2). This equation is similar to the nonlinear
diffusion equation presented by Perona and Malik [12]:

∂tu = ∂x (g(|∂xu|) ∂xu) . (9)
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The only difference is the factor 1
g(|∂xu|) on the right-hand side which acts as an

acceleration of the Perona-Malik filtering process at edges. To understand this,
assume that |∂xu| is relatively small within a region. A classical Perona-Malik
diffusivity is close to 1 in this case, and the factor has only a small effect. More
interesting is the situation near an edge where ∂xu has large absolute value, and
backward diffusion can occur for the diffusivities presented by Perona and Malik.
In this case, g(|∂xu|) is close to zero, and thus 1

g(|∂xu|) leads to an amplification
of the backward diffusion behaviour. We can expect such equations to yield
sharper results than classical Perona-Malik PDEs. One the other hand, they do
not necessarily preserve the average grey value, since they cannot be written in
divergence form.

Stability of an Explicit Discretisation. Since classical diffusivities g may be
arbitrary close to zero, the fraction 1

g(|∂xu|) in (8) is not bounded. This might give
rise to concerns regarding stability. However, the weighted averging scheme (1)
inspires also ways how to obtain stable discretisations: An explicit Euler scheme
for (8) can be written as

uk+1
i = uk

i + τ
2

gk
i+ 1

2
+ gk

i− 1
2

1
h

(
gk

i+ 1
2

uk
i+1 − uk

i

h
− gk

i− 1
2

uk
i − uk

i−1

h

)
(10)

=
2τ
h2

gk
i+ 1

2

gk
i+ 1

2
+ gk

i− 1
2

uk
i+1 +

(
1− 2τ

h2

)
uk

i +
2τ
h2

gk
i− 1

2

gk
i+ 1

2
+ gk

i− 1
2

uk
i−1 (11)

with the same notation as above and with mirroring boundary conditions. We
note that the factors in front of uk

i+1, u
k
i and uk

i−1 sum up to 1. For τ ≤ h2

2

all three factors are nonnegative, and thus uk+1
i is a convex combination of the

three pixels: the scheme is maximum-minimum-stable. Further we see that for
the limit τ = h2

2 we obtain exactly the averaging filter (1). It should be noted
that the stability of our scheme is a consequence of the arithmetic mean used in
the fraction in (10) to approximate the diffusivity at the position of the pixel xi.

A Weighted Averaging Variant Involving the Central Pixel. The filter
(1) does not involve the central pixel ui itself in the average. This might cause
problems for certain initial signals: If we choose f to be an alternating signal with
two different values, then applying the filter will simply exchange the grey values.
To avoid this problem one can give the central pixel a nonnegative weight and
involve it in the averaging process. For example, such a modified scheme could
look like

uk+1
i =

g
(∣∣∣uk

i+1−uk
i

h

∣∣∣)uk
i+1 + αuk

i + g
(∣∣∣uk

i−1−uk
i

h

∣∣∣)uk
i−1

g
(∣∣∣uk

i+1−uk
i

h

∣∣∣)+ α+ g
(∣∣∣uk

i−1−uk
i

h

∣∣∣) (12)
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where we have given the central pixel a fixed weight α > 0. The same reasoning
as presented above relates this averaging filter to the PDE

∂tu =
1

α
2 + g(|∂xu|)

∂x (g(|∂xu|) ∂xu) . (13)

Here we see that there is still some factor influencing the velocity of the diffusion
process, but this factor now is bounded from above to 2

α . Compared to (8), this
slows down the evolution in regions with small derivatives of u.

3 Averaging Filters and Scaling Limits in 2-D

In this section we consider filtering of images with a two-dimensional domain
with weighted averaging over the direct neighbouring pixels. Let N (i) be the
set of indices of the maximal four direct neighbours of the pixel with index i.
Then an equivalent of the weighted averaging filter (1) in two dimensions can be
written as

uk+1
i =

∑
j∈N (i)

g

(∣∣∣∣uk
j −uk

i

h

∣∣∣∣)uk
j∑

j∈N (i)

g
(∣∣∣uk

j −uk
i

h

∣∣∣) . (14)

Numerator and denominator of this scheme can be understood as the sum of
numerators and denominators of two one-dimensional schemes in x- and y-
direction. Thus the reasoning described in the last section shows that (14) is
a consistent approximation for

∂tu =
∂x (g(|∂xu|)∂xu) + ∂y (g(|∂yu|)∂yu)

g(|∂xu|) + g(|∂yu|)
. (15)

This equation is not rotationally invariant, and thus will lead to artifacts in
images with rotational invariant objects. This indicates that also the weighted
averaging method (14) leads to such artifacts which is shown with a practical
example in Fig. 2.

To circumvent this shortcoming, we understand equation (15) as a crude ap-
proximation of the rotationally invariant equation

∂tu =
1

π∫
0

g(|∂eϕu|) dϕ
·

π∫
0

∂eϕ

(
g(|∂eϕu|)∂eϕu

)
dϕ (16)

where we write eϕ = (cos(ϕ), sin(ϕ))T for the unit vector in direction ϕ. In
(15) the integrals are approximated as trapez sums where only two evaluation
points of the integrands are used. Similar to [13] we introduce a smoothing of
the argument of the diffusivity by the convolution of u with a Gaussian kernel
of standard deviation σ, and we write uσ = Kσ ∗ u. This convolution can also
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simply be introduced in the arguments of the weights used in the averaging
process (14). It does not affect the reasoning leading to the PDE (16).

An equation similar to (16) has been studied in [11] in the context of
anisotropic diffusion filtering:

∂tu =
2
π

π∫
0

∂eϕ

(
g(|∂eϕuσ|)∂eϕu

)
dϕ. (17)

The proofs in [11] can be applied to show that (16) can be transformed into

∂tu =
1

trace(D(∇uσ))
div (D(∇uσ) · ∇u) (18)

with the diffusion tensor D(∇uσ) =
∫ π

0
eϕe

�
ϕ g(|∂eϕuσ|) dϕ. In [11] the eigenvec-

tors of this diffusion tensorD(∇uσ) are calculated as v1(ψ) = (− sin(ψ), cos(ψ))T

and v2(ψ) = (cos(ψ), sin(ψ))T where ∇uσ �= 0 and (r, ϕ) are the polar coordi-
nates of ∇uσ. That means v1 is the direction of the isophote of uσ (along an
edge), while v2 is the direction across the edge. The corresponding eigenvalues
are given by

λ1(∇uσ) =
∫ π

0

sin2(ϕ) g(|∂eϕuσ|) dϕ and (19)

λ2(∇uσ) =
∫ π

0

cos2(ϕ) g(|∂eϕuσ|) dϕ . (20)

Equation (18) is the relevant formulation for practical implementations. This
equation is rotationally invariant, since the eigenvectors follow a rotation of
the input image, and the eigenvalues are invariant under image rotations. Since
trace(D(∇uσ)) is always significantly larger than zero, the sharpening of the
edges will be less pronounced in this anisotropic case (similar to (13)). Never-
theless, we are going to see with numerical examples that not only preservation
of edges, but also sharpening is possible with this filter.

4 Larger Neighbourhood and Rotational Invariance

In the last section we have derived an anisotropic PDE filter from a weighted
averaging of the direct neighbouring pixels. To circumvent the lack of rotational
invariance in (15) we have understood it as a very crude approximation of the
rotational invariant approach (16). Nevertheless, there are discrete filters which
address the problem of lacking rotational invariance by involving information
from pixels in a larger neighborhood.

We consider here the prominent example of the bilateral filter [5,8,6]. Even
though this filter is proposed as a noniterative method, it can make sense to
perform several filtering steps; thus we understand it as an iterative averaging
filter. In one filtering step, not only the direct neighbouring pixels are involved
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in the averaging, but an extended neighbourhood i + BR. Here BR = {j ∈ R2 :
|j| ≤ R} ∩ Gh denotes the intersection of the disc of radius R in R2 with the
pixel grid Gh. A variant of the bilateral filter then looks like this:

uk+1
i =

∑
j∈BR

g

(
|uk

i+j−uk
i |

|j|

)
w(|j|)
|j|2 uk

i+j∑
j∈BR

g
( |uk

i+j−uk
i |

|j|

)
w(|j|)
|j|2

. (21)

The spatial distance between ui and ui+j results in a usually smaller weight
w(|j|)/|j|2, where an example for w is w(h) = h2 exp(−h2). In this special ex-
ample, w leads to a Gaussian weight depending on the distance of the two pixels.

We now want to imitate the approach presented in Section 2. To this end we
only consider one half of the disc B+

R = {(x, y) ∈ BR|x ≥ 0} and rewrite the
sums in (21) as

uk+1
i =

∑
j∈B+

R

w(|j|)
|j|2

(
g

(
|uk

i+j−uk
i |

|j|

)
uk

i+j + g

(
|uk

i −uk
i−j |

|j|

)
uk

i−j

)
∑

j∈B+
R

w(|j|)
|j|2

(
g
( |uk

i+j−uk
i |

|j|

)
+ g
( |uk

i −uk
i−j |

|j|

)) . (22)

The novelty in this two-dimensional case is that we have to consider several
directional derivatives. We see that there appear directional finite differences in
(22). Let eϕ = j

|j| be the unit vector pointing in the direction of j �= 0, and
h = |j| be the length of the vector j. A Taylor expansion of u around the pixel
i yields

ui+j = ui + 〈∇u, j〉+O(h2) = ui + (∂eϕu) · h +O(h2)

which will be useful in the form
ui+j − ui

h
= ∂eϕu+O(h) . (23)

Applying the Taylor formula (23) to (22) allows us to write

uk+1
i − uk

i =

∑
j∈B+

R

w(h)
(
∂eϕ

(
g(|∂eϕu|)∂eϕu

)
+O(h2)

)
∑

j∈B+
R

2w(h)
h2

(
g(|∂eϕu|) +O(h2)

) (24)

At this point we investigate the scaling limit if we let the spatial step sizes in
x- and y-direction tend to zero while we keep the size R of the neighbourhood
fixed. This means that the number of grid points in our neighbourhood BR is
tending to infinity. Thus we can consider the sums in (24) as Riemann sums
which approximate integrals over the set B+

R :

uk+1−uk =
1

R∫
0

2w(h)
h2

π∫
0

g(|∂eϕu
k|) dϕdh

·
R∫

0

w(h)

π∫
0

∂eϕ

(
g(|∂eϕu

k|)∂eϕu
k
)
dϕdh

(25)
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Since the inner integrals do not depend on the radius r, the outer ones are just
a scaling factor, that means (25) is corresponding up to a constant factor to

uk+1 − uk =
1

π∫
0

g(|∂eϕu
k|) dϕ

·
π∫

0

∂eϕ

(
g(|∂eϕu

k|)∂eϕu
k
)
dϕ . (26)

If we understand the right-hand side as temporal forward difference we can see
(26) as an approximation to (16). This provides a novel interpretation of bilateral
filtering as an anisotropic PDE.

5 Experiments

Now we show some numerical examples to illustrate the practical behaviour of
averaging methods and our novel PDE methods. As weight function or diffusivity

we use the classical diffusivity g(s) =
(
1 + s2

λ2

)−1

by Perona and Malik [12].
First we display an experiment in the one-dimensional case in Fig. 1. We see

that the presence of the acceleration factor allows for sharper edges. With the
same evolution time we can achieve a stronger edge enhancement than with a
classical nonlinear diffusion equation of Perona-Malik type.

Figure 2 visualises the lack of rotational invariance of local averaging filters
and how it can be improved with a larger neighbourhood in the bilateral filter.
Even a better effect than extending the neighbourhood can be achieved with the
anisotropic nonlinear diffusion equation (16).

Figure 3 shows the denoising capabilities of the anisotropic diffusion equation
(16) for real-world data. The anisotropic behaviour is clearly visible.

6 Conclusions

We have described the close relationship between weighted averaging processes
and filters based on partial differential equations with an acceleration factor. In
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Fig. 1. Accelerated Perona-Malik diffusion in 1-D. Left: Original signal (64 point
width section of a signal with 256 pixels). Middle: Perona-Malik diffusion (λ = 0.005,
t = 5000). Right: Perona-Malik diffusion with additional factor (8) and the same pa-
rameters.
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Fig. 2. Weighted averaging and accelerated diffusion. Top Left: Original image (size:
256 x 256 pixels). Top Right: Weighted averaging (equation (14), λ = 3.0, 15000 it-
erations). Bottom Left: Iterated bilateral filtering (λ = 3.0, window size 5 × 5 pixels,
w(h) = h2 exp

(−h2/4
)
, 5000 iterations). Bottom Right: Accelerated anisotropic diffu-

sion (λ = 10, σ = 2, t = 1660).

Fig. 3. Accelerated diffusion. Left: Original image (size: 256 x 256 pixels) and additive
Gaussian noise with standard deviation 50. Middle: Accelerated anisotropic diffusion
(λ = 2, σ = 3, t = 2). Right: Same, but with t = 10.

the 1-D setting we have shown that a suitable scaling limit leads to a modifica-
tion of the nonlinear diffusion filter of Perona and Malik [12]. The modification
consists of a factor that accelerates the sharpening of edges and may give an
improved edge enhancement. In the two-dimensional setting, choosing only a
small neighbourhood for the averaging can lead to lack of rotational invariance.
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However, it can be regarded as a crude approximation of a rotationally invariant
PDE that resembles the anisotropic diffusion filter of Weickert [11]. We have
also derived the same PDE as a scaling limit of bilateral filtering. This provides
additional insights in the behaviour of the widely-used bilateral filter, and shows
a way how to improve its invariance under rotations. It is our hope that these
examples will motivate more people to analyse the fruitful connections between
averaging filters and PDE-based methods in the future.

Acknowledgements. We gratefully acknowledge partly funding by the Deut-
sche Forschungsgemeinschaft (DFG), project WE 2602/2-2.
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Abstract. The paper presents an unsupervised method for partially-
blurred image restoration without influencing unblurred regions or
objects. Maximum a posteriori estimation of parameters in Bayesian reg-
ularization is equal to minimizing energy of a dataset for a given number
of classes. To estimate the point spread function (PSF), a parametric
model space is introduced to reduce the searching uncertainty for PSF
model selection. Simultaneously, PSF self-initializing does not rely on su-
pervision or thresholds. In the image domain, a gradient map as a priori
knowledge is derived not only for dynamically choosing nonlinear diffu-
sion operators but also for segregating blurred and unblurred regions via
an extended graph-theoretic method. The cost functions with respect to
the image and the PSF are alternately minimized in a convex manner.
The algorithm is robust in that it can handle images that are formed in
variational environments with different blur and stronger noise.

1 Introduction

The challenge of blind image deconvolution (BID) is to uniquely define the opti-
mized signals from degraded images with unknown blur information, which is an
ill-posed problem in the sense of Hadamard. However, knowledge of the direct
model is not sufficient to determine an existing, unique and stable solution, and
it is necessary to regularize the solution using some a priori knowledge. Math-
ematically, the a priori knowledge is often expressed through a regularization
theory [1] which replaces an ill-posed problem by a well-posed problem with an
acceptable approximation to the solution.

In the real world, CCD and CMOS camera images or medical images are
often blurred or partially-blurred in a stationary or non-stationary way. BID
of partially-blurred images is to restore blurred regions without influencing un-
blurred regions for achieving better visual perception based on the Gestalt the-
ory, shown in Fig. 1. To achieve this, blurred regions or objects have to be blur
identified, segregated and restored respectively. Different characteristic proper-
ties [2,3] (gradient, frequency, entropy, etc.) between blurred and unblurred re-
gions or objects endowed with pairwise relationships can be naturally considered
as a graph. Thus, we treat BID of partially-blurred images as a combinatorial

K. Franke et al. (Eds.): DAGM 2006, LNCS 4174, pp. 111–121, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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optimization problem including graph partitioning [4,5], blur identification and
edge-driven image restoration.

Our work relates to the deterministic edge-preserving image restoration [6,7],
and nonlinear filtering techniques incorporated in variational methods [8,9,10].
Since the traditional edge-preserving methods have some limitations of noise
processing due to the unique diffusion operator and passively edge-preserving
processes. Likewise, most nonlinear diffusion techniques are studied for the well
adapted input data with underlying geometric assumptions [11]. Recently, vari-
ational regularization for image restoration [12,13,14] have been investigated.
These methods are observed in underutilizing prior information. The initial-
ization problem for deterministic optimization is still not progressively solved.
Even if a unique solution exists, a proper initialization value is still intractable,
e.g., when the cost function is non-convex, convergence to local minima often
occurs without proper initialization. [15] have reported that the estimates for
the PSF could vary significantly, depending on the initialization. For restoring
partially-blurred images, it is also not possible to directly apply these methods.
Hence, general strategies are still needed for solving the blur problem as well as
achieving better visual perception for partially-blurred image restoration.

In this paper, we propose a Bayesian based variational regularization. In Sec-
tion 2, it is shown that the Bayesian approach [15,16] provides a structured way
for introducing prior knowledge from the image domain and the PSF domain.
In Section 3 and 4, alternate blur identification and edge-driven image restora-
tion are discussed. The proposed blur kernel space including most existing PSF
parametric models reduces the searching dimension and uncertainty efficiently
for PSF self-learning. Thus, the self-learning PSF can be an accurate initial value
for yielding a unique solution. Alternately, computed edge gradients are derived
as a priori knowledge for choosing image diffusion operators [13,17] in a dy-
namic and continuous processing mechanism. An extended bisection-partitioning
method for identifying and segregating blurred and unblurred regions or objects
is presented in Section 5. Different edge gradients and blur information in differ-
ent regions are a priori knowledge to achieve a high perceptual quality segmen-
tation according to a clustering criterion [4] without any supervision. Likewise,
deconvolution and edge-driven image diffusion improve perceptual quality for re-
toring partially-blurred images without influencing unblurred regions or objects.
The experimental results are shown in Section 6. Conclusions are presented in
Section 7.

2 Bayesian Estimation Based Variational Regularization

An observed image g in the image plane is normally an ideal image f in the
object plane degraded by two unknown factors, including linear space-invariant
blur kernel (PSF) h and additive white Gaussian noise n. It can be formulated
in a lexicographic notation, g = h ∗ f +n, where ∗ denotes two-dimensional con-
volution. Following a Bayesian paradigm, the ideal image f , the PSF h and the
observed image g fulfill p(f, h|g) = p(g|f, h)p(f, h)/p(g) ∝ p(g|f, h)p(f, h). Based
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(a) (b) (c)

Fig. 1. (a) Original video. (b) Identified unblurred region. (c) Blurred background.

on this form, our goal is to find the optimal f̂ and ĥ that maximizes the posterior
p(f, h|g). F(f |h, g) = − log{p(g|f, h)p(f)} and F(h|f, g) = − log{p(g|f, h)p(h)}
express that the energy cost F is equivalent to the negative log-likelihood of the
data. The priors p(f) and p(h) over the parameters are penalty terms added to
the cost function to minimize the energy cost in a regularization framework for
solving ill-posed problems [1,6,15,16]. To avoid stochastic optimization (longer
computing time)[18,19,20], we solve the optimization problem deterministically
[6,7,21] in a convex manner with respect to the image and the PSF. The pro-
posed variational double regularized energy functional in a Bayesian framework
is formulated according to

F(f̂ , ĥ) =
∫

Ω

(g − ĥ ∗ f̂)2dA︸ ︷︷ ︸
fidelityTerm

+λ
∫

Ω

φε(x,∇f̂)dA︸ ︷︷ ︸
imageSmoothing

+β
∫

Ω

|∇ĥ|dA︸ ︷︷ ︸
psfSmoothing

+γ
∫

Ω

|ĥ − ĥf |dA︸ ︷︷ ︸
psfLearning

where dA = dxdy. The estimates of the ideal image f and the PSF h are denoted
by f̂ and ĥ respectively which can be iteratively alternating minimized (AM) [21].
The image smoothing term is a variable exponent, nonlinear diffusion term [13].
The PSF smoothing term represents the regularization of blur kernels. The flexi-
bility of the last term denotes the PSF learning decision of the best-fit parametric
model ĥf . The primary objective of this learning decision approach is to evaluate
the relevance of the parametric structure and integrate the information into the
learning scheme accordingly. It can adjust and incorporate the PSF parametric
model throughout the process of blur identification and image restoration.

3 Simultaneous Model Selection and Self-initializing PSF

Generally, power spectral densities vary considerably from low frequency uniform
regions to medium or high frequency discontinuities and texture regions in a real
blurred image. Moreover, most PSFs exist in the form of low-pass filters. To a cer-
tain degree, PSF models in numerous real blurred images can be represented as
parametric models. Blur identification can be based on these characteristic prop-
erties. Compared to general priors, e.g., Gibbs distribution [18,19], smoothness
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prior [15] or maximum entropy [18], we define a set of primary parametric blur
models in a priori model space Θ for model selection based Bayesian PSF estima-
tion. It consists of the most typical blur models in Θ = {hi(θ), i = 1, 2, 3, ..., N}.
hi(θ) represents the ith PSF parametric model with its defining parameters θ,
and N is the number of blur types such as pillbox blur, Gaussian blur, 1D and
2D linear motion blur and out-of-focus blur, etc.

Based on the model space, an unsupervised self-initializing PSF learning term
can learn a PSF parametric model according to the following energy functional,

F(ĥ|f̂ , g) = 1
2

∫
Ω

(g − ĥ ∗ f̂)2dA+ β

∫
Ω

|∇ĥ|dA+ γ

∫
Ω

|ĥ− ĥf |dA (1)

where the likelihood is p(g|f̂ , ĥ) ∝ exp{− 1
2

∫
Ω (g − ĥ ∗ f̂)2dA}, p(ĥ) is the prior

density. Since an image represents intensity distributions that cannot take nega-
tive values, the PSF coefficients are always nonnegative, h(x) ≥ 0. Furthermore,
since image formation system normally do not absorb or generate energy, the
PSF should fulfill

∑
x∈Ω h (x) = 1.0 , x ∈ Ω and Ω ⊂ R2.

A MAP estimator is used to determine the best fit model hi(θ∗) for the es-
timated PSF ĥ in resembling the ith parametric model hi(θ) in a multivariate
Gaussian distribution. The subscript i denotes the index of blur kernel. hi(θ∗) =
argmaxθ{(2π)

−LB
2 |∑ dd|−1

2 · exp[− 1
2 (hi(θ) − ĥ)T

∑−1
dd (hi(θ) − ĥ)]}. The mod-

eling error d = hi(θ) − ĥ is assumed to be a zero-mean homogeneous Gaus-
sian distributed white noise with covariance matrix

∑
dd = σ2

dI independent
of image. LB is an assumed support size of blur. The PSF learning likeli-
hood is computed based on mahalanobis distance and corresponding model
li(ĥ) = 1

2exp[(hi(θ∗) − ĥ)t
∑−1

dd (hi(θ∗) − ĥ)]. A best fit model hi(θ) for ĥ is
selected according to the Gaussian distribution and a cluster filter. We use a
K-NN rule to find the estimated output blur model ĥf . ĥf is obtained from
the parametric blur models using ĥf = [l0(ĥ)ĥ +

∑C
i=1 li(ĥ)hi(θ)]/[

∑C
i=1 li(ĥ)],

where l0(ĥ) = 1 −max(li(ĥ)), i = 1, ..., C. The main objective is to assess the
relevance of current estimated blur ĥ with respect to parametric PSF models,
and to integrate such knowledge progressively into the computation scheme.

If the current blur ĥ is close to the estimated PSF model ĥf , that means
ĥ belongs to a predefined parametric model. Otherwise, if ĥ differs from ĥf

significantly, it means that current blur ĥ may not belong to the predefined
priors. The prior space reduces the uncertainty of model selection and largely
improve the efficiency for PSF self-initializing in practice.

4 Dynamic Edge-Driven Regularization in Image Domain

During the alternate minimization (AM) with respect to the estimates of the
PSF and the image, the previous computed PSF is a priori knowledge for the
next iterative image deconvolution. However, we need diffusion operators to com-
pensate and smooth the “ringing” or “staircase” effects for achieving a restored
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image f̂ with more fidelity and high quality visual perception. In the AM, the
image energy function is minimized according to the following formulation,

F(f̂ |ĥ, g) =
1
2

∫
Ω

(g − ĥ ∗ f̂)
2
dA+λ

∫
Ω

φε(x,∇f̂)dA (2)

where the likelihood is p(g|f̂ , ĥ) ∝ exp{− 1
2

∫
Ω

(g − ĥ ∗ f̂)2dA}. Different from
most passively edge-preserving restoration approaches [6,7,11], the smoothing
operator p(f̂) ∝ exp{−

∫
Ω
φε(x,∇f̂)dA} as a priori knowledge is extended to a

convex nonlinear diffusion functional with variable exponent [13]. The significant
advantage of this operator is its robustness with respect noise and actively edge-
preserving processes in that the chosen diffusion operators oriented dynamically
and continuously. The optimization for the cost function Eq. (2) is numerically
solved using its associated Euler-Lagrange equation, λdiv(φε(x,∇f̂)) + (f̂ ∗ ĥ−
g) = 0, in Ω × [0, T ]. We indicate with div the divergence operator, and with
∇ and Δ respectively the gradient and Laplacian operators, with respect to the
space variables. The Neumann boundary condition ∂f̂

∂n (x, t) = 0 on ∂Ω × [0, T ]
and the initial condition f̂(x, 0) = f0(x) = g in Ω are used, n is the direc-
tion perpendicular to the boundary. Based on variable exponent, linear growth
function [13] and physical simulation [17], the diffusion operator is computed in,
div(φε(x,∇f̂ )) =

|∇f̂ |p(x)−2︸ ︷︷ ︸
Coefficient

[(p(x) − 1)Δf̂︸ ︷︷ ︸
IsotropicTerm

+ (2− p(x))|∇f̂ |div( ∇f̂
|∇f̂ |

)︸ ︷︷ ︸
CurvatureTerm

+∇p · ∇f̂ log |∇f̂ |︸ ︷︷ ︸
HyperbolicTerm

]
(3)

where p(x) = 1 + 1
1+k|∇Gσ∗I(x)|2 , when |∇f̂ | < β and p(x) = 1, otherwise. β > 0

is a fixed value. I(x) is the observed image g(x), Gσ(x) = 1
σexp(

−|x|2
2σ2 ) is a

Gaussian filter, k > 0, σ > 0 are fixed parameters. The operator div(φε(x,∇f̂))
is discretized with a small positive constant ε based on central differences for
the coefficient and isotropic term, minmod scheme for the curvature term, and
upwind finite difference scheme developed by Osher and Sethian for curve evo-
lution [17] for the hyperbolic term which can largely improve the signal-to-noise
ratio and human visual perception.

The term p(x) ∈ [1, 2] is continuously computed based on the constraints of
edge gradients. In homogeneous regions, the differences of intensity between the
neighboring pixels are small, p(x) → 2. The isotropic diffusion operator (Laplace)
is used in such regions. In non-homogeneous regions (near discontinuities), the
anisotropic diffusion filter is chosen continuously based on the gradient values
1 < p(x) < 2. The reason is that the chosen discrete anisotropic operators will
hamper the recovery of edges. Simultaneously, the nonlinear diffusion operator
for piecewise image smoothing is processed during image deconvolution based on
a previously estimated PSF. Finally, coupled estimation of PSFs (blur identifica-
tion) and images (debluring + denoising + smoothing) are alternately optimized
applying a stopping criteria. Hence, over-smoothing and under-smoothing near
discontinuities are avoided on pixel level.
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5 Segregation of Blurred and Unblurred Regions

Some significant differences (local scale [3,8], sharpness and contrast [2], and
piecewise smoothing [14]) between pairwise blurred regions and unblurred re-
gions can be considered as natural prior knowledge for measuring the low-level
similarities for segregation using a global graph-clustering criterion.

We set up the vertices of a graph G = (V,E) into two sets A and B to mini-
mize the number of cut edges, i.e., edges with one endpoint in A and the other in
B, where V = {vi}n

i=1 are the vertices and E ⊆ {(vi, vj)} are the edges between
these vertices. V can correspond to pixels in an image or set of connected pixels.
The bisection problem can be formulated as the minimization of a quadratic
objective function by means of the Laplacian matrix L = L(G) of the graph G.
Let d(i) denote the degree of a vertex i, i.e., the number of vertices adjacent to
i. The Laplacian matrix L can be expressed in terms of two matrices associated
with a graph as L = D−W in positive semidefinite [22], W = {wij} is the adja-
cency matrix of a graph, and D is the n×n diagonal matrix of the degrees of the
vertices in G. Let x be an n-vector with component xi = 1 if i ∈ A and xi = −1 if
x ∈ B, then xTLx = xTDx−xTWx =

∑n
i=1 dix

2
i =
∑

(i,j)∈E,i∈A,j∈B (xi − xj)2.
Thus the bisection problem is equivalent to the problem of maximizing similarity
of the objects within each cluster, or, find a cut edge through the graph G with
minimal weight in the formulation of max(xTWx) ⇐⇒ min(xTLx).

Since the bisection-partitioning problem is NP-complete, we need to approx-
imate this intractable problem by some relaxing constraints . Likewise, to avoid
unnatural bias for partitioning out small sets of points, Shi and Malik [4] pro-
posed a new measure of the disassociation between two groups. Instead of look-
ing at the value of total edge weight connecting the two partitions, the cut
cost is computed as a fraction of the total edge connections to all the nodes
in the graph. This disassociation measure is called the normalized cut (Ncut):
Ncut(A,B) = cur(A,B)

asso(A,V ) + cut(A,B)
asso(A,V ) . A and B are two initial sets. Different from

the weight measurement in [4], we measure the degree of dissimilarity between
pairwise blurred and unblurred regions based on the special characteristic prop-
erties, i.e., stronger difference of edge gradients, pairwise blur and unblur. The
edge weight wij between node i and j as the product of a feature similarity

term and spatial proximity term: wij = exp
−‖Q(i)−Q(j)‖2

2
σI

∗ exp−‖X(i)−X(j)‖2
2

σX
, if

(‖X(i)−X(j)‖2) < r, and wij = 0, otherwise. Q(i) = ∇Gσ ∗ I(x) is the edge
gradients and large differences between pairwise blurred and unblurred regions.
Gσ is a Gaussian filter, I(x) is an input image, X(i) is the spatial location of node
i. The advantage of the suggested algorithm is its directness and simplicity. The
high quality segregation of blurred and unblurred regions or objects in Fig. 2 is
guided dynamically by computed prior values without any supervision.

6 Experiments and Discussion

Alternate Minimization (AM) of PSF and Image Energy. To avoid
the scale problem between the minimization of the PSF and image via
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Fig. 2. Left: Identified unblurred foreground walking man from blurred background.
Right: Identified blurred foreground walking man from unblurred background.

steepest descent, an AM method [12,21] following the idea of coordinate descent
is applied. The AM algorithm decreases complexity. The choice of regularization
parameters is crucial. We use L-curve [23] due to its robustness with respect to
correlated noise. The global convergence of the algorithm to the local minima
of cost functions can be established by noting the two steps in the algorithm.
Since the convergence with respect to the PSF and the image are optimized
alternatively, the flexibility of this proposed algorithm allows us to use con-
jugate gradient algorithm for computing the convergence. Conjugate gradient
methods utilize the conjugate direction instead of local gradient to search for
the minima. Therefore, it is faster and also requires less memory when com-
pared with the other methods. A meaningful measure called normalized mean
square-error (NMSE) is used to evaluate the performance of the identified blur,
NMSE = (

∑
x

∑
y (h(x, y)− ĥ(x, y))2)1/2/(

∑
x

∑
y h(x, y)), and the restored

images are measured by peak signal-to-noise ratio (PSNR) in decibels (dB)
as PSNR = 10 log10(2552/MSE) with MSE = |Ω|−1

∑
xi∈Ω[f(xi) − f̂(xi)]2,

where f is the noise-free ideal image and f̂ is the restored image.

Denoising and Blind Deconvolution for Noisy and Blurred Images.
Firstly, we have studied the importance of diffusion in the regularization based
image deconvolution, shown in Fig. 3. The second experiments demonstrate the
efficiency of the suggested edge-driven diffusion method. From visual perception
and denoising viewpoint, our unsupervised edge-driven method favorably com-
pares to some state-of-the-art methods: the TV [9], a statistic-wavelet method
(GSM) [24] and a Markov random field based filter learning method (FoE) [20]
using a PIII 1.8GHz PC. In Fig. 4, the structure of the restored fingerprint is
largely enhanced than the original image in our method and more recognizable
than the restored image using the GSM method [24]. Fig. 5 shows the advantage
of our method, while the TV method [9] has some piecewise constant effects
during the denoising. Table 1 shows the different properties of different methods
and also shows our method outperforms most of these methods. To achieve sim-
ilar results, FoE [20] needs more time. Our method (100 iter.) is faster than the
TV method (30 iter.) in that our method does not over-smooth and generate re-
dundant image discontinuities. The GSM [24] method is relatively faster due to
the computation in the Fourier domain. However, the GSM is only designed for
denoising. The dual-purpose edge-driven method is not only for denoising but
also for compensating the “ringing” and “staircase” effects and for protecting
the image structure and textures during the image deconvolution.
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Fig. 3. Deconvolution with known PSF without using diffusion operator. Left: Blurred
image. Middle: Deconvolution of Gaussian blur. Right: Deconvolution of motion blur.

Fig. 4. Fingerprint denoising. Left: Cropped noisy image, SNR = 8 dB. Middle: GSM
method[24] PSNR=27.8. dB Right: The suggested method PSNR= 28.6 dB.

Fig. 5. Denoising. Left: Unblurred noisy image, SNR=8dB, size: [256, 256]. Middle: TV
method, PSNR = 27.1 dB. Right: Edge-driven diffusion, PSNR = 30.2 dB.

Table 1. Denoising performance of different methods on PSNR (dB)

PSNR σ = 17.5, SNR ≈ 8.7 dB, size [512,512] Iter(n) Time(s)
(dB) Lena Barbara Boats House Pepper fingerprint Number Second
Our Met. 32.26 31.25 31.01 31.85 30.61 28.81 100 600 ∼ 650
TV.[9] 31.28 26.33 29.42 31.33 24.57 27.29 30 800 ∼ 820
FoE[20] 32.11 27.65 30.26 32.51 30.42 26.41 1 ∼ 3 × 103 3 ∼ 9 × 103

GSM[24] 32.72 30.12 30.58 32.69 30.78 28.59 100 140 ∼ 180



Dynamic Prior Knowledge to Partially-Blurred Image Restoration 119

Fig. 6. Deconvolution and denoising. Left: From top to bottom: SNR = 20dB and
12dB, size: [256, 256]. Middle: L-R method with known PSF. Right: The suggested
method with unknown PSF.

For blind deconvolution, we compare the classical Lucy-Richardson (L-R) de-
convolution method with known PSF to the suggested method with unknown
PSF. A MRI image is heavily blurred with two level of noise 20 dB and 12
dB, shown in the first column of Fig. 6. The noise is amplified during the L-R
deconvolution with known PSF, shown in the middle column. In the suggested
method, the self-initialized PSF is iteratively parametric optimized in the AM
algorithm. Diffusion operators vary with the coefficient p(x) in the interval [1, 2]
continuously. The estimated PSF supports the image smoothing coefficients pro-
gressively till the best recovered image is reached, shown in the right column.
From the restored images, we can observe that the low frequency regions are
more smooth while the fine details of discontinuities (high frequency regions)
are preserved during the image deconvolution. The experiment demonstrates the
flexibility of Bayesian based double regularization method which can accurately
identify the blur and restore images using edge-driven nonlinear image opera-
tors. The results also show that the denoising and debluring can be achieved
simultaneously even under the presence of stronger noise and blur.

Identification and segregation of partially-blurred, noisy images or video se-
quences have good performance using the suggested method, shown in Fig. 1
and Fig. 2. Cluttering blurred or unblurred background does not influence the
segmentation and identification of unblurred or blurred objects. These object
boundaries with different computing weights are grouped into different groups
via the extended global cluster criterion with blur and edge priors. The seg-
mentation results are labeled and color filled following the partitioned regions.
The experimental results show that the method yields encouraging results under
different kinds and amounts of noise and blur. We applied our method to all
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the related images and video data, but due to space limitations we refer the
interested reader to our web-page www.cv.tu-berlin.de/∼hzheng/dagm06.html.

7 Conclusions

This paper validates the hypothesis that the challenging task of nonlinear dif-
fusion and BID are tightly coupled in a variational regularized Bayesian esti-
mation. Firstly, it provides a statistic self-initializing value in regularization for
blur identification. Secondly, it shows a theoretically and experimentally sound
way of how local diffusion operators are changed dynamically via a priori knowl-
edge of edge gradients. The estimated PSF is the prior knowledge for the next
iteration of image estimation in the alternating minimization, and vice versa. Fi-
nally, a graph-theoretical approach is extended to segregate and identify blurred
and unblurred regions or objects. The integrated approach also demonstrates
that the mutual supports between natural prior knowledge and low-level image
processing have great potential role to improve the results in early vision.
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Abstract. Active Shape Models are commonly used to recognize and locate dif-
ferent aspects of known rigid objects. However, they require an off-line learning
stage, such that the extension of an existing model requires a complete new re-
training phase. Furthermore, learning is based on principal component analysis
and requires perfect training data that is not corrupted by partial occlusions or im-
perfect segmentation. The contribution of this paper is twofold: First, we present
a novel robust Active Shape Model that can handle corrupted shape data. Sec-
ond, this model can be created on-line through the use of a robust incremental
PCA algorithm. Thus, an already partially learned Active Shape Model can be
used for segmentation of a new image in a level set framework and the result of
this segmentation process can be used for an on-line update of the robust model.
Our experimental results demonstrate the robustness and the flexibility of this
new model, which is at the same time computationally much more efficient than
previous ASMs using batch or iterated batch PCA.

1 Introduction

Prior knowledge of the object contour/shape is used to improve the result in many com-
puter vision approaches dealing with segmentation, object detection or tracking. A com-
mon approach, to model different aspects of rigid objects in a shape prior formalism, is
the use of Active Shape Models (ASMs) proposed by Cootes et al. [4, 5]. The standard
ASM framework consists of two stages: (1) the modeling/learning and (2) the segmen-
tation/detection stage.

In this paper we use a level set segmentation framework. Level set representation [14]
is an established technique for image segmentation. Over the years several different
level set models of ASMs have been presented (e.g., [16, 6]). In particular, we use the
level set representation of Rousson and Paragios [16]. To avoid unnecessary computa-
tion and numerical errors, we work with the level set shape representation and avoid a
conversion to the classical landmark representation used in [5].

K. Franke et al. (Eds.): DAGM 2006, LNCS 4174, pp. 122–131, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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In the learning stage, a set of registered training shapes is used to model different
aspects of a model. Generally ASM approaches use a batch (off-line) version of Princi-
pal Component Analysis (PCA) [11] for learning, that has two main disadvantages: (1)
the approach is not robust in the recognition nor in the training [12, 18] (but, we might
receive data that is corrupted by partial occlusions or imperfect segmentation) and (2)
all training data has to be provided a priori, thus, hand segmentation is required and the
shape model cannot be extended as new segmentation results become available.

Various approaches have been proposed to introduce robustness in the recognition
stage (e.g., [15,1,12]). For these methods it is assumed that the samples in the learning
stage are undisturbed. Robust learning is a more difficult problem, since there is no
previous knowledge that can be used to estimate outliers. Several methods have been
proposed to robustly extract the principal axes in the presence of outliers [7, 21]. Other
approaches use robust M-estimator [7] or are based on the EM formulation of PCA [17,
20, 18]. Using a robust approach in our framework has two advantages: (1) the robust
reconstruction from the ASM allows a much better segmentation of occluded objects
and (2) robust learning on the improved segmentation results provides a better shape
representation.

We use an incremental PCA approach in our ASM. Applying an incremental method,
we can efficiently build and update an ASM that is used for the segmentation process,
i.e., we can use the partially learned ASM to perform segmentation and use the seg-
mentation result to retrain the ASM. Different incremental PCA approaches have been
proposed that are based on incremental SVD-updating (e.g., [9, 2]). Recently even ro-
bust and incremental [13, 19] approaches have been proposed. In particular we apply a
simplified version of the approach of Skočaj and Leonardis [19] to learn the ASM that
will be explained in Section 2.2.

Applying this incremental and robust PCA method, we need a priori only a small
hand segmented data set to initialize our ASM. This first model provides shape priors
for the segmentation process. Furthermore, the Active Shape Model can be successively
updated with new data from the segmentation process.

The outline of the paper is as follows: Section 2 explains our system and gives a
short description of its components. In Section 2.1, we describe the shape registration.
In Section 2.2, we introduce in detail the Robust Incremental PCA. Experiments are
presented in Section 3 and finally, conclusions are drawn in Section 4.

2 Incremental Robust Active Shape Model

Fig. 1 depicts our proposed method, which is split into two components: (i) the seg-
mentation module and (ii) our novel ASM module. For the segmentation, we use the
approach proposed by Fussenegger et al. [8] which is based on the level set formulations
by Rousson and Paragios [16] and Brox and Weickert [3].

The output of the segmentation module is the distance function Φ(x), Φ : Ω → IR,
with Φ(x) > 0, if x lies in the shape and Φ(x) < 0, if x lies out of the shape. Ω is the
image domain and x denotes a pixel in Ω. In order to avoid unnecessary computation
and numerical errors, we use directly this distance function as the shape representation
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Fig. 1. Our System consisting of two interacting components: The level set segmentation [8] and
our novel Active Shape Model

instead of the landmark representation used in [4, 5]. However, our ASM can be easily
adapted to alternative shape representations for use with other segmentation approaches.

In a first step, the ASM module is initialized with a training set of non corrupted,
aligned shapes characterizing different aspects of an object to learn a first Active Shape
Model. This learned ASM is then used in the segmentation process. After each level
set iteration step the current result Φi is passed from the segmentation module to the
ASM module. A registration process (Section 2.1) applies a similarity transformation
A on Φi to map it with ΦM in the best way. ΦM is the mean shape calculated over the
already learned shapes.Φi is then projected to the eigenspace and robustly reconstructed
(Section 2.2). The reconstruction Φ̃i is passed to the segmentation module and used as
a shape prior in the next level set iteration step. This is repeated until the segmentation
process ends. The final result is used to update and improve our ASM.

2.1 Shape Registration

For the shape registration, we assume a global deformation A between ΦM (the mean
shape) and Φ (the new shape) that involves the parameters [A = (s; θ; T)] with a scale
factor s, a rotation angle θ and a translation vector T [16]. The objective function

E(ΦM , Φ(A)) =
∫

Ω

(sΦM − Φ(A))2dx (1)

can be used to recover the optimal registration parameters. The rigid transformation
A is dynamically updated to map ΦM and Φ in the best way. Thus, the calculus of
variations for the parameters of A yields the system

∂s

∂t
= 2
∫

Ω

(sΦM − Φ(A))(ΦM −∇Φ(A)
∂

∂s
A)dx

∂θ

∂t
= 2
∫

Ω

(sΦM − Φ(A))(−∇Φ(A)
∂

∂θ
A)dx

∂T
∂t

= 2
∫

Ω

(sΦM − Φ(A))(−∇Φ(A)
∂

∂T
A)dx. (2)

Fig. 2(a-c) shows three example shapes. Fig. 2(d) and 2(e) show all three shape
contours before and after the registration process.



On-Line, Incremental Learning of a Robust Active Shape Model 125

(a) (b) (c) (d) (e)

Fig. 2. Three example shapes before and after registration

2.2 Robust Incremental PCA

For batch PCA all training images are processed simultaneously. A fixed set of input
images X = [x1, . . . xn] ∈ IRm×n is given, where xi ∈ IRm is an individual image
represented as a vector. It is assumed that X is mean normalized. Let Q ∈ IRm×m

be the covariance matrix of X, then the subspace U = [u1, . . . ,un] ∈ IRm×n can be
computed by solving the eigenproblem for Q or more efficiently by solving SVD of X.

For incremental learning, the training images are given sequentially. Assuming that
an eigenspace was already built from n images, at step n + 1 the current eigenspace
can be updated in the following way [19]: First, the new image x is projected in the
current eigenspace U(n) and the image is reconstructed: x̃. The residual vector r =
x − x̃ is orthogonal to the current basis U(n). Thus, a new basis U′ is obtained by
enlarging U(n) with r. U′ represents the current images as well as the new sample.
Next, batch PCA is performed on the corresponding low-dimensional space A′ and
the eigenvectors U′′, the eigenvalues λ′′ and the mean μ′′ are obtained. To update the
subspace the coefficients are projected in the new basis A(n+1) = U′′T (A′ − μ′′1

)
and the subspace is rotated: U(n+1) = U′U′′. Finally, the mean μ(n+1) = μ(n) +
U′μ′′ and the eigenvalues λ(n+1) = λ′′ are updated. In each step the dimension of
the subspace is increased by one. To preserve the dimension of the subspace the least
significant principal vector may be discarded [10]. To obtain an initial model, the batch
method may be applied to a smaller set of training images. Alternatively, to have a fully
incremental algorithm, the eigenspace may be initialized using the first training image
x: μ(1) = x, U(1) = 0 and A(1) = 0.

This method can be extended in a robust manner, i.e., corrupted input images may
be used for incrementally updating the current model. To achieve this, outliers in the
current image are detected and replaced by more confident values: First, an image is
projected to the current eigenspace using the robust approach [12] and the image is
reconstructed. Second, outliers are detected by pixel-wise thresholding (based on the
expected reconstruction error) the original image and its robust reconstruction. Finally,
the outlying pixel values are replaced by the robustly reconstructed values.

3 Experiments

For the experiments, we have created several different data sets: teapot, African man,
elephant and octopus (Fig. 3). The first one (Fig. 3(a)) was created artificially by us-
ing 3D-MAX. The others are representing real world objects where the images were
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acquired in two different ways: a smaller number of images was obtained using a turn-
table and a homogeneous background, such that we can use the level set segmentation
without any shape-prior (Fig. 3(b)-(d)). These views are used to build the initial consis-
tent model. Depending on the complexity of the object, i.e., the complexity of the ob-
ject’s shape, 10 up to 80 views are needed. The consistent model is necessary for robust
reconstruction of outlying values in the input shapes resulting from over-segmentation
and under-segmentation in further steps. Additionally, more complex images (hand held
presentations of the objects with cluttered background) are acquired and used to demon-
strate the incremental update and robustness of the method (Fig. 3(e)-(f)).

(a) (b) (c) (d) (e) (f)

Fig. 3. Examples of our data sets: teapot, African man, elephant and octopus

To show the benefit of the incremental method we trained classifiers using different
PCA approaches on the teapot data set. In total 85 images were processed in the training
stage where only 10 eigenvectors were used for reconstruction. The obtained classifiers
were evaluated on an independent test set of 10 images.

First, Fig. 4(a) shows that the incremental on-line method yields similar results as
the “iterated batch” method (batch PCA is applied when a new image arises) that is
applied in most applications. The reconstruction errors of the incremental PCA, the
“iterated batch” PCA and the batch PCA are compared for an increasing number of
training shapes and eigenvectors. The reconstruction error is similar for both, the in-
cremental and the iterated batch method. Both error curves are continuously decreasing
when the number of training shapes is increased and they are approaching the results
of the batch method (trained from the full set of training shapes). Thus, there is no real
loss of accuracy (for our application) in using the incremental approach. But as can be
seen in Fig. 4(b) there are huge differences in the computational costs for the differ-
ent methods; the learning times were obtained by evaluating the training in MATLAB
on a 3GHz machine. The results for the whole training set containing 85 images are
summarized in Table 1. Since the matrix operations are performed on smaller matrices
only (less memory has to be allocated) for this data set the incremental method is even
computationally cheaper than the batch method. But, as the main point, compared to
the iterated batch “incremental” approach the computational costs of the incremental
method are only approximately 1/40!

Table 1. Performance evaluation

method incremental PCA batch PCA iterated batch PCA
time 4.72s 6.55s 205.38s
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Fig. 4. Incremental PCA approach evaluated on the teapot data set: (a) incremental PCA performs
similar as incremental batch PCA, (b) incremental PCA is computationally much cheaper than
incremental batch PCA

As the applied incremental PCA method can easily be extended in a robust manner
we want to show the advantages of robust incremental learning. For this purpose an
initial classifier for the octopus is trained using only 15 clean shapes to get a consis-
tent starting model. Later on, the training is continued from corrupted data. To simulate
over-segmented and under-segmented shapes the corrupted data is created by randomly
adding black and white bars occluding 25% of the image. By adding these shapes the
non-robust model gets more and more corrupted (see (Fig. 5(c) for the first 5 eigen-
images) while a stable model is estimated by using the robust approach (see Fig. 5(a)
for the first 5 eigenimages). Examples of reconstructions are shown in Fig. 5(b) (robust
eigenspace) and Fig. 5(d) (non-robust eigenspace).

(a) (b)

(c) (d)

Fig. 5. Robust incremental vs. plain incremental approach: (a) eigenspace obtained by robust
incremental learning from noisy data, (b) reconstruction from robust eigenspace, (c) eigenspace
obtained by incremental learning from noisy data, (d) reconstruction from non-robust eigenspace

To show the increasingly better segmentation results when incrementally updating
the current model with newly obtained shapes, the more complex octopus data set was
evaluated. In total 85 training shapes were processed where 35 eigenvectors were used
for reconstruction. Fig. 6 shows different level set segmentation results using our ASM
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in different training stages. For Fig. 6(b), the segmentation is done without a trained
ASM. In this case the segmentation fails completely. In Fig. 6(c), we show the final
shape prior provided from the initialized ASM (40 “off-line” training shapes) and the
corresponding segmentation. The segmentation has been improved significantly but still
some errors are present. Afterwards, our ASM is incrementally updated with new “on-
line” training shapes. Fig. 6(d) shows the results after 40 additional incrementally ob-
tained shapes. The segmentation is perfect and the segmentation result depicted in Fig.
6 can then be used to add a new aspect to our ASM.

(a) (b) (c)

(d)

Fig. 6. Original image (a) and level set segmentation without an ASM (b). Estimated shape prior,
with an ASM learned from 40 training shapes and corresponding level set segmentation (c).
Estimated shape prior, with an ASM learned from 80 training shapes and corresponding level set
segmentation (d).

10 20 30 40 50 60 70 80 90
0

2

4

6

8

10

12

14

number of train images

re
co

ns
tr

uc
tio

n 
er

ro
r

incremental
batch

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

percentace of perturbation

re
co

ns
tr

uc
tio

n 
er

ro
r

std. approach

robust approach

(a) (b)

Fig. 7. Better segmentation results by robust incremental ASM: (a) increasing the size of the
model decreases the reconstruction error, (b) smaller reconstruction error when applying the ro-
bust method even for corrupted data
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For a more general evaluation different models (varying the number of processed
training shapes) were evaluated on a set of 10 independent test images. For this purpose
the shapes in the test set were reconstructed using the previously trained models and
the reconstruction errors were analyzed. According to the number of processed shapes
(10 to 85) up to 35 eigenvectors were used for reconstruction. The results are shown
in Fig. 7(a). It can be seen that the reconstruction error is decreasing if the number
of learned shapes (and thus the number of eigenimages used for reconstruction) is in-
creased; a better model is obtained! Examples of continuously improving ASMs are
shown in Fig. 8.

(a) (b) (c) (d)

Fig. 8. Improving ASM by updating with new shapes: (a) ASM learned from 10 frames, (b) ASM
learned from 20 frames, (c) ASM learned from 40 frames, (d) ASM learned from 80 frames

(a) (b) (c) (d)

(e) (f)

Fig. 9. Robust PCA on African man data set: (a) original data, (b) segmentation and registration,
(c) reconstruction, (d) segmentation result with (c) as shape prior, (e) robust reconstruction, (f)
segmentation result using (e) as shape prior

Furthermore, the robust extension of the approach was evaluated on the African man
data set. The reconstruction error1 was analyzed when the portion of noise is increased.
The results are shown in Fig. 7(b). While the reconstruction error is continuously grow-
ing for the standard approach the performance of the robust method is not decreased

1 The reconstruction error was computed from the undisturbed original images. Alternatively,
the distance between the learned eigenspace and the projected shape may be used as measure-
ment (which will yield similar curves).
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even in cases of up to 25% occlusion. Thus, these robustly obtained reconstructions
can be used to update the current ASM as it can be seen in Fig. 9. The object was
presented in a realistic scenario with background clutter by hand from varying views
and under different illumination conditions. The registered segmentation without using
a shape prior in Fig. 9(b) contains holes and over-segmentations. Thus, the standard
reconstruction depicted in Fig. 9(c) is corrupted. But as shown in Fig. 9(e) the robust
approach provides a perfect reconstruction that can be used to update the ASM. In addi-
tion, Fig. 9(d) shows the corrupted segmentation result obtained by using the standard
reconstruction as shape prior while the segmentation result obtained by using the robust
reconstruction shown in Fig. 9(f) is perfect.

Finally, we show some examples of segmentations using previously trained Active
Shapes Models. In Fig. 10(a), we use the level set segmentation based on [8] without any
shape information. The other three Figures 10(b)-(d) are segmented with three different
ASMs. On all three objects, we achieve excellent segmentation results, even for Fig.
10(d), where the lower part of the object is highly occluded, our robust ASM is able to
segment the object correctly.

(a) (b) (c) (d)

Fig. 10. Level set segmentation results based on [16]: (a) segmentation without a shape prior;
(b)-(d) segmentation using different ASMs

4 Conclusion

We have introduced a novel robust Active Shape Model, that can be updated on-line.
Using a robust, incremental PCA allows a successive update of our ASMs even with
non perfect data (i.e., corrupted data by partial occlusions or imperfect segmentation).
For the segmentation and shape representation, we use the work of Rousson et al. [16]
but our ASM can easily be adapted to other segmentation approaches and shape repre-
sentations. We performed experiments on various data sets with different objects. The
advantages of the robust, incremental PCA over the standard batch PCA were shown,
and we also showed excellent results using different ASMs for segmentation. Even
highly occluded objects in a cluttered background can be segmented correctly. Com-
pared to the standard approach the computational costs can be dramatically reduced.
Moreover the user interaction is reduced to taking a smaller number of images on a turn
table under perfect conditions, i.e., manual segmentation can be completely avoided!
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Abstract. Invariant feature representations for 3D objects are one of the
basic needs in 3D object retrieval and classification. One tool to obtain
rotation invariance are Spherical Harmonics, which are an orthogonal ba-
sis for the functions defined on the 2-sphere. We show that the irreducible
representations of the 3D rotation group, which acts on the Spherical Har-
monic representation, can give more information about the considered ob-
ject than the Spherical Harmonic expansion itself. We embed our new
feature extraction methods in the group integration framework and show
experiments for 3D-surface data (Princeton Shape Benchmark).

1 Introduction

In many fields researchers deal with a huge amount of three dimensional data.
In medical and biological applications one usually has to do with volumetric
scans of various types. There is a need for fast and reliable feature extraction
methods to handle and classify such huge amounts of data. The development of
3D modeling software has increased the number of freely available 3D-surface
models, fast retrieval systems are necessary to browse and search for 3D-models
in a user-friendly way. As the representation of 3D objects is not canonical and
objects often occur at different spatial position and in different rotational poses,
the question arises how to compare and classify the objects. One way is to use
invariant features.

There are basically two ways to obtain invariance: Group integration and Nor-
malization techniques. Normalization techniques obtain invariance by computing
features relative to a global reference frame. The determination of the reference
frame makes Normalization techniques extremely sensitive to noise. Whereas
Group Integration (GI) is known to be very robust to many kinds of noise. In
[1] a detailed overview over GI-techniques is given.

In this work we want to concentrate on 3D surface models. The Princeton
Shape Benchmark (PSB) [9] offers a possibility to evaluate 3D-feature extraction
techniques. It consists of approx. 1800 surface models collected from the Web.
There is already a huge amount of work concerning feature extraction for 3D
surface models by the use of Spherical Harmonics (SH). Vranic et al. [10] compute
a so-called spherical extent function of the model-surface and make a spherical
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harmonic transform of this function, but the rotational invariance is obtained by
normalization. Kazhdan et al. [4] eliminate the rotational dependency by taking
the magnitude of the invariant subspaces of the Spherical Harmonic transform.
They show, that in most cases this is the better alternative than a normalizing
approach. In [8] Reisert et al. enhanced the Shape Distribution introduced by
Osada [6] by SH-expansion. The currently best performing methods on the PSB
are the so-called Light Field Descriptors (LFD) [2]. LFD is an appearence based
methods. The shape is rendered from several views and features for each view
are computed. Two models are compared by searching the best matching pair
of views.

The work is organized as follows: in Section 2 we introduce the basic algebra
concerning rotations in 3D and introduce the so called D-Wigner matrices, the
irreducible representation of the 3D rotation group. Further we give a relation for
fast computation. In Section 3 we shortly review the group integration framework
and show how the D-Wigner matrices can be used to enhance invariant features
and keep more discriminative power. Then in Section 4 we show how this can
be applied to extract features from 3D-surface models and show in Section 5
experiments on the Princeton Shape Benchmark. Finally we give a conclusion
and an outlook for future work.

2 Life in SO(3)

First, some preliminaries about the notation. We always assume complex-valued
vector spaces. Finite dimensional vectors x are printed bold face, their ith com-
ponent xi in normal face. Transposition is denoted by xT , so scalar products are
written by xT x′, complex conjugation by x∗i . Functions X (infinite dimensional
vectors) are printed in captial letters and scalar products between functions are
denoted by 〈X |X ′〉.

2.1 Spherical Harmonics

The Spherical Harmonic expansion is a basic tool for 3D shape representation.
We first want to give a short review about its basic properties. The complex
functions defined on the two-sphere S2 form a Hilbert-space with the inner-
product 〈X |X ′〉 =

∫
S2 X

∗(s) X ′(s)ds, where ds denotes the natural measure on
S2 and s ∈ S2 is some unit-vector on the two-sphere. The Spherical Harmonics
form an orthonormal basis in this space. They are commonly denoted by Y l

m(s),
where l ≥ 0 is a spectral index and −l ≤ m ≤ l. Basically the Y l

m are polynomials
of degree l in the normalized coordinates s = (x, y, z)T . We can expand any
function X in our Hilbert space in terms of Spherical Harmonics where the
expansion coefficients are simply the projections on the basis functions al =
〈Yl|X〉, where this abbreviates al

m = 〈Y l
m|X〉. The main property of a Spherical

Harmonic expansion is its behavior under rotations. Let g ∈ SO(3) an element
of the rotation group acting on functions X by (gX)(s) �→ X(RT s), where
R ∈ R3×3 is the corresponding rotation matrix, then the expansion coefficients
have the following property
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m′=l∑
m′=−l

Dl
mm′(g) al

m′ = 〈Y l
m|gX〉,

or shortly Dl(g)al = 〈Yl|gX〉. Note the close relation Dl
m0 = Y l

m. The Dl(g)
are unitary transformation matrices depending on the rotation g. Note that
only coefficients al

m with the same index l mix with each other, i.e. the sub-
spaces with fixed index l stay invariant. This property is often used to obtain
invariance against rotations. Due to the unitarity of Dl(g) the energy within a
subspace is preserved. One can easily obtain invariant features of the function X

by taking the magnitudes ||al|| =
√∑m=l

m=−l |al
m|2, which are sometimes called

SH-descriptors, analog to the Fourier-Descriptors in 2D.

2.2 D-Wigner Matrix

Let us have a closer look on the Dl(g) itself. For l = 1 there is a close relation
to the real-valued ordinary rotation matrix R by a special linear unitary trans-
formation U, i.e. D1(g) = UT RU. The general Dl(g) are called the D-Wigner
matrices and they are the irreducible representations of the three dimensional
rotation group. Irreducibility means that there is no further linear decompo-
sition of the al

m such that the corresponding subspaces do not mix up during
rotations (for references concerning the related group theory see e.g. [5] and ref-
erences therein) The irreducibility has several important consequences: in fact,
the Dl(g) are an orthogonal basis for the functions defined on the rotation group
itself. Before going into detail let us introduce some basics. We obtain a Hilbert-
space whose elements are the functions defined on SO(3) by introducing an inner
product via the group integral. Let Z,Z ′ : SO(3) �→ C two functions defined on
the rotation group, then

〈Z|Z ′〉 =
∫

SO(3)

Z∗(g) Z ′(g)dg

defines a regular inner product, where dg is the natural group measure on SO(3),
which is left- and right-invariant (in Euler angles dg = dψdϕ sin θdθ). Now we
are able to state the orthogonality relation for the irreducible representations

〈Dl1
m′

1m1
|Dl2

m′
2m2
〉 = δl1l2δm′

1m′
2
δm1m2

8π2

2l1 + 1
,

i.e. any components of the representation matrices Dl(g) are orthogonal with
respect to the given inner product. Now, given a function Z we can expand this
function in terms of D-Wigner matrices as follows

Z(g) =
∞∑
l=0

l∑
m=−l

l∑
m′=−l

blm′mD
l
m′m(g),

where the bl are expansion-’matrices’ obtained by the projections on the basis-
functions blm′m = 2l+1

8π2 〈Dl
m′m|Z〉.
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Now the question arises how the Dl(g) look like explicitly. There is an expres-
sion involving the Jacobi-polynomials depending on the Euler-angles correspond-
ing to g. The direct computation of this expression is a little bit cumbersome
and of high computational complexity. Moreover the parameterization in Euler-
angles is not advantageous for our purposes. We need a formulation in terms of
the corresponding three-dimensional rotation matrix itself. In the following we
want to point out the alternative way.

2.3 Product Relations and Clebsch-Gordan Coefficients

As we know that any function on the sphere can be expanded in terms of
Spherical Harmonics, then also products of two Spherical Harmonics must have
such a representation. The corresponding expansion coefficients are the so called
Clebsch-Gordan coefficients.

Y l1
m1

(s)Y l2
m2

(s) =
l1+l2∑
l=0

m=l∑
m=−l

〈lm|l1m1l2m2〉Y l
m(s) (1)

The Clebsch-Gordan coefficients 〈lm|l1m1l2m2〉 fulfill two selection rules. They
only give a contribution when |l1−l2| ≤ l ≤ l1+l2 andm = m1+m2. Additionally
the Clebsch-Gordan coefficients themselves fulfill several orthogonality relation
by what we can reformulate equation (1) as follows

Y l
m(s) =

m1=l1∑
m1=−l1

m2=l2∑
m2=−l2

〈lm|l1m1l2m2〉Y l1
m1

(s)Y l2
m2

(s),

where l1 and l2 have to be chosen such that l = l1 + l2 due to the selection rules
of the Clebsch-Gordan coefficients. By choosing l1 = l−1 and l2 = 1 we have an
iterative way to compute the Spherical Harmonics. The computation of the Yl(s)
only involves Yl−1(s) and Y1(s). For a fast implementation the Clebsch-Gordan
coefficients can be precomputed and stored in a lookup-table. Considering the
selection rules the actual algorithm to compute the Spherical Harmonics is a
convolution-like method. In fact, the overall computational complexity is linear
in the number of coefficients to be computed.

The computation of the D-Wigner matrices is very much the same as above.
Products of D-Wigner matrix elements show nearly the same behavior, but need-
ing products of Clebsch-Gordan coefficients. The basis for the iteration is now

Dl
m′m(g) =

m′
1=l1

m1=l1∑
m′

1=−l1
m1=−l1

m′
2=l2

m2=l2∑
m′

2=−l2
m2=−l2

〈lm′|l1m′
1l2m

′
2〉〈lm|l1m1l2m2〉Dl1

m′
1m1

(g)Dl2
m′

2m2
(g),

and we again choose l1 = l − 1 and l2 = 1. The computational complexity is
again linear in the number of computed matrix elements.
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3 Group Integration Features

Group Integration is a well known tool to gain invariance for object represen-
tations. Suppose a given 3D-object X which has to be represented invariant
against rotations. The easiest way to get an invariant feature is to extract some
non-invariant non-linear ’kernel’-feature f(X) and sum up this feature for all
rotational poses

If (X) =
∫

SO(3)

f(gX) dg

Due to the integration lots of information about the original object is getting
lost. In previous work [7] we have shown how to use Spherical Harmonics to
keep more discriminative power. We will shortly review how this was done. The
integral over a 3D rotation can be decomposed into an integration over the sphere
S2 and the circle:

If (X) =
∫

S2

2π∫
0

f(gs,ϕX)dϕds,

where gs,ϕ is a rotation around the axis s with angle ϕ. Now, instead of just inte-
grating over the sphere we projected the inner integral FX(s) =

∫ 2π

0
f(gs,ϕX)dφ

on the Yl(s) by Il
f (X) = 〈Yl|FX〉 and obtained invariance by taking the band-

wise magnitudes ||Il
f (X)||. Doing this we already retained much information, but

we still lose information about the φ-angle.
The D-Wigner matrices offer a much more natural way to extend the dis-

criminative power of the features. Instead of an artificial decomposition of the
integral we can simply project the function FX(g) := f(gX) on the irreducible
group representation itself

Il
f (X) = 〈FX |Dl〉 =

∫
SO(3)

f∗(gX) Dl(g) dg (2)

But what effect does have a rotation of the object X �→ g′X on the Il
f (X)?

Since the Dl(g) are unitary representations of the rotation group, i.e. Dl(gg′) =
Dl(g)Dl(g′), we can show that

Il
f (gX) = Il

f (X) Dl(g−1),

i.e. a rotation of the object X leads to right-multiplication of the features ma-
trices Il

f with Dl. This means that the magnitudes of the columns are preserved
during rotations and hence form an invariant feature. The final invariant features
we use look as follows

Il,m
f (X) =

√√√√ m′=l∑
m′=−l

|I l
f,mm′(X)|2,

where I l
f,mm′(X) denote the components of the feature matrices Il

f (X).
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4 Application to Surface Models

In [8] the group integration framework was already applied to surface models.
The surface model is represented by a function X : R

3 �→ R
3 giving only contri-

bution on the surface S of the shape, where the function value on the surface is
given by the surface-normal at this position.

4.1 First-Order

To obtain translation invariance we shift the origin of the coordinate system
into the center of gravity of the shape X, i.e. we first use a simple normalization
approach. For the group integration we will use the following kernel-function

fh,r(X) = δ(hT X(r)− 1), (3)

where r,h ∈ R3 are parameters with ||h|| = 1 and δ is the Delta-Distribution.
The kernel-function gives contribution whenever at position r the surface is
present and its normal is parallel to h. Inserting the kernel into (2) gives

Il
h,r(X) =

∫
SO(3)

δ(hT RX(RT r)− 1) Dl(g) dg

=
∫

SO(3)

∫
R3

δ(hT RX(r′)− 1) δ(RT r− r′) Dl(g) dg dr′.

We see that the integral only gives contribution, whenever ||r|| = ||r′|| and
r′ ‖ RT r and h ‖ RX(r′). The last two conditions are only satisfiable, if rT h =
r′T X(r′). If they are satisfied they determine the rotation matrix R uniquely. So
the group integral disappears and only the r′-integral is left over. As the function
X gives contribution on the surface of the shape, the volume-integral is actually
a surface-integral and we arrive at

Il
h,r(X) =

∫
r′∈S

δ(||r′|| − r) δ( r′T X(r′)
||r′|| − α) Dl(g∗) dr′, (4)

where r = ||r|| and α = rT h
||r|| (for illustration see Figure 1). The g∗ denotes the

rotation which turns r′,X(r′) into r,h. One can see that g∗ is the only part
that depends on the actual values of r and h, the rest on their relative direc-
tions and the length of r. A joint rotation of the two parameters leads to a
left-multiplication of Il

r,h with Dl. As this is only a unitary transformation of
the features, we can restrict us for computation to one standard pose of h and r
and hence the features depend on r and α only. But the actual invariant features
depend on the actual choice of the standard pose. Following expression (4) for
the integral the algorithm looks as follows:

Start with result array Il
r,α initialized with zeros.

For all points r′ on the surface of the object
Compute α = r′T X(r′)

||r′|| , r = ||r′||
Compute g∗, which turns r′,X(r′) into rnorm,hnorm

Update Il
r,α = Il

r,α + Dl(g∗) for all l ≤ lmax
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The vectors rnorm,hnorm are the parameter-vectors in normalized pose such
that α = rT

normhnorm
||rnorm|| and ||rnorm|| = r. Actually we compute for l = 0 something

like a histogram. We count how often a point on the surface of the shape occur
within a distance r to the COG and with angle arccos(α) between the surface-
normal and the vector connecting the point with the COG.

4.2 Second-Order

Now we assume an unnormalized model and obtain translation invariance by
group-integration. We first perform a group integration over the three dimen-
sional translation group T and treat the result as above by projecting it on the
irreducible representations. Equation (2) becomes

Il(X) =
∫

SO(3)

(∫
T
f∗(τgX)dτ

)
Dl(g) dg.

In this case the kernel-function (3) is too simple, the results would be undiscrim-
inative. We need a more complex kernel-function. A simple generalization of (3)
is

fh,h′,d(X) = δ(hT X(0)− 1) δ(h′T X(d) − 1).

We do not want to give the complete derivation again since it is very much the
same like in the first case, so we outline the resulting algorithm directly.

Start with result array Il
d,α,β,γ initialized with zeros.

For all pairs of points r1, r2 on the surface of the object
Let d = r1 − r2 and d = ||d||
Compute α = dT X(r1)/d, β = dT X(r2)/d

Compute γ = PdX(r1)
||PdX(r1)||

T PdX(r2)
||PdX(r2)||

Compute g∗, which turns d,X(r1),X(r2) into dnorm,hnorm,h′
norm

Update Il
d,α,β,γ = Il

d,α,β,γ + Dl(g∗) for all l ≤ lmax

The matrixPd denotes a projectionmatrix, projecting on the plane givenby the
vector d. For illustration of the variables see Figure 1. Again dnorm,hnorm,h′

norm

are the parameters in standardpose. For l = 0 the feature can alsobe interpreted as
a histogram, the frequency of occurrences of two points within a specific distance d
and a specific surface-normal configuration determined by the parameters α, β, γ.

4.3 Implementation Details

For evaluation of our features we use the Princeton Shape Benchmark [9]. It
consists of approx. 1800 polygonal mesh models. We represent the models in
2563 voxel grid. Additionally, each voxel gets a reference to the triangle it is
stemming from to enable us to incorporate the original surface normals in our
calculations. To exclude non visible constructional artefacts inside the closed
surface we use a floodfill operation.
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X(r) X(r1)
X(r2)α α β

γ

COG

r r1 r2

First-Order Second-Order

Fig. 1. Explanation of variables. For first-order just the length of r and the angle
between r and X(r) are relevant. For second-order we have four parameters, α, β, γ

and distance between r1 and r2. The γ-angle is the angle between X(r1) and X(r2)
after projection onto the plane orthogonal to r1 − r2.

The implementation of the first-order features is straight-forward, because
each voxel has to be accessed only once. The time for a computation of one
feature set is less than a second (Pentium4 2.8Ghz), where most of the time is
spend on voxelization. For the second-order features the complexity is quadratic
in the number of voxels. Typical models consist of several tens of thousand voxels,
hence an exhaustive computation is not possible. We use a randomized approach
to keep the computation time low. Computation times are varying from one to
several seconds, depending on the accuracy of the computation and the number
of D-Wigner coefficients.

For the computation of Clebsch-Gordan coefficients we use Matpack. Due to
the precomputation of the coefficients the running time does not depend on
their implementation. We tried several discretizations of the parameters r, α and
d, α, β, γ. In the experiments we always give the results for the best quantizations,
which always depend on the type of feature. To obtain invariance we take the
magnitudes of the rows of the ’matrix’-features Il. As already mentioned the
features depend on the absolute pose of the parameter-vectors rnorm and hnorm

(dnorm,hnorm,h′
norm for second-order). But which pose one should choose? The

most simple representation hnorm = (α,
√

1− α2, 0)T and rnorm = (r, 0, 0)T has
the disadvantage that the magnitude of the rows of Dl are the same for m with
the same absolute value. We have found that the complex representation hnorm =

(
√

1−α2

2 ei
π
4 , α,
√

1−α2

2 e−i π
4 )T and rnorm = (0, r, 0)T keeps the magnitudes of the

rows of Dl more independent. And it actually performs better than the first
simple one.

5 Experiments

In order to keep the results comparable to experiments given in [9] we conducted
our experiments only on the test set of the PSB at the finest granularity. To show
the superiorityof the D-Wigner matrices over the Spherical Harmonicswe also give
the results for the best corresponding SH-feature (see [8]). As distance measure
between the features we use the L1-norm. In Table 1 the results for the first- and
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second-order features are shown. For a description of the used performance mea-
sures Nearest-Neighbor/1-Tier/2-Tier/E-Mesure/Discounted-Cumulative-Gain
see [9]. Experiments were made for different cutoff indices lmax. We found that
higher cutoff indices than 4 show only marginal improvements if at all.

Table 1. Results for finest granularity on the PSB. All results are given in percent.
Higher rates mean better performance. (DW) stands for our new approach followed by
lmax the cutoff-band. (SH) for the old Spherical Harmonic approach. Best results in
bold face.

First-Order Second-Order

method NN 1T 2T EM DCG

DW 1 48.3 24.6 34.4 19.8 52.3
DW 2 53.4 28.2 38.2 21.9 55.4
DW 3 54.0 28.3 38.0 22.0 55.5
DW 4 55.3 29.1 38.5 22.5 56.1
SH 4 50.1 26.1 36.1 21.0 53.6

method NN 1T 2T EM DCG

DW 1 60.5 31.6 42.2 24.5 59.3
DW 2 62.5 32.7 43.9 25.5 60.1
DW 3 63.5 32.7 43.8 25.5 60.2
DW 4 63.5 32.9 44.0 25.5 60.5
SH 4 60.6 31.5 42.9 24.7 59.4

We see that the D-Wigner expansion is superior to SH expansion in all cases,
which gives evidence that the proposed descriptors can, in fact, carry more infor-
mation and discriminative power than the pure Spherical Harmonic approach.
Of course, in this comparison, the number of features is larger in the D-Wigner
case, because for each l we have 2l+1 features instead of only one. The absolute
number is also rather high, because the quantization setting for the D-Wigner
case is 32, 2, 8, 8, (for d, γ, α, β) resulting in several thousand of features. So we
additionally tried to reduce the number of features by feature selection using
Simba [3]. In Figure 2 we show the performance results and precision/recall
graph with 10% of the second-order features with lmax = 4. In fact, feature se-
lection improves the results very much, while reducing the number of features
drastically. We also give results of two other shape descriptors, LFD and GEDT
(for references see [9]). The PR-graph shows that our approach works with the
same precision as the LFD approach, while recall is comparable to the GEDT
method. It is astonishing that a group integration approach, which keeps second-
order information only , i.e. relative properties about two points averaged over
the whole shape, give us similar results like LFD which is basically a registration
approach, or GEDT which keeps nearly the whole information about the shape.

6 Conclusion and Future Work

We presented how the irreducible representation of the 3D rotation group can
be used for invariant shape representation. The D-Wigner expansion can be seen
as the canonical generalization of the Spherical Harmonic expansion. We ap-
plied the D-Wigner expansion in the group integration framework and were able
to show the superiority of them over SH-expansion in a shape retrieval task.
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method NN 1T 2T EM DCG

10% DW 65.7 34.8 46.0 26.7 62.1
LFD 65.7 38.0 48.7 28.0 64.3

GEDT 60.3 31.3 40.7 23.7 58.1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Precision/Recall

10% DW
LFD

GEDT

Fig. 2. Results for the second-order features with feature selection in comparison to
LFD and GEDT. (For references see [9]).

The performance of the features is comparable to the currently best perform-
ing methods on the Princenton Shape Benchmark, but our approach is ’single-
feature’-method, while LFD is a ’compositions’ of features. For future work we
want to apply our methods for volume data. Further we want to examine other
methods to obtain invariance instead of just taking the magnitude of the rows
of the ’matrix’-features.
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Abstract. Klassen et al. [9] recently developed a theoretical formula-
tion to model shape dissimilarities by means of geodesics on appropriate
spaces. They used the local geometry of an infinite dimensional manifold
to measure the distance dist(A, B) between two given shapes A and B. A
key limitation of their approach is that the computation of distances de-
veloped in the above work is inherently unstable, the computed distances
are in general not symmetric, and the computation times are typically
very large. In this paper, we revisit the shooting method of Klassen et
al. for their angle-oriented representation. We revisit explicit expressions
for the underlying space and we propose a gradient descent algorithm
to compute geodesics. In contrast to the shooting method, the proposed
variational method is numerically stable, it is by definition symmetric,
and it is up to 1000 times faster.

1 Introduction

The modeling of shapes and distances between shapes is one of the fundamental
problems in Computer Vision with applications in the fields of image segmen-
tation, tracking, object recognition, and video indexing. In recent years, a con-
siderable amount of effort has been put into the understanding of closed planar
curves modulo some transformations, which will be referred to as shapes. To
measure the dissimilarity between two given shapes requires the definition and
examination of metric spaces which model shapes (cf. [7,4,5,1]).

In 2003, Michor and Mumford [11] described a way to define a shape space
using manifolds. The distance between two given shapes were defined as the
minimal length of a path m on the manifold connecting these shapes. Such paths
are known as geodesics. The model is presented in a very general fashion, i.e.,
in order to calculate geodesics on this manifold, a partial differential equation
(PDE) has to be solved. Hence, it is not suitable for online-calculation to find
the shortest geodesic between two given shapes.

In the same year, Klassen et al. also presented metric spaces using manifolds
[9].1 Their model is focused on closed planar curves parametrized by arclength.
� This work was supported by the German Research Foundation, grant #CR-250/1-1.
1 For an extension of the notion of geodesics to closed curves embedded in R

3 we refer
to [8].

K. Franke et al. (Eds.): DAGM 2006, LNCS 4174, pp. 142–151, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Shape Matching by Variational Computation of Geodesics on a Manifold 143

This simplification led to an ordinary differential equation (ODE) instead of
a PDE for the geodesic-calculation. Moreover, the calculation of the shortest
geodesic could in many cases be done within seconds using the so called shooting
method. This method uses a searching beam from the initial shape. That beam
will be changed until the target shape is found, where the beam is deformed
according to the underlying metric just as a light beam is bent by gravity in the
theory of general relativity.

In this paper, we will use the same manifold that was introduced in [9]. But we
will abandon the shooting method and replace it by a variational method which is
more stable, by definition symmetric and allows a faster algorithm than the algo-
rithm introduced by Klassen et al. This variational method is a gradient descent
method with respect to the energy functional E(m) :=

∫ 1

0
〈m′(t),m′(t)〉m(t) dt.

This paper is organized as follows. In Section 2 we revisit the shape space
and a toolbox of helpful functions that were presented in [9]. In Section 3 we
review the shooting method and introduce an alternative variational method to
calculate geodesics on the shape space. In Section 4 we compare both methods
with special interest on correctness, accuracy and computation time. In Section
5 we provide a conclusion.

2 Modeling Shapes

Given any smooth closed planar contour Γ ⊂ C, the group of translations, ro-
tations and uniform scalings creates a family [Γ ] of closed planar contours. The
elements of this family have all one property in common - their shape. Therefore,
we will consider the set of all such families and call this set the shape space. In this
section, we will revisit a manifold that was proposed in [9] to handle this shape
space. We are especially interested in morphings, i.e., smooth short transforma-
tions from one given shape to another. On the manifold, these morphings will be
described by geodesics [6,3]. Hence, on the shape space a metric is induced which
provides a measure of the dissimilarity of two given shapes.

2.1 Manifold of Preshapes

To model shapes, we consider closed planar curves that are parametrized via
the unit circle S

1 = {x ∈ C| ‖x‖ = 1}. A closed planar curve is therefore a C∞-
mapping c : S1 → C with a non-vanishing derivative c′. Because the derivative
of the mapping c ignores translation of the contour Γ , we will consider c′ instead
of c. To get rid of possible scalings, we fix the length of Γ by 2π. This can be
achieved by modeling any shape via curves c : S1 → C that are parametrized by
arclength. Thus, c′ : S1 → S1 can be modeled via a C∞-mapping ϑ : [0; 2π]→ R

which realizes the following lifting-equations c′(eit) = eiϑ(t) and ϑ(2π) = ϑ(0) +
2π. This mapping ϑ is unique up to addition of a constant 2π�, � ∈ Z. Moreover,
the addition of any r ∈ R to ϑ is equivalent to a rotation of c by the angle r. These
observations lead to the manifold2 C := Ψ−1((2π2, 0, 0)�) ⊂ L2 := L2([0; 2π],R),
2 In [9], two different manifolds were presented. We will restrict ourselves to the mani-

fold that handles the angle-oriented mapping ϑ.
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Ψ(ϑ) :=
(∫ 2π

0

ϑ(τ)dτ ,
∫ 2π

0

sin(ϑ(τ))dτ ,
∫ 2π

0

cos(ϑ(τ))dτ
)�

.

As it was outlined in [9], this manifold C does not describe the shape space.
Moreover, one shape [Γ ] can possess multiple representations in this so called
preshape space C. To be specific, for any α ∈ R the mappings c : t �→ c(eit) and
cα : t �→ c(ei(t+α)) describe the same closed planar contour Γ ⊂ C. Let ϑ and
ϑα be the lifting representation for c resp. cα. Then, the set {ϑα|α ∈ [0; 2π[} =:
ϑ · S1 ⊂ C contains all different representations of ϑ within C that describe the
same shape (cf. Figure 1). The notation ϑ · S1 is motivated by the fact that

Fig. 1. Since any shape can be parametrized with differing starting points, it corre-
sponds to a family of preshapes which form a closed curve on the manifold of preshapes.
Symmetries of a given shape will be reflected by multiple coverings of this curve. In
the case of a circle, this preshape curve will collapse to a single point.

α �→ ϑα is a group operation with at least 2πZ as stabilizer. The shape space
S := C/S1 consists of all orbits ϑ · S1 ⊂ C [9]. Therefore, any metric distC on C
induces the metric

distS(ϑ1 · S1, ϑ2 · S1) := min
s1∈S1

min
s2∈S1

distC(ϑ1 · s1, ϑ2 · s2) (1)

on S. In the next section, we will discuss the metric on any manifold M that
is induced by geodesics. This geodesic metric will be used as distC and thus,
induces distS via (1).

2.2 Geodesics on Manifolds

In this section, we will present the idea of geodesics and two different ways
to calculate geodesics. Let E be a Euclidean k-dimensional vector space (e.g.,
R

k ⊂ R
n). E possesses a scalar product denoted by 〈·, ·〉. Using this product, the

length of any smooth path m : [0; 1]→ E is len(m) :=
∫ 1

0 〈m
′(t),m′(t)〉

1
2 dt. The
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distance of two arbitrary points x, y ∈ E can be defined as the minimal length
of smooth paths that connect these two points, i.e., m(0) = x and m(1) = y. To
any path m, there exists a path m̃ of same image and length that is parametrized
by arclength. Moreover, every path of minimal length that is parametrized by
arclength also minimizes the energy-functional E(m) :=

∫ 1

0 〈m
′(t),m′(t)〉 dt. In

the case of E = Rk, the Euler-Lagrange equation becomes 0 ≡ d
dtm

′ ≡ m′′.
Paths which realize this equation are called geodesics.

Now, consider any embedded k-dimensional manifold M ⊂ Rn, e.g., a sphere
or a cylinder. At any point x ∈M there exists the k-dimensional tangent space
TxM . On this tangent space the scalar product of Rn induces a scalar product
denoted by 〈·, ·〉x. Given any smooth path m : [0; 1] → M , the length of this

path can be calculated by len(m) :=
∫ 1

0
〈m′(t),m′(t)〉

1
2
m(t) dt. Analogously to the

Euclidean space, geodesics can be defined and a geodesic equation can be found.
In the Euclidean case, m′ and m′′ are k-dimensional vector fields along m. In the
case of a manifold, only m′ is a k-dimensional vector field, i.e., m′(t) ∈ Tm(t)M .
On the other hand, m′′ is an n-dimensional vector field that can be split into a
tangential (k-dimensional) vector field m′′ tan and a normal vector field m′′ nor.
With this notations the geodesic equation becomes 0 ≡ m′′ tan. Given a starting
point x ∈M and a starting direction v ∈ TxM , the following differential equation

m(0) = x m′(0) = v m′′ tan(t) ≡ 0

can be uniquely solved by a path mx,v : R → M . This property leads to the
definition of the so called exponential mapping expx(v) := mx,v(1). Using this
mapping, the distance of two arbitrary points x, y ∈M is

distM (x, y) := min
m smooth path,

m(0) = x, m(1) = y

len(m) = min
v∈TxM :

y=expx(v)

〈v, v〉
1
2
x . (2)

While the shooting method used in [9] makes use of the exponential mapping
starting from an initial velocity v as indicated on the right side of (2), the
variational method proposed in this paper directly relies on the definition of
distM in the middle of (2).

2.3 Technical Issues

In this section, we will revisit a toolbox of functions that was presented in [9].
One important function that was used in [9], is the projection from an arbitrary
function ϑ ∈ L2([0; 2π],R) ⊃ C onto the manifold. In [9, Section 3.2; Case 1]
such a projection was elaborated. We will denote the projection by

Pε : L2([0; 2π],R)→ Cε,

where
Cε := Ψ−1

({
r
∣∣∣∥∥∥r − (2π2, 0, 0

)�∥∥∥ < ε
})
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describes the manifold C which is thickened by ε. Cε is an open subset of
L2([0; 2π],R), and thus a manifold which contains C as a submanifold.

We will also need the projection from the space L2([0; 2π],R) on the tangent
space TϑC for any function ϑ ∈ C. This projection can be computed efficiently
due to the small codimension of C (= 3) [9]. From now on, this projection will
be denoted

Pϑ : L2([0; 2π],R)→ TϑC.

To measure the distance of two given shapes ϑ1 ·S1 and ϑ2 ·S1, the expression

inf
s1∈S1

inf
s2∈S1

‖ϑ1 · s1 − ϑ2 · s2‖L2 = inf
s∈S1

‖ϑ1 − ϑ2 · s‖L2

has to be calculated. The last equation holds since S1 operates as an isometry on
C. Moreover, finding the minimizing s ∈ S1 can be calculated via Discrete Fourier
Transform [10]. Thus, this calculation needs only O(n log(n)) multiplications [2].
The function to calculate s ∈ S

1 given the preshapes ϑ1 and ϑ2 will be denoted
dftC : C × C → S1.

3 Calculating Local Shape Morphings

In this section, two different algorithm to calculate geodesics between given
shapes will be presented. Both algorithms will calculate the distance defined by
(2). The first algorithm was presented by Klassen et al. [9] and uses a lineariza-
tion of the exponential mapping. The second algorithm – proposed in this paper
– will use the geodesic equation as gradient descent to minimize the functional
E(m).

3.1 Morphing Via the Exponential Mapping

As we have seen, the following functional can be calculated efficiently using dftC .

Hϑ2
ϑ1

(f) = inf
s∈S1

∥∥expϑ1
(f)− ϑ2 · s

∥∥2
L2 , f ∈ Tϑ1C. (3)

The linearization of expϑ1
(f) is explained in detail in [9]. The distance between

the orbits ϑ1 · S1 ⊂ C and ϑ2 · S1 ⊂ C is the minimal ‖f‖ of any f that realizes
the minimal value of Hϑ2

ϑ1
(·).

The above method has some important drawbacks. First of all, the numerical
stability of expϑ(·) depends very much on the curvature at the point ϑ. Hence,
one expects an asymmetric runtime behavior, because the curvature of C is
heterogenous. In addition, the last operation that is calculated in (3) is the shape
alignment via dftC . Hence, this method can get stuck in a local minimum. In
Section 4 we will provide an example of this problem. One additional drawback
is the runtime of this method. In the next section, we propose an alternative
variational approach to compute geodesics which resolves all these drawbacks.
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f
TϑC

ϑ

C

Fig. 2. A deformation f from a given preshape ϑ is orthogonal to the tangent space
TϑC at this given preshape, iff the projection of the deformed preshape ϑ + f onto the
preshape manifold C is equal to ϑ

3.2 Morphing Via the Geodesic Equation

Instead of restricting ourselves to the tangent space of a preshape ϑ1 and trusting
in the numerical stability of expϑ1

(·), let us consider the entire path from ϑ1 to
ϑ2. With the help of the geodesic equation m′′ tan ≡ 0 it is easy to verify, whether
a given path is a geodesic or not. Moreover, the geodesic equation guarantees
an equidistant path and thus, a variational approach will take care of an online
gauge fix.

If m fails to be a geodesic, m′ is a non-parallel vector field along m and m′′ tan

measures the curvature of m within the manifold C. Let us observe this measure
in a discretized version of m in detail. The path shall be discretized in n ∈ N

equidistant preshapes. Each preshape shall be discretized in N ∈ N points. Thus,
a discretized path is

mN,n :=

(
m(0)N , . . . ,m

(
i

n− 1

)N

, . . . ,m(1)N

)
∈ R

N×n , whereas

ϑN :=
(
ϑ(0), . . . , ϑ

(
i

N

)
, . . . , ϑ

(
N − 1
N

))�
∈ R

N .

The discretized versions of Pε and Pϑ will be known as PΔ
ε resp. PΔ

ϑ . The vector

field m′ can be discretized by 1
nm

′
(

i+0.5
n−1

)
≈ mN,n

·,i+1 − mN,n
·,i and the geodesic

equation becomes

0 =PΔ
mN,n

·,i

((
mN,n

·,i+1 −mN,n
·,i

)
−
(
mN,n

·,i −mN,n
·,i−1

))
=− 2PΔ

mN,n
·,i

(
mN,n

·,i −
mN,n

·,i−1 +mN,n
·,i+1

2

)
.

Because of 0 = Pϑ(f)⇔ ϑ ≈ Pε(ϑ+ f) (cf. Figure 2), we obtain the equation

mN,n
·,i =PΔ

ε

(
mN,n

·,i−1 +mN,n
·,i+1

2

)
. (4)
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Equation (4) can be interpreted as an iteration rule, that simulates the gradient
descent and thus, moves a given path towards a geodesic. During this process the
starting preshape mN,n

·,1 and the target preshape mN,n
·,n aren’t be altered. Thus,

this process converges towards a geodesic from ϑ1 to ϑ2. To calculate a geodesic
from ϑ1 to the orbit ϑ2 · S1, we calculate a realignment in every iteration step.
Our proposal for the iteration step is therefore3

Step 1: for (i=1; i<n-1; i++) {

mN,n
·,i := PΔ

ε

(
mN,n

·,i−1+mN,n
·,i+1

2

)
}

Step 2: for (i=1; i<n; i++) {

mN,n
·,i := mN,n

·,i * dft_C(mN,n
·,i , mN,n

·,i−1);
}

By this extended iteration the starting preshape ϑ1 remains fix but the target
preshape ϑ2 can be modified. This modification will only take place along the
orbit ϑ2 · S1 and thus, the shape of ϑ2 remains the target of the morphing.

4 Benchmarking

To illustrate the difference between these two algorithms, we will discuss a spe-
cific morphing example. For this purpose, we have used the SQUID database of
fish shapes [12]. In the first subsection, we will examine the morphing process
between a seahorse and a starfish. This morphing will be done with a very high
resolution (N = 500 angles along each preshape; n = 300 intermediate morph-
ing steps). Specifically we show that the shooting method gets stuck in a local
minimum, whereas the variational method calculates the global minimum with
respect to shape realignments. In the second subsection we will analyze the speed
of both algorithms for N = 500 and n = 1, . . . , 100, showing in particular that
our variational method computes minimas within seconds where the shooting
method takes more than one hour.

4.1 Dissimilarity of a Seahorse and a Starfish

Figure 3 shows the morphing of a seahorse towards a starfish. The first row shows
the morphing according to the shooting method, whereas the second row shows
the result of the variational method. Both are valid morphings of preshapes, but
the calculated alignments are different in both algorithms. This leads to a self-
intersection in the first case, whereas in the second case, the tail of the seahorse
unrolls in an expected natural manner. This is due to the different alignments
of the target shape. To emphasize the alignments, the same region of the target
shape is colored. It’s easy to see that the variational method moves the tip of the
tail towards the tip of that region. Moreover, the first geodesic has the length
13.8, whereas the second geodesic has the length of 12.2. Therefore, the shooting
method gets stuck in a local minimum.
3 Note that each index starts at 0.
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Fig. 3. The morphing of a seahorse towards a star fish is calculated via both algorithms.
First row: The shooting method [9] gets stuck in a local minimum. Second row: Our
variationalmethod calculates the globalminimum with respect to realignments.Lastcol-
umn:To illustrate the different alignments, the same region is colored in the target shape.

Fig. 4. Here the computation time to calculate geodesics is presented. The shapes are
highly resoluted and on the x-axis the discretization of the morphing is shown. The
runtime via the variational method has two advantages. Symmetry: The geodesic
calculation does not depend on the starting shape, whereas the runtime for the shooting
method varies by ca. 25%. Runtime: The variational method is faster by a factor of
1000.

In this example, we used a discretization of N = 500 for the preshapes. There-
fore, there exist 500 different alignments for the target preshape. Calculating the
geodesic distance between the preshapes with respect to all alignments, we could
confirm that 12.2 is the global minimum with respect to preshape alignment.
Thus, the calculation of realignments serves the purpose of finding the minimal
distance between two given shapes.
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4.2 Computation Time

Figure 4 shows the computation time of both methods. It varies from the com-
putation time in [9] because we use highly resoluted preshapes and the methods
stop only if they can provide a very accurate result. On the horizontal axis the
discretization resolution of the geodesic is noted. For the shooting method this is
the discretization of the exponential mapping. For the variational method this is
the number of shapes that discretize the path on the manifold. First of all, we see
that the computation time is not symmetric for the shooting method. Moreover,
the computation time varies by 20 to 30 percent. This is due to the fact that
the shooting method depends highly on the curvature at the starting shape. The
variational method is symmetric and thus, the runtime does not depend on the
starting shape. In addition, the calculation time is less than 100 milliseconds in
the highly resoluted case. If we use the same resolution as in [9], the variational
method takes only a few milliseconds.

5 Conclusion

We presented a new variational approach to calculate geodesics in the shape
space introduced in [9]. This shape space consists of S1-orbits within a manifold.
We start with an arbitrary parameterization of two given shapes and a path
between these two points of the manifold. This path is then shortened via our
variational method by alternating a two-step iteration process. The first step uses
a gradient descent method and the second step realigns efficiently all preshapes
along the observed path.

The proposed variational approach has several advantages over the shooting
method used in [9]: Firstly, it is more stable since in contrast to the exponential

Fig. 5. The confusion matrix for a set of nine shapes
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map, the variational method does not accumulate projection errors. Moreover,
our gradient descent method provides an online gauge fix. Secondly, the formula-
tion of the variational method does not rely on the starting shape, and thus the
formulation of the metric is numerically symmetric. Thirdly, the calculation time
is considerably smaller. In our examples, the calculation time typically improves
by a factor of 1000. In addition, in our experiments our algorithm provides the
globally optimal alignment between the given shapes. The practical implication
of these drastic improvements in speed is that for a database of 100 shapes of
high resolution, the confusion matrix consists of 4950 different entries and can
be calculated in 8 minutes instead of 5 days4. Thus, the efficient use of this
metric allows to cluster a considerable amount of shapes (cf. Figure 5). Future
work will be focused on generalizing the concepts of geodesics on shape spaces
to higher-dimensional shapes (e.g., surfaces).
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Abstract. Level set methods have become very popular means for im-
age segmentation in recent years. But due to the data-driven nature of
this methods it is difficult to segment objects that appear unconnected
within the data. We propose a modification of the level set speed func-
tion to add a “bridging force” that allows the level set to leap over gaps
in the data and segment an object despite artifacts or partial occlusions.
We propose two methods to define such a force, one model-based and one
image-based. Both versions have been applied to a series of test images,
as well as medical data and photographic images to show their adequacy
for image segmentation.

1 Introduction

Level set methods have become very popular in recent years. They have a wide
range of applications in many different domains of science. Examples range from
computer graphics[16], motion tracking[11], simulations of flame propagation[1]
and compressible gas dynamics[9] to shortest path[3] and seismic travel time
calculations[14].

Image processing is an important field for the application of level sets. Espe-
cially in image segmentation their implicit definition offers an alternative to the
well-known explicit deformable models, like mass-spring-models[4] or finite ele-
ment methods[8]. If the number of objects or the shape of the object that should
be segmented is not known in advance, level set methods allow the definition of
a model based on the properties of the desired object. This is also useful if the
shape of the object has many degrees of freedom or has large variations between
different data sets. Examples for their application in medical image analysis are
the segmentation of the vascular tree or the bronchial tubes.

The drawback of level set methods is that artifacts distorting the data may
pose a bigger problem to these methods than they do to explicit models. This is
due to the data-driven nature of the front propagation process using level sets.

In this paper we propose a new force term for level set methods that allows to
bridge gaps between parts of objects originating from missing information and
thus to include another more model-based aspect to the definition of the speed
function.

K. Franke et al. (Eds.): DAGM 2006, LNCS 4174, pp. 152–161, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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(a) (b)

Fig. 1. Illustration of the front propagation process: The left image shows an initial
curve C and the level set function Φ at time t=0. The right image shows both functions
at a later time.

The paper is structured as follows: In section 2 we give a short introduction to
level set methods and the definition of the speed function needed for the prop-
agation process. Our modification of the speed function is presented in section
3. We show some experimental results in section 4 and conclude this paper in
section 5.

2 Level Sets and Speed Functions

2.1 An Introduction to the Level Set Method

Level sets were introduced by Osher and Sethian [10] for the solution of surface
motion problems. They are used to describe the evolution of a curve C over time
according to a given speed function F .

Let C ∈ "n be a parameterised closed curve and C(x) be the family of
curves generated by the movement of the initial curve Ct=0(x) along its normal
direction. The speed of this movement is a function based on various elements,
e.g. the local curvature of C. To allow topological changes of the evolving front,
C is embedded as a zero level set into a higher dimensional function Φ ∈ "n+1.

Ct=0(x) = {x|Φ(x, t = 0) = 0}. (1)

This leads to the level set equation

Φt + F |∇Φ| = 0, (2)

where |∇Φ| denotes the normalised gradients of the level set function and F is
the speed function determining how fast the front moves.

The advantage of this representation is that Φ always remains a function even
if C splits, merges or forms sharp corners. Also, this representation is indepen-
dent of the number of dimensions of C. As Φ changes over time its zero level set
Φ(x, t) = 0 always yields the propagating front, i.e. C(x) at time t.

An example of this process is illustrated in Figure 1.
An extensive description of the level set method with all its aspects and math-

ematical background can be found in [13].
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2.2 Speed Functions of Level Set Applications

As mentioned in the last section, the behaviour of the front propagation process
depends on the definition of the speed function F . Since the focus of this paper
is the application of level set methods for image segmentation, we will discuss
aspects of the speed function adequate for this application.

In contrast to explicit models used for segmentation in image processing, level
sets do not have to be initialised near the the desired object boundary (although
this saves computational time and usually makes the segmentation process more
robust). Instead the initial contour can be placed almost anywhere, but should
be located either completely inside or outside the object to be segmented.

The easiest way a speed function can be defined is simply a constant inward
or outward motion FA (also called “advection”). To assure numerical stability at
shocks (e.g. corners) and to prevent the front from crossing over itself, it is neces-
sary to use upwind schemes [10] for the calculation of the advection term. Also,
the time steps Δt have to be small enough to avoid numerical instabilities[13].

The inclusion of a curvature term is also useful for many applications (e.g. it is
the basis for the use of Level Sets for the simulation of compressible gas dynamics
[9]), and it allows the use of front propagation methods in image analysis where
noisy data and incomplete object boundaries are a common problem.

The local curvature κ is defined

κ = ∇ ∇Φ
|∇Φ| . (3)

For C ∈ "2 this results in

κ = −
ΦxxΦ

2
y − 2ΦxΦyΦxy + ΦyyΦ

2
x

(Φ2
x + Φ2

y)
3
2

. (4)

Depending on the characteristics of the underlying data the curvature term
should be weighted to adjust its influence on the propagation process. Therefore,
we will refer to the regularisation term as

Fκ = εκ, (5)

with ε ≥ 0. Modifications of the curvature term for the calculation of Min/Max-
flow are described in [6] where Level Sets are used for image enhancement.

Both, FA and Fκ are what in explicit models (e.g. [5]) would be called “internal
forces”, that is, influences on the evolution of the curve that are purely model-
based. A second group of forces is based on the data, therefore called “external
forces”. We will give here some examples that are specific to image processing
applications as they incorporate image features for the modification of the speed
function. The calculation of these terms will be given for 2D data sets. However,
their generalisation to higher dimensions is straightforward.

Malladi et. al.[7] proposed a speed term to stop the propagating front at image
gradients. One way to define such a term is

F
(1)
∇I (x, y) =

1
1 + |∇Gσ ∗ I(x, y)|

, (6)
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where (x,y) is a pixel of the given image and Gσ ∗ I(x, y) denotes an image
convolved with a Gaussian low pass filter with a standard deviation of σ. The
new term is then incorporated into the speed function as a scalar. Therefore,

F = F∇I(FA + Fκ). (7)

Another way to define this gradient-based speed term is

F
(2)
∇I (x, y) = e−|∇Gσ∗I(x,y)|. (8)

This term results in smaller values near gradients and higher values in ho-
mogenous regions than given by F

(1)
∇I .

A modification of this gradient-based term was proposed by Caselles et. al.[2],
who changed the speed function to

F = F∇I(FA + Fκ) +∇g · ∇Φ, (9)

with g(x, y) = −|∇(Gσ ∗ I(x, y))|. The added term attracts the front towards
edges even if it has already crossed over them. Obviously this makes the seg-
mentation process more robust.

Other image features may be implemented in a similar fashion. For instance,
an image-based speed term for a front that should just expand within a given
grey value Gseed would be defined

FG =

{
1, if I(x, y) = Gseed,

0, otherwise.
(10)

All image-based terms need to be combined and weighted in a meaningful
fashion and may then be used the same way F∇I was used in equation (7).

There is a third group of speed terms in literature that is neither purely model-
based nor data-based. We will refer to those modifications of the speed function
as “geometric terms”. The given examples work in 3D, their definition in higher
dimensions is more complicated than with the speed terms given above.

Van Bemmel et. al[15] define a “vesselness filter” for the segmentation of
blood vessels. This function is based on the eigenvalues of the Hessian matrix at
each pixel in the data set. The resulting speed term gives high values inside of
cylindrical objects and low values otherwise.

A similar approach by Young et. al[8] uses a cylinder that is fitted into a
volume at different angles. Here, too, grey values are used to calculate the fitting
accuracy. This modification was also used for the segmentation of the vascular
tree.

It is obvious that forces purely based on image features are often easy to
define but have their limits with noisy data. More model-based aspects (like the
mentioned “vesselness filter”) would benefit the segmentation process greatly
but are usually limited to special applications. Also, the independence of the
number of dimensions of the data the level set is used in is lost.

Therefore, we try to define a speed term that is somewhat weaker in its con-
tribution to the speed function but consistent with the definition of level sets
and not limited to a single application.
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(a) (b) (c)

Fig. 2. The propagating front evolving under the new force term at three points in
time. This “bridging force” is not used until the left sides of the bars are segmented.
Then it lets the front leap to the right side of the bars where it continues to propagate
normally. Note, that the front does not cross the gap in the bottom bar because the
distance between both halves is too great.

3 Bridging Gaps in Data

The goal of this section is to define a speed term that allows the segmentation
of objects whose representation in the data is disconnected. In medical imaging
gaps in objects may occur due to partial volume effects when thin objects are
seemingly disconnected due to a large pixel spacing in the data set. Other exam-
ples may be disconnected lines in drawings or, more generally, objects divided
due to occlusions by other objects.

To solve this problem we define a new speed term that allows the propagating
front to “look ahead”. That is, we need to incorporate a term that for each pixel
on the front decides if it should be moved even if the underlying image features
in the data (grey values, gradients, etc.) suggest that it should be stopped.

The implementation is very straightforward: we calculate the surface normal
for each pixel on the front. This is trivial due to the definition of level sets and is
computationally inexpensive. Knowing the direction of the normal we can choose
distances at which to analyse if the underlying data favours further propagation
of the level set at these locations. If the data indicates that the object continues
in direction of the normal, an additional force FB is added to the speed function
F , changing it to

F = FI(FA + Fκ) + FB(r, i). (11)

Here, FI denotes the combination of all image-based speed terms as described
in the previous section. The two parameters r and i of the newly defined term
FB denote the interval of the surface normal of a pixel that is examined and the
sampling of the pixels in that given interval, respectively. The second parameter
is only introduced to save computational cost since it is usually not necessary
to analyse every pixel along the normal. Figure 2 illustrates this process. For
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convenience we will refer the the new speed term as “bridging force” in the
remainder of this paper.

To avoid that the front leaks into the background at locations where a gap is
bridged the other speed terms can be switched off. This would still connect both
parts of the object but forms only very thin bridges as only very few pixels will
propagate over a given gap. A better solution is an adequate definition of the
other speed terms and to use e.g. curvature to avoid leaking. This strategy was
used with the experiments in section 4.

This definition of the bridging force is partly image-based, as it uses image
features, as well as model-based features. It assumes that regions within a certain
range having the same properties belong to the same object.

Depending on the properties of the underlying data it may be difficult to
define image features characteristic for a single object. The most simple feature,
the grey value, may occur also in regions not belonging to the desired object.

A slight change in definition makes the bridging force purely model-based and
more reliable: If the user is required to choose seed points in both parts of the
disconnected object, the front approaches a gap in the representation from both
sides. In this case the process of deciding if a gap should be bridged becomes
much simpler because the algorithm can assert if a region is already segmented,
that is, if the level set function Φ has negative values on the examined locations.

Leaking does not pose a problem if curvature is used to keep the front smooth.
Finally, note that both definitions of the “bridging force” are independent of

the dimensionality of the data just as the level set method itself and may thus
be used for various applications without changing their calculation.

4 Experimental Results

We now want to present some segmentation results using the new speed term.
A series of test images was prepared to determine the abilities of the segmen-

tation using the modified speed function.
We used two classes of test images containing a total number of 180 gaps with

a size between 5 and 30 pixels: class 1 are grey value images with foreground
objects in various intensities, class 2 are images with white objects on a black
background. Both classes of images were tested with objects of different thick-
ness. The original images were used as well as images with added gaussian noise
in various magnitudes.

Both versions of the newly defined bridge force were applied to the 180
samples. The speed function of the level set also contained the gradient- and
grey value based term as well as the curvature term defined in section 2. The
parametrisation of the level set was kept constant for both versions of the new
speed term. Segmentation results could be more exact with an adjusted param-
eter set for each image but results were also satisfactory with the global set (see
table 1 for an overview of the results).
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Table 1. Results from the application of the modified speed function to the test images.
The numbers show how many of the existing gaps in the data were crossed successfully.
“Image-based” denotes the image-based version of the bridging force, “Model-based”
the model-based version. Class 1 are grey value images and Class 2 are black & white
images. “Class 1 > 10” and “Class 2 > 10” denote the results, if the test images
containing thin structures of less than 10 pixels are left out.

Data set All images Class 1 Class 1 > 10 Class 2 Class 2 > 10

Overall 92% 92.5% 97.5% 91% 100%
Image-based 87% 89% 95% 83.5% 100%
Model-based 97% 96.5% 100% 98.5% 100%

Overall, 92% of the gaps within the test images were bridged correctly. We
experienced problems with thin structures of less than 10 pixels width. Due to
curvature it is possible that at no front pixel the gradient is directed at the target
object. This effect is getting more and more unlikely the thicker the object is at
the gap. Leaving out structures with 10 or less pixels thickness, only four gaps
were not bridged. Examples of test images are shown in figure 3.

In images with more than 30 % added noise the front sometimes leaked out at
objects and gaps if the difference between grey values of object and background
was too small (see figure 3(c), for instance). Higher weights for the image-based
speed terms or the curvature may prevent this, but they also prevent the bridging
force from crossing over gaps in the data and extremely slow down the whole
propagation process.

We also applied a level set with the modified speed function to CT data for
the segmentation of blood vessels. In [12] we already used level sets for the
segmentation of the vascular tree in these data sets and experienced problems
with unconnected parts of vessels due to partial volume effects. First tests with
the new bridging force seem promising as the modified speed function allowed
the level set to connect such vessels, as depicted in figure 5.

5 Conclusions

We presented two ways to define a new speed term for a level set speed function.
An image-based speed term that allows the propagating front to bridge over
gaps in the presentation of an object in the data and a model-based speed term
to explicitly connect fronts within a certain range of each other.

Both versions of the modified speed function were successfully applied to
various test images, as well as medical data and photographic images. The system
proved to be robust to noise, with the model-based speed term connecting 100%
of the gaps in test images containing objects of more than 10 pixels width.

Nevertheless there are various improvements to be made. Obviously, the prob-
lem of connecting thin structures has to be solved in the future. It may help to
analyse a cone in front of each pixel, instead of just the normal direction. This
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(a) (b)

(c) (d)

Fig. 3. Examples of segmentation results on test images. Images (a) and (b) are of
class 1, images (c) and (d) are of class 2. To all images 33% gaussian noise was added.

will slow down the propagation process significantly, though, as it will become
more difficult to analyse the data ahead of the front.

Another problem are u-shaped structures that should not attract themselves
via a bridging force. For the model-based speed term this could be solved with
minimal computational cost by assigning an identifier to each front. In this case,
the new speed term would not be applied if fronts have the same identifier. The
problem is more difficult with the image-based speed term and we will hopefully
solve this problem in the future.
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Fig. 4. Segmentation of a partially occluded object using the modified speed function.
Note, that the “bridge” between both parts of the coin does neither try to approximate
the occluded part of the coin nor leaks out into the occluding object. With the use of
a minimum curvature speed term, as described in [6], even the occluded parts of the
object should be approximated correctly.

Fig. 5. Application of the modified speed function to medical images for the segmen-
tation of blood vessels. The images show six successive slices of a CT data set with a
slice spacing of 3mm. A vessel branches off at a steep angle and due to partial volume
effects the lower and upper part of the vessel seem disconnected. This makes it impos-
sible for a level set without the additional bridging force to connect both parts of the
vessel. Using our additional speed term, the level set segments the vessel correctly.
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Abstract. The preoperative planning of primary tumor resections in
the larynx region shall be supported by a 3D visualization of the patient-
specific anatomy and pathological situation. This requires a segmenta-
tion of the larynx cartilage structures from computed tomography (CT)
datasets.

In our work, we use 3D Stable Mass-Spring Models (SMSMs) for
this segmentation task. Thereto, we create a specific 3D deformable
shape model for the segmentation of the thyroid cartilage. A new con-
cept for elastic initialization of this model is presented, allowing the de-
formable model to adapt specifically to patient-specific shape variations
and pathological deformations.

We show that using our generation and initialization method, proto-
typical 3D deformable shape models can be adapted to very different
patients without any prior training and prior knowledge about new pa-
tients’ data.

1 Introduction

In the case of tumor affections in the larynx and lower hypopharynx, the patient’s
life expectancy and further life quality depend strongly on the required surgical
treatment. The parts of the larynx which need to be resected, determine the
patient’s ability to breathe, swallow and speak. For the decision on a surgical
strategy, the extent of the tumor must be evaluated with respect to infiltration
of the following structures:

– the vocal chords and muscles (usually judged by laryngoscopy),
– the glottis, subglottic and supraglottic space, and
– the larynx cartilages, in particular the epiglottis, thyroid cartilage, cricoid

cartilage, and the two arytenoid cartilages (often judged by CT [1]).

For the assessment of the air and cartilage structures, a 3D visualization of the
patient-specific anatomy and pathological situation is desirable to reduce uncer-
tainties in the chosen surgical procedure. This requires a precise segmentation of
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the larynx and its substructures from neck CT datasets. These images are very
rich of different small structures of high signal intensity (Figure 4 in the evalu-
ation section gives an impression) making any segmentation task very difficult.

The inhomogenous nature of the cartilage itself makes its segmentation a chal-
lenging task, for which neither simple edge-based techniques, such as LiveWire,
nor gray-value-based segmentation techniques are appropriate. Since profound
anatomical knowledge is needed to bridge areas of weak signal in the cartilage
wall, we target at a 3D model-based segmentation of the thyroid cartilage.

2 State of the Art

For the segmentation of the thyroid cartilage, no specific approaches exist to our
knowledge. General methods for the segmentation using 3D deformable mod-
els are known [2]: 3D Active Contours or Balloons [3] incorporate rough shape
knowledge by means of a viscousity condition. The use of an inflation force pre-
vents them from shape collapse and drives them towards the target structure’s
contour. This global representation of shape does however not allow to model
complex shape information. Implicit 3D deformable models [4] do not bear the
problem of instability and need no inflation force. However, they are restricted to
describing regular geometric shapes, that can be described by a simple equation.
Active Shape Models (ASM) and Active Appearance Models (AAM) [5] provide
support for segmenting more complex shapes by means of a statistical analysis
of training data. They require large amounts of training data and a very good
correspondance of 3D points, which makes model creation laborious and segmen-
tation results potentially imprecise. For the segmentation of pathological shape
variations (e.g. caused by a tumor), ASMs and AAMs are principally inappro-
priate, because these shape variations are very individual and cannot be trained.

Stable Mass-Spring Models (SMSMs, [6]) are prototypical 3D shape models,
that need no training, but an initial model describing the expected shape. These
models are especially appropriate for tracking and searching as well as for seg-
mentation, if the individual structure is known in general. They are very robust
to noise and gaps in the data, as [7] show for the segmentation of the left ventricle
in 3D SPECT.

In our application, such specific deformations need to be modeled. Therefore it
is not enough to create an SMSM like in [8] that prototypically models the target
structure. A further adaption to the patient-specific pathological shape variation
is necessary, which will be introduced in this work. This way, a segmentation
model is created, that is directly tailored to an individual patient and does
not represent unnecessary shape knowledge about other patient’s like statistical
models would.

3 Method

In our work, we construct an SMSM of the thyroid cartilage semi-automatically
from a manual sample segmentation. We thereto adapt and refine the model
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creation (section 4) introduced in [8], which proposes a model topology consisting
of two parts created independantly from each-other:

1. an (outer) surface submodel containing masses with gradient sensors and
the contour faces representing the modeled object contour, and

2. an (inner) volumetric submodel containing intensity sensors.

Both submodels are connected afterwards to an overall model.
To adapt this prototypical model to each individual patient’s data, an elastic

initialization technique is introduced (section 5.1) to translate, rotate, scale and
deform the constructed general model nonlinearly and model-consistently to fit
the segmentation target structure by means of key masses. Because of these
starting conditions, the segmentation of the thyroid cartilage becomes possible
in this difficult data.

4 Model Generation for the Thyroid Cartilage

The semi-automatic model generation for the thyroid cartilage is based on a
manual segmentation created from a dataset with a visually average-shaped
larynx. The sample segmentation is available as a binary volume dataset. For
our examination, two different models were created and evaluated:

1. One volumetric model, according to the model creation of [8], consisting of a
surface submodel and a volumetric submodel connected by 1:1 connections.

2. For comparison, a pure surface model is created, consisting of the surface
submodel only. This model was employed to evaluate whether segmentation
based on edge detection alone is more appropriate than using gray value
information.

4.1 Generation of the Surface Model

The sample segmentation was resampled down to an isotropic voxel size for
efficient model generation. From this resampled segmentation, an isosurface was
generated using the marching cubes method (Fig. 1(a)), smoothed and simplified
with Quadric Error Metrics [9] to a certain degree (Fig. 1(b)), that is adjustable
for different abstraction levels. The resulting number of triangles (in our case 50–
200) provides an appropriate modelling of the cartilage shape while still allowing
for realtime model simulation (Fig. 1(c)).

The resulting surface was used to create the surface model: For each vertex of
the mesh, a mass point was created. For each edge in the mesh, a spring connect-
ing the incident vertices, rsp. mass points, was created. All masses and spring
constants throughout the model were set to 1.0. A direction-weighted gradient
sensor [10] was attached to each mass point of the surface model, ensuring that
contour masses are only attracted by image gradients of the same direction as
the incident surface normal. This prevents the model from being distracted by
neighbouring but irrelevant gradients, which is a common problem in neck CT
datasets.
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(a) (b) (c)

(d) (e) (f)

Fig. 1. Stages of model creation (surface submodel: (a)-(c), volumetric submodel: (d)
- (f)) for the thyroid cartilage: (a) Isosurface, (b) Surface simplification, (c) Surface
submodel, (d) Mass point initialization, (e) Mass point reduction, (f) Volumetric
submodel

4.2 Generation of the Volumetric Model

For the generation of the volumetric model, inner masses with attached intensity
sensors, dragging these masses towards neighbouring voxels of a certain gray
value interval, have to be created and combined with the surface submodel.
Thereto, an initial set of mass points is created by placing one mass point at
each voxel of the resampled manual segmentation (Fig. 1(d)). Then, the initial
point set is reduced iteratively by the following relaxation.

Reduction of Inner Masses. For each mass point, all mass points inside
a neighbourhood of radius r are moved to their common center of mass and
merged. By iterating this relaxation, the initial point set is reduced considerably,
and fills the manual segmentation evenly (Fig. 1(e)).

The convergence of the relaxation towards a reasonable point set depends
on the choice of r. According to our experiments, a radius of half the desired
minimum distance of two mass points leads to a convergence representing the
original shape well. A dense placement of the volume masses has the advantage
that the inner properties of the segmentation target structures are measured
at more positions, which is equivalent to a higher sampling rate. We therefore
always chose r to be within [voxelsize;

√
2 · voxelsize].

Cross-Linking of the Inner Masses. Each of the resulting volume mass
points is linked with each neighbouring mass point within a user-defined radius
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(a) (b) (c) (d)

Fig. 2. Elastic model initialization: (a) Key masses, (b) Key masses placed, (c) Model
during adaptation to key positions, (d) Model after adaptation to key positions

p. In our model of the thyroid cartilage, a radius of p = 10mm (for a voxel size
of 2.148 mm) led to good results in all cases (Fig. 1(f)).

4.3 Connecting Inner and Outer Submodel

Both the volume and the surface submodel are interconnected by springs and
merged to one volumetric model. A 1:1 interconnection (each point of the surface
submodel is connected to the closest mass point of the volume submodel) has
proved to be appropriate for good model stability.

5 Segmentation Process

5.1 Elastic, Model-Consistent Initialization

A good initial adjustment of the deformable model to the individual patient’s
larynx shape is needed, so that the adaptation of the model to the dataset will
not be distracted by ‘wrong’ gray value information of adjacent structures.

For this initialization, the model’s position, rotation, scaling and expected
shape have to be adjusted for our application. Classical initialization methods
correcting only the model’s position, rotation and/or scaling are not sufficient
according to our tests (see section 6.2 for details).

We therefore introduce a new initialization method, which exploits the model
specification already available: In the created deformable model, a mass point at
each of the most prominent landmarks is marked as a key mass at the end of the
model creation process. The user can specify the positions of these key masses by
clicking into the dataset. The 6 key masses for the model of the thyroid cartilage
are positioned at the cornu superius left and right (1.), cornu inferius left and
right (2.), as well as the upper (Adam’s apple) (3.) and lower end of the larynx
front side (4.) (Fig. 2(a)).

These key masses are then fixed and the model simulation is started with
only the spring and torsion forces active, but all sensor input turned off1. The
1 Simulation parameters: spring force weighting wf = 5.0, torsion force weighting

wt = 10.0, damping factor d = 0.001, simulation time step �t = 0.05.
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internal forces, normally representing the model’s shape knowledge during a
regular segmentation, adapt the model’s shape to the key positions (Fig. 2(b)-
(d)), while keeping the model as consistent as possible to the shape knowledge
it represents. With this method, the model adjusts itself flexibly and nonlin-
early to the specified key positions. Guided by the key masses, it adjusts posi-
tion, size, orientation and shape during this process to the individual patient’s
anatomy.

After complete adaptation, the rest lengths and rest directions of all springs
are set to their current (deformed) length and direction values. This way, the
new expected shape is anchored in the model.

5.2 Model Adaptation

After initialization, the precise model adaptation is started2 . All key masses are
left fixed, so that the model adaptation occurs within their frame of reference.
This way, the model is kept at the correct position. Besides, the lengths of the
cornu superius and inferius vary widely among different patients. By keeping
the top of the cornu fixed, we can ensure that the whole cornu is found. The
simulation is stopped, when the model speed falls below a certain threshold,
which always happens because of the damping.

6 Evaluation

6.1 Data Material and Ground Truth

12 CT datasets of the neck were acquired for preoperative planning, containing
the larynx. The slice thickness of the datasets ranged from 1.5 mm to 6.0 mm.
The datasets varied significantly w.r.t. signal-to-noise ratio, contrast and mo-
tion artifacts. In 3 datasets, the larynx was displaced or partially destroyed due
to tumor affection. On all 12 datasets, a manual segmentation of the thyroid
cartilage was created by an experienced user and controlled by a radiologist.
These verified manual segmentations were used as a ground truth for the evalu-
ation.

6.2 Model Initialization

To evaluate the single effect of our elastic initialization method from section
5.1, we compare it to the classical initialization methods of positioning and
positioning with independent scaling for each axis, where always the optimal
initialization is computed with regard to the ground truth. Rotation correction
did not make sense here, since the datasets have because of the same imaging
process all the same principal direction.

2 Simulation parameters: sensor force weighting ws = 0.05 for gradient sensors, ws =
0.001 for intensity sensors, spring force weighting wf = 1.0, torsion force weighting
wt = 2.0, damping factor d = 0.001, simulation time step �t = 0.05.
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Table 1. Average initialization results of the standard initialization methods (position
and position / scale) and our elastic, model-constistend initialization method compared
to the ground truth, measured for 11 CT datasets of the neck using a model created
on the 12th dataset (leave-one-out-test)

Evaluation Measure Position Position / Scale Elastic
Hausdorff Distance 30.54 mm 29.16 mm 20.06 mm
Average Distance 4.73 mm 4.09 mm 2.90 mm

In the optimal case, a “perfect” model initialization would be equal to the
ground truth. We therefore calculated the shape (border) distances (Hausdorff
and average distance) of both classical initialization methods and our elastic,
model-constistent initialization method to the ground truth for evaluation. Table
1 shows, that the new elastic, model-based initialization technique places the
model roughly 30 % - 40 % closer to the ideal segmentation result than the
classical initialization methods. This is an important improvement for every
segmentation method using a local search technique, such as the SMSM approach
used for our application.

Furthermore, these numbers show, that the elastically initialized model’s
shape approximates already the individual shape of the segmentation target
structure for a single patient. Otherwise, the shape distances from table 1 would
not be so much lower than the ones from the classic initialization methods, which
optimally match the ground truth using models without deformation allowed,
but only scaling (Fig. 3 illustrates this fact).

6.3 Segmentation Experiments

From a dataset with an average-shaped larynx, a volumetric model (consisting of
a surface and a volumetric submodel) and a pure surface model were generated
as described above (section 3). The key masses were marked manually and used
throughout all experiments. The two models were then applied to the remaining
11 datasets (leave-one-out-test) in the following manner:

(a) (b) (c)

Fig. 3. Enhancement by elastic model initialization: (a) Manual initialization using
only translation, (b) Manual initialization using translation and scaling, (c) Elastic
initialization with 6 landmarks
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Table 2. Average segmentation results of the 2 models and 1 experienced user com-
pared with the ground truth, measured for 11 CT datasets of the neck

Evaluation Measure Volumetric model Surface model
Hausdorff Distance 11.11 mm 9.84 mm
Average Distance 1.20 mm 1.06 mm

1. The user marks the key positions in the dataset (6 markers).
2. The model is automatically positioned and scaled according to the bounding

box of the key positions.
3. The model is adapted to the key positions (1 click for stopping this phase).
4. The newly adapted shape is automatically learned by the model.
5. The model adaptation to the dataset is performed with the key masses still

fixed. (1 click for model stopping).

The segmentation results for both models, as well as the manual segmentation
results of an experienced user were compared with the given ground truth by
different evaluation measures (Tab. 2).

6.4 Results

In all 11 datasets, the thyroid cartilage could be robustly segmented with an
average border distance of 1.064 mm to the ground truth. No significant loss of
segmentation quality could be found in the cases of pathological larynx shapes
(Fig. 4(a)). Weak-signal holes in the cartilage were successfully bridged by the
model’s intrinsic shape knowledge (Fig. 4(b)). The model adaptation time needed
for elastic initialization was 0.5–1.5 minutes for all datasets, the model adapta-
tion to the datasets took 2–4 minutes per dataset (all measures performed on a
standard PC: Pentium M, 1,7 GHz, 512 MB RAM).

Our results show, that the volumetric model is not superior to the pure surface
model. In fact, with intensity sensor weighting ws > 0.001, the intensity sensors
tend to be attracted by false gray values in neighbouring structures. This leads to
strong model instability and significantly worse segmentation results. We there-
fore recommend using a pure surface model for the segmentation of the thyroid
cartilage, which will be less affected by gray value inhomogenities.

The model’s adaptation to the datasets is significantly better in the lower
part of the thyroid cartilage (i.e. below the adam’s apple) than near the upper
border, which may cause up to 50 % of the observed undersegmentation. This
can be attributed to several circumstances:

– The lower part of the thyroid cartilage tends to be signal-intensive, while
the model often lacks signal support in the upper part. This may lead to
strong undersegmentation of this area (Fig. 4(d)). This causes the relative
high values the Hausdorff distance. A simple user interaction might prevent
this behaviour.
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– In some cases where the hyoid bone is very close to the thyroid cartilage,
the upper sensors of the model are attracted by its strong signal. In order to
prevent leaking, the os hyoideum may be subtracted from the dataset first.
Another possibility is to integrate the hyoid bone into the model to ensure
that the masses for the thyroid cartilage are kept at appropriate distance.

Except for the hyoid bone, no other neighbouring structures distracted the
model. This must be attributed to the new method for initialization followed
by shape learning. Without these techniques, the thyroid cartilage could not be
separated from the thyroid gland, blood vessels and the trachea robustly.

(a) (b)

(c) (d)

Fig. 4. Results of the model adaptation to the datasets

7 Discussion

A deformable 3D model (Stable Mass-Spring Model) has been constructed and
adapted for the segmentation of the inhomogeneous and complex-shaped thyroid
cartilage. We introduced model-consistent (position, orientation, rotation and
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shape) adaptability of the model to individual patient shape variations by means
of an elastic initialization. In contrast to statistical shape models however, our
method is not limited to a pre-learned range of shape variations. Instead, it
is always initialized to represent the shape information it needs by means of
a few key masses. This makes it especially suited for segmenting pathological
structures.

Compared with a manual or LiveWire segmentation, the model offers a drastic
reduction of interaction effort. Already now, the model can be used at least as a
presegmentation of the cartilage, which needs only be corrected at 2–3 positions
by the user. In contrast to other 3D models, such as implicit models and ASMs,
interaction is intuitively supported by the explicit shape representation of our
model.
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Abstract. We present a new method for extracting rectangular shapes
from images. It uses a windowed Hough transform and adds a new co-
ordinate to store the precise pixel distribution of a line by means of a
topological relation. By an early and rigorous check of each edge can-
didate, performed in the new expanded Hough space, the edge space
is significantly reduced, thus simplifying further processing. Moreover,
the edge checking algorithm provides flexibility in choosing the diameter
of the circular search window. The method is robust, revealing a good
recognition quality when applied to both synthetic and real images.

1 Introduction

Many elementary man-made structures have, when projected onto a plane, a
rectangular form, making it imperative to develop accurate techniques that
manipulate these types of shapes. These techniques cover a wide spectrum of
environmental, medical and industrial applications: building recognition from
satellite images [12], vehicle recognition [18]; determining the atomic resolution
structure of the enormous number of proteins encoded in genomes [17,2], ana-
lyzing cryo-electron microscopy and simple particle images [19]; and recognizing
patterns in robotic vision. For this reason, a wide range of algorithms have been
developed to manipulate the large amount of acquired data. The major tech-
niques in rectangle detection rely on matching criteria and line analysis.

Rectangular building extraction from stereo aerial images is approached in
[13] by hierarchical perceptual grouping and matching, with subsequent verifi-
cation of real shadows and building walls. Another semantic outlook over the
feature extraction task can be found in [11], where perceptual grouping is used,
as well as graph structures. The latter is formulated as a function of the type
and values of connections between lines, followed by a step in which building
hypothesis are generated by means of mathematical and geometrical relations.
The above-mentioned approaches make use mainly of high-level feature analysis,
but low-level analysis is also a sustainable method in the detection of rectilin-
ear organizations as a first step toward the high-level one, or as an interleaved
operation. In this area, the Hough transform [9] has been exploited in a variety
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of ways. Pioneering work has been done by Ballard [1], which proposes a gener-
alization of the Hough transform. The algorithm uses directional information of
an edge image to construct a geometrical transformation from the image space
to Hough space and eventually to detect arbitrary shapes, specifically lines, cir-
cles and parabolas. Several more variations of the transform are known, like
Randomized HT [16], Probabilistic HT [8], Hierarchical HT[14]. Combining the
variational methods of the Generalized HT and the Randomized HT, [7] ad-
dresses the problem of object detection given a template that resides with the
sought shape, and exploits the advantages of both techniques.

In [6] a different extension is introduced to the Generalized HT, relying on
a composition of weak affine transformations. An additional contribution is the
incorporation of a local shape variability to improve the detection.

In [3], regular polygon detection is approached by the use of a five-dimensional
space that is collapsed to a three-dimensional space considering an a posteriori
probability. Also, the continuous log-likelihood of the probability density func-
tion of regular polygons is defined. Including additional a priori information, a
real-time road sign detector is constructed. Jung and Schramm [10] describe a
holistic approach that directly detects the rectangles from the Hough accumu-
lator. The rectangle in the image space is sought with a small window shaped
according to the rectangle dimension that slides above the image, and thus, us-
ing the Hough transform, a rectangle centered in the middle of the window can
be detected. When the window size is only slightly greater than the rectangle
diagonal, the method offers positive results.

The present work proposes a new method for rectangle detection by ex-
tending the Hough space with a new dimension to account for the way edge
points spread according to their position on a detected line. Our method offers a
higher accuracy of rectangle recognition and exhibits robustness on a variety of
images.

2 Preservation of Topological Information

The classical Hough Transform is an efficient technique for line detection [5].
Undergoing a simple geometrical transformation, ρ = x cos θ − y sin θ, pixels in
the image can be classified according to the line they belong to, in the cell
of the Hough accumulation matrix. For complex images, individualizing the
objects by means of a sliding window, as shown in [10], is vital for accurate
detection. The window acts like a delimitation of the focused object from the
background objects and reduces the uncontrolled influence over the values of the
accumulator space cells correspondent to the currently analyzed area. However,
if the distortion attributable to noise surpasses a certain threshold assertion,
failing cases of detection occur. The main reason is that the accumulator con-
figuration does not preserve the information about edge points position within
the image, thus hindering the classification of objects. By preserving the points
topology in the Hough space, we improve extraction with fewer exceptions and
limitations.
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2.1 Hough Transform Columns

The proposed algorithm adds a third dimension to the Hough plane, ensuring
a bijective correspondence between a detected line and the new dimension, by
means of their Hough parametric definition. We will name this attached dimen-
sion a column, due to its suggestive geometrical associations. Each column will
hold the exact distribution of the edge points along the line, facilitating seg-
ment detection and the discrimination between valuable lines and noise. Let us
consider Fig. 1a. It depicts the search region within the image space – a corona
with boundaries Dmin and Dmax, which stand for the minimum edge of a sought
rectangle and its diagonal, respectively. Point P (x, y) lies on the line d to which
a Hough transform [9], assigns a (Θ, ρ) coordinate in a unique manner. In order

Fig. 1. Point P mapped from the image space (a) in a γ-Column (b)

to map every point P into a Hough space column as illustrated in Fig. 1b and
preserve the same line context organization, a natural choice is to use as a refer-
ence point the foot O′ of the perpendicular from the vertex O to the (Θ, ρ) line.
This yields a change of coordinate system such that P (x′, y′) = P (γ, 0). The
mapping between the two metric spaces is attained by means of an isometry,
namely a roto-translation of parameters Θ and ρ, respectively, where the topo-
logical relation is γ = x sin(Θ) + y cos(Θ). This way, O′ will encode the middle
of the column, γO′ = 0. When mapping the edge points in the Hough parameter
space as a voting consequence, they will not only accumulate, but also linearly
distribute along a (Θ, ρ) γ-column, representing the line that a point lies on.
Hence, the procedure will literally import the lines from the original space into
columns, according to their (Θ, ρ) identification tuple.

Cloning the information from the original space to the Hough space pro-
vides a compact framework for analysis operations entirely in the Hough space.
This eliminates the repeated switches between spaces when computing the cor-
respondence between peaks in the accumulator cells and lines in the original
image.
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2.2 Sifting the Candidate Line Segments

After the columns of the Hough space are exhaustively populated, the next step
is to perform a sifting of line segments which respect a predefined threshold of
contiguity. Our implementation keeps track of the gaps in a similar manner to
Song and Cai [15] who performed segment line extraction, taking account of
segment discontinuities in order to precisely reconstruct the lines in the original
space. Prior to this step, we ensure that no line that consists of a number of points
less than the minimum allowed, a fraction of Dmin, passes to the next analysis.
It follows from the geometry constraints that the point O′ would eventually be
the center of one rectangle side. Since the generic origin O′ coincides with the
center of symmetry of any chord stretched inside the corona, which is also the
maximum-length support of any possible segment, we can exploit the symmetry
property of a rectangle side with respect to this origin. The algorithm below sets
out in the center O′ and scans the chord in both directions (step 1, step 4). Here,
a single case of crossing is presented, the other one is analogous.

It accumulates the total number of valuable pixels on its way (step 5) and
tolerates gaps lower than the threshold gap (step 3). It truncates both sides of
the chord remainder at the level at which the gap - either gapup or gapdown -
that has reached the maximum acceptance rate began.

1. for l = 1 to Dmax/2
2. if H [Θ, ρ,Dmax/2− l] = 0 and gapup = gap

3. gapup ← gapup + 1; break
4. if H [Θ, ρ,Dmax/2− l] �= 0
5. points← points+ 1; gapup = 0
6. else gapup ← gapup + 1

The case when a gap occurs in the center of symmetry is treated similarly.
At the end, a comparison is carried out between the number of filled pix-

els currently quantized and the actual length of the acquired edge denoted as
edgelength. We have experimentally chosen thresholdp = 0.6 ∗ Dmin, to check
whether the current edge is at least the minimum edge length, Dmin (step 1).
Another fractional voting, threshold e = 0.4 ∗ edgelength (step 3), validates the
compliance of a number of pixels adequate for a rectangle edge.

1. if points > thresholdp

2. edgelength ← 2 ∗ [l −max(gapdown, gapup)] + 1
3. if points ≥ threshold e return edgelength else return 0

The outcome is a line segment, with negligible interruptions, which fulfills the
symmetry quality, and is a good candidate for a rectangle side. The method
brings conclusive advantages like an early reduction of residual noise and a sig-
nificant decrease of the requested computational and storage resources as a con-
sequence of a diminished rectangle search space.
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2.3 Assembling the Rectangle

In the previous step, a screening filter is used to classify an amount of bounded
lines into candidates for rectangle edges. Jung and Schramm [10] collected evi-
dence for rectangle feature extraction from a Hough space, seeking specific rela-
tions that match a set of geometrical constraints of a rectangle. For our approach,
we have modified their set of rules as discussed below.

For a given rectangle whose center coincides with the Cartesian origin, let the
four vertices be V1, V2, V3, V4, where V1V4 = V2V3 and V1V2 = V3V4. The Hough
transform will map the aforementioned edges into peaks H3(Θ3, ρ3), H4(Θ4, ρ4),
H1(Θ1, ρ1), H2(Θ2, ρ2), respectively as in Figure 2.

Fig. 2. Windowed Hough Space

Peaks that design a rectangle shall obey the following rules:

1. |Θ1−Θ2| < εΘ and |Θ3−Θ4| < εΘ, designating the parallelism between two
opposite rectangle sides, i.e. the pairs (H1, H2) and (H3, H4) respectively.

2. |ρ1+ρ2| < ερ and |ρ3+ρ4| < ερ, meaning two opposite rectangle sides should
lie equidistant with respect to the considered center of the search corona; if
these two first rules are satisfied, each of the two pairs will be called a peak
pair, and the validation proceeds further.

3. valp((Θ1, ρ1), (Θ2, ρ2)) = min(val(Θ1, ρ1), val(Θ2, ρ2)), where we denote by
valp((Θ1, ρ1), (Θ2, ρ2)) the global magnitude of the peak pair (analogous for
the other peak pair). Thus, at this step a decision is made concerning the
final amplitude of opposite sides. The computed value is assigned to both
arguments of the function. The minimum is to be taken as the length of both
sides, therefore the equality of opposite edges of a rectangle is achieved.

4. val(Θ1, ρ1) ≥ 2∗average(ρ3, ρ4)∗ threshold ρ, where val(Θ1, ρ1) is the yielded
magnitude of peak H1 ; the case repeats analogously for the other three peaks
left. This means that a rectangle edge length is permitted to be greater than
or equal to a fraction of the distance between the two parallel edges enclosed
in the other peak pair. This constraint brings a considerable improvement
over [10] who imposed a negligible difference between the length of opposite
edges, that is, for an overloaded image, eligible rectangles can be refractory
to the rules of selection.

5. ||Θ1 −Θ3| − 90| < ε⊥ is the orthogonality test for adjacent rectangle edges.
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3 Enhancements to Rectangle Extraction

One major benefit of the third dimension is the removal of almost all false positive
and false negative cases in rectangle detection. These cases frequently appear in
images where rectangles are adjacent and have similar orientations.

False positive. In [10] the authors identify cases where the detection is inaccu-
rate. In our implementation, these situations are far less. An example of a wrong
detection is the one depicted in Figure 3a, where the false positive rectangle is
drawn in grey. Among the geometrical restrictions established in [10], one defines
two parallel edges of a rectangle if each of the corresponding peaks quantizes the
same number of pixels, that is, the edges have the same length. However, if the
points distribution is neglected, a cell gathers points that can play the role of a
rectangle edge as effect of accumulation only. In this manner, the accumulation
matrix (Figure 3b) is identical to that of the wrongly detected rectangle, with re-
spect to the number, values and position of the peaks. Our algorithm avoids the
confusion because it intercepts a gap larger than the permitted one in the center
of the grey rectangle edge and disregards it (see the small edges of the filled
rectangle in Figure 3c). Another case of false positive detection occurs when a
true rectangle ”borrows” edge(s) from a nearby rectangle, thus becoming wider
than in reality. The new algorithm avoids generating nonexistent edges also in
this case, and the wider rectangle does not appear.

Fig. 3. a) Test image. b) Standard Windowed Hough Transform detected a false posi-
tive rectangle. c) The new method do not detect false peaks.

False negative. If the line support for a rectangle edge contains points from
other objects or noise, the peak values of two parallel edges will no longer be the
same and thus the rectangle is not detected. This is the case of a false negative. In
our implementation, the decision about the congruence of parallel edges is made
by truncating the longer segment to the borders of the shorter one and taking
into account segment discontinuity. The truncation is obtained by considering
the alignment of the corresponding line supports with respect to the locus of
their centers. This is the way we can afford elasticity in choosing the value of
Dmax, otherwise Dmax would have been the jurisdiction that limits the detection
of rectangles to those inscribed in the circle of radius Dmax only. Hence, the new
approach is robust, rejecting extraneous features and environmental noise.
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4 Experiments

This section aims to expose the algorithm to different kinds of inputs, that is,
synthetical and real images. Our algorithm sets to work after a preprocessing
step of contour extraction [4], so a good contour extraction is mandatory. In these
experiments, we performed an exhaustive search of the rectangles, applying the
algorithm to every pixel of the image. This can be optimized to aiming areas of
interest only. For each rectangle from the image, the algorithm detects several
candidates with similar centers, orientations and sizes. A clustering technique
ensures the uniqueness of the detected rectangles.

The memory requirements due to the third dimension of the Hough matrix
are of the order of few megabytes, negligible compared to usual memory sizes.
For example, a window diameter of 100 pixels requires 2 MB memory.

4.1 Synthetic Images

We have employed synthetical images to test the correctness of theoretical as-
pects of the new method. Here, attention was focused on its behavior regarding
noise resistance. To check the recognition quality in the presence of noise, we
produced ”salt and pepper” artifacts (Figure 4) over an edge-extracted image.
At density ρ = 0.7, where ρ = 0.7 means that the number of added points rep-
resent 70% of the number of points on the objects edges, the algorithm does
not suffer from noise. Weak detections were recorded when the density limit was
raised to ρ = 2.0. In Figure 4b, there are a few rectangles which are fragmented
into smaller rectangular pieces. The phenomenon occurs with greater probability
over rectangles with very short sides. This class of rectangles is very vulnerable
to noise, as intense noise can generate false edges. Also, the noise resistance can
be observed on natural images, in Figure 5 and Figure 6.

Fig. 4. a) Noised image with ρ = 0.7. b) Noised image with ρ = 2.0.
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4.2 Real Images

We have also tested the quality of recognition on various natural images. For the
aerial image from [10], the detection was very good, recording no false positives
nor false negatives (Figure 5). On an image with buildings of various dimensions,
we have repeated the experiment with several values of Dmax and obtained each
time the same positive results. This proves the independence of the algorithm
againstDmax, in contrast with a well tuned value needed by [10]. The grey circles
in the image represent the Dmax borders of the search windows. The quality of
detection is mainly dependent on thresholds assigned to the size of the gap
permitted for a rectangle edge to have, and to the quantization step �ρ chosen
for ρ. The θ quantization step was adapted to the variation of Dmax as being the
view angle of a pixel at a distance of Dmax/2 pixels: �θ = round(arcsin 2

Dmax
).

In Figure 5a, rectangles A and B were not omitted although one is occluded
(rectangle A) and the other is considerably deformed (rectangle B). This is a
consequence of the choice of �ρ = 2 and the value of gap = 2. In most of
the cases, �ρ is responsible for eliminating occlusions. An occluded edge can
have pixels distributed on adjacent levels, interpreted as a big gap. A permissive
choice of �ρ is able to realign the segment, contracting this gap. The value of
the gap parameter brings a significant contribution in avoiding the classification
of rectangles that would elongate across those in the neighborhood (C in Figure
5c, [10]). The undetected rectangles are due to lack of information from the
contour-based image. The algorithm was subjected to robustness tests on sets

Fig. 5. a) Edge map. b) Rectangles detected by us. c) Rectangles detected in [10].

of satellite imagery. The rectangle features are identifiable, thus proving the
feasibility of the extraction as in Figures 6 and 7. Although Dmax exceeds the
circumference of any construction, the recognition yielded good results. As seen
in image 6, occlusions of rectangles A and B were vulnerable to parameters
�ρ = 3 and gap = 3. Figure 7 proves that the algorithm behaves adequately
regardless of rectangle size or orientation. It also passed the test of environmental
noise.
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Fig. 6. a) Edge map. b) Detected rectangles on satellite image.

Fig. 7. a) Original image. b) Edge map. c) Detected rectangles on satellite image.

5 Conclusions and Future Development

We address the problem of detecting rectangular structures from images through
a process of contour-orientated segmentation. Our work aims to improve the us-
age of the Hough transform for this purpose. As Hough space loses important
information regarding the position of points on lines, length of line segments and
endpoints, we have added a third dimension to the original Hough accumula-
tor, where we store the distribution of points for a current line. Thus, we can
check every line segment for its consistency (lack of discontinuities) and for the
symmetry property with respect to the center of its chord-support. The main
advantage concerns the quality of detection: our technique ensures a significant
reduction of false positive and false negative cases. Moreover, our method is no
longer constrained by the choice of the search window diameter, therefore, it can
detect rectangles with a wider range of dimensions. These improvements come
at no extra computational cost, the time needed to compute point distribution
is compensated by the significant decrease of the number of candidate lines for
rectangle edges.

Future work will be centered on three aspects. We will try to improve the speed
of the algorithm; we will attempt to automate edge detection by using heuristics,
and to automatically adjust the maximum value of the parameter gap propor-
tional with rectangle size; and we will extend the method to regular polygons.
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Abstract. Since biology and medicine apply increasingly fast volumet-
ric imaging techniques and aim at extracting quantitative data from
these images, the need for efficient image analysis techniques like detec-
tion and classification of 3D structures is obvious. A common approach
is to extract local features, e.g. group integration has been used to gain
invariance against rotation and translation. We extend these group in-
tegration features by including vectorial information and spherical har-
monics descriptors. From our vectorial invariants we derive a very robust
detector for spherical structures in low-quality images and show that it
can be computed very fast. We apply these new invariants to 3D con-
focal laser-scanning microscope images of the Arabidopsis root tip and
extract position and type of the cell nuclei. Then it is possible to build
a biologically relevant, architectural model of the root tip.

1 Introduction

Groupwise Haar integration [1] of scalar 2D and 3D images has been successfully
used to classify pollen grains [2] and to segment and classify cells in tissue samples
[3]. These Haar integration features are solely based on scalar values like gray
value and gradient magnitude, but ignore the direction of the gradient, which
is an extremely robust feature, even under varying transformations and lighting
conditions. This robustness is shown by e.g. [4], who use the direction of the
gradient as their main features and gain impressive results on 2D images. We
extend the groupwise Haar integration framework by including vectorial gradient
information and by using spherical harmonics descriptors. We furthermore show
how the generalized Hough transform for spheres can be considered as a special
case of our vectorial Haar integration features.

The aim of this paper is to extract the location of the cell nuclei in the
Arabidopsis root tip from 3D microscope images and furthermore decide if a cell
nucleus is in interphase or in a phase of mitosis. Interphase and mitosis are phases
of the cell cycle, in interphase the cell nucleus is in a non-dividing state. During
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mitosis the actual division into two daughter cells takes place. We concentrate
on interphase (comprising more than 95% of the cells) and metaphase, which is
the most characteristic phase of the different phases of mitosis. Our final aim is
to build a theoretical model of the root growth, therefore it is essential to gain
information about the distribution of cell divisions inside the root tip.

We are not aware of groups using image analysis on 3D microscope images of
the Arabidopsis root tip. Still, [5] identify and track cell nuclei in 2D images of
C. elegans embryos. But in contrast to our 3D images, the cell nuclei in [5] are
well separated and can be extracted using local signal maxima. [6] use simple
features and a classification tree to classify tumor cells from normal cells in 2D
images.

2 Description of the Data

Since we intend to gain as much information as possible about the location of
the cell nuclei and their phase of mitosis in Arabidopsis thaliana, we stain the
root tips with a fluorescent dye that binds to DNA (deoxyribonucleic acid),
which is mainly located inside the cell nuclei. We use DAPI (4’,6-diamidino-2-
phenylindole), a common fluorescent staining. The roots are taken from plants
at the age of three to five days, embedded in glycerol and captured as a 3D stack
with a Zeiss LSM 510 META microscope with a water objective (C-Apochromat
63x/1.2 W corr) and an excitation wavelength of 364nm. The image quality
depends on the age of the roots and the preparation steps (staining and washing),
but the achieved image quality is reproducible. Fig. 1 shows an example slice of
one of the 3D stacks used in the experiments. Most of the cell nuclei are cells in
interphase and have a roughly spherical appearance with an unstained nucleolus
inside each nucleus. In metaphase, the stained part of the cell usually has the
shape of a flat disk. We use images with a voxelsize of 0.6μm (for the detection
of the cell nuclei in metaphase) and of 0.25μm for all other computations.

We first compute a series of invariant features for each voxel in the image (as
presented in sec. 3), and then classify these features by use of a support-vector
machine into the three classes center of a cell nucleus in interphase, center of a
cell nucleus in metaphase and no center of a cell. Finally we visualize our results
in a preliminary model of the Arabidopsis root tip.

3 Invariant Features by Groupwise Haar-Integration

Groupwise Haar integration [1] gains invariance of an image X under certain
group operations by integration of a kernel function f over all these group
operations:

If (X) =
∫
G

f(gX) dg (1)

G is the transformation group, under which the features If (X) should be invari-
ant, g is one element of G. Function f computes a scalar value by a nonlinear,
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20μm

Fig. 1. A typical slice of a 3D microscope image of the Arabidopsis root tip. Several
characteristic aspects of the data are obvious: most cell nuclei are in interphase and
are characterized by a roughly spherical contour but differing heavily in intensity. Each
inner cell nucleus contains a nucleolus which forms a dark sphere, a double contour
arises. In the middle and in the lower part of the figure, we see two cells in metaphase
(vertical bars).

but otherwise arbitrary combination of all gray values in X . As the integral is
independent of the particular position and orientation of image X , the integral
is invariant under G. These features can be computed either for a whole image
or a subimage X (blockwise) or voxelwise for each voxel x0 ∈ X . In this case,
we shift the origin to voxel x0 and integrate over all rotations. This results in
features for each voxel such that in a later classification step, all voxels are clas-
sified separately. In the upcoming sections, the features are computed voxelwise
unless otherwise indicated.

3.1 2-Point Grayscale Invariants

A very simple, but frequently ([3],[2]) used type of kernel function are functions
f with

f(X) = f1(X(0)) · f2(X(r)) (2)

where f1, f2 are arbitrary functions on the image X , and X(0) = X(0, 0, 0),
X(r) = X(0, 0, r), r ∈ IR. The characteristic criterion of f is that its evaluation
depends only on two points in the image. [2] shows that a fast evaluation of
If (X) is possible using fast convolution. As functions f1 and f2 we have chosen
the identity, the square root, and the exponentiation to the powers of two and
three, using both, image X and gradient magnitude image |∇X | as an input.
Radius r has been in the range of 1μm to 5μm. As a preprocessing step, different
gaussian filters with a standard deviation between 0.05 and 4 have been applied.
This can be interpreted as using a smoothed 2-point kernel function that does
not depend on two points but on two gaussian regions and leads to features
robust against noise.

3.2 Voxelwise Vector Based Grayscale Invariants

Only scalar gray value information at different positions in the image has been
used with the previously described invariants. But the grayscale invariant frame-
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work can be theoretically extended to include directional information [7]. We
decided to use the gradient as the most important directional information and
we associate every point x with its gray value gradient (∇X)(x). The general
formula of a kernel function that depends on the gradient image ∇X and is
invariant under the rotation R around point x0 is

If (X,x0) =
∫
G

f(gRgx0∇X) dgR (3)

Here gx0 denotes the translation of point x0 to the origin and gR operations of
the rotation group G. To guarantee that If (X,x0) is computationally affordable,
we restrain f to only depend on few values. We choose the simplest type of kernel
functions, a 1-point kernel, for f :

f(∇X) = f1(∇X(r)) with f1(u) = u
|u| ·w (4)

w denotes a fixed unit vector, · is the scalar product. Function f1 computes the
scalar product of its argument with a fixed given vector (both vectors being unit
vectors). The invariant If (X,x0) becomes

If (X, r,x0) =
∫
G

f(gRgx0∇X) dgR (5)

=
∫
G

f1((gRgx0∇X)(r)) dgR (6)

=
∫
G

(gRgx0∇X)(r)

|(gRgx0∇X)(r)| ·
r
|r| dgR (7)

We now consider the special case of Euclidean coordinates and thus integrate
over all rotation matrices R. The inverse matrix R−1 undoes the rotation of
the gradients under rotation of the image X . This is a major difference to the
compution of grayscale invariants on images with only scalar values. Here O3 is
the group of all rotation matrices.

I(X, r,x0) =
∫
O3

R−1 (∇X)(R r− x0)
|(∇X)(R r− x0)|

· r
|r| dR (8)

This invariant is a strong measurement for how spherical given structures around
point x0 are as it accumulates gradients that show in radial direction towards x0.
We use this as a basic detector for the roughly spherical cell nuclei in interphase.
As only nonlinear kernel functions are able to distinguish between complex equiv-
alence classes, we include another highly nonlinear component to our invariant,
that improves results significantly. We choose a peak-like gaussian function Gσ

as a nonlinear weight of the scalar product, applied before integration.
Our invariant only uses unit vectors and thus dismisses all information about

how strong the gradients are. As a result, the feature is independent of the
strength of the edges and of the gray value. This is mostly desired, as the contours
differ markedly in strength. Thus we explicitly do not weight the summands
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with the gradient magnitude, yet we decided to include the absolute gray value
X(R r − x0) as a factor. So, we avoid detecting dim and high-frequency noise
and at the same time emphasize cell nuclei with a comparably bright, but very
soft contour. Finally, we compute the invariant on both the original image and
the inverted image to utilize both, the contour of the cell nucleus and the inner
contour of the nucleolus.

The integration over all rotation matrices is impractical for large images,
because it has to be evaluated for all points x0 ∈ X and all possible radii |r|. [7]
avoids this problem by computing the integral only for a small, mostly random
subset of all points, but this is only reasonable if the data is already segmented.
Thus we developed a very fast method to approximate eq. (8) combined with a
gaussian peak and compute I(X, r,x0) for all points x0 ∈ X and for a set of m
different radii |ri| in O(|X | ·m).

Fast Computation of Vector Based Grayscale Invariants. In eq. (8)
combined with a gaussian peak only very few of the summands contribute sig-
nificantly to the integral. We use this sparseness to reduce computation time
tremendously by changing the evaluation order. We do not compute the integral
over all rotation matrices for all (r,x0) sequentially, but we consider for each
point xi ∈ X all integrals I(X, r,x0) to which xi contributes significantly. The
respective contribution of each point xi can be accumulated easily for each inte-
gral I(X, r,x0) at once by introducing a voting scheme based on an iteration over
all gradients. Therefore, for every voxel xi with associated gradient (∇X)(xi)
and for every possible radius r, we vote for the coordinates (x, y, z) of the point
v that lies in direction of the gradient at distance r from xi, as this point is
the main contributor to the integral. This results in a four-dimensional param-
eter space V (x, y, z, r) that reflects how strong a perfect sphere with radius r
is expressed around position v = (x, y, z). Afterwards V (x, y, z, r) is smoothed
with a four-dimensional gaussian filter to become robust against disturbances
of the spherical structure. That way we take the gaussian distribution applied
to eq. (8) into account. It is not strictly equivalent but includes a smoothing in
direction of the radius, which is not given in eq. (8) but desired. As a result, lo-
cal maxima reflect centers of spheres. They are found by sequentially extracting
global maxima and setting the neighborhood defined by radius r in V (x, y, z, r)
to zero. Using a divide & conquer approach it is possible to extract k maxima
in O(N + rmax · logN/d) instead of the naive O(kN), what makes the effort for
extraction of maxima negligible compared to the invariant computation. During
accumulation of the votes in V (x, y, z, r) it is possible to skip very low gradients
and thus reduce computation time even more without worsening the results.

Regarding this computation method it becomes obvious that the 1-point vec-
tor based grayscale invariants form basically a generalized Hough transform
(GHT) [8] for spheres. The generalized Hough transform usually considers the
angle between the gradient at a point xi and the vector from xi to a point
of reference (center) and maintains a memory-intensive lookup table. This is
what eq. (8) implicitly does, but it is outperformed with respect to both, time
and memory, by the use of the gaussian Gσ and the fast computation method.
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Thus we have shown, that the generalized Hough transform for spheres can be
considered as a special case of vectorial grayscale invariants, namely of those
with the simple 1-point kernel of eq. (4). The ability to discriminate between
complex equivalence classes increases with the complexity of the kernel func-
tion, especially 2- and 3-point kernel functions are more powerful than 1-point
kernel functions. Thus the vectorial grayscale invariants form a very powerful
framework embedding the robustness of the GHT.

(a) (b) (c)

Fig. 2. Fig. (a) visualizes eq. (8). Starting from a base point x0 (i.e. a potential center
of a cell nucleus) the scalar product between vector r and gradient g is computed.
Fig. (b) shows how the scalar product would behave against the angle θ between r
and g (red), whereas the weighting with a gaussian function (green) assures that only
small θ near 0 contribute to the integral. In fig. (c) the fast computation method (sec.
3.2) is illustrated. At every point xi a smoothed vote is given for the point v that lies
in opposite direction of the gradient g at distance |r|. Comparing fig. (a) and (c) it
becomes obvious how the fast computation method inverts the evaluation steps.

3.3 Spherical Harmonics Descriptors

An additional set of invariants is computed by using spherical harmonics de-
scriptors [9]. We expand the gray values on spheres around certain points x0 in
spherical harmonics and determine the bandwise distribution of the signal en-
ergy. These spherical harmonics descriptors can easily be embedded in the Haar
integration framework.

Every function f in spherical coordinates (θ, φ, ρ) that does not depend on ρ
can be expanded in a series of spherical harmonics Yl

m(θ, φ):

f(θ, φ) =
∞∑

l=0

l∑
m=−l

Cl
m · Yl

m(θ, φ) (9)

The coefficients Cl
m are computed by a projection of function f onto the basis:

Cl
m =
∫

f(s)Yl
m�(s) ds (10)

To gain rotation invariant features we expand at every point x0 a sphere with
radius r in spherical harmonics and analyse the bandwise fraction of the total
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signal energy for each band l. The operation gr denotes a scaling of the sphere
to radius r:

I(l, r,x0) =

(
l∑

m=−l

∫
X(x)·(gx0grYl

m	)(x) dx

)2

∫
X2(x)·(gx0grY0

0	)(x) dx
(11)

This can be considerably simplified as the spherical harmonics form an orthog-
onal basis:

I(l, r,x0) =

l∑
m=−l

(
∫

X(x)·(gx0grYl
m	)(x) dx)2

D+
∫

X2(x)·(gx0grY0
0	)(x) dx

(12)

The denominator reflects the total signal energy of the sphere to which we add a
denoising term D to become robust against small energy peaks (i.e. noise). The
invariant of band l = 2 is particularly well suited to characterize the flat disk
shape of cells in metaphase. We evaluated only band 2 on spheres with radii up
to 3.5μm and a series of gaussian preprocessing filters with standard deviations
of 0.03, 0.15 and 0.27. For D it has proven sensible to use a value almost in the
region of the total energy.

General Spherical Invariants. Another set of invariants that helped to de-
scribe the cell nuclei are what we named general spherical invariants. They can
also be expressed as a Haar integration kernel and they are a generalization
of 2-point grayscale invariants, pseudo 3-point invariants, see [3], and spherical
harmonics descriptors. They can be computed according to

If1,2,3 (X,x0, r, l) = f1(X(x0)) · f2

(
l∑

m=−l

(∫
f3(X) · (gx0grYl

m) (x) dx
)2
)

Here, f1, f2, f3 are transformations on image X , e.g. pointwise exponentiation
to different exponents. This possibility to include a variety of nonlinear trans-
formations is one advantage of these invariants. We evaluated band 0, 1, 2, 3
and 4 with radii up to 5.5μm and functions f1(X) = X and f2,3(X) =

√
X after

applying a gaussian smoothing filter (with σ ∈ {0.06, 0.18, 0.3}).

3.4 Radius and Gray Value Cooccurrence Matrices

Our classification results can be further improved by including an explicit mea-
surement how gray values are distributed in a local region around point x0.
Therefore we build a two-dimensional matrix for every voxel x0 with entries of
the absolute number of voxels with gray value gi at distance ri to point x0.
For the gray values we use five bins and eight for the radii up to 9μm. The
radius and gray value cooccurrence matrix is computed with input images X
and |∇X |. Furthermore we use the minimal, maximal and average distance of
all bright points, i.e. points with at least 80% of the maximal gray value in a
local region arount point x0 in the gaussian smoothed image Gσ(X), and their
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standard deviation as features. Another small subset of our features compute the
square root of the sum of all points in distance r from point x0 in images X and
|∇X |. Radius r is chosen between 0.6μm and 12.0μm, and as a preprocessing
step, gaussian filters of standard deviation σ = 0.03 and 0.18 are used.

3.5 Evaluation of the Features

Our aim is to classify each voxel as being a central point of either a cell in
interphase or a cell in metaphase or none of it. To reach this with a minimal
effort of computing time we divide the process into two steps:

1. Detection of the cell nuclei in interphase
(a) Evaluation of the vector based grayscale invariants (sec. 3.2). They are

a very good estimate for the position of cell nuclei in interphase as they
detect spherical structures.

(b) To verify these hypotheses for cell nuclei in interphase, we compute fur-
ther blockwise invariants in a local spherical subimage around the max-
ima detected in step 1 (according to sections 3.1, 3.4).

(c) The invariants are used as features by a support-vector machine (SVM)
to classify the subimages into two classes cell nucleus and not a cell
nucleus.

2. Detection of the cell nuclei in metaphase
(a) The invariants from sec. 3.1 and 3.3, the original image and gradient

magnitude images smoothed with gaussian filters are used as voxelwise
features. A support-vector machine classifies each voxel into one of the
classes centers of cells in a mitosis phase and other voxels

We use a two-class support-vector machine with a gaussian kernel with param-
eters γ = 0.001 and cost = 10. These parameters were selected by a grid search
done on a large range of γ and the cost factor.

4 Experiments and Discussion

The invariants are selected and optimized for the localization and classification
of cell nuclei in 3D confocal laser-scanned microscope images of the Arabidopsis
root tip. For evaluation we chose five 3D image stacks from five different plants,
computed the invariant features, trained the support-vector machine with two
of the stacks and used the three remaining stacks as strictly separated test sets.

Our quantitative results in table 1 and fig. 3 show that a sensible model can
be built with the information extracted by our invariants. It has been possible to
classify over 80% of the cell nuclei correctly. It is not relevant if we miss some of
the cell nuclei in interphase, but it is important to retrieve enough information
about the location of these cell nuclei that it is possible to define the architecture
of the Arabidopsis root tip, this means to identify the different cell files (fig.
3). We have easily reached this aim. For the biological research concering root
growth it is important that as few cell nuclei in metaphase as possible are missed.
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This allows us to draw conclusions about the statistical distribution of dividing
cells given a sufficient amount of data sets. The fact, that only one cell nucleus in
metaphase has been missed in only one test set is a very strong result. It allows
us to rely on the total recall of the cell nuclei in metaphase. If full precision is
needed, a human interactor only has to double check for false positives in the very
small-sized set of localized cell nuclei. These quantitative results can easily be
visualized in a 3D model of the root tip (fig. 3 (a), (b)). Each sphere corresponds
to one detected cell nucleus. The coloration of the spheres is according to their
distance from the hull of the root tip. This allows to distinguish between the
different cell files and to identify the cellular architecture of the root tip. Figure
3 (c) shows a slice of the original 3D microscope image. We have marked the cell
nuclei detected by our invariants.

Table 1. Quantitative results. We show the confusion tables of the voxelwise classi-
fication of the voxels in three test sets of whole Arabidopsis root tips from different
plants. Another two data sets from different plants have been used as training sets.
The results show that it has been possible to extract most of the cells in interphase
(I.). They are needed to gain information about the architecture of the Arabidopsis
root tip. Furthermore it has been possible to detect all cell nuclei in metaphase (M.),
except one in one test set. They are the crucial information for a biological analysis of
the root growth. In the case of missed centers in interphase, we distinguish between
cell centers missed by our vector invariants (sec. 3.2) and cells missclassified by the
SVM, the sums in the confusion tables represent that. The class of voxels that are not
the center of a cell in interphase or metaphase is abbreviated to no c. for no center.

classified as
N1 no c. I. M.

no c. 8 · 107 37 1
I. 184+26 934 0
M. 1 0 12

classified as
N2 no c. I. M.

no c. 8 · 107 32 1
I. 232+39 1009 0
M. 0 0 5

classified as
N3 no c. I. M.

no c. 8 · 107 34 4
I. 255+37 962 0
M. 0 0 10

(a) (b) (c)

Fig. 3. Visualization of the results. Each sphere represents a cell nucleus we detected.
The cellular architecture is clearly visible in fig. (a) and (b) as the cells form long
strands towards the tip. In the example slice in fig. (c) the detected cells in interphase
are marked with a circle, the cells in metaphase with a box.
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5 Conclusion and Further Work

This paper introduces a composition of partly new invariant features that are
based on grayscale invariants. The established scalar grayscale invariants have
been significantly extended to include vectorial information. In particular we
have shown how a robust detector for spherical structures can be derived from
vectorial invariants and how it can be computed very fast.

We apply our set of invariants to laser-scanned 3D images of Arabidopsis root
tips where the cell nuclei have been stained. We correctly classify about 80%
of the cell nuclei in interphase and have succeeded in building an architectural
model of the root tip. No tedious manual counting and/or segmentation of the
cells in 3D stacks is required any more to analyze the cellular arrangement.

Furthermore we have very reliably localized the cells in metaphase (near 100%
recall), which is crucial for further research in the field of Arabidopsis root
growth. To measure growth at a cellular level, we need a strong, quantitative
indicator, where cell division takes place.

An automated large-scale evaluation of 3D Arabidopsis microscope images
based on the work done is planned for the near future. Further work will include
microscope images of plants marked with green fluorescent proteins (GFP), these
gene expressions are able to color exactly one or two of the cell files. This simpli-
fies the classification of the cell nuclei into these cell files enormously and thus
a more stable analysis of the file-based distribution of the cell nuclei is possible.
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Abstract. This paper presents a practical system for vision-based traffic scene
analysis from a moving vehicle based on a cognitive feedback loop which in-
tegrates real-time geometry estimation with appearance-based object detection.
We demonstrate how those two components can benefit from each other’s con-
tinuous input and how the transferred knowledge can be used to improve scene
analysis. Thus, scene interpretation is not left as a matter of logical reasoning, but
is instead addressed by the repeated interaction and consistency checks between
different levels and modes of visual processing. As our results show, the proposed
tight integration significantly increases recognition performance, as well as over-
all system robustness. In addition, it enables the construction of novel capabilities
such as the accurate 3D estimation of object locations and orientations and their
temporal integration in a world coordinate frame. The system is evaluated on a
challenging real-world car detection task in an urban scenario.

1 Introduction

Our target application is the analysis of traffic scenes, especially the detection of parked
and moving cars in crowded urban areas. Such an analysis has straightforward applica-
tions in automatic driver assistance systems for identifying potentially dangerous traffic
situations and as a basis for higher-level assistance functions. For example, the accurate
localization of parked cars may be used to direct a focus of attention to image locations
at which an inadvertent child might suddenly enter the street. As most of the child’s
body will be occluded by other vehicles, detection is particularly difficult in those situ-
ations, and contextual priming may buy precious reaction time.

However, detection from a moving vehicle is notoriously difficult because of the
combined effects of egomotion, blur, unknown scene content, significant partial occlu-
sion, and rapidly changing lighting conditions between shadowed and brightly lit areas.
In addition, geometric scene context, which has been routinely used for surveillance and
tracking applications from static cameras (e.g. [7,12]), is far harder to obtain in a mov-
ing vehicle, where continuous recalibration is needed due to the changing environment
and vehicle pitch during acceleration and deceleration. While considerable progress has
been made in relatively clean highway situations (e.g. [2,1]), the reliable detection of
vehicles and pedestrians in crowded urban areas is still an important challenge [5].

K. Franke et al. (Eds.): DAGM 2006, LNCS 4174, pp. 192–201, 2006.
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Fig. 1. Overview of our system integrating recognition and geometry estimation

In this paper, we focus purely on vision as the most informative sensor. However, we
integrate different cues and processing modalities: structure-from-motion (SfM), stereo
reconstruction, and object detection. Our system is based on the idea of cognitive loops.
While each of the component modules in isolation is limited, their interaction and ex-
change of information can compensate for the individual weaknesses and contribute to
a reliable system response. Thus, the SfM and reconstruction modules collect knowl-
edge about the scene geometry and the camera’s relative pose in it. However, relying
on the assumption that a dominant part of the scene change is caused by egomotion,
the estimation breaks down in crowded traffic situations. By detecting other moving
objects and factoring out their influence on the scene change, the recognition module
helps to obtain more reliable estimates. The recognition system, on the other hand, can
profit immensely from knowledge about the scene geometry by applying ground plane
constraints that the SfM and reconstruction modules can deliver.

The paper is structured as follows. The following section gives an overview of the
proposed system. Sections 2 and 3 then describe the two main components and their
interaction in detail. Section 4 finally presents experimental results.

System Overview. Figure 1 shows a visualization of our system setup. Our input data
are two video streams recorded by a calibrated stereo rig mounted on top of the test
vehicle, which are annotated with GPS/INS measurements. From this data, a Structure-
from-Motion (SfM) algorithm first computes a camera pose for each image. Subse-
quently, these poses are used to generate a compact reconstruction of the surrounding
road surface and facades using a fast dense-stereo algorithm [3]. Both of those stages
are highly optimized and run at about 25 fps. In parallel, an object detection module
is applied to both camera images in order to detect cars in the scene. The three mod-
ules are integrated in a tight cognitive loop. For each image, the object detection mod-
ule receives scene geometry information, extracted from the previous frame, from the
other two modules and feeds back information about detected objects to them, which
is then used for processing the next frame. Thus, the modules exchange information
that helps compensate for their individual failure modes and improves overall system
performance. The next sections explain the different modules in detail.

2 Real-Time Geometry Estimation

In the first pathway, our system computes and permanently updates an estimate of the
surrounding scene geometry. As space does not permit an in-depth discussion of well-
known algorithms for Structure-from-Motion pipelines [6] and dense stereo [14], we
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AI 1 AI 2

AI 3 AI 4

Edge Corner type I

Corner type II

Fig. 2. (left) The fast feature measure used for SfM. (right) Rectified stereo pair.

limit the description to those changes that were made to allow for high-speed process-
ing. Details of the described algorithms can be found in [3].

Real-Time Structure-from-Motion Computation. A real-time feature matcher ex-
tracts image feature points by finding local maxima of a very simple feature measure,
based on the average intensity (AI) of four sub-regions (Fig. 2(left)): d = abs((AI1 +
AI4)− (AI2 + AI3)). The extracted features are matched between consecutive images
based on a fast sum of absolute intensity differences and then fed into a classic SfM
pipeline, which reconstructs feature tracks and refines 3D point locations by perform-
ing triangulation. Sufficient baseline between images is guaranteed by only accepting a
new image when the GPS or odometry signals sufficient movement. For efficiency rea-
sons, only the green channel of one of the cameras is processed during SfM. A bundle
adjustment routine is running in parallel with the main SfM algorithm to refine camera
poses and 3D feature locations for previous frames and thus reduce drift. Additional
GPS and odometry information can be used to guide feature matching during fast turns,
to compensate for remaining drift, and to transfer the cameras into a global world co-
ordinate system. The drift-compensated and globally aligned cameras are then rectified
so that their up-vector is parallel to the world gravity vector. This ensures that 3D lines
parallel to the gravity vector are displayed as vertical lines in each stereo pair.

Real-Time 3D Reconstruction. Next, a real-time geometry module reconstructs build-
ing facades using the (realistic) assumption that those can be modeled by ruled surfaces
(i.e. surfaces made up of non-intersecting line segments) which are parallel to the grav-
ity vector. For each rectified stereo pair, disparity values are computed for every vertical
line using a single dynamic programming pass which is based on the ordering constraint
and a robust line-based similarity measure (c.f. Fig.2(right)). Besides the tremendous
gain in speed compared with algorithms which run dynamic programming on each hor-
izontal scan line, the reconstruction becomes more accurate, as information over each
vertical scan line can be integrated. The reconstructed volumes from all stereo pairs are
then integrated over time into a topological map by a voting based carving algorithm.
Finally, the road itself is reconstructed by fitting lines through the known contact points
of the test vehicle’s wheels with the road. This way of road reconstruction is not only
faster than using dense stereo algorithms, but also more accurate since roads are often
not textured enough for dense stereo.

Derivation of Geometric Constraints. For each image, the geometry module com-
putes an estimate of the current ground plane by fitting a plane through the reconstructed
road surface around the wheel contact points and extrapolating it along the current view-
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Fig. 3. (left) Visualization of the viewpoints the single-view detectors were trained on. (right)
Number of training images used for each view.

(a) (b) (c)

Fig. 4. Effect of scene geometry constraints: (a) object hypotheses before and (b) after ground
plane constraints are enforced; (c) False positive that is filtered out by facade constraints

ing direction. By intersecting this plane with already reconstructed building facades,
we can restrict the possible space in which objects may occur. This information is then
passed to the recognition module to guide and improve object detection performance.

3 Object Detection

The recognition system is based on the ISM approach [8]. A bank of 5 single-view ISM
detectors is run in parallel to capture different aspects of cars (see Fig. 3 for a visual-
ization of their distribution over viewpoints). For efficiency reasons, we make use of
symmetries and run mirrored versions of the same detectors for the other semi-profile
views. All detectors share the same set of initial features: Shape Context descriptors
[11], computed at Harris-Laplace, Hessian-Laplace, and DoG interest regions [11,10].
During training, extracted features are clustered into appearance codebooks, and each
detector learns a dedicated spatial distribution for the codebook entries that occur in its
target aspect. During recognition, features are again matched to the codebooks, and ac-
tivated codebook entries cast probabilistic votes for possible object locations and scales
according to their learned spatial distributions. The votes are collected in 3-dimensional
Hough voting spaces, one for each detector, and maxima are found using MSME [8].

Integration of Ground Surface Constraints. Geometric scene constraints, such as the
knowledge about the ground surface on which objects can move, can help detection in
several important respects. First, they can restrict the search space for object hypotheses
to a corridor in the (x, y, scale) volume, thus allowing significant speedups and filtering
out false positives. Second, they make it possible to evaluate object hypotheses under a
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(a) (b) (c) (d)

Fig. 5. (top) Car detections on typical images from the city scenario. (bottom) Examples for the
difficulties in this scenario: (a) motion blur, (b) lens flaring, (c) bright lighting (d) strong shadows.

size prior and “pull” them towards more likely locations. Last but not least, they allow
to place object hypotheses at 3D locations, so that they can be corroborated by temporal
integration. In the following, we use all three of those ideas to improve detection quality.

Given the camera calibration from SfM and a ground plane estimate from the 3D
reconstruction module, we can estimate the 3D location for each object hypothesis by
projecting a ray through the base point of its bounding box and intersecting it with the
ground plane. If the ray passes above the horizon, we can trivially reject the hypothesis.
In the other case, we can estimate its real-world size by projecting a second ray through
the bounding box top point and intersecting it with a vertical plane through its 3D base.
Using this information, we can formally express the likelihood for the real-world object
H given image I by the following marginalization over the image-plane hypotheses h:

p(H |I) =
∑

h

p(H |h, I)p(h|I) ∼
∑

h

p(h|H)p(H)p(h|I) (1)

where p(H) expresses a prior for object sizes and distances, and p(h|H) reflects the
accuracy of our 3D estimation. In our case, we enforce a uniform distance prior up to a
maximum depth of 70m and model the size prior by a Gaussian. The hypothesis scores
are thus modulated by the degree to which they comply with scene geometry, before
they are passed to the next stage (Fig. 4(a,b)).

Multi-view Integration. In order to fuse the single-view hypotheses into a consistent
system response, we next apply the following multi-view integration stage. We first
compute a top-down segmentation for each hypothesis h according to the method de-
scribed in [8]. This yields two per-pixel probability maps p(figure|h) and p(ground |h)
per hypothesis. With their help, we can express the hypothesis likelihood p(h|I) in
terms of the pixels it occupies:

p(h|I) =
∑
p∈I

p(h|p) =
∑

p∈Seg(h)

p(p = figure|h)p(h). (2)

where Seg(h) denotes the segmentation area of h, i.e. the pixels for which p(p =
figure|h) > p(p = ground |h). We then search for the optimal combination of
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(a) (b) (c)

Fig. 6. Visualization of the temporal integration stage: (a) estimated 3D object locations (in
green); (b) real-world object hypotheses obtained by mean-shift clustering (in yellow); (c) final
hypotheses selected by the QBOP (in red)

hypotheses that best explains the image content under the constraint that each pixel
can be assigned to at most one hypothesis. This is achieved by solving the following
Quadratic Boolean Optimization Problem (QBOP):

max
m

mTQm = mT

⎡⎢⎣ q11 · · · q1M

...
. . .

...
qM1 · · · qMM

⎤⎥⎦m (3)

where m = (m1,m2, . . . ,mM ) is a vector of indicator variables, such that mi = 1 if
hypothesis hi is accepted and 0 otherwise. Q is an interaction matrix whose diagonal
elements qii express the merits of each individual hypothesis, while the off-diagonal
elements qij express the cost of their overlap. In theory, we could directly use the hy-
pothesis likelihood to define the merit. However, since we are dealing with incomplete
information from sparsely sampled interest regions, we have to add a regularization
term incorporating the number of pixels N in the figure-ground segmentation, as well
as a normalization factor Aσ,v(h), expressing the expected area of a hypothesis at its
detected scale and aspect. The merit terms thus becomes

qii =−κ1 +
p(hi|Hi)p(Hi)

Aσ,v(hi)

⎛⎝(1−κ2)N + κ2

∑
p∈Seg(h)

p(p = fig.|hi)

⎞⎠ . (4)

For the interaction terms, we measure the hypothesis overlap in the image and subtract
the contribution of the overlapping area from the hypothesis h∗ ∈ {hi, hj} that is
farther away from the camera.

qij =−1
2
p(h∗|H∗)p(H∗)

Aσ,v(h∗)

∑
p∈Seg(hi)∩Seg(hj)

((1−κ2) + κ2p(p = fig.|h∗)) (5)

This formulation allows to select the best global interpretation for each image from the
output of the different single-view detectors. Since typically only a subset of hypotheses
produces overlaps, it is generally sufficient to compute a fast greedy approximation to
the optimal solution. Examples for the resulting detections are shown in Figure 5.
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Fig. 7. Online 3D car location estimates (using only information from previous frames)

Integration of Facade Constraints. Using the information from 3D reconstruction, we
add another step to check if hypothesized 3D object locations lie behind reconstructed
facades (c.f. Fig. 4(c)). As this information will typically only be available after a certain
time delay (i.e. when our system has collected sufficient information about the facade),
this filter is applied as part of the following temporal integration stage.

Temporal Integration. The above stages are applied to both camera images simul-
taneously. The result is a set of 3D object hypotheses for each frame, registered in a
world coordinate system. Each hypothesis comes with its 3D location, a 3D orientation
vector inferred from the selected viewpoint, and an associated confidence score. Since
each individual measurement may be subject to error, we improve the accuracy of the
estimation process by integrating the detections over time.

Figure 6 shows a visualization of the integration procedure. We first cluster consistent
hypotheses by starting a mean-shift search with adaptive covariance matrix from each
new data point H and keeping all distinct convergence points H (Fig. 6(b)). We then
select the set of hypothesis clusters that best explains our observations by again solving
a QBOP, only this time in the 3D world space:

q̃ii = −κ̃1 +
∑

H∈Hi

e−(t−ti)/τ((1− κ̃2) + κ̃2 p(H |Hi)p(H |I)) . (6)

q̃ij = −1
2

∑
H∈Hi∩Hj

e−(t−t∗)/τ((1− κ̃2) + κ̃2 p(H |H∗)p(H |I) + κ̃3 O(Hi,Hj)) (7)

where p(H |Hi) is obtained by evaluating the location of H under the covariance ofHi;
H∗ denotes the weaker of the two hypothesis clusters; and O(Hi,Hj) measures the
overlap between their real-world bounding boxes, assuming average car dimensions.
This last term is the main conceptual difference to the previous formulation in eqs. (4)
and (5). It introduces a strong penalty term for hypothesis pairs that overlap physically.
In order to compensate for false positives and moving objects, each measurement is
additionally subjected to a small temporal decay with time constant τ . The results of
this procedure are displayed in Fig. 6(c).

Estimating Car Orientations. Finally, we refine our orientation estimates for the ver-
ified car hypotheses using the following two observations. First, the main estimation
errors are made both along a car’s main axis and along our viewing direction. Since the
latter moves when passing a parked car, the cluster’s main axis is slightly tilted towards
our egomotion vector (c.f. Fig.6(a)). Second, the semi-profile detectors, despite being
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trained only for 30◦ views, respond to a relatively large range of viewpoints. As a re-
sult, the orientation estimates from those detectors are usually tilted slightly away from
our direction of movement. In practice, the two effects compensate for each other, so
that a reasonably accurate estimate of a car’s main axis can be obtained by averaging
the two directions. Some typical examples of the resulting 3D estimates are shown in
Fig. 7.

Feedback into SfM and Reconstruction Modules. The results of the previous stages
have demonstrated that object detection can benefit considerably from knowledge about
the scene geometry, delivered by the SfM and 3D reconstruction modules. However,
those modules can also benefit from the results of object detection.

As discussed above, the SfM module relies on the assumption that a dominant part of
the scene change is caused by egomotion. As a result, moving and/or shiny cars degrade
the accuracy of the estimated camera positions. Although RANSAC outlier rejection [4]
can to a certain degree compensate for this, there are many natural car motions that can
be misinterpreted as static because of ambiguities in their image projection. E.g. follow-
ing a car in the same lane at more or less the same speed on a straight sketch makes it
clearly indistinguishable from a static object at infinity. Also, a car approaching on the
other lane with a speed correlated to ours is indistinguishable from a static car parked
somewhere in the middle of both lanes. Similarly, the fast 3D reconstruction relies on
the assumption that the scene can be represented by ruled surfaces. Obviously, this is no
longer the case when cars are parked in front of the facades. As a result, the cars intro-
duce erroneous measurements into the dense stereo calculations which may influence
the accuracy of the resulting scene geometry estimate (and thus of the ground plane
estimate that will be provided to the detection module for the next frame).

The object detection module therefore completes the cognitive loop by feeding back
information about its detections into the SfM and Reconstruction modules. By inform-
ing the SfM algorithm where cars can be expected, features will not be instantiated or
tracked in those areas, thereby avoiding erroneous measurements which would result
from tracking non-stationary points on moving and shiny cars. Similarly, object detec-
tion helps the reconstruction module by segmenting out all detected cars, so that the
dense stereo reconstruction can focus on image areas that fulfill the ruled surface as-
sumption. This continuous feedback of information is a crucial point for guaranteeing
system reliability in complex real-world scenarios.

4 Experimental Results

In order to evaluate our method, we applied it to a test sequence, recorded by a camera
vehicle over a distance of approximately 500m. The stereo input streams were captured
at the relatively low resolution of 380× 288 pixels due to restrictions of the recording
setup. Altogether, the data set comprises 1175 image pairs, which are processed at their
original resolution by the SfM and reconstruction modules and bilinearly interpolated
to twice that size for object detection (similar to [10]). The 5 single-view detectors were
trained on images taken from the LabelMe database [13], for which viewpoint annota-
tions and rough polygon outlines were already available (c.f. Fig.3). In all experiments,
we set κ2 =0.95, κ̃2 =0.5, and plot performance curves over the value of κ1.
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Fig. 8. (left) Comparison of the detection performance with and without scene geometry con-
straints. (right) 3D car location estimates using also information from future frames.

For a quantitative estimate of the performance improvement brought about by the in-
clusion of geometry constraints, we annotated the first 600 frames of the video sequence
by marking all cars that were within a distance of 50m and visible by at least 40-50%. It
is important to note that this includes many difficult cases with partial visibility, so it is
unrealistic to expect perfect detection in every frame. We then evaluated the detection
performance with and without ground plane constraints using the evaluation criterion
from [9]. The results of this experiment are shown in Figure 8. As can be seen from
the plot, detection reaches a level of about 50% recall in both cases. While the orig-
inal recognition system yields 1.3 false positives per image at this level of recall, the
inclusion of ground plane constraints significantly reduces the false positive rate to one
every five images at 50% recall, or even one every ten images at 40% recall.

Counted over its full length, the sequence contains 77 (sufficiently visible) static
and 4 moving cars, all but 6 of which are correctly detected in at least one frame. The
online estimation of their 3D locations and orientation usually converges at a distance
between 15 and 30m and leads to a correct estimate for 68 of the static cars; for 5
more, the obtained estimate would also have been correct, but does not reach a suf-
ficiently high confidence level to be accepted. The estimates can further be improved
by backpropagating also information from future frames (Fig. 8(right)). The SfM and
reconstruction modules also profit from the feedback from object detection in terms of
increased robustness. However, the exact benefit is hard to quantify, since no ground
truth was available for the 3D measurements.

5 Discussion and Conclusion

In this paper, we have presented a system for cognitive traffic scene analysis that closely
integrates structure-from-motion, 3D reconstruction, and object detection into a cogni-
tive loop. At first view, it might seem unintuitive to incur the overhead of executing all
three of those components in parallel, just to improve recognition performance. How-
ever, rather the opposite is the case: each individual task becomes considerably easier
by its integration in the cognitive loop and the continuous feedback from the other
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modules. As we have shown in this paper, the close interaction between the different
modules increases both the recognition and 3D estimation performance, as well as the
robustness of the entire system. In addition, our highly efficient implementation of the
SfM and reconstruction modules allows them to run at video frame rate, so that their in-
clusion entails no additional delay. Although our current implementation of the object
detector is not optimized for real-time processing yet, its individual stages are suffi-
ciently simple, so that a time-efficient implementation is well possible.

In future work, we will aim to improve the representation of moving cars by adding
a dedicated motion model. Secondly, we plan to extend recognition to other traffic par-
ticipants, such as pedestrians and bicyclists, which was hitherto hindered by the poor
resolution of our input video streams. Inferring a selective focus of attention from the
detected car locations will help overcome this problem. Last but not least, we will opti-
mize the implementation of our object detector for inclusion into a real-time application.
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2005-27787). We also wish to acknowledge the support of the K.U.Leuven Research
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Abstract. We present a novel model for object recognition and detec-
tion that follows the widely adopted assumption that objects in im-
ages can be represented as a set of loosely coupled parts. In contrast
to former models, the presented method can cope with an arbitrary
number of object parts. Here, the object parts are modelled by image
patches that are extracted at each position and then efficiently stored in
a histogram. In addition to the patch appearance, the positions of the
extracted patches are considered and provide a significant increase in
the recognition performance. Additionally, a new and efficient histogram
comparison method taking into account inter-bin similarities is proposed.
The presented method is evaluated for the task of radiograph recognition
where it achieves the best result published so far. Furthermore it yields
very competitive results for the commonly used Caltech object detection
tasks.

1 Introduction

In the last years, part-based models in general, and patch-based models in par-
ticular, have gained an enormous amount of interest in the computer vision
community [1,2, 3]. These approaches offer some immediate advantages such as
robustness against occlusion and translation invariance because the parts can be
modeled more or less independently and thus an object that is partly occluded
can be classified correctly as long as the visible parts can be recognized.

Nearly all aproaches presented extract features only from a subset of positions
in the images: most approaches use interest point detectors [1, 2, 3], random
points [4], or points from a regular grid [5]. Obviously, by choosing a subset of
feature extraction points, image information is lost which may result in decreased
recognition performance. This may be passable in the case of general object
recognition and detection, but can be unsuitable in the case of medical image
analysis where no details may be missed. In contrast to all these approaches, the
method presented here can efficiently deal with arbitrarily many features and
thus we choose to extract several features at each position of the image. Only
recently, some approaches that extract local features from all positions in the
image were proposed [6,7].

K. Franke et al. (Eds.): DAGM 2006, LNCS 4174, pp. 202–211, 2006.
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Similar to other approaches [5,8], the presented approach uses patches, i.e.
subimages, extracted from the images. Feature vectors representing the patches
are derived from a PCA dimensionality reduction. These feature vectors are
then stored in a special histogram structure that allows us to store
high-dimensional feature vectors, which are then classified using various classi-
fication methods.

Another type of information that is often discarded when part-based mod-
els are applied is the spatial relationship between the parts. Many approaches
completely discard these data [1, 5], and other approaches that explicitly model
spatial relationships [8] have to be greatly simplified in order to become compu-
tationally feasible [2]. In the model presented here, the positions of the patches
can be integrated directly without significant increase in computation time or
storage requirements.

Furthermore, many approaches require time-consuming preprocessing steps
such as vector quantization, to create a code-book of possible object parts [5,8,9].
Our approach skips this step and instead uses a generalized form of a code-book
that is identical for all kinds of data. That is, the code-book is not learned
from training data but is fixed before we know what data we will deal with.
Obviously, this code-book needs a large amount of possible ‘code-words ’ but due
to an efficient representation this becomes computationally feasible.

The remainder of this paper is structured as follows: In the next section, we
introduce the feature extraction technique and the sparse histogram represen-
tation of the images. In Section 3 we shortly introduce the three classification
methods that are used to recognize the images represented by the sparse his-
tograms. Section 4 describes the databases used to evaluate the methods and
Section 5 presents and compares the experimental results with the best results
published so far. Finally, the paper is shortly summarized and concluded in
Section 6.

2 Sparse Histograms of Image Patches

Histograms are a well-known method to represent the distribution of data and
are applied in the field of computer vision in various ways. One problem with
histograms is that they become difficult to handle if the dimensionality of the
input data is large, because the number of bins in a histogram grows exponen-
tially with the number of dimensions of the data. For example, given 8 dimen-
sional input data and only 4 subdivisions per dimension results in 48 = 65, 536
bins.

To overcome this problem, we propose to use a sparse representation of the
histograms, i.e. we store only those bins whose content is not empty. Sparse
histograms have been used for other applications before [10]. This representation
allows us to create histograms for data of arbitrary dimensionality. The only
practical limitation to the size of the histogram is that for very large sizes, most
of the bins that actually contain an element will contain only one single element,
and this makes the comparison of histograms very unreliable.
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2.1 Features

It has been shown that patches extracted from the images are a suitable means
of representing local structures in images [5, 8, 9]. Thus, we choose to extract
patches of different sizes at every position in each image. More precisely, we
extract square patches with the edge lengths 7, 11, 21, and 31 pixels, which are
then scaled to a common size of 15 pixels to be able to process them jointly later.
These multiple patch sizes allow to account for objects of various sizes and lead
to a certain invariance with respect to scale changes. A very similar approach to
account for different scales was used in [11].

All patches are extracted from all training images and then a PCA trans-
formation is jointly estimated. Using this PCA transformation all patches are
reduced in dimensionality.

2.2 Creation of Histograms

The distribution of the feature vectors described in the previous section is then
approximated using a histogram. To reduce the necessary storage, the histograms
are created without explicitly storing any feature vector. Thus, the creation of the
histograms is a three step procedure: in the first step, the PCA transformation
is determined as described above. In the second step, the mean and the variance
of the transformed patches are calculated to determine a reasonable grid for the
histograms. In the last step, the histograms themselves are created. For each of
these steps, all training images are considered.

1. In the first step, all possible patches in various sizes from all training images
are extracted and their mean and the covariance matrix are estimated to
determine the PCA transformation matrix.

2. Given this PCA transformation matrix and the means, the mean μd and the
variance σ2

d for each component d of the transformed vectors is calculated to
determine the bin boundaries for the histograms. The bins for component d
are uniformly distributed between μd − ασd and μd + ασd.

3. Then, we consider all dimensionality reduced patches from the training im-
ages and create one histogram per training image. This step is depicted in
Figure 1. The processing is from left to right: first the patches are extracted,
then PCA transformed, then the position of the patch is concatenated to the
PCA transformed feature vector, and finally the vectors are inserted into the
sparse histogram data structure.

As mentioned above, the patches are not explicitly stored in any of these steps
as this would lead to immense memory requirements.

Informal experiments have shown that 6 to 8 dimensions for the PCA reduced
vectors lead to the best results, and that α = 1.5 is a good value to determine
bin boundaries. Values exceeding the given range are clipped.

Spatial Information. One serious issue with many part-based models is the in-
corporation of spatial information. To incorporate spatial information in our
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patch extraction
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positions

entry into sparse histogram
data structure

PCA transformation

Fig. 1. Creation of sparse histograms. Solid arrows denote appearance information of
the patches, dotted arrows denote spatial information of the patches.

approach, we simply concatenate the extraction position to the PCA reduced
feature vectors and thus simply add two further components to the histograms.
These additional components can easily be handled by the histograms. As the
range of values for each component is calculated individually and independently
of the other components, no special processing ot these additional components
is required. One issue with the inclusion of the absolute patch extraction po-
sitions is that translation invariance, normally one of the major advantages of
part-based models, is partly lost. Still, currently it is unclear how to incorporate
relative position information into the model presented here. It will be shown
later that for the tasks considered here, either the translation invariance is not
required, or translations are sufficiently represented in the training data.

3 Classification of Sparse Patch Histograms

Given the sparse histograms that represent the images, any classifier that is able
to handle the sparse representation can be used. We have tested three different
classifiers: the nearest neighbor classifier in which we use two different distance
functions, a classifier based on log-linear models trained using the maximum
entropy criterion, and support vector machines.

3.1 Nearest Neighbor Classification

Nearest neighbor classification is often used as a baseline for classification. Im-
mediate advantages are that no expensive training process is necessary, imple-
mentation can be done easily, and different distance functions can be used to
compare the data used. In accordance with [12] we use Jeffrey Divergence to
compare histograms. To classify the histogram h representing the image X the
following decision rule r(x) is used:

h �→ r(h) = arg min
k

{
min

n=1...Nk

d(h, hn)
}
, (1)
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where hn is the histogram representing the nth training image from class k. The
Jeffrey Divergence d(h, h′) between two histograms h and h′ is defined as

d(h, h′) =
C∑

c=1

hc log
2hc

hc + h′c
+ h′c log

2h′c
h′c + hc

. (2)

Here, hc and h′c are the cth bins of the histograms h and h′, respectively.
One problem with the Jeffrey Divergence is that similarities between neigh-

boring bins are completely neglected. Other distance measures that take into
account inter-bin-similarities, for example the earth mover’s distance [12], are
too computationally expensive to be used for histograms with several thousand
bins. We propose to use a much simpler way of taking into account neighboring
bins that is inspired by an image matching algorithm [13]. This method is called
Histogram Distortion Model (HDM) and it can be implemented for any bin-by-
bin histogram comparison measure straightforwardly, as long as neighborhoods
are defined for the underlying histograms. Given a bin at position c = (c1, . . . cD),
we use the bin from position γ out of the neighborhood U(c) of c that minimizes
the resulting distance. Here, we use it as an extension to the Jeffrey Divergence,
i.e., we replace the distance function d(h, h′) by dHDM(h, h′) with

dHDM(h, h′) =
C∑

c=1

min
γ∈U(c)

hc log
2hc

hc + h′γ
+ h′γ log

2h′γ
h′γ + hc

. (3)

A related but computationally more expensive way to account for neighboring
bins in the comparison of histograms would be to smooth the histograms. Here,
the smoothing would lead to non-sparse histograms and thus it would lead to
greatly increased computational requirements.

3.2 Maximum Entropy Classification

Maximum entropy classification and log-linear models are a well-known way
to model probability distributions in natural language processing and in image
recognition [14].

The maximum entropy approach directly optimizes the class posterior prob-
ability p(k|X). Thus, it is a discriminatively trained model. Here, we want to
model the posterior probability p(k|h) where h is the sparse histogram repre-
senting image X . Thus, the model for p(k|h) is

p(k|h) =
1

Z(h)
exp
(
αk +

C∑
c=1

λkchc

)
(4)

where hc is the cth bin of the histogram h and Z(h) a normalization factor.
Efficient algorithms to determine the parameters {αk, λkc} exist. We use a

modified version of generalized iterative scaling [15] to decrease the necessary
computational effort. For classification, Bayes’ decision rule is used:

h �→ r(h) = argmax
k
{p(k|h)} . (5)
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Fig. 2. Example images of the IRMA 10000 database together with their class

3.3 Support Vector Machines

Support-vector-machines (SVM) are often used as a classification method that
provides reasonable performance across various tasks. In the experiments we
tried linear, polynomial and radial basis function kernels and optimized all pa-
rameters in cross-validation experiments on the training data.

4 Databases and Experimental Results

This section briefly presents the two databases used to evaluate our method, the
IRMA 10000 database of medical radiographs and three of the Caltech object
databases.

4.1 IRMA 10000

The IRMA 10000 database1 was used in the automatic annotation task of the
2005 ImageCLEF evaluation [17]. It consists of 10,000 fully classified radiographs
taken randomly from medical routine at a large hospital. The images are split
into 9,000 training and 1,000 test images and are subdivided into 57 classes.
Example images for some of the classes are given in Figure 2. In the ImageCLEF
2005 automatic annotation task a total of 40 runs were submitted by 12 groups.
In Table 1 we give the best results from the evaluation and compare our results
to these. To keep the computing requirements low, we scaled all images such
that the longest edge was 128 pixels while preserving the aspect ratio.

4.2 Caltech Databases

To compare the performance of our method to object recognition algorithms
from other groups, we use some of the Caltech databases that were introduced
by Fergus et al. [8]. The task is to determine whether an object is present in
an image or not. For this purpose, several sets of images containing certain
objects (airplanes, faces, and motorbikes) and a set of background images not
containing any of these objects 2 are given. The images are of various sizes and
1 http://irma-project.org
2 http://www.robots.ox.ac.uk/∼vgg/data
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Fig. 3. Example images from the Caltech data sets airplanes, faces, and motorbikes,
and a background image

for the experiments they were converted to gray images. The airplanes and the
motorbikes task consist of 800 training and 800 test images each, the faces task
consists of 436 training and 434 test images. For each of these tasks, half of the
images contain the object of interest and the other half does not. An example
image of each set is shown in Figure 3. Many different groups have published
results for these data. In Table 2 we summarize the best results we are aware of
for each of the tasks to compare our results to. Here, we scaled the images to
a common height of 128 pixels to keep the computing requirements low and to
avoid the known issue that it is possible to classify some of the images just by
image size [5].

5 Experimental Results

In this section, we present the results we obtained using sparse histograms of
image patches for the IRMA and the Caltech tasks.

Table 1 gives an overview of the best results obtained for the IRMA tasks
from the ImageCLEF 2005 evaluation [17] along with the results we obtained
using sparse patch histograms with and without position information. For all
experiments, the patches were reduced to 6 components using PCA. For the
experiments with position, two components representing position were concate-
nated to the data vector thus resulting in 8 dimensional data. For all experi-
ments, each component was subdivided into four steps, thus resulting in 4,096
and 65,536 bin-histograms for the experiments without and with spatial informa-
tion respectively. These parameters were determined in informal cross-validation
experiments to perform best on the average: For dimensionality reduction we
measured the performance for dimensionalities between 4 and 10. Furthermore,
we tried 2 to 6 subdivisions per component.

The results we obtained for this task are better than all results that are
published for these data so far. With and without positions, the error rate is
greatly improved using the histogram distortion model in comparison to using
only the Jeffrey Divergence. This shows that the histogram distortion model
is, at least partly, able to compensate for the sparseness of the histograms. As
mentioned above, an alternative to the histogram distortion model would be to
smooth the histograms, but informal experiments have shown that, apart from
the problems of storage, the improvement is lower than using the deformation
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Table 1. Results for the IRMA data. The comparison results are taken from the
ImageCLEF 2005 automatic annotation task [17].

method rankgroup error rate [%]
image distortion model 1RWTH Aachen 12.6
image distortion model & texture feature 2IRMA Group 13.3
patch-based object classifier (maximum entropy) 3RWTH Aachen 13.9
patch-based object classifier (boosting) 4Uni Liège 14.1
image distortion model & texture feature 5IRMA Group 14.6
patch-based object classifier (decision trees) 6Uni Liège 14.7
GNU image finding tool 7Uni Geneva 20.6
32×32 images, Euclidean distance, nearest neighbor -- 36.8
sparse histograms (w/o position) this work

+ nearest neighbor 13.0
+ histogram distortion model, nearest neighbor 12.5
+ maximum entropy classification 11.6
+ support vector machine 11.3

sparse histograms (w/ position) this work
+ nearest neighbor 10.1
+ histogram distortion model, nearest neighbor 9.8
+ maximum entropy classification 9.3
+ support vector machine 10.0

model. The result obtained using maximum entropy training is again clearly
improved for the case without position information. For the case with position
information, the maximum entropy training cannot improve on the results.

In Table 2, results for the experiments on the three Caltech tasks are given.
The first part of the table gives the best results we know for each of these
tasks, the second part gives the results we obtained. We highlighted the best
results in total and the best results we obtained with our method. Here again,
using the histogram distortion model usually gave an improvement over the
normal Jeffrey Divergence, and a further improvement can be achieved using
the discriminatively trained log-linear model. Although the model we present is
clearly much simpler than the models presented in [1,2,4,8,11], we achieve very
competitive error rates. Using SVMs, the results are in the same area as those
using the maximum entropy training. For both maximum entropy and SVM
classifiers the results are better than those obtained using the nearest neighbor
classification rule. This clearly shows that discriminative modeling can improve
the results.

6 Conclusion

In this work we presented a part-based approach to object recognition that was
evaluated on a database of medical radiographs and on three object recogni-
tion tasks. An advantage of this novel approach over other approaches is that it
does not require large parts of the data to be disregarded, but instead almost
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Table 2. Results for the Caltech data

error rate
method airp. faces motb.
constellation model [8] 9.8 3.6 7.5
improved constellation model [2] 6.3 9.7 2.7
PCA SIFT features [18] 2.1 0.3 5.0
patch-histograms, discriminative training [11] 1.4 3.7 1.1
boosting weak hypotheses [1] 2.5 0.0 5.7
texture features [19] 0.8 1.6 7.4
sparse histograms (w/o position)

+ nearest neighbor 4.9 12.7 6.1
+ histogram distortion model, nearest neighbor 4.8 13.6 7.0
+ maximum entropy classification 3.5 7.8 4.8
+ support vector machines 2.4 4.1 2.3

sparse histograms (w/ position)
+ nearest neighbor 9.1 6.5 6.8
+ histogram distortion model, nearest neighbor 6.5 7.6 6.9
+ maximum entropy classification 1.9 3.9 1.8
+ support vector machines 0.8 4.4 1.3

arbitrary numbers of image patches can be handled by using a sparse histogram
representation. Possible problems resulting from data sparseness are effectively
counteracted by using a histogram distortion model which also improves the
recognition results. Furthermore, the approach does not require an expensive
training process, as the code-book is determined independently from the train-
ing data. The results obtained are the best published results for the task of
radiograph recognition and are very competitive for the Caltech object recogni-
tion tasks. It was also shown that spatial information can easily be incorporated
into the approach and that this information, although to the cost of loosing
translation invariance, can improve the results notably for the restricted domain
task of radiograph recognition and in most cases for the Caltech tasks.

In the future we plan to extend the presented model to incorporate relative
patch positions.
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Abstract. Different from many gesture-based human-robot interaction applica-
tions, which focused on the recognition of the interactional or the pointing ges-
tures, this paper proposes a vision-based method for manipulative gesture recog-
nition aiming to achieve natural, proactive, and non-intrusive interaction between
humans and robots. The main contributions of the paper are an object-centered
scheme for the segmentation and characterization of hand trajectory information,
the use of particle filtering methods for an action primitive spotting, and the tight
coupling of bottom-up and top-down processing that realizes a task-driven atten-
tion filter for low-level recognition steps. In contrast to purely trajectory based
techniques, the presented approach is called object-oriented w.r.t. two different
aspects: it is object-centered in terms of trajectory features that are defined rela-
tive to an object, and it uses object-specific models for action primitives. The sys-
tem has a two-layer structure recognizing both the HMM-modeled manipulative
primitives and the underlying task characterized by the manipulative primitive
sequence. The proposed top-down and bottom-up mechanism between the two
layers decreases the image processing load and improves the recognition rate.

1 Introduction

Recently, human-robot interaction is receiving more and more interest in the computer
vision research community. With the development of cognitive robots which can serve
humans as assistants or companions, a natural human-like communication between hu-
mans and robots comes into focus. As a consequence, the “hearing” as well as the
“seeing” are becoming the most prominent and equally important modalities. In the
near past, much work has been done in the area of gesture-based human-robot inter-
action (HRI) because of humans’ intensive use of their hands. Referring to Nehaniv’s
gesture categorization [11], most of these approaches deal with symbolic, interactional,
or referential gestures that have a communicative meaning on their own, i.e. they can be
detected and described without considering the specific environment. In terms of Bo-
bick’s taxonomy of movements, activities, and actions [2] they can be characterized as
movements or, in more structured cases, activities. In this regard, object manipulations1

are more complex because the hand trajectory needs to be interpreted in relation to the
manipulated object. Due to Bobick this kind of context characterizes actions.

� J. Fritsch is now with the Honda Research Institute Europe GmbH in Offenbach, Germany.
1 Nehaniv refers to them as manipulative gestures [11].
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In this paper, we aim at the vision-based recognition of simple actions that are de-
fined by a non-deterministic sequence of object manipulations. As a manipulative ges-
ture, this serves an important communicative function in human-robot interaction. First,
the manipulation of an object draws the attention of the communication partner on the
objects that are relevant for a performed task. Secondly, it serves the goal of a more
pro-active behavior of the robot in passive, more observational situations. As Nehaniv
states: “If the robot can recognize what humans are doing and to a limited extent why
they are doing it, the robot may act appropriately” [11]. For example, in Fukuda’s work
a cooking support robot is developed [6]. It can recognize human manipulations of
objects by sensing the movements of the markers on the objects and give recommenda-
tions by speech or gesture. Dropping these kinds of artificial constraints, the recognition
problem is becoming notoriously difficult. Assuming that a hand is manipulating a spa-
tially near object, it becomes hard to decide if the object is just passed by the hand
or manipulated. Besides this segmentation ambiguity, there is a large spatio-temporal
variability of how hand trajectories reach different object types and the appearance of a
hand trajectory in a 2D image will also heavily vary according to the position of the ob-
ject and the view-angle. Finally, the mutual occlusion between the hand and the object
causes even more difficulties for object detection and tracking.

In the present approach we will focus on two problems in the recognition of manip-
ulative actions: (i) the segmentation ambiguity and (ii) spatio-temporal variability of
the hand trajectory. We propose a unified graphical model with a two-layered recogni-
tion structure. On the lower layer, the object-specific manipulative primitives are repre-
sented as Hidden Markov Models (HMM) which are coupled with task-specific Marko-
vian models on the upper level. A top-down processing mechanism predicts which
kinds of objects are relevant according to the currently recognized tasks. Thereby, a
dynamic attention mechanism is realized that reduces the number of considered objects
and simplifies the segmentation task of the hand trajectory. Furthermore, the manipu-
lative primitives are spotted by a particle filter (PF) realized HMM matching process.
Due to an explicit modeling of an action abortion and resampling step, this method
is more promising than traditional HMM forward-backward [13] processing and also
could achieve more flexible transitions between model states than condensation-based
trajectory recognition [1]. Afterwards, the results are fed back into the task level in
order to predict the following primitives closing the bottom-up and top-down cycle.

2 Related Work

The concept of the action in the paper title is the same to that in Bobick’s categoriza-
tion of motion recognition: movement, activity, and action [2]. It represents larger-scale
events, which typically include interaction with the environment and causal relation-
ships. In order to recognize these, more sophisticated schemes are needed that explic-
itly model such kind of contextual factors. Jo used a Finite State Machine (FSM) for
modeling possible state transitions in the manipulative gesture [8]. Bobick developed
a PNF (past-now-future) constraint network to model the temporal structure of actions
and subactions [12]. These typically are pure semantic approaches, which have not used
explicit motion models. In Chan’s work, a simple feature vector is used for modeling the
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interaction primitive, e.g. approach. The transition of the semantic primitives are mod-
eled by HMM [3]. Because of the early symbolic abstraction of trajectory information
this method can only be applied in a restricted scenario. An approach that actually com-
bines both types of information, sensory trajectory data and symbolic object data, in a
structured framework is Moore’s concept of objectspaces [10]. Here a camera mounted
on the ceiling observes a human interacting with different objects. Certain image pro-
cessing steps are carried out to obtain image-based, object-based, and action-based ev-
idences for objects and actions, which are integrated using Bayesian networks. Action
primitives are recognized from hand trajectories using HMMs that are trained offline on
different activities related to the known objects. Our approach uses a similar object rep-
resention scheme but goes beyond this work because the spotting of meaningful parts in
longer hand trajectories is seriously considered and a combined top-down and bottom-
up mechanism solves the object attention problem. Furthermore, the proposed model
enables the system to infer high-level intentions in the manipulative gesture detected.

While these approaches center a context area around detected objects, hand-centered
methods define context areas relative to a hand trajectory. Fritsch et al. [5] put forward
such an approach. In this case, the trajectory information is augmented in each time step
by contextual objects that are searched on-line using the context area bound to the mov-
ing hand. A hierarchical structure is used to model the manipulative sequence by [9].
In both works, the segmentation and spatio-temporal variability problems are coped
with a particle filter. But the hand trajectory template, which is used as the primitive
lacks the capability of generalization. For representing all possible hand trajectories in
manipulation, a huge number of templates are needed.

Another specific application is presented by Yu et al. [15]. They argue that the eyes
guide the hand in almost every action or object manipulation. In their work, the eye
motion is measured by a head-mounted eye tracker and used for the segmentation of
hand trajectories and the detection of objects. HMMs are used for action recognition
which is purely based on trajectory information. Then object and action information is
integrated on a symbolic level using action scripts.

3 Recognition System

In our definition, the manipulative action has two semantic layers. The bottom layer
consists of the object-specific manipulative primitives. Each object has its own set of
manipulative primitives because we argue that different object types serve different
manipulative functions and even manipulations with the same functional meaning are
performed differently on different objects. The top layer is used for representing the ma-
nipulative task, which are modeled by typical transitions between certain manipulative
primitives. The system architecture and the dependency structure of the probabilistic
model is shown in Figure 1. The architecture realizes a combined bottom-up top-down
processing loop that utilizes the task-level prediction of possible primitives in order to
restrict the object types possibly detected as well as the action primitives possibly rec-
ognized. In the bottom-up path, a processing thread is created for each detected object
that consists of a trajectory segmentation, feature computation, and HMM-based recog-
nition step. Thus, all three steps are performed differently for each object in parallel.
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Fig. 1. Processing flow (a) and dependency structure of two time slices (b) in the recognition
model. Each object-centered processing thread in (a) corresponds to one of the L plates in the
dependency model. K is the number of different tasks modeled in the system and M is the
number of possible primitives which each corresponds to one state of the variables p0

t and p1
t ,

respectively. The upper index of these variables denotes the primitive vs. task level.

Besides the detection of static objects, the hand is tracked over time and the trajectory
information is passed to each object-centered processing thread. In the following, we
will present both processing paths, bottom-up and top-down, in detail.

3.1 The Bottom-Up Process

This process builds up the bridge between the low-level image processing and the task
knowledge by using HMMs for binding trajectory information to symbols representing
action primitives. This subsection will explain the computation of low-level features
and how these are matched to the models.

Hand detection and tracking: The hand is detected in a color image sequence by an
adaptive skin-color segmentation algorithm (see [4] for detail) and tracked over time
using Kalman filtering. The hand observation ohand

t is represented by the hand position
(hx, hy)t at time t.

Preknowledge and detection of the objects: The manipulative gesture is different
to the face-to-face interactional gesture because it reflects the interaction between the
human hand and the objects, not the pure hand movement with a meaningful trajectory.
Therefore, a reliable detection of objects is crucial for the overall system performance.
In order to avoid occlusion problems with interacting hands, we assume that a standard
object recognizer, like the boosted cascade filter from Viola and Jones [14], is applied on
the static scene. Then, object-dependent primitive actions are purely defined based on
the hand trajectory that approaches an object instead of considering the object context
while the object is being moved. If a moved object is applied to another object, the
second object defines the object context. The observation vector of a detected object
oobj

i contains its position (ox, oy), a unique identifier (ID) for each different object type
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in the scene and its height oh and width ow. As we can have several objects in the scene,
the overall object observation vector contains multiple objects:

oobj = {oobj
1 , . . . ,oobj

i , . . . ,oobj
L } with oobj

i = (ox, oy , ID, oh, ow). (1)

A vicinity of an object is defined that is centered in the middle of the object detected
and which is limited by the ratio β of its radius and the object size.

Segmentation of trajectory: Considering the possible occlusion in manipulation and
the uncertainty in moving an object, a pre-segmentation step is only based on the vicin-
ity of the static objects detected. A segment is started when the hand enters the vicinity
or when an object is detected and the hand is already in the vicinity. The segment is
ended when the hand goes out of the object’s vicinity or when the object is lost after the
hand moves away. As a consequence, the trajectory is segmented differently based on
the different objects in the scene. To handle this multi-observation problem, one pro-
cessing thread is started for each detected object. In the following, the processing in a
single thread will be introduced. There, the final segmentation is directly coupled with
the recognition step. The main goal of the pre-segmentation is to discard trajectories
which are far away from the objects and contain less manipulative information.

Interaction feature vector: In the processing thread i, the interaction of the hand and
the object is represented by a five-dimensional feature vector vf that is calculated from
ohand and oobj

i . It contains the features: magnitude of hand speed v, change of the
hand speed Δv, change of speed direction Δα, distance r between the object and the
operative hand scaled by object size, as well as the angle γ of the line connecting object
and hand relative to the direction of the hand motion.

vf = (v,Δv,Δα, r, γ) (2)

The whole feature space is discretized into 2 × 2 × 4 × 3 = 48 cells based on the
following quantized dimensions:
Δv :< 0,≥ 0; Δα :< 90,≥ 90; r : [0..β/4), [β/4..β/2), [β/2..3β/4), [3β/4..β];
(v, γ) : v < vthreshold, (≥ vthreshold, < 90), (≥ vthreshold,≥ 90).

These define the observation states for the following HMMs. The features are invariant
with regard to translations, minor scale, and small rotations.
HMM for manipulative primitive: The typical manipulations related to one object
type are named as the object-oriented manipulative primitives, e.g., “take a cup”. They
are modeled by HMMs. Different to the normal parameter set λ = (A,B,Π) of an
HMM, a terminal probabilityE is added. It reflects the terminal probability of an HMM
given a state si. So the whole set consists of:

– Π = {πi|πi = P (q1 = si)}, initial probability of state si:
– A = {aij |aij = P (qt+1 = sj |qt = si)}, transition probability from state si to sj .
– B = {bi(k)|bi(k) = P (ot = vk|qt = si)}, probability of observing ok given

hidden state si.
– E = {ei|ei = P (qend = si)}, terminal probability of state si.

The parameters are learned from manually segmented trajectories with the Baum-Welch
algorithm, ei is calculated similar to πi, except using the last states.
PF based HMM matching: In order to spot the primitive from the pre-segmented
trajectories, a PF called Sampling Importance Resampling (SIR) is used (better known
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as CONDENSATION introduced by Isard and Blake [7]). The matching of the HMM and
the observation are achieved by temporal propagation of a set of weighted particles:

{(s(1)
t , w

(1)
t ), . . . , (s(N)

t , w
(N)
t )} with s(i)

t = {p0(i)
t , q

(i)
t , e

(i)
t }. (3)

The number of particles is N . The sample s(i)
t contains the primitive index p

0(i)
t , the

hidden state q(i)
t , and the terminal state of this primitive e(i)t at time t (see Figure 1(b)).

The resampling step reallocates a certain fraction of the particles with regard to the
initial distributionΠ . Consequently, the weightw(i)

t of a sample can be calculated from

w
(i)
t = p(ot|s(i)

t ) /
N∑

j=1

p(ot|s(j)
t ). (4)

The p(ot|s(i)
t ) in it is the observation probability ot given q

(i)
t and HMM p

0(i)
t . The

propagation of the weighted samples over time consists of three steps:
Select: Selection of N−M samples s(i)

t−1 according to their respective weightw(i)
t−1 and

random initialization of M new samples. That means some particles which have high
weights will be selected multiple times and some particles which have low weights will
not be selected at all.
Predict: The current state of each sample s(i)

t is predicted from the samples from the

select step according to the graphical model given in Fig. 1(b). The terminal state e(i)t−1 is
a bi-valued variable, 0 means the primitive is continuing and 1 means the primitive ends
here. So if e(i)t−1 is 0, the next hidden state q(i)

t is sampled according to the transition

probability of the HMM of primitive q(i)
t−1 and the primitive index p0(i)

t keeps the same

as p0(i)
t−1. If the the terminal state e

(i)
t−1 is 1, the primitive index p

0(i)
t will be sampled

according to the current possible primitives of this object. Then the hidden state q
(i)
t

is sampled according to the initial probability of the HMM of the new primitive p0(i)
t .

At the end of this step, the terminal state of this particle e(i)t is sampled based on the

terminal probability of the current primitive state q(i)
t .

Update: Determination of the weights w(i)
t of the predicted samples s(i)

t using Eq. 4.

The recognition of a manipulative primitive is achieved by calculating the end-
probability Pend that a certain HMM model pi is completed at time t:

Pend,t(pi) =
∑

n

w
(n)
t , if pi ∈ s(n)

t . (5)

A primitive model is considered recognized if the probabilityPend,t(pk) of the primitive
model pk exceeds a threshold p0

th which has been determined empirically.
The resampling step in the particle propagation is able to adapt the starting point

of the model matching process if the beginning of the primitive does not match the
beginning of the segment. The end-probability gives an estimation of the primitive’s
ending point. This combination to a certain extent solves the problem of the forward-
backward algorithm which needs a clear segmentation of the pattern.

Model of the tasks: the manipulative tasks are modeled as the first-level Markovian
process which is the same as Moore’s definition [10]. Although this assumption vio-
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lates certain domain dependencies, it is an efficient and practical way to deal with task
knowledge. In the model Λi for a manipulative task i, a set of possible manipulative
primitives P 1

i are defined, e.g., in the “prepare tea” task, the primitives “take cup”,
“take tea can” could appear but not “take milk”. Because of the high effort needed for
recording a huge mount of task sequences, the number of training examples for each
complete task is too low for robustly estimating transition probabilities. Therefore, we
model a task by a set of possible primitive pair transitions similar to a word pair gram-
mar in automatic speech recognition. The set of transition rules A1

i , the possible start
symbols Π1

i , and the set of possible end symbols E1
i is learned from the output of the

primitive recognition layer on a training set by thresholding the frequency of pairs ob-
served in sequences of action primitives (see Sec. 4.2 for more details). Suppose the
result from the manipulative primitive recognition is the sequence p1

1, . . . , p
1
t . To calcu-

late the acceptance of a task Λi = (P 1
i , Π

1
i , A

1
i , E

1
i ), only the primitives which are in

the primitive list of the task Λi will be chosen because of the possible insertion in the
primitive recognition.

(p1
1, . . . , p

1
t | p1

j ∈ P 1
i , j = 1 . . . t) ∈ {P | p1

1 →∗
A1

i
p1

t , p
1
1 ∈ Π1

i , p
1
t ∈ E1

i } (6)

where P denotes the possible sequences from primitive p1
1 to p1

t while considering
transitions in A1

i . Eq. 6 can easily be evaluated according to the parameter set Λi.

3.2 The Top-Down Process

Because of the object-specific primitive definition and its parallel processing for each
affected object, the system confronts an attention problem when there are many objects
appearing in the scene simultaneously. In order to solve this problem, a top-down pro-
cess is introduced, in which the possible primitives coming next are predicted on the
ground of the active task models and the previous results from the manipulative prim-
itive recognition. This prediction is similar to the computation of a lookahead symbol
in parsing strategies. For the prediction step different parsing alternatives are consid-
ered during the HMM matching process. For all primitives that gain an end probability
Pend,t(pi) > 0 a lookahead symbol is generated. If a primitive has been recognized this
primitive is eliminated as a lookahead symbol. Because the predicted action primitives
are specific for certain object types, the set of the next possibly manipulated object types
can be calculated and be passed to the object detection component. This realizes a task
driven attentional cue for early processing steps of the system (Fig. 1(a)). Additionally,
the expectations from the predicted action primitives are used to restrict the HMMs
applied in the PF based matching process.

4 Experiments and Results

In order to evaluate the quality of the manipulative gesture recognition, a scenario in an
office environment has been designed as shown in Figure 2. A person is sitting behind a
table and manipulates the objects that are located on it. She or he is assumed to perform
one of three different manipulation tasks: (1) water plant: take cup, water plant, put
cup; (2) prepare tea: consists of take/put cup, take tea can, pour tea into cup, put tea
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Fig. 2. The office scenario used in the experiment

can; (3) prepare coffee: consists of take/put cup, take milk/sugar, pour milk/take sugar
into cup, put milk. In the experiment, each task is performed 4-5 times by 8 different
persons resulting in 36 sequences for each task and a total of 108 sequences. The images
are recorded with a resolution of 320x240 pixels and with a frame-rate of 15 images
per second. The object recognition results have been labeled because the evaluation
experiment should concentrate on the performance of the action and task recognition.
The object in the hand is ignored so that pour milk into cup and pour tea into cup are
the same primitive actions. The scenario is restricted in so far that we assume a static
camera, a known configuration of objects, and a camera view that is roughly orthogonal
to the relevant movements.

4.1 Manipulative Primitive Recognition

The first evaluation is used to test the performance of the object-oriented manipulative
primitive recognition. There are five different objects used in the experiment: tea can,
milk, sugar, cup and plant. Table 1 shows the primitives defined for each object type.
The evaluation is done for all segments computed by the pre-segmentation step (see
Section 3.1). These segments either contain a real manipulative primitive action which
we call positive segments (PS) or contain just a hand passing by an object which we
call negative segments (NS). For the positive segments, we calculate the false negative
(FN) rate. For negative segments, the false positive (FP) rate is calculated. In order
to achieve good performance results both rates should be low because both kinds of
errors would seriously affect human-robot interaction. We randomly divided the 108
whole task sequences into a training set of 60, and a test set of 48 sequences. Because
of the low number of training examples, we run the Baum-Welch algorithm used for

Table 1. The recognition results of the object-oriented manipulative primitives in both positive
and negative segments

Objects tea milk sugar cup plant
Primitives take put take put take take put pour water

Num. PS 16 16 14 14 13 48 42 43 16
FN (%) 20.6 0.7 13.6 7.2 14.6 25.4 7.2 20.5 6.9

±3.0 ±1.9 ±5.8 ±3.6 ±5.6 ±6.7 ±4.0 ±5.4 ±1.9
Num. NS 28 110 118 17 13
FP (%) 6.8 ± 2.0 9.8 ± 6.2 7.2 ± 8.7 17.6 ± 6.8 0



220 Z. Li et al.

the HMM learning procedure 10 times with random initialization and give a standard
deviation for the FN and FP rates. The results are computed using the parameter setting:
N = 500, M = 50, p0

th = 0.2, and β = 3. From the results, it could be found that
the put primitives are recognized with lower FN rate than the take and pour primitives
because the variations of the latter two are much higher from person to person.

4.2 Manipulative Task Recognition

The second evaluation assesses the overall system performance. A manipulative task
consists of the manipulative primitive sequence. However the ordering of the sequence
is neither pre-determined nor completely fixed. For example some people may take
sugar before taking milk, some will do it the other way around. But there probably
will be an ordering between taking the cup and the watering action which needs to be
learned from the data. For learning the possible transition pairs of each task model, the
data set is divided into the set of 20 observation sequences, that was already used for
learning the primitive action models, and a set of 16 sequences that are used for a one-
leave-out experiment. Thus, each task model is learned from 35 task sequences in each
experiment. The possible word pair transitions are extracted from the training data by a
frequency threshold.

The task recognition results of the whole system are compared with (TD) and with-
out (no TD) the top-down attention processing. The FN rate clearly shows a significant
drop in case of top down processing for prepare tea and prepare coffee. Because some-
times an expected primitive was misrecognized in a way that was not covered by the
task grammar, the rejection of these tasks caused relatively high FN rates but nearly
no substitution errors (Sub.). The processing time for a 180-frame “prepare coffee” se-
quence with the former method is 54s running on MATLAB, which is much lower than
the 86s needed by the pure bottom-up processing.

Table 2. The recognition results of the manipulative tasks with and without top-down processing

Name Num. FN(%, TD) FN(%, no TD) Sub.(%, TD)

water plant 16 2.5 ± 3.2 3.7 ± 4.4 2.5 ± 3.2
prepare tea 16 21.3 ± 4.4 37.5 ± 7.2 5.0 ± 5.3

prepare coffee 16 30.6 ± 6.2 38.1 ± 0.1 3.7 ± 3.2

5 Summary

The recognition of manipulative actions and tasks is an essential component for the nat-
ural, pro-active, and non-intrusive interaction between humans and robots. However,
most techniques for the recognition of symbolic, interactional or referential gestures
cannot be transferred because they ignore the object context and assume an object in-
dependent characteristic of the hand trajectory. Other approaches that focus on action
recognition either use a pure semantic approach without considering motion models or
simplify the trajectory segmentation problem in a pure bottom-up process.

The presented approach overcomes several of these deficiencies. The contextual ob-
jects are used for a pre-segmentation of the hand trajectory; the manipulative action
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primitives are spotted by a particle filter approach that matches object specific HMMs in
a more flexible way than the traditional forward-backward algorithm; tasks are defined
by a set of possible transition rules similar to a word pair grammar that is automatically
extracted from a small test set. By calculating a set of lookahead symbols on the task
level, a task-driven attention filter is realized that tightly couples bottom-up and top-
down processing. We were able to show first experiments that underline the potential of
the presented approach. The action primitives were recognized quite robustly. The top-
down attention filter significantly improves the computation time as well as the recog-
nition performance. Further work will concentrate on an improved feature description
of primitive actions, a more robust task model, and more sophisticated experiments.
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Abstract. This paper presents a novel approach towards detecting in-
trinsically two-dimensional (i2D) image structures using local phase in-
formation. The local phase of the i2D structure can be derived from a
curvature tensor and its conjugate part in a rotation-invariant manner.
By employing damped 2D spherical harmonics as basis functions, the
local phase is unified with a scale concept. The i2D structures can be de-
tected as points of stationary phases in this scale-space by means of the
so call phase congruency. As a dimensionless quantity, phase congruency
has the advantage of being invariant to illumination change. Experiments
demonstrate that our approach outperforms Harris and Susan detectors
under the illumination change and noise contamination.

1 Introduction

Local image structures play important roles in many computer vision tasks. They
can be associated with the term intrinsic dimensionality [1], which, as a local
property of multidimensional signal, expresses the number of degrees of freedom
necessary to describe local structures. For 2D images, there exist three type of
structures. The intrinsically zero dimensional (i0D) structures are constant sig-
nals. Intrinsically one dimensional (i1D) structures represent straight lines and
edges. Corners, junctions, line ends, etc. are all intrinsically two dimensional
(i2D) structures which all have certain degree of curvature. It is well know that
these i2D structures are of high significance in object recognition, motion esti-
mation, image retrieval, etc. Consequently, correct detection of i2D structures
under image deformations is very important.

There exist a lot of work concerning the detection of i2D structures based on
intensity information, see [2,3,4,5]. These intensity based approaches are sensitive
to variations in image illumination. Hence, it is necessary to find some features
of local structures which are invariant with respect to image brightness change
for a robust and reliable detection. Phase is such a good candidate, which carries
most essential structure information of the original signal and has the advantage
of being invariant to illumination variation [6]. Detecting local structures can be
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realized by means of the phase congruency. Using phase congruency to detect
edges has been reported in [7,8]. However, i2D structure detection based on its
local phase has not yet been well investigated, although Kovesi proposed to use
i1D local phase to detect i2D points by constructing the phase moments [9].

In this paper, we present a novel approach to detect i2D image structures
using local phase information. The local phase of the i2D structure is derived
from a curvature tensor and its conjugate part in a rotationally invariant way.
By employing damped spherical harmonics as basis functions, the local phase
is unified with a scale concept. The i2D structures can be detected as points of
stationary phases in this scale-space by means of the so called phase congruency.
Experimental results illustrate that our approach outperforms Harris and Susan
detectors under illumination change and noise contamination.

2 Phase Estimation of Intrinsically Two-Dimensional
Image Structures

The local phase of an i2D structure can be derived from a tensor pair, namely, the
curvature tensor and its conjugate part, see also [10] for details. By employing
damped 2D spherical harmonics [11] as basis functions, the local phase is unified
with a scale-space framework. An nth order damped 2D spherical harmonic Hn

has a much simpler representation in the spectral domain than that of the spatial
domain. It takes the following form

Hn(ρ, α; s) = exp(inα)exp(−2πρs) = [cos(nα) + i sin(nα)]exp(−2πρs) (1)

where ρ and α denote the polar coordinates in the Fourier domain, s refers
to the scale parameter. The damped 2D spherical harmonics are actually 2D
spherical harmonics exp(inα) combined with the Poisson kernel exp(−2πρs)
[8]. The first order damped 2D spherical harmonic is basically identical to the
conjugate Poisson kernel [8]. When the scale parameter is zero, it is exactly
the Riesz transform [12]. In order to evaluate the local phase information, the
curvature tensor and its conjugate part are designed to capture the even and odd
information of 2D image structures. Designing the curvature tensor is motivated
by the second order fundamental theorem of the differential geometry, that is
the second derivatives or Hessian matrix which contains curvature information
of the original signal. Let f be a 2D signal, its Hessian matrix is correspondingly
given by

H =
[
fxx fxy

fxy fyy

]
(2)

where x and y are the Cartesian coordinates. According to the derivative theorem
of the Fourier theory [13], the Hessian matrix in the spectral domain reads

F{H} =

[
−4π2ρ2 1+cos(2α)

2 F −4π2ρ2 sin(2α)
2 F

−4π2ρ2 sin(2α)
2 F −4π2ρ2 1−cos(2α)

2 F

]
(3)
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where F is the Fourier transform of the original signal f . It is obvious that
angular parts of the second order derivatives in the Fourier domain are related to
2D spherical harmonics of even order 0 and 2. Hence, these harmonics represent
the even information of 2D structures. Therefore, we are motivated to construct a
tensor Te, which is related to the Hessian matrix. This tensor is called a curvature
tensor, because it is similar to the curvature tensor of the second fundamental
form of the differential geometry. This curvature tensor Te indicates the even
information of 2D image structures and can be obtained from a tensor-valued
filter He in the frequency domain, i.e. Te = F−1 {FHe}, where F−1 means the
inverse Fourier transform. Hence, the tensor-valued filter He, called the even
filter reads

He =

[
H0+real(H2)

2
imag(H2)

2
imag(H2)

2
H0−real(H2)

2

]
=

[
1+cos(2α)

2
sin(2α)

2
sin(2α)

2
1−cos(2α)

2

]
exp(−2πρs) (4)

=
[

cos2(α) 1
2 sin(2α)

1
2 sin(2α) sin2(α)

]
exp(−2πρs)

where real(·) and imag(·) indicate the real and imaginary parts of the expression.
In this filter, two components cos2(α) and sin2(α) can be considered as two

angular windowing functions. These angular windowing functions provide a mea-
sure of the angular distance. From them, two perpendicular i1D components of
the 2D image, oriented along the x and y coordinates, can be obtained. The
other component of the filter is also the combination of two angular window-
ing functions, i.e. 1

2 sin(2α) = 1
2 (cos2(α− π

4 )− sin2(α− π
4 )). These two angular

windowing functions yield again two i1D components of the 2D image, which
are oriented along the diagonals. These four angular windowing functions can
also be considered as four differently oriented filters, which are basis functions
to steer a filter [14]. They make sure that i1D components along different orien-
tations are extracted. Consequently, the even filter He enables the extraction of
differently oriented i1D components of the 2D image.

The conjugate Poisson kernel, which evaluates the corresponding odd infor-
mation of the i1D signal, is in quadrature phase relation with the i1D signal.
Therefore, the odd representation of the curvature tensor, called the conjugate
curvature tensor To, is obtained by employing the conjugate Poisson kernel to
elements of Te. Besides, the conjugate curvature tensor To results also from a
tensor-valued odd filter Ho, i.e. To = h1 ∗ Te = F−1 {H1HeF} = F−1 {HoF},
where h1 denotes the conjugate Poisson kernel in the spatial domain. Hence, the
odd filter Ho in the spectral domain is given by

Ho =
1
2

[
H1(H0 + real(H2)) H1(imag(H2))
H1(imag(H2)) H1(H0 − real(H2))

]
(5)

Similar as the Hessian matrix, we are able to compute the determinant of Te

and To for knowing the existence of the i2D structure. Combing the determinants
of Te and To results in a novel model for the i2D structure, which is called the
monogenic curvature scale-space fi2D(x; s),

fi2D(x; s) = det(Te(x; s)) + det(To(x; s)) (6)
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From it, the local amplitude for the i2D structure is given by

a(x; s) =
√

det2(Te(x; s)) + det2(To(x; s)) (7)

and the local phase can be obtained as

ϕ(x; s) =
det(To(x; s))
|det(To(x; s))|atan

(
|det(To(x; s))|
det(Te(x; s))

)
(8)

where det(To(x;s))

|det(To(x;s))|
decides the local main orientation of the i2D structure. Hence,

the local phase information of the i2D structure contains not only phase infor-
mation but also the local main orientation. Therefore, the evaluation of the i2D
structure can be realized in a rotation-invariant way.

3 Phase Congruency

Since the local phase is independent of the local amplitude, it thus has the
advantage of being not sensitive to illumination change. Hence, detecting i2D
image structures can be done by looking for points of stationary phase in the
scale-space. This approach is commonly called phase congruency and is based
on comparisons of the local phase at certain distinct scales [7]. In this paper,
we take a similar idea as those reported in [7,9]. However, there are some differ-
ences. First, our local phase information can be evaluated in a rotation-invariant
manner. Therefore, no orientation sampling is required. Second, the local phase
directly indicates the phase information of the i2D structure. Thus, there is no
need to construct principal moments of the phase congruency to determine i2D
structures.

Morrone and Owens [15] define the phase congruency function in terms of the
Fourier series expansion of a signal at a local position x as

PC = maxφ∈(0,2π]

∑
n An cos(φn − φ)∑

n An
(9)

where An represents the amplitude of the nth Fourier component, φn denotes
the local phase of the Fourier component at position x and φ is the amplitude
weighted mean local phase angle of all the Fourier terms at the position being
considered. The measure has a value between zero and one. A phase congruency
of value one means that there is an edge or a line, zero phase congruency indicates
there is no structure. However, this measure results in poor localization and is
also sensitive to noise. Hence, Kovesi [7] developed a modified version of the phase
congruency. In this measure, the local phase is obtained from the logarithmic
Gabor wavelet. Due to its lack of rotation invariance, orientation sampling must
be employed to make sure that features at all possible orientations are treated
equally. Hence, the new measure of phase congruency reads

PC =
∑

o

∑
n Wo�Ano(cos(φno − φo)− | sin(φno − φo)|)− To�∑

o

∑
n Ano + ε

(10)
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where n and o refer to the scale parameter and the index over orientations,
respectively. And Wo denotes a factor that weights for frequency spread along
certain orientation and ε is added to avoid division by zero. The terms Ano and
φno are the local amplitude and local phase at a certain scale and orientation,
respectively. The mean local phase at a certain orientation is represented as φo.
Only energy values that exceed the estimated noise influence To can be taken into
consideration. The symbols � and � indicate that the enclosed entity equals itself
when its value is positive and zero otherwise. This new phase congruency measure
produces a more localized response and it also incorporates noise compensation.
However, the estimated local phase is only valid for the i1D signal. Hence, using
phase congruency to detect i2D structures requires the construction of principal
moments of the phase congruency, see [9].

In contract to this, we have now a rotationally invariant evaluation of the
local phase for the i2D structure, no orientation sampling is needed. Hence, the
computation of phase congruency can be simplified as the following

PC =
∑

n W �An(cos(φn − φ)− | sin(φn − φ)| − T )�∑
n An + ε

(11)

where n denotes the scale parameter, W is also a factor weighting for frequency
spread, An and φn represent the local amplitude and local phase of the i2D
structure point, respectively. This new measure can be directly applied to detect
i2D image structures. Any point with a phase congruency value higher than a
certain threshold can be considered as an i2D point.

4 Performance Evaluation Criteria

In the literature, many detectors are designed for detecting i2D image structures.
However, most of them show only qualitative experimental results. Because com-
puter vision tasks require more robust and reliable detection results, there has
been an increasing emphasis on quantitative performance evaluation. There also
exists a number of research for assessing the detector performance. The measure
suggested by Schmid et al. [16] is based on the idea of repeatability. Rockett [17]
and Martinez-Fonte et al. [18] proposed a more empirical method for accessing.
In their research, examples of true corners and non-corners are provided. For
each threshold level, the corner detection probability and the false alarm rate
are estimated to plot an ROC curve. In [19], Carneiro et al. assessed the detector
performance by two measures, namely, the precision and recall rates.

The repeatability evaluation delivers the number of points repeated between
two images with respect to the total number of detected points. However, this
measure does not consider those correctly or wrongly detected points which
do not repeat at all. The ROC curve plots the relation between the detection
rate and false alarm rate with respect to the threshold variation, but it is not
easy to show the detection performance with respect to image deformations like
illumination change, rotation change and so on. In this paper, we follow the
measures in [19].
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The recall rate measures the probability of finding an i2D point in a deformed
image given that it is detected in the reference image. The definition of the recall
rate is given by

R =
TP

TP + FN
(12)

where TP denotes the true positive and FN is the false negative. Since it is
not easy to identify the ground truth, in this case, the true positive means the
number of correctly matched points. Given a point xi in the reference image
and a point xj in the deformed image, let M(·) represent the deformation trans-
form, if the Euclidean norm condition is satisfied, i.e. ‖M(xi)− xj‖ < 1.5, then
these two points are correctly matched. False negative is the number of points in
the reference image which cannot be matched with any points in the deformed
image.

The precision rate indicates the probability that an i2D point detected in a
deformed image is actually an i2D point in the reference image. Its definition
reads

P =
TP

TP + FP
(13)

where FP is false positive, it means the number of points in the deformed image
which cannot be matched with any points in the reference image. Both the recall
and precision rates have values between zero and one. If the rate is higher, the
detection performance is better.

5 Experimental Results

In this section, we present some experimental results. As shown in Fig. 1, two
test images and one image sequence are employed for the experiments. The first
experiment aims to illustrate some qualitative comparison results between our
approach and the well-known Harris detector. The blox image is used for detec-
tion under the rotation change and the additive Gaussian noise contamination
(standard derivation is 10). For the illumination change, we use the blocks im-
age to show the detection difference. Fig. 2 demonstrates the detection results
of our approach and the Harris detector under the rotation change, the noise
contamination and the illumination change. According to the false positives and

Fig. 1. Two test images (blox and blocks) and one frame of a boxes image sequence
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Fig. 2. Top row shows the detection results using our approach for the original im-
age, the rotated image and the Gaussian noise contaminated image. The second row
demonstrates the results from the Harris detector for the original image, the rotated
one and the noise contaminated one. Results shown in the third row are detections for
the original image and the illumination varied one by using our approach. Bottom row
illustrates results from the Harris detector for the original image and the illumination
changed one.
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Fig. 3. First column: from top to bottom are recall rates under the rotation change,
illumination variation and the additive Gaussian noise contamination. Second column:
from top to bottom are precision rates under the rotation change, illumination variation
and the additive Gaussian noise contamination.
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false negatives, it can be shown that our approach performs better than the
Harris detector when the illumination changes and the noise is added to some
degree.

The second experiment is to show some quantitative comparison results. We
follow the evaluation criteria of recall and precision rates to compare the per-
formances of our approach, the Harris detector and also the well-known Susan
detector. Ten frames of the boxes image sequence are employed for this experi-
ment. Image deformations of rotation change, additive Gaussian noise contami-
nation and the illumination variation are considered. For each deformation, the
averaged values of ten frames are recorded to plot the recall and precision rates.
Fig. 3 demonstrates comparison results between our approach, the Harris de-
tector and the Susan detector according to the performance assessment criteria
of recall and precision rates. Note that recall and precision rates have different
scales for different image deformations. The top row shows detection results un-
der the rotation change. Our approach has a comparable result with the Harris
detector, and the Susan detector performs worse than these two approaches. Be-
cause of the discretization errors, curves for recall and precision show some local
minima at rotations of 45 and 135 degrees. The second row are recall and preci-
sion rates for the illumination change. The phase congruency is a dimensionless
quantity which is in theory invariant to the illumination change, although it is
not absolutely invariant to brightness variation in practice, it is still less sensi-
tive to the illumination variation than those intensity based approaches. Results
indicate that our approach performs much better than the Harris and Susan
detectors especially in the case of higher illumination change. Bottom row shows
the additive Gaussian noise contaminated results. Since the phase congruency
takes several scales into consideration and it also incorporates noise compensa-
tion, our approach demonstrates a better performance than that of the Harris
detector. And the Harris detector is less sensitive to the noise when compared
with that of the Susan detector due to the Gaussian smoothing in the local
neighborhood.

6 Conclusions

We present a novel approach towards detecting i2D image structures using local
phase information. The local phase of the i2D structure can be derived from a
curvature tensor and its conjugate part in a rotation invariant manner. The i2D
image structures are detected as those points with stationary phases in the scale-
space by means of phase congruency. The recall and precision rates are employed
as detection performance assessment criteria. Experimental results illustrate that
our approach outperforms the Harris and Susan detectors when the illumination
changes and the images are contaminated by the additive Gaussian noise. For
the deformation of rotation change, our approach shows a comparable result
with the Harris detector.
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Abstract. Recently, many approaches have been proposed for visual
object category detection. They vary greatly in terms of how much su-
pervision is needed. High performance object detection methods tend to
be trained in a supervised manner from relatively clean data. In order
to deal with a large number of object classes and large amounts of train-
ing data, there is a clear desire to use as little supervision as possible.
This paper proposes a new approach for unsupervised learning of visual
categories based on a scheme to detect reoccurring structure in sets of
images. The approach finds the locations as well as the scales of such
reoccurring structures in an unsupervised manner. In the experiments
those reoccurring structures correspond to object categories which can
be used to directly learn object category models. Experimental results
show the effectiveness of the new approach and compare the performance
to previous fully-supervised methods.

1 Introduction

Over the years various approaches have been proposed for the recognition of
object categories often based on models learned directly from image data. The
approaches, however, vary greatly in the specific task they address: from simple
present/absent decision [1,2] over object class detection and localization [3] to
pixel-level segmentation [4]. In this paper we deal with the problem of object
detection and localization. Another difference between the proposed methods is
the amount of supervision used and provided for the training data. The types
of annotation varies from pixel-level segmentations [5], over bounding-box anno-
tations [3] to unsupervised methods [2,6,7]. Very recent approaches for learning
multiple categories do not even require the information which category is pre-
sented in which image [8]. While approaches using more supervision tend to
require less training data, there is a clear desire to use less supervision typically
at the price to use more unlabeled training data.

The central problem addressed in this paper is to discover and learn objects
category models as reoccurring patterns of local appearance in sets of training
data. It may seem quite unrealistic to discover object categories in this way.
However, many appearance-based approaches explicitly or implicitly rely on the
fact that both the local appearance as well as its structural layout exhibit re-
occurring patterns that can be learned and modeled (e.g. [2,4,9]). A key idea
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of our approach is therefore to discover reoccurring patterns in multiple images
without the model of any particular object. Finding the locations and scales of
such reoccurring structures effectively corresponds to unsupervised annotations
of the training data. As we will show, the proposed approach enables effective
object class discovery in unlabeled images. Using those estimated annotations a
model of an object class can be learned.

Learning object models in an unsupervised fashion may be formulated in one
single EM-loop as in e.g. Fergus et al [2]. In that method, appearance and struc-
ture are learned simultaneously making the learning computationally expensive
and thus restricting the complexity of the model. Recently a new approach for
object discovery has been proposed based on a pLSA-model [8]. Since the un-
derlying model is a bag-of-word representation, the object discovery is based on
local appearance alone neglecting structural information. [7] extends the initial
approach to also include some structural information on top of the pLSA model,
but the object discovery is still based on appearance only.

The main contributions of this paper are the following: First, we propose a
novel scheme to discover object category members in images, which is based
on the idea of estimating the locations and scales of reoccurring patterns. The
estimates can be seen as an automatic annotation procedure of the training
data. Second, we experimentally show the applicability of this idea for object
discovery on several object classes. Third, we use the estimated annotations
to learn object class models for object detection and localization. Fourth, we
analyze the performance of such object class models on standard datasets.

The paper is organized as follows: Section 2 describes a method for locating
reoccurring structure for which in Section 3 we present a method to robustly
estimate the intrinsic scale of the associated objects. Section 4 shows how a
model like [4] can be learnt from the estimated annotations. Finally, we show in
Section 5 the usefulness of the obtained information on a image ranking and an
object detection task.

2 Object Discovery

Our new approach to unsupervised object discovery is based on efficiently finding
reoccurring spatial patterns of local appearances in a set of training images. We
use a generic codebook representation which is also the basis of the object scale
estimation procedure as presented in Section 3.
Generic Codebook Representation. Similar to other approaches for recogni-
tion [1], material classification [10] and detection [4], we use an initial clustering
procedure to obtain a visual codebook. Since we do not want to assume a pri-
ori information on parts or common structure of the object category, we use a
fixed generic codebook produced on unrelated background images. We extract
image patches on the Caltech background images [11] using a scale-invariant
Hessian-Laplace interest point detector [12]. Those image patches are clustered
by k-means using normalized gray-scale correlation as similarity measure. The
result looks as follows:
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Scale-Invariant Patterns. We define a pattern Ψk,r in image k with reference
point r to be characterized by a set of distributions {p(h|Ψk,r,c)}c. Each of the
p(h|Ψk,r,c) encodes the spatial distribution of the features in image k that match
to a certain codebook c. The coordinates h = (hx, hy) are scale-normalized with
the intrinsic feature scales σ (obtained from the scale-invariant interest point
detector) and computed relative to a reference point r = (rx, ry)

h =
(
x− rx

σ
,
y − ry

σ

)
. (1)

Using this scale-normalized coordinates is beneficial, as the pattern becomes
characteristic for the particular reference point r. This allows to locate reoccur-
ring patterns even though they appear at different global scales.
Method. We formulate the unsupervised discovery of reoccurring spatial pat-
terns of local appearances as finding for each image the most likely pattern given
all observed patterns in the training data. Therefore we are interested in finding
the reference point q̂j associated with the most likely pattern in each image j
given all observed patterns Ψ = {Ψk,r}k,r

q̂j = argmax
q

p(Ψj,q|Ψ). (2)

To simplify notation, the reference points q and r are assumed to be quantized.
The likelihood estimate is obtained by marginalizing over the codebook entries
c, scale-normalized coordinates h, reference points r, and images k

p(Ψj,q|Ψ) =
∑

c

∑
h

∑
r

∑
k

p(Ψj,q,c|h)p(h|Ψk,r,c)p(Ψk,r,c).

Using Bayes’ formula we obtain

p(Ψj,q,c|h) =
p(h|Ψj,q,c)p(Ψj,q,c)

p(h)
. (3)

By assuming uniform priors, p(Ψk,r,c) and p(h) can be written as constant 1
Z .

This assumption is justified, by a uniform partitioning of our data using k-means
clustering. Eq. 3 simplifies to

p(Ψj,q|Ψ) =
1
Z

∑
c

∑
h

∑
r

∑
k

p(h|Ψj,q,c)p(h|Ψk,r,c). (4)

An example of this likelihood estimate on the multi-scale TUD motorbikes [11]
is overlaid on one of the images in Figure 1 as iso-lines. In this image we can
clearly see two maxima which correspond to two motorbikes.

Eq. 4 can be interpreted as collecting evidence for pattern Ψj,q with respect
to all other patterns Ψ by searching for matching feature with appearance c
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Fig. 1. (Left) Example of the computed likelihood on the multi-scale TUD motorbikes.
(Right) Example result of our procedure for object discovery on car and cow images
including varying position, scale and viewpoint and heterogeneous background.

and scale-normalized position h. Although this seems computationally infeasible,
we introduce an efficient method to evaluate eq. 4 using scale-invariant feature
hashing - similar to the idea of geometric hashing [13]. The idea is to index
all features of the image database by quantized scale-normalized coordinates h,
and store them in the hashes Hc for each matching codebook cluster c. Features
which are similar in appearance and scale-normalized position h are now stored
in the same hash bin. More importantly, the matches can be used to backproject
the support of all patterns Ψj,q with respect to all patterns. As a result, all
p(Ψj,q|Ψ) given by the complex eq. 4 can be computed by a single loop over the
hash bins of hashes Hc.
Evaluation. To test the proposed procedure for object discovery with respect
to robustness against translation, scaling, occlusion, and background clutter we
ran tests on three object categories: motorbikes, cows, and cars. For the cows we
used the training set of the TUD cows [11], as well as the cows from [14]. For the
cars we used the training set of the PASCAL challenge [11]. Examples for the
estimated object centers are shown in Figure 1. Despite the strong variations in
appearance and view-point, the objects were successfully localized. The reference
locations were quantized on a 10× 10 grid.

To gain more insights, we perform a more detailed quantitative analysis on the
Caltech motorbike training set [11] which consists of 400 images. We compute
the distance between our estimate and the center of the groundtruth bounding
box annotation normalized by the object width. The average distance is 0.10,
which we consider to be very good, as the groundtruth annotations are not
really accurate themselves. Nearly all errors are below a normalized distance of
0.3, which is well below the noise level assumed in the evaluation of the scale
estimation method in Section 3.

3 Object Scale Estimation

From the procedure for object discovery described in the previous section we
obtain localized patterns Ψj,q at reference points q̂j for each image j. However,
since these reoccurring patterns are obtained in a scale-invariant fashion, they
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are of unknown scale s. While it is advantageous, that no explicit knowledge
of the object scale is required for discovering reoccurring patterns, tasks like
training an object model for detection need an estimate of the object scale to
learn a model across the training instances.

Method. The proposed method matches scale-invariant patterns to collect
evidence for their associated global object scale. Different methods to obtain a
robust estimate are proposed and evaluated. As the absolute, global object scale
only exists with respect to a reference scale, we formulate the scale estimation
problem as finding the pairwise relative scale ρ̂k,l = sk/sl between two discovered
patterns Ψk and Ψl in a pair of images k and l. In analogy to eq. 2 we describe
the problem of finding the most likely relative scale ρ̂k,l with respect to the two
patterns of the image pair as

ρ̂k,l = arg max
ρk,l

p(ρk,l|Ψk, Ψl) (5)

We assume that for matching features the ratio of the intrinsic scale σ of the
matched structures is equal to the ratio of the global scales s between the patterns
and their associated objects ρk,l = sk/sl = σk/σl. According to this we factor eq. 5
andmarginalize over the codebook entries c and the scale-normalized coordinatesh

p(ρk,l|Ψk, Ψl) =
∑
σl

p((ρk,lσl)|Ψk)p(σl|Ψl) =
∑

c

∑
h

∑
σl

p((ρk,lσl), h|Ψk,c)p(σl, h|Ψl,c)

As in Section 2 we store all features in the hashesHc. Our efficient data structure
allows to compute all these likelihoods in one loop over the hash bins.

The estimates from eq. 5 can be interpreted as a fully connected graph, where
the patterns in the images are the nodes and the relative scales of the patterns are
attached to the edges. To make our method robust with respect to outliers, we
compute confidence scores for all estimated relative scales. These are computed
by indentifying image triplets with consistent relative scale estimates: Given
three images Ia, Ib, Ic with their relative scales ρa,b, ρb,c, ρa,c, the confidence for
all three scale estimates is increased if the equation ρa,bρb,c = ρa,c is fulfilled.

In this paper we investigate three different methods to derive a unique scale es-
timate for each pattern from the pairwise relative scale information: least squares,
maximum spanning tree, and min-linkage method.

The least squares method is based on a linear system of equations to estimate
the unknown scales without using the computed confidences. Considering two
patterns Ψk, Ψl with the global scale of the patterns sk, sl of the associated object
instances, we compute a least-squares fit for the global scales s from all the
estimated relative scale according to:

sk

sl
= ρk,l =⇒ log sk − log sl = log ρk,l. (6)

This method is computational expensive, because the number of equations grows
quadratically in the number of images, and its estimes are sensitive to outliers.

The maximum spanning tree method computes a maximum spanning tree on
the graph of confidences. The scale estimates can be directly computed from this
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tree by fixing one scale. Although this method has low computational complexity,
the estimates are rather unstable, as shown in Section 3.

As a compromise between efficient computation and robust estimation, we
propose a third method. The min-linkage method considers for every image the
n most confident relative scales to all other images and therefore the number of
equations grows only linearly with the number of images. The estimate of the
scales is still robust due to the least-squares estimation.

The above described methods estimate relative scales, however, for the detec-
tion experiments (Section 5) an absolute scale based on the extent of the object
is required. One possibility is to specify a reference scale for one image. In the
experimental evaluation it turned out that this is not necessary, as the absolute
object radius can be chosen to be twice the mean feature distance to the center
after aligning all objects with the computed relative scale estimates.

Evaluation. To evaluate the accuracy of our new scale estimation scheme, we
again use the Caltech motorbike database with annotated object centers, which
has a scale variation of 2 octaves. The mean deviation of the estimated scales
from the true scales is roughly 1

9 of an octave for the least-squares and 1
5 for the

min-linkage method (minimum linkage preserves 40 = 10% of the most confident
scales). Additionally, we evaluated the robustness of the system with respect to
Gaussian noise in the center point annotation. Even when the noise is amplified
until the 3σ-radius reaches 2

3 of the object radius - which is twice the noise level
we measured for the center point estimate in Section 2 - the mean deviation
of the estimated scales from the true scale is roughly 1

4 of an octave for least-
squares and minimum linkage. The maximum spanning tree method reaches this
error already at half the noise level. As a conclusion we use the minimum linkage
method in our following experiments, as it shows about the same accuracy as
the full least-squares, but with a much lower computational cost.

4 Model Estimation for Detection

Object Category Detection with ISM. The Implicit Shape Model (ISM)
[5] is a versatile framework for scale-invariant detection of object categories,
which has shown good performance on challenging detections tasks [11]. It uses
a flexible non-parametric representation for modeling visual object categories by
spatial feature occurrence distributions with respect to a visual codebook. For
details we refer to [5]. Additionally the method allows for back-projecting the
support of the hypotheses to infer figure-ground segmentation masks and per-
forming an MDL-based reasoning to resolve multiple and ambiguous hypotheses
[4]. However, the generation of an object specific visual codebook and the MDL-
based reasoning step require figure-ground segmentations for the training images
which introduce high annotation effort.
Unsupervised Learning of Models for Detection. One of our contribu-
tions is to show that one can achieve high recognition performance by using
the estimated center point (Section 2) and scale (Section 3) instead of manually
produced segmentations. As we do not have a detailed segmentation mask at
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our disposal when using those location and scale estimates, we use a simple but
(as will be seen in the experiments) effective approximation. Figure 3 shows our
rough approximation by assuming the segmentation to be a circle specified by
the estimated center point and scale.

To learn the ISM model, we first switch from the generic codebook (Section
2) to an object specifc SIFT representation [15] computed on Hessian-Laplace
interest points [12]. We use the approximated segmentation (circles) to determine
the object features for clustering. Given the approximated segmentation and the
new codebook, we can proceed training the ISM as described in [5]. Despite
the crude approximation of the segmentations with circles, it is possible to infer
segmentations for the hypothesis on test images as shown in Figure 3.

5 Experiments

Whereas the previous sections analyzed the proposed object discovery and object
scale estimation separately, this section shows the applicability to image ranking
and object category detection. While the ranking task also shows the scalability
to large numbers of images, the detection experiments evaluate how the proposed
method generalizes to different categories. In addition we will show that the
approximated segmentation masks from Section 4 are effective and even crucial
to obtain high level detection performance.

Image Ranking. In the following, experiments we show that the proposed
method for unsupervised object discovery from Section 2 can be used on its own
for an image ranking task. Using a keyword search for motorbikes we downloaded
5246 images containing a wide range of different motorbike types (e.g. cruiser,
sportbike, touring, scooter, moped, off-road, combination) captured from differ-
ent viewpoints. Naturally quite a number of those images only show close-ups,
parts or even unrelated objects. Our task is to sort these images out. We use
our method for object discovery to rank the images by the likelihood (eq. 4).
Note, that this ranking is obtained in an totally unsupervised and no validation
set as in [7] is needed. Figure 4(left) shows the ROC curves obtained by running
our approach with and without spatial information. If the spatial information of
the features is discarded, our representation reduces to a bag-of-words represen-
tation. The use of spatial information improves the results significantly, which
demonstrates the improvment of our model over purely appearance-based ap-
proaches. Qualitative results for our new approach using appearance and spatial
structure are shown in Figure 2. As scooters were the dominating motorbike
type in the set (1169 of 5246), they also appear first in the ranking.

Visual Category Detection Task. In the detection experiments we train a
model according to Section 4 and use it to localize objects in the test images.
Detections are only accepted as correct if the hypothesized bounding box fits the
groundtruth annotation. Multiple detections are counted as false positives. For
better comparability we use the acceptance criterion described in [16]. We want
to emphasize, that no parameters had to be tuned for the proposed approach for
unsupervised learning. In terms of efficiency, the approach for object discovery
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. . . . . .

Fig. 2. The proposed method for Object Discovery also facilitates ranking of the im-
ages. (left) best ranked images (right) worst ranked images.

(a) (b) (c) (d) (e) (f)

Fig. 3. (a) training image (b) estimated approximation of object segmentation (c) test
image (d)+(e) inferred segmentation for hypothesis (f) final detections

can estimate object locations in 200 images in 11 minutes on a 3Ghz Pentium4,
whereas the object scale estimation takes 6 minutes.

Unsupervised Learning for Detection. Figure 4(middle) shows results on the
multi-scale TUD motorbike test set [11], which includes significant scale varia-
tions, partial occlusions and multiple instances per image. The models are trained
on the Caltech motorbikes [11]. The best results published on this data-set are
80% EER using accurate pixel-level segmentation and ISM (supervised training
with MDL) and 81% adding an additional SVM-stage (supervised training with
MDL+SVM) [16]. Quite importantly, the performance of the proposed unsu-
pervised object discovery method (specific SIFT codebook with MDL - 150) is
very similar to the supervised training of ISM. The EER of 81% can be further
increased to 84% by using 400 instead of 150 training images (again in an unsu-
pervised fashion) and which is the best performance presented so far on the test
set. Compared to the SVM approach [16] the precision is slightly worse, but the
achievable recall is higher. So adding an SVM classifier in a similar fashion has
the potential to further increase the overall performance. Overall the results are
highly encouraging as they indicate that high annotation effort can be replaced
by using a larger amount of training data.

Evaluation of the Approximated Segmentation Masks. Figure 3 shows a test
image with the estimated segmentation masks and the final detections. While
the mask is far from being perfect, the computed support of the hypotheses is
approximately correct. Figure 4(middle) shows how the performance increases
significantly when this approximation is used to perform the MDL-based hypoth-
esis verification. The results support our claim, that the estimated segmentation
masks are accurate enough and facilitate the training of a model that gives com-
petitive performance. The figure also shows the importance of switching to an
object class specific SIFT codebook (Section 4).



240 M. Fritz and B. Schiele

Fig. 4. (left) ROC-curve of ranking task (middle) performance comparison to super-
vised baseline (right) generalization to other categories and data sets

Generalization to other Categories. To investigate how this approach generalizes
to other categories and compare our method to previous work, we conduct ex-
periments on cows, faces, and cars. The results are reported in Figure 4(right).
The training sets TUD cows and Caltech faces [11] are selected, as they include
a significant amount of variation of the object position in the training data to
underline the performance of the proposed method for object discovery. For the
cows we use the same test setting as in the supervised approach of [16]. Our unsu-
pervised approach achieves an equal error rate performance of 79.9% whereas the
supervised reference achieved 93.2% [16]. As the background is for some training
images the same, we learnt it as reoccurring structure. As it is part of the model,
we get some strong hypotheses on these background structures which also occur
in the test set and that are responsible for the decrease in performance. On the
UIUC car and caltech face database we compare to the unsupervised method
of Fergus [2] On the cars we get an equal error rate performance of 89.5% in
comparison to 88.5% in [2] using the same evaluation criterion. We achieve this
performance training on only 50 car images and their mirrored versions from the
TUD car database [11]. The best performance on this dataset is reported by the
supervised method in [4] achieving 97% equal error rate performance. In [17] a
detection performance for the model of [2] of 78% equal error rate is presented
on the caltech face database. Our approach achieves a significant improvement
by an equal error rate performance of 81.1%.

6 Conclusion

We have proposed an efficient and flexible framework for discovering visual ob-
ject categories in an unsupervised manner which makes use of appearance and
spatial structure at the same time. The approach is based on two new compo-
nents for object discovery and object scale estimation, that extract information
about reoccurring spatial patterns of local appearance. The experimental results
show that our system facilitates unsupervised training of an model for object
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class detection that has equal or even better performance than previous unsu-
pervised approaches. In addition, the method was used to rank images without
any supervision or validation. Results are presented on a large image database
of over 5000 images including a significant amount of noise. Finally, we obtained
comparable results w.r.t. a stronly supervised state-of-the-art detection system
on a challenging multi-scale test set. We showed that we can compensate for the
decrease in performance by adding more training examples, which results in the
best performance shown so far on this test set.

Acknowledgments. This work has been funded, in part, by the EU project
CoSy (IST-2002-004250).
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Abstract. Recognizing categories of articulated objects in real-world
scenarios is a challenging problem for today’s vision algorithms. Due to
the large appearance changes and intra-class variability of these objects,
it is hard to define a model, which is both general and discriminative
enough to capture the properties of the category. In this work, we pro-
pose an approach, which aims for a suitable trade-off for this problem.
On the one hand, the approach is made more discriminant by explic-
itly distinguishing typical object shapes. On the other hand, the method
generalizes well and requires relatively few training samples by cross-
articulation learning. The effectiveness of the approach is shown and
compared to previous approaches on two datasets containing pedestri-
ans with different articulations.

1 Introduction

In recent years a large number of approaches have been proposed for the de-
tection of object categories in still images. Categories of non-rigid objects such
as pedestrians have proven to be particularly challenging. The high intra-class
variability, which is caused by global appearance changes and object articula-
tions, requires recognition approaches that are both highly discriminative and
also generalize well.

In the literature, several approaches focus on the global structure of the object
[5,11,17,2], while others detect individual parts [4,3,10,8,16]. Gravila [5] uses a
hierarchy of object silhouettes and applies Chamfer matching to obtain detection
hypotheses. Papageorgiou & Poggio [11] train an SVM based on wavelet features.
Zhao & Thorbe [17] perform detection with a neural network and exploit stereo
information to pre-segment images. Dalal & Triggs [2] compute a global gradient-
based descriptor, similar to SIFT, to train a linear SVM. Forsyth & Fleck [4]
introduce the general methodology of body plans for finding people in images.
Felzenszwalb and Huttenlocher [3] learn simplistic detectors for individual body
parts. Ronfard et al. [19] extended this work by using stronger classifiers such
as SVMs. Mohan and Papageorgiou [10] apply the wavelet-based detectors from
[11] to detect body parts and then use body geometry to infer a person’s position
and pose. Viola et al. [16] use simple local features and a boosting scheme to
train a cascade of classifiers. Mikolajczyk et al. train body part classifiers with

K. Franke et al. (Eds.): DAGM 2006, LNCS 4174, pp. 242–252, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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boosting and combine them in a probabilistic framework. In this work, instead
of modeling individual object parts, we identify and model typical object artic-
ulations or shapes. These typical shapes are learnt automatically from motion
segmentations, which can be computed from video sequences with a Grimson-
Stauffer background model [14]. The advantage of this approach is that we do
not need manual labeling of object parts.

The main contributions of this paper are the following. We introduce a novel
scheme to learn the relationship between arbitrary object parts or, as we call it,
local contexts and the global object shape. As a result, we obtain an approach,
which captures large appearance variations in a single model and implements a
suitable trade-off between generalization performance and discriminative power
of the model. The method is able to share features between typical object shapes
and therefore requires relatively few training images. In a sense, the approach
generalizes the idea of sharing features [15] to the sharing of local appearance
across object instances and shapes. A thorough evaluation shows that the pro-
posed model outperforms previously published methods on two challenging data
sets for the task of pedestrian recognition.

2 Recognition Algorithm

The recognition approach proposed in this paper extends the Implicit Shape
Model (ISM) developed by Leibe & Schiele [6]. This section introduces the ba-
sic algorithm and discusses extensions to explicitly handle global appearance
changes and object articulations.

2.1 Standard ISM

The ISM is a voting framework, which accumulates local image evidences to
find the most promising object hypotheses. It is capable of multi-scale detec-
tion and pixel-wise segmentation masks can be inferred for each hypothesis. An
additional reasoning step based on the Minimum Description Length (MDL)
principle makes the method more robust in the presence of clutter and overlap-
ping objects. The following gives a brief overview of the methods.

Codebook Representation. For representing an object category with an ISM,
a codebook or visual vocabulary of local appearances is built [6]. Therefore, a
scale-invariant interest point detector is applied to each training image and local
descriptors are extracted. These descriptors are subsequently clustered with an
agglomerative clustering scheme. The resulting set of local appearances repre-
sents typical structures on an object category.

Spatial Occurrence Distribution. Once a codebook on an object category
has been learnt, we model the spatial occurrence distribution of its elements. In
order to do this, we record all locations (x-, y-position and scale) on which a
codebook entry matches the training instances.
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Fig. 1. Schematic overview of the different object models. Both the standard ISM
and 4D-ISM models are special cases of the proposed approach. By learning the shape
distribution from local contexts, we combine the strength of the two other models.

Hypotheses Voting. In the recognition process, we apply the same feature ex-
traction procedure as during training. Thus, we obtain a set of local descriptors
at various scales on the test image. Each extracted descriptor casts votes for ob-
ject hypotheses in a probabilistic extension of the generalized Hough transform.
The maxima of the 3D voting space (x, y, scale) are back-projected to the image
to retrieve the supporting local features of each hypotheses. We present details
on an improved version of this probabilistic formulation when we introduce the
extensions to deal with different object shapes in section 2.2.

2.2 Consistent Shape Voting

Figure 1 shows a schematic illustration of the standard ISM-model on the left.
While the ISM allows for cross-instance learning and therefore requires relatively
little training data it has no notion of possible object articulations within the
category. Local appearances are learnt from all possible variations, which ensures
good generalization performance, but results in relatively weak discriminative
power, e.g. with respect to background structures. By adding a 4th dimension
for object articulations to the ISM voting space (Figure 1 center), the model is
able to distinguish between object shapes and is thus more discriminant [13].
This, however, requires an association of each training example to one of the
typical articulations or shapes.

Learning Object Shapes. Manual labelling of object shapes in the training
data is both time consuming and difficult for more complex objects. We there-
fore automatically learn the most prominent shapes from object silhouettes.
Therefore, we apply agglomerative clustering with global Chamfer distance as
similarity measure. The silhouettes are extracted from video sequences with a
motion-segmentation algorithm [14]. For the object category of pedestrians the
silhouette is often a good indication of the current body articulation. As an
example, Figure 3 shows the identified articulation clusters for side-view pedes-
trians generated by this method.
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4D Voting. In this paragraph we describe the probabilistic formulation of the
extended 4D voting procedure. Let e be a local descriptor computed at location
�. Each descriptor is compared to the codebook and may be matched to several
codebook entries. One can think of these matches as multiple valid interpre-
tations Ii for the descriptor, each of which holds with the probability p(Ii|e).
Each interpretation then casts votes for different object instances on, locations
λx, λy, scales λσ and shape clusters s according to its learned occurrence dis-
tribution P (on, λ, s|Ii, �) with λ = (λx, λy, λσ). Thus, any single vote has the
weight P (on, λ, s|Ii, �)p(Ii|e) and the descriptor’s contribution to the hypothesis
can be expressed by the following marginalization:

P (on, λ, s|e, �) =
∑

i

P (on, λ, s|Ii, �)p(Ii|e, �) (1)

=
∑

i

P (λ, s|on, Ii, �)p(on|Ii, �)p(Ii|e)

P (on, λ, s) ∼
∑

k

P (on, λ, s|ek, �k) (2)

There are, however, several issues with this formulation. First, it is difficult
to estimate the probability density P (λ, s|on, Ii, l) reliably due to the increased
dimensionality, in particular from a relatively small set of data. Second and
quite importantly, the shape dimension s is neither continuous nor ordered. It
is therefore unclear, how the maximum search can be efficiently formulated.
Applying a Mean-Shift search with a scale-adapted kernel, as in the standard
ISM approach, is no longer feasible. Therefore, the following factorization is used
to obtain a tractable solution:

P (on, λ, s|e, �) =
∑

i

P (s|λ, on, Ii, �)P (λ|on, Ii, �)p(on|Ii, �)p(Ii|e) (3)

Please note, that all but the first term (P (s|λ, on, Ii, �)) are the same as in
[6]. Therefore we can use the following simple yet effective strategy to find the
maxima of equation 2. By first searching the K maxima in the marginalized
3D voting space, we can not only reduce the computational complexity but
also constrain our search to those areas of the probability density with enough
evidence and training data. Choosing K sufficiently large, we can find all max-
ima with high probability. For those K maxima we then retrieve the contribut-
ing votes and use the following calculation (for simplicity of notation we use
P (s|H) = P (s|λ, on, Ii, �)):

P (s|H) =
∑

j

P (s|cj , H)p(cj |H) =
∑

j

P (s|cj)p(cj |H) (4)

where cj corresponds to the individual silhouettes present in the training data
and s is a shape cluster. P (s|cj) represents the probability that silhouette cj is
assigned to cluster s. P (s|cj) is 1 if silhouette cj is contained in shape cluster s.

By following the above procedure, we can obtain the 4D-maxima of P (on, λ, s).
This means in particular, that the votes corresponding to these maxima conform
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Fig. 2. (Left) The same local feature can occur on globally dissimilar object shapes.
(Right) The comparison of local contexts (red) around interest points (yellow star),
influences the choice of object shapes considered in the recognition process.

with a common shape cluster. As a result, the voting scheme produces hypothe-
ses, which have a consistent shape.

2.3 Cross-Articulation Learning Using Local Contexts

As will be seen in the experiments, the 4D voting procedure for individual object
shapes improves the recognition performance w.r.t. the original ISM approach.
In particular, the discriminative power of the learned object model is increased,
since it enables to distinguish typical object articulations. While this is a desir-
able goal, it involves a number of side effects.

On the one hand, we reduce the statistical significance of the object hypothe-
ses, since the number of features contributing to each hypothesis has been re-
duced. In essence, the votes are distributed over a range of articulation clusters.
This can be easily seen from the schematic views of the original ISM-model
(Fig. 1 left) and the 4D voting approach (Fig. 1 center). In the standard ISM
model feature occurrences from all training instances can be combined for a final
hypothesis. This is a desirable property, which we call cross-instance learning,
that uses the training images effectively and allows to obtain high recognition
performance with a relatively small number of training images. Even though,
in the case of the 4D-ISM, codebook entries are shared and some limited cross-
articulation learning is achieved, the feature occurrences and therefore the votes
are basically limited to a certain shape cluster. The goal of the following is there-
fore to introduce an algorithm that allows for more effective cross-articulation
learning and thereby increasing the generalization power of the approach without
loosing the gained discriminative power of the 4D-ISM.

To illustrate the underlying idea, consider the images shown in figure 2 (left).
Assume that we are observing a head-feature (shown as the yellow square in
the two left images). In that case, the observation of the head puts very lit-
tle constraints on the particular position and shape of the legs. In terms of
the 4D-ISM, this means that we should not restrict our votes to one par-
ticular articulation but rather vote for a range of different but compatible
articulations.

While, in principle, an increase of the number of training instances should
compensate for the limited cross-instance learning in the 4D-ISM, we, motivated
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by the discussion above, propose another strategy. Our strategy re-enables cross-
instance learning without the need of more training data. The principle idea is
that object shapes, while being globally dissimilar, are often very similar in a
more local context. So instead of considering only the global shape for the as-
signment of feature occurrences to articulation clusters, we propose to compare
the local context of an interest point. This is illustrated in Figure 2 (right).
There, we consider a local context (represented as local silhouette segment in
red) extracted around an interest point (yellow star) and depict locally similar
object silhouettes. As can be seen, an occurrence at the head (here the front
of the head) is compatible with many different articulations. An occurrence
on the foot, on the contrary, constrains the range of compatible articulations
considerably.

Learning the Shape Distribution. In order to integrate this idea into our
probabilistic voting framework, we adapt equation 4 with information about the
similarity between local contexts on different object shapes.

The Shape Distribution P (s|cj , H) associates a silhouette with a correspond-
ing shape cluster depending on the location � of a codebook occurrence (re-
member H = (λ, on, Ii, �)). Thus the equality P (s|cj , H) = P (s|cj), as used
in section 2.2, does not hold any longer. Instead we define P (s|cj , H) in the
following manner:

P (s|cj , H) =
{

1
Z if ∃ ci : P (s|ci) = 1 and dist(ri(H, d), rj(H, d)) < t
0 else (5)

with Z a normalization factor and ri(H, d), rj(H, d) local contexts with ra-
dius d around � on the training instances corresponding to the silhouettes
ci and cj.

In other words, for each codebook occurrence at an interest point, we look
for similar local contexts in all other training instances. If we have found such
a matching context, we adjust the probability distribution, which associates ob-
ject silhouettes with shape clusters. Note, that if no matching local contexts are
found, we obtain the original equality P (s|cj , H) = P (s|cj) and thus the 4D
voting approach of section 2.2. On the other hand, if we always find matching
contexts in all shape clusters, the model is equivalent to the standard ISM ap-
proach. Figure 1 (right) shows a schematic illustration of the newly proposed
object model.

A major advantage of this approach is, that we can vary its behavior, by choos-
ing different context radii. The larger the local context are, the more global the
decision process becomes. Thus we can find the level of locality, which is appro-
priate for an object category. The choice of appropriate local context represen-
tations and distance measures is another point of consideration. We can simply
use local silhouette segments as in Figure 2 to describe a context or use more
sophisticated descriptors, which might include information about background
structures present in the training data.
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Fig. 3. (Left) Learned articulation clusters. (Right) Example images from our
training set.

3 Experimental Evaluation

This section evaluates the performance of the newly proposed recognition scheme
and analyzes the influence of the involved parameters. In particular we analyze
the influence of both context radius and context representation.

We conduct our experiments on two challenging test sets of pedestrians. Test
set A consists of 181 images of pedestrian side-views. Each image contains a
single pedestrian. Pedestrian appearances vary considerably, and people often
take up only a small portion of the image. Also the backgrounds exhibit a huge
variability and contain significant amount of clutter. Test set B consists of 206
images, with a total of 595 pedestrians. Pedestrians in this test set frequently
overlap or are partially occluded by bags or other objects.

For training we use a set of 210 images from two video sequences, which
are mirrored in order to have the same amount of pedestrians heading left and
right. The images contain two different backgrounds and 27 subjects in various
articulations with a height of approximately 200 pixels (see Figure 3 for some
example images). Please note, that image backgrounds and visual appearances
of the pedestrians differ considerably between training and test sets.

Images in the training set are annotated with segmentation masks. These are
typically computed from the recorded video sequences with a Grimson-Stauffer
background model [14]. From these segmentation masks we additionally compute
the shape silhouettes, which are used for the shape clustering step during model
training. The resulting articulation clusters consist of 5 articulations from a
typical walking cycle and their respective mirrored articulation, which results in
a total of 10 clusters (see Figure 3).

3.1 Test Set A - Single Pedestrians

On test set A we show the detection performance when pedestrians are fully
visible. For this case, hypotheses should be rather accurate, which makes it
easier to analyze and separate the effects of the proposed improvements.

The radius of the local context determines, how local or global the method
operates. We evaluate a set of 4 radii ranging from 12 pixel to the whole object
size. For the context representation, we consider local silhouette segments and
a modified Shape Context (SC) descriptor [1,9], which has been proposed for
pedestrian detection in [12].
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Fig. 4. Recognition performance on side-view pedestrians (Test Set A). In the left
plot different context radii are evaluated. In the right plot we compare the results to
previous approaches.

Figure 4 (left) shows the obtained results for various radii and the local sil-
houette representation. The green curve is our reference performance of the 4D-
ISM, which achieves an equal error rate (EER) of 80%. Note, that the 4D-ISM
is equivalent to choosing a radius of the whole object size. As can be seen, the
performance improves with small context radius, reaching an EER of nearly 90%
for a radius of 12 pixels.

Using SC to describe the local context, we achieve very similar results with
the same ranking from local to global. The recognition rates are, however, a
little lower than those obtained with local silhouette segments. This is probably
due to the fact, that by using silhouette segments for comparison, we discard
disturbing background structures, which are present in the SC descriptors.

Figure 4 (right) compares the obtained results to previous approaches. The
conventional ISM approach [6] using image patches and the Difference-of-Gaus-
sians detector achieves an equal error rate (EER) of 50%. This is probably due
to the large appearance differences between training and test set and the diffi-
cult data, which includes heavily cluttered backgrounds. Using more appropriate
feature descriptors along with the Hessian-Laplace detector [12] improves perfor-
mance to an EER of 74%. The 4D-ISM produces consistent hypotheses and can
thus improve the performance to 80% in EER. Extending the 4D-ISM with the
proposed cross-articulation learning further increases both detection precision
and recall. We obtain equal error rates of 86% and nearly 90%, depending on
the choice of context representation. This is remarkable considering the difficulty
of the test set. To stress this, we compare the results to the state-of-the-art de-
tector of Dalal & Triggs [2] using the detector available on the authors’ webpage.
[2] achieves an EER performance of 57% on test set A. To be fair, it should be
mentioned, that our detector was trained in this case on side-views only, whereas
their system was built for multi-viewpoint detection. However, Dalal & Triggs
also use an order of magnitude more training data.

In conclusion, the proposed cross-articulation learning is, while separating the
influences of different articulations, able to exploit the information present in the
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EER
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training data to a large extent. Thus it represents a considerable improvement
over previous approaches.

3.2 Test Set B - Crowded Scences

Test set B contains occluded and overlapping pedestrian. As a result, the esti-
mation of a person’s articulation is more difficult. This section analyzes whether
the proposed approach can improve detection performance in this challenging
setting. Similar to section 3.1, we compare the results with previous approaches,
as well as the pedestrian detector of [2].

Figure 5 depicts the respective results. The pedestrian detection system of
Dalal & Triggs achieves a recall of 60% at a precision of 75%. Note that, the
curve stops there, since the available binary has a fixed threshold, which cannot
be changed. The approach of [7] achieves an EER of 73%. In this work hypotheses
resulting from local evidences are subsequently verified globally with a set of
silhouettes. A combined score is computed of the global Chamfer distance and
a measure based on overlap between silhouette and segmentation.

Using the standard ISM with SC descriptors results in the same EER of 73%.
By applying the extended 4D-voting for the shape clusters, the performance is
mainly improved with respect to detection precision. The improvement in EER
is 3%. Even on this challenging data set, cross-articulation learning significantly
increases the recognition performance. The best result is again obtained for a
very small radius of the context. The approach achieves an EER of 81%, which
corresponds to a 5% increase.

Figure 6 shows example detections of the proposed approach with their cor-
responding articulation estimates on test set B. Both detection bounding boxes
and body articulations are predicted correctly, when people are overlapping or
occluded. Figure 7 displays more example results for both test set A and B.

4 Conclusion

In this paper we have introduced a new approach to enable cross-articulation
learning for robust detection of pedestrians in difficult real-word scenes. The ex-
periments suggest that the approach enables a sensible trade-off between gener-
alization performance and discriminative power. In particular, the new approach
makes effective use of the available training data through the proposed cross-
articulation learning scheme. By altering the radius of the considered contexts,
we are able change the approach to operate more locally or more globally. A
thorough evaluation has shown, that the proposed approach makes object de-
tection more robust in realistic environments and in the presence of overlapping
and partially occluded objects. The new approach outperforms previously pub-
lished results of state-of-art pedestrian detectors on two challenging multi-scale
data sets, underlining the effectiveness of the approach.
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CoSy (IST-2002-004250) and Toyota Motor Europe.
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Analysis on a Local Approach to
3D Object Recognition
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Abstract. We present a method for 3D object modeling and recogni-
tion which is robust to scale and illumination changes, and to viewpoint
variations. The object model is derived from the local features extracted
and tracked on an image sequence of the object. The recognition phase is
based on an SVM classifier. We analyse in depth all the crucial steps of
the method, and report very promising results on a dataset of 11 objects,
that show how the method is also tolerant to occlusions and moderate
scene clutter.

1 Introduction

This paper proposes a method based on local keypoints that allows us to recog-
nize 3D objects in real environments, under different viewing and scene condi-
tions. The method falls into the view-based approaches that have been widely
used in the past for object recognition, as they offer a simple but principled way
to model viewpoint variation.

Our method can be summarized as follows: for each object we acquire an
image sequence that describes the 2D appearance of the object from different
viewpoints. We extract local keypoints from the sequence, describe them with
SIFT descriptors, and track them over the sequence with an Unscented Kalman
filter. For each SIFT trajectory we compute a compact representation, or virtual
feature, that becomes the delegate for all the keypoints of the trajectory and
hopefully for the same feature belonging to yet to be seen images of the same
object. The collection of virtual features form a model of the object, or vocabu-
lary. The actual recognition is based on learning from examples: we represent all
the images of a training set with respect to the vocabulary estimating the degree
of similarity between each image and the vocabulary, and train a binary SVM
classifier. The multiclass nature of the problem is captured with a one-vs-all
approach. We carry out our analysis on a dataset of 11 objects (see Fig. 1).

The paper is organized as follows. Section 2 reviews related work on object
recognition with local approaches. Section 3 describes how the object model
is built, while Section 4 discusses how to represent an image with respect to
the model. Section 5 describes the training stage, and Section 6 reports the
recognition experiments. Section 7 is left to a final discussion.

K. Franke et al. (Eds.): DAGM 2006, LNCS 4174, pp. 253–262, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. The 11 objects of the dataset. From top left: bambi, box, duck, biscuit, book1,
book2, dino, teddy, pino, tele, tommy.

2 Related Work

In the last few years there has been an increasing interest on object recognition
systems based on local keypoints. Among the many possible approaches we focus
on those combining local descriptions with learning from examples.

Statistical learning methods have been often coupled to local keypoints
through the design of ad hoc kernels. Since local representations are variable-
length and usually they do not carry internal ordering, local kernels are derived
from the studies on kernels for sets. One of the first works proposed is the
matching kernel [10], that has been proved very effective for object recognition.
Unfortunately, it has been demonstrated that it is not a Mercer kernel [2]. More
recently a modification of the matching kernel, called intermediate matching
kernel has been proposed [2]. The new kernel is based on the concept of virtual
features, which is reminiscent of the ones we will define.

An alternative approach to combining local descriptors with learning from
examples is the so called bags of keypoints approach. The idea is inspired to
the bag of words used for text categorization, and it was first proposed in [3]
for visual categorization. The method can be summarized as follows: (1) extract
interesting points for all images of the training set mixing keypoints from all
the classes; (2) cluster all the keypoints and identify the keypoints “bags”, or
equivalence classes; the collection of bags form a vocabulary of keypoints; (3)
represent all images with respect to the bags with a histogram-like approach.
With this approach keypoints belonging to different objects may fall in the same
equivalence class, as long as they are more similar to it than to other classes.

Our method is close to bags of keypoints, but it is also somewhat related to the
intermediate matching kernel. Similarly to [3] we look for keypoints equivalence
classes, but since our input datum (an image sequence) is more informative
than a single image, our classes will only contain different instances of the same
feature. To do so, we exploit the image sequence temporal coherence. A similar
idea can be found in [4], where a local spatio-temporal description is computed
using SIFT and the KLT tracker; since their tracker has no prediction ability a
more complex trajectory selection is used.
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3 The Object Model

For each object of interest the first stage of our method consists of finding a model
based on local keypoints taken from an image sequence of the object. First, we
extract local keypoints from all the images of the training sequence and exploit
temporal coherence by tracking them, obtaining a list of trajectories, or trains of
keypoints. Second, we represent the trains in a compact way that we call a virtual
feature and build a vocabulary of such compact representations. This vocabulary
is the model of the object, since it is the information about the object that we
will use for recognition.

3.1 The Local Keypoints

For each image we locate interesting points on a difference of Gaussians pyramid.
These points are centers of blob-like structures. We represent them with SIFT
descriptors [6]. This descriptor contains the following information about the
keypoint: (a) position p, (b) scale s, (c) main orientation d, and (d) a vector H
containing local orientation histograms around the keypoint position. We will
use the first three elements for SIFT tracking and the orientation histograms
H for computing the similarities. Scale and main orientation are also implicitly
used for computing the similarities, as H is built on an image patch centered
at the keypoint position, and scaled and rotated according to scale and main
orientation.

3.2 The SIFT Tracker

The selected keypoints are tracked over time with an Unscented Kalman filter
[5,11]. This method belongs to the filtering algorithms family that are well-known
for their simplicity and robustness. Such an algorithm allows us to cope with
temporal detection failures, and as a consequence avoids redundancies in the
vocabulary.

Filtering methods consist of a dynamic system tracked by a hidden Markov
process. The goal is to estimate the values of the state xk from a set of ob-
servations z1:n = {z1, z2, ..., zn}. The system is described by a dynamic equa-
tion p(xk|xk−1) modeling the evolution of the state and a measurement model
p(zk|xk) that links the observation to the state. The goal is then to estimate
the filtering distribution p(xk|z1:k), that carries the whole information on the
process to be estimated. The choice of the estimation algorithm (Kalman filter,
Extended Kalman filter, Particle filter, etc.) depends on the characteristics of
the model (if it is linear, Gaussian, etc.).

The system we consider here – whose unknown state is xk = {pk, sk,dk},
where pk is the SIFT position, sk its scale and dk its main orientation – is
composed of the following dynamic and measurements models.

The dynamic equation describes the evolution in time of the keypoint. A
constant model is associated to sk and dk:(

sk

dk

)
=
(

sk−1

dk−1

)
+ γk, (1)
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where γk is a zero-mean Gaussian white noise of covariance matrix Γk (set a
priori). As for pk, its dynamic model has to describe the motion of the keypoint
along the image sequence. Since no a priori information is available, and in order
to be reactive to any change of speed and direction, we define the state equation
as [1]:

pk = pk−1 + uk(pk−1) + ψk, (2)

where ψk is assumed to be zero-mean Gaussian white noise of covariance Ψk (set
a priori). The variable uk(s) denotes the motion vector associated to a pixel
s. It is estimated with a robust parametric technique [7] that computes a 2D
parametric model representing the dominant image motion within a considered
support R. For the computation of uk(pk−1) between images Ik−1 and Ik, R is
chosen as a small region around pk−1, introducing a non linearity in the system.

Given a search window, the measurement zk is the keypoint that is nearest
to the prediction. The measurement and the state are defined in the same space,
then the following linear observation model can be set:

zk = xk + vk, (3)

where vk is a zero-mean Gaussian white noise of covariance Rk (set a priori). If
no keypoint is detected in the search window, Rk is set to∞×Id (Id is the iden-
tity matrix) so that the current estimation only relies on the dynamic equation.

As the dynamic equation is non linear because of Eq. (2), the Kalman filter
is not appropriate. Recently Particle filters have been extensively used to deal
with the non linearity of a system. These methods are very interesting because
they enable an accurate approximation of the distribution of interest even if it
is highly multimodal. However, their interest can decrease if the system under
consideration is weakly non linear as the one we propose here. In this case,
the use of an algorithm that assumes a Gaussian approximation of the filtering
density can be both sufficient and efficient. We choose the Unscented Kalman
filter that describes the Gaussian approximation of the posterior density by
carefully selected weighted sample points. These points capture the mean and
covariance of the approximation accurately to the 3rd order and are propagated
through the non linear system. To implement our SIFT tracker we apply the
Unscented Kalman Filter to Eq. (1, 2, 3).

3.3 The Vocabulary

All keypoints linked by a tracking trajectory, or train, belong to the same equiv-
alence class. A virtual feature Vi is the average of all local orientation histograms
Hk, with k running through the train. We use the virtual feature as a delegate
for the train. Average values are good representatives of the original keypoints
as the tracking procedure is robust and leads to a class of keypoints with a
small variance. Being an average, some histogram peculiarities are smoothed or
suppressed, but empirical evidence shows that the information that it carries is
enough to describe the object.

The set of virtual features form a vocabulary of keypoints for the object:
V = {V1, . . . ,VN}. The vocabulary V is the model for the object.
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Fig. 2. SIFT tracking on the image sequence of object duck: SIFT point trajectories
are displayed at different steps of the image sequence

4 Image Representation

Once the model for the object has been computed, each image is represented
with respect to the model. This representation carries information on how much
related the image is related to the object. It is based on first extracting local
keypoints from the image, then comparing this list of keypoints with the object
vocabulary.

4.1 The Choice of the Similarity Measure

A crucial point is to decide how to compare the local orientation histogram of
a keypoint with the average orientation histogram of a virtual feature. Then, a
comparison criterion for histograms seems to be appropriate. We consider (1)
Euclidean distance D, (2) Chi-square distance χ2, (3) Kullback-Leibler diver-
gence K, (4) Histogram intersection ∩ [9].

Since 1-3 are distance measures we will use the exponent version: Dexp =
exp(−D), χ2

exp = exp(−χ2),Kexp = exp(−K). Also, since the keypoint descrip-
tions may not be normalized, instead than measure 4 we will use

∩norm(H,H ′) =
⋂

(H,H ′)⋃
(H,H ′)

=
∑n

i=1(min(Hi, H
′
i))∑n

i=1(max(Hi, H ′
i))

.

If the histograms are normalized, this similarity measure is equivalent to his-
togram intersection.

Let us reason on what we would ask to a similarity measure: high scores on
similar keypoints, low scores on different keypoints. Figure 4 shows the results of
comparing two similar images (Figure 3, left and center) and two very different
images (Figure 3, center and right), with the four similarity measures. The plots
are obtained as follows: for each keypoint of the first image we compute the
highest match value with respect to keypoints of the other image. The results
show that Chi-square returns uniformly high scores in both cases. The best com-
promise between intraclass and interclass keypoints is obtained with normalized
histogram intersection

⋂
norm, which will be used in the rest of the experiments.
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Fig. 3. Example images used for the comparative analysis of similarity measures
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Fig. 4. Match values obtained comparing 2 images with the 4 similarity measures.
Top: results from two similar images (Fig. 3 left and center). Bottom: results from two
different images (Fig. 3 center and right). On the x axis are the indices of keypoints
in the first image, on the y axis the corresponding match values with the most similar
keypoints of the second image.

4.2 Building the Representation

An image Fi, after we extract local interest points, can be seen as a collection of
keypoints Fi = {F i

1, . . . ,F i
M}, where M will vary. The vocabulary helps us to

avoid the problem of variable length representations: each image Fi is represented
with a vector Ri of length N .

Each entry k of Ri carries the contribution of the keypoint F l
j most similar

to Vk, if there is one. Possible choices on how to build Ri include:

1. Binary entries, with Rk
i = 1 if there exist a keypoint F l

j closer to Vk than
a threshold.

2. Real value entries describing the degree of similarity between Vk and the
most similar keypoint F l

j .
3. SIFT entries, with Rk

i = F l
j, where F l

j is the most similar keypoint to Vk.
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Fig. 5. Similarity matrices obtained comparing the vocabulary of object O with one
image of object O (on the left) and one image of another object (on the right). On the
rows: the image keypoints, on the columns: the virtual features (see text).

Our image representations will be based on choice 2, as it is the best compro-
mise between effectiveness and simplicity. It is worth mentioning that choice 3
corresponds to an explicit mapping of the intermediate matching kernel [2].

We compute the similarity values between all keypoints of image Fi and all
virtual features of the vocabulary Vk. An explicit computation would lead to a
similarity matrix as the ones shown in Figure 5. The final description is obtained
by taking the maximum values column-wise. While finding the association be-
tween Vk and F j

l , keypoint that appear similar to more than one virtual feature
are penalized. Figure 5 considers a vocabulary for object O and includes the
comparison with one image of object O (on the left) and one image of another
object (on the right). On the left matrix are clearly visible the high match values
corresponding to the most similar keypoint.

5 Object Representation

We acquired a dataset of 11 different objects (Figure 1) that include examples
of similar objects (5 plastic toys, 2 books), but at the same time are variable
enough to represent a possible selection of things of a real indoor environment.

Each object is represented by an image sequence of about 200 frames acquired
by placing the object on a turntable. We use these sequences both for building
the vocabulary and as positive examples for training the recognition system. The
training set is acquired in a neutral but real environment. No segmentation or
background subtraction is applied.

For each object we acquired six different test sets: (1) similar conditions to
the training, (2) moderated illumination changes, (3) different scale, (4) allowing
for severe occlusions of the object (5) placing the object against a plain, but dif-
ferent background, (6) placing the object against a complex and highly textured
background (see Figure 6). We also acquired background images, and images of
other objects to be used as negative examples. For each object we use about
200 positive training examples, 300 negative training examples. Each object has
about 18 000 images of test examples. For each object we build the vocabulary
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Fig. 6. The different conditions under which the test data have been acquired (see
text)

and then represent the training data with respect to it. We then train a binary
SVM classifier with a histogram intersection kernel [8], as it was proved effective
on a number of applications and does not depend on any parameter. We deal
with the multiclass nature of the problem with a one against all approach.

6 Experiments on Object Recognition

The recognition rates obtained over test sets (1-4) are summarized in Table 1.
The column simple refers to the results obtained on test sets (1) and (2), the
column scale refers to test set (3), while the column occlusions refers to test
set (4). The very good results confirm how SIFT keypoints combined with a ro-
bust feature tracking produce a model which is robust to illumination and scale
changes, and to occlusions. The description proposed captures the peculiarity
of objects, and allows us to recognize them correctly even if the possible classes
contain many similar objects. The drop obtained for object “book2” is due to
the fact that in many test images the object was entirely hidden. In the case of
more complex backgrounds, instead, it is worth showing the confusion matrices
(Tables 2 and 3). They show how, if the amount of clutter is small, the recog-
nition rates are still very satisfactory. In the case of very complex and textured
backgrounds the performance drops because of the high number of keypoints
detected (of which only a small number belong to the object).

Table 1. Hit percentages of the 11 classifiers against test sets (1-4)

objects simple scale occlusions

bambi 99.50 92.34 100.00
box 100.00 100.00 100.00
duck 100.00 98.90 100.00
biscuit 100.00 100.00 100.00
book1 100.00 100.00 100.00
book2 100.00 95.53 77.78
dino 100.00 100.00 100.00
teddy 100.00 98.86 100.00
pino 100.00 99.59 92.96
tele 100.00 100.00 100.00
tommy 100.00 100.00 100.00
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Table 2. Confusion matrix for test set (5), with moderate quantities of clutter on the
background

bambi box duck biscuit book1 book2 dino teddy pino tele tommy

bambi 71.46 0.00 13.69 0.00 0.00 0.00 0.00 3.48 2.55 0.23 8.58
box 0.34 98.65 1.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
duck 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
biscuit 0.00 0.00 0.22 99.78 0.00 0.00 0.00 0.00 0.00 0.00 0.00
book1 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00
book2 5.22 0.00 0.37 0.00 0.00 91.04 0.00 1.49 0.00 1.49 0.37
dino 9.48 0.00 13.73 0.00 0.00 0.00 58.17 0.33 0.00 0.00 18.30
teddy 0.00 0.00 3.13 0.00 0.00 0.00 0.00 96.87 0.00 0.00 0.00
pino 15.66 0.00 15.93 0.00 0.00 0.00 7.42 1.92 41.48 0.00 17.58
tele 0.93 0.93 6.48 0.00 0.00 0.00 0.00 0.93 0.00 90.28 0.46
tommy 4.86 0.00 2.86 0.00 0.00 0.00 4.29 0.57 2.29 0.00 85.14

Table 3. Confusion matrix for test set (6), with a very complex background

bambi box duck biscuit book1 book2 dino teddy pino tele tommy

bambi 2.11 0.00 5.15 19.67 2.11 11.01 0.00 11.94 0.00 8.90 39.11
box 0.00 85.81 0.65 0.65 0.00 8.06 0.65 0.00 0.00 0.65 3.55
duck 0.53 0.00 40.74 9.52 1.06 0.53 0.53 4.23 0.53 4.23 38.10
biscuit 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
book1 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00
book2 0.37 0.00 0.74 0.00 0.37 96.68 0.00 0.37 0.00 0.74 0.74
dino 1.08 0.00 0.65 16.85 33.69 3.46 2.38 11.45 1.08 2.81 26.57
teddy 1.24 0.00 3.96 0.25 1.73 4.70 0.50 36.14 7.43 14.60 29.46
pino 0.00 0.63 8.15 25.08 13.48 7.52 0.00 4.70 0.63 10.34 29.47
tele 0.00 0.47 0.47 0.00 0.94 12.21 0.00 0.00 0.00 81.22 4.69
tommy 2.07 0.00 0.00 1.38 7.24 6.55 0.00 33.79 1.72 6.55 40.69

(a) (b)

(c) (d)

Fig. 7. A test image (a), and the SIFT points matched with vocabularies of different
objects: (b) duck, (c) biscuits, (b) book1 (high similarity score are red)

7 Discussion

We proposed a method for 3D object recognition which is robust to scale, illu-
mination changes and viewpoint variation. The results we presented show that
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the method is also tolerant to occlusions and moderate clutter. We are currently
dealing with the presence of multiple objects. Preliminary results indicate that
the local approach coupled with analysis on image sub-regions allows us to focus
on one object at a time and achieve good recognition results. Figure 7 shows
a test image with two objects and the keypoints that match 3 different object
vocabularies. The high scores (in red) are positioned on the correct object. We
also considered embedding additional information in the keypoint description,
such as color information, but the modest increase in the performance does not
justify the choice.
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Abstract. In this paper, we present a novel method for the voxel-wise
extraction of rotation and gray-scale invariant features. These features
are used for simultaneous segmentation and classification of anisotropic
textured objects in 3D volume data. The proposed new class of phase
based voxel-wise features achieves two major properties which can not be
achieved by the previously known Haar-Integral based gray-scale features
[1]: invariance towards non-linear gray-scale changes and a easy to han-
dle data driven feature selection. In addition, the phase based features are
specialized to encode 3D textures, while texture and shape information
interfere in the Haar-Integral approach. Analog to the Haar-Integral fea-
tures, the phase based approach uses convolution methods in the spherical
harmonic domain in order to achieve a fast feature extraction.

The proposed features were evaluated and compared to existing meth-
ods on a database of volumetric data sets containing cell nuclei recorded
in tissue by use of a 3D laser scanning microscope.

1 Introduction

Segmentation and classification of anisotropic objects in 3D volume data, espe-
cially of biological structures in 3D laser scanning microscope (LSM) images, has
recently become a fast rising topic. Life sciences take more and more advantage
of 3D imaging techniques like LSM, combined with fluorescent antibody mark-
ers or auto-fluorescent probes. For a broad band of research topics from cellular
anatomy to gene expression experiments, 3D volumetric imaging methods are
used. Microscopes of the latest generation allow very fast, high resolution, multi-
channel recordings which produce high amounts of data. At this stage, there is
a rising demand for (semi)automatic image analysis methods which on one hand
would allow high-throughput experiments, and on the other hand, provide a
tool for quantitative data analysis. Most of the demanded automatic analysis
tasks include the ”basic” but difficult operations of segmentation, classification,
or landmark detection for registration of textured objects in 3D volume data.
All these operations have in common, that a rotational invariant representation
of the 3D data is needed.

This paper is structured as follows: first we give a brief overview of related
work, especially the Haar-Integral based gray-scale features are revised. Then

K. Franke et al. (Eds.): DAGM 2006, LNCS 4174, pp. 263–272, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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we motivate the phase based approach. In section 2 the proposed features are
discussed in detail. Section 3 introduces the data driven selection of phase based
features. Experiments are presented in section 4.

1.1 Related Work

To our best knowledge, there are not many publications available regarding the
segmentation or classification of anisotropic 3D objects in LSM volume data. [2]
presented a method for automatic segmentation of cell nuclei in dilution using
region-growing (watershed) techniques. However, this method fails for recordings
of nuclei in dense tissue probes as we present in our experiments. In general, we
found that standard edge based, contour based, or region-growing segmentation
methods deliver poor results on tissue probes. This is due the fact, that diffi-
cult segmentation tasks require a great amount of a-priori knowledge, which can
not be encoded in these methods. Model driven segmentation methods, such as
snakes or level-sets, are capable to encode a-priori knowledge and therefore might
work well on single examples of this data. But, since there is a high variability
in biological structures like cell nuclei and the demand is going towards very
general and easy adaptable methods, the use of such models is complex and not
flexible enough for many biological tasks.

Learning Segmantion by Example: An other way of incorporating a-priori
knowledge into a segmentation task was presented in [3]. Here segmentation and
classification is performed voxel-wise and in a single step using training examples
given by a human expert. In an iterative process, the expert labels some voxels
of different object classes and background. Then voxel-wise invariant features
are extracted and each voxel is classified based on the given training samples.
Neighboring voxels of the same label are then grouped to objects. The resulting
segmentation/classification is adjusted by the expert until the model reaches a
stable state. Afterwards new datasets can be segmented using this model. Mod-
els can be adopted to new cell types or even totally new data by retraining the
model with additional training samples. We use this method combined with a
Support Vector Machine (SVM) [4][5] classifier and our proposed phase based
features for the experiments in section 4.

Voxel-Wise Haar-Integration Features: [1] and [6] introduced voxel-wise ro-
tation invariant gray-scale features for combination with the previously described
simultaneous segmentation and classification algorithm. In general, (rotation)
invariance can be achieved via integration over the transformation (rotation)
group:

T [f ](X) :=
∫
G

f(gX)dg

G : transformation group (rotation)
g : element of the transformation group
f : non-linear mapping
X : n-dim, multi channel data
gX : transformed n-dim data

(1)
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Fig. 1. Schematic calculation of Haar-Integral features. Left: slice through cell nuclei in
original data. Center: calculation of ”2-Point” invariants via Haar-Integration along the
surface of a sphere. Right: ”3-Point” features incorporate the relationship of gray-values
at three points (center and two on concentric spheres). In this case many degrees of
freedom have to be covered in order to achieve rotational invariance.

[1] and [6] formulated this approach for the special case of 3D ”2-point” and
”3-point” gray-scale invariants of the form (here given for ”3-point”):

T [f ](X) = fa

(
X(0)

)
· fb

(
X(q1)

)
· fc

(
X(q2)

) fa, fb, fc : arbitrary gray-scale
mapping

qi : radius

and showed a fast way of voxel-wise calculation via convolution in the spher-
ical harmonic domain. Fig. (1) illustrates the calculation of gray-scale Haar-
Integration features.

The results which can be achieved with this method are very reasonable (as
shown in [1]), but the Haar-Integration approach also has some drawbacks: first,
the features are not invariant towards gray-scale shifts, which appear in record-
ings moving deeper into the specimen. Due to the integral nature, the mean
gray-value tends to dominate the value of the invariants and only a gray-scale
robustness can be achieved via elaborate normalization techniques. Second, the
Haar-Features have many degrees of freedom (q1, q2, fa, fb, fc), which makes an
extensive feature selection necessary. And last but not least, the integration step
makes it almost impossible to conduct an inverse inference from discriminat-
ing features to the original structure, which would be very useful for a deeper
understanding and further improvements of the method.

2 Phase Based 3D Texture Features

In order to overcome the drawbacks of the Haar-Features while utilizing its
strengths, we propose a new phase based approach towards voxel-wise rotation
and gray-scale invariant features. As for the Haar-Features, we encode the spher-
ical neighborhood of a voxel to an invariant feature vector. Since this feature
calculation is conducted in the spherical harmonic domain, we first give a brief
introduction to the harmonic methods used for our approach.
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2.1 Spherical Harmonics

To represent the neighborhood of some point in a 3D Euclidean space as a
function f on the surface of a sphere (parameterized over the two angles θ and φ),
the original 3D signal can be expanded in terms of spherical harmonics [7]. These
provide an orthogonal basis for such functions analog to the Fourier transform
in Euclidean space. This way, every spherical function can be represented by the
sum of its harmonics:

f(θ, φ) =
∞∑

l=0

l∑
m=0

almY
m
l (θ, φ) (2)

where l denotes the band of expansion, m the number of components for the l-th
band and alm the harmonic coefficient. The harmonic base functions Y m

l (θ, φ)
are calculated as follows:

Y m
l (θ, φ) =

√
2l + 1

4π
(l −m)!
(l +m)!

· Pm
l (cos θ)eimφ (3)

with the associated Legendre polynomial Pm
l .

Note that in this formulation we take advantage of the symmetry in the har-
monic representation, neglecting the negative coefficients. For practical reasons
we also split the base components into their real and imaginary parts following
the notation Y mr

l and Y mc
l respectively. Fig. (2) shows the first few spherical

harmonics.
The transformation ̂D(l,m) of the original volumetric data D into the har-

monic domain is easily computed via fast convolution:

̂D(l,m) = Y m
l (θ, φ) ∗D (4)

where ∗ denotes a convolution in Euclidean space and Y m
l (θ, φ) a spherical har-

monic base component.

2.2 Feature Calculation

In order to obtain local features ̂Dr(l,m) which encode the spherical neighbor-
hood of each voxel at different consecutive radii r, we restrict the harmonic
expansion to the surface of spheres Sr smoothed by a Gaussian filter G.

̂Dr(l,m) = (Y m
l (θ, φ) · (Sr ∗ G)) ∗D (5)

Once the original volume data is transformed to the harmonic domain, there are
different ways of calculating a rotational invariant representation. The simplest
and well known approach is to take the band-wise absolute value of the harmonic
coefficients, also known as harmonic descriptors, which for example have been
used in [8] for 3D object recognition. However, this method yields a major draw-
back: by taking the absolute values one totally neglects the the relations between
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Fig. 2. Spherical harmonics on a sphere surface from 1st to 5th band
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the bands of the harmonic representation. This leads to ambiguous features with
decreased separability.

For the Haar-Integration features the rotation invariance is achieved by in-
tegration over all possible rotations (in terms of convolutions in the harmonic
domain). Here the band relations are implicitly conserved, but as mentioned be-
fore, the integration inhibits a gray-scale invariance. As the name ”phase-based”
features suggests, our new method uses only the relation of the harmonic bands
as feature representation. This approach is motivated by results known from
Fourier transform, which showed that the characteristic information is domi-
nant in the phase of a signal’s spectrum rather than in the pure magnitude of
it’s coefficients. Following this strategy has the nice side-effect that the over-
all gray-value intensity is only encoded in the amplitude, making a phase-only
method directly gray-scale invariant.

Phase: In this paper, the phase of a local harmonic expansion in band l a ra-
dius r is denoted by the orientation of the vector Pl,r, containing the l harmonic
coefficient components of the band-wise local expansion (Equ. 6). Since the co-
efficients are changing when the underlying data is rotated, the phase itself is
not a rotational invariant feature.

Pl,r(m) := ̂Dr(l,m) (6)

Due to the orthogonality of the harmonic base, the rotation of a spherical neigh-
borhood can be calculated in the harmonic domain via a band-wise matrix mul-
tiplication of a symmetric and orthogonal rotation matrix Rl of size l × l with
the harmonic coefficients in the l-th band. Unfortunately it turns out, that the
actual calculation of this rotation matrix is getting more and more complicated
and time consuming for higher bands. This would make it very expensive to
achieve rotation invariance of the phase via pre-alignment.

But, there is another way to realize rotational invariant phase-only features:
since we are interested in encoding the neighborhood at many consecutive radii,
we can take advantage of this additional information and construct a phase-only
rotational invariant feature based on the band-wise relations of phases between
the different concentric harmonic series.

Fig. (3) illustrates the basic idea: the relation (angle) between phases of har-
monic expansions at different radii, but in the same harmonic band, are invariant
towards rotation around the center of the expansion. Intuitively phases in the
same harmonic band undergo the same changes under rotation of the underly-
ing data, keeping the angle between the phases of different radii constant. We
encode this angle in terms of the dot product of band-wise spherical harmonic
expansions. The resulting phase-only features can be interpreted as a description
of the change in the 3D data texture, when moving from one spherical neigh-
borhood to the next concentric neighborhood. We use this texture encoding
property in the next section to find discriminatory texture elements for classes
of 3D anisotropic volumetric objects. The formalization of the band-wise phase
based feature vector T [fl] calculation is given as the dot product between two
band-wise expansions at radii r1 and r2:
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Fig. 3. Schematic example of the phase based feature calculation. Left: representation
of the original data as combination of the 3D base functions of an expansion in the 1st
band at radius r1. Center: representation at radius r2. Right: the feature is encoding
the 1st band phase angle α between the two concentric harmonic expansions.

T [fl] :=< Plr1 , Plr2 > (7)

Proof of rotational invariance is rather straight forward basic linear algebra:
Since the phases of both radii are in the same band, a rotation of the underlying
data can now be expressed in terms of matrix multiplications with the same
orthogonal rotation matrix Rl:

T ′[fl] =< RlPlr1 ,RlPlr2 >

= (RlPlr1)T (RlPlr2 ) rewrite as matrix multiplication

= (Plr1)T (Rl)T (RlPlr2) resove transposition

= (Plr1)T (RT
l Rl)(Plr2 ) comutativity

= (Plr1)
T (RT

l Rl)︸ ︷︷ ︸
=I

(Plr2 ) use orthogonality of Rl

= (PT
lr1
Plr2)

=< Plr1 , Plr2 >

= T [fl] ��

(8)

Since the rotational invariance is achieved band wise, the approximation of the
original data via harmonic expansion can be cut off at an arbitrary band, en-
coding just the level of detail needed for the application.

Computational Complexity: Compared to the Haar-Features the calculation
of a single phase based feature has about the same computational complexity,
both include expansions of two different neighborhoods in harmonics and their
dot-product. However, a significant speedup can be achieved by the usage of
phase based features. Our experiments showed, that due to the higher discrim-
ination cability, the number of needed features is significant lower compared to
the usage of Haar-Features.
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3 Data Driven Features

As Fig. (4) shows an example of how different 3D textures (of nuclei types) lead
to distinguishable representations in feature space. Fine, high frequency textures
have an large impact on features in higher bands and at small radii while a more
raw textured object is predominantly represented in the lower bands and larger
radii. In order to determine the most distinguishable features, we apply a strong
gauss filter to the features. This way the very local but strong texture responses
are distributed to the local neighborhood. Then we apply the maximum marginal
diversity algorithm [9] to calculate to most separating features. Since the phase
based features are independent for every band, the data representation can be
reduced to arbitrary band and radii combinations without a full transformation
to the harmonic domain.

- ery1 ery2 epithel1 endothel1

raw

Y r1,2
1

Y r6,8
4

Y r8,2
3

Y r2,4
5

Y r5,6
4

Fig. 4. Distinguishing feature response of different cell nuclei. Y r1,2
1 denotes a feature

in band 1 encoding the phase change from radius 1 to 2.
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4 Experiments

To verify our new method, we conducted some first experiments on a database
of 3D laser-scanning microscope (LSM) recordings from cell nuclei in tissue.

Data: The database consists of 236 nuclei samples divided in 5 different classes
(erythrocyte, endothelia cells, pericyte, fibroblast and macrophage). The sam-
ples were recored from tissue probes of the chicken chorioallantoic membrane
which were treated as described in [10]. Human experts manually segmented
and labeled the sample nuclei recordings as ground truth.

Methods: We extracted 16 features involving 8 different radii and expansions
up to the 6th band. All features were selected from a larger number of initial
features by the data driven selection method. Two reference models were trained
on two small disjunct subsets of the database, containing samples from two dif-
ferent recording depths. The different depths cause shifts in the gray values of
the recordings, as described in section 1. The remaining samples were also split
into two sets, according to the recording depths, and were then classified with
both models.

Results: We compared non gray-scale invariant 3-point Haar-Integral (gsi) fea-
tures (as described in [3]) and the new, gray-scale invariant, phase based features.
While the gsi features performed very well for constant gray-scales (94.53 %),
the classification rate dropped to poor 46.2% for the subsets from a different
recording depth. The phase based features on the other hand performed slightly
worse on constant gray-scales (91,58%), but delivered stable results for varying
gray values: 90.1%.

Fig. 5. Slice of a sample 3D database entry (erythrocyte). Left: YoPro stained channel.
Center: SNAAlexa stained channel. Right: ground truth segmentation and label.

5 Conclusion and Outlook

In this paper we presented a novel approach of calculating rotational and gray-
scale invariant 3D texture features based on the phase information of a spherical
harmonic expansion of the original data. Our first experiments showed promising
results and pointed out the strengths of these new features, especially concerning
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gray-scale changes in 3D textures as well as the possibility to construct data
driven features in comparison to Haar-Integration features.

For future work, we will continue to focus on methods for data driven features.
Seeking for ways of learning the most discriminative features for larger local
areas, moving towards a 3D patch based approach.
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Abstract. We focus on learning graphical models of object classes from
arbitrary instances of objects. Large intra-class variability of object ap-
pearance is dealt with by combining statistical local part detection with
relations between object parts in a probabilistic network. Inference for
view-based object recognition is done either with A∗-search employing
a novel and dedicated admissible heuristic, or with Belief Propagation,
depending on the network size.

Our approach is applicable to arbitrary object classes. We validate
this for “faces” and for “articulated humans”. In the former case, our
approach shows performance equal or superior to dedicated face recog-
nition approaches. In the latter case, widely different poses and object
appearances in front of cluttered backgrounds can be recognized.

1 Introduction

Recent research on class-specific object recognition from arbitrary viewpoints
has focused on the high intra-class variability of object instances in connection
with the recognition of cars, airplanes, motor-bikes [1,2], quadrupeds (cows and
horses) [3], faces [1,2], and humans [4,5,6,7,8,9,10,11].

Approaches can be roughly classified into global/holistic and local methods.
Global methods model the distribution of objects as a whole using learned tem-
plates [4,5] for example, while local methods use local object features and parts
in order to better cope with false detections due to occlusions, image clutter,
and noise by exploiting recent research on interest point detection and distinc-
tive image features [12,13]. In this context, object features or parts may be
organized as “bags of keypoints” ignoring geometric structure entirely [14], or
with additional structural constraints between parts [1,2,6,7,8,9,10,11], enabled
by the recent progress concerning the inference in graphical models [15]. Often,
the relative geometric locations of parts are distinctive for an object class.

In our work, we exploit both local parts and structure for object class recog-
nition. Rather than using computationally convenient tree-models [10,6] which
capture only a small fraction of dependencies explicitly, we employ more pow-
erful graphical models to represent relevant relations between parts and to cope
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with uncertainties due to clutter, occlusion, and noise. While the correspond-
ing increased computational complexity of inference for object recognition was
an obstacle in previous work relying on conventional methods, up-to-date ap-
proximate inference algorithms, including Loopy Belief-Propagation or Tree-
Reweighted Belief-Propagation, have proved to yield high-quality maximum a
posteriori (MAP) optima at moderate computational costs [16].

Fig. 1. Left, Middle: Recognition of humans in cluttered background. Edges indicate
relations between parts, not pose (see text). Right: Recognition of faces.

In this paper, we present a general approach to object class recognition. Based
on the probabilistic graphical model described in section 2, we explain how part
detectors are learned as well as relations between parts in terms of geometry and
appearance (section 3). The inference algorithms are described in section 4. Be-
sides the well-known belief propagation (BP), and related to [17], we contribute a
novel admissible heuristic for applying A∗-search as an alternative to BP. For suf-
ficiently small-sized networks, the latter always converges, thus returns the global
optimum, and with less run-time than BP. On the other hand, BP reliably infers
highly probable configurations also for larger networks in fixed time (for fixed
problem size). The general applicability of our framework is validated in section
5 for two object classes, “faces” and “articulated humans”. Despite its generality,
our approach compares favorably with dedicated face detection algorithms.

2 Probabilistic Graphical Model

We want to locate an object with S parts in an Image I, with image domain
ΩI ⊂ Z× Z. The location of part s is denoted as xs ∈ ΩI . The configuration of
the entire model is therefore X = (x1, . . . ,xS) ∈ Ω = ΩI × . . .× ΩI = ΩS

I and
we want to find the best configuration X̂ as an MAP-estimate:

X̂ = argmax
X∈Ω

P (X|I,G) (1)
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G refers here to our prior model hypothesis that an object is defined by a pairwise
Markov Random Field (MRF) with associated probabilistic graphical structure
G = (V,E,λ) where object parts are nodes in V and relations between parts
are edges in E; λ denotes a parameter vector for the geometric prior, which is
learned using training data. We use dense graphs to model the complex relations
between parts.

To simplify presentation, we omit G in the following derivations. Using Bayes’
rule, we can factor the posterior probability for the configuration P (X|I) as

P (X|I) =
P (I|X)P (X)∑

X∈Ω P (I|X)P (X)
∝ P (I|X)P (X) (2)

The first term will be denoted as the appearance or data term, the second as
geometry or shape term. Because we only use unary and binary constraints, the
posterior can also be written as Gibbs distribution p(X|I) ∝ exp(−E(X|I)) with
corresponding energy E and potential functions ψs, ψst:

E(X|I) =
∑
s∈V

ψs(xs) +
∑
st∈E

ψst(xs,xt) (3)

Section 3 explains how ψs, ψst depend on I,G. We point out that each sam-
ple space Ωs comprises all locations in the image and that ψs, ψst are general
functions learned from data. Therefore, global optimization with polynomial
complexity, e.g. by computing graph cuts [18], cannot be applied, and we have
to resort to approximate inference (cf. section 4).

Geometry term. The geometry for our MRF-representation of the object com-
prises pairwise terms on edges only

P (X) ∝
∏

st∈E

(
Hdst(|xs − xt|)Hγst(�(xs − xt))

)
(4)

where H·(·) denote independent 1D histograms for relative edge-length dst =
|xs − xt| and absolute edge-direction γst = �(xs − xt) with respect to the x-
axis, learned from the training set with 30 bins each.

Concerning global object parameters (scale, rotation, and translation), we
note, that by using only pairwise relations, our representation is already invari-
ant to global translation. The use of absolute angles makes our model rotation
variant. We assume, however, that our images are registered with respect to
the ground-plane such that the horizon is parallel to the x-axis. To account for
the scale dependency of relative lengths, we scale-normalize the training images.
In a new image we treat scale as hidden and consequently compute the MAP-
estimate over a set of discrete scales σ ∈ {σ1, . . . , σL}.

Appearance term. We assume that the image likelihood factors as

P (I|X) ∝
∏
s∈V

p(I|xs)
∏

st∈E

p(I|xs,xt) (5)
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Where the individual terms are functions learned from extracted features

p(I|xs) ≈ Probs(fs(I,xs))
p(I|xs,xt) ≈ Probst(fst(I,xs,xt))

(6)

Probs(fs(I,x)) is our approximation to the image likelihood for observing part
s at location x against background (likewise for edges st). Under the assump-
tion that the presence or absence of a part at a certain image location only
depends on a small neighborhood of that location, we compute features fs(I,x)
from image patches in windows of fixed size, see section 3.1, and use a sup-
port vector machine (SVM) with Gaussian kernel and probabilistic outputs [19]
to compute Probs(fs(I,xs)). We have used the implementation of [20], per-
forming grid-search to learn optimal SVM-parameters (C and γ) using
cross-validation.

Assuming independence of part-appearance is certainly not true for very self-
similar object parts, e.g. symmetrical body parts like eyes, hands and feet. But
the assumption keeps the model tractable and with the additional geometric-
information, these ambiguities can in most cases be resolved. Additionally, our
SVM-detector will (and should!) give positive detections around the true location
of parts due to strong local correlation. To remedy for this effect, we use non-
maxima suppression when sampling candidates from the image, see section 3.2,
so that the assumptions hold approximately.

3 Supervised Learning and Implementation Details

3.1 Appearance Features

Features suitable for our general setting have to meet certain criteria: To facil-
itate implementation, one type of feature-extractor is to be used for all parts.
We also require robustness for: changes in illumination and color; small occlu-
sions and clutter; and minor variations in spatial transformations (translation,
rotation, and scale).

A suitable feature descriptor meeting these criteria has been proposed in [12],
and variants have already proved successful for object detection compared to
other descriptors [5]. The features we use are defined as follows: for each pixel in a
sliding window, we compute its gradient orientation θ ∈ [0, π], i.e. modulo π, and
for each block of 8× 8 pixels we accumulate the orientation into one histogram
with 8 orientation bins.

Each image patch located over an object part, see fig. 2, is resized to 32× 32
pixels for which we compute 4× 4 blocks with 8 orientations, yielding a feature
vector of size 4×4×8 = 128. As proposed in [12], we used trilinear interpolation
among neighboring bins in (x, y, θ) to obtain smooth histograms and normalize
the feature vectors to unit length. This whole procedure significantly reduces the
dimensionality (e.g. 128 vs. 32×32×3 = 3072), while meeting our requirements.
See fig. 2 for an example labeling of a human and a face image. The white frames
correspond to the image patches used for learning.
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Fig. 2. Left: Human with 11 labeled parts. Right-top: Face with 5 labeled parts.
Right-bottom: Patch geometry for edge “head/left hand”.

We have not precomputed local orientation or scale information, but rely
on learning these remaining variations from the training set using the SVM.
To this end, we increased the number of training samples by factor 10 for
faces and by factor 20 for humans, randomly varying the scale in the inter-
val [0.8, 1.2] and the orientation in ±10◦ and ±20◦ for faces and humans re-
spectively. We then computed probabilistic SV-classifiers for each part against
background.

For the pairwise appearance information, we propose the following: For each
edge in the graph, we sample an oriented patch using the image locations of the
two incident parts xs, xt and their respective diameters, see the bottom right
image in fig. 2 for an illustration. Each patch is then resized to 32×32 pixels. The
feature vector is computed in the same way as for the single parts, and SVM-
learning yields then pairwise appearance probabilities. Note that appearance is
computed on all edges of the model graph, not only for the physical links, thus
adding necessary redundant information to the model representation. Moreover,
the geometry for the pairwise sampling is defined by the incident part-candidates,
so features are invariant to rotation and foreshortening along the edge, yielding
in general stronger classifiers than the individual part-classifiers.

We have found, that for a multi-scale image analysis, it is necessary to speed
up the process of feature generation. We have therefore changed the order of
computation in that we first computed for the entire image at each 8 × 8
pixel block the corresponding histogram of orientations. For a single image lo-
cation we then used linear interpolation in (x, y, θ) to obtain the 4 × 4 × 8
feature-vector.
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3.2 Determining the Effective Configuration Space

Based on the probabilistic model, we compute a feasible subset of the entire
space, the effective configuration space. We sample candidate part-locations in
the image using non-maxima suppression to account for local correlation of the
image likelihood terms (6), and compress probabilistically the remaining hy-
potheses into a single node for each part, where the missing information is pro-
vided by prior estimates as

Ps(·|I) = αExs{exp(−ψs(xs)}
Pst(·, ·|I) = αExs,xt{exp(−ψst(xs,xt)}

(7)

We take the expectation over our training set and set the penalty parameter α
in our experiments manually (see section 5).

4 Inference

We consider the MAP-configuration X̂ as the best fit of the model to an image.
We used two approaches to the combinatorial inference problem (1): Loopy Be-
lief Propagation [21] (BP) and A∗-search [22,23] (A∗) using a novel tree-based
admissible heuristic. Concerning BP, we refer the reader to the literature [21,23].

A∗-Algorithm with a Novel Admissible Tree-Heuristic. The A∗-algorithm
is an established technique for searching the optimal solution in terms of the
shortest path within a graph, representing the whole configuration space [22].

Its performance depends on devising a heuristic for estimating the “future
costs” of unexplored paths between two nodes (configurations) for the problem
at hand. In order to find the global MAP optimum, the heuristic has to be
admissible, i.e., it always returns a lower bound for the cost of some unexplored
path of configurations. While this guaranty for global optimality holds once the
search terminates, we do not have polynomial time complexity guaranteed.

In previous work [23] we introduced this technique for graphical models with
the admissible heuristic (8).

min
xV \B ,xB=b

{ ∑
s∈V \B

ψs(xs) +
∑

st∈E11

ψst(xs,xt)
}

+
∑

st∈E12

min
xst

ψst(xs,xt) (8)

Here, B denotes the subset of already processed nodes in V . E11 is the set of
tree-edges which are not in B ×B, and E12 contains all edges neither in B ×B
nor in E11.

A much tighter lower bound is achieved, however, by defining E21 as the union
of E11 and all edges in B × (V \ B), and E22 as the set of all edges neither in
B ×B nor in E21. This leads to the novel admissible heuristic:

min
xV \B ,xB=b

{ ∑
s∈V \B

ψs(xs) +
∑

st∈E21

ψst(xs,xt)
}

+
∑

st∈E22

min
xst

ψst(xs,xt) (9)
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Whereas for (8) it is possible to compute lookup tables in advance, (9) requires re-
computation in every exploration step of the A∗-algorithm. In spite of this appar-
ent disadvantage, the gained tightness of the bound more than compensates for
the computational cost as far less exploration steps are necessary to compute the
MAP. Moreover, with (8) it is very difficult to cope with hidden/missing nodes.

5 Experiments and Discussion

Data sets. We have used three object data sets and one background set for
learning and evaluation of our model: The Caltech face dataset [2] consisting
of 450 frontal faces. We used the first 216 frames (14 subjects) as training and
the last 234 frames (14 subjects with 3 additional artificial paintings) for testing.
The BioID face dataset [24] consisting of 1521 face images of 23 subjects,
featuring more variation in pose than the Caltech dataset. This dataset was
used for testing only, using the model learned from the Caltech training set.
The human dataset, consisting of 894 images, from various consumer cameras
and google image search. From the 894 frames we used 624 for training and 270
for testing. Background was obtained from 45 images without people/faces,
but featuring scenes where people normally occur. For faces we chose α = 0.01
and for humans α = 1.

Fig. 3. Recognition examples. Top row: BioID faces frame#(rank): B11(1465),
B416(1130), B428(568), B1464(484). Bottom row: Caltech faces C289(166),
C327(38), C402(202), C429(92). A ◦ denotes a found part, × are geometrically inferred
missed parts. None of these persons was part of the training set. Note the difficulty
of these particular images due to partial occlusion (C289, C327), illumination (C327),
and “abstractness” (C429).

Optimization. We applied A∗-search and BP to all recognition experiments.
While A∗ always converged and detects faces quickly (mean: 0.008 seconds),
BP needs less run-time on average for the larger network (complete graph with
|V | = 11) used to recognize humans. Run-times vary between 20 seconds and
0.5 hours for A∗, and between 3 seconds and 2 minutes for BP.
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Quality measure. To measure the quality of our results, let ms = |xs−x	
s |

|x	
l-eye−x	

r−eye|
denote the point-to-point error for part s relative to the distance of the eyes,
where the � denotes the ground truth location. Images in fig. 4 are ranked by
the maximal error of a single part mmax = maxs∈V ms in descending order, so
ranking is from worst=1 to best=1521 (BioID), 234 (Caltech). To compare our
results in table 1 to [25] on the BioID dataset, we also included the measure
me4 = 1

4

∑
s∈V ′ ms, where V ′ = {l-eye,r-eye,l-mouth,r-mouth}, i.e., our original

nodes without the nose. We assume a hit if the quality measure is below a given
tolerance. Comparable hit-rates reported by [25] (estimated electronically from
their plots) are ≈ 0.94 for me4 < 10% and ≈ 0.97 for me4 < 15%, where we
achieved hit-rates of 0.9178 and 0.9908, respectively. We also give mean error
and variances for each part over the whole image set.

For the Caltech face dataset, we used the same training images as [17], whereas
for testing they excluded frames 328–336 (smaller scale) and 400, 402, 403 (paint-
ings) which we kept in our test set. Note that we search faces at multiple scales
and our method generalizes to the paintings, see e.g. fig. 3. [17] report a hit-
rate of 0.92, but without mentioning a corresponding tolerance level or quality
measure. In our tests we achieved a hit rate of 0.92 for mmax < 16.7.

The BioID dataset was processed with exactly the same model learned from
the 216 training images of the Caltech set. Typical examples for the two test
sets are given in fig. 3. Some images with low rank are shown in fig. 4. For the
Caltech set these are actually the ones with largest mmax.

Table 1. Hit rates for the different face parts in the BioID and Caltech datasets. The
increased errors for the nose in BioID as compared to Caltech, are due to a slightly
different labeling scheme of our training set compared to the provided labels of BioID
causing a systematic bias. Overall we can attest excellent performance of our general
approach on these two unknown datasets.

BioID faces
Tolerance 3% 6% 9% 12% 15% 18% 21% 24% 27% 30% Mean Error Var Error
Left eye 0.06 0.53 0.85 0.96 0.99 0.99 0.99 0.99 0.99 0.99 5.62% 0.52%
Right eye 0.26 0.56 0.80 0.90 0.93 0.96 0.98 0.99 0.99 0.99 6.41% 0.41%
Nose 0.07 0.29 0.52 0.72 0.82 0.89 0.93 0.96 0.98 0.99 10.06% 0.65%
Left mouth 0.17 0.49 0.72 0.87 0.95 0.98 0.98 0.99 0.99 0.99 7.11% 0.49%
Right mouth 0.22 0.54 0.74 0.87 0.95 0.98 0.99 0.99 0.99 0.99 6.75% 0.48%
me4 0.06 0.53 0.85 0.96 0.99 0.99 0.99 0.99 0.99 0.99 6.47% 0.33%

Caltech faces (test set only)
Left eye 0.57 0.86 0.91 0.95 0.98 0.98 0.98 0.98 0.98 0.98 4.52% 1.93%
Right eye 0.50 0.83 0.88 0.94 0.98 0.98 0.98 0.98 0.98 0.98 4.82% 1.80%
Nose 0.29 0.63 0.78 0.85 0.93 0.97 0.98 0.98 0.98 0.98 6.85% 1.99%
Left mouth 0.14 0.48 0.65 0.85 0.94 0.97 0.98 0.98 0.98 0.98 8.31% 2.31%
Right mouth 0.20 0.51 0.68 0.85 0.95 0.98 0.98 0.98 0.99 0.99 7.73% 2.29%
em4 0.13 0.66 0.94 0.98 0.99 0.99 0.99 0.99 0.99 0.99 6.34% 1.97%
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Fig. 4. Bad recognitions. For each image pair, the left image is part candidates, right
image is MAP-result. Top row: BioID frame#(rank): B486(1), B600(40), B1294(2).
Bottom row: Caltech C320(2), C325(1), C417(3). For the ranking see text.

Fig. 5. Positive and negative recognition results for humans. Left images: part can-
didates. Right images: MAP-result with BP.

Table 2. Hit rates for the human data set. We have only used the images from the test
set with a single human. Recognizing humans is much harder than faces. Especially
hands are very hard to detect without color and the geometric prior cannot always
resolve their position.

Tolerance 10% 20% 30% 40% 50% Mean Error Var Error
Head 0.47 0.69 0.83 0.87 0.91 20.68% 7.89%
Chest 0.63 0.79 0.88 0.91 0.91 18.07% 6.54%
Elbows 0.28 0.49 0.67 0.80 0.86 28.45% 7.72%
Hands 0.29 0.43 0.50 0.60 0.66 47.33% 24.82%
Hip 0.37 0.65 0.81 0.91 0.93 20.02% 4.05%
Knees 0.51 0.74 0.81 0.86 0.93 17.23% 3.33%
Feet 0.46 0.69 0.84 0.87 0.88 21.27% 7.11%
me11 0.15 0.49 0.76 0.80 0.89 26.20% 3.44%

Recognition of humans is much harder, because geometry is much less con-
strained, and because object parts are far less discriminative without the context.
Locating an elbow or a hand in an image (without color information) turned out
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to be quite challenging. The contextual information provided by our graphical
model, however, helps a lot for resolving the ambiguities caused by false detec-
tions – compare the images with part candidates only and their corresponding
MAP-result in fig. 5. However, a similar quality as for the face data sets cannot
be expected; see table 2 for the hit-rates, where the tolerance levels for humans
are relative to the distance between chest and hip. Failures are mainly due to
the unknown scale, or due to a complete breakdown of part detectors. Fig. 5,
bottom, shows some intricate examples.

6 Conclusion

We presented a general model for object class recognition. Our work demon-
strates the feasibility of view-based object recognition even for articulated hu-
mans if a sufficiently rich data base is available for learning. The evaluation for
different object classes showed a performance competitive to approaches that
only work for a specific object class.

Our future work will focus on the real-time performance of all components,
and on an approach to enlarge the learning data base with minimal supervision.
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Abstract. Patch based approaches have recently shown promising re-
sults for the recognition of visual object classes. This paper investigates
the role of different properties of patches. In particular, we explore how
size, location and nature of interest points influence recognition perfor-
mance. Also, different feature types are evaluated. For our experiments
we use three common databases at different levels of difficulty to make
our statements more general. The insights given in the conclusion can
serve as guidelines for developers of algorithms using image patches.

1 Introduction

The amount of digital documents increases daily, and with it the need to organize
this torrent of data in order to retrieve something again. Especially for digital
images no ideal solution has been found yet. The manual annotation of images
is very labor intensive, so the vast majority of images will remain unannotated.
Techniques for content based image retrieval (CBIR) are able to find similar
images based on pixel content only, however, usually the definition of similarity
is on a color and texture level, not on a semantic level. Most users do not want
to find things with just the same texture and color, but want to find semantic
entities, images with particular objects like cows, sheep or cars. This is why the
main focus of research is now drawn to the recognition of visual object classes
rather than the already widely researched area of traditional CBIR, as surveyed
e.g. in [1].

1.1 Basic Principles

Currently, the most promising approaches for the recognition of visual object
classes are based on the use of image patches. The advantages are easy to see:
local representations can deal with variability in object shape and partial occlu-
sions. The majority of these approaches follow an easy basic pattern: first, points
or areas of high information content become identified in images. For this, so

K. Franke et al. (Eds.): DAGM 2006, LNCS 4174, pp. 284–293, 2006.
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called interest point detectors or covariant region detectors are used. A survey
about them can be found, e.g. in [2]. In the next step, features get extracted
from these locations. Now models can be built for each class to be recognized
or the feature vectors can be used directly. Depending on the model, different
classifiers (e.g. SVMs [3], Winnows [4], Bayes [5]) can be used.

1.2 Related Work

A fair amount of work has already been done using image patches for classifi-
cation and retrieval. One of the early approaches was by C. Schmid et al. [6].
She proposed calculating local gray value invariants at interest points for image
retrieval. Weber et al. [7] and Fergus et al. [5] introduced a so called “constella-
tion model”, i.e. image patches in a probabilistic spatial arrangement, to decide
whether a certain object is present in a scene or not. Agarwal et al. [4] classified
and localized objects in an image using binary vectors coding the occurrences
and spatial relations of patches. Leibe et al. showed in [8] a method to simulta-
neously categorize and segment objects using an implicit shape model. D. Lowe
[9] proposed highly distinctive SIFT features in order to detect objects reliably
in a scene. More recent work on this topic was conducted, e.g. by Deselaers et
al. [10], who used histograms of patch cluster memberships in order to compare
different classification methods. Opelt et al. [11] used a great variety of features
and classifiers in a boosting framework to distinguish the best choice for each
class.

The authors of the previously mentioned works had to decide at some point
where to take patches, how many and at which size. Most of these decisions
were done empirically in the course of the work, or were predetermined by the
models chosen. E.g. the joint probability model used in the constellation model
prohibits the use of much more than 7 parts. Only few works that we are aware
of deal explicitly with these questions, e.g., Deselaers et al. [10] conducted some
experiments for different patch sizes. The choice of the local descriptor type was
investigated in [12] for matching and in [13] for object categorization. However,
there the size of the patches is selected by automatic detectors, which does not
necessarily mean that the size is optimal for object categorization.

In this work, we want to investigate how the factors number and size of im-
age patches, descriptor type and nature of interest points influence retrieval
quality.

1.3 Outline of the Paper

After the introductory section we briefly describe the types of local descriptors
and the interest point detectors used. In section 3 we explain the test setting
and experiments we performed. In section 4 we describe the results of our ex-
periments and discuss them. In the last section we set out our conclusions and
give recommendations for developers of patch based approaches for object cate-
gorization.
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2 Methods and Algorithms

2.1 Interest Point and Affine Covariant Area Detection

In most of our experiments we use an interest point detector to find prominent
places for the extracted patches. Some guidelines on the choice of the detector
can be found from evaluation papers like [2,14,12], but these concentrate mainly
on repeatability and information content of such points, which is not necessar-
ily the key issue in patch based object categorization. For the majority of the
experiments we selected the wavelet based interest point detector presented by
Loupias and Sebe in [15]. This choice was motivated by good results in evalu-
ation papers [14], image retrieval [16] and object categorization [10]. Of course
other detectors, especially scale invariant ones could have been used, however
we wanted to see the direct influence of patch size. An extensive region detector
evaluation was out of scope for this paper.

In addition to the location, the ideal shape of the patch is also a question.
Simple approaches use round or square patches centered at interest locations,
more sophisticated solutions use affine region detectors. To test how they perform
compared to each other, we selected two affine region detectors as examples: the
Harris-Affine detector [17] and the maximally stable extremal regions (MSER)
detector [18].

2.2 Feature Extraction

Once interest points or covariant areas have been found, features can be ex-
tracted. In the following, we briefly describe the features used in this evaluation.
Some of them are subject to a PCA (principal component analysis) in order to
get a more compact representation, details about this can be found in section 4.1

Gray values: The simplest way to get a description of the area around the in-
terest point is to directly use the gray values in a window with side length 2d+1
(d being the patch radius) centered around the interest point.

Multi-Scale Autoconvolution: The Multiscale Autoconvolution (MSA) is an
R2 → R2 mapping which is invariant with respect to affine transformations of
the input function. This makes it possible to use MSA transform values as fea-
tures for affine invariant classification. The basic idea behind MSA is to apply
probabilistic approaches to the affine coordinate system. For an image function
f(x, y) the MSA transform is

If(α, β) = E[f(α(x1 − x0) + β(x2 − x0) + x0)], (1)

where α, β ∈ R, E is the expected value and x0, x1, x2 are random points with
probability density given by f(x, y)/||f(x, y)||L1 . A comprehensive introduction
to MSA can be found in [19].

Haar integral based invariants: Schulz-Mirbach [20] introduced image fea-
tures based on Haar integrals invariant to transformation groups. These are
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constructed as follows: Let M = M(i, j), 0 ≤ i < N, 0 ≤ j < M be an image,
with M(i, j) representing the gray-value at the pixel coordinate (i, j). Let G
be the transformation group of translations and rotations with elements g ∈ G
acting on the images, such that the transformed image is gM. An invariant
feature must satisfy F (gM) = F (M), ∀g ∈ G. Such invariant features can be
constructed by integrating f(gM) over the transformation group G

I(M) =
1
|G|

∫
G

f(gM)dg

which for a discrete image is approximated using summations. By using k differ-
ent kernel functions f we get a k-dimensional feature vector for each location.

Scale Invariant Feature Transform (SIFT): Scale invariant feature trans-
form (SIFT) introduced by Lowe in [21] is based on histograms of Gaussian
weighted gradient orientations around scale invariant interest points. To be more
comparable, we did not use the SIFT built-in interest point detector, but the
same locations and scales as for the other features.

3 Databases and Test Setting

For our evaluation we used 3 image databases at different levels of difficulty.
We only used gray value information. The most simple database is the ETH80
database introduced in [22]. Here 10 different objects from 8 different object
classes are photographed in front of a uniform background. For each object, 41
views are taken at different angles. For this database, the classifier had to decide
which of the 8 object classes is present. Tests were performed in a leave-one-
object-out approach.

The second image sets are from the Caltech dataset 1. We chose to take
the most commonly used collections “airplanes side” (1074 images), “faces”
(450 images) and “motorbikes side” (826 images). For this database an object
present/absent task has to be solved. As a counter class, a set of mixed “back-
ground” (900 images) images is used. The individual objects differ in appearance
and location, but are about the same size and orientation. The background is
cluttered. We divided each collection randomly into two halves, from which one
was used for training and the other one for testing.

A clearly more difficult categorization task is present in the Graz02 database2.
This database has four object categories: “cars” (420), “persons” (311 images),
“bikes” (365 images) and a so-called “none” category (380 images) which was
used as a counter class. In all the categories, objects suffer from severe occlusions
and have a highly variable appearance and pose, reflecting real world scenes more
accurately. Experiments performed with this database used the same setting
introduced with the Caltech database. Some example images from the three
databases can be seen in Figure 1.
1 http://www.robots.ox.ac.uk/˜vgg/data3.html
2 http://www.emt.tugraz.at/˜pinz/data/GRAZ 02
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Fig. 1. Sample images: ETH80 (left), Caltech (middle), Graz02 (right)

3.1 Classification Procedure

In this paper our goal was to examine properties of patches and features ex-
tracted from them, so we wanted to keep the classification procedure simple. To
do this, we apply a nearest neighbor classifier with a suitable distance measure.
We first fit a multivariate Gaussian distribution to all feature vectors of each im-
age, obtaining a mean vector μ and the full covariance matrix Σ. To determine
the distance, we use the symmetric form of the Kullback-Leibler Divergence, for
which a closed form expression can be derived:

KL[p1(x)||p2(x)] =
∫

p1(x) log
p1(x)
p2(x)

dx +
∫

p2(x) log
p2(x)
p1(x)

dx (2)

4 Experimental Results and Discussion

In the following, we show the outcome of our experiments. Due to space con-
straints, in the result tables for the ETH80 database, the apple and horse class
are not shown, since these objects are similar in appearance to tomato and pear
or horse and dog respectively. All categories are contained in the “all” column.

4.1 Feature Types

One of the first questions is which type of features to select. Different feature
types have different properties for different tasks. We tested various features
already described in section 2 for their suitability for object class recognition.
For this experiment, the radius of the patches was 20, we used the Loupias
interest point detector and 100 points were selected per image. Interest points
closer to the border than the radius were omitted. The gray value features were
reduced to 20, the SIFT and MSA features to 10 dimensions via PCA, since an
estimation of a multivariate Gaussian distribution with full dimension would be
too imprecise. The dimensions were chosen by the amount of variance covered
by the corresponding eigenvectors. The different dimensionality of the features
is due to the difference in initial feature size. For the Haar integral features, we
used 20 kernel functions. The results are summarized in table 1.

For the features tested, the SIFT features performed best for the ETH80
database and the Caltech database. The results are especially good if we think
about the simplicity of our classifier. The gray value based features performed
in the upper range for all three databases, making them suitable for systems in
need of simple feature extraction methods. The MSA and Haar invariants did
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Table 1. Classification rate of different feature types (in %)

ETH80 car cow cup dog pea tom all
Gray 86.6 49.5 75.9 70.2 93.2 90.7 73.9
MSA 71.0 70.0 65.6 52.7 86.1 90.7 68.4
Haar 81.7 66.3 64.3 62.4 89.0 67.6 67.0
SIFT 85.9 56.1 78.5 55.9 98.3 88.1 74.6

Caltech database Graz02 database
airp. faces mot. bike cars pers.

Gray 91.1 93.0 90.7 72.7 68.8 79.5
MSA 85.8 91.1 91.9 72.7 67.3 73.1
Haar 90.0 91.0 90.6 71.3 63.0 70.8
SIFT 97.3 95.9 91.4 71.9 58.8 67.1

not perform as well for this task. We can also notice that the results for the
ETH80 database are worse than the global approaches introduced in [22]. For
nearly segmented, unoccluded objects, global methods work better.

4.2 Patch Size

Another important question is the patch size. If we select it too small, we are in
danger of getting unspecific parts, if we select it too big, we might end up with
patches that no longer have generalization capabilities. In this experiment, we
use gray values as baseline features (PCA, 20D unless otherwise stated). When
judging the results, we have to keep in mind that smaller patches do not lose as
much information with PCA as larger patches, since the initial data size is much
smaller. In the Caltech database, the motorbikes have the same size relative to
the image, but the image sizes vary, so we scaled them to the same height of
250. The objects in Graz02 database are of very different size, so we omit this
database for this experiment, since no single patch size makes sense here.

Table 2. Classification rate of different patch size (in %)

ETH80 car cow cup dog pear tom all
2 (10D) 93.9 40.7 78.3 46.1 85.9 63.2 64.2
5 91.5 40.7 75.4 63.9 80.2 44.4 63.7
10 86.1 49.5 78.3 77.8 88.8 72.9 71.5
20 86.6 49.5 75.9 70.2 93.2 90.7 73.9
30 85.9 51.7 74.4 63.9 97.3 94.6 74.1

Caltech airp. faces mot.
2 (10D) 96.9 94.4 97.6
5 95.9 92.6 97.2
10 94.9 86.4 95.6
20 93.3 86.5 94.6
25 93.7 87.6 93.7

For the segmented objects in the ETH80 database, on average bigger patches
perform better. Looking at the classification results for different objects reveals
more details: for rather uniform objects with a smooth outline like pears or
tomatoes, bigger patches clearly perform better. This is likely because a bigger
part of the silhouette carries more information, the smaller the parts we have
the more similar they are. For more detailed objects, small parts usually work
better. For the Caltech database, smaller patches seem to work best in all cases,
since we do not have smooth objects there. Figure 2 gives us an impression how
a patch looks at the same interest point in different sizes.
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Fig. 2. Example patch for a motorbike wheel with radius 5, 10 and 20

4.3 Number of Interest Points

The next question we address is the number of interest points. In this experiment,
we take the N most salient points given by the Loupias detector. At these points
the gray values are taken in a window with radius 20, the feature dimension is
reduced to 20 via PCA.

Table 3. Classification rate for different numbers of interest points (in %)

ETH80 car cow cup dog pear tom all
20(10D)63.7 40.7 69.3 51.0 87.1 92.2 63.1
50 83.4 40.0 72.0 68.5 88.8 92.9 71.4
100 86.6 49.5 75.9 70.2 93.2 90.7 73.9
200 88.3 52.4 73.2 65.6 94.6 89.8 74.4
500 88.8 52.4 74.9 60.7 95.9 91.7 75.0

Caltech database Graz02 database
airp. faces mot. bike cars pers.

20(10D)87.7 88.3 85.8 61.1 61.3 71.1
50 92.7 93.0 89.3 74.0 67.0 74.0
100 91.0 93.0 90.9 72.7 68.8 79.5
200 90.6 91.1 92.0 73.7 66.3 76.9
500 89.8 90.1 91.9 74.3 67.8 74.9

When dealing with objects in front of a uniform background as in the ETH80
database, taking more interest points converges to an optimum for high num-
bers, since most of the patches convey object information. For databases with a
(highly) cluttered background this is no longer the case. An intermediate range
of about 100 interest points has shown to be sufficient, given our classification
method and these databases. Taking too many Loupias interest points usually
means taking more background clutter. Results are listed in table 3, in figure
3 we illustrate the area that is covered by 20, 50 and 200 interest points for a
sample image.

Fig. 3. Area covered by N most salient points, N= 20, 50 and 200

4.4 Interest Points vs. Random Points

What is the role of the interest point detector in the selection of the patches?
Does it give a clear advantage over taking random points? The following exper-
iment should clarify this. We calculate the feature vectors (again for simplicity
PCA reduced gray values, window radius 20, 20 dimensions) at a varying number
of random points.
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Table 4. Classification rate for different numbers of random points (in %)

ETH80 car cow cup dog pear tom all
50(10D)24.6 29.5 52.9 26.3 52.0 85.4 45.2
100 24.1 27.1 58.3 34.4 25.1 74.9 43.8
200 51.0 34.6 72.4 42.7 62.4 79.5 57.4
500 70.7 49.5 75.6 45.9 80.0 91.0 67.3
1000 78.3 48.8 77.3 53.2 88.8 92.0 71.2

Caltech database Graz02 database
airp. faces mot. bike cars pers.

50(10D)88.5 87.9 82.0 65.7 58.0 69.7
100 87.8 89.6 86.2 67.6 57.5 73.7
200 91.0 91.9 87.8 68.9 57.5 68.8
500 92.4 90.5 85.1 70.2 66.8 74.3
1000 92.4 91.4 84.9 73.5 65.3 73.1

For our experiments, computing features at interest points is superior to ran-
dom points, as can be seen in table 4. This is especially visible at the ETH80
and the Graz02 databases. Even for 1000 random points, the classification ac-
curacy obtained with fewer interest points cannot be achieved. The exception
to the rule is the airplanes category in the Caltech database. For this dataset,
a uniform background (=sky), where no interest points are found, is a discrim-
inative property. This confirms that context information can be beneficial for
categorization. For the faces class, starting from 200 points, it does not make a
difference whether to take interest or random points.

4.5 Shape of Interest Points - Fix vs. Affine Invariant

In our last experiment, we wanted to see whether it is beneficial to use features
calculated from covariant regions instead of using windows of fixed geometry
(squares or circles). A problem with fixed patches is that their content might
change considerably when the viewing angle or the scale of an object changes,
however, the automatically detected orientations and scales do not need to be
ideal for categorization. We tested the affine harris detector and the MSER
detector, together with two feature extraction methods, SIFT and MSA. As MSA
is affine invariant, it can be directly applied to the patches. For SIFT features,
the elliptical regions have to be normalized to circles. For the calculation, we
used the binaries provided by C. Schmid and K. Mikolajczyk 3. The number of
interest points detected by these detectors varied a lot depending on the image.
We used parameters so that around 100-400 patches were found. This number
is slightly higher than in the case with fixed geometry, since many of the affine
covariant areas were too small to cover the object adequately.

The final classification results for the Caltech and the Graz02 databases are
shown in table 5, together with corresponding results for a fixed geometry. We
had to omit the ETH80 database, because the region detectors were not able
to find reasonable regions from all of the images. Some objects, like pears or
tomatoes, seem to be too smooth for covariant detectors to converge. Especially
for the SIFT features, the combination with the MSER detector seems to have
a clear advantage over fixed patches. However, the classification performance
did not improve in all cases. Especially using the harris affine detector degraded
3 http://www.robots.ox.ac.uk/˜vgg/research/affine/



292 A. Teynor et al.

Table 5. Classification rates for different affine covariant patch detectors in % (ha =
harris affine, mr = MSER)

Caltech Graz02
airp. faces mot. bike cars pers.

MSA 85.8 91.1 91.9 72.7 67.3 73.1
MSA ha 79.0 84.6 89.9 69.4 54.3 67.3
MSA mr 75.9 75.1 87.1 69.2 62.8 59.8

Caltech Graz02
airp. faces mot. bike cars pers.

SIFT 97.3 95.9 91.4 71.9 58.8 67.1
SIFT ha 83.5 75.7 78.8 73.7 57.5 63.9
SIFT mr 95.0 97.0 96.9 74.5 60.8 62.7

the results. We assume that the stable invariant areas found are not necessarily
optimal in a categorization sense.

5 Conclusions

In this paper we addressed some fundamental questions about the use of patches
in the categorization of visual object classes. We could show that feature type,
size, number, shape and location of patches does influence the retrieval perfor-
mance, in some cases significantly. The selection of the feature type depends
on the image class to be recognized. This confirms that an automatic selection
procedure for features as introduced by Opelt et al. in [11] is beneficial in order
to get optimal results.

For detailed objects, smaller patches usually work better, for smooth and uni-
form objects, bigger patches are necessary to cover object information. Interest
point detectors are preferable over random selection to determine the location
for patches, as good retrieval results can be achieved with relatively few patches,
at least for our simple classifier. This is especially true for images with prominent
objects or segmented images, and holds less for images with much background
clutter. Only in extreme cases, random selection is superior, especially when
homogeneous areas, where no interest points are found, are discriminative. An
intermediate number of interest points (usually a few hundred) should be ex-
tracted from moderately cluttered images, taking too many or too few points
spoils recognition performance here. For segmented images, taking more patches
converges to some optimum, since no corruptive background patches spoil recog-
nition accuracy.

Affine covariant methods provide an elegant way to choose the shape of a
patch, increasing the performance on some occasions. An interesting research
issue is to further investigate to what extent the automatically chosen areas are
advantageous for object categorization.
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Abstract. Automatic image annotation empowers the user to search an
image database using keywords, which is often a more practical option
than a query-by-example approach. In this work, we present a novel
image annotation scheme which is fast and effective and scales well to a
large number of keywords. We first provide a feature weighting scheme
suitable for image annotation, and then an annotation model based on
the one-class support vector machine. We show that the system works
well even with a small number of visual features. We perform experiments
using the Corel Image Collection and compare the results with a well-
established image annotation system.

1 Introduction

The amount of available multimedia data is continuously on the rise. With this
arises the need to be able to locate existing data effectively. Data which cannot
easily be found is as good as lost. Multimedia search differs from text search
in that the results are much more subjective, and exact matches are normally
not possible. For digital images, a lot of research has been done in the field
of “Content-Based Image Retrieval” (CBIR) in the past decade. A user typ-
ically searches a CBIR database using the query-by-example paradigm, and
the CBIR system bases its search on visual features extracted from the image.
A big obstacle for CBIR to gain mainstream acceptance has been the so-called
semantic-gap problem [1,5], though it can be somewhat reduced using relevance-
feedback techniques [2,3]. Another practical problem in CBIR is that the user
may not have a query image available.

A metadata search system on the other hand bases its search on image meta-
data, such as date and place of creation, image size, other image acquisition pa-
rameters, and on image keyword-annotation. Here, the database images are typ-
ically manually annotated with keywords, a task which is very time-consuming
and also subjective. For large databases, this is simply prohibitively expensive.
Automatic Image Annotation tries to bridge these two approaches, in that it
works on the content of the images, but gives the user a possibility to perform
a metadata search. Of course, semantic-gap remains a problem here too.

We describe briefly some prior work in the field of automatic annotation.
Barnard et al. [12] presented a scheme to link segmented image regions with

K. Franke et al. (Eds.): DAGM 2006, LNCS 4174, pp. 294–303, 2006.
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words, the results depending heavily on the quality of the segmentation. Julia
Vogel [6] assigned semantically meaningful labels to local image regions formed
by dividing the image into a rectangular grid. Li and Wang [11] gave a statistical
modeling approach using a 2-D Multiresolution Hidden Markov Model for each
keyword and choosing the keywords with higher likelihood values. Cusano et al.
[13] use a multi-class SVM for annotation though their scheme can hardly be
judged due to their very small vocabulary consisting of seven keywords.

In this paper we describe our annotation methodology which consists of a fea-
ture extraction, feature weighting, model evaluation and a keyword assignment
routine. Note that we sometimes use the terms feature weighting and feature
selection interchangeably, as once the system has given a weight to each feature,
they can always be ranked to select the ones with the higher weights.

We describe briefly the outline of this paper. We first give a description of the
visual features used, then present our feature weighting algorithm. Later we give
a description of our model based on the one-class SVM, and present the results
of the experiments. We conclude with a discussion and an outlook for possible
improvements and future work.

2 Features

To demonstrate the effectiveness of the feature weighting and model evaluation
modules, we use a small set of simple visual features comprising of the following:

Colour Features: Colour features are widely used for image representation be-
cause of their simplicity and effectiveness. We use color moments calculated on
HSV images. For each of the three layers we compute the layer mean, layer vari-
ance and layer skewness respectively. This yields a 9-dimensional vector. Since
this does not incorporate any interlayer information, we calculate three new
layers SV, VH and HS non-linearly by point-wise multiplication of pairs from
original layers and calculate the same 3 moments also for the new layers. The
final 18-dimensional vector outperformed a 512-bin 3D Joint Colour Histogram
in CBIR tests that we performed.

Texture Features: Texture features can describe many visual properties that
are perceived by human beings, such as coarseness, contrast etc. [4]. We use the
Discrete Wavelet Transformation (DWT) for calculating texture features. The
original image is recursively subjected to the DWT using the Haar (db1) wavelet.
Each decomposition yields 4 subimages which are the low-pass filtered image and
the wavelets in three orientations: horizontal, vertical and diagonal. We perform
4 level of decompositions and for the orientation subimages we use the entropy
(−
∑L

i=1 H(i) · log(H(i)), with H ∈ R
L being the normalized intensity histogram

of the subimage) as the feature, thus resulting in a 12-dimensional vector.

Edge Features: Shape features are particularly effective when image back-
ground is uncluttered and the object contour dominates. We use the edge-
orientation histogram [8] which we compute directly on gray-scale images by first
calculating the gradient at each point. For all points where the gradient magnitude



296 L. Setia and H. Burkhardt

exceeds a certain threshold, the gradient direction is correspondingly binned in the
histogram. We use an 18-bin histogram which yields bins of size 20 degrees each.

The final feature vector is a concatenation of the above three vectors and has
a dimensionality of 48.

3 Feature Weighting

A large number of feature selection or feature weighting methods have been pro-
posed in the machine learning literature. The interested reader can refer to [7] for
an overview of some of the popular alternatives. The main distinction is between
the so calledFilter methods, which compute a ranking for the featureswithout tak-
ing the inducer (classifier) into account, and the Wrapper methods, which search
in the set of subsets of features for the optimum subset for the specific inducer.

We propose a feature weighting method suitable for the image annotation
problem. Image annotation with keywords can be interpreted as a classification
problem but with two distinct characteristics: a) The number of classes (key-
words) can be very large, and b) An image object can belong to multiple classes
simultaneously (in other words, an image is usually annotated with multiple
keywords). Thus, traditional feature weighting methods for multi-class classifi-
cation are not only overloaded with the high number of classes, but would also
give incorrect weights because of the overlap between the classes.

Our final aim is to learn a model for each class (keyword) based on a few
training images. If we consider the training data for all the classes collectively, the
properties of the ensemble become evident: the classes overlap, data belonging to
the positive class (the class in question) is limited, but the data belonging to the
negative classes is huge and spread around the feature space. Thus a multi-class
classifier or a feature selection method based on it would not easily find decision
boundaries or relevant features. We show that it is indeed possible to weight the
features effectively for each class, taking into account the general distribution of
the features. Let us start with a short data terminology. Let the training samples
belonging to the positive class be given through

x1, . . .xl ∈ R
n

and the training examples in all the negative classes through

xl+1, . . .xl+m ∈ R
n

with m � l. Furthermore, we represent the i-th feature vector through the
notation

xi = [x(1)
i x

(2)
i . . . x

(n)
i ]

All features are first normalised to zero mean and unit variance. Then, we esti-
mate the distribution for each feature independently using the complete training
data. We use a gaussian mixture model with three components to estimate the
density,

p(x(k)) =
J∑

j=1

πjN(x(k)|Θj)
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Fig. 1. Feature Weights for four sample Corel categories. Each row plots the feature
weights and a few sample images from the category. The order of features in each graph
is as follows 1) 18 Colour features: Mean, Variance and Skewness of Hue layer, followed
by that of S, V, HS, SV and VH layers. 2) 12 Texture features: Entropy of H, V and
D first level decomposition, followed by 2nd and 3rd levels 3) 18 Edge Features: Bins
starting from 0◦ degrees in anti-clockwise direction with each bin having a span of 20◦.

where N is the normal distribution with parameters Θj = (μj , σj), and πj is the
weight of the j-th component, with

∑J
j=1 πj = 1. The density is estimated using

the expectation-maximization method.
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We define the average likelihood for feature k, averaged only over the images
of the positive class as

avgk =
∑l

i=1 p(x
(k) = x

(k)
i )

l

The higher the average likelihood is, the more similar this feature is between
the positive and the negative classes and therefore less discriminative. Thus, we
define the weight for the k-th feature as

wk = 1/avgk

The weights are normalized so that
∑n

k=1 wk = 1. This has the effect that all
models deliver optimum performance (tested through crossvalidation) for about
the same model parameters. The features are then weighted with wk before fed
to the model computation routine (each model gets its own sets of weights).
We show now that the weighting scheme is effective and the weights can in fact
even be directly interpreted for our features. To do this, we plot in Fig. 1 the
calculated weights for the 48 features for 4 corel categories: churches, space1,
forests and flora. The training data consisted of 40 images each in the positive
class and the complete Corel collection of 60,000 images as the negative (Note
that it is immaterial here if the positive images are considered for determining
the gaussian mixture distribution or not, as we have a very large number of
samples available from the stochastic process). The sequence of the 48 features
is explained in the figure caption.

For the churches category, the maximum weight went to the edge features
corresponding to the directions 0◦ and 180◦, i.e., the discriminative vertical edges
present in churches and other buildings (most images in the category were taken
upright). For the space1 category, the most discriminative feature the system
found was the 7th feature, which is the mean of the brightness (V ) component
of the image (the images in the category are mostly dark). For the forests
category, texture features get more weight, as does the hue component of the
colour features. We however did find some categories where the weights were
somewhat counter-intuitive or difficult to interpret manually. An example is the
category flora in part d).

4 Model Computation

We assume that the presence or absence of a keyword in an image can be tested
independently of other keywords. Though it is not necessarily true, it is a reason-
able assumption to keep the complexity of the overall system in check. Otherwise,
the system would need access to the conditional probabilities of keywords given
the presence of other keywords.

We propose a slightly modified one-class Support Vector Machine (SVM) as
our model. One-Class SVM were introduced by Schölkopf et al. [9]. One-Class
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SVMs are binary functions which capture regions in the input space where the
probability density lies (i.e. its support). We train a one-class SVM for every
keyword with the aim to determine subspaces in the feature space where most
of the data for that keyword is present.

One-Class SVMs are the solution to the following optimization problem: Find
a hypersphere in R

n which contains most of the training data and is at the same
time as small as possible. This can be written in primal form as:

min
R∈R,ζ∈Rl,c∈F

R2 +
1
νl

∑
i

ζi

subject to
‖φ(xi)− c‖2 ≤ R2 + ζi, ζi ≥ 0, i = 1, ...l

φ(xi) is the i-th vector transformed to another (possibly higher-dimensional)
space using the mapping φ. c is the center and R the radius of the hypersphere
in the transformed space. With the kernel trick [10] it is possible to work in
the transformed space without ever calculating the map φ(xi) explicitly. This
can be achieved by defining a kernel function k(xi,xj) = 〈φ(xi), φ(xj)〉 as the
algorithm needs access only to scalar products between vectors, and not to the
actual vectors themselves.

The tradeoff between the radius of the hypersphere and the number of outliers
can be controlled by the single parameter ν ∈ (0, 1). Using Lagrange multipliers,
the above can be written in the dual form as:

min
α

∑
i,j

αiαjk(xi,xj)−
∑

i

αik(xi,xi)

subject to

0 ≤ αi ≤
1
νl
,
∑

i

αi = 1

The optimal α’s can be computed with the help of QP optimization algo-
rithms. The decision function then is of the form

f(x) = sign(R2 −
∑
i,j

αiαjk(xi,xj) + 2
∑

i

αik(xi,x)− k(x,x))

This function returns positive for points inside this hypersphere and nega-
tive outside (note that although we use the term hypersphere the actual deci-
sion boundary in the original space can be varied by choosing different kernel
functions. We use a gaussian kernel k(x,y) = exp(−γ ‖x− y‖2), with γ and
ν determined emperically through cross-validation). Since we need a rank for
each keyword in order to annotate the image, we leave out the sign function, so
that the results can be sorted on the basis of their “positiveness”. Furthermore,
it was found that the results are biased towards keywords whose training im-
ages are very dissimilar to each other, i.e., the models for which R2 term is high.
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Compact models are penalised, and therefore we use the following function in-
stead for model evaluation:

g(x) =
R2 −

∑
i,j αiαjk(xi,xj) + 2

∑
i αik(xi,x)− k(x,x)

R2

which can be interpreted as the normalized distance from the model boundary
in the transformed space.

5 Experiments and Discussion

We perform our experiments similar to the ALIP system [11] to facilitate an
objective comparison. The Corel Database with 600 categories is used. Each
category is manually labelled1 with few descriptive keywords (typically 3 to 5).
Each category consists of 100 colour images of size 384 × 256, out of which we
select 40 images randomly as training images. Normally for image annotation we
would be training a model for every annotation keyword, and would annotate
a query image with the keywords whose models evaluate the query image most
favourably. For this experiment however, we learn a model for every Corel cate-
gory instead of each annotation keyword. Then, for the best k category matches
(we experiment with k = {5, 8, 11, 14}), the category keywords are combined and
the keywords least likely to have appeared by chance are taken for annotation,
as in [11]. This scheme favours infrequent words like waterfall and asian over
common ones like landscape and people.

To have an estimate of the discriminative performance of the system, we
perform a classification task with the 600 categories. The system attains an
accuracy of 11.3 % as compared to 11.88 % that of ALIP. However, as also
pointed out in [11], many of the categories overlap (e.g. Africa and Kenya)
and it is not clear how much can be read from this classification performance.
Furthermore, we found that although the best category match was incorrect in
the sense of the category ground truth, it was often meaningful with regard to
the query image. We provide some annotation examples in Table 1.

For a more controlled test, we take 10 distinct Corel Categories, namely
Africa, beach, buildings, buses, dinosaurs, elephants, flowers, horses,
mountains and food. The confusion matrix for this task is shown in Table 2.
Overall, the system attains classification accuracy of 67.8% as compared to 63.6%
attained in ALIP.

Computation Time: All experiments were performed on an Intel Pentium IV
2.80 GHz single-CPU machine running Debian Linux. Calculation of image fea-
tures takes about 1.2 seconds per image. Model computation with 40 training
vectors per model takes only about 20 msec per model. A new query image needs
about 4 seconds to be fully annotated (this includes computation time for fea-
ture extraction, evaluation of 600 models, and decision on unlikely keywords),
as compared to 20 minutes for the HMM-based approach in ALIP. This makes
1 We thank James Wang for making the category annotation available for comparison.
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Table 1. Sample annotation results from the system. The query images are taken
from the Corel Collection but did not belong to the training set. It can be observed
that while the original category was sometimes not found, it was due to the fact that
the categories often overlapped, as the top matches do indeed contain very similar
categories, leading to robust annotation results.

Query Image Original
Category

Top 8 Matches Final Annotation

africa

wildlife rare,
architect,

shells, dogs,
mammals,

newzealand,
197000,
pastoral

grass, animal,
dog, rareanimal,

shell,
mammal,

NewZealand,
pastoral

wl_ocean

plants, green,
foliage,

can park,
US garden, flora,

texture13,
flower2

plant, flower,
green, foliage,

leaf, flora

189000

tribal, 239000,
thailand,
189000,

groups, perenial,
indonesia,

work

people, cloth,
guard, face,
life, tribal

holland

rural UK, forest,
zionpark, flowerbeds,

plants, forests,
perenial,
flower2

tree, forest,
flower,

ruralEngland,
Zion, flowerbed,

perenial

lizard1

microimg, design1,
textures,

texture1, skins,
texture7,
texture9,

food2

texture,
natural,

microimage

yosemite

canyon park, isles2,
US parks, alaska,

126000,
rural UK,

gardens, cal sea

Alaska,
mountain,

park, landscape,
garden, house,

California
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Table 2. Confusion Matrix for the 10-category classification task

% Africa beach buildings buses dnsrs elephants flowers horses mnts food
Africa 66 6 12 0 0 2 2 2 6 4
beach 16 32 28 0 0 8 2 2 6 6

buildings 6 6 76 2 0 0 2 0 6 2
buses 0 0 30 64 0 0 0 6 0 0

dinosaurs 0 0 2 0 94 0 0 0 0 4
elephants 28 0 0 0 0 50 0 8 12 2
flowers 10 0 4 0 0 0 78 0 4 4
horses 6 2 6 0 0 2 2 72 10 0

mountains 4 4 10 0 0 0 6 0 70 6
food 0 2 14 0 2 0 2 0 4 76

our system faster by a factor of 300 (or 100 taking the clock speed of the ALIP
system into account). The system scales linearly with the number of models.

6 Conclusion and Future Outlook

A feature weighting method and a modelling scheme based on the one-class SVM
for automatic image annotation was presented in this paper. It is clear that the
power of the overall system is heavily dependant on the discriminative power
of the used features. Thus, complex features should in general be expected to
lead to a performance improvement. Local features extracted around interest
points, e.g. [14], have recently given excellent results in the field of object recog-
nition and could be directly plugged into the system (at least the methods which
can return a single consolidated feature vector per image, instead of a bag of
vectors).

It was shown that the modelling scheme scales well to larger number of key-
words, both in terms of annotation results quality as well as the speed of execu-
tion. The system ran orders of magnitude faster than a MHMM-based scheme
while giving comparable or better results. The effectiveness of the feature weight-
ing was also demonstrated as the small number of visual features used lent them-
selves to direct interpretation.

A simplified view of the linguistic component of the annotation system was
taken, as it lies outside the scope of this work. Also, currently the system does
not check for mutually exclusive keywords or other inconsistencies, and ends up
annotating the same image with combinations like sunrise and sunset, or with
England and Finland. This can however be taken care of automatically to an
extent by extracting conditional probabilities of keywords given the presence or
absence of other keywords, given sufficient training data.

Acknowledgements. This work was supported by the German Ministry for
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Abstract. Due to the ever growing size of image collections with com-
mercial image databases in excess of 1,000,000 images, efficient and effec-
tive ways of browsing and navigation through them as well as locating
and searching desired images are in high demand. An interesting ap-
proach of providing a navigational tool for image databases has been
the application of multidimensional scaling (MDS) where thumbnails of
images are projected onto a 2-dimensional space in such a way that the
original similarities between images are best preserved. Unfortunately,
MDS is both computationally expensive and is only of limited use for
large image sets as images are occluding each other while at the same
time certain parts of the projection space are not utilised. In this paper
we provide an MDS based image database navigation approach that does
not suffer from these disadvantages. Based on an initial MDS calculation
images are placed on a regular grid which avoids any overlapping effects.
Large image datasets are handled through a clustering technique which
allows browsing in a hierarchical manner.

1 Introduction

Following the enormous increase in use and affordability of digital imaging equip-
ment for both personal and professional use, currently there exists a large de-
mand for ways of storing and exploring these image collections. With the size
of image databases ranging from the average home user owning around 1,000
images to companies with databases in excess of 1,000,000 images, efficient and
effective ways of browsing through them and locating and searching for desired
images are highly sought after. Common tools display images in a 1-dimensional
linear format where only a limited number of thumbnail images are visible on
screen at any one time, thus requiring the user to search back and forth through
thumbnail pages to view all images. Obviously, this constitutes a time consum-
ing, impractical and exhaustive way of searching images, especially in larger
catalogues. Furthermore, the order in which the pictures are displayed is based
on attributes like file names and does not reflect the actual image contents and
hence cannot be used to speed up the search.

In order to address these issues recently several approaches have been intro-
duced which provide a more intuitive interface [10]. The basic idea behind most
of these is to place images which are visually similar, as established through the
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calculation of image similarity metrics based on features derived from image con-
tent, also close to each other on the visualisation screen, a principle that has been
shown to decrease the time it takes to localise images [8]. One of the first - and
still most popular - approaches was the application of multidimensional scaling
(MDS) [3] used to project images being represented by high dimensional feature
vectors to a 2-dimensional visualisation plane [9]. In the PicSOM system [4] tree-
structured self organising maps are employed to provide both image browsing
and retrieval capabilities. In [2] a hierarchical tree is employed to cluster images
of similar concepts while image database navigation on a sphere was proposed
in [12]. The application of virtual reality ideas and equipment to provide the
user with an interactive browsing experience was introduced in [7].

While the application of MDS provides an intuitive and powerful tool for
browsing image collections it has several drawbacks. As an iterative technique
that proceeds on the complete dataset it is fairly computationally intensive,
furthermore zooming into an area of interest usually initiates re-computation
of the positions of the images that fall within the zoomed part. While MDS is
useful for small image collection, for large image databases it provides a poor
representation as many images are occluded, either fully or partially, by other
images with similar feature vectors. In addition, empty spaces are common in
areas where no images fall, creating an unbalanced representation on screen. In
this paper we introduce an image database navigation method that addresses
these issues. Based on MDS a visualisation of an image collection is created, yet
in contrast to the previous approach this is being done in a hierarchical manner
which can cope also with large image datasets and also has the advantage that all
levels of the hierarchy can be pre-computed, thus allowing real-time browsing of
the image database. In addition, images are laid out on a regular grid structure
which avoids any unwanted overlapping effect between images. Furthermore,
the visualisation space is better utilised by branching out images into otherwise
unoccupied parts of the screen. The proposed method hence provides an effective,
intuitive and efficient interface for image database navigation as is demonstrated
on two medium sized image collections.

The rest of the paper is organised as follows: Section 2 describes in more detail
multidimensional scaling and its application to image database navigation. Our
proposed method is introduced in Section 3 and some experimental results are
given in 4. Section 5 concludes the paper.

2 Multidimensional Scaling for Image Database
Navigation

Rubner et al. were one of the first to suggest more intuitive interfaces for im-
age database navigation [9]. They proposed the application of multidimensional
scaling (MDS) [3] to calculate the locations of image thumbnails and displayed
them in a global 2-dimensional view on a single screen. Using this method all
images in a database are (initially) shown simultaneously; their locations are
dependent on their visual similarity (based on features such as colour, texture
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or shape descriptors) compared to all other images features in the database. The
user is then able to zoom into an area of interest and hence to browse the image
collection in an intuitive top-down manner.

MDS expresses the similarities between different objects in a small number of
dimensions, allowing for a complex set of inter-relationships to be summarised
in a single figure. MDS can be used to analyse any kind of distance or similar-
ity/dissimilarity matrix created from a particular dataset. In general, there are
two types of multidimensional scaling methods: metric and non-metric MDS. In
metric MDS the distances between the data items are given and a configuration
of points that would give rise to the distances is sought. This perfect reproduc-
tion of distances is not always possible or wanted, in which case non-metric MDS
can be applied. In non-metric MDS the calculations between rank orders of sim-
ilarity Euclidean distances and rank orders in the original space are computed
to produce a set of metric co-ordinates which most closely approximate their
non-metric distances.

First a distance matrix which contains all pairwise distances between the im-
ages in the databases is calculated. These distances di,j are typically based on
similarity measures based on image features such as colour or texture distri-
butions derived from the image content. The distances and Euclidean distances
d̂i,j in the visualisation space are calculated and compared using Kruskal’s stress
formula [3]

STRESS =

∑
i,j(d̂i,j − di,j)∑

i,j d
2
i,j

(1)

which expresses the difference between the distances d and the Euclidean values
d̂ between all images. The aim of non-metric MDS is to assign locations to the
input data so that the overall stress is minimal.

Typically an initial configuration is found through principal components anal-
ysis (PCA). While the degree of goodness-of-fit after this is in general fairly high
it is not optimal. To move towards a better solution the locations of the points
are updated in such a way as to reduce the overall stress. If for instance the dis-
tance between two specific samples has been overestimated it will be reduced to
correct this deviation. It is clear that this modification will have implications for
all other distances calculated. Therefore, the updating of the co-ordinates and
the recalculation of the stress is being performed in an iterative way where dur-
ing each iteration the positions are slightly changed until the whole configuration
is stable and the algorithm has converged into a minimum where the distances
between the projected samples correspond accurately to the original distances.
Several termination conditions can be applied such as an acceptable degree of
goodness-of-fit, a predefined maximal number of iterations or a threshold for the
overall changes in the configuration. Once the calculation is terminated thumb-
nails of the images can then be plotted at the calculated co-ordinates on screen.

While the application of MDS provides an intuitive and powerful tool for
browsing image collections and constitutes the best possible match for projecting
images onto a visualisation plane it has several drawbacks. As it is based on an
iterative convergence operation based on the complete image dataset it is fairly
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computationally intensive with a computational complexity of O(kN2) where k
is the number of iterations required for convergence. While this can be at least
partially avoided through off-line calculation (provided the database does not
change too frequently), when zooming into a certain part during the interaction
with the user, MDS is usually being re-applied to the images that fall within the
zoomed area hence adding to the computation overhead. Alternatively faster
methods such as PCA or Fastmap [1] can be applied; however they suffer from
a lack of accuracy, in particular when the underlying metric is not Euclidean
(or indeed, is not a metric at all) as is often the case with similarity measures
employed in image retrieval tasks [11].

Fig. 1. MDS display of about 1400 images

Figure 1 shows an MDS plot of about 1400 images. As can be seen, MDS
is not very well suited for large or even medium-sized image collections as im-
ages are being either totally or partially occluded by other images with similar
feature vectors; obviously the more images in the dataset the higher the prob-
ability of occlusion/overlapping. On the other hand, areas of the visualisation
space in which no images fall remain empty and hence create and unbalanced
representation.

3 Image Database Navigation on a Hierarchical MDS
Grid

In this paper we propose an image database visualisation and navigation approach
based on multidimensional scaling yet without the disadvantages that have been
highlighted above. That is, we address the problems associated with MDS brows-
ing regarding occlusion and overlapping of images, unused visualisation space and
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computational overheads when zooming into an area of interest. In addition, our
system provides an intuitive interface also for large image collections.

3.1 Grid Layout

In the standard MDS visualisation the image thumbnails are placed so as to
minimise the distortions in terms of distances in the projected space. From there
it follows that out of necessity images will partially overlap with each other. Yet
this overlapping will have a negative impact on the browsing experience [8].
An approach to minimise these effects has been proposed in [5] where images
are slightly moved as a result of a local optimisation problem, yet this method
provides only a partial solution to the problem. In [8] a user study was carried
out which compared image visualisation models where images overlap with each
other as is the case in a typical MDS layout with those where images are placed
on a regular lattice without any overlapping. The results demonstrated that
users largely prefer the latter as overlap adds to confusion between images and
that hence a visualisation that avoids overlapping will lead to faster retrieval
times. In our approach we therefore adopt these findings and constrain images
to be placed on a regular grid structure where images do not overlap each other.
That is, we carry out the initial MDS calculation as detailed in Section 2 but
then map each images to its closest grid cell. The size of the grid structure is
typically set between 10x10 and 20x20 depending monitor size and resolution.
Clearly, and in particular for larger image sets, this will mean that more than one
image can be mapped to a particular cell; in Section 3.3 we will describe how we
are handling this case in an efficient and intuitive way through the employment
of a hierarchical structure.

Fig. 2. Images from neighbouring cells being allocated to previously empty cell

3.2 Filling Empty Cells

While snapping images to a grid lattice prevents any overlapping effects, in
essence it provides a ”quantised” form of an MDS display. Thus, is still suffers
from the relatively unbalanced view that is usually generated where certain ar-
eas of the visualisation space are not filled, which is in particular often the case
for smaller image collections. To address this problem and to provide a more
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uniformly inhabited browsing screen, local search strategies are employed which
move images across grid boundaries to previously unoccupied cells. First the po-
sitions of all empty cells are retrieved. For each of these cells the 4-neighbourhood
is then inspected. If 3 or 4 of the neighbours are occupied a relative percent-
age of those images closest to the borders is moved across the border to fill the
previously empty cell as illustrated in Figure 2.

Performing this operation will usually fill some but not all of the empty cells.
However, repeating the process based on the newly generated layout will in turn
fill more cells. Hence the process is repeated a few (usually 3 or 4) times. Not
all empty cells will have been assigned after that but then this is not desired as
it would mean images being positioned too far from their original co-ordinates
which in turn would distort the overall premise that images that are visually
close should remain close on the browsing display.

3.3 Hierarchical Browsing

As mentioned above classical MDS displays will provide only limited usability
when being applied to large but also to even medium-sized databases of a few thou-
sand images. The reason for this is that due to the limited space on the visualisation
plane images not only overlap each other partially but many images do not appear
at all due to occlusion and hence only a partial view of the database is provided as
can be clearly observed from Figure 1. Zooming in provides only a partial solution,
in particular if there are many images with similar image features. Furthermore, a
zooming operation usually re-applies MDS on the selected images which, although
it tends to spread the images more evenly, also constitutes a serious computational
overhead. As the zoomed-in area is specified by the uses interactively and is hence
not known a priori this computation cannot be performed off-line.

We employ a hierarchical tree structure to address both the navigation
through large image collections and to eliminate the need for further compu-
tations. Hierarchical browsing environments such as the one described in [2]
have been shown to provide an effective and efficient way of moving through
large image datasets. In our approach we make direct use of the grid mapping
introduced above to build a hierarchical tree based on clustering images. The
resolution of the grid layout (e.g. 10x10 cells) directly determines the maximal
number of clusters present at a given level (which will only be met if all cells
are filled). The grid cells (after applying the filling strategy explained in Sec-
tion 3.2) also determine which images fall into which clusters. What remains to
be performed is the selection of a representative image to be displayed on the
visualisation grid. To do this we simply select the centroid image Ic, that is the
image for which the cumulative distance to all other images in the cluster

Di =
N∑

j=1

d(Ii, Ij) (2)

where Ii is the i-th of N images in the cluster and d(., .) denotes the distance
between two images, is minimal, i.e.
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Fig. 3. Spread strategy for filled cells at tree nodes

Dc < Di, ∀i �= c (3)

(Note that we always keep both the original MDS and the derived co-ordinates
for each image.)

This procedure is adopted at the each level of the tree hierarchy, i.e. first at
the root node (the initial global display) and then for each non-empty cell again
in a recursive manner, where the images of each child node are again mapped to
a grid structure, until the complete tree is derived.

The resulting interface provides an intuitive way of browsing to the user who
can, starting from the initial display, successively select a representative image to
refine the search. That image cluster (plus, if wanted, the 8 neighbouring clusters)
is then expanded in the next level of the display where the user can again select
an image group to navigate further into the image collection. Even based on a
small grid of 10x10 cells and a fairly conservative estimate of 50% of cells being
filled on average this approach requires - on average - only 4 levels of the hierar-
chy to provide access to each of more than 6 million images (i.e. 504 = 6250000)
which will suffice for even the largest images databases these days.

The grid-tree structure also provides another advantage. As the structure is
fixed it can be pre-computed in completeness off-line, together will all possible
grid views configuration the user can encounter1 which in turn provides the user
with the possibility of real-time browsing large image collection.

3.4 Image Spreading in Tree Cells

In the tree nodes of the cells it will commonly occur that only a few images occur
most of which will be visually fairly similar. To avoid them from being mapped
to the same cell and hence to trigger another tree level, a spreading algorithm is
applied which displays them on the same screen once only a certain percentage
of cells are filled for a cluster (we currently set this threshold to 25%).

The algorithm is based on the ”place”, ”bump” and ”double-bump” principle
and is similar to the one employed in [8]. When a cluster is encountered a spiral
1 These structures only contain pointers to the images and can hence be maintained

in memory. Image thumbnails are then loaded upon request.
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Fig. 4. Global grid MDS view of the UCID dataset

scan is initiated that searches for and fills empty cells close by until all images
are distributed. If an empty cell is encountered on the first ring around the cell,
the next image of the cluster is assigned to that cell (”place”). When an empty
cell in the second ring is found it is first established which of the cells of the first
ring is closest to the direct path from to the identified empty cell. The image
from the thus identified cell is then moved to the empty cell whereas the next
image from the cluster is placed in the cell from the first ring (”bump”). The
same principle is applied to empty cells identified in the third ring with images
from the first and second ring being moved (”double bump”). Both the spiral
scan and the three placement strategies are illustrated in Figure 3.

4 Experimental Results

We tested our novel approach to image database navigation on two medium-
size databases: the UCID dataset [13] which contains about 1400 images and
the MPEG-7 common colour dataset [6] of about 4500 images. Unfortunately,
due to space restrictions, we can only provide a ”tip of the iceberg” view of the
capabilities in the following figures.

A standard MDS global display of the UCID images was already shown in
Figure 1. The corresponding global grid view, i.e. the initial view of our browsing
approach, based on a 15x15 grid, is given in Figure 42. As can be seen, in contrast
to the standard MDS layout where many images overlap each other, here the
grid structure greatly contributes to the clarity of the visualisation.

2 We note that the axes here are defined differently as in Figure 1, being roughly
mirrored along the vertical axis and slightly rotated. However, as the axes in MDS
do not carry any meaning the two representations are equivalent.
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Fig. 5. Global grid MDS view of the MPEG-7 dataset

Fig. 6. Screenshot of the browsing application. User navigated to level 3 of the tree
structure.

Figures 5 and 6 show the global view of the MPEG-7 database and an actual
screenshot of the browsing application where the user navigated through to level
3 of the tree. To aid navigation the previous hierarchy levels are also displayed
and the current position within those grid marked with the red dot. At the
shown level the image spreading algorithm described in Section 3.4 has been
automatically applied as originally only 5 of the cells were filled.
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5 Conclusions

An intuitive and efficient technique to image database visualisation and naviga-
tion was presented. Based on an MDS approach, a hierarchical tree structure is
generated which can be pre-computed completely and is hence able to provide
image browsing functionality in real time. Overlapping and occlusion of images is
achieved through the adoption of a regular grid layout paired with a hierarchical
browsing functionality.

For future research we are planning to evaluate the proposed navigation tool
on a real user group and compare it with other methods in the literature. We are
also in the process of integrating the system with a professional image provider
with a dataset in excess of 3 million images.
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Abstract. In the heart of the computer model of visual attention, an interest or 
saliency map is derived from an input image in a process that encompasses 
several data combination steps. While several combination strategies are possible 
and the choice of a method influences the final saliency substantially, there is a 
real need for a performance comparison for the purpose of model improvement. 
This paper presents contributing work in which model performances are measured 
by comparing saliency maps with human eye fixations. Four combination 
methods are compared in experiments involving the viewing of 40 images by 20 
observers. Similarity is evaluated qualitatively by visual tests and quantitatively 
by use of a similarity score.  With similarity scores lying 100% higher, non-linear 
combinations outperform linear methods. The comparison with human vision thus 
shows the superiority of non-linear over linear combination schemes and speaks 
for their preferred use in computer models. 

1   Introduction 

It is generally admitted today that the human vision system makes extensive use of 
visual attention mechanisms in order to select a reduced set of relevant information 
among the huge amount of visual input gathered by the retina. By reducing the 
amount of data to be transferred to cortical areas responsible for higher level tasks, 
visual attention speeds up the vision process and contributes to its efficiency. Like in 
human vision, visual attention represents a fundamental mechanism for computer 
vision where similar speed up of the processing can be envisaged. Thus, the paradigm 
of computational visual attention has been widely investigated during the last two 
decades. Numerous computational models have been therefore reported [1], [3]. Most 
of them rely on the feature integration theory [4]. The saliency-based model of Koch 
and Ullman was first presented in [5] and gave rise to numerous software and 
hardware implementations [6], [7]. Further, it has been used to solve numerous issues 
in various fields including mobile robotics [8], [9], color image segmentation [10] and 
object recognition [11]. 

The saliency-based model of visual attention generates, for each visual cue (color, 
intensity, orientation, etc), a conspicuity map, i.e. a map that highlights the scene 
locations that differ from their surroundings according to the specific visual cue. 
Then, the computed maps are integrated into a unique map, the saliency map which 
encodes the saliency of each scene location. Depending on the scene, visual cues may 
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contribute differently to the final saliency and of course, some scene locations may have 
higher saliency values than others. Therefore, the integration process of the conspicuity 
maps into the saliency map should account optimally for these two aspects. 

Note that the map integration process, described here for the purpose of fusing 
cues, is also available at earlier steps of the computational model, namely for the 
integration of multi-scale maps or integration of different features. Omnipresent in the 
model, the competitive map integration process plays an important role and deserves 
careful design. The question whether the map integration process is linear or non-
linear, or more precisely which of the linear or non-linear model performs better in 
comparison to human eye movements motivated this research. 

In [12] four methods are considered for performing the competitive map 
integration and the methods were evaluated with respect to the capability to detect 
reference locations, but no comparison with eye movements is performed. 
Specifically, the authors propose an interesting weighting method which will be 
considered here. Also a so-called iterative method is proposed which performs a non-
linear transform of a map. Another feature integration scheme which comprises 
several masking mechanisms was also proposed in [18]. Leaving by side for the 
moment these two advanced non-linear approaches as well as other scaling like the 
long-term normalization proposed in [13], the present paper compares two simple 
linear and two simple exponential models. 

The comparison of saliency maps with human eye fixations for the purpose of model 
evaluation has been performed previously. In [15] the authors propose the notion of 
chance-adjusted saliency for measuring the similarity of eye fixations and saliency. This 
requires the sampling of the saliency map at the points of fixations. In [17] the authors 
propose the reconstruction of a human saliency map or fixation map from the fixations 
and perform the comparison by evaluating the correlation coefficient between fixation 
and saliency maps. This method was also used in [18]. In the present work, the chance 
adjusted saliency method is used to define a similarity score. 

The remainder of this paper is organized as follows. Section 2 gives a brief 
description of the saliency-based model of visual attention. Section 3 defines the tools 
used for comparing saliency and fixations. Section 4 is devoted to the selection and 
definition of the four map integration methods that are then evaluated by experiments 
described in section 5. Finally, section 6 concludes the paper. 

2   The Saliency-Based Model of Visual Attention 

The saliency-based model of visual attention was proposed by Koch and Ullman in 
[5]. It is based on three major principles: visual attention acts on a multi-featured 
input; saliency of locations is influenced by the surrounding context; the saliency of 
locations is represented on a scalar saliency map. Several works have dealt with the 
realization of this model [2], [6]. Although any number of features and cues can be 
considered, this paper describes the model used during in order to simplify the 
notation. In fact, the model generates a saliency map from 3 cues namely contrast, 
orientation and chromaticity and the cues stem from 7 features. The different steps of 
the model are detailed below. 
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2.1   Feature Maps 

First, 7 features (j=1...7) are extracted from the scene by computing the so-called 
feature maps from an RGB color image. The features are: 
− Intensity feature: F1 = I = 0.3 R + 0.59 G + 0.11 B 
− Two chromatic features based on the two color opponency filters red-green and 

blue-yellow: F2 = (R-G)/I and F3 = (B-Y)/I. Note that the normalization of the 
opponency signals by I decouples chromaticity from intensity. 

− Four local orientation features F4...F7 according to the angles ∈{0o;45o;90o;135o}. 

2.2   Conspicuity Maps 

In a second step, each feature map is transformed into its conspicuity map. The 
computation of the conspicuity maps relies on three main components: 
− The multiscale approach is aimed at detecting conspicuous features of different 

sizes and consists in the representation of each feature Fj at multiple resolution 
levels (k=1...6), producing a set of images Fj,k 

−  The center-surround mechanism is used to extract local activities and consists in a 
difference-of-Gaussians-filter DoG which applies at each resolution level and 
produces the multiscale maps: 

DoGFM kjkj *,, = . (1) 

− The map integration scheme. At this level, the multiscale maps are combined, in a 
competitive way, into a single feature conspicuity map Cj in accordance with: 
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where N(.) is a normalization function that simulates both intra-map competition 
and inter-map competition among the different scale maps. 

In the third step, using the same competitive map integration scheme as above, the 
seven (j=1...7) features are then grouped, according to their nature, into the three cues 
intensity, color and orientation. Formally, the cue conspicuity maps are thus: 
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2.3   Saliency Map 

In the final step of the attention model, the cue conspicuity maps are integrated, by 
using the scheme as above, into a saliency map S, which formally is: 
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3   Comparing Fixations and a Saliency Map 

The idea is to design a computer model which is close to human visual attention and, 
here, our basic assumption is that human visual attention is tightly linked to eye 
movements. Thus, eye movement recording is a suitable means for studying the 
spatial deployment of human visual attention. More specifically, while the observer 
watches at the given image, the K successive fixation locations of his eyes  

),...,..,,,( 321
i
K

i
k

iiii xxxxxX =  (5) 

are recorded and then compared to the computer generated saliency map. 
The degree of similarity of a set of successive fixations with the saliency map is 

evaluated qualitatively and quantitatively. For the qualitative comparison, the 
fixations are transformed in a so-called fixation map which resembles the saliency 
map and the similarity is evaluated by comparing them visually. For the quantitative 
comparison, a similarity score is used. 

3.1   Fixation Map 

The fixation map is computed under the assumption that it is an integral of weighted 
point spread functions h(x) located at the positions of the successive fixations. It is 
assumed that each fixation xk gives rise to a gaussian distributed activity. The width 
σ of the gaussian was chosen to approximate the size of the fovea. A weighting of 
h(x) as a function of the fixation duration or position k in the eye trajectory was not 
considered. Formally, the human fixation map is: 
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3.2   Score 

In order to compare a computational saliency map and human fixation patterns 
quantitatively, we compute a score s, similar to the chance-adjusted saliency used in 

[15]. The idea is to define the score as the difference of average saliency fixs  

obtained when sampling the saliency map S at the fixations points with respect to the 
average s obtained by a random sampling of S. In addition, the score used here is 
normalized and thus independent of the scale of the saliency map, as argued in [16]. 
Formally, the score s is thus defined as: 
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4   Four Map Integration Methods 

The summation in eq. 2, 3 and 4, which is supposed to perform the competitive map 
integration, uses the normalization function N(.) which will now be defined. 
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To perform intra-map competition, and for the purpose of linear and non-linear 
scaling, we choose a straightforward peak to peak linear normalization and the 
corresponding exponential normalization as follows: 

minmax
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CC
C . (8) 

The exponential form of this transformation promotes the higher conspicuity values 
and demotes the lower values; it therefore tends to suppress the lesser important 
values forming the background. 

For the purpose of inter-map competition, most of the previous works dealing with 
saliency-based visual attention use a competition-based scheme for map combination 
[6]. We adopt the same scheme in this work and attribute a weight w to each 
conspicuity maps for expressing its contribution. The weight is computed from the 
conspicuity map itself and tends to catch the global interest of that map. We consider 
following weight definitions: 

2
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C
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w max
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In the first weight expression w1 which stems from [6], M is the maximum value of 
the normalized conspicuity map and m is the mean value of its local maxima. This 
weight tends to promote maps with few dissimilar peaks and to demote maps with a 

lot of same peaks. In the second weight expression w2, maxC and C are respectively 

the maximum and mean values of the conspicuity map. This weight tends to promote 
maps with few large peaks and demote maps with a lot of similar peaks. 

Considering above alternatives, we come up with the following definition of N(.) 

')(N 11 CwCwlin ⋅=
')(N 22 CwCwlin ⋅=  

γ)'()(N 11exp CwCw ⋅=  

γ)'()(N 22exp CwCw ⋅=  
(10) 

where C' is the peak to peak normalized conspicuity C according to eq. 8. Four map 
integration methods are thus defined. 

5   Comparison Results 

This section presents comparisons between the four map integration methods. The 
basic idea consists in comparing, for a given set of color images, the saliency maps 
produced by the four methods with human eye movement patterns recorded while 
subjects are looking at the same color images [14]. 

Eye movements were recorded with an infrared video-based tracking system 
(EyeLink™, SensoMotoric Instruments GmbH, Teltow/Berlin). This system consists of a 
headset with a pair of infrared cameras tracking the eyes, and a third camera monitoring 
the screen position in order to compensate for any head movements. The images were 
presented in blocks of 10. The images were presented in a dimly lit room on a 1900 CRT 
display with a resolution of 800x600, 24 bit color depth, and a refresh rate of 
85 Hz. Every image was shown for 5 seconds, preceded by a center fixation display 
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of 1.5 seconds. Image viewing was embedded in a recognition task. For every image and 
each subject, the measurements yielded a sequence of fixations according to eq. 5. 

The experimental image data set consists in 40 color images of various types like 
natural scenes, fractals, and abstract art images. Most of the images (36) were shown 
to 20 subjects while the remaining were viewed by 7 subjects only. As stated above, 
these images were presented to the subjects for a duration of 5 seconds per image, 
resulting in an average of 290 fixations per image. Regarding the fixation maps, they 
were computed according to eq. 6 using, for a given image, all fixations from all 
subjects. The four map integration methods were used, the value of γ is set to 2. 

Figure 1 provides for image #3 a visual comparison of fixation map and the 
saliency maps computed by the four different methods. We note only small 
differences between the w1 and w2 alternatives, but significant differences between 
the linear and non-linear methods.  Comparing later methods with the fixation map, 
we observe good similarity at the higher intensity values, but at the lower intensity 
values, the linear methods provide a lot of energy where there is none in the fixation 
map. This illustrates the advantage of the non-linear methods, which tend to keep only 
the highest peaks at each map integration step and accumulate thus less background 
signal in comparison to linear methods. 

Figure 2 provides another illustration of the same comparison. Unlike previous 
figure where each saliency map is individually scaled to the full intensity range for 
best viewing purposes, here all saliency maps are scaled to the same average intensity, 
as this is the way a universal comparison can be performed with the fixation map. The 
motivation for this is the fact that all fixation maps have a constant average by 
construction and that they should also be compared with saliency maps with the same 
constant averages. This figure illustrates even better the higher similarity of the 
fixation map with saliencies for non-linear methods. Note that the score definition in 
eq. 7 reflects quantitatively the comparison illustrated here. Another example is 
provided in figure 3 with image #7. 

 
original image #3 

 
saliency / lin w1 

 
saliency / exp w1 

 
fixation map 

 
saliency / lin w2 

 
saliency / exp w2 

Fig. 1. For image #3, comparison of fixation map with saliency maps obtained by 4 different 
methods. Each saliency map is represented on the full scale image intensity. 
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original image #3 

 
saliency / lin w1 

 
saliency / exp w1 

 
fixation map 

 
saliency / lin w2 

 
saliency / exp w2 

Fig. 2. For image #3, comparison of fixation map with saliency maps obtained by 4 different 
methods. All saliency maps are represented with the same average intensity. 

The result of the quantitative comparison is given in figures 4 and 5. Figure 4 
shows the average score over all subjects obtained by each method and each 
individual image. More precisely, the presented values reflect the average score over 
the first 5 fixations, but other numbers of fixations look similar. The plot illustrates 
the relatively large individual variations; detailed analysis shows that the non-linear 
methods outperform linear methods in more than 80% of the images. 

 
original image #7 saliency / lin w1 

 
saliency / exp w1 

 
fixation map saliency / lin w2 saliency / exp w2 

Fig. 3. For image #7, comparison of fixation map with saliency maps obtained by 4 different 
methods. All saliency maps are represented with the same average intensity. 
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Fig. 4. Scores of the four methods for the 40 individual images 
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Fig. 5. Scores of the four methods for different viewing durations 

Figure 5 shows the results of the comparisons of the four methods. The represented 
score is the average score over all subjects and all images considering a varying 
number of fixations. The successive values represent the first 3, 5, 7, etc fixations 
recorded during the viewing of a single image and illustrate the influence of viewing 
duration. It is noteworthy that for all cases, the model of visual attention using non-
linear methods fares better in predicting where human observers foveate than the 
model using linear competition method. Quantitatively, the non-linear methods model 
yields an average score over 100% higher than the linear model. Regarding the 
weighting methods, w2 performs better than w1 with the non-linear method but both 
perform similarly with the linear methods. Here, differences are not very significant 
for a general preference of a method.  

6   Conclusions 

This paper presents a contribution to the design of models for visual attention 
computation by measuring the performance of selected methods. Performance is 
evaluated under the assumption that human visual attention is tightly linked to eye 
movements and that best similarity between the eye fixations and the saliency maps 
reflects also best performance. Motivated by visual comparisons of a large number of 
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fixation maps and corresponding saliency maps, we selected four different map 
integration methods and conducted a number of experiments to assess their 
performance. The four methods differ in their intra-map normalization scheme and 
inter-map weighting scheme. The normalization is either linear or exponential and 
there are two weighting schemes. The experiments refer to the evaluation of the 
collective and individual scores obtained with 40 images and from measurements of 
the eye movement by 20 subjects. For each image, the fixation map was visually 
compared to the saliency maps generated according to the different methods, and also, 
the relative score was computed in order to assess the performance quantitatively. The 
alternate weighting schemes do not differ very much in performance. The 
normalization methods however do, and the exponential method exhibits a score 
value more than twice as large as the linear method score, clearly showing the 
advantage of the non-linear approach. The advantage of the non-linear approach 
seems to be bound to the reduction of the background noise which tends to 
accumulate with the linear scheme. Further work is planned that will analyze this 
question and also consider integration schemes for evaluation. 
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Abstract. We propose two approaches to facial expression modelling
from single still images using a generic 3D head model without the need
of large image databases (like e.g. Active Appearance Models). The first
approach estimates the parameters of linear muscle models to obtain a
biologically inspired model of the facial expression which may be changed
intuitively afterwards. The second approach uses RBF-based interpola-
tion to deform the head model according to the given expression. As a
preprocessing stage for face recognition, this approach could achieve sig-
nificantly higher recognition rates than in the un-normalized case based
on the Eigenface approach, local binary patterns and a grey-scale corre-
lation measure.

1 Introduction

For facial expression modelling, synthesis, and recognition many methods have
been proposed [1]. One might also consider facial expression modelling as a
preprocessing step in face recognition by first modelling the facial expression
and then normalizing the face to a standard expression to achieve some sort
of facial expression invariance which besides pose, illumination and occlusion
is one of the most significant factors influencing the results of automatic face
recognition [2].

In this contribution, we introduce two approaches to facial expression mod-
elling based on a single generic 3D head model. The first approach is based on
a biomechanical 3D head model which originally was proposed by Waters et
al. for the synthesis of facial expressions [3,4]. The second approach uses RBF-
interpolated deformation to adapt the head model mesh to the given face image.
It is mainly motivated by a recent publication that suggests the use of radial
basis functions (RBF) for volume oriented deformation [5]. Hence, a ”pseudo-
muscle” model is built using RBF interpolators. This approach is not biologically
motivated but has advantages like continuity and improved processing perfor-
mance.

It must be noted that both approaches presented here are not driven by
a database, e.g. images are not required that contain all possible expressions.
Especially, no images of the faces to be processed are required. Furthermore, all
processing steps are performed on single still images.

K. Franke et al. (Eds.): DAGM 2006, LNCS 4174, pp. 324–333, 2006.
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2 Adapting a Generic Face Model for Facial Expression
Modelling

Both approaches for facial expression modelling presented here, consist of two
processing steps:

1. A coarse registration step (pose adaption) which transforms the face model
using translation, rotation and scaling so that it is optimally (in the sense of
least-squares error minimization) aligned to the given feature point locations.

2. A precise registration step, that determines the displacements for each mesh
vertex according to a few expression-variant correspondences (3D mesh ver-
tex ⇔ 2D facial feature points) which need to be defined beforehand.

First, Sect. 2.1 gives some comments on the corresponding feature points used
for the registration of the head models. Sect. 2.2 then describes the (integrated
coarse and precise) registration of the biomechanical model. The pseudo-muscle
model is discussed in Sect. 2.3.

2.1 Corresponding Feature Points

Two sets of corresponding feature points are used (Fig. 1a). The mesh vertices
marked with white circles are used for the coarse registration of the head model
as these points are not strongly influenced by facial expression changes. An
example result of the coarse registration using these feature points is shown in
Fig. 1b.

Fig. 1. (a) feature points (black and white circular markers) for model registration and
muscle model naming. (b) coarse registration by scaling, rotating and translating the
generic head model. (c) precise registration using the muscle models and jaw rotation.

The feature points marked with black circles allow a vast description of the
facial expression shown in the image as most changes in facial appearance can be
found around the mouth and in the eye region. These points are additionally used
to either estimate the muscle parameters of the biomechanical model or the RBF
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interpolation functions of the pseudo-muscle model. More corresponding feature
points can be defined for higher precision of the expression modelling, however,
we identified the feature points mentioned here to be sufficient for ”natural”
expressions and making a good trade-off between precision and performance. A
result of the precise registration step can be found in Fig. 1c.

2.2 Registration of a Biomechanical Head Model

The following sections will describe the muscle-based facial model introduced by
Waters [3] and some changes and extensions we applied to it.

We removed the neck vertices from Waters original head model and used
25 muscle models which we identified to be a good set to describe most facial
expressions. As already proposed by Waters, the jaw part of the head model can
be rotated independently to simulate a (more extreme) opening of the mouth.

Waters et al. additionally model movements of the lips by adding a sphincter
which is defined by a center point and an elliptical influence region which pulls
the mouth border points towards the center. Breton et al. show however, that this
limits the number of possible mouth shapes and suggest modelling the mouth
by using linear muscle models only [6]. We follow this approach.

Linear model of the face muscles. Waters linear muscle models are defined
by the tuple M = (H,T, R1, R2, Ω), where H and T define the head and tail
fix point of the muscle, respectively, i.e. the position of the muscle. The region
in which mesh points are influenced, is defined by the angle Ω and the two radii
R1 and R2 which further divide the region into two sections Z1 and Z2. In Z1 a
maximum of displacement is modelled while in Z2 the displacement is damped
towards the tail point.

The displacement δxhead,i
of a mesh point xhead,i ∈ R3 is given by:

δxhead,i
= cos(α) · k · r · xhead,i −H

||xhead,i −H|| (1)

where α denotes the angle between the linear muscle and the connection between
mesh point xhead,i and head H of the muscle model. The muscle parameter k
controls the contraction of the muscle. Its range is unique for each muscle model
and was empirically determined by Waters. The damping is modelled by the
function r:

r =

{
cos(1− ||H−xhead,i||

R1
) if xhead,i ∈ Z1

cos( ||H−xhead,i||−R1
R2−R1

) if xhead,i ∈ Z2

(2)

Registration of the head model mesh by estimating the muscle model
parameters. The biomechanical model limits the displacement of the mesh
vertices due to the inherited muscle models. Therefore, we can use the (non-
linear but more precise) perspective projection that can be integrated in the
registration steps as follows.

Given a set of mesh points xhead,i and their corresponding 2D feature points
ximage,i in the face image, we perform the registration of the mesh and the
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estimation of the muscle model parametersK by step-wise iterative minimization
of a cost function C using the Levenberg-Marquardt algorithm [7]:

C =
∑

i

∥∥P ·M · xhead,i(K)− ximage,i

∥∥2 → min. (3)

where M = T(tx, ty, tz) ·Rz(α) ·Ry(β) ·Rx(γ) · S(sx, sy, sz) describes the rigid
transformations (translation, rotation, scaling) applied to the 3D head model
and P denotes the perspective projection matrix. The position of each mesh
point xhead,i depends on the opening of the jaw and on the muscle parameters
combined in the vector K = [k1, · · · , kl+1]T where l denotes the number of used
muscle models.

During coarse registration the parameters of M are varied to align the mesh
to the expression-invariant feature points (Fig. 1a). The muscle parameters ki

are kept constant. A example of the coarse registration can be seen in Fig. 1b.
Then, the precise registration starts with an estimation of the mouth opening
by rotating the mesh points of the jaw, i.e. by only varying parameter kl+1.
This adaptation process is only controlled by the point at the lower peak of the
chin. All other muscle parameters (ki, i ∈ {1, · · · , l}) are kept constant. Finally,
the expression-variant feature points (Fig. 1a) are used to estimate the muscle
parameters ki, i ∈ {1, · · · , l} by iteratively optimizing the muscle contraction
and thus minimizing the cost function C. See Fig. 1c for an example of the
precise registration using the biomechanical model.

2.3 Registration of the Pseudo-muscle Model

In comparison to the biomechanical model, the pseudo-muscle model does not
impose any limitations on the displacements of the mesh vertices. Hence, an infi-
nite number of solutions are possible when using perspective projection, though
most of them produce ”unnatural” looking results. Therefore, we first discuss
an alternative method for coarse registration and afterwards outline the precise
registration using RBF interpolation.

Coarse registration of the mesh. By using the weak-perspective projection1

the coarse registration can be performed using a linear least-squares approach.
Problematic are the rotation matrices because they contain non-linear trigono-
metric functions. For small angles θ, i.e. close to frontal views, however, we can
estimate e.g. the rotation matrix around the x-axis:

Rx =

⎡⎣1 0 0
0 cos θ sin θ
0 − sin θ cos θ

⎤⎦ ≈
⎡⎣1 0 0
0 1 θ
0 −θ 1

⎤⎦ ≈ I + θ

⎡⎣0 0 0
0 0 1
0 −1 0

⎤⎦ = I + θR1

1 As we are processing frontal faces, we substitute the perspective projection by a
weak-perspective projection that assumes that the depth variation of the head is
small in comparison to the distance to the camera and the projected coordinates are
estimated by a suitable scaling operation [8].
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The result of the registration should minimize the distance of the correspond-
ing feature points:

||m∗
xy − f ||2 −→ MIN (4)

where f = (ximage,1, ..., ximage,n) denote the detected 2D feature points in the
image, m = (xhead,1, ..., xhead,n) the corresponding 3D vertices of the mesh and
m∗ the deformed model that is obtained from the original model by considering
rigid transformations with: m∗ = RSm + t. Here, R and S denote the rotation
and the scaling matrices, respectively, and t is the translation vector.

Using the linear approximations R1, R2, R3 of the rotation matrices around
the x, y and z axis respectively, we get:

Rm ≈ (θ1R1 + θ2R2 + θ3R3 + I)m

This leads to the deformed model m∗ using the overall transformation:

m∗ ≈ m̂∗ = (
∑

i

σiSi)m + (
∑

i

θiRi)m +
∑

i

τiti (5)

Equation 5 can be written as m̂∗ = As, where A ∈ R3n×9 defines all transfor-
mations

A = [S1m,S2m,S3m,R1m,R2m,R3m, t1, t2, t3] (6)

and s ∈ R9×1 the transformation parameters

s = [σ1, σ2, σ3, θ1, θ2, θ3, τ1, τ2, τ3]T (7)

Because we are using the weak-perspective projection the z-coordinate has
no effect and hence scaling (σ3) and translation (τ3) along the z-axis can be
ignored. This leads to:

min ||m∗
xy − f ||2 ≈ min ||Âŝ− f ||2 (8)

which can be solved by e.g. SVD or using the pseudo-inverse: ŝ = (ÂTÂ)−1ÂTf

Precise registration of a 3D head model using RBF interpolation. To
precisely register the head model mesh, we apply the following global interpola-
tion function to all mesh vertices p:

f(p) =
∑

i

ciφi(p) + Mp + t (9)

with the radial basis functions φi(p) = φ(||p− pi||).
To determine the coefficients ci and the affine components M und t, a linear

equation system needs to be solved under the interpolation constraint di = f(pi),
where pi are the interpolation centers and di the displacement vectors associated
with each pi. Additionally, the constraints

∑
i ci = 0 and

∑
i cipi

T = 0 must
be considered to remove the affine components from the radial basis functions.

The displacement vectors for each correspondence (facial feature points in
Fig. 1a) can be simply determined by: di = m∗

xy,i − ximage,i. Hence, we get a
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set of interpolation centers and displacement vectors which allow to determine
the ci by solving the above mentioned equation system. By applying the RBF
interpolation (Eq. 9) to the head model, a displacement vector for each mesh
vertex can be estimated and hence the whole head model can be appropriately
adapted to the given face image.

It further must be decided which basis function can be used. We achieved
the best results using the Gaussian basis function: φ(r) = e−cr2

. The value of
the parameter c depends on the size of the head model and can be determined
experimentally. By using the Gaussian basis function the overall interpolation
of the head model by a single basis function has some kind of local character.
This property is necessary as the head model must be more strongly distorted
in some parts (e.g. around the mouth) than in others (e.g. nose). This can be
controlled by appropriately choosing suitable corresponding feature points.

By choosing the Gaussian kernel function, self-penetration of the mesh is
unlikely because the global deformation function becomes C∞-continuous. This
fact is important to mention, because discontinuous artefacts can appear when
using the biomechanical model. In this case, the linear muscle models perform a
patch-wise deformation of the mesh because they take affect in local regions that
might overlap. Additionally, it might happen that several vertices are moved to
the position of the muscle’s head vertex when the muscle needs to be strongly
”contracted”. These two properties can lead to discontinuous artefacts, hence,
requiring a different modelling approach, like e.g. the RBF interpolation.

3 Experimental Results

In this section, we present some results which we achieved using the two ap-
proaches proposed here. Sect. 3.2 will outline the face expression modelling re-
sults which we achieved using the biomechanical model in a qualitative man-
ner. In Sect. 3.3 we like to show some results of our application of the RBF-
interpolation based expression modelling approach, that is robust face recogni-
tion by image normalization.

3.1 Face Image Databases

For our experiments we used a face image database of 17 persons each showing 6
expressions (neutral, smiling, surprise, anger, (pursed lips for a) kiss, grinning).
The images were taken in two sessions with a resolution of 800×600 pixels, i.e.
the face’s width was about 160 pixels in average.

3.2 Facial Expression Modelling Using Linear Muscle Models

Fig. 2 shows some results which were obtained on facial images in frontal pose.
On the left side, the face region of the processed images are depicted. The center
column shows the head model with contracted muscles after the whole adapta-
tion process. The diagrams on the right side show which muscles (see Fig. 1a)
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Fig. 2. Three example results showing the ability to model facial expression variations:
(a) frightened, (b) smile, (c) furious. Original image (left column), adapted head model
(center column) and muscle contraction parameters (right column).

were contracted and how the contraction parameters were varied from the neu-
tral position (zero line).

The first example shows a ”frightened” expression. The typical raising of the
eyebrows in this facial expression is well estimated by the adaptation especially
of the muscles located on the forehead (muscles 5 − 10). Additionally, a slight
adaption of the mouth shape is performed (muscles 17− 25).

The smiling facial expression is modelled precisely as well. Mainly adaptation
of the mouth shape (muscles 1 + 2 and 17− 23) but also adaptation of the eye
region (muscles 9− 12 and 15 + 16) is performed.

A distinctive characteristic for the furious expression in the third example
(Fig. 2c) is the contraction of eye brows and mouth. Both are modelled by the
contraction of the muscles 7− 10 and 15− 16 (eye brows) and 23− 25 (mouth),
respectively.

The muscle parameter plots show that the muscle parameter vector K =
[k1, . . . , kl] (Eq. 1) could be used to build a facial expression recognition system.
This, however, was not part of this study and must be examined in future work.
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3.3 Face Recognition Using Expression-Normalized Views

The pseudo-muscle model is obviously better suited for normalizing images for
face recognition in cases when the muscle models must be extremely contracted.
In this case, the patch-wise deformation property of the muscles as well as the
possible contraction of multiple vertices into the head of a muscle result in a
discontinuous folding of the image texture thus producing unnatural results, e.g.
note the eye brows in Fig. 3a. Therefore, we only examined the pseudo-muscle
model by performing face recognition experiments.

To demonstrate the impact of the proposed approach using different methods
of face recognition, we compare three approaches here: the eigenface approach
[9], local binary patterns (LBP) [10] and a simple grey-value comparison. In the
latter case, the grey-values of the face images were simply concatenated into a
feature vector and the Euclidean distance was used as distance measure.

In each test session, the images of a facial expression were trained and tested
against all other facial expressions of the 17 persons in the database, i.e. only
one training sample per subject and 85 test images in total were used. For
comparison, the tests were performed with the original images that were only
normalized by scale and rotation considering the eye locations. The results are
shown in figure 3 and table 1.

Table 1. Overall recognition results of the examined recognition methods

without normalization with normalization
Eigenfaces 51,0% 60,2%
intensity 75,3% 84,3%
LBP 82,0% 91,0%

For the eigenface approach a performance improvement of up to 26% could be
achieved (”surprise”). In average the recognition performance of the eigenface
approach could be increased by 9,2% (Fig. 3b).

The intensity feature based classification (Fig. 3c) shows that our approach
can deal with facial expressions involving strong muscle tensions (”smile”, ”sur-
prise”) as well as with minor changes in expression (”grin”, ”neutral”). Only
the ”angry” facial expression leads to a decrease in performance. This can be
explained by the fact that we can not reconstruct textures that are covered, e.g.
the texture of the region above the eyes in the ”angry” expression). The eigenface
approach is not affected due to the data reduction inherited in the PCA.

The results of the LBP-based face recognition experiment (Fig. 3d) show that
incorrect edge information can be contained in the normalized images. Here, the
grinning expression let a to decreased recognition rate. However, for the other
expressions an increase of 7% (”kiss”)−17,6% (”surprise”) could be achieved, in
average an increase of 9%. The overall recognition rate for the LBP-based recog-
nition increased to 91%. These results motivate a combination of the recognition
algorithms as different information is considered by the different features.
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Fig. 3. a) Example of a normalization result of the two approaches (left: original; cen-
ter: biomechanical model; right: RBF model); b)-d) Recognition rates of the examined
methods for each expression using the pseudo-muscle model based normalization

4 Conclusion

We presented two approaches that can be used to model facial expressions found
in a single still image by a generic 3D head model without using large image
databases. The adaptation of the mesh is performed in a two-step process by
first coarsely aligning the mesh until the minimal distance between corresponding
feature points in the image and in the mesh is obtained. Especially, feature points
that are largely invariant against facial changes are involved in this registration
step. In comparison to that, feature points that are significantly moved under
different facial expressions control the precise adaptation of the 3D mesh to the
face image.

In this stage, a biologically inspired head model allows to simulate facial
expressions using linear muscle models, i.e. the contraction parameters of the
muscle models are estimated using a non-linear optimization process by further
minimizing the distance between corresponding feature points. This approach
should be chosen if further processing or changing of the facial expression in a
realistic manner is intended.

A deformation based on RBF-interpolation using a Gaussian kernel func-
tion is not biologically motivated, but is more reliable due to its mathemat-
ical properties. If only a ”distorted” mesh is needed, e.g. for a normalization
step when performing automatic face recognition, this approach is more suitable
than the biomechanical approach. The potential of this method was shown in
face recognition experiments. By normalizing face images to a neutral expres-
sion, recognition rates could be improved significantly by using three recognition
algorithms.
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Abstract. In this paper, we present a new method for producing om-
nidirectional image signatures that are purposed to localize a mobile
robot in an office environment. To solve the problem of perceptual alias-
ing common to the image based recognition approaches, we choose to
build signatures that greatly vary between rooms and slowly vary inside
a given room. We suggest an averaging technique based on Haar integral
invariance. It takes into account the movements the robot can do in a
room and the omni image transformations thus produced.

The variability of the built signatures is adjusted (total or partial Haar
invariance) according to defined subsets of the group transformation. The
experimental results prove to get significantly interesting results for place
recognition and robot localization with variable accuracy: From global
rough localization to local precise one.

1 Introduction

Recently, an increased interest in omnidirectional vision for robotic applications
could be noted, thanks to the very large field of view of these sensors. However,
theoretical and methodological challenges should be taken to account for the
specific properties of the particular omnidirectional imaging sensor. This work
deals with the localization of robots in an indoor office environment using an
omnidirectional camera.

Unlike conventional methods for robot localization using landmarks [1] or map
matching [2], image- (or appearance-)based localization approaches do not call for
explicit models of the environment. These approaches (as [3,4,5]) prevent you from
having to use a map and give a rough estimation of the robot location by matching
a set of views taken by the robot to reference views stored in previous experiments.

We are interested in localizing a mobile robot in unknown and explored environ-
ments, using only omnidirectional images. The robot position estimation problem
consists in finding the best match for the current image among the reference im-
ages. This can be a tricky problem if the environment displays symmetrical struc-
tures like doors and corridors, so the current view will match not only the referred
location image, but also all similar images giving perceptual aliasing.

K. Franke et al. (Eds.): DAGM 2006, LNCS 4174, pp. 334–343, 2006.
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The approach we propose in this paper deals with this problem, giving an
elegant way to formally compute image signatures using Haar integral features.
We investigate partial and global Haar invariance to set different localization
accuracies depending on the kind of motion required by the robot. We also pro-
vide a suitable adaptation of the signature extraction method to the geometrical
image distortions caused by the catadioptric omni sensor.

The paper is organized as follows: We start (Section 2) with a review of
the related work and, in Section 3, present our method of signature extractions
using Haar features. Sections 4 and 5 give experimental evidence of the proposed
method, and show comparative results of partial and total Haar signatures,
in several indoor environments. Finally, Section 6 concludes the work with a
summary and an outline of our ongoing work.

2 Related Works

Image-based localization methods are almost inspired by matching techniques,
developed in the image retrieval field. Actually, image retrieval systems aim to
find images that are similar in appearance to an input query, from a large-size
database. However, while a few bad matches are not a problem in image retrieval,
a single bad match could lead the robot localization system to get lost and must
therefore be strictly avoided for the localization task.

Image retrieval systems usually rely on histograms for the matching process.
This is due to their compact representation of the images, their invariance to
rotation (which is very interesting for omnidirectional images) and their very
low sensitivity to small translations. Multi-dimensional histograms of omnidi-
rectional images were applied in [4] for robot indoor localization, and in [5] for
outdoor environments using local characteristics, evaluated on multiple rings
sampled on the omni-image. But the histograms are not invariant when impor-
tant movements are involved.

Authors in [3,6,7] have issued image compact representations using subspaces
of Fourier harmonics, i.e., they calculate the Fourier coefficients to represent im-
ages in a lower-dimensional subspace. These representations lack robustness since
the Fourier transform is inherently a non-robust transformation to occlusions. To
overcome the lack of robustness in case of perceptual aliasing, [8] used a Monte-
Carlo localization technique and their system was able to estimate and track the
position of the robot while it was moving. To achieve rotational independence,
[9] proposed a zero-phase representation of images by zeroing the phase of the
first harmonic of the Fourier transform. The method gives similar reference ori-
entations for images taken at nearby positions, but is very sensitive to variations
in the scene and occlusions (since operating with one single frequency).

The main interest of the previous techniques is to find an invariant represen-
tation to the omnidirectional image rotations (taken at the same position under
different orientations of the robot). A solution is provided by wrapping images to
cylindrical panoramic representations in that way a rotation of the original image
is equivalent to a shift of the image plane deployed from the cylindrical image.
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This is widely investigated in eigenspace approaches [10,11,12,13], that build a
database model by computing the eigenvectors or the principal components on
the wrapped images.

Invariance theory helps to build image features that should exhibit invariance
against different transformations on the scenes. Lowe [14,15] proposed SIFT1 fea-
tures as invariants to image translation, scaling and rotation; and partially invari-
ants to illumination changes. Variants of SIFT (Modified SIFT [16], Iterative SIFT
[17]) have been proposed to reduce the computational efforts of the feature extrac-
tion and matching process, and applied in almost real time robot localization.

We propose in this paper to formally define invariant signatures of images
based on Haar integrals. Firstly introduced by Schulz-Mirbach in [18], this invari-
ant has been used, in case of euclidian motions, for image retrieval in [19,20,21],
and for mobile robot localization [22] (although the Haar integral was not explic-
itly used). Haar integral invariant features could be extracted directly from raw
images, without need to preprocessing such as segmentation or edge extraction.

3 Haar Invariant Signatures Extraction

3.1 The Process of the Signature-Based Localization

The image-based localization approach is a twofold procedure: In a setup stage,
the robot explores the environment following a training strategy and acquires
several omnidirectional snapshots which together form a good depiction of the
environment and constitute the reference images. Figure 1 sketches an example of
an indoor environment seen by the omnidirectional sensor of the robot. Partial
or total Haar invariant signatures (detailed below) are computed off line for
the reference images. This allows for efficient memory consumption, efficient
matching, and localization. In the running stage, the robot acquires new images,
computes online their Haar signatures and finds the best match for the current
image among the reference images.

3.2 The General Idea of Haar Integral Features

The Haar invariant integral could be viewed as a course through the space of
the transformation group parameters. It is expressed as:

IHaar(x) =
1
|G|

∫
G

f [g(x)]dg with |G| =
∫

G

dg (1)

where G is the transformation group, and g(x) the action of g, an element of G,
on vector x. In case of x = M being an image, eq.1 suggests that the integral in-
variant feature is computed by first 1) applying kernel function f to each pixel in
transformed image g(M) then 2) summing up over all transformations of G and
3) normalizing the result to get a single representation of the invariant feature.

1 Scale Invariant Feature Transform.
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(a) (b) (c) (d)

Fig. 1. The Koala robot (a) and its omnidirectional sensor, modelled by a projection
on the equivalent sphere (b): To 3D point (ρ, θ, ϕ) seen by the robot sensor, corresponds
a point (u, v) in the raw image. (c) and (d) show images acquired by the robot sensor
during a translation.

Our approach differs from existing Haar approaches [18,19] in the nature
of the transformations considered. The authors deal with euclidian transfor-
mations of the images, given cyclic boundary conditions. These hypotheses on
image transformations do not hold anymore when dealing with the geometry of
omnidirectional sensors. We generalize Haar integral features to integrate the
transformations induced by the geometry of the sensor and transformed under
the robot movements (translations and rotations) in the scene. The variability of
the built features can be adjusted (partial Haar invariance) according to defined
subsets of the group transformation (Gj ⊆ G). We finally define distributions
based on a partition of the constructed (partial or global) Haar features and
build up histograms of these distributions.

3.3 The Camera Transformation Model

Due to the complexity of omni-image transformations, they are often projected
back onto a cylinder, and then mapped back by an isometry into a plane so as to
have them looking more similar to classical perspective images. Here we use the
equivalence sphere model given by Geyer and Daniilidis [23]. They prove that
central catadioptric projection can be modeled with the projection of the sphere
to a horizontal plane from a point on the vertical axis of the sphere. Once the
sensor has been calibrated, the raw image is projected onto this sphere, equiva-
lent to the actual mirror from the point of view of the image formation process
(Fig. 1(b)).

Spherical image MS(θ, ϕ) (eq.2) has a topology which looks more adapted to
the sensor properties than the raw image. MS is formed by regularly meshing
the sphere in (θ, ϕ) and interpolating at the corresponding points in the original
image, M(u, v) using the projective equation (2):{

u = cot(θ/2) · cos(ϕ)
v = cot(θ/2) · sin(ϕ) (2)

3.4 The Transformation Group

Without loss of generality, the reference frame of the robot and that of the mirror
can be considered as aligned along the Oz−axis. Let’s consider how the spherical
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image, MS(θ, ϕ) can be transformed when the robot moves. The rotation of the
robot (at the same position) around its vertical axis by angle ϕ induces the
rotation of the sphere around the Oz axis. Using an omnidirectional camera is
an advantage to have a complete view so that the image content information
does not change when changing the orientation.

When the robot motion involves a translation (robot changes in position),
the transformation acting onto the spherical image is composed of translations
in θ and ϕ. We assume these transformations still verifying a group action, as
almost scene information remain present in the omni-image. Due to the non
uniform resolution and distorsion of omnidirectional images (see ex. fig.1), the
image point transformations are not uniform and are weighted by the variation
of Haar measure dg = sin θdθdϕ.

We exploit the symmetry of revolution of the considered kernel supports to
remove the integration over the rotation group action. Finally, the group pa-
rameters acting on the images are translation parameters in θ ∈ [π/2, π[ and
ϕ ∈ [0, 2π[. In the Haar integration over θ, the transformation group support is
varied to adjust the variability of features to local or global changes in the scene,
corresponding to small or large movements of the robot.

3.5 The Kernel Function

The averaging technique to construct invariant features depends on kernel func-
tion f . The definition of kernel f appears to be important for the robustness
and stability of the built invariant features. Work in [19,20] used a large set
of monomials and relational kernel functions with local support to increase the
completeness and non ambiguity of the invariant sets.

We use a kernel function of local characteristics based on a Difference of
Gaussians (DoG) (eq.3). The DoG is usually applied for keypoint detection,
and is shown [15] to be a good approximation for the σ2−Gaussian Laplacian
which is invariant2 to affine change of luminosity, rotation and locally invariant
to perspective transform.

DoG(θ, ϕ, σ) =
1

2π(kσ)2
e
− θ2+ϕ2

2(kσ)2 − 1
2πσ2

e−
θ2+ϕ2

2σ2 (3)

Kernel function f : MS �→ Cf defines a mapping from spherical image MS to
feature space Cf . f(MS) denotes the image of local features obtained by Haar
integration and is produced by: 1) convoluting the (grey-scaled) spherical im-
age points with the difference of two nearby scale gaussians; 2) averaging on
the pixel neighbors belonging to DoG support ΔDoG (of size 6kσ); and 3) par-
tioning the DoG space into a fixed partition {DoGi}i=1,...,k. Similarly to [19],
we build fuzzy partitions using continuous triangle functions to avoid disconti-
nuities of feature assignments at the edges of DoG supports. We thus produce

2 [24] referenced by Lowe [15].
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f(MS) = {fi(MS)}i=1,...,k that we normalize to make the sum at a given point
of the fi feature space equals one3.

f (MS(θ0, ϕ0)) =

⎧⎨⎩ ∑
(θ,ϕ)∈ΔDoGi

DoGi(θ − θ0, ϕ− ϕ0, σ) ∗MS(θ, ϕ)

⎫⎬⎭
i∈[1,2,..,k]

(4)
Haar integration consists then in a course (path) between the feature image

points belonging to every fi, weighted by the Haar measure depending on their
position in the image: IHaar = {IHaari}i=1,...,k (eq.5). Written in the discrete
case, we have for i = 1, . . . , k:

IHaari (MS) =
1
Δθ

1
2π

∑
θ∈Δθ;ϕ∈[0,2π[

fi(θ, ϕ) sin θdθdϕ (5)

The size of θ−support Δθ is varied from π/2 (full integration) to π/2/l for l
partial integrations over annulus regions of thickness l. The obtained distribution
looks like a histogram, h (IHaar(MS)) = {IHaari(MS); i = 1, . . . , k} of invariant
features and constitutes the image signature (parameterized by σ).

Finally, to compare image signatures, we use the L1−norm similarity measure
between their Haar distributions. This similarity measure is averaged in case of
l partial Haar integrations by:

D(M1S ,M2S) =
1
l

l∑
j=1

d(IHaar(M1S/j), IHaar(M2S/j))

where l is the thickness of the jth−annulus region, MS/j, of spherical image MS .

4 The Experimental Setup

The Koala robot, endowed with a catadioptric camera, was moved in our indoor
lab environment, composed of several rooms, where the perceptual aliasing is par-
ticularly high (doors, ”wall cupboards”, . . . ). We have built an image database
composed of approximately 250 images evenly distributed in the lab rooms. Im-
ages taken in a given room were manually clustered in an associated directory,
thus allowing to calculate the centröıd and the variance of the cluster with re-
spect to the L1−norm. This was repeated for every room the robot has surveyed.

5 The Experimental Results

This section reports experimental results we have obtained with the robot. We
study the performance of the Haar invariant signatures in distinguishing different
rooms as well as giving slightly shifted localizations in the same room.
3 fi could be seen as the probability for a characteristic to belong to a given feature bin.
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Fig. 2. Comparison of the Fisher criterion using total and partial invariant Haar signa-
tures (σ = 1 and k =

√
2)). (a): Results for different lab rooms explored by the robot.

dark : Total Haar integration, grey and white: Partial Haar integrations while sampling
the omni images in 3 and 5 annulus regions respectively. (b): The mean values of Fisher
criteria vs. the number of annulus regions used for Haar integration.

5.1 The Place Recognition Performance

To differentiate between different places in the lab, in spite of the high per-
ceptual aliasing, we need good clustering properties of the extracted features.
To assess the clustering performance the proposed method, we use the Fisher
criterion which measures the separation between two classes. It is defined as
J = (η1 − η2)2/(σ1

2 + σ2
2), evaluating the ratio of the squared distance between

centröıds η1 and η2 of the classes over variances σ1
2 and σ2

2 of the represen-
tations belonging to them. The higher this ratio is, the better the separability
between two classes is. Figure 2 shows the comparative results when total and
several partial Haar integral techniques were used.

For all Haar invariant signatures, we obtain high Fisher criteria, witch reveals
a good separability and recognition ability of the lab rooms. In a previous work
[25], we have compared total Haar integration to other signature extraction
methods [9,7] for robot localization, and have shown an improvement of Fisher
criteria of order 5 to 10, depending on the lab rooms.

As could be expected, by increasing the number of partial Haar integrations,
we slightly weaken the Fisher criteria and so the separability of image equivalent
classes. This is due to the reduction of the integral support size (Gj).

5.2 The Robot Position Estimation Performance

We are now interested to evaluate the signature discrimination for the robot
position estimation inside each room. When the robot moves in an area, small
distortions are produced in the omnidirectional image space and we should ex-
pect small changes in the feature space. We study this through the evolution
of the L1−norm between signatures of the image database with respect to the
physical distance between the positions they are associated to.
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Fig. 3. (a)→(c): The evolution of the L1−norm with respect to the distance (in cm) on
the ground in different rooms. (d)→(f): Robot localization results, applying total and
partial Haar integral signatures. Dark line: Total Haar integration. The gradual lighting
of grey levels of lines corresponds to the increase of the number of group supports Gj

in partial Haar integrations (resulting in increase of precision in robot localization).

The results are shown in fig. 3(a-c). Total Haar invariant signatures produce
smaller variations than partial Haar invariant signatures for the same rooms.
This is not surprising as we were looking to produce a global invariant. When
increasing the number of partial Haar integrations, which in the same time,
reduces the integral support size, we consider transformations on annulus regions
that correspond to small movements in the nearby of the robot. This increases
the precision of the robot localization. Figure 3(d-f) gives the position estimation
of the robot in different rooms with variable accuracies corresponding to variable
partial Haar integration supports. An interesting fact is that the variation of the
(partial and total) Haar signatures is still monotonic. Thus, we can define a
bijective relation between the L1−norm and the physical distance, allowing a
localization inside a given room using these signatures.

On an AMD 1800MHz, the whole process of the signature construction takes
approximatively 0.3s. The comparison process between a signature and all the
signatures (250) of the image database takes around 400μs.

6 Conclusion and Ongoing Work

We have proposed an efficient methodology to build invariant signatures for
omni- image based localization applications. Haar integral formalism offers a
solid theoretic foundation to the invariant signatures of images we have intro-
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duced. The integration over the group transformations allows us to deal naturally
with the geometric and projective transformations of omnidirectional sensors, as
produced by the robot movements.

Our method benefits from the local invariance properties of the defined kernel
function and the global invariance of Haar integration. The latter is tuned by
varying the number the supports of the transformation group, corresponding to
small movements in the nearby of the robot. Partial Haar integrations increase
the accuracy of the robot localization.

Using the Fisher criterion, the built signatures have figured out a wide sep-
aration ability of room classes, contributing to reduce the perceptual aliasing.
Moreover, the smooth variation and the continuity property of the built Haar
signatures, inside each category, provides a good approximation to the robot
position for localization.

Additional development is under way to build different non linear kernel func-
tions as we believe that this will influence the stability and the precision of
localization in a positive way.
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9. T. Pajdla and V. Hlaváč, “Zero phase representation of panoramic images for
image based localization,” in 8-th International Conference on Computer Analysis
of Images and Patterns, F. Solina and A. Leonardis, Eds., no. 1689. Ljubljana,
Slovenia: LNCS, Springer Verlag, September 1999, pp. 550–557.

10. M. Jogan and A. Leonardis, “Robust localization using an omnidirectional
appearance-based subspace model of environment,” Robotics and Autonomous Sys-
tems, vol. 45, no. 1, 2003.



Extraction of Haar Integral Features on Omnidirectional Images 343

11. S. Maeda, Y. Kuno, and Y. Shirai, “Active navigation vision based on
eigenspace analysis,” in International Conference on Intelligent Robots and Sys-
tems. IEEE/RSJ, 1997, pp. 1018–1023.

12. A. Leonardis and H. Bischof, “Robust recognition using eigenimages,” Computer
Vision and Image Understanding Special Issue on Robust Statistical Techniques in
Image Understanding, vol. 78, no. 1, pp. 99–118, 2000.

13. J. Gaspar, N. Winters, and J. Santos-Victor, “Vision-based navigation and envi-
ronmental representations with an omnidirectional camera,” in IEEE Transactions
on Robotics and Automation, vol. 16, no. 6, December 2000, pp. 890–898.

14. D. Lowe, “Object recognition from local scale-invariant features,” in International
Conference on Computer Vision, September 1999, pp. 1150–1157.

15. ——, “Distinctive image features from scale-invariant keypoints,” International
Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.

16. H. Andreasson, A. Treptow, and T. Duckett, “Localization for mobile robots using
panoramic vision, local features and particle filter,” in IEEE International Confer-
ence on Robotics and Automation, 2005.

17. H. Tamimi, H. Andreasson, A. Treptow, T. Duckett, and A. Zell, “Localization of
mobile robots with omnidirectional vision using particle filter and iterative sift,”
in European Conference on Mobile Robots, Ancona, Italy, 2005.

18. H. Schulz-Mirbach, H. Burkhardt, and S. Sigglekow, “Using invariant features for
content based data retrieval,” in Workshop on Nonlinear Methods in Model-Based
Image Interpretation, Lausanne, Switzerland, September 1996, pp. 1–5.

19. S. Sigglekow, “Feature histograms for content-based image retrieval,” Ph.D. dis-
sertation, Universitat Freiburg im Breusgau, 2002.

20. A. Halawani and H. Burkhardt, “Image retrieval by local evaluation of nonlinear
kernel functions around salient points,” in International Conference on Pattern
Recognition, vol. 2, August 2004, pp. 955–960.

21. ——, “On using histograms of local invariant features for image retrieval,” in IAPR
Workshop on Machine Vision Applications, May 2005, pp. 538–541.

22. H. B. J. Wolf, W. Burgard, “Using an image retrieval system for vision-based mobile
robot localization,” in Proc. of the International Conference on Image and Video
Retrieval (CIVR), M. S. Lew, N. Sebe, and J. P. Eakins, Eds. Springer-Verlag
Berlin Heidelberg, 2002, pp. 108–119.

23. C. Geyer and K. Daniilidis, “Catadioptric projective geometry,” International
Journal of Computer Vision, vol. 45, no. 3, pp. 223–243, 2001.

24. T. Lindeberg, “Scale-space theory: A basic tool for analysing structures at different
scales,” Journal of Applied Statistics, vol. 21, no. 2, pp. 224–270, 1994.

25. C. Charron, O. Labbani-Igbida, and E. Mouaddib, “On building omnidirectional
image signatures using haar invariant features: Application to the localization of
robots,” in To appear in ACIVS. Antwerp, Belgium: Lecture Notes in Computer
Science, Springer Verlag, September 2006.



Model Selection in Kernel Methods Based on a
Spectral Analysis of Label Information

Mikio L. Braun1, Tilman Lange2, and Joachim M. Buhmann2

1 Fraunhofer Institute FIRST, Intelligent Data Analysis Group,
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Abstract. We propose a novel method for addressing the model selection prob-
lem in the context of kernel methods. In contrast to existing methods which rely
on hold-out testing or try to compensate for the optimism of the generalization
error, our method is based on a structural analysis of the label information using
the eigenstructure of the kernel matrix. In this setting, the label vector can be
transformed into a representation in which the smooth information is easily dis-
cernible from the noise. This permits to estimate a cut-off dimension such that the
leading coefficients in that representation contains the learnable information, dis-
carding the noise. Based on this cut-off dimension, the regularization parameter
is estimated for kernel ridge regression.

1 Introduction

Kernel methods represent a widely used family of learning algorithms for supervised
learning. Irrespective of their theoretical motivation and background, kernel methods
compute a predictor which can be expressed as

f̂(x) =
n∑

i=1

k(x,Xi)α̂i + α̂0 (1)

with Xi being the features of training examples (Xi, Yi), k the kernel function and
a parameter vector α̂ = (α̂0, . . . , α̂n) ∈ Rn+1 which is determined by the learning
algorithm based on the training examples. Typical examples for algorithms which gen-
erate this kind of fit include Support Vector Machines of various types, Kernel Ridge
Regression, and Gaussian Processes.

Since all the algorithms have to solve basically the same problem of finding a param-
eter vector in eq. (1) such that the resulting f̂ leads to good predictions, the relationship
between the space of all functions of the form (1) and the data-source generating the
training examples provides an a priori condition of the learning task in the setting of
kernel methods.

This leads to the question of model selection, either concerning the fitness of the ker-
nel, or the choice of regularization parameters. This problem is commonly approached

K. Franke et al. (Eds.): DAGM 2006, LNCS 4174, pp. 344–353, 2006.
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by adopting a black-box approach, and estimating the generalization error by cross-
validation. While this works well in practice (in particular when the cross-validation er-
ror can be computed efficiently, as is the case in the context of kernel ridge regression),
the question arises, whether additional insight into the nature of the learning problem
cannot lead to a less black-box method for model selection.

Now, recent approximation results on the eigenvalues ([1], [2], [3]) and eigenvectors
([4], [5]) of the kernel matrix, and in particular the improved bounds from [6], have lead
to novel insights into the relationship of the label information Yi and the eigenvectors of
the kernel matrix which will allow us to address the question of model selection without
resorting to hold-out-testing: Using the orthogonal basis of eigenvectors of the kernel
matrix, one can estimate an effective dimensionality of the learning problem, based on
which one can then select regularization constants.

This structural analysis of the label information is introduced in Section 2. In Sec-
tion 3, we show how this analysis can be used to perform model selection in the context
of kernel ridge regression, which we have picked as an example. In Section 4, we com-
pare the resulting model selection method against state-of-the-art methods to show that
competitive model selection without hold-out testing is possible.

2 Spectral Analysis of the Labels

In this section, we will discuss how recent approximation results imply that under cer-
tain conditions, a transformation of the vector of training labels using the eigenvectors
of the kernel matrix leads to a new representation of the label vector where the in-
teresting information is contained in the leading coefficients. By determining a cut-off
dimension in this representation, one can effectively separate the relevant from the noise
part in the training label information.

Fix a training set (X1, Y1), . . . , (Xn, Yn) of size n and a kernel function k, which is
assumed to be a Mercer kernel (see [7]). The kernel matrix K is the n× n matrix with
entries [K]ij = k(Xi, Xj).

For general data-sources, no easy answers can be expected, because the learning task
can be arbitrarily ill-behaved. Therefore, we restrict the discussion to the case where the
training examples are computed by subsampling a smooth function:

Yi = f(Xi) + εi, (2)

where ε1, . . . , εn is independent zero mean noise. Smoothness of f is defined in the
sense that f is a member of the reproducing kernel Hilbert space (RKHS) Hk induced
by k. More specifically, by Mercer’s theorem, there exists a �1-sequence (γi)i∈N and an
orthogonal family of functions (ψi)i∈N, such that

k(x, y) =
∞∑

i=1

γiψi(x)ψi(y). (3)

Then, f ∈ Hk, iff f =
∑∞

i=1 ciψi, with ‖f‖2Hk
:=
∑∞

i=1 c
2
i /γi < ∞. Consequently,

the coefficients ci decay rather quickly.
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It will be convenient to consider the vector of all labels Y = (Y1, . . . , Yn). By our
modelling assumption (2), with F = (f(X1), . . . , f(Xn)) and ε = (ε1, . . . , εn), we
can write Y as the sum of a sample vector of a smooth function and noise: Y = F + ε.
Obviously, in its original sample-wise representation, the two parts F and ε of Y are
not easily distinguishable. We are looking for a change of representation which allows
us to distinguish between F and ε. We will shortly see that the eigendecomposition of
the kernel matrix can be used to this end.

Recall that the kernel matrix is symmetric and positive definite, since k is a Mercer
kernel. Therefore, there exists a so-called eigendecomposition of K as K = UΛU�,
where U is orthogonal (that is, UU� = U�U = I), and Λ = diag(λ1, . . . , λn). We
will assume throughout this paper that the columns of U and Λ have been ordered such
that λ1 ≥ . . . ≥ λn. It is easy to see that the ith column ui of U is the eigenvector of K
to the corresponding eigenvalue λi. Since U is orthogonal, its columns (and therefore
the eigenvectors of K) form an orthonormal basis of R

n, the eigenbasis of K.
Now since U is orthogonal, we can easily compute the coefficients of Y with respect

to the eigenbasis of K, u1, . . . , un, simply by applying U� to Y . We obtain,

U�Y = U�(F + ε) = U�F + U�ε, (4)

that is, the coefficients of Y are given by the superposition of the coefficients of F
and those of the noise ε. The interesting observation is now that U�F and U�ε have
radically different structural properties.

First, we have a look at U�F . Recall that in (3), we have introduced an orthogonal
family of functions (ψi). These are also the eigenfunctions of the integral operator Tk

associated with k. One can show that the scalar products 〈ψi, f〉 are approximated by
the scalar products u�i F , due to the fact that K/n approximates Tk in an appropriate
sense as n→∞ (the actual details are rather involved, see [4], [5] for a reference.) Now
since the ψi are orthogonal, 〈ψi, f〉 = ci, and as f ∈ Hk, ci decays to zero quickly.
Therefore, since u�i F approximates ci, we can expect that u�i F decays to zero as i→ n
as well (recent results [6] show that even in the finite sample setting, the coefficients are
approximated with high relative accuracy). The actual decay rate depends on the com-
plexity (or non-smoothness) of f . In summary, U�F will only have a finite number
of large entries in the beginning (recall that we have sorted U such that the associated
eigenvalues are in non-increasing order.) In addition, this number is independent of the
number of training examples, such that it is a true characterization of f .

Now let us turn to U�ε. First of all, assume that ε is normally distributed with mean
0 and covariance matrix σ2

εIn. In that case, U�ε has the same distribution as ε, because
U�ε is just a (random) rotation of ε and, since ε is spherically distributed, so is U�ε.
Therefore, a single realization of U�ε will typically be uniformly spread out, meaning
that the individual coefficients [U�ε]i will all be on the same level. This behavior will
still hold to a lesser extent if ε is not normally distributed as long as the variances for the
different εi are similar. Thus, a typical realization of ε will be more or less uniformly
spread out, and the same applies to U�ε.

In summary, starting with the label vector Y , through an appropriate change of rep-
resentation, we obtain an alternative representation of Y in which the two parts F and
ε have significantly different structures: U�F decays quickly, while U�ε is uniformly
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Fig. 1. The noisy sinc function. Left: The input data. Right: Absolute values of the coefficients
with respect to the eigenbasis of the kernel matrix for a radial-basis kernel with width 0.3 of the
subsampled function F and the noise ε, respectively. The coefficients of F decay quickly while
those of ε are uniformly spread out.

spread out. Figure 1 illustrates these observations for the example of f(x) = sinc(4x),
and normally distributed ε.

2.1 Estimating the Cut-Off Dimension

The observations so far are interesting in their own right, but what we need is a method
for automatically estimating the relevant, non-noise contentF in Y . As explained in the
last section, U�Y = U�F + U�ε, and we can expect that there exists some cut-off
dimension d such that for i > d, [U�Y ]i will only contain noise. The problem is that
neither the exact shape of U�F , nor the noise variance is in general known.

We thus propose the following heuristic for estimating d. Let s = U�Y where s is
assumed to be made up of two components:

si ∼
{
N (0, σ2

1) 1 ≤ i ≤ j,

N (0, σ2
2) j + 1 ≤ i ≤ n.

(5)

For the second part corresponding to the noise, the assumption of Gaussianity is actually
justified if ε is Gaussian. For the first part, since prior knowledge is not available, the
Gaussian distribution has been chosen as a baseline approximation. We will later see
that this choice works very well despite its special form.

We perform a maximum likelihood fit for each j ∈ {1, . . . , n− 1}. The negative
log-likelihood is then proportional to

lj =
j

n
log σ2

1 +
n− j

n
log σ2

2 , with σ2
1 =

1
j

j∑
i=1

s2i , σ
2
2 =

1
n− j

n∑
i=j+1

s2i . (6)

We select the j which minimizes the negative log-likelihood, giving the cut-off point
d, such that the first d eigenspaces contain the signal. The algorithm is summarized
in Figure 2. The computational requirements are dominated by the computation of the
eigendecomposition of K, which requires about O(n3), and the computation of s. The
log-likelihoods can then be computed in O(n).
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Input: kernel matrix K ∈ R
n×n,

labels Y = (Y1, . . . , Yn) ∈ R
n.

Output: cut-off dimension d ∈ {1, . . . , n − 1}
1 compute eigendecomposition K = UΛU� with

Λ = diag(λ1, . . . , λn), λ1 ≥ . . . ≥ λn.
2 s = U�Y .
3 for j = 1, . . . , n − 1,

3a σ2
1 =

1
j

j∑
i=1

s2
i , σ2

2 =
1

n − j

n∑
i=j+1

s2
i ,

3b lj =
j

n
log σ2

1 +
n − j

n
log σ2

2 .

4 return d = argminj=1,...,n−1 lj

Fig. 2. Estimating the cut-off dimension given a kernel matrix and a label vector

3 Model Selection for Kernel Ridge Regression

We will next turn to the problem of estimating the regularization constant in Kernel
Ridge Regression (KRR). It is typically used with a family of kernel functions, for
example rbf-kernels. The method itself has a regularization parameter τ which controls
the complexity of the fit as well. These two parameters have to be supplied by the user
or be automatically inferred in some way.

Let us briefly review Kernel Ridge Regression. The fit is computed as follows:

f̂(x) =
n∑

i=1

k(x,Xi)α̂i, with α̂ = (K + τI)−1Y. (7)

One can show (see for example [8]) that this amounts to computing a least-squares fit
with penalty τα�Kα. There is also a close connection to Gaussian Processes [9], in
that f̂ is equivalent to the maximum a posteriori estimate using Gaussian processes in a
Bayesian framework. The complexity of the fit depends on the kernel function and the
regularization parameter with larger τ leading to solutions which are more regularized.
The model selection task consists in determining a τ which reconstructs the function f
best while suppressing the noise.

3.1 The Spectrum Method for Estimating the Regularization Parameter τ

We will now discuss how the cut-off dimension from Section 2 could be used to deter-
mine the regularization constant given a fixed kernel. The idea is to adjust τ such that
the resulting fit reconstructs the signal up to the cut-off dimension, discarding the noise.

In order to understand how this could be accomplished, we first re-write the in-
sample fit computed by kernel ridge regression using the eigendecomposition of the
kernel matrix:

Ŷ = K(K + τI)−1Y = UΛ(Λ + τI)−1U�Y =
n∑

i=1

ui
λi

λi + τ
u�i Y. (8)
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As before, the scalar products u�i Y compute the coefficients of Y expressed in the basis
u1, . . . , un. KRR then computes the fit by shrinking these coefficients by the factor
λi/(λi + τ), and reconstructing the resulting fit in the original basis. These factors
wi = λi/(λi + τ) depend on the eigenvalues and the regularization parameter, and will
be close to 1 if the eigenvalues are much larger than τ , and close to 0 otherwise. Now,
for kernel usually employed in the context of kernel methods (like the rbf-kernel), the
eigenvalues typically decay very quickly, such that the factors wi approximate a step
function. Therefore, KRR approximately projects Y to the eigenspaces belonging to
the first few eigenvectors, and the number of eigenvectors depends on the regularization
parameter τ .

We wish to set τ such that the factor wd is close to 1 at the cut-off point d and starts
to decay for larger indices. Therefore, we adjust τ such that require that wd > ρ, for
some threshold ρ close to 1. This leads to the choice

τ = wd =
λd

λd + τ
⇒ τ =

1− ρ

ρ
λd. (9)

The choice of ρ is rather arbitrary, but the method itself is not very sensitive to this
choice. We have found that ρ = 10/11 works quite well in practice. We will call this
method of first estimating the cut-off dimension and then setting the regularization pa-
rameter according to (9) the spectrum method.

The proposed procedure is admittedly rather ad-hoc, however, note that the underly-
ing mechanisms are theoretically verified. Also, in the choice of τ , we make sure that
no relevant information in the labels is discarded. Depending on the rate of decay of
the eigenvalues, further dimensions will potentially be included in the reconstruction.
However, this effect is in principle less harmful than estimating a too low dimension,
because additional data points can correct this choice, but not the error introduced by
estimating a too low dimension.

4 Experimental Evaluation

In this final section, we will compare the spectrum method to a number of state-of-the-
art methods. This experimental evaluation should study whether it is possible to achieve
competitive model selection based on our structural analysis. Unless otherwise noted,
the other methods will be used as follows: For estimating regularization constants, the
respective criterion (test-error or likelihood) is evaluated for the same possible values as
available for the spectrum method, and the best performing value is taken. If the kernel
widths is also determined, again all possible values are tested and the best performing
candidate is taken. For the spectrum method, the regularization parameter is first deter-
mined by the spectrum method, and then, the kernel with the best leave-one-out error is
selected. All data sets were iterated over 100 realizations.

4.1 Regression Data Sets

For regression, we will compare the spectrum method (SM) with leave-one-out cross-
validation (CV) and evidence-maximization for Gaussian processes (GPML). For ker-
nel ridge regression, it is not necessary to recompute the solution for all n− 1 instances
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Fig. 3. The noisy sinc function. Left: The negative log-likelihood for different cut-off points.
Middle: The coefficients of signal and noise, and the shrinkage factors for the τ selected by the
spectrum method. One can see that the noise is nicely filtered out. Right: The resulting fit.

with one point removed, but the leave-one-out cross-validation error can be calculated
in closed-form (see for example [10]).

Evidence-maximization for Gaussian processes works by choosing the parameters
which maximize the marginal log-likelihood of the labels, which is derived, for exam-
ple, in [9, eq. (4)]. Note that this approach is fairly general and can be extended to more
kernel parameters which are then determined by gradient descent. For our application,
we will restrict ourselves to a single kernel width for all directions and performing an
exhaustive search.

The Noisy Sinc Function. We begin with a small illustrative example: The noisy sinc
function example is defined as follows: The Xi are drawn uniformly from [−π, π], and
Yi = sinc(4Xi) + 0.1εi, where εi is N (0, 1)-distributed. A typical example data set
for n = 100 is shown in Figure 1. The kernel width is c = 0.3. In the left panel of
Figure 3, the negative log-likelihood is plotted. The minimum is at d = 9, which results
in τ = 0.145. In the right panel, the spectra of the data are plotted before and after
shrinkage, together with the shrinkage coefficients. One can see that the noise is nicely
suppressed. In the lower panel, the resulting fit is plotted.

Next we want to study the robustness of the algorithms. We vary the kernel width
and the noise levels. The resulting test errors for the CV and GPML and its standard
deviation are plotted in Figure 4. We see that the spectrum method performs competi-
tively to CV and GPML, except at large kernel widths, but we also see that GPML is
much more sensitive to the choice of the kernel. It seems that evidence maximization
tries to compensate for a mismatch between the kernel width and the actual data. For
the optimal kernel width (around c = 0.6), evidence maximization yields very good
results, but for too small or too large kernels, the performance deteriorates. To be fair,
we should add that evidence maximization is normally not used in this way. Usually,
the kernel width is included in the adaptation process.

Benchmark Data Sets. Next, we compare the methods by also estimating the kernel
width. We have compared the three procedures on the sinc data set as introduced above,
and also for the bank and kin(etic) data sets from the DELVE repository (http://www.
cs.toronto.edu/˜delve), and a variant of the kin data set, called kin40k, prepared by
A. Schwaighofer (http://www.cis.tugraz.at/igi/aschwaig/data.html).
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0.1 0.2 0.3 0.5 1.0

10
−2

10
−1

10
0

specmeth
gp+ml

loo

noise level

te
st

 e
rr

or

sinc data set

8fh 8fm 8nh 8nm

10
−3

10
−2

specmeth

gp+ml

gcv

"bank" benchmark set

data set

te
st

 e
rr

or

8fh 8fm 8nh 8nm 40k
10

−4

10
−3

10
−2

10
−1

specmeth
gp+ml

gcv

"kin" benchmark set

data set

te
st

 e
rr

or

Fig. 5. Benchmark data sets. Both parameters, the kernel width c and the regularization constant
τ were estimated. Training set size was 100, test set size was 100 for sinc, 39000 for kin40k, and
8092 else.

Figure 5 shows the resulting test errors for the three methods. We see that all three
methods show the same performance. The only exception is the kin-8fm data set, where
the spectrum method results in a slightly larger error. We conclude that the spectrum
method performs competitively to the state-of-the-art procedures CV and GPML. On
the positive side, the spectrum method gives more insight into the structure of the data
set than cross-validation and it requires weaker modelling assumptions than GPML.

Table 1 shows the cut-off dimensions for the sinc, bank, and kin data set. For the
sinc data set, the cut-off dimension decreases with increasing noise. This behavior can
be interpreted as the noise masking the fine structures of the data. The same effect is
visible for the “h” (high noise) data sets versus the “m” (moderate noise) data sets.
We also see that the data sets are moderately complex, having at most 17 significant
coefficients in the spectral analysis.

4.2 Classification Data Sets

Next, we would like to evaluate the spectrum method for classification. Since the esti-
mation of the cut-off dimension did not depend on the loss function with which the label
differences are measured, the procedure should in principle also work for classification.

As usual, in order to apply Kernel Ridge Regression to classification, we use labels
+1 and−1. With that, the target function f is given as f(x) = E(Y |X = x). The noise
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Table 1. Cut-off dimensions for different data sets

sinc σε = 0.1 0.2 0.3 0.5 1.0
d 9 ± 1 9 ± 1 8 ± 2 8 ± 2 5 ± 4

bank 8fh 8fm 8nh 8nm
d 9 ± 1 11 ± 4 10 ± 3 17 ± 8

kin 8fh 8fm 8nh 8nm 40k
d 7 ± 2 9 ± 2 6 ± 3 7 ± 3 8 ± 4

Table 2. Test errors and standard deviations on the benchmark datasets from [11] (also available
online from http://www.first.fhg.de/˜raetsch) Each data set has already been split into 100 real-
izations of training and test data. The best achieved test errors (having the smallest variance in
the case of equality) have been highlighted. The last column shows the kernel widths used for all
three algorithms.

Dataset SVM SM GCV c

banana 11.5 ± 0.7 10.6 ± 0.5 10.8 ± 0.7 1
breast-cancer 26.0 ± 4.7 27.0 ± 4.7 26.3 ± 4.6 50
diabetes 23.5 ± 1.7 23.2 ± 1.6 23.2 ± 1.8 20
flare-solar 32.4 ± 1.8 33.8 ± 1.6 33.7 ± 1.6 30
german 23.6 ± 2.1 23.5 ± 2.1 23.5 ± 2.1 55
heart 16.0 ± 3.3 15.9 ± 3.1 18.7 ± 6.7 120
image 3.0 ± 0.6 3.1 ± 0.4 6.3 ± 4.1 30
ringnorm 1.7 ± 0.1 4.9 ± 0.7 6.6 ± 2.0 10
splice 10.9 ± 0.6 11.3 ± 0.6 11.9 ± 0.5 70
titanic 22.4 ± 1.0 22.8 ± 0.9 22.6 ± 0.9 2
thyroid 4.8 ± 2.2 4.4 ± 2.2 12.6 ± 4.1 3
twonorm 3.0 ± 0.2 2.4 ± 0.1 2.7 ± 0.3 40
waveform 9.9 ± 0.4 10.0 ± 0.5 9.7 ± 0.4 20

is then Y − E(Y |X = x), which has mean zero, but has a discrete distribution, and a
non-uniform variance.

We use the benchmark data set from [11], which consists of thirteen artificial and real
world data sets. We compare the spectrum method to a tentative gold-standard achieved
by a support vector machine (SVM) whose hyperparameters have been fine-tuned by
exhaustive search and k-fold cross validation. Furthermore, we compare the spectrum
method to generalized cross validation (GCV) [12].

Table 2 plots the results. Over all, the spectrum method performs very well and
achieves roughly the same classification rates as the support vector machine. GCV per-
forms worse on a number of data sets. Note that GCV has the same possible values for τ
at its disposal including those values leading to a better performance. For those data sets
we have performed GCV again, letting τ vary from 10−6 to 10, but this improves the
results only on the image data set to 4.6± 2.1. Finally, we repeated the experiments for
a subset of the data sets, this time choosing the kernel widths by the spectrum method
and k-fold cross validation as in the SVM case. While this produced different kernel
widths, the results were not significantly different, which underlines the robustness of
the spectrum method.
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In summary, we can conclude that the spectrum method performs very well on real-
world classification data sets, and even outperforms generalized cross validation on a
number of data sets.

5 Conclusion

We have proposed a novel method for model selection for kernel ridge regression which
is not based on correcting for the optimism of the training error, or on some form of
hold-out testing, but which employs a structural analysis of the learning problem at
hand. By estimating the number of relevant leading coefficients of the label vector rep-
resented in the basis of eigenvectors of the kernel matrix, we obtain a parameter which
can be used to pick a regularization constant leading to good performance. In addition,
one obtains a structural insight into the learning problem in the form of the estimated
dimensionality.
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Abstract. A common assumption in supervised learning is that the in-
put points in the training set follow the same probability distribution as
the input points used for testing. However, this assumption is not sat-
isfied, for example, when the outside of training region is extrapolated.
The situation where the training input points and test input points follow
different distributions is called the covariate shift. Under the covariate
shift, standard machine learning techniques such as empirical risk min-
imization or cross-validation do not work well since their unbiasedness
is no longer maintained. In this paper, we propose a new method called
importance-weighted cross-validation, which is still unbiased even under
the covariate shift. The usefulness of our proposed method is successfully
tested on toy data and furthermore demonstrated in the brain-computer
interface, where strong non-stationarity effects can be seen between cal-
ibration and feedback sessions.

1 Introduction

The goal of supervised learning is to infer an unknown input-output dependency
from training samples, by which output values for unseen test input points can
be estimated. When developing a method of supervised learning, it is commonly
assumed that the input points in the training set and the input points used
for testing follow the same probability distribution (e.g., [9,3,5]). However, this
common assumption is not fulfilled, for example, when the outside of training
region is extrapolated and when training input points are designed by an active
learning (experimental design) algorithm.

The situation where the training input points and test input points follow
different probability distributions is called the covariate shift [6]. For data from
many applications such as off-policy reinforcement learning, bioinformatics, or
brain-computer interfacing, the covariate shift phenomenon is conceivable.

In an idealized situation where the model used for learning is correctly specified
(i.e., the learning target is included in the model), empirical risk minimization
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(ERM, cf. Eq.(4)) which is a typical parameter learning method still gives an
asymptotically unbiased estimator of the true parameter even under the covariate
shift. However, in practical situations where the model is misspecified (i.e., the
learning target is not included in the model), the asymptotic unbiasedness1 does
not hold anymore; ERM yields a biased estimator even asymptotically.

To illustrate this phenomenon, let us employ a toy regression problem of
fitting a linear function to the sinc function (see Figure 1). Here, we consider an
extrapolation problem: training input points are distributed in the left-hand side
of the input domain, while test input points are distributed in the right-hand
side. The density functions of the training and test input points are depicted
by the solid and dashed lines in Figure 1-(A). If ordinary least-squares (OLS)
(which is an ERM method with squared-loss) is used for fitting the straight line,
we have a good approximation of the left-hand side of the sinc function (see
Figure 1-(B)). However, this is not an appropriate function for estimating the
test output values (‘×’ in the figure). Thus, OLS results in a large test error.

Under the covariate shift with misspecified models, importance-weighted ERM
(IWERM, cf. Eq.(6)) is shown to give an asymptotically unbiased estimator
[6]. The key idea of IWERM is to weight the empirical risk according to the
importance, which is the ratio of densities of the training and test input points.
By this density ratio, the training input distribution is systematically adjusted
to the test input distribution.

Figure 1-(D) depicts the learned function obtained by importance-weighted
least-squares (IWLS). Compared with OLS, IWLS gives a better function for
estimating the test output values; the learned function converges to the optimal
function as the number of training samples goes to infinity.

The asymptotic unbiasedness can be achieved by IWERM, which may result
in good estimation of the test output values, as illustrated above. However, IW-
ERM generally yields an estimator with larger variance than ordinary ERM.
This may be intuitively confirmed by the fact that OLS is the best linear un-
biased estimator, i.e., having the smallest variance among all linear unbiased
estimators. Therefore, IWERM may not be optimal; a slightly biased variant of
IWERM with smaller variance could be better. The bias-variance trade-off may
be controlled by slightly ‘weakening’ the importance in IWERM [6] or by adding
a regularization term to IWERM. We refer to such a variance-reduced variant
as adaptive IWERM (AIWERM, cf. Eq.(8)). AIWERM includes a tuning pa-
rameter λ (0 ≤ λ ≤ 1); λ = 0 corresponds to ordinary ERM (uniform weight)
and λ = 1 corresponds to IWERM (weight equal to the importance).

Figure 1-(C) depicts a learned function obtained by AIWLS with λ = 0.5,
which yields much better estimation of the test output values than IWLS (AI-
WLS with λ = 1) or OLS (AIWLS with λ = 0).

1 Usually an estimator is said to be unbiased if the expectation of the estimator agrees
with the true parameter. For a misspecified model, we say that an estimator is
unbiased if the expectation of the estimator agrees with the optimal parameter in
the model (i.e., the optimal approximation of the learning target).
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Fig. 1. An illustrative example of ex-
trapolation by fitting a linear function.
(A) The probability density functions of
the training and test input points. (B)–
(D) The learning target function f(x)
(the solid line), the noisy training sam-
ples (‘◦’), a learned function f̂(x) (the
dashed line), and the (noiseless) test sam-
ples (‘×’).
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Fig. 2. True risk and its estimations as
functions of the tuning parameter λ in AI-
WLS. Dotted curves in the bottom two
graphs depict the true risk for clear com-
parison.
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As the above simple regression example demonstrates, AIWERM can work
very well given λ is chosen appropriately. However, λ = 0.5 is not always the
best choice; a good value of λ may depend on the learning target, used model,
noise in the training samples, etc. Therefore, for enhancing generalization capa-
bility under the covariate shift, model selection should be carried out: set the
value of the tuning parameter λ so that the estimated risk (or the estimated
generalization error) is minimized.

One of the popular techniques for estimating the risk in the machine learning
community is cross-validation (CV). CV has been shown to give an almost
unbiased estimate of the risk with finite samples [5]. However, this almost
unbiasedness is no longer true under the covariate shift. This phenomenon is il-
lustrated in Figure 2, which depicts the values of the true risk and its estimates as
functions of the tuning parameter λ in AIWLS (the same toy regression example
of Figure 1 is still used). The dotted curves in the bottom two graphs depict the
true risk for clear comparison. In this example, the true risk hits the bottom at
around λ = 0.5 (see the top graph of Figure 2). On the other hand, CV gives a to-
tally different, monotone increasing curve (see the second graph of Figure 2). As
a result, CV chooses λ = 0 as the best value, which appears to be a poor choice.

To cope with this problem, we propose using a novel variant of CV called
importance-weighted CV (IWCV). We prove that IWCV is guaranteed to give
an almost unbiased estimate of the risk even under the covariate shift. The
bottom graph of Figure 2 shows the estimated risk obtained by IWCV. It gives
much better estimation than ordinary CV, and therefore an appropriate value
of λ may be chosen by IWCV.

2 Problem Formulation

In this section, we formulate the supervised learning problem and review existing
learning methods.

2.1 Supervised Learning Under Covariate Shift

Let us consider the supervised learning problem of estimating an unknown input-
output dependency from training samples. Let T = {(xi, yi)}n

i=1 be the training
samples, where xi ∈ X ⊂ Rd is an i.i.d. training input point following a proba-
bility distribution with density p(x) and yi ∈ Y ⊂ R is a training output value
following a conditional probability distribution with conditional density r(yi|xi).

Let � (x, y, ŷ) : X × Y × Y → [0,∞) be the loss function, which measures the
discrepancy between the true output value y at an input point x and its estimate
ŷ. In regression scenarios where Y is continuous, the squared-loss is often used.

� (x, y, ŷ) = (ŷ − y)2. (1)

On the other hand, in classification scenarios where Y is discrete (i.e., cate-
gorical), the following 0/1-loss is a typical choice since it corresponds to the
misclassification rate.
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� (x, y, ŷ) =
{

0 if ŷ = y,
1 otherwise. (2)

Although the above loss functions are independent of x, the loss can generally
depend on x [5].

Let us use a parameterized function f̂(x; θ) for estimating the output value
y, where θ ∈ Θ ⊂ Rb. The goal of supervised learning is to determine the value
of the parameter θ so that the expected loss for the test samples (i.e., the risk or
the generalization error) is minimized. Let (t, u) be a test sample, where t ∈ X
is a test input point and u ∈ Y is a test output value following the conditional
distribution with conditional density r(u|t). Note that the conditional density
r(·|·) is the same conditional density as the training output values {yi}n

i=1. Then
the risk is expressed as

R(n) = E{xi,yi}n
i=1,t,u

[
�
(
t, u, f̂(t; θ̂)

)]
, (3)

where E denotes the expectation. Note that the learned parameter θ̂ generally
depends on the training set T = {(xi, yi)}n

i=1.
In standard supervised learning theories (e.g., [9,3,5]), the test input point t

is assumed to follow p(x), which is the same probability density as the training
input points {xi}n

i=1. On the other hand, in this paper, we consider the situa-
tion under the covariate shift, i.e., the test input point t follows a probability
distribution with density q(t), which is different from p(x).

2.2 Empirical Risk Minimization and Its Importance-Weighted
Variants

A standard method to learn the parameter θ would be empirical risk minimiza-
tion (ERM):

θ̂ERM = argmin
θ∈Θ

[
1
n

n∑
i=1

�
(
xi, yi, f̂(xi; θ)

)]
. (4)

If p(x) = q(x), θ̂ERM is an asymptotically unbiased estimator of the optimal
parameter. However, under the covariate shift where p(x) �= q(x), ERM does
not provide an asymptotically unbiased estimator anymore; θ̂ERM is biased even
asymptotically:

lim
n→∞

{
E{xi,yi}n

i=1

[
θ̂ERM

]}
�= θ∗, (5)

where θ∗ = argminθ∈Θ

{
Et,u

[
�
(
t, u, f̂(t; θ)

)]}
.

Under the covariate shift, the following importance-weighted ERM (IWERM)
gives an asymptotically unbiased estimator [6]:

θ̂IWERM = argmin
θ∈Θ

[
1
n

n∑
i=1

q(xi)
p(xi)

�
(
xi, yi, f̂(xi; θ)

)]
, (6)
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which satisfies
lim

n→∞

{
E{xi,yi}n

i=1

[
θ̂IWERM

]}
= θ∗. (7)

From here on, we assume that p(x) and q(x) are known and strictly positive
(i.e., non-zero) for all x ∈ X .

Although the asymptotic unbiasedness is guaranteed in IWERM, it gener-
ally has larger variance than ordinary ERM [6]. Therefore, IWERM may not
be optimal; a slightly biased variant of IWERM could have much smaller vari-
ance, and thus is more accurate than plain IWERM. The bias-variance trade-off
may be controlled, for example, by weakening the weight (Adaptive IWERM;
AIWERM):

θ̂AIWERM = argmin
θ∈Θ

[
1
n

n∑
i=1

(
q(xi)
p(xi)

)λ

�
(
xi, yi, f̂(xi; θ)

)]
, (8)

where 0 ≤ λ ≤ 1.
The above AIWERM is just examples; there may be many other possibilities

for controlling the bias-variance trade-off. However, we note that the methodol-
ogy we propose in this paper is valid for any parameter learning method.

2.3 Cross-Validation Estimate of Risk

Now we want to determine the value of the tuning parameter, say λ, so that the
risk R(n) is minimized—but R(n) is inaccessible. A standard approach to coping
with this problem is to prepare some candidates {λi} of the tuning parameter,
to estimate the risk for each candidate, and to choose the one with minimum
estimated risk.

Cross-validation (CV) is a popular method to estimate the risk R(n). Let
us divide the training set T = {(xi, yi)}n

i=1 into k disjoint non-empty subsets
{Ti}k

i=1. Let f̂Tj(x) be a function learned from {Ti}i�=j . Then the k-fold CV
(kCV) estimate of the risk R(n) is given by

R̂
(n)
kCV =

1
k

k∑
j=1

1
|Tj |

∑
(x,y)∈Tj

�
(
x, y, f̂Tj(x)

)
, (9)

where |Tj | is the number of samples in the subset Tj . When k = n, kCV is
particularly called the leave-one-out cross-validation (LOOCV).

R̂
(n)
LOOCV =

1
n

n∑
j=1

�
(
xj , yj , f̂j(xj)

)
, (10)

where f̂j(·) is a function learned from {(xi, yi)}i�=j .
It is known that, if p(x) = q(x), LOOCV gives an almost unbiased estimate

of the risk; more precisely, LOOCV gives an unbiased estimate of the risk with
n− 1 samples [5].

E{xi,yi}n
i=1

[
R̂

(n)
LOOCV

]
= R(n−1) ≈ R(n). (11)
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However, this is no longer true under the covariate shift with p(x) �= q(x). In the
following section, we give a novel modified cross-validation method which still
maintains the ‘almost unbiasedness’ property even under the covariate shift.

3 Importance-Weighted Cross-Validation

Under the covariate shift, we propose using the following importance-weighted
cross-validation (IWCV):

R̂
(n)
kIWCV =

1
k

k∑
j=1

1
|Tj |

∑
(x,y)∈Tj

q(x)
p(x)

�
(
x, y, f̂Tj(x)

)
, (12)

or

R̂
(n)
LOOIWCV =

1
n

n∑
j=1

q(xj)
p(xj)

�
(
xj , yj, f̂j(xj)

)
. (13)

Below, we prove that LOOIWCV gives an almost unbiased estimate of the risk
even under the covariate shift (its proof is given in a separate technical report [8]).

Lemma 1
E{xi,yi}n

i=1

[
R̂

(n)
LOOIWCV

]
= R(n−1). (14)

This lemma shows that the simple variant of CV called IWCVprovides anunbiased
estimate of the risk with n − 1 samples even under the covariate shift. A similar
proof is also possible for kIWCV, although its bias is larger than LOOIWCV.

The density ratio q(x)/p(x) also appears in importance sampling; an ex-
pectation Et[f(t)] with t ∼ q(x) is computed by an equivalent quantity
Ex[f(x)q(x)/p(x)] with x ∼ p(x), where p(x) is chosen so that the variance
is minimized. Therefore, the proposed IWCV method could be regarded as an
application of the importance sampling identity in the CV framework. We ex-
pect that the relation between importance sampling and covariate shift may be
further discussed in the context of active learning [7], where the training input
density p(x) is designed by users so that the risk is minimized.

A weighted CV scheme has also been studied in robust statistics [1], where the
effect of outliers in the CV score is deemphasized by assigning smaller weight to
outliers. In the proposed IWCV scheme, the CV score is weighted by the density
ratio, by which the difference between p(x) and q(x) can be systematically ad-
justed. Therefore, although using a weighted scheme in CV is a common feature,
the aim is essentially different; we may even combine two schemes.

4 A Numerical Example

In this section, we experimentally investigate how IWCV works using a simple
one-dimensional regression dataset (see Figure 1). Let the training and test input
densities be p(x) = φ1,(1/2)2(x) and q(x) = φ2,(1/4)2(x), where φμ,c2(x) denotes
the normal density with mean μ and variance c2. This setting implies that we are
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Table 1. Extrapolation in the toy dataset. The mean and standard deviation of the
test error obtained by each method are described. For reference, the test error obtained
with the optimal λ (i.e., the minimum test error) is described as ‘OPT’.

10CV 10IWCV OPT
0.360 ± 0.108 0.086 ± 0.041 0.073 ± 0.023

considering an extrapolation problem (see Figure 1-(A)). We create the output
value yi following φf(x)1,(1/4)2(x), where f(x) = sinc(x). We use a simple linear
model for learning:

f̂(x; θ0, θ1) = θ0 + θ1x, (15)

where the parameters are learned by adaptive importance-weighted least-squares
(AIWLS):

argmin
θ0,θ1

[
1
n

n∑
i=1

(
q(xi)
p(xi)

)λ (
f̂(xi; θ0, θ1)− yi

)2]
. (16)

Figure 1 (B)–(D) show the true function, a realization of training samples,
learned functions by AIWLS with λ = 0, 0.5, 1, and a realization of (noiseless)
test samples. For this particular case, λ = 0.5 seems to work well.

Figure 2 depicts the means and standard deviations of the true risk and its
estimates by 10-fold CV and 10-fold IWCV over 1000 runs, as functions of the
tuning parameter λ in AIWLS. The graphs show that IWCV gives much accurate
estimates of the risk than ordinary CV; the unbiasedness of IWCV is well satisfied
and the variance of IWCV seems to be reasonable.

We then choose λ from {0, 0.1, 0.2, . . . , 1} so that the ordinary CV score or
the IWCV score is minimized. The means and standard deviations of the test
error finally obtained by ordinary CV and IWCV over 1000 runs are described
in Table 1. The table shows that IWCV gives much smaller test errors than
ordinary CV; the p-value between ordinary CV and IWCV by the t-test is far
less than 0.01, stating that IWCV significantly outperforms ordinary CV. ‘OPT’
in the table shows the test error when λ is chosen optimally, i.e., so that the
true test error is minimized. The result shows that the performance of IWCV is
rather close to the optimal choice.

5 Application to Brain-Computer Interface

In this section, we apply IWCV to brain-computer interface (BCI) data.
BCI is a system which allows for a direct dialog between man and machine

[11]. Cerebral electric activity is recorded via the electroencephalogram (EEG):
electrodes, attached to the scalp, measure the electric signals of the brain. These
signals are amplified and transmitted to the computer, which translates them
into device control commands. The crucial requirement for the successful func-
tioning of BCI is that the electric activity on the scalp surface already reflects
motor intentions, i.e., the neural correlate of preparation for hand or foot move-
ments. A BCI can detect the motor-related EEG changes and uses this informa-
tion, for example, to perform a choice between two alternatives: the detection



362 M. Sugiyama et al.

Table 2. Misclassification rates for brain computer interface. All values are in percent.
The values of the better method are described using a bold face.

Subject Trial
# of

training
samples

# of
unlabeled
samples

# of
test

samples
LDA

AIWLDA
+

10IWCV

AIWLDA
+

OPT
1 1 280 112 112 9.8 8.0 8.0
1 2 280 120 120 10.8 10.8 6.7
1 3 280 35 35 5.7 2.9 2.9
2 1 280 113 112 43.4 43.4 43.4
2 2 280 112 112 38.5 38.5 38.5
2 3 280 35 35 28.6 28.6 28.6
3 1 280 91 91 39.6 38.5 37.4
3 2 280 112 112 22.3 19.6 19.6
3 3 280 30 30 20.0 20.0 20.0
4 1 280 112 112 24.1 24.1 23.2
4 2 280 126 126 2.4 2.4 2.4
4 3 280 35 35 8.6 8.6 8.6
5 1 280 112 112 22.3 25.0 22.3
5 2 280 112 112 12.5 11.6 10.7

of the preparation to move the left hand leads to the choice of the first, whereas
the right hand intention would lead to the second alternative. By this means it
is possible to operate devices which are connected to the computer.

For classification of appropriately preprocessed EEG signals linear discrimi-
nant analysis (LDA) [3] has shown to work very well [2]. On the other hand,
strong non-stationarity effects have been observed in brain signals between cali-
bration and feedback sessions [10], which could be regarded as an example of the
covariate shift. Therefore, it is expected that some importance-weighted method
could further improve the BCI recognition accuracy.

LDA is actually equivalent to least-square fitting of a linear model using binary
labels yi = ±1 [3]. Here we use its variant called adaptive importance-weighted
LDA (AIWLDA):

argmin
θ0,θ

[
1
n

n∑
i=1

(
q(xi)
p(xi)

)λ (
θ0 + θ�xi − yi

)2
]
. (17)

We test the above method with totally 14 data sets obtained from 5 different
subjects (see Table 2). In BCI, the densities p(x) and q(x) are unknown. Here
we estimate them by fitting the mixture of 5 Gaussians by the EM algorithm.
p(x) is estimated using training samples and q(x) is estimated using unlabeled
samples from the feedback period. The unlabeled samples are taken from the
first half of each feedback period, herewith rendering the conditions for a BCI
application realistic. This corresponds to an update of the used classifier in the
second half of the experiment.

The misclassification rates for test samples by LDA (existing method which
corresponds to AIWLDA with λ = 0) and AIWLDA with λ chosen by 10IWCV
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are given in Table 2. The results show that for the subjects 1 and 3, the combi-
nation of AIWLDA and 10IWCV highly improves the recognition accuracy over
plain LDA. The accuracy is unchanged for the subjects 2 and 4, and comparable
for the subject 5. Overall, the proposed method outperforms LDA for 5 out of
14 data sets and being outperformed for 1 data set.

Note that the degree of non-stationarity is highly subject specific. While—
as expected—our method for compensating covariate shift effects yields highly
significant improvements for some subjects, others exhibit no change due to the
rather stationary nature of their brain signals.

6 Conclusions

In this paper, we discussed the supervised learning problem under the covariate
shift paradigm: training input points and test input points are drawn from different
distributions. Future studies will focus on the development of a realtime version of
the current idea in order to ultimately obtain a fully adaptive learning system.

We acknowledge partial financial supports from MEXT (Grant-in-Aid for
Young Scientists 17700142) and BMBF (FKZ 01IBE01A/B).
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10. C. Vidaurre, A. Schlögl, R. Cabeza, and G. Pfurtscheller. About adaptive classifiers

for brain computer interfaces. Biomedizinische Technik, 49(1):85–86, 2004.
11. J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M.

Vaughan. Brain-computer interfaces for communication and control. Clinical Neu-
rophysiology, 113(6):767–791, 2002.



Parameterless Isomap with Adaptive
Neighborhood Selection

Nathan Mekuz and John K. Tsotsos

Center for Vision Research (CVR) and
Department of Computer Science and Engineering,

York University, Toronto, Canada M3J 1P3
{mekuz, tsotsos}@cs.yorku.ca

Abstract. Isomap is a highly popular manifold learning and dimension-
ality reduction technique that effectively performs multidimensional scal-
ing on estimates of geodesic distances. However, the resulting output is
extremely sensitive to parameters that control the selection of neighbors
at each point. To date, no principled way of setting these parameters has
been proposed, and in practice they are often tuned ad hoc, sometimes
empirically based on prior knowledge of the desired output. In this paper
we propose a parameterless technique that adaptively defines the neigh-
borhood at each input point based on intrinsic dimensionality and local
tangent orientation. In addition to eliminating the guesswork associated
with parameter configuration, the adaptive nature of this technique en-
ables it to select optimal neighborhoods locally at each point, resulting
in superior performance.

1 Introduction

Dimensionality reduction is a statistical tool commonly used to map data in high-
dimensional space such as images, speech signals, etc. into lower dimensionality.
The transformed data is often more suitable for regression analysis or classifica-
tion than the original input data. Social sciences use dimensionality reduction
extensively to uncover latent variables that explain observed phenomena. The
underlying assumption is that observed high-dimensional samples lie on or near
a lower-dimensional manifold embedded within the original high-dimensional
space, and the purpose of the reduction is to project the high-dimensional data
into a more compact representation while preserving certain properties of the
data.

Traditional linear dimensionality reduction algorithms include Principal Com-
ponent Analysis (PCA) [1] - a transformation that maximizes retained variance
and Linear Discriminant Analysis (LDA) [2] - a projection that maximizes sep-
aration based on class labels. Nonlinear approaches include kernel PCA [3] - an
application of linear PCA on data first transformed to typically higher dimen-
sionality through some nonlinear kernel.

A recent surge in interest in locally linear manifold learning technique has
resulted in the introduction of several new techniques, including, Isomap [4],

K. Franke et al. (Eds.): DAGM 2006, LNCS 4174, pp. 364–373, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Locally Linear Embedding (LLE) [5] and its derivatives Laplacian eigenmaps [6],
Hessian eigenmaps [7] and others, for goals ranging from visualization problems
to classification. These techniques view the manifold as a patchwork of connected
linear surfaces, and attempt to preserve certain properties in the projection. If
the manifold is continuous and sufficiently well sampled, then using Taylor’s
theorem, small patches can be approximated as linear. If parts of the manifold
are linear, globally nonlinear methods may be overly complex, and difficult to
train due to the large number of parameters. On the other hand, locally linear
techniques may model the manifold effectively by fitting parts of it separately if
they are able to decompose it into linear components. However, local modeling is
sensitive to noise and the modeling of noise remains a challenge. Consequently,
most locally linear techniques do not address the issue of noise.

Isomap [4] is a popular locally linear technique that works by assuming isome-
try of geodesic distances in the manifold. The geodesic distance is defined as the
distance of the shortest path between two points that passes on the embedded
manifold [8]. Isomap estimates geodesic distances by constructing a graph with
Euclidean distances between neighboring points as edge weights and computing
shortest paths in the graph. Finally, classical MDS is applied to compute an
optimal embedding. A computationally efficient implementation that computes
shortest paths to only a subset of landmark data points is presented in [9].

A central problem in Isomap and many other locally linear techniques (e.g.,
[5,6,7,10]) lies in the selection of neighbors that form local patches. The shape of
the manifold is in most cases unknown but a common assumption is that in small
patches the surface is smooth, and that close neighbors of a data point likely lie
on the same part of the manifold and have a similar orientation. Therefore, prop-
erties of the locality at each data point are commonly estimated using its nearest
neighbors. Two formulations are commonly used: a fixed number of neighbors (k
nearest neighbors), or all neighbors within a fixed radius (ε hypersphere). The k
nearest neighbors version is more common since the sparseness of the resulting
structures is guaranteed. For example, the cost matrix used to compute an LLE
embedding can have at most 4kN nonzero elements. Efficient versions exist of
the Dijkstra algorithm (used in Isomap) that take advantage of the sparseness of
the input graph. On the other hand, if an ε hypersphere is used, it is difficult to
predict if a selected radius will include any neighbors at all at every point.

With either formulation, the choice of parameter typically has a dramatic
effect on the transformation. If the neighborhoods are too small, disconnected
clusters tend to form. Isomap maps the manifold in this case as a set of disjoint
components, while LLE applies regularization on the cost matrix, but in both
cases the global structure is lost. Since LLE performs a set of local optimiza-
tions, it is highly dependent on links created by sufficiently large neighborhoods
to discern global structure. On the other hand, setting the neighborhood to a size
that is too large creates links to parts of the manifold that are geodesically far.
Isomap is especially sensitive to this problem since the shortest paths algorithm
will tend to drain multiple paths through such shortcuts, affecting distance es-
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timates globally. However, with small neighborhood sizes, the computed graph
geodesic greatly overestimates the true geodesic distances in linear surfaces.

If the dimensionality reduction technique used assumes linear patches, then a
good strategy for selecting these parameters needs to consider the (estimated)
orientation of the manifold at each point. The selection should be data-driven
and depend on such factors as curvature and density. But since curvature and
density may vary over the manifold, one global setting may not work well for
the entire manifold. In practice, examples such as the popular “Swiss roll” are
presented where curvature and density are fairly constant everywhere. The pa-
rameters are often configured ad hoc, often by empirically evaluating the em-
beddings produced with different settings. However, if the Swiss roll is stretched
(as in Figure 1), forming areas of varying curvature, then no global setting of k
produces satisfying results.

In this paper, we describe a practical strategy for selecting a neighborhood
size adaptively that does not require any parameters, based on estimates of in-
trinsic dimensionality and tangent orientation. We apply our technique to the
Isomap algorithm and demonstrate simple manifolds where traditional neigh-
borhood formulations fail, while our technique generates satisfactory mappings.
The elimination of the parameter does not reduce the technique’s flexibility,
since there is no way to configure this parameter automatically without prior
knowledge of the desired output.

The rest of the paper is organized as follows: Section 2 reviews the estima-
tion of intrinsic dimensionality and motivates its use in estimating local tangent
space orientation. Section 3 discusses our technique for estimating the orienta-
tion of local tangent space and compares it against previous work in the field.
Section 4 outlines our proposed neighborhood selection technique. In Section 5
we present experimental results on datasets and finally Section 6 concludes with
a discussion.

2 Intrinsic Dimensionality

The intrinsic dimensionality of a data set is commonly defined as the smallest
number of dimensions that can be used to adequately explain the data. What
constitutes an adequate explanation is subjective and depends on the user and
the application. Nevertheless, intrinsic dimensionality is key in dimensionality
reduction, since knowledge of the intrinsic dimensionality in every part of the
manifold eliminates over- or underfitting. For a complete treatment on the sub-
ject of dimensionality see [11].

Wang et al. [12] propose an adaptive neighborhood selection heuristic based on
estimates of local tangent orientation, and apply it to a variation of LLE they call
Local Tangent Space Alignment (LTSA). Their proposed technique assumes fixed
intrinsic dimensionality everywhere that is equal to the target dimensionality spec-
ified by the transformation, and uses user-specified parameters to threshold the
projection of points in the neighborhood onto the complement and tangent spaces.
However, in some applications, it is convenient to separate these two variables,
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(a) (b)

(c) (d)

Fig. 1. (a). The classic ’Swiss roll’ manifold stretched to aspect ratio 0.4. Unlike the
more common circular Swiss roll, curvature varies along the manifold. (b). A uniform-
density sample drawn from the manifold, N = 2000. (c). The best embedding com-
puted by Isomap. A setting of k = 4 was used. Higher values result in more shortcuts
created from data points to different parts of the manifold and more convoluted embed-
dings, while k < 3 results in several disconnected components, with no unifying global
structure. (d). The projection obtained by Isomap using our adaptive neighborhood
technique successfully unrolls the Swiss roll into a flat surface.

e.g., visualization, where target dimensionality is typically limited to 2 or 3. We
therefore use target dimensionality in the MDS step to produce the final embed-
ding, but intrinsic dimensionality when estimating the local geometry at a point.

Several techniques have been proposed to estimate intrinsic dimensionality
from data in problems where it is unknown. Techniques that apply PCA (globally
or locally) and threshold the resulting eigenvalues include [14]. Geometric meth-
ods include Costa et al. [15] - an estimator based on the length of minimal span-
ning trees on graph geodesics. We have found a maximum likelihood estimator
recently proposed by Levina and Bickel [16] to work well on our data. The tech-
nique assumes constant density in small neighborhoods and approximates the
number of samples in hyperspheres of growing radius as a Poisson process. Then
the rate of the process λ(t) at intrinsic dimensionality m can be expressed as,

λ(t) =
f(x)πm/2mtm−1

Γ (m/2 + 1)
(1)

where f(x) is the sampling density and Γ (·) is the Gamma function. A maximum
likelihood estimate of the intrinsic dimensionality at point xi given c neighboring
observations is then (see [16] for complete details),

m̂c(xi) =
[ 1
c− 1

c−1∑
j=1

log
Tc(xi)
Tj(xi)

]−1

(2)
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where Tj(xi) represents the distance from xi to its j’th nearest observation.
The authors propose averaging over all points to obtain the global intrinsic di-
mensionality. An optimal c can be obtained by minimizing the estimator’s stan-
dard deviation over different sample sizes drawn from the data. The resulting
estimator is asymptotically unbiased (negatively biased otherwise) but enjoys
remarkably low variance, making it perhaps possible to apply it semi-locally or
in clusters.

3 Estimating the Local Tangent Space

In this section we outline our technique for estimating local tangent space. Using
knowledge or an estimate of the intrinsic dimensionality m, we seek to estimate
the orientation of the manifold at each data point xi and compute an orthonor-
mal basis Ai for it. While here we use a global value for m, local values can be
used if a reliable estimator exists.

Hyperplanes (if linearity is assumed) through a neighborhood may be fit-
ted by retaining the vectors corresponding to the highest singular values (up
to the desired dimensionality) of the singular value decomposition (SVD) of
[xi1 , . . . ,xik

] − xi1T where xij are the neighbors of xi and 1 = [1, . . . , 1]T .
Previous approaches that explicitly compute local tangent orientation include
Medioni et al. [10], which estimates intrinsic dimensionality and orientation si-
multaneously at each point, by performing an eigen-decomposition at each data
point, and retaining the largest eigenvectors up to the largest drop in the eigen-
values. Although a voting scheme is used to improve the estimator’s variance,
the resulting intrinsic dimensionality estimates are still too noisy for adaptive
neighborhood selection. Wang et al. [12] compute a least squares fit about the
mean of the neighborhood rather than xi, but the neighborhood size is indirectly
controlled by several user-specified parameters.

Our technique also uses SVD to compute tangent orientation, but the neigh-
bors used in the computation are selected based on estimated local sampling
density, an approach inspired by [16]. Under ideal sampling conditions, m + 1
points define an m-dimensional hyperplane. However, in practice, degenerate
configurations are often observed where the points are not in general position,
and thus define a rank-deficient space (e.g., collinearity). This is a likely sce-
nario if marginal densities vary along different axes. If the singular values λj

resulting from the decomposition are ordered in non-increasing order, such that
λ1 ≥ . . . ≥ λm . . . ≥ λk, in order to ensure a sound m-dimensional basis, λm

must be sufficiently high and λm+1 low. Specifically, singular value λm must be
significant enough so that it represents an observation that lies in a direction or-
thogonal to the directions represented by singular values λ1 . . . λm−1, rather than
leftovers from projections of other neighbors. Therefore, an appropriate thresh-
old for λm is the expected radius to a neighboring point at xi, denoted T̃1(xi).

A coarse estimate of this radius may be obtained by taking the distance from
xi to its nearest neighbor. However, this estimate is unreliable as it is based
on only one observation. A better strategy is to infer the radius from a further
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neighbor taking advantage of the robust properties of order statistics. If the
volume of an m-dimensional hypersphere of radius r is πm/2rm[Γ (m

2 + 1)]−1,
then the expected number of observations N(r) in the hypersphere follows,

E
[
N(r)

]
∝ rm (3)

and
TN(r)(xi) ≈ r (4)

combining Eq. (3) and (4), we obtain,

T̃1(xi) = (1/k)(1/m)Tk(xi) = (1/k)(1/m)|xik
− xi|2 (5)

We iteratively increase k, generating a new estimate T̃1(xi) of the expected
radius at xi in each iteration according to Eq. (5), until λm ≥ T̃1(xi). Upon
termination, basis Ai is constructed from the vectors corresponding to the m
highest singular values. This basis defines the estimated tangent space at xi and
is used in the next step of our algorithm to select neighbors that are consistent
with it.

4 Selection of Neighbors

Using the basis Ai that defines the estimated tangent orientation at point xi,
a neighborhood can be selected that includes nearby points that agree with the
computed tangent. Wang et al. [12] examine the ratio of the matrix (Frobenius)
norms of the projections of the points under consideration and compare it to a
user-specified threshold η. While one global threshold can lead to adaptive neigh-
borhood selection according to the local curvature and density at each point, it
is unclear how η should be set. However, the optimal η probably depends on
the intrinsic dimensionality since it determines the dimensionality of the pro-
jections (and hence their norms). Another anomaly is that the lowest possible
ratio of norms (zero) is realized when exactly m neighbors are considered. To
overcome this hitch, the neighborhood is initialized to a ‘sufficiently large’ K
(another user-specified parameter) and iteratively shrunk until the specified η
ratio is reached. If this step fails, a neighborhood is selected such that the ratio
is minimized. Then an expansion step is performed where points that were dis-
carded in the previous step are added back as neighbors if their projection norm
ratio satisfies the user-specified threshold η, while ‘skipping’ nearer neighbors
whose ratios do not. This is perhaps done to accommodate noise, but as Figure
2(a) demonstrates, it is a dangerous strategy in techniques like Isomap, since it
can potentially result in invalid shortcuts to different parts of the manifold and
these are likely to have adverse global effects. Another pitfall is that ‘steps’ in
the manifold may be smoothed out, as depicted in Figure 2(b). If the projection
ratio at the initial K falls below the user-specified η, the algorithm is trapped
in a local minimum and fails to uncover the correct orientation.

In contrast, our strategy for selecting neighbors at a point xi is a direct exten-
sion of our approach for estimating the tangent space, outlined in the previous
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p q

r

p

(a) (b)

Fig. 2. (a). The neighbors (depicted as dark points) of point p defined according to [12].
Point q is considered a neighbor while closer points are excluded, resulting in an invalid
shortcut from p to q. (b). Estimation of the tangent space at point p using [12]. Setting
the initial K to a high value such that all the points in the figure are included results
in a fit that appears good (high tangent space projection norm relative to complement
space projection), but an incorrect tangent. The neighborhood contraction step in [12]
is trapped in a local minimum and fails to uncover the correct vertical tangent.

section. We incrementally grow the neighborhood of xi one point at a time,
monitoring each new point’s projection onto the complement space at xi, and
testing the resulting norm against our estimate of radius to nearest neighbor
T̃1(xi). New neighbors xij are added iteratively until

|(I −AiA
T
i )(xij − xi)|2 < T̃1(xi) (6)

or equivalently, √
|xij − xi|22 − |Ai(xij − xi)|22 < T̃1(xi) (7)

is violated. To avoid improper shortcutting as illustrated in Figure 2(a), the
iteration terminates when a neighboring point breaks the above condition. This
process can be viewed as the inclusion of points within a hypercylinder of radius
T̃1(xi) about the estimated tangent space defined by the basis Ai. The estimate
T̃1(xi) may be further refined at each iteration as new neighbors are added,
according to the criterion in Eq. (5).

In contrast to [12], our technique may add an unlimited number of neighbors
as long as the linear tangent space assumption is upheld. In linear sections of
the manifold, all points are added as neighbors. This is a desirable property for
Isomap, since in planar regions, geodesic distances are now correctly estimated
as Euclidean distances (whereas normally the graph geodesic significantly over-
estimates distances). In fact, if the entire input manifold is linear, all geodesic
distances are estimated as Euclidean distances, and Isomap degenerates into
PCA.
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Fig. 3. (a)-(d). Synthetic 2-D and 1-D manifolds embedded in 3-D. (e)-(h). Correspond-
ing plots of the correlation between true geodesic distances and Isomap estimates using
k-Isomap (dashed line) starting with the lowest value of k that yields a global mapping
and our adaptive technique (solid line).
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5 Experimental Results

We have tested our technique with the Isomap algorithm on several datasets.
Our algorithm’s performance on manifolds with relatively constant curvature
and uniform sampling (the Swiss roll and S-curve) matched that of Isomap with
manually-selected optimal values of k. Figure 3 depicts the correlations between
true and estimated geodesic distances on the stretched Swill roll and a 3-D
spiral for different values of k and using our adaptive technique. For these struc-
tures, Isomap failed to compute satisfactory embeddings with any settings of the
algorithm’s parameters. On the other hand, our technique adaptively selected
neighbors at each point resulting in superior interpolation in relatively flat sur-
faces while avoiding invalid shortcuts between different parts of the manifold.
Here we report correlation to true distances as an objective qualitative measure.
However, qualitatively, even small differences in correlation values translate into
dramatic effects in terms of the resulting embedding. For example, the embed-
ding produced by k-Isomap for the stretched Swiss roll in Figure 3(a) (k = 4,
correlation=0.78) can be seen in Figure 1(c). As a sanity check, we also ran
our algorithm on the Isomap face database (698 images of synthetic faces under
varying illumination and pose). Our adaptive technique appears to produce a
satisfactory embedding, but since the true manifold is unknown, quantitative
analysis is not possible.

6 Summary

We have presented a parameterless adaptive technique for selecting a neigh-
borhood at each point in nonlinear manifold learning, in particular Isomap. To
date, nonlinear manifold learning techniques have relied on user-specified pa-
rameters that cannot be set in a principled way. Additionally, the use of one
global setting results in suboptimal learning if curvature or density vary. Our
technique eliminates the guesswork associated with tuning these parameters and
enables modeling of manifolds that cannot be modeled effectively with one global
setting. In addition to eliminating user-input parameters, our technique offers
several advantages over previous work on adaptive selection.

We have demonstrated the effectiveness of the technique on several simulated
and real datasets. The technique produces good results on our data and we
are currently investigating several possible extensions. In its present form, the
technique assumes that observations are sampled directly from the manifold with
no noise. We are currently looking at ways to incorporate a noise model, as well
as robust voting schemes to improve tangent space and neighborhood estimation
at each point.

Acknowledgments. The authors thank Konstantinos Derpanis and Erich Le-
ung for reviewing this manuscript and providing useful comments.
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Abstract. Kernel functions as similarity measures for sequential data
have been extensively studied in previous research. This contribution
addresses the efficient computation of distance functions and similarity
coefficients for sequential data. Two proposed algorithms utilize different
data structures for efficient computation and yield a runtime linear in
the sequence length. Experiments on network data for intrusion detec-
tion suggest the importance of distances and even non-metric similarity
measures for sequential data.

1 Introduction

Sequences are a common non-vectorial data representation used in various ma-
chine learning and pattern recognition applications, e.g. textual documents in
information retrieval, DNA sequences in bioinformatics or packet payloads in in-
trusion detection. An essential procedure for analysis of such data is the efficient
computation of pairwise similarity between sequences.

Beside specialized string distances [e.g. 1, 2] a large class of similarity measures
for sequential data can be defined over contained subsequences by embedding
them in a high-dimensional feature space. Previous research focused on compu-
tation of kernel functions in such feature spaces. For example, the inner-product
over n-gram or word frequencies has been widely used for analysis of textual
documents [e.g. 3, 4, 5] or host-based intrusion detection [e.g. 6]. The challenge
of uncovering information in DNA has influenced further advancement of kernel
functions, e.g. by exploring different sets of subsequences [e.g. 7, 8, 9, 10] or
incorporating mismatches, gaps and wildcards [e.g. 11, 12, 13].

There exist, however, a large amount of learning algorithms which are not
directly suitable for kernel functions. In principle, any inner-product induces a
Euclidean distance in feature space [14], yet the richness of content in sequential
data and the variability of its characteristics in feature spaces motivate applica-
tion of other distance functions.

A general technique for computation of similarity measures suitable for ker-
nels, distances and similarity coefficients is proposed in this contribution. It is
based on incremental accumulation of matches and mismatches between subse-
quences comprising a feature space. Two algorithms are presented that utilize

K. Franke et al. (Eds.): DAGM 2006, LNCS 4174, pp. 374–383, 2006.
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different data structures for efficient computation: hash tables and tries. Both
algorithms have linear runtime complexity in terms of sequence lengths.

The rest of the paper is organized as follows: Section 2 defines several sim-
ilarity measures for sequential data including kernels, distances and similarity
coefficients. Comparison algorithms and corresponding data structures are intro-
duced in Section 3. Finally, experiments in Section 4 compare the efficiency of
the introduced algorithms and illustrate their application in network intrusion
detection.

2 Similarity Measures for Sequential Data

Given an alphabet Σ of size N , a sequence x is defined as a concatenation of
symbols from Σ. The content of a sequence can be modeled as a set of possibly
overlapping subsequences w taken from a finite language L ⊂ Σ∗. We refer to
these extracted subsequences as words. The language L constitutes the basis for
calculating similarity of sequences and typically corresponds to a bag of char-
acters, words or n-grams. Given a sequence x and a language L, an embedding
into feature space is performed by calculating φw(x) for every w ∈ L appearing
in x. Usually the function φw(x) returns the frequency of w in x, however, other
definitions returning a count or a binary flag for w are possible. Furthermore we
define l to be the length of x.

We assume that the total length of words in every sequence x is proportional
to l. This assumption is valid, for example, for n-grams of fixed length n and
non-overlapping words, and ensures linear runtime of the proposed algorithms.
In context of kernels several approaches have been investigated that do not make
such an assumption [e.g. 9, 10, 11, 12, 13], however, some of them come at a cost
of super-linear complexity.

By utilizing the feature space induced through φ, one can adapt classical kernel
and distance functions to operate on sequences. Table 1 lists kernel functions and
Table 2 distance functions that are implemented using the algorithms presented
in Section 3.

Yet another way of measuring similarity are so called similarity coefficients
[e.g. 15, 16]. They are non-metric and have been primarily used on binary data.

Table 1. Kernel functions for sequential data

Kernel function k(x, y)

Linear
∑
w∈L

φw(x)φw(y)

Polynomial

(∑
w∈L

φw(x)φw(y) + θ

)d

RBF exp
(−d(x, y)2

σ

)
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Table 2. Distance functions for sequential data

Distance function d(x, y)

Manhattan
∑
w∈L

|φw(x) − φw(y)|

Canberra
∑
w∈L

|φw(x) − φw(y)|
φw(x) + φw(y)

Minkowski k

√∑
w∈L

|φw(x) − φw(y)|k

Chebyshev max
w∈L

|φw(x) − φw(y)|

Table 3. Similarity coefficients for sequential objects

Similarity coefficients s(x, y)

Jaccard
a

a + b + c

Czekanowski
2a

2a + b + c

Sokal-Sneath
a

a + 2(b + c)

Kulszynski
1
2

(
a

a + b
+

a

a + c

)

Similarity coefficients are constructed using three summation variables a, b and
c. The variable a contains the number of positive matches (1-1), b the number
of left mismatches (0-1) and c the number of right mismatches (1-0). The most
common similarity coefficients are given in Table 3.

Similarity coefficients can be extended to non-binary data by modification of
the summation variables. The degree of match for a word w ∈ L can be defined
as min(φw(x), φw(y)) and the respective mismatches are defined as deviations
thereof:

a =
∑
w∈L

min(φw(x), φw(y))

b =
∑
w∈L

[φw(x)−min(φw(x), φw(y))]

c =
∑
w∈L

[φw(y)−min(φw(x), φw(y))]

3 Algorithms and Data Structures

In order to calculate the presented kernels, distances and similarity coefficients,
one needs to establish a general model of similarity measures for sequential data.
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Table 4. Generalized formulations of distances

Distance ⊕ m+(p, q) m−
x (p) m−

y (q)
Manhattan + |p − q| p q

Canberra + |p − q|/(p + q) 1 1
Minkowskik + |p − q|k pk qk

Chebyshev max |p − q| p q

Table 5. Generalized formulations of summation variables

Variable ⊕ m+(p, q) m−
x (p) m−

y (q)
a + min(p, q) 0 0
b + p − min(p, q) p 0
c + q − min(p, q) 0 q

A key instrument for computation of kernel functions is finding words w ∈ L
present in two sequences x and y – we refer to these words as matches. For dis-
tances and similarity coefficients, we also need to consider words w ∈ L present
in x but not in y (and vice versa) – we refer to these words as mismatches1.

Furthermore we introduce an outer function⊕ which corresponds to the global
aggregation performed in many similarity measures, e.g. the summation in var-
ious kernel and distance functions. Given these definitions, we can express a
generic similarity measure s as

s(x, y) =
⊕
w∈L

m(x, y, w) (1)

m(x, y, w) =

⎧⎪⎨⎪⎩
m+(φw(x), φw(y)) if w is a match
m−

x (φw(x)) if w is a mismatch in x

m−
y (φw(y)) if w is a mismatch in y

(2)

We can now reformulate the set of distances given in Table 2 using the func-
tions ⊕, m+, m−

x and m−
y . The generalized formulations of some distances are

presented in Table 4.
Adapting similarity coefficients to such a generic representation is even sim-

pler, since only the three summation variables a, b and c need to be reformulated,
as shown in Table 5.

3.1 Hash-Based Sequence Comparison

The classical scheme for computation of similarity measures over sequences uti-
lizes indexed tables, or in the more general case hash tables [e.g. 4]. The words
extracted from a sequence and corresponding frequencies or counts are stored in
1 The term “mismatch” herein corresponds to two sequences being unequal and not,

as often used in bioinformatics, to inexact matching of sequences.
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the bins of a hash table. Figure 1(a) shows two hash tables carrying the words
{“bar”, “barn”, “card”} and {“car”, “bank”, “band”, “card”} with correspond-
ing counts.

bar 5

band 3

car 4 bank 2

X Y

card

barn 4

3 card 2

(a) Hash tables

band 3

(x) (y)m−m−

B Ybar 5bar 5 car 4car 4 bank 2

x y

BX

X Y

card 3 card 2

(b) Comparison of hash tables

Fig. 1. Hash table data structures (a) and their comparison (Case 2) (b)

Algorithm 1 defines the comparison of two hash tables X and Y with fixed size
M . The algorithm proceeds by looping over all M bins, checking for matching
(cf. Algorithm 1: Case 1) and mismatching words (cf. Algorithm 1: Case 2 & 3).
Figure 1(b) illustrates this process at the mismatches “bar” and “bank” which
are stored in corresponding bins.

Algorithm 1. Hash-based Sequence Comparison
1: function Compare(X,Y )
2: s ← 0
3: for i ← 1, M do
4: BX ← bins[X, i]
5: BY ← bins[Y, i]
6: if BX �= nil and BY �= nil then
7: for all x ∈ BX and y ∈ BY do
8: if x = y then
9: s ← s ⊕ m+(x, y) � Case 1

10: else
11: s ← s ⊕ m−(x) ⊕ m−(y) � Case 2
12: else if BX �= nil then
13: for all x ∈ BX do
14: s ← s ⊕ m−(x) � Case 3
15: else if BY �= nil then
16: for all y ∈ BY do
17: s ← s ⊕ m−(y) � Case 3
18: return s
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Since the size of the hash tables is fixed at M , the average runtime for a
comparison is Θ(M). To avoid possible hash collisions, a high value of M � l
must be chosen in advance, otherwise the chaining of bins (Case 2) results in
O(l2) worst-case runtime for O(l) extracted words per sequence.

3.2 Trie-based Sequence Comparison

A trie is an N -ary tree, whose nodes are N -place vectors with components cor-
responding to the elements of Σ [17]. Figure 2(a) shows two tries X and Y con-
taining the same words as the hash tables in Figure 1(a). The nodes of the tries
are augmented to carry a variable reflecting the count of the passing sequence.
The end of each extracted word is indicated by a marked circle. Application of
tries to computation of kernel functions has been considered by [18].

Depending on the applied similarity measure the trie nodes can be extended
to store other aggregated values which speed up calculations involving subtrees,
e.g. for the Minkowski distance

∑
w φw(x)k for all lower words w,

Comparison of two tries can be carried out as in Algorithm 2: Starting at the
root nodes, one traverses both tries in parallel, processing matching and mis-
matching nodes. If the traversal passes two equal and marked nodes, a matching
word is discovered (Case 1), if only one node is marked a mismatch occurred
(Case 2). The recursive traversal is stopped if two nodes do not match, and thus
two sets of underlying mismatching words are discovered (Case 3). Figure 2(b)
shows a snapshot of such a traversal. The nodes x and y are not equal, and the
words {“bar”, “barn”} and {“band”, “bank”} constitute mismatches.
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(b) Comparison of tries

Fig. 2. Trie data structures (a) and their comparison (Case 3) (b)

As an invariant, the nodes under consideration in both tries remain at the
same depth and thus the worst-case runtime is O(l). An advantage of the trie
data structure comes into play especially if the provided alphabet is large and a
lot of mismatches occur. The traversal discovers mismatching words after passing
the first few symbols and omits further unnecessary comparisons.



380 K. Rieck, P. Laskov, K.-R. Müller

Algorithm 2. Trie-based Sequence Comparison
1: function Compare(X,Y )
2: s ← 0
3: for i ← 1, N do
4: x ← child[X, i]
5: y ← child[Y, i]
6: if x �= nil and y �= nil then
7: if end[x] and end[y] then
8: s ← s ⊕ m+(x, y) � Case 1
9: else if end[x] then

10: s ← s ⊕ m−(x) � Case 2
11: else if end[y] then
12: s ← s ⊕ m−(y) � Case 2
13: s ← s ⊕ Compare(x, y)
14: else
15: if x �= nil then
16: s ← s ⊕ m−(x) � Case 3
17: if y �= nil then
18: s ← s ⊕ m−(y) � Case 3
19: return s

4 Experimental Results

4.1 Efficiency of Data Structures

Efficiency of the two proposed algorithms has been evaluated on four benchmark
data sets for sequential data: DNA sequences of the human genome [19], system
call traces and connection payloads from the DARPA 1999 data set [20] and
news articles from the Reuters-21578 data set [21]. Table 6 gives an overview of
the data sets and their specific properties.

For each data set 100 sequences were randomly drawn and n-grams of lengths
3, 5 and 7 extracted. The n-grams of each sequence were stored in tries and hash
tables with varying size from 102 to 105. Subsequently the Canberra distance was
calculated pairwise over the tries and hash tables using the proposed algorithms,
resulting in 5000 comparison operations per setup. The procedure was repeated
10 times and the runtime was averaged over all runs. The experimental results
are given in Table 7.

Table 6. Datasets of sequential objects

Name Type Alphabet Min. length Max. length

DNA Human genome sequences 4 2400 2400
HIDS BSM system call traces 88 5 129340
NIDS TCP connection payloads 108 53 132753
TEXT Reuters Newswire articles 93 43 10002
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Table 7. Runtime experiments for Canberra distance

Dataset n Average runtime for 5000 comparisons (s)
Trie Hash (102) Hash (103) Hash (104) Hash (105)

DNA 3 0.19 0.22 0.28 0.66 6.04
5 2.21 4.46 2.94 3.56 9.57
7 10.72 37.63 13.02 5.67 9.43

HIDS 3 0.06 0.10 0.13 0.62 3.05
5 0.15 0.15 0.16 0.66 5.23
7 0.25 0.19 0.22 0.70 4.15

NIDS 3 0.48 1.70 1.07 1.43 5.12
5 0.86 3.70 1.72 1.81 5.90
7 1.20 4.83 2.10 2.42 6.08

TEXT 3 1.12 1.75 1.22 1.63 7.03
5 1.65 3.85 1.64 1.89 7.58
7 2.13 5.92 2.19 2.24 7.74
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Fig. 3. Detection performance for network intrusion detection

The average runtime of the hash-based algorithm strongly depends on the size
of the hash table. The optimal value varies for different data sets and values of
n. However, in 10 of 12 cases the trie-based algorithm performs equally well or
better than the best hash table setup, being independent of a parameter.

4.2 Application: Network Intrusion Detection

To demonstrate the proposed algorithms on realistic data, we conducted an ex-
periment for unsupervised learning in network intrusion detection. The underly-
ing network data was generated by the members of our laboratory using virtual
network servers. Recent network attacks were injected by a penetration-testing
expert.

A distance-based anomaly detection method [22] was applied on 5-grams ex-
tracted from byte sequences of TCP connections using different similarity mea-
sures: a linear kernel (Euclidean distance), the Manhattan distance and the
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Kulczynski coefficient. Results for the common network protocols HTTP, FTP
and SMTP are given in Figure 3.

Application of the Kulczynski coefficient yields the highest detection accuracy.
Over 78% of attacks for each protocol are identified with no false-positives. In
comparison the Euclidean distances fails to uncover good geometric properties
for discrimination of attacks in this particular setup.

5 Conclusions

We have shown that, similarly to kernels, a large number of distances and sim-
ilarity coefficients can be efficiently computed for sequential data. The use of
such similarity measures allows one to investigate unusual metrics for applica-
tion of machine learning in specialized problem domains. As an example, the
best results in our experiments on unsupervised learning for network intrusion
detection have been obtained with the Kulczynski coefficient over n-grams of
connection payloads. Thus direct application of distances over sequential data
may be favorable over implicit use of the Euclidean distance induced by ker-
nels. Especially promising are further applications of the proposed algorithms in
computer security and bioinformatics.
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alpine. Bulletin de la Société Vaudoise des Sciences Naturelles 36 (1900) 87–130

[16] Anderberg, M.: Cluster Analysis for Applications. Academic Press, Inc., New
York, NY, USA (1973)

[17] Knuth, D.: The art of computer programming. Volume 3. Addison-Wesley (1973)
[18] Shawe-Taylor, J., Cristianini, N.: Kernel methods for pattern analysis. Cambridge

University Press (2004)
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Multi-scale Bayesian Based Horizon Matchings
Across Faults in 3d Seismic Data

Fitsum Admasu and Klaus Tönnies
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Abstract. Oil and gas exploration decisions are made based on infer-
ences obtained from seismic data interpretation. While 3-d seismic data
become widespread and the data-sets get larger, the demand for automa-
tion to speed up the seismic interpretation process is increasing as well.
Image processing tools such as auto-trackers assist manual interpretation
of horizons, seismic events representing boundaries between rock layers.
Auto-trackers works to the extent of observed data continuity; they fail
to track horizons in areas of discontinuities such as faults.

In this paper, we present a method for automatic horizon matching
across faults based on a Bayesian approach. A stochastic matching model
which integrates 3-d spatial information of seismic data and prior geo-
logical knowledge is introduced. A multi-resolution simulated annealing
with reversible jump Markov Chain Monte Carlo algorithm is employed
to sample from a-posteriori distribution. The multi-resolution is defined
in a scale-space like representation using perceptual resolution of the
scene. The model was applied to real 3-d seismic data, and has shown to
produce horizons matchings which compare well with manually obtained
matching references.

1 Introduction

Subsurface regions offering prospects for the existence of hydrocarbons undergo
a seismic survey to get the profile of their underground structure. An exploration
well is drilled to conclusively determine the presence or absence of oil/gas. Since
drilling a well is an expensive, high-risk operation, all available information needs
to be exploited before arriving at any exploration decision. A seismic survey
consists of seismic data acquisition and interpretation. Seismic data are pictures
showing subsurface seismic reflectivity. They are acquired by sending artificially
created seismic wave signals from a ground surface and recording reflections from
underground rock layers. The recorded seismic signal consists of amplitudes of
various strength and sign (peaks or troughs). After several preprocessing steps
the recorded signals are ready for interpretations.

3-d seismic data consist of numerous closely-spaced seismic lines in three di-
mensions: seismic lines, seismic traces, and time (see Fig.1). Each seismic line
indicates the seismic shoot line and a seismic trace is the area covered by each
seismic record. The area resolution ranges from 12.5 m to 25 m. The time dimen-
sion is measured in microseconds unit which is the time spent when the signals

K. Franke et al. (Eds.): DAGM 2006, LNCS 4174, pp. 384–393, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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sent from the surface go down and return(Two Way Travel). Usually time sam-
pling in 2ms is done for about 6 seconds resulting in about 3000 time slices.
Structural interpretation of seismic data attempts to create 3-d subsurface mod-
els and involves the interpretation of faults and horizons [3]. Faults are fractures
of rock layers. They are identified by finding the reflected event termination and
are usually interpreted as straight lines or connected line segments (see fault lines
in Fig.1). Horizons appear as linear structures and indicate interfaces between
underground rock layers. Horizon tracking is performed by following continuity
of high-amplitudes (see interpreted horizon on Fig.1). The horizon tracking also
involves jump correlation of horizons across faults (jump correlation of horizons
on Fig.1).

Fig. 1. Seismic data with manually interpreted faults and horizon

The research presented here is motivated by the demand for computer-assisted
structural interpretation of seismic data. At present most parts of seismic inter-
pretation are done manually. Seismic data have sizes of several gigabytes. Manual
structural interpreting on each seismic slice is time consuming and error prone.
It takes too long to build trusted models for exploration decisions. Further, man-
ual interpretation results are interpreter-biased and lack well specified reliability
measures. Computer-assisted interpretation has the advantage of providing faster
interpretation and a consistent workflow.

We concentrate to automate matching of horizons across faults (see Fig.2).
We assume that horizon surfaces in unfaulted regions are given (e.g. by applying
an autotracker [4]) and fault surfaces have been generated (e.g. by a methodol-
ogy suggested by [5]). We restrict our work to normal faults which is the most
common fault type where one side of the fault block (hangingwall) moves down
relative to the other side (footwall). Since the two sides of the fault may have
undergone different geological processes, such as compression and erosion, scale
differences between horizons on the two sides can be expected and some horizons
on one side may not have matches on the other side of the fault. Automating
horizon matching is very challenging due to non-dense seismic information, local
distortions, and large number of possible configurations.
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Fig. 2. A. Pre-fault and B. Post-fault configuration of rock layers. C. A seismic slice
taken from 3-d data showing horizons curves cut by a fault (dashed line).

1.1 Previous Work

The horizon matching problem can not be solved using classical stereo corre-
spondence or registration algorithms due to little intensity information to guide
the utilization of optical flow and presence of local distortions. We are aware of
only two works, which directly deal with the correlation across a fault. The first
is the model-based scheme for matching horizons at normal faults in 2-d seismic
images introduced in [2]. Well-defined horizons segments on both sides of the
fault were extracted and matched based on local correlation of seismic intensity
and geological knowledge. However, a pure 2-d approach lacks efficiency and is
suitable only if the information of the 2-d seismic slice is sufficient for evaluation
of the geological constraints. The second [1] formulates the horizon matching as
a non-rigid continuous point matching between the two sides of the fault. How-
ever, it is computationally expensive and not sufficiently robust with respect to
noise and artifacts in seismic data.

In this paper, we aim to exploit existing 3-d spatial relationships in the data
for robust matching across faults. We introduce a stochastic model, which inte-
grates a data term and prior geological constraints. The data term incorporates
seismic observations through statistical measures of local homogeneities in 3-d
space. The a-priori geological constraints are modelled through interactions of
geometric primitives. The stochastic nature of the model provides quality mea-
sures to search the matching solution. We use a multi-resolution search strategy
where strong horizons signals give guidance for matching the weaker.

2 Data Representation

Seismic data ready for structural interpretation can be represented as 3-d scene
Sd = (V, F ), where V ⊆ R3 indicates the space covered by the seismic survey
and F is a real-valued scalar field such that F : R3 → R. For c ∈ V , c = (x, y, z)
denotes a position in seismic data dependant coordinate system and x, y, and
z span resp. the seismic line, seismic trace, and time. F assigns to c a seismic
amplitude value F (c).

Considering geometries of a fault and horizons from both sides of the fault
are given in the seismic data set as in Fig.2, another space Sp = (V, T ) is de-
fined such that T : V → L and T (c) = l, for l ∈ L = {p,Hf1, Hf2, ..., Hfm,
Hh1, Hh2, ..., Hhn, 0} where p is a label for fault plane voxels, and for i ∈ Z+,
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Hfis and Hhis represent respectively labels for horizons surfaces from foot- and
hanging-walls blocks (Fig.3). The horizons labels are sorted in ascending or-
der of their time coordinates such that 0 < Hf1 < Hf2 < ... < Hfm and
0 < Hh1 < Hh2 < ... < Hhn. T (c) = 0 if the voxel c does not belong any of the
primitives, and indicates background.

Fig. 3. A. Fault patch seismic section. B. Abstraction of horizons and fault surfaces.

3 Problem Representation

Horizons matching problem is to find a set of matching pairs x = {x1, .., xi, .., xs}
∈ X , such that xi = (Hfpi , Hhqi) with 1 ≤ pi ≤ m and 1 ≤ qi ≤ n joins horizons
which would have been continuous had the fault not been present. X is the
search space obtained by permutations and combinations of Hf × Hh where
Hf = {Hf1, Hf2, ..., Hfm} and Hh = {Hh1, Hh2, ..., Hhn}. We refer x also as
marked-point set [8] where Hf are points and Hh are marks.

Post-fault configurations imaged by the seismic data do not provide the com-
plete information about the pre-fault configuration of the horizons. Therefore,
the geological continuity of horizons across faults are established using additional
non-observed geological information.

The matching problem is combinatorial with large search space, X . The size
of X is estimated as |X | �

∑N
d=1 |Xd| such that |Xd| = (N

d ) and N = |Hf |∗ |Hh|.

4 Bayesian Formulation

We use the probability theory to decide the most likely configuration or matching
solution. Let fx represent the seismic amplitude features for a configuration x.
Then using Bayes theorem, the logical connection between the marked-point set
x and the data fx are determined with P (x | fx).

P (x | fx) =
P (x)P (fx | x)

P (fx)
(1)

In following subsections, the a-priori model, P (x), and data model, P (fx | x),
are described.
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4.1 The A-Priori Model

We consider the geometries of the horizon primitives as uniform Poisson point
process. Then the marked-point set x are from a Gibbs random field and P (x)
forms a Gibbs distribution [7]:

P (x) =
1
Z
βn(x)e(

−U(x)
T ) (2)

where U(x) is an energy term evaluated by interactions of the geometric primi-
tives, Z is normalization constant, and β stands for a scale parameter. T is the
temperature of the system.

No priori knowledge regarding the topology of a single horizon can be defined.
However, we can impose geological constraints when dealing with a sequence of
horizon layers. These constraints are hard constraints (C1 and C2) and soft
constraint (C3). C1 states that horizons must not cross each other, and is set to
∞ if horizons cross; otherwise to 0. C2 states that offsets have only one direction,
and is set to ∞ if this constraint is violated; otherwise C2 is 0. C3 is imposed
using a heuristically determined theoretical fault throw function. Fault throw is
the vertical offset of the displaced horizons (Fig.4A). Fault throw is maximum
at the mid of the fault surface and decreases to zero towards the tips of the fault
surface. The fault plane may be approximated by an elliptic shape according
to [10] (see Fig.4B). Then, the fault throw value at a given point on the fault
surface may be estimated by a function fd as follows:

fd(r) = 2D(((1 + r)/2)2 − r2)2(1− r) (3)

where r is the normalized radial distance from the fault center and D is the
maximum fault throw value. Horizons offsets of each matching pairs are repre-
sented with a set Dx = {d1, d2, ..., dN} where di represents the offsets of the
hanging-wall horizon in the matched pair xi. Correspondingly, expected fault
offsets Ux = {u1, u2, ..., uN} for the matching pairs are estimated using equation
3. The fault model contains unknown latent values, Θ (fault width, length, cen-
ter and maximum fault throw). Considering the gaussian mixture and applying
the expectation maximization algorithm, the Ux and Θmax are estimated. Then

C3(x) = log(
N∑

j=1

PΘmax(dj | uΘmax)) (4)

Finally a-priori energy, U(x), in equation 2 is estimated as

U(x) = C1(x) + C2(x) + C3(x) (5)

4.2 Data Model

Horizons represent topological surfaces of homogenous rock layers. This homo-
geneity is usually reflected in the seismic data as similar amplitude values. Al-
though this similarity does not mean identical amplitudes or iso-surfaces, a char-
acterization can be derived which capture the local strong seismic similarity ex-
pected on horizon topological surfaces. Previous implicit horizon models utilized
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Fig. 4. A. Matched horizons with their fault throws shown on bold on the dashed
fault line. B. Fault throw contours on a fault surface have ideally elliptical shapes.

in auto-picking tools [4] and other horizon matching algorithms [2] [1] do not
capture any spatial variability of horizon seismic signals. Here we introduce a
novel explicit modelling of 3-d horizon surfaces for automation purpose.

The seismic signals observed on the topological surfaces of matched horizons
with t are modelled as gaussian random process, h(t) where t ∈ V, h(t) = F (t)
and t represents the voxels of the joined horizons surfaces. Then, the gaus-
sian process is specified by mean μ(t) = E(h(t)) and its covariance function
cov(t, t′) = E[(h(t)−μ(t))(h(t′)−μ(t′))], t′ ∈ V . The gaussian model is selected
for its flexibility and easiness to impose the priori knowledge of seismic similarity.

Ignoring the fault offsets, the spatial correlation of h(t) is estimated as

γ(d) = E{h(t+ d)− h(t)]2}. (6)

for a lag distance d. This expectation is estimated as the average squared differ-
ence of values separated by d.

γ(d) � 1
N(d)

∑
N(d)

[h(t)− h(t+ d)]2 (7)

where N(d) is the number of pairs for lag d. Then for a marked set x with tx
representing the joined horizons’ voxels, the likelihood probability P (fx | x) in
equation 1 is estimated as

P (fx | x) = P (h(tx)) ∝
∏
xi

e−(
∑

d γ(d)) (8)

5 Searching for Matching Solution

The optimal matching solution is a marked point set xmax = (x1, ..., xi, ..., xs)
that maximizes P (x | fx) where

xmax = argmax
x

P (x | fx) (9)

Using equation 8 and 2

xmax = arg min
x

[U(x) +
∑
xi

(
∑

d

γ(d))] (10)

This is a MAP estimation problem and xmax is searched in space X . Since X
is too big for a direct search, simulated annealing with a Reverse Jump Markov
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Chain Monte Carlo (RJMCMC) [6] sampling method is utilized. We introduce
another random variable S such that S = |x| ( counts the number of matching
pairs in x), and have a poisson distribution. The RJMCMC algorithm generates
artificial Markov chains that transit between states of different dimension de-
pending on the temperature (see algorithm 1).

Algorithm 1: Initialize init state = (x1, ..xi, ..xs) and k = 0. Hf ′ ⊆ Hf and
Hh′ ⊆ Hh are set of labels such that for x = (f, h) ∈ init state f �= l if l ∈ Hf ′ or
h �= l for l ∈ Hh′ . While the temperature T is above the minimum temperature,
do the following,

1. k = k + 1 and generate r ∼ U [0, 1]
2. Using r perform one of the following moves

(a) Select uniformly xpf and xph respectively from Hf ′ and Hh′ and form
xp = (xpf , xph) and set new state = init state ∪ {xp}.

(b) Select uniformly xp from init state and set new state = init state\{xp}.
(c) Uniformly select xp = (xpf , xph) from init state and xpfnew from Hf ′

set new state = (init state \ {xp}) ∪ {(xpfnew , xph)}.
(d) Uniformly select xp = (xpf , xph) from init state and xphnew from Hh′

set new state = (init state \ {xp}) ∪ {(xpf , xphnew)}.
3. Let xnew = new state and xinit = init state, compute ratio probability, P ,

P = min{1, P (|xnew|)
P (|xinit|)

P (xnew|fxnew )
P (xinit|fxinit

)

4. Accept or reject new state with a probability, P .
5. Decrease the temperature, and update init state, Hf ′ and Hh′ .

6 Multi-resolution Search

As the number of horizons increases, it takes too long for Algorithm 1 to find the
global optimum solution. In some cases, as the algorithm’s parameters are fine
tuned to achieve a generalization, considerable numbers of horizons may left un-
matched. To solve this problem we use a multi-resolution version of the matching
algorithm where strong horizons are matched at coarser level and their matching
solution are utilized as priori for matching at finer level weaker horizons.

Approaches to multi scale representation such as wavelet analysis [11] and
scale space theory [9] have been introduced. Wavelet analysis are not invariant
under thickness thus not suitable for modelling faulted horizons. In scale space,
the signal is represented from coarse to fine levels of detail by convolving it
with a Gaussian kernel whose standard deviation plays the role of scale. Scale-
spaces representation theory does not use any prior knowledge about the signals,
whereas here we determine the horizons’ scales in semantic scale, i.e using a-priori
knowledge about the horizons’ signals.

The semantic multi-resolution representation is understood in terms of the
likelihood of the seismic features observed on the horizons topology. As in section
4.2, horizons seismic features are assumed to form a gaussian random process
with strong correlation. At a coarser level, higher likelihoods are considered.
At a finer level the threshold for the likelihood goes down and more horizons
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topologies are considered (see Fig.5). Mathematically, the horizons scale space,
Ω, for scale parameter t is

Ωf,α(., t) = {Hfi ∈ Hf |L(Vfi) ≥ α;Vfi = {T−1(Hfi)}} (11)

where L(Vfi) is the likelihood function and estimated as in equation 8. After
obtaining the hierarchal representation, Algorithm 1 starts from lower resolution
level. At the next higher resolution the lower resolution results are utilized to
impose constraints C1 and C2, and to initialize latent variables in the expectation
maximization algorithm for estimating C3 .

Fig. 5. Horizon segments defined on a seismic slice at different resolution levels

7 Experiments and Results

We have conducted experiments to evaluate the matching model developed in
the previous sections. The evaluation criteria is the correctness of the matching
solution. A correct solution has matched pairs which correspond with manually
obtained reference solution, and has no mismatched pairs.

Fault regions are selected from a 3-d seismic volume of shallow-offshore Nige-
ria. Fault patches were isolated from the seismic data, which consist of large
numbers of faults and fault systems. Each isolated fault patch contains a fault
surface with seismic sections on the two sides of the surface. The seismic sec-
tions were considered to be displaced only under the influence of this single
fault surface. The geometries of horizons and faults are assumed to be defined in
the seismic section as in Fig.3B. The parameters for algorithm 1 are fine-tuned
to the convergence using selected fault reference solution as samples of the a-
posteriori distribution. A geometric temperature cooling schedule is utilized. The
initial temperature is set to allow jumping from the possible higher energy to
the lowest. The final temperature is set close to zero (∼ 0.005), and the rate of
temperature is 97%. The inner loop was varied from 10 to 100 with number of
horizons to match. These optimization parameters are related to the time and
fitness of the solution and they are set with some tolerances allowing few hori-
zons unmatched. The method was implemented in MATLAB on Pentium IV pc
running windows XP. The simulated annealing process takes from 30 sec to 10
min depending on the number of horizons.

Simulated annealing test runs were executed for 17 fault patches. These fault
patches are different from the fault patches utilized for estimating the parame-
ters. Results on 14 fault patches were considered acceptable with less than 20%
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possible matching pairs omissions compared to the reference solutions. Matching
on three faults was unsuccessful because they contain mismatches. Fig.6 shows
for two fault patches unacceptable matching results as there are many mis-
matches and omissions. The reasons for the failures are poor data quality and
nearby faults interactions which distort the fault shape and hence our consistent
direction based elliptical fault displacement model.

Fig.7 demonstrates the impacts of 3-d information and so its advantage over
the 2-d method in [2]. The second method from [1] treats the horizon matching as
a non-rigid point-based image registration. An implementation of this method
was able to find satisfactory correlations only for 8 fault patches out of the
17 test fault patches. Our new method is more robust and faster because it

Fig. 6. Mismatches corrected by white lines are due to poor data quality in (A) and
fault interactions in (B)

Fig. 7. A. Incorrect matchings due to insufficient information on 2d seismic slices. B.
Correct matchings when more slices from the same fault patch are utilized. C. Reference
manual matchings (the difference with B) are shown on bold arrow.

Fig. 8. A. Wrong matching pairs (corrected by white arrows) are obtained when
all horizons are considered for matching search (i.e no multi-scale search). B. Coarse
matching: few horizons selected and matched. C. Improved matchings starting from
results of B.
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matches segments which have more discriminating features than points. The
multi-resolution aspect of our matching algorithm explained in section 6 helps
to recover every possible matching pair of horizons (see Fig.8) and reduce the
simulation time considerably from minutes to seconds.

8 Conclusions

Since the ultimate goal is production, good reliable and consistent measures of
the interpretation are crucial. We have introduced a stochastic matching model
which can facilitate seismic interpretations. The stochastic nature provides qual-
ity measures. The automatic matching results compare well with references ob-
tained manually. Additional tests show the inclusions of 3-d spatial continuity
and multi-resolution aspects of the dataset increases robustness.

Though the method fails in areas of fault interactions, it helps to bring the the
attention of the interpreter and saves the interpreters time as the interpreter will
give more attention for such areas than spending time in routine fault regions.
Further, the erroneous results could also point to the incorrect fault definition
hence pointing to misinterpretations at previous stages. The model can be further
extended to incorporate other fault types and well-log observations.
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Abstract. Independent Component Analysis (ICA) is a frequently used
preprocessing step in source localization of MEG and EEG data. By de-
composing the measured data into maximally independent components
(ICs), estimates of the time course and the topographies of neural sources
are obtained. In this paper, we show that when using estimated source to-
pographies for localization, correlations between neural sources introduce
an error into the obtained source locations. This error can be avoided by
reprojecting ICs onto the observation space, but requires the identifica-
tion of relevant ICs. For Event Related Potentials (ERPs), we identify
relevant ICs by estimating their non-Gaussianity. The efficacy of the ap-
proach is tested on auditory evoked potentials (AEPs) recorded by MEG.
It is shown that ten trials are sufficient for reconstructing all important
characteristics of the AEP, and source localization of the reconstructed
ERP yields the same focus of activity as the average of 250 trials.

1 Introduction

Event related potentials (ERPs) are magnetic/electric fields of the brain elicited
by an event such as presentation of a visual or an auditory stimulus. These fields
can be measured outside the skull using magneto- or electroencephalography
(MEG/EEG). While all concepts presented in this paper can be applied equally
to MEG or EEG, we restrict our discussion to MEG for the sake of simplicity. In
the study of ERPs, the process of source localization is concerned with determin-
ing the position of neural generators causing the ERP, which allows conclusions
about brain areas involved in processing a stimulus. A wide range of methods
has been developed for MEG source localization, ranging from simple dipole to
distributed source models (see [1] for a review). Common to all methods is their
susceptibility to noise, requiring a high signal-to-noise ratio (SNR) of the ERP.

ERPs, however, are cloaked by ongoing background MEG activity usually
several times the magnitude of the signal of interest. To extract ERPs from the
magnetic background activity numerous trials are recorded, in which the stimulus

K. Franke et al. (Eds.): DAGM 2006, LNCS 4174, pp. 394–403, 2006.
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is presented repeatedly to the subject. Under the assumption that only the ERP
component of the magnetic field is invariant for every stimulus presentation, the
average time course of all trials results in an unbiased estimate of the original
ERP. The computation of this so called grand average ERP usually requires
several hundred trials if a positive SNR is desired. Since this amount of data is not
always available, source localization algorithms may perform poorly, rendering
these approaches impractical for a large group of experimental setups.

For these reasons, the development of methods for source localization that
are insensitive to MEG background activity is an active area of research. In
this paper, we focus on using Independent Component Analysis (ICA) for this
purpose. ICA is a special case of Blind Source Separation (BSS), that decomposes
the measured data into maximally independent components (ICs) [2]. In the
context of source localization, ICA is used as a preprocessing step to obtain
estimates of the topographies of neural sources. The position of a source inside
the brain can then be estimated from its topography without interference from
other neural sources [3,4]. This approach introduces an error into the localization
process if the neural sources are not fully statistically independent. As a remedy,
we show that reprojection of the relevant ICs onto the observation space, and
subsequent source localization of the reprojected data, removes this error. This
approach requires identification of the ICs contributing to the ERP. This can be
done by estimating the non-Gaussianity of each IC.

The efficacy of our approach is tested on auditory evoked potentials (AEPs)
recorded by MEG. Ten trials are randomly chosen from a total of 250 trials.
Using ICA and reprojecting the most non-Gaussian IC onto the observation
space is shown to result in a SNR of 5.52 dB in comparison to the grand average
of 250 trials. Reconstructing the current density with a distributed source model
results in identical maxima of current strength for the ERP reconstructed from
ten trials and the grand average ERP of 250 trials.

The rest of this paper is organized as follows. We first introduce the source
model, followed by a review of source localization using distributed source models
and ICA. We will then show why correlations between neural sources introduce
an error into the source localization procedure when using source topographies
estimated by ICA. This motivates the reprojection of relevant ICs onto the ob-
servation space, which renders the localization procedure more robust to source
correlations. The relevant ICs contributing to the ERP are then identified by
estimating their non-Gaussianity. In the results section, we apply the proposed
procedure to AEPs recorded by MEG, and conclude with a brief discussion.

2 Methods

2.1 Source Model

The determination of the current density from MEG measurements is an ill-
posed problem which has no unique solution. A first step to obtain a solution to
this inverse problem is to constrain the possible current sources to be dipoles,
since the synchronized pre-synaptic potentials of neurons in a cortical column,
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that give rise to the MEG, can be approximated by a single current dipole
[1]. We restrict ourselves to a spherical head model which allows for a simple
determination of the magnetic field yk at the sensor positions generated by the
k-th dipole with known location and orientation (forward problem) [5]:

yk = Aksk ∈ R
M , (1)

with the leadfield matrix Ak ∈ RM×3 of dipole k where M is the number of
available MEG sensors and sk = [sk,x, sk,y, sk,z]

T contains the dipole moment
in x, y and z direction.1 The magnetic field generated by N dipoles is the su-
perposition of yk, k = 1, . . . , N . Thus, the model to be used in the sequel is

y = As, (2)

with A = [A1, . . . ,AN ] ∈ RM×3N and s = [sT
1 , . . . , s

T
N ]T ∈ R3N . The measure-

ment noise is neglected.
Note that the moment vector sk ∈ R3 can be written as sk

‖sk‖2
‖sk‖2 = pkmk,

with the unit norm moment orientation vector pk ∈ R3 and the scalar dipole
moment mk. If the orientation vectors are known or can be estimated simulta-
neously with the matrix A, (2) becomes

y = Gm, (3)

with m = [m1, . . . ,mN ]T and gk = Akpk, where gk is the k-th column of
G ∈ RM×N .

2.2 Source Localization

Because of the complex mathematical structure of spatially unconstrained dipole
fitting [1], we estimate a discrete approximation of the current density using a
large number of current dipoles, placed on a regular grid. It remains to determine
the contribution of each of these fixed dipoles to the measurement, thereby
reducing the localization to a linear inverse problem (“distributed linear” or
“imaging” methods [1]). Because there are typically much more dipoles than
sensors, this approach leads to an underdetermined system of linear equations. In
order to find a unique solution, it has to be regularized, usually by incorporating
assumptions about the spatial properties of the solution, e. g., the norm [6],
smoothness [7] or sparseness [8]. These algorithms often use one measurement in
time, but there are also attempts to include the temporal evolution (e. g., [9]).

In this paper, we use a distributed approach to determine strongly localized
solutions to the inverse problem.2 Thus, we impose the constraint for the solution
to be sparse. This is achieved by the following optimization [10]:

min
s
‖As− y‖2 + λ ‖s‖1 . (4)

1 Note that for MEG the matrix Ak has rank 2, since radial dipoles do not contribute
to the measurements [5]. Therefore, the dimension of the model could be reduced.

2 This spatial assumption might not be valid for all neural sources (e. g. cognitive
processes) but applies to the AEPs investigated in the results section.
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The leadfield matrix A is known here because it is fully determined by the fixed
positions of the dipoles on the grid. The first term of (4) is used to find a solu-
tion which gives a good approximation of the measured data. The second term
penalizes the �1 norm of the solution vector which is known to produce sparse
solutions [10]. The regularization parameter λ trades the data approximation
with the degree of sparsity. Note that this optimization would lead to a solution
that is not only sparse in the overall dipole moment, but also in its x, y and z
components which has no physiological justification. Thus, a modified penalty
on the norm (see, e. g., [9]) of the solution vector is introduced:3

‖s‖2,1

�
=

N∑
n=1

‖sn‖2 =
N∑

n=1

∣∣∣∣( ∑
k∈{x,y,z}

s2n,k

) 1
2
∣∣∣∣. (5)

This produces a sparse solution in the overall dipole moments but not in the
respective moment components since the �2 norm is not sparsity enforcing. The
resulting optimization problem

min
s
‖As− y‖2 + λ ‖s‖2,1 (6)

is a second order cone program and can be solved efficiently using standard
numerical optimization tools.

2.3 Independent Component Analysis

More recently, it has been proposed to apply ICA [2] to perform a BSS of the
dipole sources using the measurements of their superimposed activity [11]. This
approach explicitly uses the fact that typically not only one MEG measurement
is available, but a whole (sampled) time course, and decomposes the measured
signal into statistically maximally independent components.

In order to get interpretable results from the ICA, we make the following as-
sumptions : The time courses of the dipole moments of ERPs are non-Gaussian
distributed and statistically independent to the non-event related background
brain activity. This enables us to identify and separate sources as ICs contribut-
ing to the ERPs. Furthermore, we assume that there is only a small number
L < N of sources with non-Gaussian dipole moment. This assumption is based
on the observation that only a few ICs can be consistently reconstructed, which
implies that the other sources have a Gaussian distribution [12]. Additionally—
for ICA, not for the subsequent source localization—we restrict ourselves to the
case of N ≤ M , i. e., at least as many sensors as sources. If less sources than
sensors are present, a Principal Component Analysis (PCA) of the data with a
projection on the signal subspace can be performed [13]. Referring to the model
introduced in (3), we have T measurements

y[t] = Gm[t], t ∈ {1, 2, . . . , T}, (7)
3 Note that the absolute value in (5) is not necessary. It is included to emphasize the

application of the 1 norm to the Eucledian (2) norms of sn, n ∈ {1, 2, . . . N}.
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where it is assumed that the matrix G and thus the location and orientation of
the source dipoles do not change over time.

In order to perform a BSS, we determine a so called unmixing matrix W such
that, applied to the measurements y[t], the components of the resulting vector
are statistically independent. For the quadratic case (M = N), W is an estimate
of the inverse of G:4

m̂[t] = Wy[t] = WGm[t] = Pm[t]. (8)

This matrix can be found by minimizing the mutual information between the
components of the vector m̂[t], the ICs:

min
W

I (m̂1, . . . , m̂N ) =
N∑

n=1

H (m̂n)−H (m̂) s. t. ‖wn‖2 = 1, n ∈ {1, . . . , N}, (9)

with the differential entropy H (z) = −
∫∞
−∞ pz (u) log (pz (u))du [14,15]. Note

that only the L non-Gaussian sources can consistently be found by this method,
the remaining N − L Gaussian sources are arbitrarily mixed together [12]. An
estimate of the leadfield matrix G is obtained by inverting W , i. e., Ĝ = W−1.

2.4 ICA for Source Localization

In the previous section, a method has been described to obtain an estimate
Ĝ of the leadfield matrix and the ICs. In [4], the assumption that each IC
corresponds to a single dipole and all sources have mutually independent time
courses allowed for a decoupled dipole fit since the k-th column ĝk of Ĝ, also
called the topography of the k-th IC, only depends on the parameters of dipole
k. If one assumes that ĝk corresponds to a distributed source rather than a single
dipole, a decoupled localization based on (6) is possible:5

min
s
‖As− ĝk‖2 + λ ‖s‖2,1 , k ∈ {1, . . . , N}. (10)

A problem arises if the assumption of mutually independent sources contribut-
ing to the ERP is violated. Suppose a model with two sources which are obtained
by a linear transformation from two statistically independent and non-Gaussian
sources m′ ∈ R2:

m = Tm′ ∈ R
2. (11)

This gives the observation

y = Gm = GTm′ = G′m′, (12)

4 Note that W G is not the identity but the product P of a permutation and diagonal
matrix due to the insensivity of the cost function (9) w. r. t. this operation.

5 The column ĝk is not multiplied with the corresponding IC m̂k since this changes
the minimizer of (10) only by a scalar factor.
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with G′ = GT . The effective mixing matrix G′ can now be identified by ICA.6

Assuming the transformation

T =
[
1 c
c 1

]
, c ∈ R, (13)

the correlation of the components of m is determined by the scalar c and the
two columns of the matrix G′, read as g′

1 = g1 + cg2 and g′
2 = cg1 +g2. As long

as |c| �= 1, these two columns are linearly independent and can be identified by
ICA. However, the columns g′

1 and g′
2 are not identical to g1 and g2 , and thus an

error is introduced if they are used for a decoupled source localization (see 10).
The effect on source localization demonstrated by this simple example might not
be a problem if (10) is used, since only linear correlations are present. However,
it is emphasized that care should be taken if the independence assumption does
not hold in general. This phenomenon can occur, e. g., for the case of AEPs [16].
In the next subsection, we propose a method to deal with this problem.

2.5 ICA for Preprocessing of MEG Data

While the results of ICA may not be directly suitable for a source localization,
they can still be used to extract relevant activity from the measured data. This
“denoised” signal can then be the basis for a more accurate localization.

A major assumption of the presented ICA approach is that only neural activity
of interest results in a non-Gaussian signal, while the Gaussian background ac-
tivity results in Gaussian ICs. This gives a criterion to decide which components
contribute to the signal of interest. Assuming that there are L non-Gaussian
ICs, we get a “denoised” signal by computing

ŷ[t] = Ĝ(L)m̂(L)[t], (14)

where m̂(L)[t] ∈ RL contains only the non-Gaussian ICs and Ĝ(L) ∈ RM×L

the corresponding columns of W−1. 7 For the estimation of Gaussianity, we
employ the Anderson-Darling test (see, e. g., [17]) which is based on a distance
measure between the empirical distribution function of the available data and
the cumulative distribution function to be tested for. This is done separately for
each IC, since they are assumed to be statistically independent.

The advantage of this approach lies in the fact that the columns of Ĝ , which
may be affected by correlations of the signal components, are not used for a
decoupled source localization. Instead, we remove the signal portion assumed to
be background activity that is statistically independent to the signal of interest
and proceed with a simultaneous localization of the remaining sources. Assuming
that the non-Gaussian ICs have been correctly identified, the signal ŷ[t] is used
as data for the source localization algorithm as described above.

6 Up to permutation and scaling which is not considered here for simplicity.
7 Note W −1 is actually an estimate of G′ (with the problems mentioned in Section

2.4). Only for statistically independent sources, this is also an estimate of G.
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3 Results

To test the efficacy of the proposed approach, we used MEG data recorded
during an auditory oddball task at the Biomagnetic Imaging Laboratory at the
University of California, San Francisco. The data was collected with M = 132
channels covering the right hemisphere, and was sampled at 4 kHz. Each trial
started with presentation of an auditory stimulus to the left ear, and lasted 275
ms (see [18] for a description). The grand average ERP y∗ was calculated as the
average of 250 trials and low-pass filtered with 16 Hz cut-off frequency [15]. The
resulting time course at all channels is shown in Fig. 1 (left panel).

Ten trials were chosen randomly as test data. After low-pass filtering with
50 Hz cut-off frequency and subtracting the mean of each channel, a PCA was
performed, only retaining the first 50 principal components [13].8 The extended
Infomax-ICA algorithm [14] was applied to the concatenated trials, resulting
in 50 ICs and associated topographies

{
m̂k[t], ĝk ∈ RM

}
, k = 1, . . . , 50. After

computing the mean time course across the ten trials for each IC, the non-
Gaussianity of each averaged IC was estimated using the Anderson-Darling test
mentioned in section 2.5.

A remarkable result is that only one IC showed a high degree of non-Gaussiani-
ty, which was 5.9 times the standard deviation (std) apart from the mean non-
Gaussianity of all ICs. This IC was only ranked eighth in terms of explained
variance of the original measurements as expected from the low SNR of the data
set. Since the IC with the second highest non-Gaussianity was only 2.4 stds apart
from the mean non-Gaussianity, only the most non-Gaussian IC was assumed to
contribute to the ERP. Hence, we conclude that L = 1.

To reconstruct the ERP, the most non-Gaussian IC was reprojected onto the
observation space (cf. 14), and the reconstructed ERP ŷ was compared with the
grand average ERP y∗ by computing the SNR, defined as [18]

SNR = 10 log10

[
1
M

M∑
i=1

(
N∑

t=1

y∗i [t]2
)/( N∑

t=1

(y∗i [t]− ŷi [t])2
)]

(dB). (15)

This resulted in a SNR of 5.52 dB and the time course shown in the middle panel
of Fig. 1. In comparison with only averaging the ten trials and low-pass filtering
the resulting raw average with 16 Hz cut-off frequency (Fig. 1, right panel), an
increase in SNR of 5.79 dB was achieved.9

The effect of the denoising for source localization was assessed by estimating
the current distribution for all three data sets (i. e., grand average, reconstructed
and average, see Fig. 1), using the distributed source localization procedure
described in the methods section. A spherical head model was assumed, with the
MEG sensors located at a radius of 8.5 cm. A regular grid with an inner radius

8 Here, we have to set M = 50 for ICA and can therefore reconstruct up to N = 50
ICs. Note that M and N have different values for the subsequent source localization.

9 Note that for comparison the grand average, reconstructed and average only, ERPs
were all normalized to their first major peak occurring around 95 ms.
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Fig. 1. Time course, topography at time point of grand average peak amplitude and
current distribution for grand average, denoised and raw average ERP datasets. The
vertical line in the first row shows the time index of the topographies and source
localization results in the two lower panels. The topographies were plotted using
EEGLab [15].
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of 5.5 cm and outer radius of 7.1 cm was placed inside the spherical head model,
with a distance of 4.5 mm between each grid point. This resulted in N = 7437
dipoles. The time instant of maximum amplitude of the grand average ERP (92
ms) was chosen for localization for all three data sets. The same regularization
parameter was used for all data sets, with λ chosen to achieve a good trade-off
between sparsity and approximation of the measurements (resulting in a residual
variance of 0.73% for the grand average, 7.6% for the reconstructed and 1.9% for
the average only ERP). The results of the localization are shown in the bottom
row of Fig. 1. The location of maximum current strength for the grand average,
the reconstructed and the average ERP are indicated by the major star, triangle
and square, respectively. Smaller indicators represent grid points with a current
strength of at least 50% of the maximum current strength.

The grid point of maximum current strength of the reconstructed ERP coin-
cided with the maximum grid point of the grand average ERP. The maximum
current strength for the average ERP on the other hand was located three grid
points (1.35 cm) apart from the focus of activity of the grand average ERP. Five
points of the grand average ERP showed a current strength of at least 50% of
the maximum current strength, while this was the case for only one more point
for the reconstructed ERP.

4 Discussion

To summarize the results, the proposed approach proved capable of achieving
a significant increase of SNR in comparison to only averaging and low-pass fil-
tering the data (+5.79 dB). While the peak latencies and amplitudes of the
AEP were difficult to identify in the averaged data set, the reconstructed ERP
showed a similar time course as the grand average ERP, with all peaks clearly
identifiable. We conclude, that with the proposed approach a small number of
trials is sufficient to reconstruct the most important characteristics of ERPs.
Furthermore, the results support our assumption that non-Gaussianity of ICs is
a good criterion for identifying ICs contributing to an ERP.

In terms of source localization, the focus of activity of the reconstructed ERP
coincided with the grand average ERP, while the focus of activity of the average
ERP was shifted by 1.35 cm. It should be noted that AEPs have a relatively
high SNR compared to other ERPs, resulting in acceptable results by averaging
only. Further studies have to show, how our approach performs in comparison
to only averaging if more complex experimental setups are being investigated.

Finally, it should be noted that the data set used in this study was not well
suited for investigating the issue of correlations between neural sources discussed
in section 2.4. Since one IC was sufficient to reconstruct the grand average ERP,
it can be concluded that no correlations between neural sources contributing
to the ERP existed.10 This issue will also be investigated in further simulation
studies and studies with more complex experimental setups.
10 Note that this does not exclude the possibility of the most non-Gaussian IC repre-

senting a distributed source.
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Abstract. We employed three different brain signal recording methods
to perform Brain-Computer Interface studies on untrained subjects. In
all cases, we aim to develop a system that could be used for fast, reliable
preliminary screening in clinical BCI application, and we are interested
in knowing how long screening sessions need to be. Good performance
could be achieved, on average, after the first 200 trials in EEG, 75–100
trials in MEG, or 25–50 trials in ECoG. We compare the performance
of Independent Component Analysis and the Common Spatial Pattern
algorithm in each of the three sensor types, finding that spatial filtering
does not help in MEG, helps a little in ECoG, and improves performance
a great deal in EEG. In all cases the unsupervised ICA algorithm per-
formed at least as well as the supervised CSP algorithm, which can suffer
from poor generalization performance due to overfitting, particularly in
ECoG and MEG.

1 Introduction

Several different technologies exist for measuring brain activity, any of which
might be potentially useful in the design and implementation of Brain-Computer
Interface (BCI) systems. Each system has its own particular set of advantages
and limitations as regards spatial and temporal resolution, as well as cost, porta-
bility and risk to the user. Comparative studies are required in order to guide
development, to explore the trade-offs between these factors.

Here we present a comparative study of motor-imagery BCI experiments based
on electroencephalography (EEG), electrocorticography (ECoG) and magne-
toencephalography (MEG). In all three, our goal is to develop techniques of
analysis that could be used for efficient exploratory screening of potential users,
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using a simple binary synchronous (trial-based) paradigm, to determine whether
subsequent lengthy training in motor imagery might be worthwhile. This setting
requires that we obtain good classification performance as quickly as possible,
ideally within the duration of a single recording session, and in particular we
will be interested to find out how long such a session needs to be. Since the user
will have little time to adapt in one session, performance must be maximized by
careful choice and optimization of pattern recognition algorithms.

2 Data Collection

Three experiments form the basis for this report:

– EEG: 8 healthy subjects each performed 400 trials seated in an armchair in
front of a computer monitor. Signals from 39 silver/silver chloride electrodes
were digitized at 256 Hz.

– ECoG: 4 patients with epilepsy (implanted short-term with ECoG electrode
arrays in order to locate their epileptic foci prior to surgery) each performed
100–200 trials seated in their hospital bed facing a monitor. Signals from
64–84 subdurally implanted platinum electrodes were digitized at 1000 Hz.

– MEG: 10 healthy subjects each performed 200 trials, seated in the MEG
scanner in front of a projector screen. Signals from 150 superconducting
magnetometers were digitized at 625 Hz.

Each trial began with a small fixation cross displayed at the centre of the
screen, indicating that the subject should not move, and blink as little as possi-
ble. One second later the randomly chosen task cue was displayed for 500 msec,
instructing the subject to imagine performing one of two different movements:
these were left hand and right hand movement for the EEG study, and move-
ment of either the left little finger or the tongue for the MEG and the ECoG
studies (ECoG grids were implanted on the right cerebral hemisphere). The
imagined movement phase lasted at least 3 seconds, then the fixation point was
extinguished, marking the end of the trial. Between trials was a short relaxation
phase of randomized length between 2 and 4 seconds. For further methodological
details of the three experiments, see Lal et al (2004, 2005b,a).

3 Preprocessing and Classification

The problem setting is the familiar one of binary classification: each trial is a
data point, and its label tells us which of two imagined movements the subject
was attempting to perform.

For each number of trials n from 25, in steps of 25, up to the maximum
available, we attempt to classify the first n trials performed by the subject.
Classification performance is assessed using 10-fold cross-validation, conducted
twice with different random seeds. On each of these 20 folds, the test fold was
excluded from training, feature and model selection: where necessary, model
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and feature selection was performed by a second level of 10-fold cross-validation,
within the training fold of the outer cross-validation.

We expect label-relevant changes to manifest themselves in the power spectra
of the signals (so-called Event-Related Desynchronization, ERD) as well as in
slower drifts of electrical potential (Movement-Related Potentials, MRP). For
simplicity, since only a small minority of our subjects demonstrated useable
MRPs, we focus our attention on ERD, which is a movement- or imagined-
movement-related drop in the sensorimotor rhythms that typically dominate
motor and premotor cortex activity in the 8–12 Hz and 18–22 Hz ranges.

Starting 500 msec after offset of the visual task cue, we extract a window of
length 2 seconds, which we downsample to 100 Hz1 and then linearly detrend. A
spatial filter is then computed (see below), and applied to both the training and
test trials. Then, amplitude spectra are computed by Welch’s short-time Fourier
transform (STFT) method, averaging the spectra of 5 50%-overlapping 670-msec
windows. This gives us a vector of log amplitudes at 65 different frequencies for
each sensor (or for each spatially filtered linear combination of sensors, which
we will call a “channel”) on each trial, as inputs to the classifier.

We use a Support Vector Machine (SVM) as the classifier. Kernel methods such
as theSVM are particularlywell-suited toBCIdata: training timedepends onnum-
ber of points rather than number of features, which is expedient because datasets
are typically high-dimensional but small (the number of trials that can be obtained
per session is usually limited to a few hundred, and pooling data across sessions
usually results in a drop in performance). They also allow the easy modelling of
non-linear relationships, although it has generally been observed in BCI classifi-
cation applications (for example, see Müller et al, 2003) that, given a well-chosen
sequence of preprocessing steps (an explicit feature mapping), a further implicit
mapping via a non-linear kernel is usually unnecessary: thus it is commonly re-
ported that a linear classifier performs about as well as any non-linear classifier
one might attempt. Indeed we have generally found it to be the case in the current
application. We therefore use a linear kernel for the current study.

First, the SVM’s regularization parameter is optimized using 10-fold cross val-
idation within the training trial subset. Then we select relevant channels using
the technique of recursive channel elimination (RCE) first described by Lal et al
(2004). This is a variant of the recursive feature elimination (RFE) method pro-
posed by Guyon et al (2002), with the features being grouped into subsets that
corresponding to channels, and one whole subset being eliminated at each step.
We perform 10-fold cross-validated RCE within the training subset, testing ev-
ery trained SVM on the inner test fold in order to obtain an estimate of perfor-
mance as a function of the number of features. RCE also gives us a rank order
of the channels—based on this, we reduce the number of channels, choosing the

1 Based on an examination of the ROC scores of individual frequency features in each
subject’s data set, and also of the weight vector of a linear classifier trained on the
data, we did not find any indication that information in the power spectrum above
50 Hz helped in separating classes in the current task, so we do not believe any
class-relevant information was lost by downsampling.
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minimum number for which the estimated error is within 2 standard errors of the
minimum error during elimination. This procedure is described in more detail in
Lal et al (2005a). Finally, the regularization parameter is re-optimized on the data
set after channel rejection and the classifier is ready to be trained on the training
subset of the outer fold, in order to make predictions on the test subset.

3.1 Spatial Filtering

A spatial filter is a vector of weights specifying a linear combination of sensor
outputs. We represent our signals as an s-by-t matrix X , consisting of s time se-
ries, each of length t, recorded from s different sensors. Spatial filtering amounts
to a premultiplication X ′ = WX , where W is an r-by-s matrix consisting of
r different spatial filters. If an appropriate spatial filter is applied before any
non-linear processing occurs (such as the non-linear step of taking the absolute
values of a Fourier transform to obtain an amplitude spectrum), then class sepa-
rability according to the resulting features will often improve. We compare three
spatial filtering conditions: no spatial filtering (where W is effectively the iden-
tity matrix, so we operate on the amplitude spectra of the raw sensor outputs),
Independent Components Analysis and Common Spatial Pattern filtering.

IndependentComponentAnalysis (ICA): Concatenating then available tri-
als to form s long time series, we then compute a (usually square) separatingmatrix
W that maximizes the independence of the r outputs. Linear blind source separa-
tion is popular in the analysis of EEG signals since cortical activity is measured
through several layers of bone and tissue, spatially blurring the signals to yield
highly correlated (roughly linear) mixtures of the signals of interest at the sensors.

We use an ICA algorithm that optimizes W using the Infomax criterion, imple-
mented as part of EEGLAB (see Delorme and Makeig, 2004) which we find to be
comparable to most other available first-order ICA algorithms in terms of the im-
provement in resulting classification performance, while at the same time having
the advantage of supplying more consistent spatial filters than many others.

Common Spatial Pattern (CSP) Analysis: This technique (due to Koles
et al, 1990) and related algorithms (Lemm et al, 2004; Dornhege et al, 2004,
2006) are supervised methods for computing spatial filters whose outputs have
maximal between-class differences in variance. The input to the algorithm must
therefore be represented in such a way that class-dependent changes in the signal
are reflected in a change in signal variance. For ERD, this can be achieved by
applying a band-pass filter capturing the part of the spectrum in which sensori-
motor rhythms are expressed: the variance of the filtered signal, which has zero
mean, is a measure of amplitude in the chosen band. Here we use a bandpass
filter between 7 and 30 Hz (we generally found that this broad band performed
approximately as well as any specifically chosen narrow band).

Like ICA, CSP can be seen as a whitening followed by a rotation of time-
samples represented in the s-dimensional space of sensors. The whitening step is
cheap in both, requiring only a matrix P such that PΣP� = I, where Σ is the s-
by-s covariance matrix of the filtered, concatenated training trials. The rotation
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step in CSP is also cheap: we diagonalize the covariance matrix of only one class
(for example,X+, the concatenated training trials from only the positive class) in
the whitened space: PΣ+P

� = RDR�, where RR� = I and D is diagonal. The
eigenvalues diag(D) are in the range [0, 1] and, since PΣ−P

� = R(I −D)R�,
eigenvalues close to 0 or 1 indicate directions that maximize variance in one class
while simultaneously minimizing it in the other. See for example Lemm et al
(2004) for a more in-depth account and an extension of the algorithm.

SinceCSPuses label information, itmust be performed once for each outer train-
ing/test fold, using the training subset only. The drawback to CSP is its tendency
to overfit. Since this depends on the number of entries in R that can be optimized
relative to the amount of data, the overfitting effect is worsewhen there are a larger
number of channels relative to the number of trials, as is the case in our ECoG and
MEG data sets. In practice, the eigenvalues are a fairly good and often-used pre-
dictor of the generalization performance of each spatial pattern. One common ap-
proach is to take only the first k patterns, in the order of preference indicated by
the eigenvalues, number k being either fixed, or determined by cross-validation of
the CSP algorithm within the training set. We employ this strategy with k fixed
at 5, and have generally found little difference in performance between this and
a cross-validation strategy. We also allow the RCE stage to reduce the number of
channels further, if indicated by the criterion described above.

4 Classification Performance Results

In figure 1, classification accuracy is plotted as a function of n for each subject,
along with average performance in each of the three experiments (EEG, ECoG
and MEG). We plot the time-course of the overall effectiveness of the experi-
mental setup, subject and classifier taken all together: our curves are obtained
by computing performance on the first 25 trials performed by the subject, then
recomputing based on the first 50 trials, and so on (instead of on a random 25
trials, then a random 50 trials). As a result the observed changes in performance
with increasing n reflect not only the effect of the amount of input on classi-
fier performance, but also changes in the subjects’ performance, whether due to
practice, fatigue or transient random influences.

Note that, for 2 out of 8 subjects in the EEG condition (subjects 101 and
102), and 1 out of 10 in MEG (subject 303), we were never able to classify
at significantly better than chance level.2 These subjects were omitted from
the averaging process: from the point of view of ascertaining the effect of trial
number, they would only add noise.

2 As a screening, our study might suggest that other (non-motor-imagery) BCIs should
be tried for these three subjects. This decision would in practice be determined by
comparative screening, in which preliminary results from a number of different BCI
strategies are compared for a given subject. Even if all approaches fail at the screen-
ing stage, however, it may still be worth attempting training, since users training
can improve results even for users who start from chance performance level (see for
example Kübler et al, 2005).
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Fig. 1. For each subject, classification accuracy is plotted as a function of the number
of trials performed and the spatial filtering method employed: filled circles denote no
spatial filtering, asterisks denote ICA, and open diamonds denote CSP. The last three
plots show averages, for the EEG, ECoG and MEG experiments respectively, across
all subjects for whom classification had been possible at all.
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In the EEG experiment, both ICA (grey asterisks) and CSP (open diamonds)
allow very large improvements in performance relative to the condition in which
no spatial filtering was used (filled circles). This effect is clear in the averaged
data as well as in the individual subject plots. In ECoG, the difference between
ICA and no spatial filtering is slight, although ICA is at least as good as no
spatial filtering for all four subjects; CSP is consistently a little worse than
either. In MEG, there is no consistent benefit or disadvantage to ICA over the
raw sensor outputs, and again CSP is worse, this time by a larger margin.

The failure of CSP in ECoG and MEG is likely to be related to the over-
fitting effect mentioned above. This is clearest for subject 310 when 200 trials
are used: although spatial filters exist (and have been found by ICA) which can
improve classification performance, CSP fails to find any patterns which help
to classify the data, because useless (overfitted) spatial patterns dominate the
decomposition of the class covariance matrices.

Overall, maximum performance can be achieved using about 200 trials in
EEG and 75–100 trials in MEG. For ECoG, though it is harder to draw strong
conclusions due to the smaller number of subjects and trials, it generally appears
that the curves are even flatter: the best results can already be obtained with
only 25–50 trials.

5 Topographic Interpretation of Results

Figure 2 shows topographic maps of the features selected by our analysis, for seven
of our subjects. Sensor ranking scores were obtained by Recursive Channel Elim-
ination on data that had not been spatially filtered: each of the 20 outer train-
ing/test folds of the analysis returned a channel ranking, and these ranks were
averaged across folds and then divided by their standard deviation across folds.
The result indicates which channels were ranked highly most consistently (darker
colours indicating channels ranked asmore influential).We alsoplot spatially inter-
polated projected amplitudes3 for the top two independent components (selected
by RecursiveChannel Elimination in the first outer training/test fold) and the first
two spatial patterns (indicated by the best two eigenvalues in the first outer fold).

In general, we see that ICA and CSP recover very similar patterns of activation
which are consistent with the modulation of activity in motor and pre-motor
cortical areas. In EEG, both algorithms recover patterns centred on C4/CP4
in the right hemisphere (where we would expect modulation associated with
imagined left hand movement) and C3/CP3 in the left (imagined right hand
movement). In the ECoG, the top two independent components and the top
spatial pattern are all highly localized, activation in each case being focused on
just three or fewer electrodes located above the motor cortex. In MEG, we see
patterns consistent with parietal-central and central-frontal dipoles in the right
hemisphere where we would expect to see modulation associated with imagined
3 Each map is spline-interpolated from a single column of the mixingmatrix W−1, the in-

verse of the spatial filter matrix. The column corresponding to a given estimated source
tells us themeasuredamplitudeof thatparticular sourceasa functionof sensor location.
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Fig. 2. Topographic maps showing the ranking or weighting of sensors at different spa-
tial locations, for three EEG subjects, one ECoG subject, and three MEG subjects.
Sensor ranking scores (first column) are obtained by Recursive Channel Elimination
on the data when no spatial filtering is used. The top two independent components
(columns 2–3) are selected by Recursive Channel Elimination after Independent Com-
ponent Analysis. The top two spatial patterns (columns 4–5) are selected using the
eigenvalues returned by the CSP algorithm. Topographic maps are scaled from -1
(black) through 0 (grey) to 1 (white) according to the maximum absolute value in
each map.
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left hand movement. For subject 308, a left-hemisphere source is also identified,
perhaps corresponding to imagined tongue movement.4

The ranking scores of the raw sensors, while presenting a somewhat less tidy
picture, generally show a similar pattern of sensor importance to that indicated
by the ICA and CSP maps (note that the ranking score patterns may reflect
information from influential sources beyond just the first two components that
we have shown). The sensors ranked most consistently highly are to be found in
lateralized central and pre-central regions, bilaterally for the EEG experiment
and for subject 308, and with a right-hemisphere bias for the others. For fur-
ther examination of the performance of Recursive Channel Elimination in the
identification of relevant source locations, see Lal et al (2004, 2005b,a).

6 Summary

We have compared the classifiability of signals obtained by EEG, ECoG and
MEG in a binary, synchronous motor-imagery-based Brain-Computer Interface.
We held the time interval, and (after failing to find any information useful for
the classification in frequencies above 50 Hz) also the sampling frequency, con-
stant across sensor types, and classified event-related desynchronization effects
in the signals’ amplitude spectra using regularized Support Vector Machines and
automatic feature selection.

We varied the number of trials used, in order to see how quickly we might reach
maximum classification performance with our unpractised subjects. Maximum
performance, averaged across subjects, was roughly equal across sensor types at
around 80%, although subject groups were small and between-subject variation
was large, so we attach no particular weight to this observation. Performance
levelled off after about 200 trials in EEG, 75–100 trials in MEG, and 25–50 trials
in ECoG.

Performance was affected by spatial filtering strategy in a way that depended
on the recording hardware. For EEG, spatial filtering is crucial: large gains in
classification accuracy were possible using either first-order Independent Com-
ponent Analysis or the Common Spatial Pattern algorithm, the performance of
these two approaches being roughly equal. For ECoG and MEG, as one might
expect from systems that experience less cross-talk between channels, spatial
filtering was less critical: the MEG signals were the “cleanest” in this regard, in
that there was no appreciable difference in performance between classification
of the raw sensor outputs and classification of any of the linear combinations of
sensors we attempted. First-order spatial filtering appears largely redundant for
detecting ERD in these systems.

4 In general, however, as also reported in Lal et al (2005a) we found little evidence of
desynchronization, and accordingly few spatial patterns, specifically correlated with
the “tongue” class in ECoG and MEG. Classification may be based on “hand vs.
nothing” for many of the subjects, leading us to conclude that the finger-vs-tongue
strategy may not be the best choice.
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Across all three conditions, ICA was the best (or roughly equal-best) spatial
filtering strategy. CSP suffered badly from overfitting in the ECoG and MEG
conditions, resulting in poor generalization performance. We did not find a con-
vincing advantage, with any of the three sensor types, of supervised optimization
of the spatial filters over blind source separation.

Acknowledgements

We thank Hubert Preissl, Jürgen Mellinger, Martin Bogdan, Wolfgang Rosen-
stiel, and Jason Weston for helpful discussions. We gratefully acknowledge the
financial support of the Max-Planck-Gesellschaft , the Deutsche Forschungsge-
meinschaft (SFB550/B5 and RO1030/12), the European Community IST Pro-
gramme (IST-2002-506778 under the PASCAL Network of Excellence), and the
Studienstiftung des deutschen Volkes (grant awarded to T.N.L.).

A more detailed version of this report will appear in G. Dornhege, J. Millán,
T. Hinterberger, D. McFarland and K.-R. Müller (Eds), “Towards Brain-
Computer Interfacing,” MIT Press, 2006 (in press).

References

Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-
trial EEG dynamics. Journal of Neuroscience Methods 134:9–21

Dornhege G, Blankertz B, Curio G, Müller KR (2004) Increase information transfer
rates in bci by csp extension to multi-class. NIPS 16

Dornhege G, Blankertz B, Krauledat M, Losch F, Curio G, Müller KR (2006) Opti-
mizing spatio-temporal filters for improving Brain-Computer Interfacing. NIPS 18

Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification
using support vector machines. Machine Learning 46:389–422

Koles ZJ, Lazar MS, Zhou SZ (1990) Spatial patterns underlying population differences
in the background EEG. Brain Topography 2(4):275–284
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Abstract. We propose a novel spectral filter optimization algorithm for
the single trial ElectroEncephaloGraphy (EEG) classification problem.
The algorithm is designed to improve the classification accuracy of Com-
mon Spatial Pattern (CSP) based classifiers. The algorithm is based on a
simple statistical criterion, and allows the user to incorporate any prior
information one has about the spectrum of the signal. We show that
with a different preprocessing, how a prior knowledge can drastically
improve the classification or only be misleading. We also show a general-
ization of the CSP algorithm so that the CSP spatial projection can be
recalculated after the optimization of the spectral filter. This leads to an
iterative procedure of spectral and spatial filter update that further im-
proves the classification accuracy, not only by imposing a spectral filter
but also by choosing a better spatial projection.

1 Introduction

A Brain-Computer Interface (BCI) system provides a direct control pathway
from human intentions to computer. Recently, a considerable amount of effort
has been done in the development of a BCI system [1,2,3,4,5]. We will be fo-
cusing on non-invasive, electroencephalogram (EEG) based BCI systems. Such
a device can give disabled people direct control over a neuroprosthesis or over a
computer application as tools for communicating solely by their intentions that
are reflected in their brain signals (e.g. [2]).

Recently, machine learning approaches to BCI have proven to be effective by
making the subject training required in the classical framework unnecessary and
compensating for the high inter-subject variability.

The task in this approach is to extract subject-specific discriminability pat-
terns from high-dimensional spatio-temporal signals. With respect to the topo-
graphic patterns of brain rhythm modulations, the Common Spatial Patterns
(CSP) (see [6,7]) algorithm has proven to be very useful in extracting discrimi-
native spatial projections. On the other hand, the frequency band on which the
classifier operates is either selected manually or unspecifically set to a broad
band filter [7,3]. Naturally, an automatic method also for the selection of the
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frequency band is highly desirable [8,9]. Here, we present a method for the spec-
tral filter optimization problem, which is based on a simple statistical criterion.
The proposed method is capable of handling arbitrary prior filters based on neu-
rophysiological insights. The proposed method outperforms broad-band filtered
CSP in most datasets. Moreover, a detailed validation shows how much of the
gain is obtained by the theoretically obtained filter and how much is obtained
by imposing a suitable prior filter. Based on the spectral filter obtained by the
proposed method, one can also recalculate the CSP projection; this leads to it-
erative updating of spatio-spectral filter. We show that further improvements in
the classification accuracy can be achieved by iteratively updating.

2 The Algorithm

Let us denote by X ∈ Rd×T the EEG signal of a single trial of imaginary
motor movement1, where d is the number of electrodes and T is the number of
sampled time-points in a trial. We consider a binary classification problem where
each class, e.g. right or left hand imaginary movement, is called positive (+) or
negative (−) class. The task is to predict the class label for a single trial X .

Throughout this paper, we use a feature vector, namely log-power features,
defined as follows:

φj(X ; wj , Bj) = log w†
jXBjB

†
jX

†wj (j = 1, . . . , J), (1)

where the upper-script † denotes a conjugate transpose or a transpose for a real
matrix, wj ∈ Rd is a spatial projection that projects the signal into a single
dimension and Bj ∈ RT×T denotes the linear time-invariant temporal filter,
which is an identity matrix in the case of conventional CSP algorithm. The
training of a classifier is composed of two steps. In the first step, the coefficients
wj and Bj are optimized. In the second step, the Linear Discriminant Analysis
(LDA) classifier is trained on the feature vector.

We use Common Spatial Pattern (CSP) algorithm [6,7], a well known tech-
nique for the spatial filter optimization. Given a set of trials and the labels
{Xi, yi}n

i=1 (Xi ∈ Rd×T , yi ∈ {+1,−1}), the CSP is formulated so that the pro-
jection maximize the power of the projected signal for one class and minimize
that for the other class. This principle can be written as follows:

max
w∈Rd

w† 〈XX†〉
+

w

w† 〈XX†〉− w
. (2)

where the angled brackets denote expectation within a class. Furthermore, it is
known that the solution is easily obtained by solving the following generalized
eigenvalue problem:

Σ+w = λΣ−w, (3)

1 For simplicity, we assume that the trial mean is already subtracted and the signal is
scaled by the inverse square root of the number of time-points. This can be achieved
by a linear transformation X = 1√

T
Xoriginal

(
IT − 1

T
11†).
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where we call Σc :=
〈
XX†〉

c
∈ Rd×d (c ∈ {+,−}) the sensor covariance matrix.

The eigenvector corresponding to the largest eigenvalue of Eq. (3) is the optimum
of the problem (2). In addition, the minimization of the problem (2) gives another
projection that may be equivalently powerful in the classification. Moreover, it
is often observed that the second or the third eigenvectors have fairly good
discrimination. Therefore, we take the eigenvectors corresponding to the largest
and the smallest nof eigenvalues for each side. Thus, J = 2nof in Eq. (1).

Given a spatial projection, the next question is how to optimize the temporal
filter B in Eq. (1). We formulate this problem in the frequency domain, because
any time-invariant operation B is diagonalized in the frequency domain. We
state the problem as follows:

max
α

〈s(w,α)〉+ − 〈s(w,α)〉−√
Var [s(w,α)]+ + Var [s(w,α)]−

, (4)

s.t. αk ≥ 0 (∀k = 1, . . . , T ),

where we write the power spectrum of the signal projected with w as {sk(w)}T
k=1,

the spectrum of the filter as α := {αk}T
k=1 and s(α,w) :=

∑T
k=1 αksk(w).

The optimal filter coefficient is explicitly written as follows:

α
(+)
k

opt
∝

⎧⎪⎨⎪⎩
〈sk(w)〉+ − 〈sk(w)〉−

Var [sk(w)]+ + Var [sk(w)]−
〈sk(w)〉+ − 〈sk(w)〉− ≥ 0,

0 otherwise,
(5)

because the spatio-temporally filtered signal s(w,α) is linear with respect to the
spectral filter coefficients {αk}T

k=1 and we additionally assume that the signal is
a stationary Gaussian process, where the frequency components are independent
to each other for a given class label; thus Var [s(w,α)]c =

∑T
k=1 α

2
kVar [sk(w)]c.

Note that the labels (+ and −) are exchanged for {α(−)
k

opt
}T

k=1, the filter for
the “−” class. The norm of the filter coefficients cannot be determined from the
problem (4). Therefore, in practice we normalize the coefficients so that they
sum to one.

Furthermore, we can incorporate our prior knowledge on the spectrum of the
signal during the task. This can be achieved by generalizing from Eq. (5) to:

α
(c)
k =

(
α

(c)
k

opt)q

· (βk)p (c ∈ {+,−}), (6)

where {βk}T
k=1 denotes the prior information, which we define specific to a prob-

lem (see Sec. 3). The optimal values for p and q should depend on the data,
preprocessing, and the prior information {βk}T

k=1. Therefore one can choose
them by cross validation.

Now, using the CSP projection w and the optimized spectral filter α, the
log-power feature (Eq. (1)) is written as follows:

φj(X ; wj ,αj) = log
T∑

k=1

α
(j)
k w†

jx̂kx̂†
kwj (j = 1, . . . , J), (7)

where x̂k ∈ C
d denotes the k-th component of the Fourier transform of X .
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3 Results

3.1 Experimental Setup

Data Acquisition. We use 162 datasets of motor-imagery BCI experiment
from 29 healthy subjects. Each dataset contains EEG signal recorded during
70-600 (varying from a dataset to another at median 280) trials of one of the
pairwise combinations of three motor imagination tasks, namely right hand (R),
left hand (L) or foot (F) (see [9,5] for the detail).

Preprocessing of the Signals. We band-pass filter the signal from 7-30Hz
and cut out the interval of 500-3500ms after the appearance of the visual cue
on the screen, which instructs the subject which imagination to perform, from
the continuous EEG signal for each execution of imaginary movement as a trial.
Only in Sec. 3.3, we also use the signal without the band-pass filter step, in order
to investigate the effect of assuming this band (7-30Hz) on the design of a filter;
except the band-pass filtering, the signal was equally processed as described
above.

Classification. We use the log-power feature (Eq. (1)) with nof = 3 features
for each class and LDA as a classifier.

Prior Information. We test two prior filters {βk}T
k=1, namely:

– with the wide-band 7-30Hz assumption:

βk = I
[7, 30]
k ·

(
〈sk(w)〉+ + 〈sk(w)〉−

)/
2, (8)

– without the assumption:

βk =
(
〈sk(w)〉+ + 〈sk(w)〉−

)/
2, (9)

where I
[7, 30]
k is an indicator function that takes value one only in the band 7-

30Hz, and otherwise zero. Since we have already band-pass filtered the signal
in order to calculate CSP, it is reasonable to restrict the resulting filter to take
values only within this band. The second term, which is the average activity of
two classes, express our understanding that in the motor imagery task, good dis-
crimination is most likely be found at frequency bands that correspond to strong
rhythmic activities, i.e., μ- and β-rhythms; the modulation of these rhythms is
known as Event Related Desynchronization (ERD) and well studied. However,
this might not be the case if we don’t suppose the interesting signal to lie within
the 7-30Hz interval as in the second prior filter (Eq. (9)). The comparison is
shown in Sec. 3.3.

Furthermore, since the optimal filter (Eq. (5)) and the prior filter (Eqs. (8)
or (9)) scale with powers−1 and 1 of the spectrum, respectively, we reparameter-
ize the hyperparameters as p = p′ + q′ and q = q′. Thus, if p′ = c the filter scales
with the power c regardless of which q′ is chosen. Therefore, the contributions
of the scale and the discriminability are separated in the new parameterization.
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Now, for the prior filter (8), using p′, the scaling exponent of the filter and q′,
the intensity of the label information, we can write Eq. (6) as follows:

αk ∝ I
[7, 30]
k ·

⎧⎪⎨⎪⎩
((

s
(+)
k −s

(−)
k

)(
s
(+)
k +s

(−)
k

)
v
(+)
k +v

(−)
k

)q′

·
(
s(+)

k + s(−)

k

)p′
s(+)

k − s(−)

k ≥ 0

0 otherwise.
(10)

where the following short-hands are used: s
(c)
k := 〈sk(w)〉c and v(c)

k :=
Var [sk(w)]c. The filter with the prior filter (9) is simply Eq. (10) without the
indicator I [7, 30]

k .

3.2 Comparison with CSP

First, we compare the proposed method with the prior filter (Eq. (8)) with con-
ventional CSP [6,7] algorithm. The spatial projection for the proposed method
is the CSP itself. Therefore, the only difference is that we incorporate a non-
homogeneous weighting of the spectrum (see Eq. (7)). The hyperparameters for
the proposed method were fixed at p′ = 0 and q′ = 1 (p = 1 and q = 1 in the
original parameterization), which corresponds to the direct product of Eqs. (5)
and (8).

Figure 1 shows the 10×10 cross-validation errors of CSP and the proposed
method for each dataset as a single point. Data-points lower than the diagonal
correspond to datasets where the proposed method outperforms CSP.

As a visualization, the spectral filter corresponding to conventional CSP, the
theoretically obtained filter (Eq. (5)), the prior filter (Eq. (8)) and the resulting
spectral filter are shown in Fig. 2 for a CSP projection in a single dataset. The
conventional CSP is purely an operation in the spatial domain. Therefore, as a
spectral filter it has a flat spectrum as shown in the top-left corner. The pro-
posed method (bottom-left corner) is a combination of the theoretically obtained
filter (Eq. (5)) shown in the bottom center and the prior filter (Eq. (8)) shown
in the bottom-right corner. The theoretically obtained filter (Eq. (5)) scales
with the power −1 of the spectrum. This means that it compares frequency
components with different ranges in a fair manner; the signal is first scaled
down by a factor 1 /

√
v
(+)
k

+v
(−)
k

(whitening) and then summed with a weighting
(s(+)

k − s
(−)
k )+ /

√
v
(+)
k

+v
(−)
k

. This effect is clearly seen in the bottom center. The
theoretically obtained filter has two peaks, one approximately at 12Hz and the
other at 24Hz, although in the original scale the difference between two classes
around 24Hz is hardly seen (top center). The scale −1 is also favorable from
another point of view, namely invariance; one can apply an arbitrary (non-zero)
spectral filter to the signal before calculating Eq. (5) yet the effect is canceled out
by Eq. (5). On the other hand, since the signal is already band-pass filtered from
7-30Hz, a prior filter is always peaked at frequency components corresponding
to strong rhythmic activities (e.g.., μ- or β-rhythm) regardless of whether they
have discriminative information or not. The resulting filter (bottom left), which
is a direct product of the two filters in this case (because p = 1 and q = 1), has
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two peaks but the peak at 12Hz is larger than the peak at 24Hz. The optimal
combination of the theoretical optimum and the prior filter is discussed in the
next session.

1 5 25
1

5

25

CSP

P
ro

po
se

d 
(p

’=
0,

 q
’=

1)

Fig. 1. The 10×10 cross-validation errors of conventional CSP and the proposed
method on 162 datasets. Points lower than the diagonal correspond to datasets where
the proposed method outperforms CSP. The conventional CSP weights the spectrum
homogeneously (Eq. (1) with Bj = IT or Eq. (7) with αk = 1 (∀k)) while the proposed
method weights the spectrum according to Eq. (10)). The hyperparameters were fixed
at p′ = 0 and q′ = 1 (the direct product of Eqs. (5) and (8)).

3.3 Comparison of the Two Prior Filters

In the previous section, we have shown that the combination of the theoreti-
cal optimum (Eq. (5)) and the prior filter (Eq. (8)) outperforms CSP in most
datasets. However, it is still unclear whether the hyperparameters p′ = 0 and
q′ = 1 are optimal or not. Furthermore, the range of validity of the prior filter
(Eq. (8)) is not clear.

Therefore, in this section, we investigate two prior filters (Eqs. (8) and (9)).
The first prior filter (Eq. (8)) focuses on the strong activity within the interval 7-
30Hz. The second filter (Eq. (9)) also focuses on the strong activity but without
the constraint, i.e., the wide-band 7-30Hz assumption.

In order to compare these two prior filters appropriately, we take the following
two steps approach. In the first step, we optimize the spatial filter. Each dataset
is band-pass filtered from 7-30Hz and the CSP projection with nof = 3 patterns
for each class is calculated on the whole dataset and fixed. In the second step,
in order to investigate the optimal design of a spectral filter, we conduct a cross
validation on the signal without pre-filtering.

Note that this validation differs from that in the previous section in two folds:
firstly, the optimization of the spatial filter was done on the whole dataset in the
first step and fixed during the validation, secondly, the spatial filter was calcu-
lated on the pre-filtered signal but applied on the signal without pre-filtering.

Figures 3(a) and 3(b) show the contour plot of the average cross-validation
error for all combinations of p′ ∈ [−2, 2] and q′ ∈ [0, 8] on a 0.2 interval grid for
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Fig. 2. (top center) The class-averaged spectrum of the original signal projected with
a CSP projection shown in the top right corner. (top left) The conventional CSP in the
spectral domain. (bottom left) The filter spectrum obtained by the proposed method.
(bottom center) The theoretically obtained filter (Eq. (5)). (bottom right) The prior
filter (Eq. (8)). (top right) The CSP projection topographically mapped on a head
viewed from above. The head is facing the top of the paper.

the two prior filters (Eqs. (8) and (9)), respectively. Figure 3(a) shows that the
non-homogeneous weighting of the spectrum improves the classification accuracy
(p′ = 0, q′ = 1 is better than p′ = 0, q′ = 0), which is consistent with Fig. 1,
and incorporating the prior filter is also effective (p′ = 0, q′ = 1 is better than
p′ = −1, q′ = 1). On the other hand, Fig. 3(b) shows a completely different
picture. Since the wide-band assumption is not adopted in the prior filter (9),
it weights not only μ- or β-band but also the strong brain activity lower than
7Hz, which does not correspond to motor imagery task or even which cannot be
considered a rhythmic activity. Thus the prior information is not so much useful
anymore. The basin of the classification error is now shifted to approximately
p′ = −1 where the spectrum is whitened. The theoretical optimum (Eq. (5)) is
now in the region that gives minimum classification error. Note that however the
overall error is lower in Fig. 3(a) compared to that in Fig. 3(b). Therefore, in
practice the wide-band assumption appears to help though the aim of this section
was to show that in general, without the wide-band assumption, it is necessary
that one scales down the filter inversely to the power of the signal (Eq. (5)).

3.4 Iterative Update of Spatio-spectral Filter

Although we have so far used the CSP projection as a spatial projection and
focused on the optimization of the spectral filter, one can also recalculate the spa-
tial projection after the optimization of the spectral filter. In order to incorporate
the spectral filter, we generalize the definition of the sensor covariance matrix
Σc. Since the covariance matrix of the temporally filtered signal can be written
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Fig. 3. The contour plot of the average cross-validation errors over 162 datasets in
the two dimensional hyperparameter space. Unlike in Sec. 3.2 or in Sec. 3.4 the cross-
validation was carried out on the signal without pre-filtering with a pre-computed spa-
tial pattern. Points corresponding to the CSP, the theoretically derived filter (Eq. (5)),
the prior filter, and the direct product of the two filters (p′ = 0, q′ = 1) are marked.
The cross validation is 4×4.

as V (α) :=
∑T

k=1 αkVk, where Vk = x̂kx̂†
k (k = 1, . . . , T ) are the cross spectrum

matrices, we solve the generalized eigenvalue problem Σ+(α)w = λΣ−(α)w in-
stead of Eq. (3) for the recalculation of the spatial projection, where Σc(α) :=
〈V (α)〉c. Starting from uniform spectral coefficients αk = 1 (∀k), we alternately
update the spectral filter and the spatial projection until convergence, because
both steps depend on each other.

Figure 4 shows the improvements in the cross-validation error by iteratively
updating spatio-spectral filter for six subjects. The odd steps correspond to
the spatial projection updates and the even steps are spectral updates. Since
the first step is CSP with homogeneous spectral filter and the second step is
the proposed method without recalculation of the spatial projection, one can
see that the major improvements occur by imposing a spectral filter (the sec-
ond step). However, further improvements after the third step (e.g,. in subject
C) were observed for many datasets. For some subjects (e.g., in subject F) no
improvement in the cross-validation was observed, most likely due to artifacts
whose effects are not localized in the frequency spectrum (e.g. blinking, chewing
or other muscle movements).

4 Conclusion

In this paper, we have proposed a novel spectral filter optimization technique
for CSP [6,7] based single-trial EEG classifiers. The method is formulated in
the spectral domain, based on a simple statistical criterion. Thus the result is
highly interpretable. The method is capable of handling arbitrary prior filter,
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Fig. 4. The cross-validation errors of the iterative updating method for each step are
shown for six subjects from very good classfication accuracy (subject E) to moderate
accuracy (subject B). The median over 162 datasets is also shown (dashed line). The
hyperparameters were fixed at p′ = 0 and q′ = 1 (the direct product of Eqs. (5) and
(8)). The odd steps correspond to spatial projection updates and the even steps are
spectral filter updates. Note that the first step is the conventional CSP itself and the
second step is the proposed method without the recalculation of spatial projection.

which one can design based on the neuro-physiological understanding of the
EEG signal during the task.

The cross validation on 162 BCI datasets show improved classification accu-
racy compared to the conventional CSP [6,7]. In comparison to CSP, we have
shown that the non-homogenous weighting of the spectrum improves the classi-
fication accuracy.

Moreover, we have investigated the best combination of the theoretically ob-
tained filter (Eq. (5)) and the prior filter. We have tested two prior filters, namely
the filter with the wide-band 7-30Hz assumption (Eq. (8)) and that without
the assumption (Eq. (9)). We have found that with the wide-band assumption
(Eq. (8)), the best combination is achieved approximately at p′ = 0, q′ = 1, which
corresponds to the direct product of the theoretically obtained filter (Eq. (5)) and
the prior filter (Eq. (8)); it is better than the conventional CSP (p′ = 0, q′ = 0),
the theoretical optimum alone (p′ = −1, q′ = 1) or the prior filter (p′ = 1, q′ = 0).
However, without the wide-band assumption, the prior filter, which assumes the
discrimination to be found at frequency regions that is strongly active, fails
because the activity below 7Hz will tend to dominate without contributing to
discriminability. On the other hand, the theoretically optimal scale p′ = −1,
which whitens the signal, has proved to be favorable without the assumption.
Thus, the prior filter is only valid with the wide-band assumption. In fact, we
note that either CSP or the best combination p′ = 0, q′ = 1 already incorporates
this prior knowledge that “strong activity implies good discrimination”, because
both of them have the scale p′ = 0.

Furthermore, we have tested an iterative updating algorithm of spatio-spectral
filter. We have generalized the CSP algorithm to incorporate a non-homogeneous
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weighting of the cross spectrum matrices. The spatial filter and the spectral filter
were updated alternately. We have found by cross validating each step of iteration
that although for most datasets the major drop in the cross-validation error is
observed when a spectral filter (the second step) was imposed on the original
CSP pattern (the first step), further improvements in the cross-validation error
were observed after the recalculation of CSP pattern (the third step) in many
datasets.

The proposed method gives highly interpretable spatial filter naturally be-
cause we solve the generalized CSP problem. In addition, the spectral represen-
tation of the temporal filter is favorable not only from the interpretability but
also from providing possibility to incorporate any prior information about the
spectral structure of the signal as we have demonstrated in Sec. 3.
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Abstract. Sequencing of peptides by tandem mass spectrometry has matured to
the key technology for proteomics. Noise in the measurement process strongly fa-
vors statistical models like NovoHMM, a recently published generative approach
based on factorial hidden Markov models [1,2]. We extend this hidden Markov
model to include information of doubly charged ions since the original model
can only cope with singly charged ions. This modification requires a refined dis-
cretization of the mass scale and, thereby, it increases its sensitivity and recall
performance on a number of datasets to compare favorably with alternative ap-
proaches for mass spectra interpretation.

1 Introduction

Proteins control all metabolic processes in biological cells of living organisms. To un-
derstand the dynamics and interaction of these processes biologists have to identify all
involved proteins, i.e. determine their sequence and their abundance. From a computer
science perspective a protein is a string over an alphabet of 20 amino acids. Even for
short strings, this combinatorics generates an incredibly high number of possible combi-
nations. The identification of these sequences is becoming increasingly important also
for medical research. In biomarker discovery based on gene expression micro-arrays
physiologists rely on tissue samples from the affected tissue. Recent research results
provide evidence that protein based biomarker discovery can be performed solely on
blood samples in the near future [3]. This diagnostics will then be a great research step
in early detection of cancer and we might even call it “remote sensing of cancer”.

The most promising method of high-throughput protein sequencing is tandem mass
spectrometry. The proteins are biologically broken in short sequences by enzymatic di-
gestion. For each peptide a mass spectrum is generated that includes mass measurements
of fragments of the peptide. In addition, a rough estimate of the peptide mass is available
from liquid chromatography (LC/MS). Peptide sequencing aims at infering the under-
lying amino acid sequence given the mass spectrum and the mass of the peptide.

Today, the genomes of many organisms have already been sequenced. Given the
DNA sequence we can compile a database of protein sequences that can be transcribed
and translated from these genes. In a first analysis step biologists will infer the pep-
tide sequences using side information of the protein databases ([4,5]). This procedure,
although conceptually very appealing, has some difficulties: (i) the databases are still
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incomplete or have some errors from the sequencing process; (ii) there can be unknown
splice variants or even unknown genes in the DNA; (iii) there exist post-translational
modifications. Due to combinatorial limits one can not enumerate all possibilities of
genes, splice variants and post-translational modifications. Therefore a cascading search
strategy is recommended [6], where less and less side-information is used to narrow
down the possible amino acid sequences. As a complement to database search, peptide
sequences can be infered from mass spectrometry data in a de novo fashion and we are
following this strategy here. The only information used in de novo peptide sequencing
is the alphabet of 20 amino acids and the mass spectra as input.

LUTEFISK [7,8] and PEAKS [9] are two widely used de novo peptide sequencing
methods. LUTEFISK creates a weighted graph using a simple scoring scheme. The se-
quence is the shortest path in the generated graph. PEAKS creates a similar weighted
graph and generates a candidate list of peptides by searching the weighted graph. A
refined search is performed afterwards on the candidate list. Dancik [10] proposed the
first probabilistic scoring scheme for de novo sequencing. It simply estimates the frag-
mentation pattern of the peptides at a small number of positions. The scoring scheme
was improved by adding a noise model and a Bayesian network to model the fragmen-
tation patterns [11]. Fischer et al. [1,2] proposed a generative hidden Markov model
(NovoHMM) of mass spectra. This model can only describe singly charged fragment
ions which is a clear shortcoming since about 10-25 percent of the ions are doubly
or tripply charged. We will substantially extend NovoHMM to include doubly charged
fragment ions by refining the discretization of the mass scale.

The next section will summarize the essentials of tandem mass spectrometry as far
as our modelling is concerned. The hidden Markov model is presented in section 3.
In section 4 we give our extensions of a refined discretization and the inclusion of
information from doubly charged fragment ions. The new model is tested on different
datasets (sec. 5). It clearly outperforms all its competitors. Furthermore, we show that
the model can be applied to triply charged peptide ions.

2 Tandem Mass Spectrometry

The proteomics process pipeline based on mass spectrometry contains the following
steps: first, the proteins are digested with an enzyme (typically Trypsin). This chemical
process yields a sample of small peptides. A peptide P consists of a short sequence of n
amino acid residues P = a1a2a3, ..., an, with an additional H-atom at the N-terminus
and an OH-group at the C-terminus. In figure 1 a small peptide composed of three
amino acids is depicted. Typically peptides have 10-20 amino acid residues and they
are separated by liquid chromatography.

In a first measurement step the mass of the peptides can be read out from a mass spec-
trum. Ions (peptides) from a small mass window are selected and they are fragmented
in typically two pieces by collision with a noble gas. As shown in figure 1, the most
common fragment ions which are denoted as a-,b-,c-,x-,y- and z-ions, are generated
by breaking the peptide backbone. The tandem mass spectrum contains peaks at mass
positions corresponding to the different fragment ions. The inference of the underlying
sequence given a mass spectrum is the goal of peptide sequencing.
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Fig. 1. A simple peptide with three amino acids, an additional H-atom at the N-terminus and an
OH-group at the C-terminus. The amino acids are connected by peptide bonds. Depending on the
internal link a peptide is broken, the corresponding fragment ions are called a-/b-/c-ions when
containing the N-terminus respectively x-/y-/z- ions when containing the C-terminus.

To measure a peptide by mass spectrometry, the peptide has to be charged. Most
common the peptide is double positively charged. After the fragmentation most frag-
ment ions are singly charged. In 10–25 percent of the cases the resulting fragment ions
are doubly charged. The mass spectra consists of a list of mass-charge ratios m/z and
their corresponding intensities. Doubly charged ions appear at half of the position of
the corresponding singly charged ions. This shift induces long-range dependencies that
are difficult to model for standard hidden Markov models, e.g., the model of Fischer et
al. [2] can only describe singly charged ions. In this paper we will extend the model for
doubly charged ions.

3 Factorial Hidden Markov Model (NovoHMM)

In the hidden Markov model of [2] the (time-)step is 1 elementary mass unit (the mass of
a proton or neutron). With the transition probabilities a distribution over all amino acid
sequences is modeled. The hidden random variables (representing the peptide sequence)
have 2375 states. For each amino acid there are as many states as the amino acid has
elementary particles. This chain of states for each amino acid is a counter for the mass.
In NovoHMM only peptide sequences with the given peptide mass are considered. This
constraint is implemented by introducing a positive and negative end state. After as
many time steps as the peptide mass indicates, the model ends in the positive end state
for all sequences that obey the peptide mass constraint.

Hypothetical spectra, composed of mass peaks from prefix fragment ions only, can be
interpreted in straight forward way: the different possible fragment ions (a-, b-, c-ions)
are assigned to specific counter positions on the mass scale. The b-ion is placed at the
last counter state of each amino acid. The a-ion (It is a b-ion without a carbon monoxide)
is placed 28 counter states before the b-ion. Additional fragments like neutral water loss
can be modeled in the same fashion.

There exists, however, a strong dependence between prefix and suffix ions via the
total peptide mass. For every prefix fragment ion with mass m there exists with high
probability a mass peak of a suffix fragment ion at mass position M −m, where M is
the total peptide mass. To overcome these long-range dependencies, the Markov model
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s+

s0

m=M

m=0

Fig. 2. The internal mirror symmetry of the problem is illustrated by folding the spectrum in the
middle. The Markov chain models a sequence with four amino acids. The filled circles correspond
to the amino acid boundaries. Around each amino acid boundary a peak pattern is generated once
for the N-terminal fragments and once for the C-terminal fragments.

is duplicated (see fig. 2). One Markov model starts at the beginning of the sequence and
another Markov model starts in the end of the sequence. In the figure a peptide sequence
with four amino acids is depicted. The black dots denote the amino acid boundaries. The
boundary at mass m generates a peak pattern around mass m and M −m. The left part
of figure 5 shows the graphical model. Both emission variables xi and xM−i depend on
the sequence variables si and sM−i. The new model is still a hidden Markov model but
it has a factorial structure [12].

The number of hidden states of the new model is squared compared to the simple
model. To reduce the model complexity and the runtime the model is approximated by
a mixture model. A second set of hidden variables is introduced: The binary variables
Bi decide for each peak xi if it is generated by a prefix- or a suffix fragment. The
emission probability is now a mixture of a prefix-distribution and a suffix-distribution
instead of the joint distribution of both.

4 Doubly Charged Fragment Ions

Before the fragmentation process, most peptides are double positively charged. During
the collision with the noble gas, the peptide ions are broken in two (or more) fragments
as depicted in figure 3. In the figure two possible outcomes of the fragmentation process
are shown. In the first case the peptide ion breaks in two parts. Both parts are single pos-
itively charged. This can result in two peaks in the spectrum, e.g. at mass-over-charge
ratios 418 and 457. In the second case the peptide is broken in the same prefix and suffix
parts, but now the prefix is double positively charged and the suffix is not charged. The
prefix peak will appear at mass-over-charge ratio 229. Since a mass spectrometer can
only measure charged ions, a suffix ion peak does not appear in the spectrum.

In a first step, the discretization of the spectra has to be refined to handle the smaller
distance between the doubly charged fragment peaks. In NovoHMM, a spectrum is dis-
cretized into bins of approximately 1 Dalton width, where the peaks are placed (by
definition) in the middle of the bin. Doubly charged fragment ions are spaced with a
minimal distance of one half mass-over-charge unit. To consider this effect, we have
to discretize the leftmost half of the spectrum in a different way, as shown in figure 4.
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Fig. 3. Cleavage of a peptide by collision with a noble gas. Two possibilities are shown: splitting
into two singly charged fragments (Case 1); and into a doubly charged and an uncharged fragment
(Case 2). On the right, the corresponding mass spectra are depicted.
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Fig. 4. Discretization of a spectrum for the new model (new bins) and NovoHMM (old bins). In
the new discretization, each bin is divided into four sub-bins.
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In the graphical model (fig. 5) the hidden variables (representing the sequence) are not
changed. The emission variables are replaced by four variables each. Note that doubly
charged ions can only occur in the first half of the spectrum. Therefore it would be
enough to discretize the first half of the spectrum in this way. For reasons of model
consistency we decided to discretize the complete spectrum in such a way. As we will
see later in the experimental section, the new discretization itself will improve the pre-
diction accuracy of the model.
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Fig. 6. The dependency structure of the factorial HMM for the model including doubly charged
ions. The sequence variables in the last two rows are the same as in the model above. They are
only copied for visualization reasons. Each emission variable in the first half of the spectrum
depends now on four different sequence variables.

In a second step we can now include the information from doubly charged ions. The
emission variables representing the first half of the spectrum have additional dependen-
cies. The variable xm does additionally depend on s2m and sM−2m which encode the
corresponding doubly charged prefix and suffix ion. The upper half of figure 6 shows
the graphical model for the new discretized factorial hidden Markov model. To draw
the dependencies in a more transparent way, we have copied the sequence variables in
the plot. The lower two rows of variables are the same as the sequence variables in the
upper model. The problem is again approximated by a mixture model. For each mass
bin in the lower half of the spectrum there is now an assignment variable with four dif-
ferent states: 1-charged prefix, 1-charged suffix, 2-charged prefix and 2-charged suffix.
The assignment problem is solved by the expectation-maximization algorithm. In the
E-step the expectation over all hidden variables (sequence and assignment variables)
is computed. Since this is computationally intractable, we decomposed the E-step into
two stages. In the first stage, the expectation of the assignment variables is estimated; in
the second stage the expectation of the sequence variables is computed by the forward-
backward algorithm as proposed in [2].
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5 Experiments

To justify our model extension of NovoHMM, we first present experimental results for
the model which includes doubly charged fragment ions. Furthermore, the prediction
quality of this model (NovoHMM++) is compared to the prediction quality of NovoHMM
and other de novo sequencing methods on two different datasets. The first data set is
composed by Frank and Pevzner [11]. It contains 972 spectra in the training dataset and
280 spectra in the test dataset. The second dataset contains more than 5000 spectra from
an unpublished proteomics experiment. We performed 10-fold cross validation on the
second dataset and we used the proposed splitting in training and test spectra for the
first dataset.
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Fig. 7. The precision-recall curves achieved for cross-validation on a the second dataset

When nothing else is mentioned, we consider two amino acids to be correct if the dif-
ference in mass position of an amino acid in the original spectrum and in the predicted
spectrum is less than or equal to 2.5 Dalton (see [11]). Furthermore, no distinction has
been made between leucine (L) and isoleucine (I), or between lysine (K) and glutamine
(Q), as they have almost the same mass and cannot be distinguished by low mass resolu-
tion tandem mass spectrometry. The precision value is defined as the number of correct
amino acids divided by the number of predicted amino acids. The recall value is defined
as the number of correct amino acids divided by the true number of amino acids. In the
plots shown later in this section the precision and recall values are varied by changing
a threshold on the posterior value computed with the forward-backward algorithm.

To simplify notation, we introduce names for the different versions of our algorithm:

– NovoHMM – The original version of NovoHMM as it was presented in [2].
– NovoHMM/4 – NovoHMMwith fine discretization in quarters of a Dalton, but with-

out a model for doubly charged fragment ions.
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– NovoHMM++ – NovoHMM with fine discretization in quarters of a Dalton and with
an additional model for doubly charged fragment ions.

Figure 7 depicts the precision-recall curves on the second dataset. The readers can
easily convince themselves that the new discretization alone improves already the pre-
diction accuracy. The accuracy is further boosted by information from doubly charged
ions as they are included in NovoHMM++.
NovoHMM++ was also tested on a dataset with 1020 triply charged peptides from

the second dataset. With an average length of 2414.5 Dalton these peptides are clearly
longer than the peptides in the datasets of doubly charged peptides. A triply charged
peptide is expected to split up into a singly charged fragment ion and a doubly charged
fragment ion. We achieved a precision of 0.216 at a recall of 0.200. At a first glance,
these precision and recall values may look low, but one has to consider the substantial
lengths of the peptides in the dataset which clearly influences the predictive power of
the algorithm. For comparison, NovoHMM achieved about 10% precision and recall on
this dataset.
NovoHMM++ clearly outperforms all competing algorithms on the first dataset (see

table 1). Table 2 presents the relative frequency of correctly labeled subsequences
of length at least x. Whereas PepNovo is slightly superior for short subsequences,
NovoHMM++ clearly exceeds all its competitors for long peptides. In figure 8, the
precision-recall curves of NovoHMM++ and NovoHMM/4 are compared with other
de novo sequencing methods. The closer the curves approach (1, 1) values, the bet-
ter is the recall performance. In general, NovoHMM/4 and NovoHMM++ are relatively

Table 1. Comparison of the performance of our algorithms with other de novo sequencing meth-
ods on the first dataset

Algorithm NovoHMM++ NovoHMM/4 NovoHMM PepNovo Sherenga Peaks Lutefisk
Correctly predicted 2293 2244 2160 2063 1673 1943 1394
symbols (of 2935)
Precision 0.787 0.770 0.737 0.727 0.690 0.673 0.566
Recall 0.781 0.765 0.736 0.703 0.570 0.662 0.475

Table 2. Percentage of correct subsequences of length at least x

Algorithm Predictions with correct subsequences of at least
x = 3 x = 4 x = 5 x = 6 x = 7 x = 8 x = 9 x = 10

NovoHMM++ 0.943 0.861 0.796 0.714 0.621 0.539 0.429 0.300
NovoHMM/4 0.943 0.871 0.793 0.686 0.607 0.532 0.396 0.264
NovoHMM 0.911 0.829 0.743 0.632 0.546 0.464 0.336 0.229
PepNovo 0.946 0.871 0.800 0.654 0.525 0.411 0.271 0.193
Sherenga 0.821 0.711 0.564 0.364 0.279 0.207 0.121 0.071
Peaks 0.889 0.814 0.689 0.575 0.482 0.371 0.275 0.179
Lutefisk 0.661 0.521 0.425 0.339 0.268 0.200 0.104 0.057
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Fig. 8. The precision-recall curves for our algorithms compared with other de novo sequencing
methods. Tolerance criterion: exact elementary mass.

close to each other, whereas for high recall values NovoHMM++ seems to be superior to
NovoHMM/4.

The model described in the paper includes doubly charged prefix- and suffix ions
in a generative hidden Markov model to interprete mass spectra. In addition, we tested
the same model including just doubly charged prefix ions or just doubly charged suffix
ions. The performance, when including suffix ions only, is almost the same as when we
incorporate both ions. On the other hand, with the doubly charged prefix ions only, the
model does not demonstrate the performance of NovoHMM++. Therefore we conclude
that mainly the doubly charged suffix ions matter are responsible for the performance
increase of the model. This observation is biologically plausible, since peptides (and
thus suffix ions) digested by Trypsin often end with lysine (K) or arginine (R). These
amino acids are known to attract positively charged ions.

6 Conclusion

Factorial Hidden Markov Models provide a flexible framework to explain mass spectra
which are gathered from proteomics experiments. An extension of NovoHMM is pre-
sented in this paper which contains an additional model for doubly charged fragment
ions and a refined discretization. This new model NovoHMM++ increases the accuracy
of the predicted sequences by up to 5% in precision and recall on different datasets.
On a benchmark test [11], NovoHMM++ substantially and significantly outperform the
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most prominent de novo sequencing algorithms in terms of prediction accuracy. In ad-
dition, NovoHMM++ was shown to reliably explain also mass spectra containing triply
charged peptides.
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Abstract. We present a new optical-flow-based technique to estimate the wall
shear rate using a special illumination technique that makes the brightness of par-
ticles dependent on the distance from the wall. The wall shear rate is derived di-
rectly (that means, without previous calculation of the velocity vector field) from
two of the components of the velocity gradient tensor which in turn describes the
kinematics of fluid flows up to the first order. By incorporating this into a total
least squares framework, we can apply a further extension of the structure tensor
technique. Results obtained both from synthetical and real data are shown, and
reveal a substantial improvement compared to conventional techniques.

1 Introduction

Optical-flow [1] based techniques were established as powerful tools in the field of fluid
flow analysis in recent years [2]. Using these methods it is possible to evaluate image
sequences using continuous tracer, for example concentration [3] or heat [4], or rigid
particles [5]. Under certain circumstances optical-flow based techniques are superior to
correlation based techniques, such as Particle Image Velocimetry (PIV) [6], which is
quite common in experimental fluid mechanics. For a comparative analysis of correla-
tion based techniques and optical-flow based techniques in the field of computer vision
see [7]. In this paper we adopt a novel approach based on an extended version of the
generalized brightness change constraint equation which was applied to an image se-
quence recorded in the context of biofluidmechanics. Short explanations of the medical
application and of the considered experiment are given in this introduction.

The investigation of the flow near the wall of a blood vessel or an artificial organ is
of great interest, since a close relationship is known to exist between the characteristics
of the flow such as magnitude and direction of the wall shear stress, and biological
phenomena such as thrombus formation or atherosclerotic events. The wall shear stress
can be considered as the force, which the viscous fluid excerts tangentially on the wall-
surface. It plays an important role, since it influences the structure and function of the
endothelial cells as well as the behavior of platelets. The measurement of the wall shear

K. Franke et al. (Eds.): DAGM 2006, LNCS 4174, pp. 434–443, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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stress is a requirement to our understanding of atherosclerotic events and also for the
ability of avoiding thrombus generation in artificial organs.

[8] points out, that previous to her work, there existed no technique, which was capa-
ble to measure the influence of the flow close to the wall on biological and pathological
events. Firstly this is due to the fact, that we deal with instationary flows at curved walls,
secondly, it is not sufficient, to conduct pointwise measurements, but it is necessary to
yield temporally and spatially resolved 2D-information of the wall shear stress, which
has to be extracted taking into account the 3D-nature of the flow field.

The method presented here is based on the observation and the digital recording of
buoyant, light-reflecting, spherical particles suspended within the fluid. The particles
are all exactly 300μm in diameter. In contrast to conventional 2D-PIV the entire flow
near the wall is illuminated from the outside with monochromatic diffuse light, so that
all particles near the wall become visible. A dye is added to the fluid, which limits the
penetration depth of the light into the flow model according to Beer-Lambert’s law. The
intensity respective gray value gp of the light approaching the particle is

gp(z) = g0 exp−z/z̃∗ ,

where g0 is the light’s intensity before penetrating into the fluid, z is the distance of the
particle’s surface from the wall, and z̃∗ is the penetration depth (Figure 1). The light is
reflected by the particle, and passes through the distance z again, before approaching
the wall with the intensity

g(z) = gp(z) exp−z/z̃∗ = g0 exp−2z/z̃∗ = g0 exp−z/z∗ , (1)

where an effective penetration depth z∗ = z̃∗/2 was introduced for convenience. Within
the illuminated layer the particles appear more or less bright, depending on their normal
distance to the wall: Particles near the wall appear brighter, i. e. have a higher gray value
than particles farther away from the wall. The correlation between the gray value of a
particle and its distance to the wall, which is expressed in terms of the hypothetical
grayvalue g0 of the particle at the wall and z∗, can be assessed experimentally.

If the concentration of the dye, the illumination and the size of the particles are cho-
sen properly, the particles closest to the wall fall within a region where the velocity
distribution is considered to be proportional to the wall distance. This permits the cal-
culation of the wall shear stress τw according to Newton’s shear stress formula, using
the measured velocity component tangential to the wall u, the normal distance to the
wall z and the dynamic viscosity of the fluid η:

τw = η

[
du
dz

]
z=0

≈ η
Δu

Δz
.

[8] separates the near-wall flow in several layers by means of gray-value-
thresholding. For each layer, which is characterized by a distinct distance from the
wall, the motion of the particle can be determined with a conventional PIV algorithm.
This results in a vector field u(z) for each layer, from which the wall shear stress can
be derived.

We present an optical flow-based approach for analyzing image sequences recorded
using the technique described above, which leads to following benefits compared to the
analysis proposed in [8]:
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Fig. 1. A monochromatic beam of light penetrates the dyed fluid with the intensity g0, and hits the
particle with intensity gp after covering the distance z. After reflecting, it passes through the dye
again, and hits the camera sensor with the intensity g. The intensity decrease can be calculated
using Beer-Lambert’s law.

– Since PIV is a correlation-based technique, the particle density in image sequences
suitable for a PIV-based analysis has to be sufficiently high. For this reason, [8]
chooses the width of the distinct layers relatively large, taking into account inaccu-
racies. We will overcome this by regarding every particle individually.

– Since PIV in its simple form is a 2D technique, there is no possibility of estimating
out-of-plane motions. In our method brightness changes, i. e. motions perpendicular
to the image plane, will be incorporated in the underlying equations.

– In order to estimate the wall shear stress [8] has to calculate the velocity vector
fields first. Our method delivers the wall shear rate directy, without previous esti-
mation of the vector fields.

2 Estimation of Depth and Velocity

We estimate the distance of the particle’s surface from the wall by eliminating z in
Beer-Lambert’s law (1):

z = z∗(ln g0 − ln g) .

In order to estimate the particle’s velocity, we consider two cases. First we assume that
the suspended particles move parallel to the wall, so that z won’t change. The grayvalue
then remains constant for all times, and we can apply the brightness change constraint
equation (BCCE) to obtain the optical flow:

dg/dt = (∇g)T f + gt = 0 . (2)

The optical flow represents the components of the particle’s velocity parallel to the wall:
f = (u, v)T . Secondly if the particles don’t move parallel to the wall, i. e. with z not
constant, the grayvalue will change with time, according to:

dg
dt

= −g0

z∗

dz
dt

exp−z/z∗ = − 1
z∗

dz
dt

= −w

z∗
g ,
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where the component of the particle’s velocity perpendicular to the wall w = dz/dt
is introduced. From this we are able to construct some kind of generalized brightness
change constraint equation GBCCE, as proposed in [9]:

(∇g)T f + gt = −(w/z∗)g , (3)

which can be written as a scalar product of the data vector d and the parameter vector p:

d · pT = (gx, gy, g/z∗, gt) · (u, v, w, 1)T = 0 ,

where gx, gy and gt denote the partial derivatives of the gray values with respect to the
spatial and temporal dimensions. To sufficiently constrain the equation system, we as-
sume a constant p over a small spatio-temporal neighborhood, surrounding the location
of interest containing n pixels. With the data matrix D = (d1, . . . ,dn)T replacing the
data vector, the equation-system can be solved in a total least squares (TLS) sense akin
to the structure tensor [7]:

‖Dp‖2 = pT DT Dp→ min .

with pT p = 1 to avoid the trivial solution p = 0. The Eigenvector e = (e1, e2, e3, e4)T

to the smallest eigenvalue of the generalized structure tensor

DT D =

⎛⎜⎜⎝
〈gx · gx〉 〈gx · gy〉 〈gx · g〉 /z∗ 〈gx · gt〉
〈gx · gy〉 〈gy · gy〉 〈gy · g〉 /z∗ 〈gy · gt〉
〈gx · g〉 /z∗ 〈gy · g〉 /z∗ 〈g · g〉 /z2

∗ 〈g · gt〉 /z∗
〈gx · gt〉 〈gy · gt〉 〈g · gt〉 /z∗ 〈gt · gt〉

⎞⎟⎟⎠
represents the sought after solution to the problem. In this notation local spatiotemporal
averaging using a binomial filter is represented by pointed brackets. In the case of full
flow, which means no aperture problem is present, the parameter vector is given by
p = 1/e4(e1, e2, e3)T . The structures (here: particles imaged to circles of diameter
smaller than 5 pixels) contain no edges, whose dimensions are greater than the size of
the neighborhood which is chosen for velocity estimation (here: 33 × 33 pixels). So
the image sequences recorded with the technique described above generally exhibit no
aperture problem.

Image sequences recorded with the technique described above generally exhibit no
aperture problem, so we consider only full flow.

3 Estimation of the Wall Shear Rate

In the introduction we emphasized that knowledge about the spatially distribution of
the wall shear stress is essentially for understanding biofluidmechanics near the wall of
a blood vessel or an artificial organ. In this chapter we show a method which delivers
the wall shear rate directly. The wall shear rate is the wall shear stress divided by the
dynamic viscosity of the fluid. We derive the wall shear rate by selecting certain com-
ponents of the velocity gradient tensor at the wall. This object describes the kinematics
of the fluid up to first order completely. The velocity gradient tensor may be regarded as
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a generalization of the concept of the affine parameterization of 2D-optical flow fields,
which will be recapitualted briefly in the following:

The optical flow f (x, t) may be expanded to a first order Taylor series in the vicinity
of (x0, t0) [10]:

f(x, t) ≈ f(x0, t0) +
(
∂u/∂x ∂u/∂y
∂v/∂x ∂v/∂y

)
x +
(
∂u/∂t
∂v/∂t

)
t ≡ t + Ax + at .

The BCCE (2) supplemented by this parameterization yields the extended brightness
change constraint equation (EBCCE):

(∇g)T (t + Ax + at) + gt = 0 . (4)

Geometric transformations of the local neighborhood may be computed from the com-
ponents of the matrix A. Examples are divergence or vorticity:

div(f ) = ∂u/∂x+ ∂v/∂y or rot(f ) = ∂u/∂v − ∂v/∂x .

In the following we consider 3D physical flow fields. We apply the notation u ≡
(u1, u2, u3)T ≡ (u, v, w)T for the 3D velocity vector at the 3D position x ≡ (x1, x2,
x3)T ≡ (x, y, z)T . A flow field u(x) can be extended to a first order Taylor series in
the vicinity of (x0, t0):

ui(xj , t) ≈ ui(xj,0, t0) +
∂ui

∂xj
xj +

∂ui

∂t
t .

We made use of Einstein’s summation convention, and i and j are defined from 1 to 3.
In vector-matrix-notation this reads:

u(x, t) ≈ s + Γx + bt ,

where s is a 3D-translation,Γ = (γij) = (∂ui/∂xj) is the 3×3-velocity gradient tensor
which is essentially the Jacobian, and b is a 3D-acceleration. By using an alternative
formulation of the GBCCE (3)

(gx, gy)T ·(u, v)+gt+(w/z∗)g = (gx, gy, g/z∗)T ·(u, v, w)+gt = (∇̃g)T u+gt = 0 ,

where ∇̃ is an augmented gradient, the 3D-parametrisation can be incorporated into a
3D-EBCCE:

(∇̃g)T · (s + Γx + bt) + gt = 0 . (5)

From the components of the matrix Γ important physical quantities of the local neigh-
borhood in the flow field can be computed, like

– the vorticity vector ωk = εijkγij ,
– the strain rate tensor sij = 1/2(γij + γji) or

– the dissipation rate ε = −2νsijsij = −ν(γij + γji)γij .
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If we assume that we have pure 2D-flow u = u(x, y), v = v(x, y) and w = 0, (5)
reduces to the optical flow-parametrization case (4).

In the following we address the case of uniform wall parallel shear flow, i. e. u =
u(z), v = v(z) andw = 0. The only non-vanishing components of the velocity gradient
tensor γij = ∂ui/∂xj are

∂u

∂z
=

∂u1

∂x3
= γ13 and

∂v

∂z
=

∂u2

∂x3
= γ23 .

Therefore the 3D-EBCCE (4) can be rewritten to

∇̃gT ·

⎛⎝0 +

⎛⎝0 0 γ13

0 0 γ23

0 0 0

⎞⎠ ·
⎛⎝x
y
z

⎞⎠+ 0

⎞⎠+ gt = 0 , (6)

which can be transformed to a scalar product of the data vector d and the parameter
vector p after some simple algebraic manupilations:

d · pT = (gx, gy, gt) · (γ13, γ23, 1)T = 0 .

Starting from this scalar product, we can construct an expanded structure tensor, similar
to the way presented in Section 2:

DT D =

⎛⎝ 〈gxz · gxz〉 〈gxz · gyz〉 〈gxz · gt〉
〈gxz · gyz〉 〈gyz · gyz〉 〈gyz · gt〉
〈gxz · gt〉 〈gyz · gt〉 〈gt · gt〉

⎞⎠ .

By performing an eigen-decomposition we obtain an estimation for the parameter vec-
tor to p = 1/e3(e1, e2)T = (m13,m23)T in the full flow case.

4 Results

We apply the analysis presented in Section 3 to synthetically generated and to real
acquired image sequences. All sequences are evaluated by using the EBCCE based on
the special case of wall parallel shear flow (6).

4.1 Synthetic Data

The following image sequences are generated by providing a uniform, wall-parallel
3D-Flow: u(z) = γ13z, v = w = 0. The flow is texturized using Gaussian intensity
distributions of equal maximum intensity and equal maximum variance, representing
the particles. The z−position of the particles is indicated by attenuating the maximum
intensity of the Gaussians according to Beer-Lambert’s law (1).

The first synthetic image sequence contains particles, which are distributed in such
a way, that they never will overlap each other: The particles are arranged in rows; each
particle in one row having the same depth, and therefore the same brightness and the
same speed (Figure 2, top, left). Here the wall shear rate m13 is exactly 0.6, which is
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Fig. 2. Example images of the synthetic image sequences (left), maps of the wall shear rates
estimated with our algorithm (center) and velocity profiles, which deliver the ground truth for the
wall shear rates (right). The distinct image sequences are described in the text.

indicated by the profile u(z) (Figure 2, top, right), and the wall shear rate γ23 vanishes.
Our algorithm yields wall shear rates, which are displayed in Fig. 2, top, center. The
ground thruth is reproduced very well. Slight deviations occur, where there are several
particle-rows are adjacent, moving with approximately the same speed. The reason for
these deviations is the fact that the spatio-temporal neighborhood is of limited size (in
this case 65× 65 pixels).

In the second synthetic image sequence the particles are randomly distributed (Fig-
ure 2, bottom, left), moving so that they follows the wall shear rates m13 = 1 and
γ23 = 0. The estmated wall shear rates are mapped in Fig. 2, bottom, middle. A a
result of the fact, that overlappings may occur, there are regions, where our algorithm
produces significant deviations from the ground truth. This is evidence, that our model
fails in the presence of multiple motions.

4.2 Real Data

The analyzed image sequence was recorded by [8]. To examine the applicability of
the method presented in Section 1 for the investigation of complex flows, a U-shaped
channel with a rectangular cross-section and a step was constructed (Figure 3, right). In
combination with the bending, the step in the cross-section generates a complex flow
which detaches from the wall. Figure 3, left shows a sample image of the recorded
sequence. Since the diameter of the spheres is significantly larger than the penetration-
depth, only the particles close to the wall are imaged and no overlapping particles are
recorded. Therefore, the problem of multiple-motions does not occur in this situation.



Direct Estimation of the Wall Shear Rate Using Parametric Motion Models in 3D 441

γ
13

20 0 20

γ
23

20 0 20

Fig. 3. Example image of the recorded image sequence (left), maps of the wall shear rates esti-
mated with our algorithm (center) and geometry of the U-shaped channel with the arrows denot-
ing the direction of the flow (right)

Though not having a uniform flow, we applied (6) since it is evident that the components
of the velocity gradient tensor containing the derivatives w. r. t. z are large compared to
the components containing the derivatives w. r. t. x and y.

The components m13 and m23 of the wall shear rate are mapped in Fig. 3, center.
Since the examined flow is stationary, the shear rate is averaged over 300 frames. The
gaps in the otherwise dense flow field indicate the spots, where the confidence measure,
which is provided by the structure-tensor-technique, was to low for providing a reliable
result.

Figure 4 displays the magnitude of the wall shear rate, obtained with different tech-
niques, and compares the methods to each other. To establish some kind of “ground
truth” [8] computed the flow numerically with the solver FLUENT6, which is shown
in Fig. 4, top, left. The analysis of the flow using the PIV-technique and subsequent
derivation of the wall shear rate, as carried out by [8] is shown in Fig. 4, top, center.
Our result is mapped in Fig. 4, top, right. In order to compare the techniques with each
other, we filled the gaps by means of interpolation, and afterwards smoothed the result
using a 2D-anisotropic diffusion.

Our optical-flow-based method provides a dense, highly resolved vector field of the
wall shear rate, which is capable of estimating this value at positions where the PIV-
method fails. The flow-detachment in the lower left corner can, for instance, be repro-
duced very well. Both techniques, optical flow and PIV, show a deficit of the wall shear
rate in the upper left corner, and a surplus in the upper right corner, compared to the
analysis provided by computational fluid dynamics. These systematical deviations may
occur as a result of the fact, that the particles, which are of a comparable large size, can-
not follow the fluid ideally, or influence the fluid. To provide a measure of how much
the results of the experimental methods are apart from the numerical solution, we added
up the magnitudes of the differences on each pixel.

Optical flow resulted in about 10% better results, than PIV, when the CFD-solution
was regarded as the “ground truth”. Besides that, the optical flow analysis yielded a
much better spatial resolution, and the area, where a reliable estimate of the wall shear
rate is possible, is about 30% greater compared to the area, obtained using the PIV
analysis.
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Fig. 4. Top: Wall shear rates determined by computational fluid dynamics (left), PIV-technique
(center) and our optical-flow-based method (right). Bottom: Pointwise Differences between CFD
and PIV (left), CFD and optical flow (center), optical flow and PIV (right).

5 Conclusion

A novel technique is presented for the direct estimation of the wall shear stress from
particle-based image sequences. We propose an extension of the BCCE so that estima-
tion can be done of the particle’s velocity perpendicular to the image plane, using an
exponential brightness change model, and also so that a direct analysis of the compo-
nents of the strain rate tensor such as the wall shear rate is possible. Both synthetical
and real experiments demonstrate the feasibility of the technique in good agreement
with the ground truth. Though in this paper we addressed stationary wall-parallel flows
only, our method may be extended to instationary, full 3D-flows in principle. In order to
solve these challenges we are currently investigating a convection-driven free-surface
flow. Furthermore we will solve the problem cuased by the restriction of using spheres
of exactly the same size, so that smaller and less expensive particles may be used, by
means of illuminating with light conisting of two wavelengths [11].
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Abstract. We present a variational approach to motion estimation of instationary
fluid flows. Our approach extends prior work along two directions: (i) The full
incompressible Navier-Stokes equation is employed in order to obtain a physi-
cally consistent regularization which does not suppress turbulent flow variations.
(ii) Regularization along the time-axis is employed as well, but formulated in a
receding horizon manner contrary to previous approaches to spatio-temporal reg-
ularization. This allows for a recursive on-line (non-batch) implementation of our
estimation framework.

Ground-truth evaluations for simulated turbulent flows demonstrate that due
to imposing both physical consistency and temporal coherency, the accuracy of
flow estimation compares favourably even with optical flow approaches based on
higher-order div-curl regularization.

1 Introduction

Image sequence analysis of fluid flows constitutes an active research field with a high
industrial impact. Corresponding real-world measurements in concrete scenarios com-
plement numerical results from direct simulations of the Navier-Stokes equation, par-
ticularly in the case of turbulent flows, and for the understanding of the complex spatio-
temporal evolution of instationary flow phenomena. More and more advanced imaging
devices (lasers, high-speed cameras, control logic, etc.) are currently developed that al-
low to record fully time-resolved image sequences of fluid flows at high resolutions. As
a consequence, there is a need for advanced algorithms for the analysis of such data,
to provide the basis for a subsequent pattern analysis, and with abundant applications
across various areas.

The image measurement process proceeds as follows: First, the flow medium is
seeded with small particles that are designed such that they accurately follow the fluid’s
motion. Next, entire velocity fields are measured by taking two or more images of the
flow within short time intervals, and by estimating and interpolating the displacements
of individual particles from frame to frame. This experimental method is known as
Particle Image Velocimetry (PIV) [12]. Figure 1 shows a typical experimental setup in

K. Franke et al. (Eds.): DAGM 2006, LNCS 4174, pp. 444–454, 2006.
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a wind tunnel. To avoid blurred images when the flow is fast, laser pulses are used.
As these are only 6-10 ns long, they are capable of freezing any motion. Note that at
present the described experimental setup is only capable of yielding 2D velocity fields.
Therefore, we have to confine ourselves to 2D image analysis, for the time being.

Fig. 1. Left: Experimental setting to study the flow around a cylinder. This setting results in an
unsteady three-dimensional flow which can only be investigated using advanced imaging mea-
suring techniques. Middle: Schematic illustration of typical flow phenomena [8]. Right: Typical
PIV image.

A basic requirement for any motion estimation scheme is physical consistency. Oth-
erwise, the information provided by a subsequent motion analysis is limited. Current
approaches to PIV [12] do not address this issue as part of the motion estimation
scheme. As a consequence, this calls for a novel combination of motion estimation and
the Navier-Stokes equation which governs the real unknown flow in all applications.
Our contribution in this paper is a variational approach to the estimation of motion
fields constrained by the Navier-Stokes equation.

1.1 Related Work

Recently, variational optical flow techniques from the field of computer vision have
been adopted and extended for the purpose of PIV [14,9,13,4,15]. Besides combining
a carefully designed data term and coarse-to-fine estimation schemes with a standard
first-order regularizer [14], a physically more plausible regularization has been sug-
gested recently [15]. Because this approach is based on the Stokes-equation, however, it
is based on related assumptions which are valid only for low Reynold numbers, i.e. non-
turbulent flow. Another competitive research direction concerns the design and use of
higher-order regularizers [9,4,19]. By separately penalizing the gradient of the diver-
gence and the curl of flows, the major disadvantage of first-order regularization that
penalize flow variations too much, are alleviated. Issues like well-posedness, accurated
discretization and numerical stability, on the other hand, become more involved.

1.2 Contribution

We present a framework for fluid motion estimation that utilizes as prior knowledge
that fact that flows have to satisfy the incompressible vorticity transport equation. This
equation relates to the full (incompressible) Navier-Stokes equations and therefore is
also valid in turbulent scenarios. Furthermore, rather than considering image pairs, our
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estimation scheme takes into account the whole image sequence. As a result, it takes
into account previous estimation results so as to enforce spatio-temporal coherency and
regularization, however, without penalizing flow structures that are characteristic for
instationary turbulent flows. Finally, analogously to the corresponding concept from
control theory, our overall algorithm works in a receding horizon manner, that is flow
velocities can be computed as soon as their respective frames have been recorded. In
principle, this sets the stage for the real-time extraction of instationary flow phenomena
from particle image sequences.

1.3 Organization

We present the vorticity transport equation, which embodies our prior knowledge we
use for flow estimation, in section 2.1. Section 2.2 motivates and describes our varia-
tional approach and details the resulting constrained optimization problem. Correspond-
ing numerical issues are dealt with in section 3. Numerical experiments for evaluating
the approach are presented in section 4. We conclude in section 5.

2 Approach

2.1 The Vorticity Transport Equation

Let u = (u1, u2)�, u = u(x, t), x =
(
x1(t), x2(t)

)�
, denote a two-dimensional ve-

locity field.
The incompressible vorticity transport equation is a special form of the Navier-

Stokes equation for homogeneous flow and can be expressed as follows

Dω

Dt
=

∂

∂t
ω + u · ∇ω = νΔω , ω(x, 0) = ω0 . (1)

It describes the evolution of the fluid’s vorticity over time. Note that in the absence of
external forces acting on the fluid, this equation describes the flow completely.

2.2 Variational Model

Let I(x1, x2, t) denote the gray value of an image sequence recorded at location x =
(x1, x2)� within some rectangular image domain Ω and time t ∈ [0, T ]. We adopt the
basic assumption underlying most approaches to motion estimation that I is conserved.
Thus, the total (material) derivative of I vanishes:

DI

Dt
= u · ∇I + It = 0 . (2)

The spatial and temporal derivatives of I of the optical flow constraint (2) are esti-
mated locally by using FIR filters. As the focus of this paper is on physically consistent
regularization and not on design of the data term, we refer the interested reader to [14]
for a detailed description.

As is well known, eqn. (2) alone cannot be used to reconstruct the velocity field u,
because any vector field with components u · ∇I = −It at each location x satisfies (2).
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The standard approach is to minimize the squared residual of (2) over the entire image
domain Ω and to add a variational term that either enforces smoothness of the flow
(first-order regularization) [17]1∫

Ω

{
(u · ∇I + It)2 + α|∇ · u|2 + β|∇ × u|2

}
dx , (3)

or smoothness of the divergence and vorticity (second-order regularization) [18]∫
Ω

{
(u · ∇I + It)2 + α

∣∣∇(∇ · u)
∣∣2 + β

∣∣∇(∇× u)
∣∣2}dx . (4)

We emphasize that both approaches (3) and (4) take only into account spatial context
and determine a vector field for a fixed point in time t ∈ [0, T ].

Therefore, following the ideas of [16], our present work is an attempt to elaborate a
dynamic representation of fluid flow. To this end, we solve eqn. (1) for the time interval
[0, T ] between a subsequent pair of image frames, where ω0 denotes our current vortic-
ity estimate. As a result, we obtain a transported vorticity field ωT := ω(x, T ), which
can be regarded as a predicted vorticity based on the assumption that our fluid is gov-
erned by the Navier-Stokes equation. The regularization term that we employ penalizes
derivations from the predicted vorticity values and forces incompressibility:

1
2

∫
Ω

{(
u · ∇I + It

)2 + λ
(
∇× u− ωT

)2}
dx ,

s.t. ∇ · u = 0 .
(5)

We apply Neumann boundary conditions (i.e. ∂u/∂n = 0 on ∂Ω). Note that, while
the regularization term of (5) penalizes deviations between the current vorticity esti-
mate ω and the propagated vorticity estimate of the preceding frame ωT , it does not
enforce smoothness of the current vorticity. In practice, an implementation of (5) there-
fore leads to increasingly noisy vorticity estimates. Increasing the parameter ν reduces
the problem only slightly: ωT becomes smoother, but smoothness of ω is still not en-
forced directly.

To overcome this problem, we add a term that mimics the small viscous term (Lapla-
cian) on the right-hand side of eqn. (1). Expressing the new second-order regularization
term equivalently through a first-order regularizer and an additional linear constraint,
we finally obtain:

E =
1
2

∫
Ω

{
(u · ∇I + It)2 + λ(ω − ωT )2 + κ|∇ω|2

}
dx ,

s.t. ∇ · u = 0 ,
∇× u = ω .

(6)

As we usually do not have a vorticity estimate at the very first frame of an image se-
quence, the overall estimation process is initialized with a vorticity estimate ω0 = 0.

1 It can be shown easily that the Horn&Schunck approach [7] is just the special case of this
regularization where α = β.
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The novel vorticity transport regularizer in (6), in connection with (1), can be per-
ceived as a special second-order div-curl regularizer: Estimated flows from a given
image sequence have vanishing divergence and a curl field (vorticity) that should be
smooth and as close as possible to the transported vorticity.

3 Discretization and Optimization

3.1 Discretisation of the Vorticity Transport Equation

We solve the time-dependent vorticity transport equation (1) with a second-order con-
servative finite difference algorithm. The method is upwind and two-dimensional in that
the numerical fluxes are obtained by solving the characteristic form at cell edges (i.e.
edges between adjacent pixels), and all fluxes are evaluated and differenced at the same
time. The finite difference method that we employ is the Fromm-Van-Leer scheme [11].

The basic idea is to satisfy Godunov’s theorem in a “natural” way. Roughly speak-
ing, Godunov’s theorem says that all methods of accuracy greater than order one will
produce spurious oscillations in the vicinity of large gradients, while being second-
order accurate in regions where the solution is smooth. Accordingly, Fromm-Van-Leer’s
scheme detects discontinuities and adapts its behavior such that the high-order accuracy
of Fromm’s scheme is preserved for smooth parts of the solution, while spurious oscil-
lations are avoided through first-order accuracy at detected discontinuities.

3.2 Variational Approach

For every image pair (two consecutive frames of the image sequence), we have to solve
optimization problem (6) which comprises a convex functional and two linear constraint
equations. We transform this constrained optimization problem into a saddle point prob-
lem. Accordingly, the unique vector field u(x) minimizing (6), along with the vorticity
ω and multipliers p, q, are determined by the variational system

a
(
(u, ω)�, (ũ, ω̃)�

)
+ b
(
(p, q)�, (ũ, ω̃)�

)
=
(
(f, g)�, (ũ, ω̃)�

)
, ∀ũ, ω̃

b
(
(p̃, q̃)�, (u, ω)�

)
= 0 , ∀p̃, q̃ .

(7)

The bilinear and linear forms read:

a
(
(u, ω)�, (ũ, ω̃)�

)
:=
∫

Ω

{
u · ∇I∇I · ũ+ λωω̃ + κ∇ω · ∇ω̃

}
dx , (8)

b
(
(p, q)�, (ũ, ω̃)�

)
:= −

∫
Ω

{
p∇ · ũ+ q(∇× ũ− ω̃)

}
dx . (9)

The right-hand side reads:(
(f, g)�, (ũ, ω̃)�

)
:=
∫

Ω

{
− It∇I · ũ+ λ ωT ω̃

}
dx . (10)

We choose a regular tessellation of the image domain Ω and discretize (7) using finite
elements. It is well-known from computational fluid dynamics (cf. Stokes equation) that
standard first-order finite element discretizations of saddle point problems may result
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Fig. 2. Left: Sketch of 2D Taylor-Hood elements: biquadratic velocity elements (squares) and
bilinear pressure elements (circles). Middle: Basis function φ of a bilinear finite element. Right:
Basis function ψ of a biquadratic finite element.

in instabilities or even in so-called locking effects, where the zero velocity field is the
only one satisfying the incompressibility condition.

Therefore, when solving saddle point problems, mixed finite elements are tradition-
ally used [2]. An admissible choice is the so-called Taylor-Hood element based on a
square reference element with nine nodes (fig. 2). Each component of the velocity field
is defined in terms of piecewise quadratic basis functions ψi located at each node (the
solid squares in fig. 2), whereas the Lagrange multipliers p and q and the vorticity ω
are represented by linear basis functions φi attached to each corner node (indicated
by circles in fig. 2). It can be shown that Taylor-Hood elements fulfill the so-called
Babuska-Brezzi condition [2], making the discretized problem well-posed.

Indexing the velocity nodes (squares in fig. 2) by 1, 2, ..., N , we obtain

u1(x) =
N∑

i=1

uiψi(x) (11)

and similarly for u2(x) (where u = (u1, u2)�) and the components of ũ.
By analogy, we obtain for the M Lagrange multiplier nodes (circles in fig. 2)

p(x) =
M∑
i=1

piφi(x) (12)

and similarly expressions for q, ω, p̃, q̃, ω̃. Hence, each function u, ũ is represented by
2N real variables, and each function p, q, ω, p̃, q̃, ω̃ is represented by M real variables.
For the sake of simplicity, we will use the same symbols to denote the corresponding
vectors. The discretized system (7) then reads

A(u, ω)� · (ũ, ω̃)� +B�(p, q)� · (ũ, ω̃)� = (f, g)� · (ũ, ω̃)� , ∀ũ, ω̃
B(u, ω)� · (p̃, q̃)� = 0 , ∀p̃, q̃ .

(13)

These equations have to be satisfied for arbitrary ũ, p̃, q̃, ω̃, thus we obtain:

A

(
u

ω

)
+B�

(
p

q

)
=
(
f

g

)
, B

(
u

ω

)
= 0 . (14)



450 P. Ruhnau, A. Stahl, and C. Schnörr

In order to numerically solve the saddle point problem (14), we want to employ the
Uzawa algorithm (cf., e.g. [1]). However, this requires A to be positive definite which
is not the case here, because the relations u and ω defining A in (8) are mutually inde-
pendent and u is only involved through a degenerate quadratic form. This problem can
be removed by (a) including a penalty term related to the divergence constraint into our
Lagrange multiplier formulation to obtain an Augmented Lagrangian formulation [5],
and by (b) splitting the vorticity matching term into two equivalent terms, one contain-
ing∇×u and the other one containing ω. This yields the following modification of the
bilinear form (8):

ap

(
(u, ω)�, (ũ, ω̃)�

)
:=
∫

Ω

{
u · ∇I∇I · ũ+

λ

2
(
ωω̃ + (∇× u)(∇× ũ)

)
+ μ(∇ · u)(∇ · ũ) + κ∇ω · ∇ω̃

}
dx .

(15)

We point out that this modification is done for numerical reasons only. It does not
change the optimization problem (6). Matrix Ap resulting from the discretization of
(15) is positive definite and, because u and ω do not explicitly depend on each other,
can be split into two systems:

– The system containing u is the linear system with a simple first-order div-curl reg-
ularization (cf., e.g. [17], and (3)).

– The system containing ω corresponds to a simple first-order quadratic functional.

Because Ap is invertible and well-conditioned, we solve the first equation of the system
(14), with A replaced by Ap, for the unknown u(

u

ω

)
= A−1

p

[(
f

g

)
−B�

(
p

q

)]
, (16)

and insert the result into the second equation:

BA−1
p

[(
f

g

)
−B�

(
p

q

)]
= 0 . (17)

This problem only involves the adjoint variables p, q:

(BA−1
p B�)

(
p

q

)
= BA−1

p

(
f

g

)
. (18)

The matrix (BA−1
p B�) is symmetric and positive definite. Therefore, we apply the

conjugate gradient iteration to (18). This requires a single matrix inversion in every
iteration step. This is efficiently accomplished using multi grid iteration (cf. [6]).

4 Experimental Evaluation

This section shows numerical results on ground truth fluid image sequences obtained
with our approach in comparison with first-order regularization and with second-order
div-curl regularization.
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Fig. 3. Left: 100th frame of the synthetic image sequence with ground truth velocity field. Right:
Estimated velocity field for the 100th frame. The background intensity shows the absolute RMS
error (brighter = larger error), which is about 0.055 px. on average (cf. fig. 4).

The evaluation of our approach from the viewpoint of fluid mechanics (real data,
without ground-truth) is beyond the scope of this paper.

The synthetic PIV image sequence that we used for testing was provided by [3].
The underlying velocity field was computed by a so-called pseudo-spectral code that
solves the vorticity transport equation in Fourier space and evaluates a subgrid model
for simulating small-scale turbulent effects on the larger scales of the flow. These latter
effects, of course, are not known in practice, nor was anything related to that used while
evaluating our approach.

In order to simulate the intensity function of real PIV images, the computed velocity
fields are used to transport collections of (images of) particles that are typically used for
the seeding of flows so as to make them visible (cf. section 1). The scheme resembles
the one described in [10]. We used the first 100 frames of the synthesized PIV image
sequence and compared the following three approaches:

– Horn&Schunck [7]: First-order regularization, temporal coherency is not exploited,
no incompressibility constraint is imposed. The smoothness parameter λ = 0.005
was manually selected for best performance.

– 2nd Order Regularization [19]: These authors used higher-order regularization
with an additional incompressibility constraint. Instead of mixed finite elements (as
we do), the authors used the so-called mimetic finite differencing scheme. Tempo-
ral coherency is not exploited. Parameters: λ1 = 0.5, λ2 = 0.05, manually selected
for best performance.

– Vorticity Transport Approach (this paper): As described above, higher-order reg-
ularization is used, the incompressibility constraint is imposed, and temporal co-
herency is exploited in an on-line manner. Parameters λ = 0.005, μ = 0.005,
ν = 0.1, κ = 0.0005. As for the other approaches, we selected the regularization
parameters λ, μ, κ by hand. Note that the viscosity coefficient ν is not a free user
parameter but characterizes the physical nature of the fluid flow.
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Fig. 4. Average absolute RMS error (in pixels) for frames 1-100, using three different methods.
First-order regularization performs worse than second-order regularization. Both error curves are
constant because temporal coherency is not exploited. The approach based on vorticity transport
starts with a rather low accuracy (assumption of ω = 0, which is not valid) but then becomes
significantly more accurate than the two other techniques due to the physically consistent regu-
larization over time. This novel spatio-temporal regularization is achieved with an on-line compu-
tational scheme and fixed storage requirements, irrespective of the length of the image sequence.
The decay of the error curve within the first 10 frames clearly displays the usage of this implicitly
encoded “memory”.
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Fig. 5. Left: True vorticity of frame 100. Lower Right: Estimated vorticity ω for frame 100. For
the first frame, the estimation process was initialized with ω = 0, corresponding to “nothing is
known in advance”. The result on the right shows that not only the vorticity transport equation has
been successfully adapted to the observed image sequence, but that it improves the accuracy of
flow estimation in terms of u, too (cf. fig. 4). As a consequence, flow derivatives can be estimated
fairly accurate, as shown in the right panel. Such quantitative information is very important in
connection with imaging-based experimental fluid mechanics.

Figure 4 compares the errors of all three approaches over time. The first-order regu-
larization approach yields the highest errors, while the second-order approach is much
more accurate. The errors of both approaches stay constant over time because each
subsequent image pair is independently evaluated and temporal coherency is ignored.

For the first frame, the approach presented in this paper, utilizing the vorticity trans-
port equation, shows worse performance than the other two algorithms. During the
subsequent period of time, however, the error of the vorticity transport approach de-
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creases considerably, because not only higher-order regularization is used but temporal
coherency is successfully exploited as well.

We emphasize that temporal coherency does not mean smoothness. Rather, the flow
exhibits high spatio-temporal gradients as turbulent fluids do. Temporal coherency re-
lates to a physically consistent transport mechanism interacting with flow estimation
from an image sequence. Due to the on-line computational scheme, fixed computa-
tional resources are needed no matter how long the image sequence is. The decay of the
error curve over several frames in figure 4 shows, however, that the approach is able to
memorize the history longer than just the previous frame.

Figure 3 displays the estimated velocity for the for the 100th frame, along with the
respective RMS errors. The reconstructed velocity field is surprisingly exact, in view
of the highly non-rigid motion we are dealing with. Figure 5 shows that even the vor-
ticity related to flow derivatives is reconstructed quite well under these difficult condi-
tions. We expect such quantitative data to be valuable information in connection with
imaging-based fluid mechanics.

5 Conclusion

We presented an approach to fluid motion estimation that uses the vorticity transport
equation for physically consistent spatio-temporal regularization. The approach com-
bines variational motion estimation with higher-order regularization and motion predic-
tion through a transport process. For motions that conform to our assumption (i.e. fluids
that are governed by the incompressible 2D Navier-Stokes equation), a temporal regu-
larization effect, computed in a recursive manner, was demonstrated. In these scenarios,
our approach outperforms advanced variational approaches for optical flow estimation.
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Abstract. We present a new approach to integrated motion estimation
and segmentation by combining methods from discrete and continuous
optimization. The velocity of each of a set of regions is modeled as a
Gaussian-distributed random variable and motion models and segmen-
tation are obtained by alternated maximization of a Bayesian a-posteriori
probability. We show that for fixed segmentation the model parameters
are given by a closed-form solution. Given the velocities, the segmen-
tation is in turn determined using graph cuts which allows a globally
optimal solution in the case of two regions. Consequently, there is no
contour evolution based on differential increments as for example in level
set methods. Experimental results on synthetic and real data show that
good segmentations are obtained at speeds close to real-time.

1 Introduction

Since the seminal works of Lucas and Kanade [17] and Horn and Schunck [13],
motion estimation has become one of the major problems addressed in Computer
Vision. Motion estimation techniques can be employed in numerous Computer
Vision tasks such as the study of dynamical processes [14].

A closely related problem is motion segmentation, namely the grouping of
image regions which are similar in their motion. Early approaches worked by
first estimating the flow field, then segmenting it (cf. [19]). More recently, par-
ticularly since the work of [18] and [9], approaches to address the problems of
motion estimation and segmentation by minimizing a single energy functional
have become popular. Minimization is done by alternatingly updating the flow
field and the segmentation boundary.

Most present approaches handle the case of piecewise affine motion [9,2,15]
or allow non-parametric variation of the flow field [8,1]. In this work we present
models with both piecewise constant and piecewise affine velocities.

Current approaches to motion segmentation are typically based on pde evo-
lution such as the Level Set Method [9,8,1]. While there exist motion segmenta-
tion methods using graph cuts [2,15], they are based on non-linear flow-errors,
resulting in run-times far from real-time. We use linearized flow errors, allowing
accurate segmentations at speeds close to real-time at the costs of less accurate

K. Franke et al. (Eds.): DAGM 2006, LNCS 4174, pp. 455–464, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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motion estimates. Given the velocity in each region, the globally optimal bilayer
segmentation can be obtained in effectively linear time.

This paper is organized as follows: In Section 2 we derive an energy func-
tional for motion segmentation with piecewise constant velocities by modeling
the velocity of each region as a Gaussian-distributed random variable. Section
3 extends this framework to piecewise affine velocities. In Section 4 we propose
an efficient optimization scheme, combining graph cuts and differential methods.
Finally, we present in Section 5 experimental results on synthetic and real data
which demonstrate that high-quality purely motion based segmentations can be
obtained with run-times close to real time.

2 Statistical Formulation of Motion Segmentation

Given two frames I1 and I2 of a video sequence, we are interested in determining
for each pixel p = (xp, yp) in the first image where it is to be found in the second,
i.e. with what velocity it moved. In this work we deal with motion segmenta-
tion and for the sake of efficiency fix the number of regions to 2. Notice that
an extension to multiple regions is easily possible using the expansion moves
of [7]. In this case, however, we can no longer guarantee globally optimal seg-
mentations as the multilabel problem is NP-hard. For the moment, each region
i is associated a constant velocity vi, i ∈ {0, 1}. The next section will extend
this to more elaborate parametric motion models. The problem then is to assign
each pixel p a region l(p) ∈ {0, 1} and determine the optimal velocity for each
region. We denote by Ri the set of all pixels labeled i. We address this problem
by the Bayesian method of minimizing the negative logarithm of the posterior
probability

argmin
l,v̄

− log(pr(l, v̄|I1, I2))

= argmin
l,v̄

⎡⎢⎣ − log(pr(l))︸ ︷︷ ︸
Esmooth(l)

− log(pr(I2|v̄, l, I1))︸ ︷︷ ︸
Edata(l,v̄)

− log(pr(v̄, I1|l)︸ ︷︷ ︸
uniform

) + const

⎤⎥⎦ (1)

where v̄ contains all velocities. In this work, we assume the third probability to
be uniform within a reasonable range and assume that the first only depends on
the length of the boundary. Based on the Cauchy-Crofton formula from integral
geometry this length can be approximated by [6]

Esmooth(l) =
ν

2

∑
(p,q)∈N

(1 − δ(l(p), l(q)))
||p− q|| (2)

with Kronecker-δ, the free parameter ν and a neighborhood system N we choose
to be of size 8. Assuming the intensities of the moving objects to stay constant,
pr(v̄, I2|l, I1) might be restricted to be non-zero only if

0 = I2(p + vl(p))− I1(p) ≈ ∇I(p)T vl(p) + It(p) ∀p (3)
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The last quantity is known as linearized flow-error. However, there are several
reasons for this assumption not to be true: For one, there is the camera noise.
Then there are changes in lighting and reflections. Lastly, we assume that each
region has a constant velocity, but desire to segment objects with partially dif-
ferent depths (think of a mirror on a car, or simply a sphere) as one. However,
parts with different depths will move with different velocities in the image plane.

Nevertheless, we desire the constraint in (3) to be fulfilled as good as possible
and assume the probability pr(I2|v̄, l, I1) to be only dependent on its deviation
from 0 for all pixels.

It can be shown that the likelihood proposed by [17] is equivalent to the
assumption of Gaussian noise on the image data, where the noise is independent
of the region. This results in a Gaussian-distributed flow-error

Edata(l, v̄) =
1
2

1∑
i=0

∑
p∈Ri

(∇I(p)T vi + It(p))2 (4)

In this work, following [10] we assume that the velocity at each pixel p of region i
is a Gaussian-distributed random variable, that is ṽi(p) = vi +η(p) for p ∈ Ri,
where η(p) ∼ N(0, σ2

i I2) with identity matrix I2. We require that ṽi(p) exactly
fulfill the constraint in (3), resulting in

∇I(p)T vi + It(p) = ∇I(p)T η(p)

The flow-error for vi is now N(0, σ2
i ||∇I(p)||2)-distributed. This leads to

Edata(l, v̄,σ) =
1
2

1∑
i=0

∑
p∈Ri

[
log(2π||∇I(p)||2σ2

i ) +
(∇I(p)T vi + It(p))2

||∇I(p)||2σ2
i

]
(5)

where σ contains all variances. In contrast to [10] we allow a separate vari-
ance for each region. Consequently the normalization term cannot be neglected.
Lacking suitable estimates for the variances, we optimize it in each region. To
avoid numerical instabilities, we replace ||∇I(p)||2 by max{||∇I(p)||2, 1} in the
denominator.

3 Extension to Parametric Motion Models

In this section we extend the data term in (5) to piecewise affine motion. A pixel
p = (xp, yp) belonging to Ri is now no longer assigned the constant velocity vi,
but an affine velocity S(p)ϑi where

S(p) =
(
xp yp 1 0 0 0
0 0 0 xp yp 1

)
and ϑi is the vector containing all parameters of the affine model for region i:

ϑi =
(
ai bi ci di ei fi

)T
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We differ from the common notation Ap + b as this simplifies the equations
for the update of parameters greatly. The task is now to minimize the energy
functional (1) with data term

Edata(l, v̄,σ) =
1
2

1∑
i=0

∑
p∈Ri

[
log(2π||∇I(p)||2σ2

i )

+
(∇I(p)T S(p)ϑi + It(p))2

||∇I(p)||2σ2
i

]
(6)

with respect to the vectors ϑi, the variances σ and the segmentation l.

4 An Efficient Semi-discrete Optimization Scheme

Minimization of the energy functional in (1) is done by alternatingly updating
the segmentation, the velocities and the variances. To this end we propose a
semi-discrete optimization scheme, combining fast discrete global optimization
methods for the segmentation step with continuous optimization for the motion
parameters. In the following we first state how the segmentation is updated
using graph cuts. We then give closed form global solutions for the velocities
and variances. Each quantity is set to the globally optimal one given the others.
In all cases we show the update for the affine motion model.

4.1 Fast Global Segmentation Via Graph Cuts

Given the velocities of each region the segmentation step requires the minimiza-
tion of a cost functional with binary-valued variables. To solve this problem, we
revert to the graph cut method, which will be detailed in the following.

Greig et al. [12] were the first to show how to exploit the graph cut technique
for problems of Computer Vision. They were concerned with the problem of
binary image restoration. In [16] the minimization of submodular functions of
binary variables with at most ternary terms is discussed1.

The complexity of the general problem is low-order polynomial, but using the
fast algorithm of [5] for most Computer Vision problems (including ours) it is
effectively linear. This algorithm makes use of the theorem of Ford and Fulkerson
[11] by solving the related problem to compute the maximum flow in a graph.

To give the reader an intuition of how the method works, we explain it in
the following. We state here the problem for undirected graphs as this suffices
for our application. A graph G = (V , E) consists of a set of nodes V and a set
of edges E . An edge e = {p, q} links two nodes p and q. For the problem of the
minimum 0/1-cut there are two distinguished nodes 0 and 1, i.e. V = {0, 1}∪V0.
In our case V0 will correspond to the set of pixels. Furthermore, each edge {p, q}
is assigned a weight w{p,q}.

1 Code is available at http://www.adastral.ucl.ac.uk/~vladkolm/software.html
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A cut on G is a labeling l of all nodes such that l(v) ∈ {′0′,′ 1′} for v ∈ V and
l(0) =′ 0′ and l(1) =′ 1′. The costs |l| of a cut is the sum of the weights of all
edges between a node labeled ’0’ and one labeled ’1’:

|l| =
∑

{p,q}∈E:l(p)=′0′,l(q)=′1′
w{p,q}

The min-cut problem is to find a cut l with minimal costs. As it is inherently
related to finding a binary labeling, many binary optimization problems of Com-
puter Vision can be reduced to it, including ours.

In the following we show how the graph looks like for motion segmentation
with two regions 0 and 1. In our case V0 is the set of all pixels. Each pixel p
is linked to 0 by an edge {0, p} and to 1 by an edge {p, 1}. These links are
called t-links. Additionally there are n-links connecting pixels p and q for any
{p, q} ∈ N . Their weight is set to w{p,q} = ν. Setting

w{0,p} = log(2πσ2
1 ||∇I(p)||2) +

(∇I(p)T S(p)ϑ1 + It(p))2

σ2
1 ||∇I(p)||2

w{p,1} = log(2πσ2
0 ||∇I(p)||2) +

(∇I(p)T S(p)ϑ0 + It(p))2

σ2
0 ||∇I(p)||2

the reader may verify that the costs of any cut l correspond to the costs of a
segmentation l′ where l′(p) = 0 if l(p) =′ 0′ and l′(p) = 1 if l(p) =′ 1′ (see figure 1
for an example on a one-dimensional image). Hence, using graph cuts the globally
optimal segmentation can be computed in one step. Our efficient implementation
uses flow-recycling [4] where previously computed flows are reused and the t-links
are updated in each iteration.

4.2 Update of Continuous Parameters

As suggested in [17,10] minimization with respect to the motion parameters
vi, σi can be done by setting the respective derivatives of (5) to zero. This leads
to vi = M−1b with

M =
∑
p∈Ri

S(p)T∇I(p)∇I(p)T S(p)
||∇I(p)||2

b = −
∑
p∈Ri

S(p)T∇I(p) · It(p)
||∇I(p)||2

The variance is given by

σ2
i =

1
|Ri|

·
∑
p∈Ri

(∇I(p)T S(p)ϑi + It(p))2

||∇I(p)||2

So all quantities (segmentation, velocities and variances) are set to the globally
optimal solution given the other quantities. Notice that convergence is guaran-
teed as the energy never increases and is always strictly positive.
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Fig. 1. An example of a graph for the segmentation problem on a 1-D image

5 Experimental Results

To show the abilities of the proposed model, we deal first with synthetic data,
showing that surfaces with non-constant depth can be handled. Afterwards we
present results on real-life data. All images were pre-smoothed. To initialize
the segmentation process, we applied block-matching. Therefore the image was
segmented into non-overlapping blocks, each block was tested against a set of
integer-valued velocities and assigned the best one. Afterwards the two most
frequent velocities were taken.

The only free parameter is the length penalty ν. For all experiments we chose
the ν that gave the best performance. Notice that in contrast to existing pde-
based methods, all minimization processes have been run until convergence.

5.1 Experiments with Synthetic Data

Figure 2 (a) shows an artificial scene with reflections (but without shadows).
The difference image in part (b) shows that only the torus moved (to the right).
The flow field depicted in part (c) shows that the proposed motion segmentation
model is able to handle reflections and surfaces of non-constant depth. The affine
model is not needed here. For all images used to visualize flow fields the color hue
indicates the direction of movement whereas the intensity indicates the strength.

Additionally we tested the proposed model on the well-known Yosemite Se-
quence as shown in figure 3. As is common, we measure the motion between
frame 8 (displayed in part a) and frame 9. The difference image gives little in-
formation here. Parts (b) and (c) display the segmentation result and the flow
field, respectively. As desired, the clouds are separated from the mountains and
the valley (except for some small regions in the lower left corner). The average
angular error amounts to 11.27. While this error is larger than those reported
for non-parametric motion models [8,1], it is still a good value considering the
simplicity of the method.
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(a) (b) (c)

Fig. 2. (a) first frame of an artificial scene (b) difference image to second frame (c)
motion segmentation by piecewise constant velocity, ν = 9.5

(a) (b) (c)

Fig. 3. Results for motion segmentation on the Yosemite Sequence between frame 8
(a) and frame 9 (not shown) of the sequence. (b) segmentation obtained with the
affine model, ν = 9.5. The white line indicates the boundary of the two regions (c)
visualization of the flow field.

5.2 Experiments with Real Data

Here we present results on real data. We start with the well-known Flower Gar-
den Sequence shown in figure 4 (a). The motion is estimated between frames
1 and 2. Parts (c-f) show the segmentations and flow fields obtained with con-
stant and affine velocities. The affine model gives the better flow field as the
background decreases smoothly in depth. For the segmentation this does not
matter much. Figure 5 depicts how the flow field evolves at different stages of
the minimization process. We only show this for constant velocities.

When applying the model with constant velocities to every pair of consecutive
frames, we obtain an average run-time of 825 msec per frame pair on the full
resolution of 360 × 240 on a 3.4 GHz machine. When reducing the resolution
to 180 × 120, this reduces to 180 msec per frame2. If the number of iterations
is reduced to 2 for each frame pair (excepting the first), 80 msec or 12.5 fps
are achieved, which is good enough for real time. Actually, even 1 iteration
per frame pair gives sufficient quality, yielding 16.5 fps. Admittedly, the quality
reduces slightly compared to full resolution.
2 The length penalty is then divided by 2 as that is the relative decrease of the length

of a line compared to the number of pixels.
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(a) (b) (c) (d)

(e) (f)

Fig. 4. Results on the Flower Garden Sequence (a) frame 1 of the sequence (b) dif-
ference image to second frame (c) flow field obtained with constant velocities, ν = 4
(d) flow field obtained with affine velocities, ν = 4. Note that the velocity of the back-
ground gradually decays toward the top of the image. (e+f) segmentations obtained
in (c) and (d). The white lines indicate segmentation boundaries.

(a) (b) (c) (d) (e)

Fig. 5. Intermediate steps for minimizing the energy functional with constant veloci-
ties. 14 iterations were needed until convergence. Here the flow fields after iteration 1
(a), 3 (b), 5 (c), 7 (d) and 12 (e) are shown. Compare figure 4 (c) for the final result.

(a) (b) (c) (d) (e)

Fig. 6. Results for the Pickup Sequence (a) first frame (b) difference image to second
frame (c) segmentation for the model with constant velocities, ν = 3 (d) segmentation
for the affine model, ν = 3 (e) flow field for the affine model
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About 40% of the run-time are used for the computation of the minimum cut.
The other major sources are the computation of edge costs and the update of
velocities. The affine model more than doubles the run-time.

Lastly, we present results on the Pickup Sequence from [3], which we modified
by introducing artificial motion of the whole image (originally only the hand with
the can moved). The first frame and the difference image are show in figure 6
(a) and (b). Part (c) shows that the model with constant velocities is able to
separate the hand and the can from the background. As can be seen in part (d)
the affine model produces a similar segmentation, but part (e) reveals that the
lower parts of the arm are assigned lower velocities as their depth is greater.

6 Conclusion

We proposed an efficient semi-discrete optimization method for motion segmen-
tation. Based on the assumption that the velocity in each region can be modeled
as a Gaussian distributed random variable, we derived a cost functional for the
joint estimation and segmentation of piecewise constant or piecewise affine mo-
tion. For the case of two motion models, we developed a fast minimization scheme
which alternates a globally optimal segmentation via graph cuts with a globally
optimal motion estimation. Experiments show that for moderate resolutions ac-
curate purely motion-based segmentations can be obtained in real-time.
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Abstract. We propose to tackle the optical flow problem by a combina-
tion of two recent advances in the computation of dense correspondences,
namely the incorporation of image segmentation and robust global op-
timization via graph-cuts. In the first step, each segment (extracted by
colour segmentation) is assigned to an affine motion model from a set of
sparse correspondences. Using a layered model, we then identify those
motion models that represent the dominant image motion. This layer ex-
traction task is accomplished by optimizing a simple energy function that
operates in the domain of segments via graph-cuts. We then estimate the
spatial extent that is covered by each layer and identify occlusions. Since
treatment of occlusions is hardly possible when using entire segments as
matching primitives, we propose to use the pixel level in addition. We
therefore define an energy function that measures the quality of an as-
signment of segments and pixels to layers. This energy function is then
extended to work on multiple input frames and minimized via graph-cuts.
In the experimental results, we show that our method produces good-
quality results, especially in regions of low texture and close to motion
boundaries, which are challenging tasks in optical flow computation.

1 Introduction

The estimation of optical flow is one of the oldest, but still most active research
topics in computer vision. Major challenges are twofold. Firstly, matching often
fails in the absence of discriminative image features that can be uniquely matched
in the other view. This is the case in untextured regions and in the presence of
texture with only a single orientation (aperture problem). Secondly, a pixel’s
matching point can be occluded in the other view. Those occlusions often occur
at motion discontinuities, which makes it specifically challenging to precisely
outline object boundaries. In spite of its obvious importance, standard optical
flow approaches still tend to ignore the occlusion problem (e.g., [1,2,3]).

This paper proposes an algorithm that explicitly addresses these problems
by taking advantage of colour segmentation and robust optimization via graph-
cuts. Our contribution lies in that we show how to set up an energy function
� This work was funded by the Austrian Science Fund (FWF) under project P15663.

K. Franke et al. (Eds.): DAGM 2006, LNCS 4174, pp. 465–474, 2006.
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Fig. 1. The occlusion problem in segmentation-based matching and our proposed so-
lution. Explanation is given in the text.

that formulates segmentation-based motion with treatment of occlusions. The
advantage of this energy function is that it can be optimized via robust graph-
cut-based optimization. The motivation for using colour segmentation is that
energy minimization approaches often bias towards the reconstruction of simple
object shapes and consequently fail in the presence of complex motion discon-
tinuities. To explain the idea behind our energy function, let us consider the
two views illustrated in Fig. 1a. The images show two segments S1 and S2 at
different instances of time with segment S2 undergoing motion as indicated by
the arrows. As a consequence of the moving foreground object, occlusions occur
in both frames (coloured red in Fig. 1b). S1 is partially affected by occlusions,
which is problematic in the following sense. When using segments as matching
primitives, we can only state that the complete segment S1 has zero motion. How-
ever, we cannot express the fact that some pixels of S1 are affected by occlusion.
In other words, occlusions cannot be dealt with in the domain of segments.

In order to correctly model occlusions, we propose an energy function that
operates on two levels, one representing the extracted segments and the other
representing pixels. In addition to all segments (top layer of Fig. 1c), we as well
assign every pixel of the reference image to a motion model (middle layer of
Fig. 1c). The basic idea is to enforce that every (visible) pixel is assigned to the
same motion model as the segment to which it belongs. However, and this is
the important point, a pixel is also allowed to be occluded. Finally, we as well
include every pixel of the second image into our problem formulation (bottom
layer of Fig. 1c). We enforce that a (visible) pixel and its matching point in the
other image must both have identical motion model assignments. This constraint
serves to implement the uniqueness assumption [4]. This assumption is used to
identify occlusions symmetrically in both images.

In relation to prior work, using colour segmentation for the dense correspon-
dence problem does not represent a novel idea. Black and Jepson [5] propose a
colour segmentation-based motion algorithm that fits a variable order parametric
model to each individual segment using a precomputed flow field. Analogous to
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our approach, the basic idea behind this procedure is that the flow field is likely
to vary smoothly inside such a segment. However, the authors do not account for
the occlusion problem and miss to model smoothness across segments. Recently,
segmentation-based techniques have also gained attention in the stereo commu-
nity (e.g., [6,7]). Although quite different from each other, segmentation-based
stereo methods take benefit from increased robustness in untextured regions and
in areas close to disparity discontinuities. This is well reflected by the good ex-
perimental results of those algorithms. For the motion layer extraction problem,
segmentation-based techniques using clustering methods are proposed in [8,9].

In the context of energy minimization approaches, our technique is most
closely related to various motion segmentation algorithms. Ayer and Sawhney
[10] employ the minimum description length (MDL) encoding principle in or-
der to derive the smallest set of layers necessary to describe the image motion.
They formulate statistical cost functions that are optimized by an expectation
maximization algorithm. Willis et al. [11] present a graph-cut-based approach to
achieve a dense and piecewise smooth assignment of pixels to layers. They do,
however, not explicitly model the occlusion problem. In contrast to this, Xiao
and Shah [12] embed occlusion detection into a graph-cut-based method in a
very recent work. They claim to be the first ones to deal with the explicit identi-
fication of occluded pixels for the motion segmentation task. The most obvious
difference to those approaches is that none of them uses image segmentation.

Among prior work, the closest related one originates from literature on the
simpler stereo correspondence problem. Hong and Chen [7] combine colour seg-
mentation-based matching with graph-cut optimization. They heuristically iden-
tify occlusions in a preprocessing step, which then allows them to model the
correspondence problem on the segment level only. However, the results of this
method depend on the success of this preprocessing step, and it is not clear how
well an a-priori identification of occlusions can work, especially in the presence of
large motion. In contrast to this, our energy function knows about the existence
of occlusions. Flow vectors and occlusions are computed simultaneously, which
we believe results in a more accurate reconstruction of both.

2 Our Approach

2.1 Colour Segmentation and Initial Models

In the first step, we apply colour segmentation to the reference image. Since
our basic assumption states that the flow values inside a colour segment vary
smoothly, it is important that a segment does not overlap a motion discontinuity.
It is therefore safer to use oversegmention (Fig. 2b). In the current implementa-
tion, we apply the mean-shift-based segmentation algorithm described in [13].

The optical flow inside each segment is modelled by affine motion, which is

Vx(x, y) = ax0 + axxx+ axyy
Vy(x, y) = ay0 + ayxx+ ayyy

(1)
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with Vx and Vy being the x- and y-components of the flow vector at image
coordinates x and y and the a’s denoting the six parameters of the model.
However, our approach could easily be extended to a more sophisticated model.
To initialize the motion of each segment, a set of sparse correspondences is
computed using the KLT-tracker [14]. A segment’s affine parameters are then
derived by least squared error fitting to all correspondences found inside this
segment. We apply the iterative plane fitting algorithm described by Tao et al.
[6] to reduce the sensitivity of the least squared error solution to outliers.

2.2 Layer Extraction

When using a layered representation [15], the first questions one has to answer
are: How many layers are present in the sequence and what are their motion
parameters? Initially, the set of our layers L is built by all motion models found
in the previous step. In order to extract a small set of layers out of L, we minimize
a simple energy function E(f), which measures the optimality of an assignment
f of segments to layers, in the form of

E(f) = Edata(f) + Esmooth(f). (2)

The data term Edata calculates how well f agrees with the input images and is
defined by

Edata(f) =
∑
S∈R

∑
p∈S

d(p,m[f(S)](p)) (3)

with R being the set of all segments of the reference view and f(S) being the
index of the layer to which segment S is assigned. We write m[k](p) to denote the
matching point of a pixel p in the other view according to the kth layer. More
precisely, m[k](p) is derived by computing the displacement vector at p using
the affine parameters of the layer at index k (equation (1)) and adding it to the
coordinates of p. The function d(·, ·) measures the dissimilarity of two pixels,
which is the sum-of-absolute-differences of RGB values in our implementation.
The second term Esmooth of the energy function measures to which extent the
current assignment f is spatially smooth. Esmooth is defined by

Esmooth(f) =
∑

(S,S′)∈N

{
λsmooth · b(S, S′) : f(S) �= f(S′)

0 : otherwise (4)

with N being all pairs of neighbouring segments, b(·, ·) computing the border
length between such and λsmooth being a constant user-defined penalty.

We approximate the minimum of the energy function in equation (2) using
the α-expansion algorithm of Boykov et al. [16]. Starting from an arbitrary con-
figuration, we iteratively change this configuration by computing the optimal
α-expansion move for each layer until convergence. The graph built for calcu-
lating the optimal α-expansion consists of nodes that correspond to segments.
Since the number of segments is significantly lower than the number of pixels,
minimization of equation (2) via graph-cuts is quite efficient.
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(a) (b) (c)

Fig. 2. Colour segmentation and layer extraction. (a) Original image. (b) Result of the
colour segmentation step. Segment borders are shown. (c) Result of the layer extraction
step. Pixels of the same colour belong to the same layer.

Those layers that are not present in the computed configuration f∗ are re-
moved from the set of layers L, which drastically decreases the number of layers.
However, it is quite likely that the correct layer was not contained in our ini-
tial set, due to the small spatial extent over which the motion parameters were
initially computed. We therefore refit the layers over their new spatial extents
according to the assignment of segments to layers in f∗ to derive a set of refined
layers L′. We then update L by L := L∪L′. Starting from the configuration f∗,
we apply the α-expansion algorithm using our refined layer set L to obtain the
new configuration f∗∗. We again remove those layers from L that do not occur
in f∗∗. If the costs of f∗∗ are not lower than those of f∗, L represents our final
set of layers. Otherwise, this procedure is iterated.

We show results of the layer extraction step in Fig. 2c. Since the proposed
algorithm operates on the segment level only, it is not capable of handling oc-
clusions. It therefore produces artefacts in regions close to motion boundaries.
Although there are only small occluded areas in the sequence shown in Fig. 2
such artefacts are visible in the proximity of the rotating ball.1 However, this
strategy works well enough to deliver the dominant image motion and it is com-
putationally efficient.

2.3 Layer Assignment

Knowing the set of layers, the task of the assignment step is to estimate which
parts of the images are covered by which layers as well as to identify occlu-
sions. As stated in the introduction, the segment level alone is not sufficient for
treatment of occlusions. In the following, we therefore design an energy function
involving both, the segment and the pixel level. Minimization of the derived ob-
jective function via the α-expansion algorithm is not discussed in this paper for
space limitations, but is thoroughly described in [17].

Energy Function. In contrast to the previous section, a configuration f is
no longer an assignment of segments to layers, but an assignment of segments
1 We will present an example where this effect is more severe in the experimental

results.



470 M. Bleyer, C. Rhemann, and M. Gelautz

and pixels to layers. Moreover, a pixel can be assigned to a dedicated label 0
expressing the fact that the pixel’s matching point is occluded in the other view.
We define the energy function E′(f) measuring the quality of a configuration f ,
which assigns segments and pixels to layers, by

E′(f) = E′
data(f) + E′

segment(f) + E′
mismatch(f) + E′

smooth(f). (5)

The individual terms of E′(f) are described one after the other in the following.
The first term E′

data measures the agreement of f with the input data and is
defined by

E′
data(f) =

∑
p∈I

{
d(p,m[f(p)](p)) : f(p) �= 0

λocc : otherwise (6)

with I being the set of all pixels of the reference image IR as well as of the second
view IS and λocc denoting a constant predefined penalty. While E′

data measures
the pixel dissimilarity for visible pixels, it imposes a penalty on occluded ones.
This penalty is necessary, since otherwise declaring all pixels as occluded would
result in a trivial minimum of E′(f). To allow for a symmetrical identification of
occlusions, E′

data operates on both images. The matching point m[k](p) ∈ IR of a
pixel p ∈ IS is thereby computed using the inverse motion model of the kth layer.
The second term E′

segment(f) of the energy function enforces the segmentation
information on the pixel level and is defined by

E′
segment(f) =

∑
p∈IR

{
∞ : f(p) �= 0 ∧ f(p) �= f(seg(p))
0 : otherwise (7)

with seg(p) being a function that returns the segment to which pixel p belongs.
The basic idea is that a pixel is either occluded or assigned to the same layer as
all other visible pixels of the same segment. Solutions that violate this constraint
generate infinite costs. The third term E′

mismatch accounts for a consistent layer
assignment across the reference and the second images. It is defined by

E′
mismatch(f) =

∑
p∈I

{
λmismatch : f(p) �= 0 ∧ f(p) �= f(m[f(p)](p))

0 : otherwise (8)

with λmismatch being a user-set penalty. This penalty is imposed for each pixel
p whose matching point is assigned to a different layer than that of p. Finally,
we apply the smoothness assumption on the segment level. E′

smooth is identical
to the smoothness term of the previous section. For completeness, we write:

E′
smooth(f) = Esmooth(f). (9)

Extension to Multiple Input Frames. The energy function of equation (5)
is designed to be used with only two input images. However, oftentimes frames
in between these two images are available as well and can be used to improve
the matching results. Let I1 and In be the first and last views of a short video
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Fig. 3. Conceptual view of the energy function E′(f)

clip of n frames. For computing the optical flow between I1 and In, we do not
only match I1 against In, but also match I1 against any intermediate view Ik
with 1 < k < n. The basic idea behind this is that a pixel of the reference
frame I1, which is occluded when matching I1 and In, might be visible (and
therefore matchable) when computing the correspondences between I1 and Ik.
This concept was originally used by Xiao and Shah [12,18].

To implement this idea, we split up a sequence of n images into n − 1 view
pairs. Each view pair consists of the reference frame I1, on which we apply colour
segmentation, and a second image Ik �= I1, i.e. we derive the view pairs I1 − I2,
I1−I3,· · ·, I1−In. From the layer extraction step, we have the dominant motion
models of the view pair I1−In. For simplicity, we assume that within a very short
image sequence the motion is linear, so that the motion models for the other view
pairs can be linearly interpolated from those. To propagate the layer assignments
of the individual view pairs between each other, we connect the reference frame
I1 of each view pair to the segment level using the term E′

segment (Fig. 3). From
its definition in equation (7), E′

segment enforces a pixel of the reference view to
have the same layer assignment as its corresponding segment, unless the pixel is
occluded. Since the reference frames of all view pairs are now connected to the
segment level, a pixel p of I1 in view pair V P that is assigned to layer l has to
be assigned to l in any other view pair V P ′ or carry the occlusion label. This is
what Xiao and Shah refer to as the General Occlusion Constraint [18], which is
integrated into our energy function without additional effort.

3 Experimental Results

We have tested our algorithm on a standard test set (Fig. 4) as well as on a self-
recorded one (Fig. 5). Throughout our test runs, we set λocc := λmismatch − 1.
The effect of this is that every view inconsistent pixel is labelled as occluded on
the pixel level. More precisely, if two pixels assigned to different layers project
to the same pixel of the other view, one of them is view inconsistent and has to
be declared as occluded. Therefore, the uniqueness constraint is enforced.

As a first test sequence, we have picked five frames from the Mobile & Cal-
endar sequence (Fig. 4a). Within this sequence, there is translational motion
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(a) (b)

(c) (d) (e)

Frames 1-2 Frames 1-3 Frames 1-4 Frames 1-5
(f)

Frame 1 Frame 6 Frame 11 Frame 16 Frame 21
(g)

Fig. 4. Results for the Mobile & Calendar sequence. (a) Frames 1 and 5 of five in-
put frames. (b) Flow vectors with layer boundaries outlined. (c) Absolute x- and
y-components of the computed flow vectors. (d) Assignment of segments to layers.
(e) Layer boundaries coloured in red superimposed on input frame 1. (f) Absolute x-
components of the flow vectors on the pixel level. The top row shows the reference view
(frame 1), while the match images (frames 2 – 5) are presented at the bottom. Pixels
carrying the occlusion label are coloured in red. (g) Motion segmentation for each fifth
frame of the complete sequence.
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(a) (b)

(c) (d) (e)

Fig. 5. Results for a self-recorded sequence. (a) Frames 1 and 3 of three input frames.
(b) Results of the layer extraction step. (c) Assignments of segments to layers. (d)
Absolute x-components. (e) Layer borders superimposed on view 1.

on the train and the poster, while rotational motion originates from the ball.
Furthermore, the camera zooms out. Results computed by our method (Figs.
4b–g) indicate that the algorithm is well suited to precisely delineate motion
discontinuities. Moreover, our technique can equivalently be regarded as a mo-
tion segmentation method, since the layer assignment result (Fig. 4d) divides the
image into homogeneously moving regions. In Fig. 4g, we apply our algorithm
to segment the complete sequence into video objects that undergo homogeneous
motion. A more detailed explanation of this process is, however, found in [17].

In addition to the standard test set, we tested the proposed method on a
self-recorded sequence (Fig. 5a). The sequence shows a train moving from right
to left in front of a static background. Although the motion is relatively sim-
ple, the scene contains complex motion boundaries (e.g., the link connecting the
wagons) and large occluded areas. These occlusions are the reason why the layer
extraction step delivers poor results in the proximity of the motion discontinu-
ities (Fig. 5b). In contrast to this, the assignment step that explicitly models
occlusions seems to be able to outline the motion boundaries correctly (Fig. 5c).

4 Discussion

We have presented a layered segmentation-based algorithm for the estimation
of dense motion correspondences. In the layer extraction step, we optimize a
simple energy function on the segment level. Since the segment level alone is not
sufficient to handle occlusions, we define an energy function that operates on the
segment and on the pixel level in the assignment step. This energy function is
extended to allow for the computation of the motion between multiple images.
Our method determines correct flow information in traditionally challenging
regions such as areas of low texture and close to motion discontinuities.
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Further research will concentrate on overcoming two limitations of our ap-
proach. The algorithm currently describes the image motion using the affine
model. This may result in an oversimplification of the real motion, especially in
the presence of large motion. However, the affine model could easily be replaced
by a more sophisticated one without major changes in our implementation. A
more severe problem is that the segmentation assumption is not guaranteed to
hold true. Our current remedy to this is to apply a strong oversegmentation.
However, since this does not completely overcome this problem, our algorithm
could take benefit from an operation that allows splitting segments.
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Abstract. This paper deals with the detection of arbitrary static ob-
jects in traffic scenes from monocular video using structure from motion.
A camera in a moving vehicle observes the road course ahead. The camera
translation in depth is known. Many structure from motion algorithms
were proposed for detecting moving or nearby objects. However, detect-
ing stationary distant obstacles in the focus of expansion remains quite
challenging due to very small subpixel motion between frames. In this
work the scene depth is estimated from the scaling of supervised image
regions. We generate obstacle hypotheses from these depth estimates in
image space. A second step then performs testing of these by comparing
with the counter hypothesis of a free driveway. The approach can detect
obstacles already at distances of 50m and more with a standard focal
length. This early detection allows driver warning and safety precaution
in good time.

1 Introduction

Automatic detection and verification of objects in images is a central challenge
in computer vision and pattern analysis research. An important application is
robustly hypothesizing and verifying obstacles for safety applications in intelli-
gent vehicles. The practical value of such systems becomes evident as obstacle

Fig. 1. Six out of ten front–end crashes could be prevented if safety systems reacted
a split second earlier than the driver. Detecting arbitrary obstacles from monocular
video in the road course ahead, however, is quite challenging.

K. Franke et al. (Eds.): DAGM 2006, LNCS 4174, pp. 475–484, 2006.
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detection is a prerequisite to warn the driver of approaching hazards (see Fig. 1).
Commonly used radar sensors lack detecting static objects therefore we tackle
this problem using computer vision.

For a camera mounted in a vehicle with a given camera translation in depth,
detecting obstacles in traffic scenes has three major challenges:

1. The algorithm has to run in real time with minimum delay in reaction time.
2. Obstacles have to be detected at large distances to route the vehicle or warn

the driver as early as possible.
3. The position and horizontal dimension of an obstacle have to be estimated

precisely to safely guide the vehicle in case an emergency brake is insufficient.

The first two challenges demand an algorithm able to detect obstacles in the
focus of expansion where optical flow displacement vectors between consecutive
frames are extremely small. Overcoming this by skipping frames violates the first
constraint. The last challenge requires robust verification of obstacle boundaries.

Traditional vision based obstacle detection relies on depth estimation from
stereo systems [7]. Such systems work well. However, single cameras are already
available in series production performing numerous vision based driver assis-
tance algorithms such as intelligent headlight control and night view. Obstacle
detection from a single camera is, hence, a desirable alternative.

According to [1,14] obstacle detection in monocular vision can be split into
methods employing a–priori knowledge and others based on the relative image
motion. Former algorithms need to employ strict assumptions regarding the ap-
pearance of observed objects. Since we are interested in a model free approach, we
have to use latter methods. Proposed realtime optical flow algorithms [3,11,13]
and obstacle detection based on those [12] calculate the displacement between
consecutive frames of an image sequence. In such a basic approach, integrating
flow vectors over successive image pairs is subject to drifts and therefore these
algorithms are not suitable for the posed problem. Moreover, these methods de-
tect obstacles in two steps firstly calculating flow vectors for every pixel and
secondly analyzing those flow vectors. Working directly in image space is more
desirable as all the information available is accessed directly.

We propose an obstacle detection algorithm in the two standard steps:

1. Hypothesis generation from estimating scene depth in image space.
2. Candidate testing by analyzing perspective transformation over time.

In the first step, conclusions about scene depth are drawn from the scaling
factor of image regions, which is determined using region tracking. We use the
tracking algorithm described in [8] which is consistent over multiple frames of
an image sequence and directly estimates scale and translation in image space.
For an evaluation of different tracking algorithms we refer to [5]. If distance
measurements fall below a given threshold, obstacle hypotheses are generated.
Due to the restricted reliability of depth from region scaling, such an approach
can result in false hypotheses which have to be dismissed.

The testing of generated hypotheses is performed in the second step. We check
whether the observed perspective distortion over time corresponds to an obstacle
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with distance given from hypothesis generation or to a free driveway. In such an
approach we are able to detect arbitrary obstacles directly in image space. The
two steps will be investigated separately in Sects. 2 and 3. Experimental results
on real image data can be found in Sect. 4. A final conclusion and motivation
for further work will be given in Sect. 5.

2 Depth Tracking from Monocular Video

This section investigates the mathematical foundation for reconstructing scene
depth from monocular vision. First we describe the underlying perspective pro-
jection and the model used for depth computation. Then we describe how depth
information can be computed from scaling of image regions and how this fact
can be used to efficiently detect stationary obstacles. Finally we investigate the
error in depth estimation.

We use a monocular camera mounted on a vehicle such that the camera’s
optical axis e3 coincides with the vehicle translation direction. The reference
system is the left–handed camera coordinate system (0, e1, e2, e3) with the e2
unit vector being the ground plane normal. In particular, we assume a flat ground
and a straight road to travel on. The image plane has equation Z = f , where f
is the focal length of the camera. The ground plane is Y = −Y0 with the camera
height Y0. For a point X = (X,Y, Z)� in 3–D space we obtain the corresponding
image point x = (x, y)� by a perspective projection:

x =
f

Z

(
X
−Y

)
. (1)

In practice the camera coordinate system e3 axis usually is not parallel to the
ground plane. Camera rotation can be compensated transforming the camera to
a virtual forward looking camera in a similar way as described in [9]. The camera
translation in depth between consecutive frames is known from inertial sensors.

Obstacles are assumed to be axis parallel bounded boxes. This states that the
Z coordinate of the obstacle plane facing the camera is constant. In practice the
relative depths on obstacle surfaces are small compared to the distance between
obstacle and camera such that this assumption is a good approximation.

Let X(t) = (X(t), Y (t), Z(t))� be a point at time t and x(t) its projected
image point. The camera translation in depth between time t and t+τ is T (t, τ)
leading to X(t+ τ) = X(t) + T (t, τ). The camera translational and rotational
velocity is Ṫ (t) and Ω̇(t) respectively. Particular coordinates are represented by
subscripted characters. Traditional structure from motion algorithms based on
optical flow involve using the image velocity field mentioned by Longuet-Higgins
and Prazdny in [10] (the time argument is dropped due to better readability):

ẋ =
1
Z

(
xṪZ − fṪX

yṪZ − fṪX

)
−

⎛⎝ Ω̇X
xy
f + Ω̇Y

(
f + x2

f

)
+ Ω̇Zy

Ω̇X

(
f + y2

f

)
+ Ω̇Y

xy
f + Ω̇Zx

⎞⎠ . (2)
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Such algorithms are exact for time instances where image velocities are measur-
able. However, flow vectors measure the displacement of image points between
frames. Therefore resolving (2) using an explicit or implicit integration method
induces drifts by adding up errors in inter–frame motions. We divide the motion
of image regions into two parts and show that under the given conditions the
scene depth can be estimated solely by estimating the scaling factor of image
regions. The transformation of an image point for a pure translation using (1)
becomes

x(t+ τ) =
f

Z(t+ τ)

(
X(t+ τ)
Y (t + τ)

)
=

f

Z(t) + TZ(t, τ)

(
X(t) + TX(t, τ)
Y (t) + TY (t, τ)

)
(3)

=
Z(t)

Z(t) + TZ(t, τ)︸ ︷︷ ︸
s(t,τ)

f

Z(t)

(
X(t)
Y (t)

)
︸ ︷︷ ︸

x(t)

+
f

Z(t) + TZ(t, τ)

(
TX(t, τ)
TY (t, τ)

)
. (4)

It should be pointed out, that we use absolute image coordinates and not
velocities for computation. With a correctly given vehicle translation and dis-
placement of image points, scene depth can be directly calculated over large time
scales. As only the translation in depth TZ(t, τ) is known, a single observation is
not sufficient to determine scene depth. With the assumed model though, front
faces of obstacles have equal Z coordinates and therefore multiple observations
in an image region can be used to solve an over–determined equation system for
the scaling factor and the translation.

The key for depth reconstruction is to use the scale s(t, τ) directly obtained
by the used region tracking over multiple frames to calculate scene depth:

d ≡ Z(t) =
s(t, τ)

1− s(t, τ)
TZ(t, τ) . (5)

Distance histogram. For reconstructing scene depth we observe the image
region to which obstacles in 30m distance with 0.9m height are mapped (com-
pare Fig. 4). This region is divided up into n overlapping image regions {Ri}n

i=0,
which are individually tracked until their correlation coefficient surpasses a fixed
threshold. The estimated distances of the tracked regions are projected onto the
x–axis in image space (which can be regarded as a discrete resolution of the
viewing angle) to receive a distance histogram. Projected obstacle distances are
weighted by distance from region center. An appropriate weighting function is
the triangular hat function ΔRi defined on the region width. With the image
region distance d(Ri) and the characteristic function χRi(x) = 1 ⇔ x ∈ R this
results in the following distance histogram (see Fig. 5):

d(x) =
1∑

i χRi(x)ΔRi (x)

∑
i

χRi(x)ΔRi(x)d(Ri) . (6)
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Error in depth estimation. In this paragraph we will show how depth
variance can be calculated by error propagation taking into account errors due
to rotation as well. In real case scenarios rotational effects occur as steer angle,
shocks and vibrations experienced by the vehicle can introduce rapid and large
transients in image space.

Recalling that (2) involves velocities, we use explicit Euler integration for
modeling the incremental rotational transformation. For the analysis of rota-
tional errors the translational part can be set to zero leading to:

x(t+ τ) = x(t) + τ

⎛⎝ Ω̇X(t)x(t)y(t)
f + Ω̇Y (t)

(
f + x(t)2

f

)
+ Ω̇Z(t)y(t)

Ω̇X(t)
(
f + y(t)2

f

)
+ Ω̇Y (t)x(t)y(t)

f + Ω̇Z(t)x(t)

⎞⎠ . (7)

The constant terms in (7) will influence only the translation estimation and
therefore keep the scaling factor unchanged. The influence of the roll rate (Ω̇Z)
when looking at each image coordinate equation by itself is constant, too. The
yaw rate (Ω̇Y ) and pitch rate (Ω̇X) are linear and quadratic in the image coor-
dinates and therefore will influence the scale factor. Let s be the estimated scale
factor, es the error in scale estimation, and ŝ the true scale with zero rotation.
From (7) it follows that

s = ŝ+ es + cx+ cy . (8)

However, assuming the yaw and pitch angle to be bounded by ±10◦ and the
focal length to be greater than 800px leads to

c ≡ τΩ̇

f
∈
[
−2.2 · 10−4, 2.2 · 10−4

]
. (9)

The limited image size (of 640 × 480pixel) and the bounded values of the ro-
tation parameters therefore limit the effect on estimation of region scale. With
known scale variance from tracking σ2

s and variance in translation σ2
TZ

the depth
variance can be calculated by error propagation from (5) and (8) via:

σ2
d =

1
(1− s)2

TZ (σs + xσc + yσc)2 +
s

1− s
σ2

TZ
. (10)

It has to be pointed out that the relative error in scale estimation becomes
smaller as the scale factor increases, such that the influence of rotation on the
scaling factor becomes negligible over large time scales (see Fig. 3).

The next section deals with obstacle detection based on the distance histogram
from (6). The separation between depth estimation and obstacle detection allows
for usage of distance histograms generated by alternative sensors (e.g. a scanning
radar) for a sensor–fusion. Results obtained from depth estimation can be found
in Sect. 4.



480 A. Wedel et al.

3 Obstacle Detection by Hypothesis Verification

The distance histogram from the previous section can serve to find potential ob-
stacles. If any entry in the image distance histogram falls below a fixed distance
threshold, an obstacle hypothesis is created. As pointed out in [6], robust com-
puter vision algorithms should provide not only parameter estimates but also
quantify their accuracy. Although we get the distance accuracy of an obstacle
hypothesis by error propagation from tracking, this does not evaluate the prob-
ability of an obstacle’s pure existence. This section describes obstacle detection
by hypothesis testing resulting in a quality specified output.

Let d be the distance of an obstacle hypothesis drawn from the distance
histogram. With the known camera translation in depth TZ the transformation
of the obstacle in image space using (5) is

x′ = V (x) =
(

d−TZ

d 0
0 d−TZ

d

)
x . (11)

The counter hypothesis of a free driveway with plane equation e2 = −Y0 will
be transformed in image space using homogeneous coordinates according to

x′ = Q(x) =

⎡⎣1 0 0
0 1 0
0 TZ

Y0
1

⎤⎦x . (12)

Obviously this is only true for the ground plane up to the projected horizon.
The hypothesis no obstacle above the horizon is set to be the identity (as this
is equivalent with obstacles being infinitely distant).

Hypothesis testing. Let F (x) and G(x) be the intensity value for the initial
image and the image after vehicle translation respectively. We assume a Gaussian
distribution of the intensity values and fixed standard deviation, thus for an
image transformation function f corresponding to an image region R we get

pR(f) ∝ e−|G−F |2 (13)

with |G− F |2 being the sum of squared differences defined as

− log(pR(f)) =
∑
x∈R

(G(x′)− F (x))2 . (14)

p is maximal if the intensity value differences are minimal and vice versa. The
scope of hypotheses verification is finding the transformation with higher prob-
ability. Let p1 = pR(V ) and p2 = pR(Q), it then follows

p1 > p2 ⇔ log p1 > log p2 ⇔ log p1 − log p2 > 0 . (15)

Therefore hypothesis testing boils down to calculating the SSD–difference for
the two transformation assumptions. The absolute distance from zero represents
the reliability of the result.
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Fig. 2. Difference between flow field from planar ground (no flow above horizon) and
obstacle in 30m distance (planar motion parallax) for different camera translation in
depth. The brightness corresponds to the length of the flow difference vector. Clearly,
the challenge to distinguish between an obstacle and the planar ground near the focus
of expansion by relative image motion becomes visible (camera focal length 689 pixel).

In practice, vehicle translation is not solely restricted to translation in TZ .
However, the motion parameters not included in the model can be compensated
for the most part by estimating an extra region shift. Nevertheless, over larger
time scales, hypothesis verification becomes more and more prone to errors due
to lighting changes and the unmodelled motion.

Therefore, in the verification case, we restrict ourselves to time scales of
20 frames (in practice this corresponds to camera translations of more than 2m).
As indicated in Fig. 2 and by our experimental results, such a translation pro-
vides a sufficient difference between the two transformation assumptions and
allows for reliable hypothesis testing.

4 Experimental Results

The proposed algorithm has been tested on real roads. The results are given in
the following.

Comparison with distance from radar. A textured wall with a corner
reflector behind the wall represents the obstacle. Due to the breadboard con-
struction the distance measurement from radar is taken as the reference value
and compared to distance from depth tracking. The results in Fig. 3 show, that
distance measurement by scale is error-prune around the initial frame. This is
not surprising as the scale factor is close to 1 and therefore division by 1 − s in
(5) for distance computation leads to high inaccuracies. However, distance com-
putation becomes quickly stable with greater vehicle translation. This clearly
shows that distance estimation over large time scales is indispensable.

Obstacle detection performance. In the remaining part of this section we
show three exemplary sequences from our test series on real roads to demonstrate
hypotheses generation and testing. Figure 4 shows the first frame for each of these
sequences. Notice that obstacle edges are present close to the focus of expansion
what makes detection quite challenging.

The sequences are taken from a camera with 8.4mm focal length (8.4mm
corresponds to 840pixel) and 1.1m camera height. The correlation threshold for
replacing a depth tracker is set to 0.8. The threshold for hypothesis verification
in the distance histogram is set to 70m and restricted to the driving corridor.
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Fig. 3. Distance from radar compared to distance from region scale. Distance
from scale plus and minus its standard deviation is represented by the gray area.
The thumbnail image was taken at 50m obstacle distance. The plot shows, that depth
tracking allows to accurately estimate depth for distant obstacles.

These settings have been fixed in all three experiments showing the robustness
of such parameters.

The first sequence shows an approach to a crash scene more than 100m away.
The vehicle speed is approximately 10m/sec. The algorithm detects the station-
ary obstacle already at 69m distance. Obstacle verification is error prone at such
distances leading to a low value for the SSD difference. At 45m distance (see
Fig. 5) the obstacle is verified and horizontal obstacle boundaries are successfully
detected such that a driver assistance system can safely evade this hazardous
situation.

The middle set of images proves the reliable testing of obstacle hypotheses.
The two trucks influence depth tracking and generate an obstacle hypothesis in
the distance histogram for the free region amongst them (see Fig. 5 black line).
Obstacle verification clearly rejects this hypothesis verifying a free corridor. As
the vehicle approaches closer to the hazardous scene, the distance histogram
adopts to the true observations picking up the bushes in the background as
obstacles.

The right example deals with an obstacle boundary close to the focus of ex-
pansion. Note that the truck trailer has no texture making it hard for structure
from motion algorithms to detect the vehicle in general. Nevertheless, the truck
is detected and verified successfully at 67m. Obstacle boundaries are close to
ground truth. At such a large distance, the two trucks on the right influence hy-
pothesis verification and lead to obstacle assumptions. Obviously the verification
is correct but not for the given hypothesis distance. As the vehicle approaches
the hazardous object in Fig. 5, the obstacle boundary is estimated precisely al-
though it runs next to the focus of expansion. The image shows the truck still
50m away. Experiments on several test sequences show, that robust object detec-
tion and verification can be reached with the proposed basic approach. Further
quantitative studies on larger test data bases are the focus of ongoing research.
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Fig. 4. Initial frames. The white box indicates the cropped image size shown in
Fig. 5. The black box marks the area used for depth tracking.
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Fig. 5. Obstacle detection with distance histogram (black, scale on the left) and
hypotheses verification (white, logarithmic scale, obstacle verified if above dashed
line). The images show, that robust obstacle detection and verification is reached.

5 Conclusions

We have presented an algorithm for static obstacle detection in monocular image
sequences. The scene depth is estimated by the change of region scale in image
space; obstacle hypotheses are generated if depth estimation falls below a fixed
threshold. To verify these hypotheses we check whether the observed transfor-
mation in image space is more likely to be generated by a static object or by the
flat ground.

We implemented the algorithm on a Pentium IV with 3.2GHz and achieved
a framerate of 23 frames per second for the distance histogram calculation. The
distance histogram and verification computation together run at approximately
13 frames per second. To the authors’ knowledge, this is the fastest monocular
motion–base obstacle detection algorithm in literature for obstacles close to the
focus of expansion. The approach is easily applicable to other motion based
distance measurements for obstacle detection and verification.

Further research will concentrate on speed gain. A wide range of algorithms
in literature was proposed to speed up and stabilize tracking in image space. To
name one possibility, pixel selection can be used to reduce computation time in
region tracking. It is in the focus of ongoing studies to intelligently distribute
the single regions used for depth tracking in image space. Although the de-
scribed system works well in unknown environments we believe that optimizing
the distribution and number of the tracked regions with respect to the cur-
rently observed scene will lead to even better results and less computation time.
Moreover, we will investigate means to improve obstacle detection by method
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of segmentation [4] and globally optimized optic flow estimation [2] forced into
distinction of vertical and horizontal planes.

It also remains an open problem to detect moving obstacles in a monocular
scenario. However, to pick up the threads given in the introduction, moving
objects are well detected by common radar sensors therefore a sensor fusion
combining measurements from an active radar and passive visual sensor is a
promising field for further research.
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3. A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: Com-
bining local and global optic flow methods. International Journal of Computer
Vision, 63(3):211–231, 2005.

4. D. Cremers and S. Soatto. Motion competition: A variational framework for piece-
wise parametric motion segmentation. International Journal of Computer Vision,
62(3):249–265, May 2005.
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Abstract. This work solves the problem of synchronizing pre-recorded human 
motion sequences, which show different speeds and accelerations, by using a 
novel dense matching algorithm. The approach is based on the dynamic pro-
gramming principle that allows finding an optimal solution very fast. Addition-
ally, an optimal sequence is automatically selected from the input data set to be 
a time scale pattern for all other sequences. The synchronized motion sequences 
are used to learn a model of human motion for action recognition and full-body 
tracking purposes.  

1   Introduction 

Visual motion analysis of human motion remains one of the most challenging open 
problems from computer vision [4,10]. The number of related difficulties is wide 
ranging from shape and appearance changes, 2D-3D projection ambiguities and self 
and non-self occlusions among others. Many applications, such as action recognition 
or full-body 3D tracking, use high dimensional space models, and only a reduced 
number of the considered space components are directly observable from 2D images. 
As a result, incorporating a priori information on human motion into these applica-
tions is essential. Many action recognition and 3D body tracking works rely on proper 
models of human motion, which constrain the search space using a training data set of 
pre-recorded motions [3,6,8,9]. Consequently, it is highly desirable to extract useful 
information from the training set of motion. However, training sequences may be 
acquired under very different conditions, showing different durations, velocities and 
accelerations during the performance of a particular action. As a result, it is difficult 
to put in correspondence postures from different sequences of the same action in order 
to perform useful statistical analysis to the raw training data. Therefore, a method for 
synchronizing the whole training set is required so that we can establish a mapping 
between postures from different sequences. Ning et al. proposed a method for normal-
izing the length of cyclic walking sequences using a self-correlation measure [6]. As a 
result, the training walking cycles are rescaled to last the same period of time and are 
aligned to the same phase. Then, a walking motion model is learnt as Gaussian distri-
butions per each joint, which include constraints on human motion. The model is used 
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to track a walking sequence of a 12 DOF body model using a particle filtering frame-
work. However, unlike our approach, self-correlation is only suitable for cyclic mo-
tion sequences.  

Similarly to our work, in [5] a variation of Dynamic Programming (DP) is used to 
match motion sequences acquired from a motion capture system. However, the over-
all approach is aimed at the optimization of a posterior key-frame search algorithm. 
Then, the output from this process is used for synthesizing realistic human motion by 
blending the training set. They divided the body in 4 portions, and similarities are 
evaluated independently for each part. In contrast, our approach synchronizes motion 
sequences considering the whole body in the matching process. We also use a repre-
sentation based on relative joint angles which is more suitable for human motion 
representation.  

The DP approach has been widely used in the literature for stereo matching and 
image processing applications [1,7]. Such applications often demand fast calculations 
in real-time, robustness against image discontinuities and unambiguous matching. 
Likewise, we present a dense matching algorithm based on DP, which is used to syn-
chronize human motion sequences of the same action class in the presence of different 
speeds and accelerations. The algorithm finds an optimal solution in real-time. Addi-
tionally, we automatically select from the training data the best pattern for time syn-
chronization following a minimum global distance criterion.  

The synchronized version of the training set is utilized to learn an action-specific 
model of human motion. The observed variances from the synchronized postures of 
the training set are computed to determine which human postures can be feasible 
during the performance of a particular action. This knowledge is subsequently used in 
a particle filter tracking framework to prune those predictions which are not likely to 
be found in that action.  

The remainder of this paper is organized as follows: Section 2 explains the princi-
ples of human action modeling. In Section 3 we introduce a new dense matching 
algorithm for human motion sequences synchronization. Experimental results with 
real 3D human motion data are presented and discussed in Section 4. Section 5 sum-
marizes our conclusions.  

2   Human Action Model  

The motion sequences we want to synchronize have been acquired using a commer-
cial Motion Capture system. A set of 19 reflective markers were placed on several 
characteristic points of the subject’s body to obtain its absolute 3D positions. The 
body model employed is composed of twelve rigid body parts (hip, torso, shoulder, 
neck, two thighs, two legs, two arms and two forearms) and fifteen joints. These 
joints are structured in a hierarchical manner, constituting a kinematic tree, where the 
root is located at the hip. We use directional cosines to represent relative orientations 
of the limbs within the kinematic tree. The height of the pelvis is also modeled since it 
provides useful information for characterizing actions such as jumping or sitting. As a 
result, we represent a human body posture  using 37 parameters, i.e. 

{ }1 1 1 12 12 12, , , ,..., , , ,x y z x y zu θ θ θ θ θ θ=  (1) 
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where u is the normalized height of the pelvis, and , ,x y z
l l lθ θ θ  are the relative direc-

tional cosines for limb l, i.e. the cosine of the angle between a limb l and each axis x, 
y, and z respectively. Directional cosines constitute a good representation method for 
body modeling, since it doesn’t lead to discontinuities, in contrast to other methods 
such as Euler angles or spherical coordinates. Additionally, unlike quaternion, they 
have a direct geometric interpretation. However, such representation generates a con-
siderable redundancy of the vector space components. Indeed, we are using 3 parame-
ters to determine only 2 DOF for each limb.  

Let us introduce a particular performance of an action. A performance i consists 
of a time-ordered sequence of postures  

{ }1,..., ,iF
i i i=  (2) 

where i is an index indicating the number of performance, and Fi is the total number 
of postures that constitute the performance i. We assume that each two consecutive 
postures are separated by a time interval f, which depends on the frame rate of the 
pre-recorded input sequences, thus the duration of a particular performance is Ti = 
fFi. Finally, an action Ak is defined by all the Ik performances that belong to that 

action { }1,..., .
kk IA =  

As we mentioned above, the original vector space is redundant. Additionally, the 
human body motion is intrinsically constrained, and these natural constraints lead to 
highly correlated data in the original space. Therefore, we aim to find a more compact 
representation of the original data to avoid redundancy. To do this, we consider a set 
of performances corresponding to a particular action Ak, and perform Principal Com-
ponent Analysis to all the postures that belong to that action. Eventually, the follow-
ing eigenvector decomposition equation has to be solved 

,j j k jλ =e e  (3) 

where k stands for the 37 37×  covariance matrix calculated with all the postures of 
action Ak. As a result, each eigenvector ej corresponds to a mode of variation of hu-
man motion, and its corresponding eigenvalue j is related to the variance specified by 
the eigenvector. In our case, each eigenvector reflects a natural mode of variation of 
human gait. To perform dimensionality reduction over the original data, we consider 
only the first b eigenvectors that span the new representation space for this action, 
hereafter aSpace [2]. We assume that the overall variance of a new space approxi-
mately equals to the overall variance of the unreduced space 

37

1 1 1

,
b b

S j j b j
j j j

λ λ λ ε λ
= = =

= ≈ + =  (4) 

where b is the aSpace approximation error. 
Consequently, we use Eq. (4) to find the smallest number b of eigenvalues, which 

provide an appropriate approximation of the original data, and human postures are 
projected into the aSpace by 

[ ] ( )1,..., ,
T

b= −e e  (5) 
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where  refers to the original posture,  denotes the lower-dimensional version of 

the posture represented using the aSpace, [e1,…,eb] is the aSpace transformation ma-
trix that correspond to the first b selected eigenvectors, and  is the posture mean 
value that is formed by averaging all postures, which are assumed to be transformed 
into the aSpace. As a result, we obtain a lower-dimensional representation of human 
postures more suitable to describe human motion since we found that each dimension 
on the aSpace describes a natural mode of variation of human motion.  

The projection of the training sequences into the aSpace will constitute the input 
for our sequence synchronization algorithm. Hereafter, we consider a multidimen-
sional signal xi(t) as an interpolated expansion of each training sequence 

{ }1,..., iF
i i i=  such as 

 if  1  1δ= = − =( ) ( ) ; , ..., ;f
i i it t f f f Fx  (6) 

where the time domain of each action performance xi(t) is [0,Ti).  

3   Synchronization Algorithm  

Let us assume that any two considered signals correspond to the identical action, but 
one runs faster than another (e.g. Fig. 1. (a)). Under the assumption that the rates ratio 
of the compared actions is a constant, the two signals might be easily linearly syn-
chronized in the following way  

,( ) ( ) ( );      ;m
n n m m

n

T
t t t

T
α α≈ = =x x x  

(7) 

where xn and xm are the two compared multidimensional signals, Tn and Tm are the 
periods of the action performances n and m, ,m nx  is linearly normalized version of xm 

hence Tn =Tm,n .  
Unfortunately, in our research we rarely if ever have a constant rate ratio . An ex-

ample, which is illustrated in Fig. 1. (b), shows that a simple normalization using Eq. 
(7) does not give us the needed signal fitting, and a nonlinear data synchronization 
method is needed. Further in the text we shall assume that the linear synchronization 
is done and all the periods Tn possess the same value T. 

The nonlinear data synchronization should be done by  

,

0

( ) ( ) ( );  ( )= ( ) ;   
t

n n m mt t t t dtτ τ α≈ =x x x  
(8) 

where xn,m(t) is the best synchronized version of the action xm(t) to the action xn(t). In 
the literature the function (t) is usually referred to as the distance-time function. It is 
not an apt turn of phrase indeed, and we suggest naming it as the rate-to-rate synchro-
nization function instead. 

The rate-to-rate synchronization function (t) satisfies several useful constraints, 
that are 

(0)=0;   ( )= ;  ( ) ( )  if .τ τ τ τ≥ >k l k lT T t t t t  (9) 
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(a) 

 
(b) 

 
 (c) 

Fig. 1. (a) Non synchronized one-dimensional sequences. (b) Linearly synchronized se-
quences. (c) Synchronized sequences using a set of key-frames. 

One common approach for building the function (t) is based on a key-frame 
model. This model assumes that the compared signals xn and xm have similar sets of 
singular points, that are {tn(0), …tn(p),..tn(P-1)} and {tm(0), …tm(p),..tm(P-1)} with the 
matching condition tn(p)= tm(p). The aim is to detect and match these singular points, 
thus the signals xn and xm are synchronized. However, the singularity detection is an 
intricate problem itself, and to avoid the singularity detection stage we propose a 
dense matching. In this case a time interval tn(p+1)- tn(p) is constant, and in general 
tn(p)  tm(p). 

The function (t) can be represented as (t)=t(1+ n,m(t)). In this case, the sought 
function n,m(t) might synchronize two signals xn and xm by 

,( ) ( ( ) );n m n mt t t t≈ + Δx x  (10) 
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Let us introduce a formal measure of synchronization of two signals by 

,
, ,

0 0

( )
( ) ( ( ) ) .

T T
n m

n m n m n m

d t
D t t t t dt dt

dt
μ

Δ
= − + Δ +x x  (11) 

where • denotes one of possible vector distances, Dn,m is referred to as the synchroni-
zation distance that consists of two parts, where the first integral represents the func-
tional distance between the two signals, and the second integral is a regularization 
term, which expresses desirable smoothness constraints of the solution. The proposed 
distance function is simple and makes intuitive sense. It is natural to assume that the 
compared signals are synchronized better when the synchronization distance between 
them is minimal. Thus, the sought function n,m(t) should minimize the synchroniza-
tion distance between matched signals. 

In the case of a discrete time representation, Eq.(11) can be rewritten as 

( )
12

, , , ,
0 0

( ) ( ) ( 1) ( ) ,
P P

n m n m n m n m n m
i i

D i t i t i t i t iδ δ δ μ δ
< < −

= =

= − + Δ + Δ + − Δx x  (12) 

where t is a time sampling interval. Eq. (9) implies  

, ,( 1) ( ) 1,Δ + − Δ ≤n m n mp p  (13) 

where index p={0, …,P-1} satisfies t P = T.  
The synchronization problem is similar to the matching problem of two epipolar 

lines in a stereo image. In the case of the stereo image processing the parameter (t) 
is called disparity. For stereo matching a disparity space image (DSI) representation is 
used [1,7]. The DSI approach assumes that 2D DSI matrix has dimensions time 
0 p P≤ < , and disparity D d D− ≤ ≤ . Let E(d, p) denote the DSI cost value assigned to 
matrix element (d, p) and calculated by  

( ) 2

, ( , ) ( ) .δ δ δ= − +n m n mE p d p t p t d tx x  (14) 

Now we formulate an optimization problem as follows: find the time-disparity function 
n,m(p), which minimizes the synchronization distance between the compared signals xn 

and xm i.e. 

1

, ,
0 0

( ) arg min ( , ( )) ( 1) ( ) .
P P

n m n m
d i i

p E i d i d i d iμ
< < −

= =

Δ = + + −  (15) 

The discrete function (p) coincides with the optimal path through the DSI trellis 
as it is shown in Fig. 2. Here term “optimal” means that the sum of the cost values 
along this path plus the weighted length of the path is minimal among all other possi-
ble paths.  

The optimal path problem can be easily solved by using the method of dynamic 
programming. The method consists of step-by-step control and optimization that is 
given by a recurrence relation 
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Fig. 2. The optimal path trough the DSI trellis 

{ }
0, 1

( , ) ( , ) min ( 1, ) ,

(0, ) (0, ),

μ
∈ ±

= + − + + +

=
k

S p d E p d S p d k d k

S d E d

 (16) 

where the scope of the minimization parameter { }0, 1∈ ±k  is chosen in accordance with 
Eq. (13). By using the recurrence relation the minimal value of the objective function in 
Eq.(15) can be found at the last step of optimization. Next, the algorithm works in reverse 
order and recovers a sequence of optimal steps (using the lookup table K(p,d) of the 
stored values of the index k in the recurrence relation (16)) and eventually the optimal 
path by 

( 1) ( ) ( , ( )),

( 1) 0,

( ) ( ).

− = +
− =

Δ =

d p d p K p d p

d P

p d p

 (17) 

Now the synchronized version of xm(t) might be easily calculated by  

, ,( ) ( ( ) ).n m m n mp t p t p tδ δ δ= + Δx x  (18) 

Here we assume that n is the number of the base rate sequences and m is the number 
of sequences to be synchronized.  

The dense matching algorithm that synchronize two arbitrary xn(t) and xm(t)pre-
recorded human motion sequences xn(t) and xm(t) is now summarized as follows: 

• Prepare a 2D DSI matrix, and set initial cost values E0 using Eq. (14). 
• Find the optimal path trough the DSI using recurrence Eqs. (16-17). 
• Synchronize xm(t) to the rate of xn(t) using Eq.(18).  

Our algorithm assumes that a particular sequence is chosen to be a time scale pattern 
for all other sequences. It is obvious that an arbitrary choice among the training set is not 
a reasonable solution, and now we aim to find a statistically proven rule that is able to 
make an optimal choice according to some appropriate criterion. Note that each synchro-
nized pair of sequences (n,m) has its own synchronization distance calculated by Eq. 
(12). Then the full synchronization of all the sequences relative to the pattern sequences n 
has its own global distance 
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, .
k

n n m
m A

C C
∈

=  
(19) 

We propose to choose the synchronizing pattern sequence with minimal global distance. 
In statistical sense such signal can be considered as a median value over all the performances 
that belong to the set of Ak or can be referred to as “median” sequence.  

4   Computer Experiments 

The synchronization method has been tested with a training set consisting of 40 per-
formances of a bending action. To build the aSpace representation, we choose the first 
16 eigenvectors that captured 95% of the original data. The first 4 dimensions within 
the aSpace of the training sequences are illustrated in Fig.3.(a). All the performances 
have different durations with 100 frames on average. The observed initial data shows 
different durations, speeds and accelerations between the sequences. Such a mistim-
ing makes very difficult to learn any common pattern from the data. The proposed 
synchronization algorithm was coded in C++ and run with a 3 GHz Pentium D proc-
essor. The time needed for synchronizing two arbitrary sequences taken from our  
 

(a) (b) 

  
(c) (d) 

  
Fig. 3. (a) Non-synchronized training set. (b) Automatically-synchronized training set with the 
proposed approach. (c) Manually-synchronized training set with key-frames. (d) Learnt motion 
model for the bending action. 
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(a)  (b) 

Fig. 4. (a) and (b) Mean learnt postures from the action corresponding to frames 10 and 40 
(left). Sampled postures using the learnt corresponding variances (right). 

database is 1.5 10-2 seconds and 0.6 seconds to synchronize the whole training set, 
which is illustrated in Fig.3.(b).  To prove the correctness of our approach, we manu-
ally synchronized the same training set by selecting a set of 5 key-frames in each 
sequence by hand following a maximum curvature subjective criterion. Then, the 
training set was resampled so each sequence had the same number of frames between 
each key-frame. In Fig.3.(c), the first 4 dimensions within the aSpace of the resulting 
manually synchronized sequences are shown. We might observe that the results are 
very similar to the ones obtained with the proposed automatic synchronization 
method.The synchronized training set from Fig.3.(b) has been used to learn an action-
specific model of human motion for the bending action. The model learns a mean-
performance for the synchronized training set, and its observed variance at each pos-
ture. In Fig.3.(d) the learnt action model for the bending action is plotted. The mean-
performance corresponds to the solid red line while the black solid line depicts ±3 
times the learnt standard deviation at each synchronized posture. The input training 
sequence set is depicted as dashed blue lines. 

This motion model can be used in a particle filter framework as a priori knowledge 
on human motion. The learnt model would predict for the next time step only those 
postures which are feasible during the performance of a particular action. In other 
words, only those human postures which lie within the learnt variance boundaries 
from the mean performance are accepted by the motion model. In Fig.4 we show two 
postures corresponding to frames 10 and 40 from the learnt mean performance, and a 
random set of accepted postures by the action model. We might observe that for each 
selected mean posture, only similar and meaningful postures are generated. 

5   Conclusion 

In this paper, a novel dense matching algorithm for human motion sequences syn-
chronization has been proposed. The technique utilizes dynamic programming, and 
can be used in real-time applications. We also introduce the definition of the median 
sequence that is used to choose a time scale pattern for all other sequences. The syn-
chronized motion sequences are utilized to learn a model of human motion and to 
extract signal statistics. 
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Cloth X-Ray: MoCap of People Wearing Textiles�

Bodo Rosenhahn1, Uwe G. Kersting2, Katie Powell2, and Hans-Peter Seidel1

1 Max Planck Institute for Informatics, Stuhlsatzhausenweg 85,
D-66123 Saarbrücken, Germany

rosenhahn@mpi-inf.mpg.de
2 Department of Sport and Exercise Science
The University of Auckland, New Zealand

Abstract. The contribution presents an approach for motion capturing (MoCap)
of dressed people. A cloth draping method is embedded in a silhouette based
MoCap system and an error functional is formalized to minimize image errors
with respect to silhouettes, pose and kinematic chain parameters, the cloth drap-
ing components and external wind forces. We report on various experiments with
two types of clothes, namely a skirt and a pair of shorts. Finally we compare the
angles of the MoCap system with results from a commercially available marker
based tracking system. The experiments show, that we are basically within the
error range of marker based tracking systems, though body parts are occluded
with cloth.

1 Introduction

Marker-less motion capturing is a highly challenging topic of research and many
promising approaches exist to tackle the problem [12,5,1,10,4,7]. In most setups it is
required that the subjects have to wear either body suits, to be naked or at least to
wear clothing which stresses the body contours (e.g. swim suits). Such clothing is often
uncomfortable to wear in contrast to loose clothing (shirts or shorts). The analysis of
outdoor sport events also requires to take clothing into account. On the other hand, cloth
draping is a well established field of research in computer graphics and virtual clothing
can be moved and rendered so that it blends seamlessly with motion and appearance in
movie scenes [6,8,9,17]. Existing approaches can be roughly divided in geometrically or
physically based ones. Physical approaches model cloth behavior by using potential and
kinetic energies. The cloth itself is often represented as a particle grid in a spring-mass
scheme or by using finite elements [9]. Geometric approaches [17] model clothes by
using other mechanics theories which are often determined empirically. These methods
can be very fast computationally but are often criticized as being visually unappealing.

The motivation of this work is to combine a cloth draping algorithm with a marker-
less MoCap system. The key idea is to use the appearance of the cloth and the visible
parts of the human being to determine the underlying kinematic structure, though it
might be heavily occluded.

� We gratefully acknowledge funding by the Max-Planck Center for visual computing and com-
munication.
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2 Foundations: Silhouette Based MoCap

This work is an extension of a previously developed marker-less MoCap system [16].
In this system, the human being is represented in terms of free-form surface patches,
joint indices are added to each surface node and the joint positions are assumed. This
allows to generate arbitrary body configurations, steered through joint angles. The as-
sumed corresponding counterparts in the images are 2D silhouettes: These are used to
reconstruct 3D ray bundles and a spatial distance constraint is minimized to determine
the position and orientation of the surface mesh and the joint angles. In this section we
will give a brief summary of the MoCap system. These foundations are needed later to
explain concisely, where and how the cloth draping approach is incorporated.

2.1 Silhouette Extraction

Image segmentation usually means to estimate boundaries of objects in an image. It
is an important step for data abstraction, but the task can become very difficult due to
noise, shading, occlusion or texture transitions between the object and the background.
Our approach is based on image segmentation based on level sets [3,14,2].

Fig. 1. Silhouette extraction based on level set functions. Left: Initial segmentation. Right: Seg-
mentation result.

A level set function Φ ∈Ω �→R splits the image domain Ω into two regions Ω1 and
Ω2 with Φ(x) > 0 if x ∈ Ω1 and Φ(x) < 0 if x ∈ Ω2. The zero-level line thus marks
the boundary between both regions. On a discrete image, the level set functions are
modeled through a distance transform from the contour line to the inner and outer re-
gion with negative and positive distance values, respectively. Both regions are analyzed
with respect to the probabilities of image features (e.g. gray value distributions, color
or texture channels). Now the key idea is to evolve the contour line, to maximize the
probability density functions with respect to each other. Furthermore, the boundary be-
tween both regions should be as small as possible. This can be expressed by adding a
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smoothness term. Both parts lead to the following energy functional that is sought to be
minimized:

E(Φ, p1, p2) = −
∫

Ω

(
H(Φ(x)) log p1 +(1−H(Φ(x))) log p2 + ν|∇H(Φ(x))|

)
dx

where ν > 0 is a weighting parameter and H(s) is a regularized version of the Heaviside
function, e.g. the error function. The probability densities pi are estimated according to
the expectation-maximization principle. Having the level set function initialized with
some contour, the probability densities within the two regions are estimated by the gray
value histograms smoothed with a Gaussian kernel Kσ and its standard deviation σ .
Figure 1 shows on the left an example image with an initialization of the region as
rectangle. The right image shows the estimated (stationary) contour after 50 iterations.
As can be seen, the legs and the skirt are well extracted, but there are some deviations
in the feet region, due to shadows. Such inaccuracies can be compensated through the
pose estimation procedure.

2.2 Registration, Pose Estimation

Assuming an extracted image contour and the silhouette of the projected surface mesh,
the closest point correspondences between both contours are used to define a set of
corresponding 3D lines and 3D points. Then a 3D point-line based pose estimation
algorithm for kinematic chains is applied to minimize the spatial distance between both
contours: For point based pose estimation each line is modeled as a 3D Plücker line
Li = (ni,mi), with a (unit) direction ni and moment mi [13]. The 3D rigid motion is
expressed as exponential form

M = exp(θ ξ̂ ) = exp

(
ω̂ v

03×1 0

)
(1)

where θ ξ̂ is the matrix representation of a twist ξ ∈ se(3) = {(v, ω̂)|v∈R3, ω̂ ∈ so(3)},
with so(3) = {A∈R3×3|A =−AT}. The Lie algebra so(3) is the tangential space of the
3D rotations. Its elements are (scaled) rotation axes, which can either be represented as
a 3D vector or screw symmetric matrix,

θω = θ

⎛⎝ω1
ω2
ω3

⎞⎠ , with ‖ω‖2 = 1 or θω̂ = θ

⎛⎝ 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

⎞⎠ . (2)

A twist ξ contains six parameters and can be scaled to θξ for a unit vector ω . The pa-
rameter θ ∈R corresponds to the motion velocity (i.e., the rotation velocity and pitch).
For varying θ , the motion can be identified as screw motion around an axis in space.
The six twist components can either be represented as a 6D vector or as a 4×4 matrix,

θξ = θ (ω1,ω2,ω3,v1,v2,v3)T , ‖ω‖2 = 1, θ ξ̂ = θ

⎛⎜⎜⎝
0 −ω3 ω2 v1

ω3 0 −ω1 v2
−ω2 ω1 0 v3

0 0 0 0

⎞⎟⎟⎠ . (3)

To reconstruct a group action M ∈ SE(3) from a given twist, the exponential function

exp(θ ξ̂ ) = ∑∞
k=0

(θξ̂ )k

k! = M ∈ SE(3) must be computed. This can be done efficiently by
using the Rodriguez formula [13].
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For pose estimation the reconstructed Plücker lines are combined with the screw
representation for rigid motions: Incidence of the transformed 3D point Xi with the 3D
ray Li = (ni,mi) can be expressed as

(exp(θ ξ̂ )Xi)3×1×ni−mi = 0. (4)

Since exp(θ ξ̂ )Xi is a 4D vector, the homogeneous component (which is 1) is neglected
to evaluate the cross product with ni. Then the equation is linearized and iterated, see
[16].

Joints are expressed as special screws with no pitch of the form θ jξ̂ j with known ξ̂ j
(the location of the rotation axes is part of the model) and unknown joint angle θ j. The
constraint equation of an ith point on a jth joint has the form

(exp(θ jξ̂ j) . . .exp(θ1ξ̂1)exp(θ ξ̂ )Xi)3×1×ni−mi = 0 (5)

which is linearized in the same way as the rigid body motion itself. It leads to three
linear equations with the six unknown pose parameters and j unknown joint angles.

3 Kinematic Cloth Draping

For our set-up we decided to use a geometric approach to model cloth behavior. The
main reason is that cloth draping is needed in one of the innermost loops for pose
estimation and segmentation. Therefore it must be very fast. In our case we need around
400 iterations for each frame to converge to a solution. A cloth draping algorithm in the
area of seconds would require hours to calculate the pose of one frame and weeks for
a whole sequence. We decided to model the skirt as a string-system with underlined

Fig. 2. The cloth draping principle. Joints are used to deform the cloth while draping on the
surface mesh.

kinematic chains: The main principle is visualized on the left in Figure 2 for a piece of
cloth falling on a plane. The piece of cloth is represented as a particle grid, a set of points
with known topology. While lowering the cloth, the distance of each cloth point to the
ground plane is determined. If the distance between one point on the cloth to the surface
is below a threshold, the point is set as a fixed-point, see the top right image on the left
of Figure 2. Now the remaining points are not allowed to fall downwards any more.
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Fig. 3. Cloth draping of a skirt and shorts in a simulation environment

Fig. 4. Wind model on the shorts (left) and the skirt (right). Visualized is frontal and backward
wind.

Instead, for each point, the nearest fixed-point is determined and a joint (perpendicular
to the particle point) is used to rotate the free point along the joint axis through the fixed
point. The used joint axes are marked as blue lines in Figure 2. The image on the right
in Figure 2 shows the geometric principle to determine the twist for rotation around a
fixed point: The blue line represents a mesh of the rigid body, x is the fixed point and the
(right) pink line segment connects x to a particle p of the cloth. The direction between
both points is projected onto the y-plane of the fixed point (1). The direction is then
rotated around 90 degrees (2), leading to the rotation axis n. The point pair (n, x×n) are
the components of the twist, see equation (3). While lowering the cloth, free particles
not touching a second rigid point, will swing below the fixed point (e.g. p′). This leads to
an opposite rotation (indicated with (1’), (2’) and n′) and the particle swings back again,
resulting in a natural swinging draping pattern. The draping velocity is steered through
a rotation velocity θ , which is set to 2 degrees during iteration. Since all points either
become fixed points, or result in a stationary configuration while swinging backwards
and forwards, we constantly use 50 iterations to drape the cloth. The remaining images
on the left in Figure 2 show the ongoing draping and the final result.

Figure 3 shows example images of a skirt and a pair of shorts falling on the leg
model. The skirt is modeled as a 2-parametric mesh model. Due to the use of general
rotations, the internal distances in the particle mesh cannot change with respect to one of
these dimensions, since a rotation maintains the distance between the involved points.
However, this is not the case for the second sampling dimension. For this reason, the
skirt needs to be re-constrained after draping. If a stretching parameter is exceeded,
the particles are re-constrained to minimal distance to each other. This is only done
for the non-fixed points (i.e. for those which are not touching the skin). It results in a
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better appearance, especially for certain leg configurations. Figure 3 shows that even
the creases are maintained. In this case, shorts are simpler since they are modeled as
cylinders, transformed together with the legs and then draped.

To improve the dynamic behavior of clothing during movements, we also add a wind-
model to the cloth draping. We continue with the cloth-draping in the following way:
dependent on the direction of wind we determine a joint on the nearest fixed point for
each free point on the surface mesh with the joint direction being perpendicular to the
wind direction. Now we rotate the free point around this axis dependent on the wind
force (expressed as an angle) or until the cloth is touching the underlying surface. Figure
4 shows examples of the shorts and skirt with frontal or backward wind. The wind force
and direction are later part of the minimization function during pose tracking. Since the
motion dynamics of the cloth are determined dynamically, we need no information
about the cloth type or weight since they are implicitly determined from the minimized
cloth dynamics in the image data; we only need the measurements of the cloth.

4 Combined Cloth Draping and MoCap

The assumptions are as follows: We assume the representation of a subject’s lower
torso (i.e. for the hip and legs) in terms of free-form surface patches. We also assume
known joint positions along the legs. Furthermore we assume the wearing of a skirt

Fig. 5. The basic algorithm for combined cloth draping and motion capturing

or shorts with known measures. The person is walking or stepping in a four-camera
setup. These cameras are triggered and calibrated with respect to one world coordinate
system. The task is to determine the pose of the model and the joint configuration. For
this we minimize the image error between the projected surface meshes to the extracted
image silhouettes. The unknowns are the pose, kinematic chain and the cloth parameters
(wind forces, cloth thickness, etc.). The task can be represented as an error functional
as follows:
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E(Φ , p1, p2,θξ ,θ1, . . . ,θn,c,w) = −
∫

Ω

(
H(Φ) log p1 +(1−H(Φ)) log p2 +ν|∇H(Φ)|

)
dx︸ ︷︷ ︸

segmentation

+λ
∫

Ω
(Φ−Φ0( θξ ,θ1, . . . ,θn︸ ︷︷ ︸

pose and kinematic chain,

, c,w︸︷︷︸
wind parameters

))dx

︸ ︷︷ ︸
shape error

Due to the large number of parameters and unknowns we decided for an iterative mini-
mization scheme, see Figure 5: Firstly, the pose, kinematic chain and wind parameters
are kept constant, while the error functional for the segmentation (based on Φ, p1, p2) is
minimized (section 2.1). Then the segmentation and wind parameters are kept constant
while the pose and kinematic chain are determined to fit the surface mesh and the cloth
to the silhouettes (section 2.2). Finally, different wind directions and wind forces are
sampled to refine the pose result (section 3). Since all parameters influence each other,
the process is iterated until a steady state is reached. In our experiments, we always
converged to a local minimum.

5 Experiments

For the experiments we used a four-camera set up and grabbed image sequences of
the lower torso with different motion patterns: The subject was asked to wear the skirt
and the shorts while performing walking, leg crossing and turning, knee bending and
walking with knees pulled up. We decided on these different patterns, since they are
not only of importance for medical studies (e.g. walking), but they are also challenging

Fig. 6. Example sequences for tracking clothed people. Top row: walking, leg crossing, knee
bending and knee pulling with a skirt. Bottom row: walking, leg crossing, knee bending and
knee pulling with shorts. The pose is determined from 4 views (just one of the views is shown,
images are cropped).
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Fig. 7. Error during grabbing the images

Fig. 8. Example leg configurations of the sequences. The examples are taken from the subject
wearing the shorts (blue) and the skirt (red) (leg crossing, walking, knee bending, knee pulling).

for the cloth simulator, since the cloth is partially stretched (knee pulling sequence) or
hanging down loosely (knee bending). The turning and leg crossing sequence is inter-
esting due to the higher occlusions. Figure 6 shows some pose examples for the sub-
ject wearing the skirt (top) and shorts (bottom). The pose is visualized by overlaying
the projected surface mesh onto the images. Just one of the four cameras is shown.
Each sequence consists of 150-240 frames. Figure 7 visualizes the stability of our
approach: While grabbing the images, a couple of frames were stored completely
wrong. These sporadic outliers can be compensated from our algorithm, and a few
frames later (see the image on the right) the pose is correct. Figure 8 shows leg configu-
rations in a virtual environment. The position of the body and the joints reveal a natural
configuration.

Finally, the question about the stability arises. To answer this question, we attached
markers to the subject and tracked the sequences simultaneously with the commercially
available Motion Analysis system [11]. The markers are attached to the visible parts of
the leg and are not disturbed by the cloth. We then compare joint angles for different
sequences with the results of the marker based system, similar to [16]. The overall er-
rors for both types of cloth varies between 1.5 and 4.5 degrees, which indicates a stable
result.

The diagrams in Figure 9 shows the overlay of the knee angles for two skirt and two
shorts sequences. Due to space limits, we just show four sequences, the remaining four
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Fig. 9. Left: Knee angles from sequences wearing the shorts. Right: Knee angles from sequences
wearing the skirt. Top left: Angles of the knee up sequence. Bottom left: Angles of the knee
bending sequence. Top right: Angles of the walking sequence. Bottom right: Angles of the leg
crossing sequence.

are available upon request. The two systems can be identified by the smooth curves
from the Motion Analyis system and unsmoothed curves (our system).

6 Summary

The contribution presents an approach for motion capture of clothed people. To achieve
this we extend a silhouette-based motion capture system, which relies on image silhou-
ettes and free-form surface patches of the body with a cloth draping procedure. Due to
the limited time constraints for cloth draping we decided on a geometric approach based
on kinematic chains. We call this cloth draping procedure kinematic cloth draping. This
model is very well suited to be embedded in a motion capture system since it allows
us to minimize the cloth draping parameters (and wind forces) within the same error
functional such as the segmentation and pose estimation algorithm. Due to the num-
ber of unknowns for the segmentation, pose estimation, joints and cloth parameters, we
decided on an iterative solution. The experiments with a skirt and shorts show that the
formulated problem can be solved. We are able to determine joint configurations and
pose parameters of the kinematic chains, though they are considerably covered with
clothes. Indeed, we use the cloth draping appearance in images to recover the joint
configuration and simultaneously determine wind dynamics of the cloth. We further
performed a quantitative error analysis by comparing our method with a commercially
available marker based tracking system. The experiments show that we are in the same
error range as marker based tracking systems [15].

For future works we plan to extend the cloth draping model with more advanced
ones [9] and we will compare different draping approaches and parameter optimization
schemes in the motion capturing setup.
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Abstract. This work presents two main contributions to achieve robust
multiple-target tracking in uncontrolled scenarios. A novel system which
consists on a hierarchical architecture is proposed. Each level is devoted
to one of the main tracking functionalities: target detection, low-level
tracking, and high-level tasks such as target-appearance representation,
or event management. Secondly, tracking performances are enhanced by
on-line building and updating multiple appearance models. Successful
experimental results are accomplished on sequences with significant illu-
mination changes, grouping, splitting and occlusion events.

1 Introduction

Multiple human-beings tracking has become an active research field among the
computer-vision community. This interest is motivated by an increasing number
of applications related to Human Sequence Evaluation (HSE) [6]. Despite this
interest, this still constitutes an open problem far from been solved. People track-
ing involves dealing with non-rigid targets whose dynamics are subject to sudden
changes. In open-world applications, the number of agents within the scene may
vary over time, and neither their appearance, nor their shape can be specified
in advance. In unconstrained environments, the illumination and background-
clutter distracters are uncontrolled, affecting the perceived appearance, which
depends on issues such as the agents’ position or orientation. Finally, agents
interact among themselves, grouping and splitting, and causing occlusions.

Our goal is to implement and experimentally verify a novel approach which
deals with the aforementioned difficulties. As a result, agents’ trajectories will be
obtained, as well as quantitative and qualitative information about their state at
any time —such as their speed or whether they are being occluded. This paper
is organized as follows: section 2 covers the most common current approaches;
section 3 outlines the proposal; section 4 describes the low-level modules, whereas
section 5 details the high-level appearance tracker; finally, section 6 shows some
experimental results, and section 7 concludes this paper.

2 Related Work

Tracking can be carried out relying either on a bottom-up or a top-down ap-
proach. The former consists on foreground segmentation, and a subsequent target
association, while the latter is based on complex shape and motion modelling.

K. Franke et al. (Eds.): DAGM 2006, LNCS 4174, pp. 505–514, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Motion Segmentation can be performed by means of optical flow, background
subtraction, or frame differencing. Correspondences can be accomplished using
nearest neighbour techniques, or by means of Data Association filters [2]. A
prediction stage is usually incorporated, thereby providing better chances of
tracking success. Filters such as the Kalman filter, or extensions such as the
EKF or UKF are commonly used. More general dynamics and measurement
functions can be dealt with by means of Particle Filters (PF) [1].

On the other hand, high-level approaches rely on accurate target modelling [5].
Thus, complex templates and high-level motion patterns are a-priori learned, and
used to reduce the state-space search region. Contour tracking have been widely
explored [9], although this may be inappropriate in crowded scenarios with mul-
tiple target-occlusions. BraMBLe [8] is an interesting approach to multiple-blob
tracking which models both background and foreground using MoG. However,
no model update is performed, there is a common foreground model for all tar-
gets, and it may require an extremely large number of samples, since one sample
contains information about the state of all targets. Nummiaro et al. [10] use
a PF based on colour-histogram cues. However, no multiple-target tracking is
considered, and it lacks from an independent observation process, since samples
are evaluated according to the predicted image region histograms.

Comaniciu et al. [4] introduce an attractive technique —called mean shift—
which tackles target localisation by performing a gradient-descent search on a
image region of interest. However, their method tracks just one target, initialised
by hand, and the appearance model is never updated. Collins et al. [3] present an
effective enhancement with on-line selection of discriminative features. It aims
to maximise the distinction between the target appearance and its surround-
ings. Still, it tracks just one target, initialised by hand and which may suffer
from model drift. In both cases, just rigid target regions are tracked, and since
multiple-target tracking is not considered, interaction events are not studied.

3 Approach Outline

Non-supervised multiple-human tracking is a complex task which demands a
structured framework. This work presents a hierarchical system whose levels are
devoted to the different functionalities to be performed, see Fig. 1.

Reliable target segmentation is critical in order to achieve an accurate fea-
ture extraction without considering prior knowledge about the potential targets,
specially in dynamic scenes. However, complex agents who move through clut-
tered environments require high-level reasoning. Thus, this proposal consists on a
bottom-up approach, whose results are eventually refined by a top-down process.

The lower level performs target detection. The first module accomplishes the
segmentation task, while the second one filters the obtained image masks, ex-
tracts object blobs, and obtains object representations which can be handled by
low-level trackers. The latter establish coherent target relations between frames.
Firstly, gates —regions where the observations are expected to appear— are com-
puted. Subsequently, data association is performed by setting correspondences
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Fig. 1. System architecture

between observations and trackers. Afterwards, filtering is carried out by esti-
mating new target states according to the associated observations using a bank
of Kalman filters. Finally, the track-management module (i) initiates tentative
tracks for those observations which are not associated; (ii) confirms tracks with
enough supporting observations; and (iii) removes low-quality ones. Results are
forwarded to high-level trackers, and fed back to the measure-validation module.

Confirmed low-level tracks are associated to high-level trackers. Hence, track-
ing events can be managed, and target tracking can be achieved even when
image segmentation is not feasible, and low-level trackers are removed (during
long-duration occlusions or grouping). Therefore, whenever the track is stable,
the target appearance is computed and updated; those high-level trackers which
remain orphans are processed to obtain an appearance-based data association,
thereby establishing correspondences between lost high-level trackers and new
ones; finally, those targets which have no correspondence are propagated accord-
ing to the learned motion model. The event module determines what is happen-
ing within the scene, such as target grouping or entering the scene. These results
are fed back allowing low-/high-level tracker matching.

4 Blob Detection and Low-Level Tracking

The first level aims to detect targets within the scene. Two modules are imple-
mented to segment the image, and obtain a suitable object representation. Image
segmentation is performed following the method proposed by Horprasert et al. [7]
which is based on a colour background-subtraction approach. The background is
statistically modelled on a pixel-wise basis, using a window of N frames. During
this training period, the mean Ei and standard deviation σi of each ith-pixel
RGB-colour channel is computed. Two distortion measures are established: α,
the brightness distortion, and CD, the chromacity distortion. The variation over
time of both distortions for each pixel is subsequently computed, and used as
normalising factors for α and CD, so that a single threshold —automatically
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computed according to the learned pixels distribution— can be set for the whole
image. This 4-tuple constitutes the pixel background model.

Pixels are classified into five categories, depending on their chromacity and
brightness distortion: foreground, dark foreground (where no chromacity cues
can be used), shadows, highlights, and normal background. Foreground blobs
are subsequently detected: both foreground maps are fused; morphological op-
erations are applied and a minimum-area filter is used; and remaining pixels
are grouped into labelled blobs, their contours are extracted, and an ellipse
representation is computed. Thus, the j -observed blob at time t is given by
zt

j =
(
xt

j , y
t
j, h

t
j , w

t
j , θ

t
j

)
, where xt

j , y
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j represent the ellipse centroid, ht
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t
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the major and minor axes, and θt
j the ellipse orientation.

The target state is then estimated by filtering the sequence of noisy measures.
In this work, it is assumed that human beings move slowly enough compared to
the frame rate. Since their long-run dynamics are hardly predictable, a first-order
dynamic model is adopted. This assumption holds in most HSE applications.
The observation vector at time t is given by the blob detection module. The
target state is then defined by xt
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. Thus, a

constant-speed approach is used, where the acceleration is modelled as WAGN.
In a multiple-target tracking scenario, numerous observations may be obtained

at every sampling period. Measure validation consists in establishing the regions
where the target observations are expected. Thus, gates are set according to the
innovation covariance matrix Sk, and a specific Mahalanobis Square Distance
(MSD), thereby defining an ellipsoid which encloses a probability mass given by
the confidence interval associated with the MSD. This means that measures can
be validated for a given confidence interval by calculating the MSD between the
predicted observation and the actual one, and comparing this value with the
Mahalanobis radius for this confidence interval.

Measures are associated to the nearest tracker in whose gate they lie, since
observations are usually just within one target gate. This is intrinsic to motion
segmentation: close targets are likely to be segmented just as one blob corre-
sponding to the group. A bank of Kalman filters estimates the state of all tar-
gets detected within the scene. When no observation is associated to a particular
target, its state is propagated according to the dynamic model.

Target tracks are instantiated, confirmed and removed according to the values
of two indicators: the square root of Sk determinant, and the observation MSD.
The former is related to the track uncertainty given by the variance of the
eigenvector dimensions. While an observation is associated, |Sk|

1
2 will decrease to

its asymptotic value, and the time taken depends only on the system model. It is
a reliable indicator of how many observations have been consecutively associated,
without setting thresholds or specifying cases. The quality of the observation is
taken into account by evaluating the MSD of each target associated observation.
Therefore, a track is instantiated every time an observation remains orphan.
When |Sk|

1
2 and the MSD value indicate that the track is stable, the tracker is

confirmed. If |Sk|
1
2 grows far beyond reasonable values, the tracker is removed.
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5 High-Level Appearance Tracker

The aforementioned bank of Kalman filters estimates the state of multiple tar-
gets. However, it cannot cope with those situations where segmentation fails,
such as grouping events, or non-smooth changes in position or shape. These
issues are addressed by implementing high-level trackers which include informa-
tion relative to the target appearance and tracking events. Unfortunately, the
target appearance cannot be specified in advance, and it should be continuously
updated, since it strongly depends on the target position and orientation, and
on the light sources. Further, in order to be able to track them when target
segmentation is not feasible, it is modelled taking into account the local clutter.

In this work, the appearance-modelling approach presented by Collins et al. [3]
is followed. This uses multiple colour features, which are evaluated and ranked.
However, contrary to their method, a pool of features is now maintained, and
smoothed characteristics are computed. Thus, the initialisation is solved, and
tracker association is feasible once the event that cause the target loss is over.
Possibilities of inconsistent localisations due to feature switch are minimised by
introducing the distinction between long-run features and the current best ones.

5.1 Tracker Matching

This module performs the matching between low- and high-level trackers. When-
ever a low-level tracker is confirmed, a high-level tracker is instantiated and as-
sociated. In case that the new-born tracker does not collide with two or more
existing trackers, the target appearance will be computed (see Fig 1). In other
case, it is marked as a group tracker. In subsequent tracker matchings, high-
level tracker parameters relative to the target position and shape are updated.
Further, while the track is still confirmed, appearances will also be updated.

Low-level trackers are removed during long-duration occlusions or groupings,
since no observation is received, and the track loses confidence. In this case, the
high-level tracker is not matched to any low-level tracker. Then, the system tries
to associate it to new-born ones, presumably created once the event is over. If
there are no tracker candidates, or they are not similar enough in the appearance
sense, their state is propagated according to the learned motion model.

5.2 Feature Selection

The target appearance is represented using colour histograms, since they less sen-
sitive to rotations in depth or target deformations. Features are selected from
a set of independent linear combinations of RGB channels, including raw R, G,
and B, intensity, or chrominance approximations. Features are then normalised
to the range [0− 255], and subsequently discretised into 64 bins. This is a sensi-
tive decision: a low number of bins prevents from target-clutter disambiguation;
on the other hand, a high value favours erroneous representations that appear
when distributions are estimated from an insufficient number of samples. The
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i−feature target histogram is given by pi =
{
pi

k; k = 1 : K
}

, where K is the
number of bins. The probability of each feature is calculated as:

pi
k = Ci

M∑
a=1

δ (b (xa) − k), (1)

where Ci is a normalisation constant which ensures
∑K

k=1 pi
k = 1, δ the Kro-

necker delta, {xa; a = 1 : M} the pixel locations, M the number of target pixels,
and b (xa) a function that associates pixels to corresponding bins. In a simi-
lar way, qi represents the i−feature background histogram, computed from the
background model. Then, log-likelihood ratios of each feature are computed as:

Li (k) = log
max
(
pi

k, ε
)

max
(
qi
k, ε
) , (2)

where ε is set to the minimum histogram value to prevent dividing by zero or
taking the logarithm of zero, but avoiding also magnifying the corresponding
log-likelihood value. Thus, shared colour bins have a log-likelihood close to zero,
whereas foreground bins have a positive one, and background bins a negative one.
Features are then evaluated according to the variance-ratio of the log-likelihood:

V Ri (L; p, q) =
var
(
Li;
(
pi + qi

)
/2
)

var (Li; pi) + var (Li; qi)
, (3)

which maximises the inter-class variance —background and target bin clusters—,
while minimises the intra-class variance. Thus, features can be ranked according
to their variance ratio: the higher, the better.

5.3 Appearance Computation

Contrary to the work of Collins, long-run features are kept and smoothed. These
will be crucial for target loss recovery. Further, by smoothing the histograms the
representation is less sensitive to possible localisation errors, and sudden and
temporal appearance changes due to illumination fluctuations. A pool of M +N
features is kept. These are the best M features at time t, and the best N long-run
features: those which have been at top of the feature rank more times. These
features are only dropped when new features enter the pool, and overcome them.
For each M feature, the mean appearance histogram is recursively computed:

mi
t = mi

t−1 +
1
ni

(
pi

t −mi
t

)
, (4)

where ni is the number of times that the histogram has been updated. Sim-
ilarity between two histograms is computed using the Bhattacharyya distance
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dB =
√

1−∑K
k=1

√
pkqk. A similarity criterion must establish when two his-

togram are close enough. Thus, the mean and variance of dB between the
smoothed histogram and the new one are also computed and updated:

μi
t = μi
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n− 1
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)
, (5)

σ2
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n− 3
n− 2
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(
μi

t − μi
t−1

)
. (6)

In this way, the Bhattacharyya distance distribution can be parameterised.

5.4 Appearance Association

Low-level trackers lost their track during long-duration segmentation failures,
such an occlusion event. Once the event is over, the target is again detected and
a new tracker is instantiated. When this track become stable, it is confirmed and
a high-level tracker is created. The former high-level tracker —and the target ap-
pearance models— were propagated. A tracker association process is performed,
and the system concludes that both trackers are in fact representing the same
target. This is done as follows: new-born trackers are handled as observations,
and they are gated according to the lost trackers in the feature space. Thus,
coincident features between both trackers are selected. Since feature selection
depends on the local environment, and the targets move while they are grouped,
the feature pool is subject to changes. However, the assumption that some long-
run features are still good enough to be selected holds in most scenarios.

The Bhattacharyya distance between the histograms of each coincident fea-
ture is evaluated. Those which correspond to the the lost tracker are in fact
smoothed models computed while the segmentation was reliable. Features are
gated using the previously calculated mean and variance of the Bhattacharyya
distance. Finally, the tracker is associated to the nearest one, according to the
Bhattacharyya distance, within the gate. If none of the features is within the
gate of the lost tracker, a new association process is tried at the next time step.

5.5 Event Management

Six significant states are defined: single target, target grouping, grouped and
splitting, and target entering and exiting the scene. Once the target position and
size is estimated, a collision map is computed. Thus, when two single targets are
colliding, their state change into grouping. If they also collide with a confirmed
group tracker, their state is set to grouped. Once they no longer collide with a
confirmed group tracker, their state change to splitting. If they stop colliding at
any state, they become single again. The collision map is used also to determine
whether a new-born tracker represents a group.
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(a) (b)

Fig. 2. (a) Segmentation: foreground pixels are painted on white, while those ones
classified as dark foreground are on yellow, shadows on green, and highlights on red.
(b) Detection: red ellipses represent each target, and yellow lines denote their contour.

(a) (b) (c)

(d) (e) (f)

Fig. 3. Tracking results: red ellipses denote detections, whereas white and black ones
are low- and high-level tracker estimates, respectively. The blue box denotes the ROI.

6 Experimental Results

The approach performance has been tested using the CAVIAR database. Two
targets are tracked simultaneously, despite their being articulated and
deformable objects whose dynamics are highly non-linear. One of them performs
a rotation in depth and heads towards the second one, eventually occluding it.
The background colour constitutes a strong source of clutter. Furthermore, the il-
luminant depends on both position and orientation. Significant speed, size, shape
and appearance changes can be observed, jointly with events such as grouping
or splitting, and occlusions.

Detection results are shown in Fig. 2, tracking ones in Fig. 3, and the low-
tracking evolution in Fig 4.(a). At frame 6, an agent enters the scene, motion is
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(a)

(b) (c)

Fig. 4. (a) Tracks confirmation and removing. (b) Feature pool: the best M = 3 fea-
tures at time t, and the best N = 3 long-run features are kept for appearance modelling.
(c) Colour lines represent the intra-target similarity. Squares give the inter-tracker dB.

detected, and a Kalman filter is created. A major size change occurs at frame
9: the target is completely inside the scene. Thus, a new Kalman filter is imple-
mented, but both trackers are kept while their tracks have enough confidence, see
Fig. 3.(b), and MSD value in Fig 4.(a). At frame 11, the first low-level tracker is
removed. At frame 14, the track become stable, and a high-level tracker is instan-
tiated. It is marked as a new born, entering the scene, and its appearance models
as being updated. At frame 108, the segmentation of target 2 partially fails due
to local illuminant changes, which leads to stop model updating. Grouping is
detected at frame 110. At frame 122, a high-level tracker following the group is
created. When the group splits, trackers are correctly re-associated.

The evolution of the feature pool for target 1 is shown in Fig 4.(b). Several
facts can be noticed: some features are periodically among the best ones (features
13, 24 and 39); this repetitive behaviour is presumably due to the agent orien-
tation and gait. Some features join the pool and quickly become one of the best
ones as the agent moves and the background changes. Finally, other features are
dropped and re-selected several times. These behaviours suggest that keeping a
stable set of features may be useful for tracker association after tracking failure.

The Bhattacharyya distance between each new target detection and the
smoothed model of feature 20 is represented in Fig 4.(c). When this feature
is not selected or target cannot be detected, the distance is set to one. The
inter-target dB is also represented by two-colour squares, denoting both targets
involved. At frame 91, the distance between the model of tracker 5 the one of
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tracker 10 (the group) and 12 (the same target after the grouping) is computed.
At frame 115 the same is done for tracker 3. The distance between tracker 1
and trackers 5 and 12 is almost double than the distance between the tracker 5
and 12, and in the same range of the intra-target distance computed during the
successive detections. Thus, the association can be successfully carried out.

7 Conclusions

In this work a principle and structured system is presented in an attempt to take
a step towards solving the numerous difficulties which appear in unconstrained
tracking applications. It take advantages of both bottom-up and top-down ap-
proaches. A robust and accurate tracking is achieved in a non-friendly environ-
ment with several non-white light sources, high appearance and shape target
variability, and grouping, occlusion and splitting. Both targets are successfully
tracked despite no a-priori knowledge is used. The system adapts itself depend-
ing on the number of targets, the best local features, or which events are taking
place. Future research will be focused on developing a method to perform tar-
get localisation within a group region, once the best features for disambiguating
targets from background are already computed and smoothed.
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Abstract. We present an approach to non-rigid object tracking designed to han-
dle textured objects in crowded scenes captured by non-static cameras. For this
purpose, groups of low-level features are combined into a model describing both
the shape and the appearance of the object. This results in remarkable robustness
to severe partial occlusions, since overlapping objects are unlikely to be indis-
tinguishable in appearance, configuration and velocity all at the same time. The
model is learnt incrementally and adapts to varying illumination conditions and
target shape and appearance, and is thus applicable to any kind of object. Results
on real-world sequences demonstrate the performance of the proposed tracker. The
algorithm is implemented with the aim of achieving near real-time performance.

1 Introduction

Typical object tracking applications include video surveillance for security or behaviour
analysis, traffic-monitoring, sports analysis and human body tracking. In this work we
develop a model-based technique able to cope with non-rigid objects in crowded scenes,
involving many interacting targets with frequent mutual occlusions. We use single-view
video streams taken by non-static cameras, which poses serious difficulties to tracking
systems based on background models.

Many tracking approaches are based on more or less elaborate variants of back-
ground subtraction [1]. They can easily handle only static cameras, and object labels
cannot be preserved throughout occlusions, except by using high-level scene interpreta-
tion algorithms. Most model-based object tracking methods use a fixed object represen-
tation, a so-called template, that describes the appearance or the shape of the tracked
object. Most of these are based on colour histograms [2,3]. Such approaches tend to
have problems with richly textured objects or multiple interacting objects having simi-
lar global appearance. Few convincing attempts have been made that track objects using
feature points, although it is generally accepted that point-based methods should have
some interesting properties. Some basic point-based solutions were developed by Ar-
naud and Mémin [4] by combining a Rao-Blackwellized particle filter with a model
consisting of a noisy, planar cloud of points, and by Bevilacqua et al. [5] who perform
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smart point grouping based on self-organising maps. More sophisticated approaches
include the work by Leordeanu and Collins [6] where feature pairs are coupled based
on their pairwise statistics, by Tang and Tao [7] where objects are modelled adaptively
with an attributed relational graph, and by Mathes and Piater [8], where point distribu-
tion models are learnt non-incrementally for tracking planar objects.

In our approach, each tracked object is described by a point distribution model [9]
using feature vectors for local appearance instead of raw texture information. Such
a model combines local appearance information with global shape information. The
model is learnt incrementally and continuously, enabling it to accommodate to appear-
ance and illumination changes. Point features tend to flicker in noisy image sequences
or disappear due to occlusions, but as long as a reasonable subset of all the model points
is visible in each frame, tracking can be performed reliably. The model can dynamically
add good new features or remove bad old features. During occlusion by other tracked
objects, model updating is disabled, rendering our tracker even more robust. Point land-
marking is performed automatically, so that user interaction is only required to initialise
the tracker in the first frame.

The following section explains how we extract interest points and how we describe
their local appearance. Section 3 introduces the concept of point distribution manifolds,
and Section 4 explains how they can be used for tracking purposes. Experimental results
are given in Section 5.

2 Interest Points and Local Appearance

We concentrate on sparse sets of local features because they are well-suited for non-
rigid objects and tend to yield methods particularly robust to partial occlusions. Local
features are extracted by a colour version [10] of a scale-space, grey-scale Harris corner
detector [11]. This is illustrated in Fig. 1. On each detected interest point we describe
the local appearance by the 11-dimensional feature vector

v = (x, y, r, g, b, rx, ry, gx, gy, bx, by)T , (1)

where v ∈ V with V ⊂ R
11. V is called the feature space. v corresponds to the

first-order local jet enhanced by the interest point position. Using colour images and
a rotationally variant descriptor yields enough discriminative power to obtain reliable
point matchings between frames.

3 Point Distribution Manifolds

When using interest points to track objects, a natural approach is to use point distribu-
tion models, which are statistical models of shape and/or appearance. The shape of an
object can be interpreted as all geometric information that remains when location, scale
and rotational effects have been removed. Instead of using raw texture information, we
describe the shape and appearance by constructing our model from a set of feature vec-
tors that correspond to interest points that may lie anywhere on the object. Thus, each
shape is represented by a vector
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Fig. 1. Soccer player performing out-of-plane rotation (frames 0, 28 and 48)

Fig. 2. Projection onto the three principal components of a non-linear low-dimensional manifold
corresponding to the normalised shapes of the rotating soccer player of Fig. 1

x =
(
v1

x
T
,v2

x
T
, . . . ,vN

x

T
)T

(2)

that is simply a concatenation of all the feature vectors extracted from the object in a
given frame. These shape vectors lie in an 11N -dimensional space, and more precisely
on a low-dimensional, non-linear manifoldM embedded in this high-dimensional spa-
ce, because the interest points on a real non-rigid object are strongly correlated. The
shape and dimensionality of M depend on the nature of the object deformations. Fig-
ure 2 shows the projection onto the three principal components of a typical manifold
obtained for a rotating soccer player. It illustrates the potentially non-linear nature of
the manifold.

3.1 Matching Interest Points

IfM is sampled densely enough and if we assume that it is locally linear, new shapes
can be generated by linear interpolation of neighbouring shapes. Shapes within the im-
age are denoted by the letter X, whereas shapes that are part of the model are denoted
by the letter Y. Let us suppose we have used the model to generate a shape Y superim-
posed onto the current video frame. In order to test if the current set of points X̃ taken
from the image is a valid shape, the points from the image, indexed by i, and the points
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from the model, indexed by j, have to be brought into correspondence. To do so, we
compute a maximum-gain matching by using the Hungarian method [12]. We use the
gain function

g(vi
X̃
,vj

Y ) = 1−
d(vi

X̃
,vj

Y )

θ
, (3)

where d(vi
X̃
,vj

Y ) is the distance between feature vectors vi
X̃

and vj
Y . All edges with

negative weights are ignored, meaning that matchings with distances greater than θ are
impossible. In this way, θ acts as a gating threshold for d. The squared distance d2

between two N -sized vectors is computed as:

d2(x,y) = (x − y)T Σ−1(x− y), (4)

where Σ is the covariance matrix estimated from all interest points belonging to M.
For computational reasons, the cross-correlations in Σ are assumed to be equal to 0,
in order to avoid costly matrix inversions. Once the matchings have been performed,
the interest points of X̃ can be rearranged so that they are in the same order as their
correspondences in Y. This new vector will be denoted by X. In general, not all the
points from X̃ (resp. Y) have a correspondence in Y (resp. X̃). For this reason, we will
have two vectors of equal size with missing elements, denoted by X• and Y•.

3.2 Image-to-Model and Model-to-Image Similarity

Before adding a shape to the manifold M, it is centred to the origin and scaled such
that the mean distance of its points to the origin is equal to 1. This operation defines
a similarity transform T = Ttx,ty,s,α that maps a shape from the manifold to the
image reference frame. The inverse transform T−1 can be used to map it back to the
manifold. The translation and scaling are only applied to the x and y elements of the
feature vectors, whereas the rotation must also be applied to the derivatives of the colour
channels. Shapes in the image reference frame are denoted by upper-case letters (e.g.
X), while the shapes in the model reference frame are denoted by lower-case letters
(e.g. x). Thus we have x• = T−1(X•).

3.3 Computing the Weights

The model is used to reconstruct a shape as similar as possible to the current, rearranged
and reprojected image shape x•. Our approach is similar to one popularly used for
locally linear embedding [13]. We begin by identifying the K nearest neighbours yi of
x• onM by applying the distance d defined earlier on the non-missing elements of x•.
Reconstruction errors are measured by the cost function

ε(w) =

∣∣∣∣∣x• −
K∑

i=1

wiy•
i

∣∣∣∣∣
2

, (5)

which is the squared distance between the image shape and its reconstruction and where
again only the non-missing dimensions are considered. The weights wi summarise the
contribution of the ith model shape to the reconstruction. They are computed by min-
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Fig. 3. A car and a soccer player with their current interest points (in white) and model points (in
red) superimposed

imising the cost function subject to two constraints: First, the image shape is recon-
structed only from its neighbours, enforcing wi = 0 if yi does not belong to this set;
second, the weights must sum to one:

∑
i wi = 1, thus enforcing the invariance to

translation in the manifold space. The optimal weights subject to these constraints are
found by solving the linear system of equations∑

j

cijwj = 1, ∀i, (6)

where cij are the elements of the local covariance matrix defined by

cij = (x• − y•
i )T (x• − y•

j ). (7)

For details on these calculations, see Appendix A of Saul and Roweis [13]. The weights
are constrained to be larger than a small negative threshold to generate only shapes close
to the convex hull of the K neighbouring shapes. We take K = 13 in our experiments.

3.4 Shape Generation

If we assume that the manifold is locally linear, then we can predict the position of
missing points. We compute the K nearest neighbours and the corresponding weights
of the current image shape using only the dimensions corresponding to the model points
that could be matched to image points, as described in the previous section. These same
weights can then be used to predict the missing feature vectors, generating a complete
vector x equal to x•, but with the missing values filled in by the corresponding values
of
∑

wiyi. This is a very important step in our method because it solves the problem
of flickering feature points. The generated shape y = x is then added to the manifold.

Due to opaque objects rotating in depth or object deformations, some feature points
become hidden because they move behind the object. When generating shapes from
the model, such hidden points should not be projected into the image. Therefore, for
every feature point of every shape on the manifold there is a flag that indicates whether
that point was visible at the moment the shape was added to the manifold. When we
generate a new shape, a point is taken to be visible if among the K neighbouring shapes
at least one flag is set. Figure 3 shows a car and a soccer player with the image interest
points (in white) and the model points (in red) superimposed.
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4 Tracking

4.1 Cleaning the Manifold

To make the model adaptive to changing object appearance or shape, we need a mech-
anism to add and remove points from it. Points appear and disappear usually when an
object performs out-of-plane rotations or undergoes strong non-rigid deformations.

We call new points all those feature points in the current frame that cannot be
matched to a model point. Each of these points is added to the model and matched
to image points from frame to frame, but is not yet used to update the model param-
eters. This happens only when the point has proven to be stable, meaning that it has
been matched a minimum number of times. We call these the active points. A similar
methodology is applied to inactive points, which are model points that have not been
matched for some time.

As we are interested in tracking objects in crowded scenes, our model was designed
to be very robust to occlusions. Nevertheless, due to its incremental nature, bad points
(points not belonging to the object) could be added to the model, especially if the back-
ground is very cluttered or the occluding object has similar velocity and/or appearance.
The addition and deletion of points are therefore disabled as soon as the regions of
interest of the two objects intersect each other.

In some situations (cluttered background or occluding object not being tracked), it
still happens that a bad point is likely to be added to the model. We therefore discard
points that lie too far from the 4-dimensional Gaussian cluster N formed by the 4-D
points q = (x, y, vx, vy), where (vx, vy) is the velocity vector of (x, y). This means
that we consider as outliers those points for which d2(q,N ) > γ2 and

d2(q,N ) = (q− μ)TΣ−1
N (q− μ), (8)

where μ is the mean vector and ΣN is the covariance matrix of N . We use γ = 3.0.
This is analogous to the gating commonly used with Kalman filtering.

For computational reasons it is not possible to add new shapes indefinitely. We there-
fore generally limit the size of the manifold to a maximum of 30 shapes. When this limit
is reached, the oldest shape is simply discarded. Keeping more than 30 shapes on the
manifold doesn’t improve the tracking results considerably.

4.2 Kalman Filtering

A Kalman filter is applied to the model-to-image similarity parameters. In our state
vector p = (tx, ty, s, α, vx, vy) ∈ R6, the position is governed by a first-order process
(constant-velocity model), whereas s and α are governed by a zeroth-order process,
giving pt = Apt−1 + ut−1, where A is the state transition matrix. The corresponding
measurement vector z = (tx, ty, s, α) ∈ R4 is provided by zt = Hpt + vt, where H
is the measurement matrix. The random vectors ut and vt represent the process and
measurement noise at time t respectively. They are assumed to be independent of each
other, white and with normal probability distributions. In soccer or video surveillance
the filter is tuned in order to allow only slow variations of scale and angle. In sequences
with more chaotic movements, the scale and the angle can be made more flexible.
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4.3 The Algorithm

Tracking is performed by applying the following algorithm to each frame:

1. In the current frame (time t), extract interest points that lie inside the ROI from
the previous frame, giving the current shape X̃t. The ROI is equal to the smallest
rectangle enclosing the model shape from the previous frame plus a small border.

2. Project the model shape from the previous frame into the current frame by using the
predicted similarity resulting from the previous time update of the Kalman filter:
Yt−1 = T̂t−1(yt−1).

3. Match the points of Yt−1 with the points of X̃t. This defines a vector X̃•
t and a

vector Y•
t−1 containing only the matched (and active) points of X̃t and Yt−1. Let

X•
t be the rearranged version of X̃•

t .
4. Compute the new similarity Tt that minimises |X•

t −Tt(y•
t−1)|2.

5. Compute theK nearest neighbours of x•
t = T−1

t (X•
t ) onM and the corresponding

weight vector wt.
6. Use these weights wt to complete x•

t in order to generate what is the most probable
current image shape xt.

7. Add this completed shape yt = xt to the manifold.
8. Use the computed similarity Tt as measurement for the Kalman filter and do a time

update which gives T̂t.
9. Clean the manifold as described in Section 4.1.

Our method can be directly applied to sequences that do not contain many back-
ground feature points. If the background is highly cluttered, meaning that it gives rise
to large numbers of feature points, a pre-filtering stage may be required, e.g. to re-
move all static points in the case of a static camera or to remove all the image-to-model
homography inliers in the case of a moving camera. This approach is different from
traditional background subtraction, because it is performed only locally and does not
require a background model.

5 Results

We present tracking results on several challenging video sequences taken from a soccer
game and from the PETS 2001 video surveillance data. Objects can be correctly tracked
through scale, appearance and shape changes, as long as they exhibit sufficient texture.
The tracker is not specific to people, but can also be used to track cars for example.
Object labels are not lost during severe partial occlusions, even if the interacting targets
look very similar. In all the examples, user interaction is only required in the first frame
in order to initialise the targets to be tracked.

Example 1 is a difficult 150-frame sequence taken from a soccer game. The camera
performs rotations and zooms whereas the players undergo drastic non-rigid deforma-
tions and very rapid movements, causing motion blur in some subsequences. In this se-
quence, four players are tracked. If their regions of interest intersect, their respective
model learning is disabled, indicated by a red region of interest. The size of the regions
of interest automatically adapts to the target size. The trackers are not disturbed by the
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000 120

Fig. 4. Example 1: Global views of the sequence, illustrating the camera movement. The camera
and the players perform fast movements, which causes some motion blur.

050 070 090

110 130 150

Fig. 5. Example 1: Local enlargements of interesting keyframes of the sequence

partial occlusions. Figure 4 shows four keyframes of the sequence to illustrate the cam-
era movements. Figure 5 contains six enlargements from another subset of keyframes of
the same sequence.

Example 2, illustrated in Fig. 6, is similar to the previous one, but with much more
severe occlusions. The occlusions in this example are typical occlusions our tracker is
able to handle without confusing target labels. In this sequence, five soccer players and
the referee are tracked. Between frames 060 and 110 there is a very complicated occlu-
sion situation between the referee and 3 other players, which is correctly handled by the
tracker.

Example 3 illustrates the ability of our tracker to handle appearance and scale
changes. A person walking away from the camera is correctly tracked for more than
300 frames. Three keyframes of this sequence are shown in Fig. 7. After frame 290,
the tracker fails, mainly for two reasons: First, the target becomes very small and no
longer generates enough interest points; secondly, in its current form, our algorithm
still has some problems with very slowly-moving targets in front of highly cluttered
backgrounds. A possible solution to this problem might be to eliminate static interest
points (required only locally, inside the region of interest) in the case of a static camera
or the inter-frame homography inliers in the case of a rotating and zooming camera.
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000 050 070

080 110 150

Fig. 6. Example 2: 160-frame soccer sequence with 6 tracked targets undergoing complex mutual
occlusions. Each player is correctly tracked throughout the sequence without labels being lost.
Frame 000 is the frame in which the targets are initialised.

000 150 290

Fig. 7. Example 3: three representative frames from a 320-frame sequence taken from video
surveillance. The tracked person undergoes strong appearance and scale changes.

All experiments were performed on a 1.7 GHz Celeron processor. Our current, non-
optimised implementation runs at around 1.5 to 3.0 frames per second, depending on the
image sizes (704×576 for the soccer sequences and 768×576 for the PETS sequences),
and linearly in the number of tracked targets. The tracking itself is very fast; the current
bottleneck of our implementation is the Harris detector, which can be sped up dramat-
ically using efficient implementations. The speed of each tracker depends on the maxi-
mum number of shapes on the manifold and on the number of interest points per shape.

6 Conclusion

We presented a novel, robust approach to tracking non-rigid, textured objects in
crowded scenes. An incremental model is learnt that combines groups of feature points.
This allows us to handle highly non-rigid targets such as running people. Our method
behaves very well during partial occlusions in that target labels are generally preserved,
and the objects’ centres of gravity are correctly predicted. This latter property is essen-
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tial for metric applications where the target position has to be mapped to the ground
plane.

Our method is robust, because it takes into account the local appearance and the
spatial configurations of feature points. It is highly unlikely that two targets look exactly
the same, move at the same speed and are very close together. As the model is learnt
automatically and incrementally, we can track any kind of object.

In contrast to histogram-based methods, our method works with any kind of object
texture and can even handle objects that look similar to the background or to other
tracked objects. Another advantage over background-subtraction methods is that we
can easily work with non-static cameras. Our method does not necessarily work well
with untextured objects, as it is based on feature points, although in many situations
there are enough border points. Due to the incremental nature of our tracker, slowly-
moving targets in front of cluttered backgrounds can also be lost. We will address this
problem by efficient methods for removing background points.
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Abstract. The estimation of optical flow fields from image sequences is
incorporated in a Mumford–Shah approach for image denoising and edge
detection. Possibly noisy image sequences are considered as input and a
piecewise smooth image intensity, a piecewise smooth motion field, and
a joint discontinuity set are obtained as minimizers of the functional.
The method simultaneously detects image edges and motion field dis-
continuities in a rigorous and robust way. It comes along with a natural
multi–scale approximation that is closely related to the phase field ap-
proximation for edge detection by Ambrosio and Tortorelli. We present
an implementation for 2D image sequences with finite elements in space
and time. It leads to three linear systems of equations, which have to be
iteratively in the minimization procedure. Numerical results underline
the robustness of the presented approach and different applications are
shown.

1 Introduction

The task of motion estimation is a fundamental problem in computer vision. In
low-level image processing, the accurate computation of object motion in scenes
is a long standing problem, which has been addressed extensively. In particular,
global variational approaches initiated by the work of Horn and Schunck [1] are
increasingly popular. Initial problems such as the smoothing over discontinuities
or the high computational cost have been resolved successfully [2,3,4]. Motion
also poses an important cue for object detection and recognition. While a number
of techniques first estimate the motion field and segment objects later in a second
phase [5], an approach of both computing motion as well as segmenting objects
at the same time is much more appealing. First advances in this direction were
investigated in [6,7,8,9,10,11].
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The idea of combining different image processing tasks into a single model
in order to cope with interdependencies has drawn attention in several differ-
ent fields. In image registration, for instance, a joint discontinuity approach for
simultaneous registration, segmentation and image restoration has been pro-
posed by Droske & Ring [12] and extended in [13] incorporating phase field
approximations. Yezzi, Zöllei and Kapur [14] and Unal et al. [15] have combined
segmentation and registration applying geodesic active contours described by
level sets in both images. Vemuri et al. have also used a level set technique
to exploit a reference segmentation in an atlas [16]. We refer to [17] for further
references.

Cremers and Soatto [18,19] presented an approach for joint motion estima-
tion and motion segmentation with one functional. Incorporating results from
Bayesian inference, they derived an energy functional, which can be seen as an
extension to the well-known Mumford–Shah [20] approach. Their functional in-
volves the length of boundaries separating regions of different motion as well as
a “fidelity-term” for the optical-flow assumption. Our approach is in particular
motivated by their investigations, resolving the drawback of detecting edges in
a parametric model, by a non-parametric approach.

Recently, highly accurate motion estimation [21] has been extended to
contour-based segmentation [22] following a well known segmentation scheme
[23]. The authors demonstrate that extending the motion estimator to edge de-
tection in a variational framework leads to an increase in accuracy. However, as
opposed to our framework, the authors do not include image denoising in their
framework. Including a denoising functional together with motion estimation
in a variational framework has been achieved by [24]. They report significant
increases the accuracy of motion estimation, particularly with respect to noisy
image sequences. However, edges are not detected, but errors of smothing over
discontinueties are lessened by formulating the smoothness constraint in a L1

metric.
We present the first approach of combining motion estimation, image denois-

ing and edge detection in the same variational framework. This step will allow
us to produce more accurate estimations of motion while detecting edges at the
same time and preventing any smoothing across them.

The combination of denoising and edge detection with the estimation of mo-
tion results in an energy functional incorporating fidelity- and smoothness-terms
for both the image and the flow field. Moreover, we incorporate an anisotropic
enhancement of the flow along the edges of the image in the sense of Nagel
and Enkelmann [2]. The model is implemented using the phase-field approxi-
mation in the spirit of Ambrosio’s and Tortorelli’s[25] approach for the original
Mumford–Shah functional. The identification of edges is phrased in terms of a
phase field function, no a-priori knowledge of objects is required, as opposed to
formulations of explicit contours. In contrast to a level set approach, the built-in
multi-scale enables a robust and efficient computation and no initial guess for
the edge set is required. We present here a truly d + 1 dimensional algorithm,
considering time as an additional dimension to the d-dimensional image data.
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This fully demonstrates the conceptual advantages of the joint approach. The
characteristics of our approach are:

– The distinction of smooth motion fields and optical flow discontinuities is
directly linked to edge detection, improving the reliability of estimates.

– Image denoising and segmentation profits from explicit coupling of the se-
quence via the brightness constancy assumption.

– The phase field approximation converges to a limit problem for a vanishing
scale parameter, with a representation of edges and motion discontinuities
without any additional filtering.

– The algorithm is an iterative approach. In each step, a set of three simple
linear systems are solved, requiring only a small number of iterations.

2 Generalized Optical Flow Equation

In image sequences, we observe different types of motion fields: locally smooth
motion visible via variations of object shading and texture in time, or jumps in
the motion velocity apparent at edges of objects moving in front of a background.
We aim for an identification of corresponding piecewise smooth optical flow fields
in piecewise smooth image sequences

u : [0, T ]×Ω �→ R ; (t, x)→ u(t, x)

for a finite time interval [0, T ] and a spatial domain Ω ⊂ Rd with d = 1, 2, 3.
The flow fields are allowed to jump on edges in the image sequence. Hence,
the derivative Du splits into a singular and a regular part. The regular part is
a classical gradient ∇(t,x)u in space and time, whereas the singular part lives
on the singularity set S - the set of edge surfaces in space–time. Time slices
of S are the actual image edges S with respect to space–time. The singular
part represents the jump of the image intensity on S, i. e., one observes that
Dsu = (u+ − u−)ns. Here, u+ and u− are the upper and lower intensity values
on both sides of S, respectively. We now suppose that the image sequence u re-
flects an underlying motion with a piecewise smooth motion velocity v, which is
allowed to jump only on S. Thus, S represents object boundaries moving in front
of a possibly moving background. In this general setting, without any smooth-
ness assumption on u and v, we ask for a generalized optical flow equation. Apart
from moving object edges, we derive from the brightness constancy assumption
u(t + s, x + s v) = const on motion trajectories {(t+ s, x+ s v) : s ∈ [0, T ]},
that

∇(t,x)u · w = 0 and on the edge ns · (w+ + w−) = 0. (1)

where w = (1, v) is the space–time motion velocity. This in particular includes
the case of a sliding motion without any modification of the object overlap,
where ns · w+ = ns · w− = 0.
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3 Mumford–Shah Approach to Optical Flow

In their pioneering paper, Mumford and Shah [20] proposed the minimization of
the following energy functional:

EMS [u, S] = λ

∫
Ω

(u − u0)2 dL +
μ

2

∫
Ω\S

‖∇u‖2 dL + νHd−1(S) , (2)

where u0 is the initial image defined on an image domain Ω ⊂ Rd and λ, μ, ν
are positive weights. Here, one asks for a piecewise smooth representation u of
u0 and an edge set S, such that u approximates u0 in the least-squares sense. u
should be smooth apart from the free discontinuity S. In addition, S should be
smooth and thus small with respect to the (d−1)-dimensional Hausdorff-measure
Hd−1. Mathematically, this problem has been treated in the space of functions
of bounded variation BV , more precisely in the specific subset SBV [26]. In
this paper, we will pick up a phase field approximation for the Mumford–Shah
functional (2) proposed by Ambrosio and Tortorelli [25]. They describe the edge
set S by a phase field φ which is supposed to be small on S and close to 1 apart
from edges, i. e., one asks for minimizers of the energy functional

Eε[u, φ] =
∫
Ω

λ(u− u0)2 +
μ

2
(φ2 + kε)‖∇u‖2 + νε‖∇φ‖2 +

ν

4ε
(1− φ)2 dL , (3)

where ε is a scale parameter and kε = o(ε) a small positive regularizing param-
eter, which mathematically ensures strict coercivity with respect to u. Hence,
the second term measures smoothness of u but only apart from edges. On edges,
the weight φ2 is expected to vanish. The last two terms in the integral encode
the approximation of the d − 1 dimensional edge set area and strongly favours
a phase field value 1 away from edges, respectively. For larger ε, one obtains
coarse, blurred representations of the edge set and corresponding smoother im-
ages u. With decreasing ε we successively refine the representation of the edges
and include more image details.

Now, we ask for a simultaneous denoising, segmentation and flow extraction
on image sequences. Hence, we will incorporate the motion field generating an
image sequence into a variational method. We first formulate a corresponding
minimization problem in the spirit of the Mumford–Shah model:

Mumford–Shah type optical flow approach. Given a noisy initial image
sequence u0 : D �→ R on the space time domain D = [0, T ] × Ω, we ask for a
piecewise smooth image sequence u, which jumps on a set S, and a piecewise
smooth motion field w = (1, v), which is allowed to jump on the same set S, with
the constraint ns · (w+ + w−) = 0, such that (u,w, S) minimize the energy
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E[u,w, S]=
∫
D

λu

2
(u−u0)2+

λw

2
(
w ·∇(t,x)u

)2 dL+
∫
D

μu

2
(φ2+kε)‖∇(t,x)u‖2 dL

+
∫
D

μw

2
‖P [φ]∇(t,x)w‖q dL+

∫
D

(
νε‖∇φ‖2 +

ν

4ε
(1− φ)2

)
dL. (4)

The first and second term of the energy are fidelity terms with respect to the
image intensity and the regular part of the optical–flow–constraint, respectively.
The third and fourth term encode the smoothness requirement of u and w.
Finally, the last terms represents the area of the edge surfaces S, parameterized
by the phase file π. The projection operator P [φ] couples the smoothness of the
motion field w to the image geometry:

P [φ] = α(φ2)

(
1I − β(φ2)

∇(t,x)φ∥∥∇(t,x)φ
∥∥ ⊗ ∇(t,x)φ∥∥∇(t,x)φ

∥∥
)

.

Here, kε = o(ε) is a ”safety” coefficient, which will ensure existence of solutions of
our approximate problem. α : R→ R

+
0 and β : R→ R

+
0 are continuous blending

functions. For vanishing ε and a corresponding steepening of the slope of u,
this operator basically leads to a ’one sided diffusion’ in the energy relaxation.
The fidelity weights λu, λw, the regularity weights μu, μw and the weight ν
controlling the phase field are supposed to be positive and q ≥ 2. We emphasize
that, without any guidance from the local time–modulation of shading or texture
on both sides of an edge, there is still a undecidable ambiguity with respect to
foreground and background.

4 Variations of the Energy and an Algorithm

In what follows, we will consider the Euler–Lagrange equations of the above en-
ergies. Thus, we need to compute the variations of the energy contributions with
respect to the involved unknowns u,w, φ. Using straightforward differentiation
for sufficiently smooth u,w, φ and initial data u0 and summing up the resulting
terms, we can integrate by parts and end up with the following system of PDEs

−div(t,x)

(
μu

λu
(φ2+kε)∇(t,x)u +

λw

λu
w(∇(t,x)u·w)

)
+u = u0 (5)

−εΔ(t,x)φ +
(

1
4ε

+
μu

2ν
‖∇(t,x)u‖2

)
φ =

1
4ε

(6)

−μw

λw
div(t,x)

(
P [φ]∇(t,x)w

)
+ (∇(t,x)u · w)∇(t,x)u = 0 (7)

as the Euler–Lagrange equations characterizing the necessary conditions for a
solution (u,w, φ) of the above stated phase field approach. Let us emphasize
that the full Euler–Lagrange equations, characterizing a global minimizer of the
energy, would in addition involve variations of Ereg,w with respect to φ.
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Following again Ambrosio and Tortorelli, our resulting algorithm involves an
iteration solving three linear partial differential equations:

Step 0. Initialize u = u0, φ ≡ 1, and w ≡ (1, 0) .
Step 1. Solve (5) for fixed w, φ .
Step 2. Solve (6) for fixed u, w.
Step 3. Solve (7) for fixed u, φ , return to Step 1 if not converged.

5 Finite Element Discretization

We proceed similarly to the Finite Element method proposed by Bourdin and
Chambolle [27,28] for the phase field approximation of the Mumford–Shah func-
tional. To solve the above system of PDEs, we discretize [0, T ]×Ω by a regular
hexahedral grid. In the following, the spatial and temporal grid cell sizes are de-
noted by h and τ respectively, i.e. image frames are at a distance of τ and pixels
of each frame are sampled on a regular mesh with cell size h. To avoid tri-linear
interpolation problems, we subdivide each hexahedral cell into 6 tetrahedra. On
this tetrahedral grid, we consider the space of piecewise affine, continuous func-
tions V and ask for discrete functions U,Φ ∈ V and V ∈ V2, such that the
discrete and weak counterparts of the Euler Lagrange equations (5), (6) and (7)
are fulfilled. This leads to solving systems of linear equations for the vectors of
the nodal values of the unknowns U,Φ, V . Using an efficient custom-designed
compressed row sparse matrix storage, we can treat datasets of up to K = 10
frames of N = 500,M = 320 pixels in less than 1GB memory. The linear systems
of equations are solved applying a classical conjugate gradient method. For the
pedestrian sequence (Fig. 5), one such iteration takes 47 seconds on a Pentium
IV PC at 1.8 GHz running Linux. The complete method converges after 2 or
3 such iterations. Large video sequences are computed by shifting a window of
K = 6 frames successively in time. Thus temporal boundary effects are avoided.

6 Results and Discussion

We present here several results of the proposed method for two dimensional
image sequences. In the considered examples, the parameter setting ε = h/4,
μu = h−2, μw = λu = 1, λw = 105h−2 and C(ε) = ε, δ = ε has proven to give
good results.

We first consider a simple example of a white disk moving with constant speed
v = (1, 1) on a black background (Fig. 1). A small amount of smoothing results
from the regularization energy Eε

reg,u (Fig. 1(b)), which is desirable to ensure
robustness in the resulting optical flow term∇(t,x)u·w and removes noisy artifacts
in real-world videos, e.g. Fig. 4 and Fig. 5. The phase field clearly captures the
moving object’s contour. The optical flow is depicted in Fig. 1(c) by color coding
the vector directions as shown by the lower-right color wheel. Clearly, the method
is able to extract the uniform motion of the disc. The optical flow information,
available only on the motion edges (black in Fig. 1(c)), is propagated into the
information-less area inside the moving disk, yielding the final result.
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a b c d

Fig. 1. Top to bottom two frames of the test sequence (a) and corresponding smoothed
image (b), phase field (c) and optical flow (color coded) (d)

a b c d

Fig. 2. Noisy circle sequence: From top to bottom, frames 3 and 9− 11 are shown. (a)
original image sequence, (b) smoothed images, (c) phase field, (d) estimated motion
(color coded).
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a b c d

Fig. 3. Rotating sphere: smoothed image (a), phase field (b), optical flow (color coded)
(c), optical flow (vector plot, color coded magnitude) (d)

a b c

Fig. 4. Taxi sequence: smoothed image (a), phase field (b), and flow field (c)

In the next example, we revisit the simple moving circle sequence, but add
noise to it. We also completely destroy the information of frame 10 in the se-
quence (Fig. 2). Figure 2 shows the results for frames 3 and 9− 11. We see that
the phase field detects the missing circle in the destroyed frame as a temporal
edge surface in the sequence, i.e. φ drops to zero in the temporal vicinity of
the destroyed frame. This is still visible in the previous and next frames, shown
in the second and third row. However, this does not hamper the restoration of
the correct optical flow field, shown in the fourth column. This result is due to
the anisotropic smoothing of information from the frames close to the destroyed
frame. For this example, we used ε = 0.4h.

A second synthetic example is shown in Fig. 3, using data from the publicly
available collection at [29]. Here, a textured sphere spins on a textured back-
ground (Fig. 3(a)). Again, our method is able to clearly segment the moving
object from the background, even though the object doesn’t change position.
We used a phase field parameter ε = 0.15h. The extracted optical flow clearly
shows the spinning motion (Fig. 3(d)) and the discontinuous motion field.

We next consider a known real video sequence, the so-called Hamburg taxi
sequence. Figure 4 shows the smoothed image (u), phase field φ and color-coded
optical flow field (w). Our method detects well the image edges (Fig. 4 b).
Also, the upper-left rotating motion of the central car is extracted accurately
(Fig. 4 c). As it should be, the edges of the stationary objects, clearly visible
in the phase field, do not contribute to the optical flow. Moreover, the moving
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Fig. 5. Pedestrian video: frames from original sequence (top); phase field (middle);
optical flow, color coded (bottom)

car is segmented as one single object in the optical flow field, i.e. the motion
information is extended from the moving edges, i.e. car and car windscreen
contours, to the whole moving shape.

Finally, we consider a complex video sequence, taken under outdoor conditions
by a monochrome video camera. The sequence shows a group of walking pedes-
trians (Fig. 5 (top)). The human silhouettes are well extracted and captured by
the phase field (Fig. 5(middle)). We do not display a vector plot of the optical
flow, as it is hard to interpret it visually at the video sequence resolution of 640
by 480 pixels. However, the color-coded optical flow plot (Fig. 5(bottom)) shows
how the method is able to extract the moving limbs of the pedestrians. The over-
all red and blue color corresponds to the walking directions of the pedestrians.
The estimated motion is smooth inside the areas of the individual pedestrians
and not smeared across the motion boundaries. In addition, the algorithm nicely
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segments the different moving persons. The cluttered background poses no big
problem to the segmentation, nor are the edges of occluding and overlapping
pedestrians, who are moving at almost the same speed.
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Abstract. We present a new method for planning the optimal next view for a
probabilistic visual object tracking task. Our method uses a variable number of
cameras, can plan an action sequence several time steps into the future, and allows
for real-time usage due to a computation time which is linear both in the number
of cameras and the number of time steps. The algorithm can also handle object
loss in one, more or all cameras, interdependencies in the camera’s information
contribution, and variable action costs.

We evaluate our method by comparing it to previous approaches with a prere-
corded sequence of real world images.

1 Introduction

This paper describes an enhanced method for selecting a sequence of optimal sensor
actions for a probabilistic state estimation system. The optimal actions are those that
minimize the expected uncertainty of the state probability distribution function, mea-
sured by the expected state entropy. We apply this method for view planning in an object
tracking task. In this task, the sensor actions affecting the view are the camera zoom set-
tings. However, this method is not restricted to zoom planning. It can also handle other
camera actions, such as panning, tilting or translation, and is equally applicable to other
active state estimation tasks.

A large amount of research in the area of view planning exists for object recognition
tasks [1,2,3], in which the active selection of views directly reduces the uncertainty in
classification. For active object tracking many works involve the changing of zoom set-
tings [4,5,6]. However, these methods keep the size of the object in the images constant,
as opposed to minimizing the uncertainty of the estimate of the object position. Previ-
ous work in uncertainty reduction includes [7], in which a subset from a set of sensors
is chosen to meet certain threshold criteria. A more general approach is followed in [8],
where actions are chosen which maximally reduce the expected entropy of the object
position in space as a measure of positional uncertainty.

Previous work [9] has extended this approach to optimize a sequence of actions for
view planning. This extension allows variable action costs, such as occur due to limited
camera zoom motor speeds, to be incorporated into the optimization. Potential object
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loss is dealt with by evaluating each possible sequence of object visibility in a visibility
tree (see section 2 and Fig. 1). A subsequent improving work [10] aimed to address
several shortcomings of this method, such as the inability to efficiently handle an object
visible in only a subset of the cameras, with the use of the sequential Kalman filter. By
applying a visibility tree to each camera separately, the computational cost is linear in
the number of cameras, and partial visibility can be handled.

The main problem with the still remaining visibility tree is that its size, and therefore
the computation costs for view planning, are still exponential in the number of time
steps. In this work, we propose a new method, which flattens this visibility tree, thus
achieving linear runtime.

We test our approach with a prerecorded image sequence from up to three cameras.
This sequence is scaled with a variable scale factor to simulate a changing focal length,
while allowing several algorithms to be compared independently on the same data.

This paper is organized as follows: The next section reviews the current state of view
planning for active object tracking and describes the notation used in this work. Section
3 details the method of visibility tree linearization to reduce computation time. Section
4 covers the experiments, comparing the previous methods to our new one. The last
section summarizes and concludes this paper, and lists potential future work.

2 Kalman Filter and Action Selection

Tracking an object in 3D is defined as a state estimation problem, which we solve with
the well-known Kalman filter [11], extended to handle sensor actions. To accommodate
the non-linear nature of the observation functions involved, we use the extended Kalman
filter [12,13], although this distinction is not relevant for this work.

The (extended) Kalman filter estimates the state of a discrete-time dynamic system.
At time t, the state is described in the state vector qt ∈ IRn. The cameras generate an
observation ot ∈ IRm from the state. The state change and observation equations are

qt = f(qt−1) + w , ot = h(qt,at) + r (1)

where f (·) ∈ IRn is the state transition function and h(·, ·) ∈ IRm the observation
function, based on the cameras’ projection function. w and r are normal error processes
with zero mean and covariance matrices W and R.

For active object tracking, the observation function also contains an action parameter
at ∈ IRl, which combines all influences on the observation process, such as zooming,
panning, tilting, or translating the camera. For this work, we focus on zoom planning as
the camera action. The action is performed before an observation is made.

Given the noise terms, the state must be estimated each time step. Specifically, we
must calculate the state probability distribution p(qt|〈o〉t, 〈a〉t), given the sequences
of all observations 〈o〉t and all actions 〈a〉t taken up to, and including, time t. Within
the Kalman filter framework, this distribution is assumed to be a normal, or Gaussian,
distribution.

We use the following Kalman filter notation: q̂−
t and q̂+

t are the a priori and a pos-
teriori state estimate means at time t. P−

t and P +
t are the covariance matrices for the
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errors of the a priori and a posteriori state estimates. The extended Kalman filter per-
forms the following steps for each time-step t:

1. Prediction of the state mean q̂−
t and covariance P−

t :

q̂−
t = f(q̂+

t−1) , P−
t = F tP t−1F t

T + W (2)

2. Computation of the filter gain Kt:

Kt = P−
t Ht

T(at)
(
Ht(at)P−

t Ht
T(at) + R

)−1
(3)

3. State update with the observation ot:

q̂+
t = q̂−

t + Kt

(
ot − h(q̂−

t ,at)
)

, P +
t (at) = (I −KtHt(at))P−

t (4)

F t and Ht(at) denote the Jacobians of f(·) and h(·, ·) at q̂+
t−1 and q̂−

t respectively,
to account for non-linear functions. Since Ht(at) depends on the selected action at,
the a posteriori state covariance P +

t does, too. If no valid observation ot is made at
time t, the update step cannot be performed and q̂+

t ,P
+
t are equal to q̂−

t ,P
−
t .

Since we are interested in obtaining the most information about the state, we need to
determine the optimal action a∗

t where the uncertainty is lowest. In [8], this is achieved
by finding the action where the entropy of the a posteriori probability distribution
p(qt|〈o〉t, 〈a〉t) is minimal. As this is a normal distribution N (q̂+

t ,P
+
t ), the entropy

is equal to log
(
|P +

t |
)

up to constant terms and factors. These constants can be ignored
during optimization. The entropy depends on the covariance P +

t , and therefore on at,
but not on ot. This allows to determine a∗

t before making an observation.
The problem of visibility in object tracking is also addressed in [8]. An observation

ot, containing the position of the object being tracked in each camera, is only valid if
the object is in every camera’s field of view. We refer to an ot ∈ IRm lying outside of
the field of view as a non-visible observation. The probability w that the object lies in
the field of view of all cameras can be calculated from the predicted observation for
any action at by integrating the probability density of the observation over the camera
sensor. The expected entropy for an action is then the weighted combination of the
entropies for each case of visibility, or for optimization purposes

a∗
t = argmin

at

(
w · log

(
|P +

t (at)|
)

+ (1− w) · log
(
|P−

t |
))

(5)

This action selection has been extended to a sequence of future actions in [9]. For
a sequence, w is extended to a visibility tree, which is a binary tree in which each
branching represents a visible or non-visible outcome. The entropy for each possible
sequence of visible or non-visible observations is calculated and then summed up by
walking up the tree again.

An example of such a tree for two time steps is shown in Fig. 1. In this example, each
node represents one of the two possible a posteriori covariance matrices. Light nodes
are the predicted result of a visible observation, dark nodes of a non-visible one. In each
time step, the probabilities of visibility or non-visibility are given by the w and (1−w)
terms (note that w2 �= w3). The total expected entropy is the weighted sum of the



Multi-step Multi-camera View Planning for Real-Time Visual Object Tracking 539

P t

P +
t+1 P−

t+1

P ++
t+2 P +−

t+2 P−+
t+2 P−−

t+2

w1 (1− w1)

w2 (1− w2) w3 (1− w3)

Fig. 1. The visibility tree for two time steps. The calculation starts at the top at time t. The nodes
represent possible a posteriori covariance matrices for subsequent time steps. Light nodes are
the result of a visible observation, dark nodes of a non-visible one. See the text for a deeper
discussion of the visibility tree.

four entropies based on the four final covariances. The covariances are tagged with the
visibility sequence they resulted from. For example, P +−

t+2 is obtained by first assuming
a visible observation (+) followed by a non-visible one (−). The final expected entropy
for this example is (ignoring constant terms):

w1w2 log
(
|P ++

t+2|
)

+ w1(1 − w2) log
(
|P +−

t+2|
)

+ (1− w1)w3 log
(
|P−+

t+2|
)

+ (1 − w1)(1 − w3) log
(
|P−−

t+2|
)

This action selection can also be performed with the sequential Kalman filter [12].
The sequential Kalman filter is a sequential evaluation method of the standard Kalman
filter, in which the sensors are processed in sequence. This method is equivalent to pro-
viding each sensor with its private Kalman filter and can be used when the observation
noise for each sensor is uncorrelated. The a posteriori distribution of one sensor’s filter
is used as the a priori distribution for the next. Fig. 2 gives an overview of the sequen-
tial state estimation process. The advantage of the sequential Kalman method is that the
visibility is no longer determined by the object being in the field of view of all cameras;
partially visible observations can also be handled by skipping a camera’s filter if the
object is not visible.

The disadvantages are that the sensor noise must be uncorrelated between sensors
for the sequential Kalman filter, and that the result may depend on the order in which
the sensors are processed. While the traditional Kalman filter with linear prediction and
observation models does not depend on the order of the sensors, the extended Kalman
filter obtains the Jacobians F t and Ht(at) by deriving at the current state estimate.
Since this state estimate is affected by the observations from previous sensors, the Jaco-
bians will differ if different sensors are processed beforehand. However, this difference
is comparable to the differences encountered in the Jacobians in the non-sequential ex-
tended Kalman filter, where the Taylor expansion is also performed on the current best
estimate instead of the true state, and is usually ignored.

The sequential Kalman filter is used for multi-step action selection in [10]. Each
camera action is optimized independently by the method of [9], on the assumption that
changing the zoom level in one camera will not influence the information gained in
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Fig. 2. The sequential Kalman filter. Each camera adds its observation to the state estimate in
sequence. The a posteriori state estimate of the last camera is transformed to the a priori estimate
of the first camera on the next time step.

another camera. This sequential multi-step action selection still uses the visibility tree
from the original multi-step method. Partial visibility (in some, but not all cameras) is
handled explicitly during tracking and implicitly in the optimization process.

However, this gives rise to another problem. During the action planning step, the
predicted uncertainty is calculated by the contribution of a single camera, disregarding
the others. In the Kalman filter’s update step (equations (3) and (4)), P +

t is derived
from P−

t using only the observation function of this single camera. This leads to an
overestimation of the a posteriori covariance in the planning phase, which results in an
overly cautious action planning. This omission can be rectified by including the effects
of the other cameras on P +

t . However, to avoid another visibility dependency and keep
the visibility tree small, these other cameras must follow actions which are assumed to
guarantee an observation, which still overestimates the covariance during planning.

3 Linearization of the Visibility Tree

For the multi-step multi-camera sequential Kalman filter, as seen in Fig. 3, the output
of each individual filter during tracking (such as the one marked in the figure) becomes
the input of the next one. This output is the probability density of the state estimate at
this time, with the observation of this camera embedded if it was visible, and skipped
if it was not. For view planning, this means that each individual filter has two possible
outputs which need to be considered, with covariance matrices P +

t and P−
t , since the

expected state mean is the same in both cases.
The previous methods have handled these with a visibility tree, as detailed in the

last section. Spanning a visibility tree for the full sequential filter is prohibitive, since
the size of the tree is exponential in the number of cameras and time steps. The so-
lution which uses the sequential Kalman filter reduces this complexity somewhat by
optimizing actions for each camera separately. However, the visibility tree size is still
exponential in the number of time steps, and the expected covariance is overestimated,
as mentioned previously.
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Fig. 3. The sequential Kalman filter during multi-step evaluation. The output of one individual
filter becomes the input of the next filter in the same time step or the first filter in the next time
step (after the state transformation, not shown here). The dashed circle marks one individual filter.

The visibility tree can be flattened by closely looking at the two probability distri-
butions that can result in one time step. The two resulting distributions are Gaussian
distributions and differ only in their covariances, P +

t and P−
t , but not in their means,

as the expected mean does not depend on the visibility in the view planning step. Since
we know the probability w ∈ [0, 1] that one of these two distributions will be the actual
output, we can consider them to be two components of a mixture distributionM,

M = w · N (q̂+
t ,P

+
t ) + (1− w) · N (q̂+

t ,P
−
t ), (6)

which describes the expected distribution of the state after performing action at. Since
this is an unimodal distribution, we can approximate it by a new Gaussian distribution
with the same covariance. As known in statistics, the covariance matrix ofM is:

P ◦
t = w · P +

t + (1 − w) · P−
t (7)

Therefore, our approximating Gaussian is of the formN (q̂+
t ,P

◦
t ).

This distribution can now be used as an estimate of the resulting state probabil-
ity distribution after visibility is considered. Note that the Gaussian distribution is an
approximation of the mixture distribution, with same mean and covariance, but with
different density functions.

The benefits of this approach are obvious. Since each individual filter in a multi-
step multi-camera now only results in a single output distribution during view planning
as well, the effects of an action can now be calculated in linear time in the number of
cameras times the number of time steps. This can be seen in Fig. 3, which is now equally
valid for the view planning process. Since the actions are optimized for all cameras at
the same time, this approach also fully handles dependencies in the actions of different
cameras, unlike the previous sequential method which used a separate optimization.
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object

calibration pattern

Fig. 4. The views of the test setup from all three cameras at the same time. The colored bottle is
tracked as it turns on the turntable. The calibration pattern is used to initially calibrate all cameras,
it is not used during tracking.

Although the entropy of the final expected distribution, based on log
(
|P ◦

t+k|
)
, dif-

fers from the actual expected entropy, the behavior of the system is close enough such
that the optimal action can be searched for. This can be seen in the next section, where
several approaches are compared on the same data. The behaviour is visible when com-
paring the original single-step approach to the one based on P ◦

t+k: both approaches are
very similar when no visibility problems are encountered.

4 Experiments

We test our new method on a recorded video sequence, shown in Fig. 4. Three cameras
take a high-resolution image of the scene, consisting of an object moved by a turntable.
The cameras are calibrated to a global coordinate system with the calibration pattern,
which is not used for the tracking process. The object is tracked with a color histogram
tracker [14].

The prerecorded images allow several view planning methods to be compared on
the same data. However, this precludes the effect of the camera zoom on these images,
unless we simulate this zoom on the original images. The original images are 640 by
480 pixels, but the tracking process uses images of size 320 by 240 pixels. To obtain
this size reduction, and simulate the camera zoom, we scale and crop the original image
by an amount which depends on the associated zoom level. When fully zoomed in, the
transformation only crops a 320 by 240 pixel image from the center of the original.
As the zoom level decreases, the cropped region becomes larger and is subsequently
scaled to the correct size. When fully zoomed out, the original images are only scaled,
no cropping occurs. Using such a reduced image size ensures that, even when fully
zoomed in, no upsampling artifacts occur.

The advantages of multi-step view planning have been detailed in [9] and [10]; no
detailed comparison to single-step planning will be made here. We will focus primarily
on a direct comparison between the previous planning method (cf. section 2), which
used separate optimization, and the newly proposed one (cf. section 3).

We test both systems on the same data, as detailed above. Each planning system
recommends the next view for the tracking system in the form of a set of actions. The
optimal action set is planned with the global optimization technique of Adaptive Ran-
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Fig. 5. The entropy as log
(|P +

t |) with three cameras plotted for image number t. Shown are the
plots for no planning, planning 4 steps ahead using the old, independently optimizing method,
and the new proposed method.

dom Search [15], evaluating a total of 400 separate action sequences per time frame.
Each action sequence contains the next actions for each camera for the next time steps.
In our experiments, we planned one to four steps ahead with up to three cameras, so
each action sequence contains up to 12 separate zoom settings.

Fig. 5 shows the entropy of the object position during the tracking process by mea-
suring log

(
|P +

t |
)
. Note that P +

t is the result of the actual tracking phase, and not a re-
sult from the view planning. However, the view planning influences the tracking results
both positively (by providing zoomed in views, reducing the entropy) and negatively
(by zooming in too far, causing object loss and raising the entropy). This experiment
uses three cameras. The plots show the results for unplanned tracking, planning 4 steps
with the independent optimization, and 4 steps with the new method.

Both planning methods result in an uncertainty, measured by the entropy, which is
lower than when no zoom planning is used. But it can clearly be seen that the orig-
inal approach with separate optimization still results in a higher uncertainty than the
new approach. Since the expected a posteriori covariance is overestimated, the actions
planned by this system are not as aggressive as those calculated with the new system.
The new system plans views which are zoomed further in, which lowers the entropy, in
many cases by quite a large amount. Only in a few cases (near image numbers 72 and
142) do these zoom levels prove overconfident, resulting in short object losses and a
higher entropy than the original approach.

Fig. 6 compares the new multi-step approach, looking 4 time steps into the future, to
the single step approach. The experiments are the same as in Fig. 5. Both plots are very
similar, showing that the behaviour of the view planning using the combined covariance
P ◦

t+k is very close to the original behaviour, if at times slightly worse due to the more
cautious approach of multi-step planning. The most notable differences occur around
image numbers 101 and 153 in the right half of the plot. The object starts moving out of
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with three cameras plotted for image number t. The single-step
planning method and the new proposed multi-step method for 4 time steps are compared.

Table 1. Computation time. Shown are the average computation times for evaluating a single
action sequence for one to four time steps, two and three cameras, with the old and the new
method. All times in ms.

Time steps planned old method new method
two cameras three cameras two cameras three cameras

1 step 0.115 0.173 0.095 0.124
2 steps 0.390 0.597 0.163 0.224
3 steps 0.945 1.457 0.247 0.333
4 steps 2.055 3.022 0.293 0.431

the field of view of one or even several cameras. The single step planning is caught off
guard by this, resulting in object loss and large spikes in the uncertainty. The multi-step
approach is able to predict the object loss better and avoids these spikes.

Another important aspect is the comparison of running times. The running times
per frame for several different cases are given in table 1. Note that while the original
algorithm required exponential time per frame (yet was linear in the number of cameras
due to the independent treatment), the new approach is about linear in the number of
time steps as well. All times are in milliseconds on a Pentium IV processor at 2.66 GHz.

5 Conclusion

We have presented a new approach for multi-step multi-camera view planning for object
tracking, based on the method of entropy minimization. This approach runs in linear
time in the number of cameras and time steps. It can incorporate action costs through
the evaluation of several time steps into the future. It is capable of handling a variable
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number of cameras, partial visibility, and interdependence in the camera actions. The
general nature of this approach allows it to be applied to a wide variety of active state
estimation problems outside of visual object tracking.

Additional work will focus on expanding the action space to also allow camera pan
and tilt motions. Another topic is the combination of view planning for tracking with
view planning for other tasks, such as object reconstruction or object recognition.
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Abstract. The present paper considers the supplement of prior knowledge about
joint angle configurations in the scope of 3-D human pose tracking. Training
samples obtained from an industrial marker based tracking system are used for
a nonparametric Parzen density estimation in the 12-dimensional joint configu-
ration space. These learned probability densities constrain the image-driven joint
angle estimates by drawing solutions towards familiar configurations. This pre-
vents the method from producing unrealistic pose estimates due to unreliable
image cues. Experiments on sequences with a human leg model reveal a consid-
erably increased robustness, particularly in the presence of disturbed images and
occlusions.

1 Introduction

This paper is concerned with the task of human pose tracking, also known as motion
capturing (MoCap). It is a subtopic of pose tracking where the object/body consists
of multiple parts, i.e. limbs, constrained by a kinematic chain [2]. The goal of pose
estimation then is to determine the 3-D rigid body motion as well as the joint angles in
the kinematic chain.

There are basically two ways to approach the problem. In the discriminative ap-
proach, one extracts some basic features from the image(s), the raw pixels in the sim-
plest case, and directly learns a mapping from these observed features to the set of pose
parameters from a large set of training data. Hence, the method does not care about the
meaning of intermediate states, but solely acts as kind of a black box that yields a cer-
tain output given a certain input. A recent representative of the discriminative approach
is the work in [1].

The generative approach, on the other hand, is model based, i.e., there is a more or
less detailed object model that, for a given pose, can approximately generate the images
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Fig. 1. The MoCap system in [10]: Left: The object contours are extracted in the input images
(just one frame is shown). Right: These are used for pose estimation. The pose result is applied
as shape prior for the segmentation process and the process is iterated. The goal of the present
paper is to extend this system to situations with heavily disturbed image data by supplementing a
prior on the pose configuration.

that are seen by the camera. The pose parameters are optimized in such a way that the
model optimally explains the images.

This paper builds upon a generative approach presented in [3] for rigid bodies with
a free-form surface model given. The technique has been extended in [10] to kinematic
chains. It determines the pose parameters by matching the projected surface to the object
contours in the images. These contours are extracted by assuming a local Gaussian
distribution of the object and background region and taking the projected surface model
as shape prior into account.

Generative approaches like the one in [3,10] can be described by Bayesian inference:

p(χ,C|I) =
p(I|C,χ)p(C|χ)p(χ)

p(I)
(1)

where χ denotes the sought pose parameters, I the input image, and C the object con-
tour that is obtained together with the pose parameters. The technique in [10] uses a
prior on the contour by means of p(C|χ), yet p(χ) has been ignored by assuming a
uniform prior.

The goal of the present paper is to integrate such prior knowledge about the prob-
ability of pose configurations into generative approaches like the one in [10]. This is
achieved by learning a probability density from training samples. To cope with the non-
Gaussian nature of the configuration space, we suggest the approximation of the density
by a nonparametric kernel density estimate. Such density estimates have been used in
computer vision in the context of image segmentation [6,12,5] and shape priors [4].

While learning from training samples is a prerequisite in many discriminative ap-
proaches [13,1] and well-known in the context of shape priors [17,18,10,4], there is
very few work with regard to prior knowledge in the context of 3-D generative mod-
els apart from the introduction of hard constraints such as explicit joint angle limits or
prevention of self-intersections [16]. In [15] it has been suggested to learn a Gaussian
mixture in a previously reduced space. Like the nonparametric density estimates sug-
gested here, this work aims at capturing the complex, non-Gaussian configuration space
of human pose.
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Our experiments with a leg model having 6+12 degrees of freedom show a consid-
erably increasing robustness when the prior is involved. Particularly in cases where the
images yield few and unreliable information due to occlusion or noise, the prior helps
to keep the result close to familiar pose configurations.

Paper organization. In the next section, we briefly review the technique described in
[3,10] which yields the image-driven part of the pose estimates. After that, Section 3
introduces the modeling of the pose prior, motivates the choice of a kernel density
estimate, and demonstrates the integration of the prior into the numerical optimization
scheme. In Section 4, we show the effect of the prior and compare the quality of the
results to pose estimates obtained with an industrial marker based tracking system. The
paper is concluded by a brief summary.

2 Image-Driven Pose Tracking

2.1 Pose and Joints

To represent rigid body motions, we use the exponential form,

M = exp(θξ̂) = exp
(

ω̂ v
03×1 0

)
. (2)

The matrix θξ̂ in the exponent is called a twist, which consists of two components, a
3 × 3 matrix ω̂ and a 3-D vector v. The matrix ω̂ is restricted to be skew-symmetric,
which means ω̂ ∈ so(3), with so(3) = {A ∈ R

3×3|A = −AT }. The exponent of such
a twist results in a rigid body motion [7], which is given as a screw motion with respect
to a velocity θ. It is common to represent the components of a twist as a 6-D vector
ξ = (ω1, ω2, ω3,v)T . Twists have two advantages: firstly, they can easily be linearized
and used in a fixed point iteration scheme for pose estimation [11]. Secondly, restricted
screws (with no pitch component) can be employed to model joints. A kinematic chain
is modeled as the consecutive evaluation of such exponential functions, i.e., a point at
an endeffector, transformed by a rigid body motion is given as

X ′
i = exp(θξ̂)(exp(θ1ξ̂1) . . . exp(θnξ̂n))Xi (3)

For abbreviation, we will in the remainder of this paper note a pose configuration by the
(6 + n)-D vector χ = (ξ, θ1, . . . , θn) = (ξ,Θ) consisting of the 6 degrees of freedom
for the rigid body motion ξ and the joint angles Θ. During optimization there is need to
generate a transformation matrix from a twist and, vice-versa, to extract a twist from a
given matrix. Both can be done efficiently by applying the Rodriguez formula, see [7]
for details.

2.2 Model

Coupled extraction of the object contours and registration of the model to these contours
can be described by minimization of an energy functional that contains both the pose
parameters χ and the object contour as unknowns [3]:
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E(χ, Φ) = −
∫

Ω

H(Φ) log p1 + (1−H(Φ)) log p2 dx

+ ν

∫
Ω

|∇H(Φ)| dx + λ

∫
Ω

(Φ− Φ0(χ))2 dx.
(4)

The contour is represented as the zero-level line of a level set functionΦ : Ω → R, such
that one can access the interior and exterior of the object region via the step function
H(s). Object and background are described by the probability densities p1 and p2,
respectively. They are modeled by local Gaussian densities, as described in [3]. Hence,
minimizing the first two terms yields a contour that maximizes the total a-posteriori
probability of all pixel assignments.

The two remaining terms constitute a prior for the contour. The first term seeks to
minimize the length of the contour. The second one depends on the pose parameters
and seeks to draw the contour close to the projected surface model Φ0(χ). Vice-versa,
this term relates the pose parameters to the image data by matching the surface model
to the extracted contour, and thereby to the raw pixels. It is a generative model, since
given the pose parameters one can use the projected surface Φ0 and the region densities
p1 and p2 to generate a simplified version of the image. The tuning parameters ν = 1.5
and λ = 0.05 have been kept fixed in our experiments.

For M > 1 camera views, which are calibrated with respect to the same world coor-
dinate system, the energy functional can easily be extended to M views by minimizing
the joint energy

E(χ, Φ1, ..., ΦM ) =
M∑
i=1

E(χ, Φi). (5)

Whereas the densities (p1)i and (p2)i are independent for each image, the contour ex-
traction is coupled via the pose parameters χ that influence the contours due to the
shape prior.

2.3 Optimization Scheme

We minimize energy (5) by alternating an optimization of the contours for fixed pose
parameters and an update of the pose parameters for fixed contours. Keeping the pose
parameters fixed yields the gradient descent

∂tΦi = H ′(Φi)
(

log
(p1)i

(p2)i
+ ν div

(
∇Φi

|∇Φi|

))
+ 2λ (Φ0(χ)− Φi). (6)

Obversely, by keeping the contours fixed, one can derive point correspondences be-
tween contour and surface points via shape matching. From the point correspondences,
a nonlinear system of equations can be formulated using the twist representation and
Clifford algebra. Each point correspondence contributes three equations of rank 2. For
details we refer to [10].

The nonlinear system can be solved with a fixed point iteration scheme. Linearizing
the equations yields an over-determined linear system of equations, which can be solved
with the Householder method in the sense of least squares. Updating the nonlinear
system with the new estimates and linearizing again leads to a new linear system. The
process is iterated until convergence.
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3 Constraining the Pose by Kernel Density Estimates

The energy functional from the previous section can be motivated from a probabilistic
point of view by considering the a-posteriori probability

p(χ, Φ|I) ∝ p(I|Φ)p(Φ|χ)p(χ). (7)

Maximizing this probability is equivalent to minimizing its negative logarithm, which
leads to the energy in (4) plus an additional term that constrains the pose to familiar
configurations:

EPrior = − log(p(χ)). (8)

As we want the prior to be independent from the translation and rotation of the body
in the training sequences, we apply a uniform prior to the parameters ξ of the rigid
body motion. The remaining probability density for the joint angle configuration p(Θ)
is supposed to be learned from a set of training samples.

Fig. 2 visualizes the training data consisting of MoCap data from two walking se-
quences obtained by a marker based tracking system with a total of 480 samples. Only
a projection to three dimensions (the three joint angles of the right hip) of the actually
12-dimensional space is shown.

There are many possibilities to model probability densities from such training sam-
ples. The most common way is a parametric representation by means of a Gaussian
density, which is fully described by the mean and covariance matrix of the training
samples. Such representations, however, tend to oversimplify the sample data. Having,
for instance, two training samples with the left leg in front and the right leg in back, and
vice-versa, a Gaussian density would yield the highest probability for the configuration
with both legs in the middle. Configurations close to the samples, on the other hand,
would have a comparatively small probability. Although showing only a projection of
the full configuration space, Fig. 2 clearly demonstrates that a walking motion cannot
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Fig. 2. Left: Visualization of the training data obtained from two walking sequences. Only a 3-
D projection (the three joint angles of the right hip) of the 12-D space is shown. Right: Some
training samples applied to the body model.
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be described accurately by a Gaussian density. In the 12-D space, this becomes even
more obvious.

For this reason, we suggest a nonparametric density estimate by means of the Parzen-
Rosenblatt estimator [9,8]. It approximates the probability density by a sum of kernel
functions centered at the training samples. A common kernel is the Gaussian function,
which leads to:

p(Θ) =
1√

2πσN

N∑
i=1

exp
(
− (Θi −Θ)2

2σ2

)
(9)

whereN is the number of training samplesΘi ∈ R12. This probability density estimator
involves the kernel width σ as a tuning parameter. Whereas small kernel sizes lead to
an accurate representation of the training data, the estimated density may not generalize
well, i.e., unseen test samples may be assigned a too small probability. Large kernel
sizes are more conservative, leading to a smoother approximation of the density, which
in the extreme case comes down to a uniform distribution. Numerous works on how
to optimally choose the kernel size are available in the statistics literature. A detailed
discussion can be found in [14]. In our work, we fix σ as the maximum nearest neighbor
distance between all training samples, i.e., the next sample is always within one standard
deviation. This ensures a smooth approximation between samples while it still keeps the
density model flexible.

Note that (9) does not involve a projection but acts on the full 12-dimensional con-
figuration space of the 12-D joint model. This means, also the interdependency between
joint angles is taken into account.

The gradient descent of (8) in Θ reads

∂tΘ = −∂EPrior

∂Θ
=
∑N

i=1 wi(Θi −Θ)

σ2
∑N

i=1 wi

(10)

wi := exp
(
−|Θi −Θ|2

2σ2

)
. (11)

This can be interpreted as the pose configuration being drawn to the next local maxi-
mum of the probability density, i.e., the local mode. We integrate this equation into the
linear system of the fixed point iteration scheme from Section 2 by appending for each
joint j an additional equation θk+1

j = θk
j + τ∂tθ

k
j to the linear system. These equa-

tions are weighted by the number of point correspondences in order to achieve an equal
weighting between the image- and the prior-driven part. In our experiments, the step
size parameter τ = 0.125σ2 yielded stable results.

In contrast to a simple alternation between the image-driven and the prior-driven part,
the integration of (10) into the linear system efficiently allows to compensate discrep-
ancies not only locally in the respective joint angle, but globally in all pose parameters
including the overall rigid body motion. Therefore, a large discrepancy in the angle of
the leg, for instance, can also be compensated by a rotation of the hip.

A second advantage is the implicit regularization of the equation system. Assume a
foot is not visible in any camera view. Without prior knowledge, this would automat-
ically lead to a singular system of equations, since there are no correspondences that
generate any constraint equation with respect to the joint angles at the foot. Due to the
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Without prior With prior

Fig. 3. Relevance of the learned configurations for the tracking stability. Distracting edges from
occlusions locally disturb the image-driven pose estimation. This can finally cause a global track-
ing failure. The prior couples the body parts and seeks the most familiar configuration given all
the image data.

interdependency of the joint angles, the prior equation draws the joint angles of the
invisible foot to the most probable solution given the angles of the visible body parts.

4 Experiments

For the experiments we used a four-camera set-up and grabbed image sequences of a
female lower torso. The cameras were calibrated using a calibration cube, synchronized
via a genlock interface, and we grabbed with 60 frames per second. The person wore a
black leg suit (see Fig. 1).

To allow for a quantitative error analysis, we installed parallel to this set-up a second
camera ring for a marker based system. Markers were attached to the leg suit and tracked
by a commercially available MoCap system1. We grabbed a series of sequences and are
able to compare our marker-free approach with the marker based system.

Fig. 4 and 5 visualize results of a walking sequence in which we replaced 25% of
all pixels by a uniform random value. Additionally, we added heavy occlusions of two
different types to all camera views. In the first case, box-shaped occlusions of random
size and gray value where randomly distributed across the images. In the second case,
we added enduring horizontal stripes to the images. For the last quarter of the sequence,
the person is not visible in the first camera anymore. All these difficulties frustrate the
acquisition of contour data needed for pose estimation.

Thanks to the joint angle prior, however, the sequence is tracked reliably in both
cases despite these disturbances. The training set did not contain the test sequence. The
diagram in Fig. 5 compares the obtained tracking curves to the marker based result,
which can be regarded as ground truth± 3 degree (0.05 radians), and the result obtained
when the joint angle prior is ignored. Despite the occlusions, the errors are almost within
the accuracy of the marker based system. Without the prior, however, tracking fails
nearly right from the beginning.

In order to test the generalization capabilities of the Parzen estimator, we further ap-
plied the method to a sequence where the person was asked to perform a series of jump-
ing jacks. Again we added 25% uniform noise to the images. As pose configurations of
this type of motion pattern were not contained in the training data, one expects problems

1 We used the Motion Analysis system with 8 Falcon cameras.
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Fig. 4. Pose estimates in a sample frame disturbed by 50 varying rectangles with random position,
size, and gray value and 25% uncorrelated pixel noise

Fig. 5. Left: Pose estimates in a sample disturbed by three enduring gray bars and 25% uncorre-
lated pixel noise. Bottom: Joint angles in radians of the left and right knee, respectively. Black:
marker based system. Gray: occlusion by permanent bars. Blue: occlusion by random rectangles
(see figure 4). Red: tracking without prior fails after a couple of frames.

concerning the accuracy of tracking. Indeed Fig. 6 reveals errors for some frames where
the true configuration was too far away from the training samples (enlarged in Fig. 6).
Nevertheless, the tracking remains stable and yields sufficiently accurate non-walking
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Fig. 6. Generalization capabilities of the prior: two frames from a jumping sequence tracked with
solely training data from walking sequences available. Left: The enlarged part reveals inaccura-
cies, as the prior prevents the foot angle from further bending. Right: However, the prior is able
to accurately handle many other configurations not consistent with those of a walking person.

configurations. For all experiments we used the same internal parameters. Computa-
tion takes, like in the method without a pose prior, around 1 minute per frame in the
four-camera setup.

5 Summary

We have suggested to learn joint angle configurations from training samples via a
Parzen density estimator and to integrate this prior via Bayesian inference into a numer-
ical scheme for contour based human pose tracking from multiple views. The learned
density draws the solution towards familiar configurations given the available data from
the images. In case the image does not provide enough information for a unique solu-
tion, the most probable solution according to the prior is preferred. The experimental
evaluation demonstrates that this allows to handle situations with seriously disturbed
images where tracking without knowledge about reasonable angle configurations is
likely to fail.
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Hand Grabbing for Constraint Adaptation
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Abstract. We propose a model for learning the articulated motion of
human arm and hand grabbing. The goal is to generate plausible tra-
jectories of joints that mimic the human movement using deformation
information. The trajectories are then mapped to a constraint space.
These constraints can be the space of start and end configuration of the
human body and task-specific constraints such as avoiding an obstacle,
picking up and putting down objects. Such a model can be used to de-
velop humanoid robots that move in a human-like way in reaction to
diverse changes in their environment and as a priori model for motion
tracking. The model proposed to accomplish this uses a combination of
principal component analysis (PCA) and a special type of a topological
map called the dynamic cell structure (DCS) network. Experiments on
arm and hand movements show that this model is able to successfully
generalize movement using a few training samples for free movement,
obstacle avoidance and grabbing objects.

1 Introduction

Human motion is characterized as being smooth, efficient and adaptive to the
state of the environment. In recent years a lot of work has been done in the
fields of robotics and computer animation to capture, analyze and synthesize this
movement with different purposes [1,2,3]. In robotics there has been a large body
of research concerning humanoid robots. These robots are designed to have a one
to one mapping to the joints of the human body but are still less flexible. The
ultimate goal is to develop a humanoid robot that is able to react and move in its
environment like a human being. So far the work that has been done is concerned
with learning single gestures like drumming or pole balancing which involves
restricted movements primitives in a simple environment or a preprogrammed
movement sequence like a dance. An example where more adaptivity is needed
would be a humanoid tennis robot which, given its current position and pose
and the trajectory of the incoming ball, is able to move in a human-like way to
intercept it. This idea enables us to categorize human movement learning from
simple to complex as follows: (A) Imitate a simple gesture, (B) learn a sequence
of gestures to form a more complex movement, (C) generalize movement over the
range allowed by the human body, and (D) learn different classes of movement
specialized for specific tasks (e.g. grasping, pulling, etc.).

K. Franke et al. (Eds.): DAGM 2006, LNCS 4174, pp. 556–565, 2006.
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This paper introduces two small applications for learning movement of type
(C) and (D). The learning components of the proposed model are not by them-
selves new. Our contribution is presenting a supervised learning algorithm which
learns to imitate human movement that is specifically more adaptive to con-
straints and tasks than other models. This also has the potential to be used for
motion tracking where more diverse changes in movement occur. We will call the
state of the environment and the body which affects the movement as constraint
space. This may be as simple as object positions which we must reach or avoid,
a target body pose or more complex attributes such as the object’s orientation
and size when grabbing it. The first case we present is generating realistic trajec-
tories of a simple kinematic chain representing a human arm. These trajectories
are adapted to a constraint space which consists of start and end positions of the
arm as shown in fig. 1. The second case demonstrates how the learning algorithm
can be adapted to the specific task of avoiding an obstacle where the position
of the obstacle varies. The third case demonstrates how hand grabbing can be
adapted to different object sizes and orientations.

The model accomplishes this by aligning trajectories. A trajectory is the se-
quence of body poses which change in time from the start to the end of a move-
ment. Aligning trajectories is done by scaling and rotation transforms in angular
space which minimizes the distance between similar poses between trajectories.
After alignment we can analyze their deformation modes which describe the
principal variations of the shape of trajectories. The constraint space is mapped
to these deformation modes using a topological map.

Next, we describe an overview of the work done related to movement learning
and compare them with the proposed model.

2 State of the Art

There are two representations for movements: pose based and trajectory based.
We will describe next pose based methods.

Generative models of motion have been used in [2,1] in which a nonlinear
dimensionality reducing method called Scaled Gaussian Latent Variable Model
(SGPLVM) is used on training samples in pose space to learn a nonlinear latent
space which represents the probability distribution of each pose. Such a likelihood
function was used as a prior for tracking in [1] and finding more natural poses
for computer animation in [2] that satisfy constraints such as that the hand has
to touch some points in space. Another example of using a generative model for
tracking is [4] in which a Bayesian formulation is used to define a probability
distribution of a pose in a given time frame as a function of the previous poses
and current image measurements. This prior model acts as a constraint which
enables a robust tracking algorithm for monocular images of a walking motion.
Another approach using Bayesian priors and nonlinear dimension reduction is
used in [5] for tracking.

After reviewing pose probabilistic methods, we describe in the following trajec-
tory based methods. Schaal [3] has contributed to the field of learning
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movement for humanoid robots. He describes complex movements as a set of move-
ment primitives (DMP). From these a nonlinear dynamic system of equations are
defined that generate complex movement trajectories. He described a reinforce-
ment learning algorithm that can efficiently optimize the parameters (weights) of
DMPs to learn to imitate a human in a high dimensional space. He demonstrated
his learning algorithm for applications like drumming and a tennis swing.

To go beyond a gesture imitation, in [6] a model for segmenting and morphing
complex movement sequences was proposed. The complex movement sequence
is divided into subsequences at points where one of the joints reaches zero ve-
locity. Dynamic programming is used to match different subsequences in which
some of these key movement features are missing. Matched movement segments
are then combined with each other to build a morphable motion trajectory by
calculating spatial and temporal displacement between them. For example, mor-
phable movements are able to naturally represent movement transitions between
different people performing martial arts with different styles.

Another aspect of motion adaptation and morphing with respect to con-
straints comes from computer graphics on the topic of re-targeting. As an ex-
ample, Gleicher [7] proposed a nonlinear optimization method to re-target a
movement sequence from one character to another with an identical structure
but different segment lengths. The problem is to satisfy both the physical con-
straints and the smoothness of movement. Physical constraints are contact with
other objects like holding the box.

The closest work to the model presented in this paper is done by Banarer [8].
He described a method for learning movement adaptive to start and end posi-
tions. His idea is to use a topological map called Dynamic Cell Structure (DCS)
network [9]. The DCS network learns the space of valid arm configurations. The
shortest path of valid configurations between the start and end positions rep-
resents the learned movement. He demonstrated his algorithm to learn a single
gesture and also obstacle avoidance for a single fixed obstacle.

3 Contribution

The main difference between pose based methods and our approach is that
instead of learning the probability distribution in pose space, we model the
variation in trajectory space (each trajectory being a sequence of poses). This
representation enables us to generate trajectories that vary as a function of en-
vironmental constraints and to find a more compact representation of variations
than allowed by pdfs in pose space alone. Pose pdfs would model large variations
in trajectories as a widely spread distribution which makes it difficult to trace
the sequence of legal poses that satisfy the constraints the human actually makes
without some external reference like motion sequence data.

Our approach models movement variation as a function of the constraint
space. However, style based inverse kinematics as in [2] selects the most likely
poses that satisfy these constraints. This works well as long as the pose con-
straints do not deviate much from the training data. This may be suitable for
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Start position

Movement1

Movement 2

Movement 3

Fig. 1. Movements of the arm Fig. 2. Movement modes of the arm con-
structed in 3D space

animation applications but our goal here is to represent realistic trajectories
adapted to constraints without any explicit modeling. Banarer [8] uses also a
pose based method and the model he proposed does not generalize well because
as new paths are learned between new start and end positions, the DCS network
grows very quickly and cannot cope with the curse of dimensionality. Our DCS
network generalizes over trajectory space not poses enabling more adaptivity.

Gleicher [7] defines an explicit adaptation model which is suitable to generate
a visually appealing movement but requires fine tuning by the animator because
it may appear unrealistic. This is because it explicitly morphs movement using
a prior model rather than learning how it varies in reality as done in [2].

In the case of Schaal [3], we see that DMPs although flexible are not designed
to handle large variations in trajectory space. This is because reinforcement
learning adapts to a specific target human trajectory.

Morphable movements [6] define explicitly the transition function between
two or more movements without considering the constraint space. Our method
can learn the nonlinear mapping between constraint space and movements by
training from many samples. The variation of a movement class is learned and
not explicitly pre-defined.

To sum up, we have a trajectory based learning model which learns the map-
ping between constraints and movements. The movement can be more adaptive
and generalizable over constraint space. It learns movements from samples and
avoids explicit modeling which may generate unrealistic trajectories.

4 Learning Model

After describing the problem, the concept for learning movement will be ex-
plained and how this model is implemented.

In order to develop a system which is able to generalize movement, we need a
representation of movement space. The first step is to learn the deformations of
the articulated movement itself and the second is to learn how movement changes
with start and end configuration and environmental constraints. The mechan-
ics of movement are called intrinsic features. The changes of intrinsic features
with respect to absolute position and environment are called extrinsic features.
The intrinsic features describe movement primitives that are characteristic for a
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human being. These features are the relative coordination of joints in space and
time. Extrinsic features can be characterized as the variation of intrinsic features
in the space of all possible absolute start and end positions of the joints and any
environmental constraints such as obstacle positions.

The difference between intrinsic and extrinsic features that characterizes
movement enables the formulation of a learning model. This model consists
of two parts: The first part is responsible for learning intrinsic features which
uses principal component analysis (PCA). It is applied on the aligned trajec-
tories of the joints to reduce the dimensionality. The second part models the
extrinsic features using a special type of an adaptive topological map called the
dynamic cell structure (DCS) network. The DCS learns the nonlinear mapping
from the extrinsic features to intrinsic features that are used to construct the
correct movement that satisfies these extrinsic features.

4.1 Intrinsic Features Using PCA

We assume in this section for demonstration purposes a kinematic chain repre-
senting a human arm shown in Fig. 1. It consists of 2 joints: shoulder and elbow.
Each joint has 2 degrees of freedom (φ, θ) which represent the direction of the
corresponding limb in spherical coordinates.

To perform statistical analysis, we record several samples of motion sequences.
In each motion sequence the 3D positions of the joints are recorded with their
time. The first step is to interpolate between the 3D points from the stereo
cameras of each movement sequence. We end up with a set of parametric curves
{pk(t)} for each motion sequence k where pk(t) returns the position vector of all
the joints at time t. After that, each pk(t) is sampled at n equal time intervals
from the start of the sequence k to its end forming a vector of positions vk =
[p1,k,p2,k . . .pn,k]. By Using the time t as an interpolation variable, the trajec-
tory is sampled such that there are more pose samples at high curvature regions
where the arm slows down than at low curvature regions where the arm speeds
up. Then the Euclidean coordinates of each vk are converted to relative orien-
tation angles of all joints sj,k = (φj,k, θj,k), j = 1 . . . n in spherical coordinates:
Sk = [s1,k, s2,k, . . . sn,k]. After this we align the trajectories taken by all the joints
with respect to each other. Alignment means to find rotation and scaling trans-
formations on trajectories that minimize the distances between them. This align-
ment makes trajectories comparable with each other in the sense that all extrinsic
features are eliminated leaving only deformation information. The distance mea-
sure between two trajectories is the mean radial distance between corresponding
direction vectors formed from the orientation angles of the joints. Two transfor-
mations are applied on trajectories to minimize the distance between them: 3D
rotation and angular scaling between the trajectory’s direction vectors, where
a scale factor is centered at any point on the trajectory. We can extend this
method to align many sample trajectories with respect to their mean until the
mean converges. An example of aligning a group of trajectories is shown in Fig.
3. The left image shows hand and elbow direction trajectories before alignment
and the right is after. We see how the hand trajectories cluster together. The
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p aligned trajectories are represented as X = [ST
1 . . .ST

k . . .ST
p ]T . Principal com-

ponent analysis is applied on X yielding latent vectors Ψ = [ψ1ψ2 . . . ψn]. Only
the first q components are used where q is chosen such that the components
cover a large percentage of the data Ψq = [ψ1ψ2 . . . ψq]. Any point in eigenspace
can then be converted to the nearest plausible data sample using the following
equation

S = S + Ψqb (1)

where S = 1
p

∑p
k=1 Sk and b is an eigenpoint.

The latent coordinates b represent the linear combination of deformations
from the average paths taken by the joints. An example of that can be seen in
Fig. 2. In this example, the thick lines represent the mean path and the others
represent ±3 standard deviations in the direction of each eigenvector which are
called modes. The first mode (left) represents the twisting of the hand’s path
around the elbow and shoulder. The second mode (middle) shows the coordi-
nation of angles when moving the hand and elbow together. The third mode
(right) represent the curvatures of the path taken by the hand and shoulder.
The reason for using a linear subspace method like PCA in this paper is because
the trajectories are highly covariant since they change in direct response to a
low dimensional constraint space. The advantage of this representation is that
the dimension reduction depends only on the dimension of the constraint space
and not on the dimension of the trajectory which is much higher. As a result
we do not require many training samples to extract the deformation modes but
only enough samples to cover the constraint space.

4.2 Extrinsic Features Using DCS

PCA performs a linear transform (i.e. rotation and projection in (1)) which maps
the trajectory space into the eigenspace. The mapping between constraint space
and eigenspace is generally nonlinear. To learn this mapping we use a special type
of self organizing maps called Dynamic Cell Structure which is a hybrid between
radial basis networks and topologically preserving maps [9]. DCS networks have
many advantages: They have a simple structure which makes it easy to interpret
results, they adapt efficiently to training data and they can cope with changing
distributions. They consist of neurons that are connected to each other locally
by a graph distributed over the input space. These neurons also have radial
basis functions which are Gaussian functions used to interpolate between these
neighbors. The DCS network adapts to the nonlinear distribution by growing
dynamically to fit the samples until some error measure is minimized. When
a DCS network is trained, the output bDCS(x) which is a point in eigenspace
can be computed by summing the activations of the best matching neuron (i.e.
closest) to the input vector x representing a point in constraint space and the
local neighbors to which it is connected by an edge which is defined by the
function Ap(x). The output is defined as

bDCS(x) = fnrbf
P (x) =

∑
i∈Ap(x) bih(‖ x− ci ‖ /σi)∑
j∈Ap(x) h(‖ x− cj ‖ /σj)

, (2)
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Fig. 3. Example of aligning a training set of trajectories represented as direction vectors
tracing curves on a unit sphere

where ci is the receptive center of the neuron i, bi represents a point in eigenspace
which is the output of neuron i, h is the Gaussian kernel and σi is the width of
the kernel at neuron i.

The combination of DCS to learn nonlinear mapping and PCA to reduce
dimension enables us to reconstruct trajectories from b(x) using (1) which are
then fitted to the constraint space by using scale and rotation transformations.
For example, a constructed trajectory is fitted to a start and end position.

5 Experiments

In order to record arm movements, a marker-based stereo tracker was developed
in which two cameras track the 3D position of three markers placed at the
shoulder, elbow and hand at a rate of 8 frames per second. This was used to
record trajectory samples. Two experiments were conducted to show two learning
cases: moving between two positions and avoiding an obstacle.

The first experiment demonstrates that our learning model reconstructs the
nonlinear trajectories in the space of start-end positions. A set of 100 measure-
ments were made for an arm movement consisting of three joints. The movements
had the same start position but different end positions as shown in Fig. 1.

The first three eigenvalues have a smooth nonlinear unimodal distribution
with respect to the start-end space . The first component explained 72% of the
training samples, the second 11% and the third 3%.

The performance of the DCS network was first tested by a k-fold cross vali-
dation on randomized 100 samples. This was repeated for k = 10 runs. In each
run the DCS network was trained and the number of neurons varied between 6
to 11. The average distance between the DCS-trajectory and the data sample
was 3.9◦ and the standard deviation was 2.1◦. This shows that the DCS network
was able to generalize well using only a small sample size (about 100).

We can compare with Banarer [8] who fixed the DCS network with an upper
bound of 15 neurons to learn a single gesture and not many as in our experi-
ment. He used simulated data of 70 samples with a random noise of up to 5◦

and the mean error was 4.3◦ compared to our result of 3.9◦ on real data. The
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Fig. 4. Trajectory for obstacle avoidance
in 3D space

Fig. 5. Variation of arm trajectory
with respect to the obstacle

measurement error of the tracker is estimated to be 4.6◦ standard deviation
which accounts for the similar mean errors. This shows that our model scales
well.

Next, we demonstrate the algorithm for obstacle avoidance. In this case 100
measurements were taken for the arm movement with different obstacle positions
as shown in Fig. 4. The black lines show the 3D trajectory of the arm avoiding
the obstacle which has a variable position determined by the distance B. We see
how the hand backs away from the obstacle and the elbow goes down and then
upward to guide the hand to its target. A is the Euclidian distance between the
start and end positions of the hand. The grey lines represent a free path without
obstacles. In this case we need to only take the first eigenvector from PCA to
capture the variation of trajectories due to obstacle position. This deformation
mode is shown in Fig. 5 We define the relative position of the obstacle to the
movement as simply p = B

A . The DCS network learns the mapping between
p and the eigenvalue with only 5 neurons. The learned movement can thus be
used to avoid any obstacle between the start and end positions regardless of
orientation or movement scale. This demonstrates how relatively easy it is to
learn new specialized movements that are adaptive to constraints.

Finally, this model was demonstrated on hand grabbing. In this case 9 markers
were placed on the hand to track the index and thumb fingers using a monocular
camera as in Fig. 6. The 2D positions of the markers were recorded at a rate of 8.5
frames per second from a camera looking over a table. The objects to be grabbed
are placed over the table and they vary by both size and orientation. The size
ranged from 4 to 12 cm and orientation ranged from 0 to 60 degrees as depicted
in Fig. 7 and 8. The tracker recorded 350 grabbing samples of which 280 was
used for training the DCS and 70 for testing. The DCS learned the variation of
movement with 95 neurons and PCA reduced the dimension from 600 to just 23.
The first two modes characterize variation of scale and orientation as shown in
Fig. 6. Fig. 7 and 8 depict an example comparison between grabbing movement
generated by the DCS and an actual sample. Below we used two measures that
characterize well grabbing: distance between the tips of the index finger and the
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Fig. 6. The first two variation modes of grabbing
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Fig. 8. Comparison between DCS and
and a grabbing movement for a 12 cm
object at 0◦

thumb and the direction of the index finger’s tip with respect the the direction of
the arm. We see that the DCS and sample profiles look very similar. In general,
the model’s root mean square error for the first measure was 18 pixels for a
800× 600 images and 8.5◦ for the second measure.

6 Conclusion

We proposed a learning model for generation of realistic articulated motion.
The model characterizes deformation modes that vary according to constraint
space. A combination of DCS network to learn the nonlinear mapping and PCA
to reduce dimensionality enables us to find a representation that can adapt to
constraint space with a few samples. This trajectory based method is more suited
for movement generation than pose based methods which are concerned with
defining priors for good fitting with image data such as tracking. The proposed
method models variation of movement with respect to constraints in a more clear
way than the previously proposed methods. The potential uses of our method
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is in developing humanoid robots that are reactive to their environment and
also motion tracking algorithms that use prior knowledge of motion to make
them robust. Specifically, trajectory prior knowledge about motion can help in
cases where the tracked object is occluded in several successive frames. In such
a case pose based pdfs will fail. Three small applications towards that goal were
experimentally validated.

Acknowledgments. The work presented here was supported by the the European
Union, grant COSPAL (IST-2003-004176). However, this paper does not nec-
essarily represent the opinion of the European Community, and the European
Community is not responsible for any use which may be made of its contents.

References

1. Urtasun, R., Fleet, D.J., Hertzmann, A., Fua, P.: Priors for people tracking from
small training sets. In: International Conference on Computer Vision (ICCV). (2005)
403–410

2. Grochow, K., Martin, S.L., Hertzmann, A., Popovic;, Z.: Style-based inverse kine-
matics. ACM Trans. Graph. 23(3) (2004) 522–531

3. Schaal, S., Peters, J., Nakanishi, J., Ijspeert, A.: Learning movement primitives.
In: International Symposium on Robotics Research (ISPR2003), Springer Tracts in
Advanced Robotics, Ciena, Italy (2004)

4. Sidenbladh, H., Black, M.J., Fleet, D.J.: Stochastic tracking of 3d human figures us-
ing 2d image motion. In: Proceedings of the 6th European Conference on Computer
Vision (ECCV ’00), London, UK, Springer-Verlag (2000) 702–718

5. Sminchisescu, C., Jepson, A.: Generative modeling for continuous non-linearly em-
bedded visual inference. In: Proceedings of the twenty-first International Conference
on Machine Learning (ICML ’04), New York, NY, USA, ACM Press (2004)

6. Ilg, W., Bakir, G.H., Mezger, J., Giese, M.A.: On the repersenation, learning and
transfer of spatio-temporal movement characteristics. International Journal of Hu-
manoid Robotics (2004)

7. Gleicher, M.: Retargeting motion to new characters. In: Proceedings of the 25th
Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH
’98), New York, NY, USA, ACM Press (1998) 33–42

8. Banarer, V.: Struktureller Bias in neuronalen Netzen mittels Clifford-
Algebren. Technical Report 0501, Technische Fakultät der Christian-Albrechts-
Universität zu Kiel, Kiel (2005)

9. Bruske, J., Sommer, G.: Dynamic cell structure learns perfectly topology preserving
map. Neural Computation 7(4) (1995) 845–865



Visual Hand Posture Recognition
in Monocular Image Sequences

Thorsten Dick�, Jörg Zieren�, and Karl-Friedrich Kraiss

Institute of Man-Machine-Interaction, RWTH Aachen University, Germany
{dick, zieren, kraiss}@mmi.rwth-aachen.de

http://www.mmi.rwth-aachen.de

Abstract. We present a model-based method for hand posture recognition in
monocular image sequences that measures joint angles, viewing angle, and posi-
tion in space. Visual markers in form of a colored cotton glove are used to extract
descriptive and stable 2D features. Searching a synthetically generated database
of 2.6 million entries, each consisting of 3D hand posture parameters and the
corresponding 2D features, yields several candidate postures per frame. This am-
biguity is resolved by exploiting temporal continuity between successive frames.
The method is robust to noise, can be used from any viewing angle, and places
no constraints on the hand posture. Self-occlusion of any number of markers is
handled. It requires no initialization and retrospectively corrects posture errors
when accordant information becomes available. Besides a qualitative evaluation
on real images, a quantitative performance measurement using a large amount of
synthetic input data featuring various degrees of noise shows the effectiveness of
the approach.

1 Introduction

Automatic recognition of hand gestures is an intuitive and efficient method for human-
computer interaction. Applications for gesture input include virtual reality, motion cap-
ture, and sign language recognition. Vision-based recognition methods allow to mea-
sure both hand configuration and translational motion. Another important benefit is that
a camera also records the user’s face – a prerequisite for recognizing sign language.

For many tasks, such as fingertip detection or gesture classification, appearance-
based 2D features (i.e. shape and texture) that can be extracted directly from the input
image suffice [1,2]. Reconstruction of the 3D hand posture from 2D images opens up
additional applications that require knowledge of individual finger flexion.

This paper describes a model-based approach using visual markers and a matching
OpenGL hand model to map an observation, described by 2D features, to a 3D hand
posture. A large database of such mappings is generated offline. Efficient algorithms
for identifying candidates with similar features form the core of the system. Since am-
biguities and uncertainties in individual frames cannot be prevented when using 2D
input data, disambiguation is performed by exploiting temporal continuity of the ges-
turing motion over a period of several seconds. Smoothing in posture space prevents

� Supported by grant VV-Z50 from the Interdisciplinary Centre for Clinical Research ”‘BIO-
MAT.”’ within the Faculty of Medicine at the RWTH Aachen University.

K. Franke et al. (Eds.): DAGM 2006, LNCS 4174, pp. 566–575, 2006.
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jerkiness that would otherwise result from the finite number of discrete postures in the
database.

The system achieves near real-time speed on a standard PC. A qualitative evaluation
on signed numbers is presented, as well as an exact measurement of posture error using
a total of 37,500 synthetic input images.

2 Related Methods and Common Difficulties

Numerous approaches for hand posture recognition have been proposed in recent years.
They differ in the number of cameras used, the type of features extracted from the
input data, the supported degrees of freedom (DOF), and possible limitations regarding
input posture and viewing angle. The mapping of features to postures can be performed
by either deriving joint and viewing angles directly through inverse kinematics, or by
parameterizing a hand model so that it yields matching features.

Multi-camera approaches restrict translational hand motion at least to the intersec-
tion of all cameras’ viewfields. Since stereo is less effective for remote objects, the hand
is usually recorded from a short distance. Existing publications therefore do not con-
sider significant translational motion [3,4,5] and further require controlled recording
conditions, e.g. placing the hand inside a box containing light source and cameras.

Feature extraction on images of the unmarked hand constitutes a challenging prob-
lem, especially in the presence of motion blur and camera noise. A robust feature which
can be extracted using a simple skin color model is the hand’s contour [6,7]. However,
the contour is not stable because small changes in hand posture may greatly affect it.
At the same time, by discarding texture it entails yet another loss of input informa-
tion in addition to the 3D-to-2D projection. Many different hand postures result in the
same contour (for example, a fist and a pointing index finger seen from the pointing
direction), rendering this feature problematic for unrestricted posture recognition from
arbitrary viewing angles.

Texture features such as edges are more descriptive but computationally demanding
due to the high amounts of data and noise involved. Several systems therefore impose
restrictions on the allowed input postures. In [8] a set of 26 postures is recognized in
perfectly segmented single images of real hands taken from different viewing angles.
An accuracy of 13.6% is reported, counting exact matches in posture and a maximum
deviation of 30◦ in viewing angle. After generating a database of 107328 synthetic hand
views (26 allowed postures seen from 86 viewing angles at 48 rotation angles), each in-
cluding edges, lines extracted therefrom, and orientation histograms, the corresponding
input features are used as a search key. Processing time per image is 15s on a 1.2GHz PC.

The method presented in [9] processes image sequences and allows hand postures
commonly used in sign language, achieving an estimated person-dependent accuracy
of 10% in finger flexion and 15◦ in viewing angle. The space of viewing angles and
allowed postures is represented by 60 distinct Active Appearance Models (AAMs) that
are extended to track translational motion. To narrow the search space per frame and
thereby stabilize the system, transitions are only possible between models correspond-
ing to anatomically similar postures. The AAM training data comprises manually la-
beled sequences of real images featuring a single person’s hand. The hand must be suf-
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ficiently close to the camera to yield reliable texture information. Views from the finger
or wrist direction, which naturally exhibit less texture, are not supported. Processing
speed is 4 fps on a 1GHz PC.

Several approaches limit the degree of self-occlusion in the input images
[4,5,10,11,12], recognizing only a subset of all common hand postures. Methods that
iteratively refine a state estimate typically require the hand to assume a specific ini-
tialization posture in the first frame [12,13,7]. Except for [6], all above systems are
susceptible to registration errors since they only pursue a single posture estimate at a
time, not accounting for ambiguities in feature space.

3 System Overview

Fig. 1 shows an overview of the system. The user wears a cotton glove equipped with
six differently colored visual markers, five covering approx. half of each finger and
the thumb, and another on the back of the hand. This allows to extract descriptive and
stable 2D features from a monocular view. The markers’ geometry lends itself to an
elliptical approximation in the image plane, resulting in a very compact representation.
Hand posture recognition is performed by matching a synthetic hand model featuring
identical markers to minimize deviation in feature space.

In a preparation phase the hand model is used to generate a large number of postures
seen from many different view angles. Each posture, together with the corresponding
2D features extracted from the synthetic view, is stored in a database. For evaluation we
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2D Features

Extraction of
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3D Hand Model

    Candidates
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Fig. 1. System overview



Visual Hand Posture Recognition in Monocular Image Sequences 569

used a database size of 2.6 million entries. This does not include rotation in the image
plane, which is computed online.

Posture recognition is performed by using the 2D features extracted from the input
images as a key for querying the database. For each frame a fixed number of N postures
whose features have high similarity to the extracted features are retrieved. This candi-
date space is then searched for a sequence that maximizes continuity in both posture
and feature space. Spline interpolation between successive frames, considering match
quality in each, finally yields a smooth posture sequence not restricted to the discretized
posture space of the database.

4 Hand Model

Regarding possible configurations of fingers and thumb, the human hand has 21
DOF [14]. Each finger possesses one DOF for each of its joints plus a forth DOF for
sidewise abduction. The thumb requires five DOF due to its greater flexibility. Our hand
model reduces this to seven DOF by assuming dependencies between a finger’s joints.
Fore to little finger are modeled by a single parameter each, ranging from 0.0 (fully
outstretched) to 1.0 (maximum bending). The thumb is modeled similarly, using two
additional parameters to reflect its flexibility. For a posture P the seven bending para-
meters are denoted by BP.

Besides dealing with finger bendings the model also handles a posture’s viewing an-
gle, i.e. the hand’s orientation in space. On the surface of an imaginary sphere around
the hand (called the view sphere), each point corresponds to a specific view onto the
hand. A view point is thus characterized by a latitude vlat and a longitude vlon. Addi-
tionally, for each view point a camera (or hand) rotation vrot is possible. For a posture P
these three angles are indicated by V P.

In summary, the model parameters for each posture P comprise ten values and are
denoted by P = 〈BP,V P〉. For a given posture P the corresponding synthetic hand image
is rendered using OpenGL, modeling finger phalanges as simple cylinders, joints as
spheres, and the palm as a combination of several polygons.

4.1 Posture Difference

Besides describing postures and visualizing them, the hand model offers an elegant way
to express the difference between two postures. A mapping Ψ : 〈BP,V P〉 �→ 〈cP

0 , . . . ,c
P
6 〉

transforms the hand model parameters P to seven coordinates in space relative to the
center of the palm. c0 to c4 represent the positions of the five finger tips. c5 and c6 are
the coordinates of two additional “fingers” above the back of hand and below the wrist
as shown in Fig. 2 (a), capturing the orientation of the hand, i.e. the view angles.

The difference ΔP between two postures Q and R is then defined as:

ΔP(Q,R) � Ψ(BQ,V Q)−Ψ(BR,V R) �
6

∑
k=0

|cQ
k − cR

k |2 (1)

where | · | denotes the Euclidean distance. Fig. 2 (b) visualizes these distances.
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(a) additional coordinates (b) two postures and their pairwise connected coordinates

Fig. 2. Posture difference

5 2D Features

In every input frame color-based segmentation is performed to detect the markers.
While this is trivial for synthetic images, real-life images may yield several candidates
per marker. Disambiguation is performed by pursuing multiple hypotheses over time,
computing plausibility scores based on the candidates’ geometry and their continuity in
feature space. The winner hypothesis is chosen only at the end of the sequence, exploit-
ing all available information. A detailed description of multiple hypotheses tracking can
be found in [1].

To reduce the effects of noise and to minimize memory requirements, each detected
marker k is approximated by an ellipse Ek, specified by area f , center m, radii a and b,
and orientation o, i.e.: Ek = 〈 fk,mk,ak,bk,ok〉.

For invisible markers f is zero, all other features are undefined. To achieve translation
independence, all centers mk are specified relative to the center of gravity (COG) of all
visible marker regions. Furthermore, area fk is normalized by n2 = ∑k fk. Distances
and lengths are normalized by n1 =

√
n2. This provides independence of the distance

between hand and camera, as well as camera resolution. Thus, for each input frame I
the feature set FI describing the six markers is given by FI = 〈EI

0,E
I
1, . . . ,E

I
5〉.

6 Static Posture Recognition

This stage extracts a set of N plausible postures from the database for each input image,
where N lies in the range of approx. 100 to 1000. A further high level stage will resolve
ambiguities by considering all generated candidates for successive input images.

6.1 Appearance Database

A database entry contains the hand model parameters 〈BP,V P〉 for a posture P along
with the features FP that were extracted from the corresponding synthetic image. The
set B = {BP|P ∈ DB} of all database postures’ finger bending parameters was defined
by selecting eight bending values for the thumb, seven for fore and middle finger each,
plus six values each for ring and little finger, totaling 14,112 postures per view.

For the set V = {V P|P ∈ DB} of all database postures’ view points, angles in steps
of 18◦ have been chosen. Special care has to be taken at the view sphere’s poles, where
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a change of longitude resembles a rotation (an effect called gimbal lock), so vlon = 0 for
vlat = ±90. Rotation vrot is set to zero for all database postures. Thus V contains these
triples of 〈vlat,vlon,vrot〉:

V = {〈18i,18 j,0〉 | i, j ∈Z ∧ −5 < i < 5 ∧ 0≤ j < 20} ∪ {〈±90,0,0〉} (2)

Because a rotation will leave the feature ellipses’ areas as well as their relative distances
unchanged, vrot can be reconstructed before comparing database and input features.
With |V | = 182 the database contains D = 2,568,384 entries. Considering rotations in
steps of 18◦ a total of 51,367,680 postures can be recognized by the system.

In order to speed up database retrieval a B�-like tree of height six with a fixed branch-
ing factor is used. Only fk is considered, so the tree’s depth equals the number of mark-
ers. The branching intervals at each node are non-overlapping, but if a query is within
a certain range of an interval border, traversal continues in the neighboring subtree as
well. The standard deviation of the interval’s elements is used to quantify this range.

6.2 Feature Rotation

Let Fex be the features extracted from the current input image and Fdb those of a data-
base candidate provided by the search tree. Like for all database entries, vdb

rot = 0. Let
φ(p,α) denote the rotation of point p by α. We define the rotation α̂(Fex,Fdb) that
estimates vdb

rot with respect to Fex by

α̂(Fex,Fdb) � argmin
α

{
∑
k

f db
k · f ex

k ·
∣∣∣φ(mdb

k ,α)−mex
k

∣∣∣2} (3)

Due to weighting each summand by the product of the corresponding areas, bigger
ellipses have more influence on the result than small ones.

Graphically, the two feature sets are aligned to their COGs and rotated until the
sum of squared distances between corresponding ellipses, weighted by the product of
their normalized area, is minimal. Since the rotation is actually a camera rotation, it
propagates directly from features to postures. In the following, Fdb is assumed to be the
database features rotated according to (3).

6.3 Feature Difference

Searching the database for the N feature sets that are most similar to the extracted fea-
tures Fex requires to compute a scalar feature difference ΔF

(
Fex,Fdb

)
that quantifies

the similarity between Fex and a set of database features Fdb provided by the search
tree. We use eight approximately equispaced points arranged counterclockwise on the
ellipse’s border (four of which lie at the intersection with the primary and secondary
axes) and compute the sum of squared distances between these points for two corre-
sponding ellipses Eex

k and Edb
k . Of the eight possible mappings between both sets of

points the one that minimizes this sum is used. This defines a geometric difference
measure ΔE(Eex

k ,Edb
k ).

For f ex
k = f db

k = 0 we define ΔE = 0. If f ex
k > 0∧ f db

k = 0 the affected marker in
the database posture is made visible by not rendering any other component of the hand
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model (this is done offline). The now visible marker’s COG is then used in place of the
eight border points to compute ΔE . If f ex

k = 0∧ f db
k > 0 the database is searched for a

posture Q that differs from Pdb only in the bending of the affected finger, and for which
fk is minimal or zero (again this happens offline). ΔE for marker k is then computed
between Q and Pdb. In general, if a marker’s visibility differs between Fex and Fdb, the
visible marker’s area will be small since the search tree returns only candidates with
f db
k ≈ f ex

k ∀ k.
In order to favor shape similarity over position congruence a weighting of ΔE by the

difference of the ellipses’ area is performed. The feature difference is thus defined as

ΔF(Fex,Fdb) � ∑
k

ΔE(Eex
k ,Edb

k ) · (1 + | f ex
k − f db

k |) (4)

When querying the database the search tree returns M entries, where N &M & D.
ΔF is computed for all M entries to find the N that best match Fex, which form the set
of hypotheses for the considered frame.

7 Posture Sequence Recognition

The recognition of posture sequences is based upon the hypotheses provided by the
static recognition stage described in the previous section. It computes the actual recog-
nition result and can also be used to optimize system parameters by synthetically gen-
erating input data for which ground truth is known. Fig. 3 shows a schematic overview.

Features Extraction3D Hand Model

RecognitionOptimization

Static Recognition

Disambiguation

Postures SmoothingPosture Differences

Postures
Input

Recognized
Postures

Synthetic
Images

Real−life
Images

Features
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Postures

Recognized PosturesAccuracy Assessment

− Postures
− Features

Database:

Monocular
Camera

Fig. 3. Posture sequence recognition and parameter optimization

7.1 Disambiguation

For a sequence I(0), . . . , I(T − 1) of input images, the corresponding features
Fex(0), . . . ,Fex(T − 1) are extracted, for which the static recognition stage generates
the sets of hypotheses H(0), . . . ,H(T − 1), each containing N possible database fea-
tures and postures, i.e. H(t) = 〈h0(t), . . . ,hN−1(t)〉 with hn(t) = 〈Fdb

n (t),Pdb
n (t)〉 for

t = 0, . . . ,T −1 and n = 0, . . . ,N−1.
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At 25 fps, T = 75 for a three second input sequence. We use N = 200, resulting in
NT ≈ 3.8 ·10172 posture sequence in hypothesis space, and apply the Viterbi algorithm,
which scales with O(T N2). The step metric σ(hi(t − 1),h j(t)), which represents the
cost of choosing hypothesis h j(t) given that hi(t−1) is its predecessor, is defined as

σ(hi(t−1),h j(t)) � (1− γ) ·max
{

ΔP

(
Pdb

i (t−1),Pdb
j (t)
)
−Δ�,0

}
+

γ ·ΔF

(
Fex(t),Fdb

j (t)
)

for t = 1, . . . ,T −1 (5)

The step metric combines the feature difference ΔF between a hypothesis and the corre-
sponding extracted features and the posture difference ΔP between successive hypothe-
ses, thus favoring a high feature similarity as well as temporal continuity of postures.
Δ� is a small, positive, empirically determined value subtracted from ΔP in order to
allow small posture deviations. γ weights the feature and posture differences and was
optimized iteratively using sequences of synthetic images provided by the hand model
(cf. left part of Fig. 3).

The path metric π(hi(t)) is the sum of step metrics along the path leading to hi(t)
and is initialized to

π(hi(0)) � γ ·ΔF(Fex(0),Fdb
i (0)) (6)

The path that minimizes π(h) for h ∈ H(T − 1) constitutes the resulting posture se-
quence S(I(0), . . . , I(T − 1)) = 〈h(0), . . . ,h(T − 1)〉. Since this is only computed after
several seconds of input video have been observed, posture errors in individual frames
are retrospectively corrected as soon as they become apparent in the light of additional
observations.

7.2 Smoothing

The sequences provided by the disambiguation stage only contain postures from the
database, i.e. from a finite, discrete subset of the infinite space of continuous postures.
In order to bridge these jumps and to alleviate small recognition errors, the sequence is
smoothed, which happens individually for each bending and view angle parameter.

Recall that h(t) = 〈Fdb(t),Pdb(t)〉 and Pdb(t) = 〈BPdb(t),V Pdb(t)〉. Let r0, . . . ,rR−1 be
the indices of the most reliable hypotheses from 〈h(0), . . . ,h(T − 1)〉. Starting with
r0 = 0 the next most reliable hypothesis for h(ri) is h(ri+1) ∈ {h(ri +α), . . . ,h(ri +β)}
with minimal ΔF(Fex(ri+1),Fdb(ri+1)). Appropriate values are α = 1 and β = 4.

Let ρ(t) denote a hand model parameter in Pdb(t). For {〈ri,ρ(ri)〉|i = 0, . . . ,R−
1} the system computes the interpolating cubic spline s(t), i.e. s(ri) = ρ(ri) for i =
0, . . . ,R− 1. The smoothed sequence of hand model parameters is then given by
s(0), . . . ,s(T −1). Performing this interpolation individually for each hand model para-
meter yields the smoothed sequence of postures.

8 Evaluation

We evaluated the system’s performance on synthetic and real-life images. Using a stan-
dard PC with a 1.6 GHz CPU and 1.25 GB RAM, processing speed is approx. 5 fps.



574 T. Dick, J. Zieren, and K.-F. Kraiss

8.1 Synthetic Input

Synthetic input images offer the opportunity to measure recognition precision quan-
titatively. We generated 500 random sequences that evenly cover the posture space,
each consisting of 75 consecutive postures featuring continuous changes in both BP

and V P. The corresponding images have been distorted by blanking 3×3 tiles overlap-
ping by 1 pixel with a probability pnoise as illustrated in Fig. 4. The results are listed
in Tab. 1, where “Posture Difference” refers to (1), “Fingertip Distance” denotes the
average Euclidean distance (in cm) of corresponding fingertips without consideration
of view angles, and “Finger Bending Deviation” refers to the posture parameters B (cf.
Sec. 4). These results demonstrate that the system is robust to significant noise.

Fig. 4. Noise levels pnoise = 0%,5%,10%,20% (left to right; image resolution 136×105)

Table 1. Recognition accuracy for synthetic input

pnoise Posture Difference Fingertip Distance Median of Finger Bending Deviation
average median average median th1 th2 th3 ff mf rf lf

0% 111.542 74.642 1.940 1.782 0.227 0.257 0.233 0.075 0.077 0.087 0.099
5% 108.506 75.912 1.952 1.795 0.224 0.255 0.230 0.080 0.077 0.084 0.097

10% 112.841 76.600 1.965 1.815 0.228 0.262 0.248 0.074 0.077 0.087 0.100
20% 144.636 97.338 2.272 2.102 0.241 0.242 0.257 0.105 0.096 0.100 0.134

8.2 Real-Life Input

Real-life performance has been tested on sequences of signed numbers. Fig. 5 depicts
some examples, each showing a magnification (220× 145) of the actual input image
(360× 288) and the recognized posture. By visual comparison match quality is high.
Fig. 5 (d) illustrates the system’s reaction to marker detection failures.

9 Discussion and Conclusion

We have presented a method that recognizes hand postures (finger bendings and view
angle) from monocular image sequences. It imposes no posture restrictions and requires
no initialization or person-dependent training. Performing appearance-based matching
by searching a database, coupled with a Viterbi search in posture space, provides an
efficient means of handling ambiguities.

Our experiments show promising results. Future work will primarily focus on
processing speed, which can be increased by removing anatomically impossible pos-
tures and views from the database, and by improving the search tree’s efficiency.
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(a) (b) (c) (d)

Fig. 5. Real-life examples (for (d) the back-of-hand marker has been removed manually)
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Abstract. Accurate markerless motion capture systems rely on images
that allow segmentation of the person in the foreground. While the ac-
curacy of such approaches is comparable to marker based systems, the
segmentation step makes strong restrictions to the capture environment,
e.g. homogenous clothing or background, constant lighting etc. In our ap-
proach a template model is fitted to images by an Analysis-by-Synthesis
method, which doesn’t need explicit segmentation or homogenous cloth-
ing and gives reliable results even with non-static cluttered background.

1 Introduction

Motion capture and body pose estimation are very important tasks in many
applications. Motion capture products used in the film industry or for computer
games are usually marker based to achieve high quality and fast processing. A
lot of research is devoted to make markerless motion capture applicable. Accu-
rate markerless systems rely on images that allow segmentation of the person in
the foreground. While the accuracy of such approaches is comparable to marker
based systems [13,5], the segmentation step makes strong restrictions to the
capture environment, e.g. homogenous clothing or background, constant light-
ing, camera setups that cover a complete circular view on the person etc. Most
systems create first a visual hull from the segmented images and fit a template
model afterwards by minimizing an objective function.

Our approach also fits a template model by minimizing correspondences, how-
ever it doesn’t need explicit segmentation or homogenous clothing and gives re-
liable results even with non-static cluttered background. Additionally, less views
are sufficient, as the underlying motion and body model is directly incorporated
in the image processing step. While motion capture from stereo depth images
already allows such complex environments [8], we present here results from a
single camera view, that show the efficiency of our approach even with complex
movements.

Capturing human motion by pose estimation of an articulated object is done in
many approaches and is motivated from inverse kinematic problems in
robotics[10]. Solving the estimation problem by optimization of an objective
function is also very common [13,9,11]. Silhouette information is usually part of
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this function, that tries to minimize the difference between the model silhouette
and the silhouette of the real person either by background segmentation [13,11]
or image gradient [12,9].

Matching feature points from one image to the next in a sequence is also a
useful cue to estimate the body pose as done in [3]. However this cue alone will
introduce drift, because an error in the estimation accumulates over time.

The above mentioned approaches to markerless motion capture all have in
common, that the underlying movement capabilities of a human (body parts
are connected by joints) are formulated directly in the optimization, while the
degrees of freedom and the projection model differ. In [3] a scaled orthographic
projection approximates the full perspective camera model and in [13] the min-
imization of 2D image point distances is approximated by 3D-line 3D-point
distances.

While some kind of template body model is common in most approaches,
adaption of body part sizes of these template during the motion estimation is also
possible like in [12]. Others assume the body model is known and fitted offline
beforehand. This reduces the degrees of freedom (DOF) for the optimization
significantly and allows fast and accurate estimation. In most applications it is
possible to measure the size of the person before the capturing, like in sport
motion analysis or in capturing motion for movies or video games.

Our approach incorporates silhouette information and point tracking using
the full perspective camera model. Different cues result in different types of
optimization equations. Our method minimizes errors, where they are observed
and makes no approximations to the movement or projection model. Additionally
it allows analytical derivations of the optimization function, which speeds up
the calculation by more accuracy and less function evaluations than numerical
derivatives. Therefore the approach is fast enough for real-time applications in
the near future as we process images already in less than a second.

2 Body and Movement Model

Depending on the kind of work different body models are used for the estimation
process. The models range from simple stick figures [3] over models consisting
of scalable spheres (meta-balls) [12] to linear blend skinned models [2].

We use models with movement capabilities as defined in the MPEG4 standard.
However not all 180 DOF are estimated, but a subset of up to 30 parameters.
The MPEG4 description allows a simple change of body models and reanimation
of other models with the captured motion data. An example of one model used
in this work is shown in (1). The model for a specific person is obtained by
silhouette fitting of a template model as described in [7]. The MPEG4 body
model is a mixture of articulated objects. The movement of a point, e.g. on the
hand, may therefore be expressed as a concatenation of rotations [8]. As the
rotation axes are known, e.g. the flexion of the elbow, the rotation has only one
degree of freedom (DOF), the angle around that axis. In addition to the joint
angles there are 6 DOF for the position and orientation of the object within
the global world coordinate frame. For an articulated object with p joints the
transformation may be written according to [8] as:
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Fig. 1. The body model with rotation axes shown as arrows

f(θ, x) =(θx, θy , θz)T + (Rx(θα) ◦ Ry(θβ) ◦ Rz(θγ) ◦ Rω,q(θ1) ◦ · · ◦Rω,q(θp)) (x)
(1)

where (θx, θy, θz)T is the global translation, Rx, Ry, Rz are the rotations around
the global x, y, z-axes with Euler angles α, β, γ and Rω,q(θi), i ∈ {1..p} denotes
the rotation around the known axis with angle θi. The axis is described by the
normal vector ωi and the point qi on the axis with closest distance to the origin.

Equation (1) gives the position of a point x on a specific segment of the body
(e.g. the hand) with respect to joint angles θ and an initial body pose.

The first derivatives of f(θ,x) with respect to θ give the Jacobian matrix
Jki = ∂fk

∂θi
. The Jacobian for the movement of the point x on an articulated

object is

J =

⎡⎣1 0 0
0 1 0 ∂f

∂θα

∂f
∂θβ

∂f
∂θγ

∂f
∂θ1
· · · ∂f

∂θp

0 0 1

⎤⎦ (2)

with the simplified derivative at zero:

∂f

∂θi

∣∣∣∣
0

=
∂Rω,q(θi)

∂θi

∣∣∣∣
0

= ωi × (x− qi) = ωi × x− ωi × pi (3)

where pi is an arbitrary point on the rotation axis. The term ωi×pi is also called
the momentum. The simplified derivative at zero is valid, if relative transforms
in each iteration step of the Nonlinear Least Squares are calculated and if all
axes and corresponding point pairs are given in world coordinates.

2.1 Projection

If the point x = (xx, xy, xz)T is observed by a pin-hole camera and the camera
coordinate system is in alignment with the world coordinate system, the camera
projection may be written as:

p(x) =
(
sx

xx

xz
+ cx

sy
xy

xz
+ cy

)
(4)
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where sx, sy are the pixel scale (focal length) of the camera in x- and y-direction,
and (cx, cy)T is the center of projection in camera coordinates.

We now combine f(θ,x) and p(x) by writing g(sx, sy, cx, cy,θ,x) = p(f(θ,x)).
The partial derivatives of g can now be easily computed using the chain rule.

The resulting Jacobian reads as follows:

J =
[

∂g
∂sx

∂g
∂sy

∂g
∂cx

∂g
∂cy

∂g
∂θx

∂g
∂θy

∂g
∂θz

∂g
∂θα

· · · ∂g
∂θp

]
=

[
f(θ)x

f(θ)z
0 1 0 sx

f(θ)z
0 sx

−f(θ)x

(f(θ)z)2
∂gx

∂θα
· · · ∂gx

∂θp

0 f(θ)y

f(θ)z
0 1 0 sy

f(θ)z
sy

−f(θ)y

(f(θ)z)2
∂gy

∂θα
· · · ∂gy

∂θp

]
(5)

and

∂g

∂θi
=

⎛⎜⎜⎝
∂(sx

fx
fz

)
∂θi

∂
(

sy
fy
fz

)
∂θi

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎝
sx

(
∂fx
∂θi

f(θ)z−f(θ)x
∂fz
∂θi

)
(f(θ)z)2

sy

(
∂fy
∂θi

f(θ)z−f(θ)y
∂fz
∂θi

)
(f(θ)z)2

⎞⎟⎟⎟⎠ (6)

The partial derivatives ∂f
∂θi

, i ∈ {α, β, γ, 1, .., p} are given in equation (2) and
f(θ) = (fx, fy, fz)T is short for f(θ,x). Note that f(θ) simplifies to x, if θ is
zero.

We minimize the distance between the projected 3D model point with its
corresponding 2D image point, while in [13] the 3D-difference of the viewing ray
and its corresponding 3D point is minimized. The minimization in 3D space is
not optimal, if the observed image positions are disturbed by noise, as shown in
[15], because for 3D points, which are farther away from the camera, the error in
the optimization will be larger as for points nearer to the camera, which leads to
a biased pose estimate due to the least squares solution. In [15] a scaling value
was introduced, which down weights correspondences according to their distance
to the camera, which is in fact very close to the equation (5).

Another relation exists to the work of [1], where the first 10 partial deriva-
tives of Equation (5) are used for estimating the internal and external camera
parameters by nonlinear optimization. This allows full camera calibration from
(at best) five 2D-3D correspondences or pose from 3 correspondences. An im-
plementation of it with an extension to the Levenberg-Marquardt algorithm[4],
which ensures an error decrease in each iteration, is available for public in our
open-source C++ library [6].

3 Estimating Body Pose

Assume a person, whose body model is known, is observed by a pinhole camera
with known internal parameters at some time t resulting in an image It. Let
X = {x0,x1, ..,xN} be the set of model points and X ′ = {x′

0,x
′
1, ..,x

′
N} the

set of their projected image points. Additionally assume that the pose of the
person is known at that time, such that the projected body model aligns with
the observed image as in the second image of figure 4. If the person now moves
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a little and an image It+1 is taken, it is possible to capture the movement by
estimating the relative joint angles of the body between the frames It and It+1.
If the image points X̂ ′ in It+1 that correspond to X ′ are found, e.g. by some
matching algorithm, the pose estimation problem is to find the parameters θ̂
that best fit the transformed and projected model points to X̂ ′, which can be
formulated as follows:

θ̂ = arg min
θ

N∑
i=1

∣∣g(θ,xi)− x̂′
i

∣∣2 (7)

This problem is known as Nonlinear Least Squares and can be solved by Newton’s
Method [4]. We use the Gauss-Newton Method [4], which doesn’t require the the
second derivatives of g(θ,xi).

The solution is found by iteratively solving the following equation:

θt+1 = θt − (JTJ)−1JT
(
G(θt,X)− X̂′

)
(8)

Here the Jacobian matrix J consists of all partial derivatives for all N points,
where the Jacobian for a single point is given in equation (5). In case of conver-
gence the final solution θ̂ is found.

To get the initial pose, the user has to position the model manually. Because
the depth is difficult to measure from a single view, markers on the floor give
the user helpful information, where to position the model. Small errors in the
manual positioning are not crucial, because the silhouette correspondences are
correcting small errors.

3.1 Tracking of Image Features

For the estimation from above it is necessary to have correspondences between
2D image points and 3D model points. These can be calculated by tracking 2D
features from one image to the next. Because we assume that the initial pose of
the person is known as in figure 4, it is possible to get the relation between the
image of the real person and the 3D model point by intersection of the feature’s
viewing ray and the 3D model surface using the known projection matrix. Then
the same feature point has to be found within the next image and gives the
necessary 2D image 3D model point correspondence. We use corners, which are
tracked with the KLT feature tracker [14]. Tracking point features allows us
to capture motion, which wouldn’t be possible from the silhouette alone, e.g.
an arm moving in front of the body like in figure 2. However as also visible,
the motion estimation is not very accurate, because the assumption, that the
correspondence of model and image point is given by projection of the model
point, leads to an error accumulation over time. As visible the elbow position
drifts away to the left. To stabilize the estimation we combine the corner tracking
with silhouette information as described in the next section.

Because the movement of the arms and legs is usually larger than of the torso,
we distribute feature points equally on the body of the person, such that there
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Fig. 2. Tracking of point features (Cross marks). Boxes indicate a tracked corner. The
movement of a corner over the last frames is shown as a black line.

are enough correspondences for estimation of the arm joint angles. Limiting the
number and distributing the position of the tracked points is also necessary for
fast computation. We achieve this by projecting the 3D model into the real image
using OpenGL similar to [8], which gives directly the relation of feature points
and visible body segments. In this way we can distribute the feature points
equally over the visible segments.

4 Correspondences by Silhouette

To compensate the drift we add silhouette information to our estimation. This
is achieved by calculating additional 2D-3D correspondences for the model sil-
houette and the silhouette of the real person. In contrast to [13] we don’t utilize
explicit segmentation of the images in fore- and background, but use the pre-
dicted model silhouette to search for corresponding points on the real silhouette.

Previous work like [9] already took this approach by searching for a maxi-
mum grey value gradient in the image in the vicinity of the model silhouette.
However we experienced that the gray value gradient alone gives often erroneous
correspondences, especially if the background is heavily cluttered and the person
wears textured clothes.

Therefore we also take color information into account. As the initial pose
is known, it is possible to calculate a color histogram for each body segment.
We use the HSL color space to get more brightness invariance. This reference
histogram is then compared with a histogram calculated over a small window
on the searched normal. In figure 3 the normal is shown and the rectangular
window, which is used for histogram and gradient calculation. The expectation
is, that the histogram difference changes most rapidly on the point on the normal
of the correct correspondence, where the border between person and background
is. The type of combination function was chosen by analyzing the developing of
gradient and histogram values over 15 normals in different images. The actual
values of the combination were then evaluated experimentally trying different
values and counting the number of correct correspondences manually for about
100 silhouette points in 4 different images.

A rather difficult case is shown in figure 3 middle, which shows a plot of the
maximum search along the normal of figure 3 left. The grey value gradientG(x) is



582 D. Grest, D. Herzog, and R. Koch

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

−30 −20 −10  0  10  20  30

G(x)
H(x)

G(x)+H(x)+3G(x)H(x)

Fig. 3. Left: Correspondence search along the normal. Middle: The gradient (G(x))
and histogram (H(x)) values along the normal. Correct correspondence at 0. Right:
Silhouette correspondences.

shown as a solid line, the gradient of the histogram differences H(x) as points and
the combination with lines and points. As visible, the grey value gradient alone
would give a wrong correspondence, while the combination yields the correct
maximum at zero. The correspondences found in this way could be integrated
into the estimation the same way as the correspondences from feature tracking.
However, for most silhouette parts a 2D-3D point correspondence isn’t correct,
because of the aperture problem. For parallel lines it isn’t possible to measure
the displacement in the direction of the lines. Therefore we use a formulation
that only minimizes the distance between the tangent at the model silhouette
and the target silhouette point, resulting in a 3D-point 2D-line correspondence
as visible in figure 3 right.

For a single correspondence the minimization is

min
θ

[
(g(θ,x)− x′)T n− d

]2
(9)

where n is the normal vector on the tangent line and d is the distance between
both silhouettes, which can be computed as d = (x̂′ − x′)n. The point on the
image silhouette x̂′ is the closest point to x′ in direction of the normal. In this
formulation a movement of the point perpendicular to the normal will not change
the error. We calculate the normal vector as the projected face normal of the
triangle, which belongs to the point x′.

For a set X with N points and projected image points X′ the optimal solu-
tion is:

θ̂ = argmin
θ

N∑
i=1

[
(g(θ,xi)− x′

i)
T ni − di

]2

This is again a Nonlinear Least Squares problem and can be solved as above
with the following Jacobian:

Jik = (
∂g(θ,xi)

∂θk
)T ni

Note that each of these correspondences gives one row in the Jacobian.
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Equation (9) is an implicit description of a 2D line. The same formulation is
used in [3], where the normal of the line is the image gradient and the difference d
is the grey value difference. The equations for the articulated object are derived
using twists, but lead to the same equations and are also solved with the Gauss-
Newton method. However in [3] the perspective projection was approximated by
a scaled orthography.

5 Results

Correspondences from point tracking and from silhouette difference are combined
within the optimization by joining both correspondence sets together. Because
we estimate pose with different correspondences, weights are added in the Least
Squares steps. That way it is possible to ensure a similar influence of 3D-2D
point correspondences and 3D-point 2D-line correspondences. In the following
sequences 19 DOF were estimated. Five for the global position and rotation (ro-
tation back and forth is not estimated), one for abduction of the whole shoulder
complex, three for each shoulder, one for the elbow and two for each leg (twist-
ing and abduction). Additionally the estimation was damped by a regularization
term, such that a large change of joint angles in one iteration is unlikely, if only a
few correspondences affect the joint. This way no correspondences for a segment
lead to no change for that joint.

Figure 4 shows results for a simple movement, that consists of a rotation of
the upper body and stepping aside afterwards. The person is wearing a checkered

Fig. 4. Original image and estimated model pose with 19 DOF
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Fig. 5. Original image and estimated sequence with 19 DOF

shirt that exhibits lots of disturbing gray value gradients. The estimated body
pose is shown in white as superimposed on the real camera image. As visible,
the movement could be captured successfully from a single camera view in spite
of the unknown cluttered background and the inhomogeneous clothing.
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Results for a more complex movement for a different person are shown in
figure 5. The person is wearing a T-shirt and the background is non-static and
cluttered again. Movement between frames is quite large, because capturing was
done with 7 fps, while the person was moving at normal speed. Even though
the shoulder and the upper arm are completely hidden during some frames, the
movement could be captured correctly.

6 Conclusions

We showed how estimation of human movement can be derived from point trans-
formations of an articulated object. Our novel approach uses a full perspective
camera model and minimizes errors where they are observed, i.e. in the image
plane. That way we overcome limitations and approximations of previous work.
No explicit segmentation of the images is needed. Correct correspondences are
found in spite of cluttered non-static background and normal clothing. Motion
with 19 DOF could be estimated that even contained partially hidden body
parts. Movements parallel to the optical axis of the camera are not possible to
estimate accurately from a single view, e.g. movement of the arms back and forth.

The estimation method is fast enough to fulfill real-time conditions in the
near future as processing of one frame is done in less than a second. Ongoing
work is to combine this approach with body pose estimation from depth images.
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uncertainty and pose estimation in 3d euclidian space. Proceedings DSAGM, pages
76–84, 2005.



Pose Estimation from Uncertain Omnidirectional
Image Data Using Line-Plane Correspondences

Christian Gebken, Antti Tolvanen, and Gerald Sommer

Institut für Informatik, CAU Kiel
Christian-Albrechts-Platz 4, 24118 Kiel, Germany
{chg, ant, gs}@ks.informatik.uni-kiel.de

Abstract. Omnidirectional vision is highly beneficial for robot naviga-
tion. We present a novel perspective pose estimation for omnidirectional
vision involving a parabolic central catadioptric sensor using line-plane
correspondences. We incorporate an appropriate and approved stochastic
method to deal with uncertainties in the data.

1 Introduction

Roughly speaking, rigidly moving an object in 3D such that it comes into agree-
ment with 2D-sensory data of a camera, is called 2D-3D pose estimation [3]. It
is a well-studied subject in the case of pinhole cameras for which sophisticated
methods exist, see e.g. [13].

Single viewpoint catadioptric vision sensors combine a conventional camera
with one or two mirrors and provide a panoramical view of 360◦. Our device is a
folded system consisting of two parabolic mirrors and a lens to provide a scaled,
approximately orthographic projection from the main mirror. It can equivalently
be treated as a single mirror device, see Nayar et al [10].

The most significant advantages of omnidirectional vision are related to navi-
gation. For example, methods of movement estimation from triangulation, topol-
ogy map and feature flow based methods [1,4,6] for localization give good results
on the estimation of movements between frames and the localization from the
visual information. Apart from those methods, 2D-3D pose estimation gives the
complete pose information, that is more than a 2D-position in a plane. Since
it includes all six possible degrees of freedom (DOF), it can account for effects
like pitch, roll and yaw. Therefore, it represents an appropriate method for nav-
igation, also on uneven surfaces. Furthermore, in the case of omnidirectional
pose estimation, the object does not need to be observed within some narrow
spatial angle, but may surround the visual sensor itself. This implies a number
of advantages. First, an object remains on the image plane under most move-
ments, which is desirable for tasks such as tracking. Second, the accuracy of
the estimated pose should be superior, as for example in triangulation, which
performs best if the used landmarks are seen at right angles. Still, surprisingly
little research was done on omnidirectional pose estimation.

Our objective was to develop accurate pose estimation for omnidirectional
vision given imprecise image features, i.e. 2D-sensory data. The motivation was

K. Franke et al. (Eds.): DAGM 2006, LNCS 4174, pp. 587–596, 2006.
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to take the opportunity to extend approved pinhole methods to the omnidi-
rectional case by exploiting simple existing geometrical relations for parabolic
mirrors. The stochastic is one of the fundamental aspects of this work; to account
for invariable uncertainties in observational data we consequently decided on a
least squares adjustment parameter estimation. The concept of our approach is
a well-tried amalgamation of geometry with stochastic via Geometric Algebra.

One assumption we make is to have 3D-models of the interesting objects we
observe in the images. This can be an ordinary object like a table or it is a
model describing the environment. Secondly, we assume to know the one-to-one
correspondences between the model features and the image features.

Note that with this contribution we extend our previous work by using line
models instead of point models. The matching image entities are therefore lines.
Recognition and localization is simpler for lines than for points, since those are
intrinsically higher-dimensional structures. Localization is more precise for lines,
as well. Regarding regular structures, like a skyscraper, it is more efficient to have
line models than to store the corners of each single window. We can state that
the existence of key points, e.g. corners, mostly inheres with the existence of
lines which are then the preferable entities.

In the next section, we discuss the pose estimation and all related topics
in some detail. In section 3 we present experimental results. Finally, we give
conclusions in section 4.

2 Omnidirectional 2D-3D Pose Estimation

In general, perspective 2D-3D pose estimation consists of determining the orien-
tation and position of an internally calibrated camera [5], given a 3D-model of an
object in a scene and a set of 2D-correspondence features (points, lines, curves)
from an image of that scene. The model serves as a reference to an external
(world) coordinate system. If we determine the model’s position and orientation
with respect to the camera coordinate system, we are able to infer the pose of
the camera, given by a rigid body motion (RBM). Specifically, we estimate the
RBM, such that the model lines come to lie on the projection planes of the
underlying image lines.

We use the Geometric Algebra G4,1 of the conformal embedding of Euclidean
3D-space as introduced in [2,8]. A similar pose estimation could also be done
solely in Euclidian 3D-space, but we obtain certain advantages when working in
G4,1 : geometric entities as points, spheres, planes or lines and geometric oper-
ators as an inversion or an RBM are basic elements of G4,1 . They have thus a
natural representation in terms of (sparse) vectors of R25

. Moreover, incidence
relations, as needed to decide whether a line lies on a projection plane, can be
evaluated by means of bilinear algebra products. Nevertheless, for understand-
ability to unfamiliar readers, and since it is not the main subject of this work, we
make explicit use of Geometric Algebra in just one passage. In practice we em-
ploy the framework of Geometric Algebra throughout all steps of our method. A



Pose Estimation from Uncertain Omnidirectional Image Data 589

general introduction to the estimation of geometric entities and operators from
uncertain data using Geometric Algebra can be found in [12].

Our method consists of three steps: from those pixels corresponding to model
lines, we compute the projection planes with associated uncertainties. In a second
step, a simple algorithm is used to do prior rotation estimation being a first and
rough guess at the rotational part of the desired RBM. As a result the model
will be aligned such that its lines are nearly parallel to the respective projection
planes. Next, an iterative method estimates the entire pose now taking also the
plane uncertainties into account.

Before we explain those steps we give an overview regarding catadioptric
imaging with a parabolic mirror.

2.1 Omnidirectional Imaging

Despite our interest in the mapping of lines to the image we begin with the
point case. The omnidirectional camera setup we consider consists of a camera
focused at infinity, which looks at a parabolic mirror centered on its optical
axis. This setup is shown in figure 1. A light ray emitted from point P that

Fig. 1. Left: Mapping (cross-section) of a point P : the image planes π1 and π2 are
identical. Right: Mapping of line L to Lπ via great circle LS on S. As an example,
scattered image data belonging to Lπ is shown.

would pass through the focal point F of the parabolic mirror M , is reflected
parallel to the central axis of the parabolic mirror, to give point p2. Since all
such reflected rays are parallel, a camera placed beneath the mirror focused at
infinity will generate a sharp image on plane π2. Here, we use the simplification
that a projection to sphere S with a subsequent stereographic projection to π1

produces an identical image on π1. Accordingly, point P maps to ps and further
to p1, see figure 1. Together with the right side of figure 1 it is intuitively clear
that infinitely extended lines form great circles on S. Moreover, a subsequent
stereographic projection, being a conformal mapping, results in circles1 on the
image plane, which are then no more concentric. For details refer to [7,14].
1 An often occurring special case is a (vertical) line parallel to the optical axis, which

is mapped to an image line, i.e. a circle with infinite radius, passing the origin F .
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Note that given image points we can apply all mentioned steps in reverse
order to obtain the corresponding projection rays. Similarly, we can compute
the corresponding projection plane from two image points, since their back-
projections on sphere S can always be taken to form a great circle, the plane of
which represents the projection plane.

Fig. 2. Pose estimation: fitting a triangle model to respective projection rays/planes
in 3D

To illustrate the whole pose estimation process consider figure 2: three im-
age points build the triangle-like2 object Tπ, which is stereographically back-
projected to TS on S. In conjunction with F , we obtain the projection rays or
planes, respectively. The correct RBM then moves the model triangle T ′, so that
either the model points comes to lie on the projection rays or in our case, the
model lines come to lie on the projection planes.

2.2 Estimating Projection Planes

In order to perform the line-plane fitting artificial plane observations are built
from our initial image point observations: for each set of image points that
corresponds to a model line, the respective projection plane is evaluated. This is
done in very much the same way as the circle estimation described in [12], where
the stochastic estimation method underlying this work applies as well. A circle
can be defined in terms of a plane, a center and a radius; the plane estimation
can thus be restricted to three components representing the normal of the circle
plane.

We assume that all image points initially have the same 2D-uncertainty given
by a 2×2 identity covariance matrix, i.e. we assume an pixel error of one in row
2 In the figure Tπ and TS are drawn as triangles, although their sides are supposed to

be arcs rather than lines.



Pose Estimation from Uncertain Omnidirectional Image Data 591

and column. Since the planes have to be estimated from the stereographically
back-projected image points, see figure 1, we must move the involved image
points to the projection sphere S. This is done by an inversion of the image
points in a certain sphere. The points thereby obtain distinct 3D-uncertainties
accounting for the imaging geometry. The mapping of a far image point to a
point close to the North Pole N of S, for example, is less affected by noise
and will thus inhere with a higher confidence, see figure 1. Mathematically, the
uncertainties are computed using standard error propagation, where we profit
from the inversion being an element of G4,1 .

Since our estimation method is capable of providing a covariance matrix re-
garding the estimated entity, we obtain a 3×3 covariance matrix for each plane.
Those are then to be reinput to our pose estimation algorithm.

2.3 Prior Model Alignment

Estimation problems mostly require a linearization of condition or constraint
functions and one usually ends up with an iterative method, as we do. This
raises the need for a sufficiently good initial estimate regarding the iterations.
The prior model alignment provides such a starting point at very low costs.
Moreover, it shortens the overall computation time. We like to rotate the model
such that the unit direction vectors {r̂1..N } of its lines lie on the respective
planes. Here, a prerequisite is to have the normal vectors {n̂1..N } of all planes
belonging to visible model lines. We search for a rotation matrix R such that
(∀i) : n̂T

i R r̂i = 0.
By Rodrigues’s formula (1840) we know that the rotation matrix R regarding

a rotation of angle θ around unit vector â = (a1, a2, a3)T can be expressed by an
exponential map of A = ((0, a3,−a2)T(−a3, 0, a1)T(a2,−a1, 0)T): R = exp(θA)
which is R = I3 + sin θA+ (1− cos θ)A2. For small angles we obtain R = I3 + θA.
With this relation and due to the skew symmetric structure of A′ = θA it is
possible to solve for a′ = (θa1, θa2, θa3)T, where each line-plane pair gives one
line n̂T

i A′ r̂i = −n̂T
i r̂i in an overdetermined system of linear equations. Every run

of this procedure yields a rotation matrix, the concatenation of which gives the
desired rotation matrix R. Once, the rotated lines are close enough to the planes
w.r.t. some threshold the procedure can be stopped.

2.4 Stochastic Estimation Method

In this section we concisely introduce our two parameter estimation methods, the
common Gauss-Markov method and the most generalized case of least squares
adjustment, the Gauss-Helmert method. Both are founded on the respective
homonymic linear models, cf. [9]. The word ’adjustment’ puts emphasis on the
fact that an estimation has to handle redundancy in observational data appro-
priately, e.g. to weight unreliable data to a lesser extend. The principle of least
squares adjustment, i.e. to minimize the sum of squared weighted errors Δyi, is
often denoted as
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i

ΔyT
i Σyi

−1Δyi −→ min , (1)

where Σyi is a covariance matrix assessing the confidence of yi.
Let {b1..N }3 denote a set of N observations. Each observation bi is associated

with an appropriate covariance matrix Σbi denoting the confidence. An entity,
parameterized by a vector p, is to be fitted to the observational data. Conse-
quently, we define a condition function g(bi, p), which is supposed to be zero
if the observations and the entity in demand fit. If we know an already good
estimate p̂ we can make a linearization yielding (∂p g)(bi,p̂)Δp + g(bi, p̂) ≈ 0,
hence with Ui = (∂p g)(bi,p̂) and yi = −g(bi, p̂): UiΔp = yi + Δyi, which ex-
actly matches the linear Gauss-Markov model. The minimization of equation (1)
in conjunction with the Gauss-Markov model leads to the best linear unbiased
estimator4. Note that we have to leave the weighting out in equation (1), since
our covariance matrices Σbi do not match the Σyi . Subsequently, we derive a
model which includes the weighting.

If we take our observations as estimates, i.e. {b̂1..N } = {b1..N }, we can make
a complete Taylor series expansion of first order at (b̂i, p̂) yielding

(∂p g)(b̂i,p̂)Δp + (∂b g)(b̂i,p̂)Δbi + g(b̂i, p̂) ≈ 0 .

Similarly, with Vi = (∂b g)(b̂i,p̂) we obtain UiΔp + ViΔbi = yi, which exactly
matches the linear Gauss-Helmert model. Note, that the error term Δyi has been
replaced by the linear combination Δyi = −ViΔbi: the Gauss-Helmert differs
from the Gauss-Markov model, because the observations have become random
parameters and are thus allowed to undergo small changes Δbi to compensate
for errors. But changes have to be kept minimal, as observations represent the
best available. This is achieved by replacing equation (1) with∑

i

ΔbT
i Σbi

−1Δbi −→ min , (2)

where Δbi is now considered as error vector. The minimization of (2) subject to
the Gauss-Helmert model can be done using Lagrange multipliers, cf. [9].

Due to outstanding convergence properties we start iterating with the Gauss-
Markov method. At the optimum we start the slower Gauss-Helmert method
which ultimately adjusts the estimate according to the given uncertainties Σbi .

2.5 Perspective Line-Plane Pose Estimation

Here we derive geometric constraint equations for the stochastic estimation
methods presented in the previous section. The respective expressions come from
the Geometric Algebra of conformal space G4,1 . A similar methodology was

3 We use the abbreviation {b1..N } for a set {b1, b2, . . . , bN}.
4 It has been shown in [9] that different approaches, namely least squares, maximum

likelihood and the linear approach, equally lead to the best linear unbiased estimator.
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chosen by Rosenhahn et al [13]. The products used in the following are the geo-
metric product, which is the main algebra product, and the outer product, which
is in no way related to the outer product of matrices. The geometric product is
denoted by juxtaposition and the outer product by ∧.

Let P be a projection plane, see section 2.2. For any line L lying on P , we have
P ∧L = 0 ∈ G4,1. A model line L′ is transformed by an RBM represented by V ,
say, via the operation V L′ Ṽ , where the reverse Ṽ is similar to conjugation in
quaternions. Therefore, if we have estimated the correct RBM V , a model line
L′ with corresponding projection plane P has to satisfy P ∧ (V L′ Ṽ ) = 0.

Due to the numerical representation of G4,1, we can identify our elements P ,
L′ and V with particular vectors p ∈ R3, l′ ∈ R6 and v ∈ R8. For example, p
simply denotes the normal vector of the plane represented by P . Moreover, each
algebra product is a bilinear function and can be formulated equivalently using
a certain tensor, cf. [12]. By contracting the constituent tensors the condition
function g of the previous section can be written in the following way

gt(p, v) :=
∑

i,j,k,l

vi vj pk l′
l
Qt

ijkl = 0 , t ∈ {1 . . . 4} . (3)

Algebraically, the constraint P ∧ L may only be nonzero in four of its 25 = 32
components, i.e. we have t ∈ {1 . . .4}. The observations and parameters are p and
v, respectively. Hence, differentiating would yield the matrices V and U required
in section 2.4. Note that the eight components of V are an overparameterization
of the six DOF of an RBM, such that we need to include the RBM-constraint
V Ṽ = 1 in the minimization process, which also turns out to be a bilinear
function of the components of V . Such additional constraints can be readily
included in our parameter estimation methods.

3 Experimental Results

Two real world experiments were performed using an imaging system consisting
of a Kamerawerk Dresden Loglux i5 camera and Remote Reality Netvision
360 catadioptric sensor with a parabolic mirror. The aim of the experiments was
to test object pose estimation and navigation and the robustness of the used
methods in these tasks. As intrinsic calibration parameters we used the 40mm
mirror radius and 16.7mm focal length for the main mirror given by the man-
ufacturer. The projection of the sensor was assumed to be exactly orthographic
and the whole mirror was assumed to be visible in the image. Images were ac-
quired in 1280 × 1024 resolution where the actual size of the omnidirectional
image is the area of a circle with 492 pixel radius corresponding to the 40 mm
mirror radius. The radius and the center of the image were determined from
the sum of images used in the experiments. No other calibration was done. The
image lines were extracted manually with seven points/line.

In the first experiment a model house was moved with a robot arm to 21 dif-
ferent locations. The robot arm gives ground truth of the translations between
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the different locations with millimeter accuracy. The magnitude of these transla-
tions was between 7.7 cm and 62.4 cm and the distance of the model house to the
optical center of the catadioptric sensor was between 31.4 cm and 82.8 cm. The
house dimensions in cm are 21×15×21. From the 21 acquired images the RBMs
of the model house from the optical center were estimated. These estimates were
used to get the relative translation estimates between the different model house
positions. The results are given in table 1.

Table 1. The errors of the house pose estimation

Abs. error [mm] Rel. error [%] Angle error [◦]

mean 10.4 3.5 0.9

std 4.8 1.7 0.4

min 0.9 0.4 0.12

max 21.3 11.5 2.4

In the second experiment the sensor was moved to 25 different positions in a
hallway. The model was defined by lines clearly visible in most of the images.
The other criterion was reasonable measurability needed to create the model.
The walls were assumed to be perpendicular to the floor and all corners to be
right angled. With these assumptions we get roughly 2 cm accuracy for positions
of the model lines. The model consisted of total 51 lines from which on average
20 lines were visible in an image. The maximum orthogonal distance of these
lines was 18.1 m, minimum 3.8 m and the sensor movements were made on 8×2
m2 area inside the model. The results for the error in the position are given in
table 2 for Gauss-Markov (G-M) and Gauss-Helmert (G-H) methods in 2D and
3D. Figure 3 on left represents the results for G-M and G-H methods and the
groundtruth (Truth) in 3D.

In addition to the pose estimation with the given parameters we studied the
robustness of the used methods in respect to the change of the focal length of
the mirror (see figure 3 on right). It can be seen that the G-H method is always
better than G-M and slightly more robust. 2D estimation works always better
as the error source is one dimension smaller and the estimation relies mostly on
the vertical world lines whose image remains almost unchanged with the change
of focal length. Using 0.1 mm steps for the focal length gives the most accurate
results for G-M 3D 5.8 cm with focal length 16.8 mm and for G-H 3D 4.2 cm
with focal length 16.9 mm.

Comparisons for 3D results are hard due to the limited number of usable
publications. The results in 2D are comparable results to those given by Aliaga
[1]; he obtained an average planar error of 2.8 cm within a room of 5 meters
diameter using a triangulation method and with exact calibration of the system.
Cauchois et el [4] reached about 1 cm accuracy in 2D using an image database
method with a conical mirror and a room of 2× 3 m2.
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Table 2. The errors of the navigation

Mean error [cm] RMS error [cm] min [cm] max [cm]

G-M 3D 7.6 9.4 3.6 32.2

G-M 2D 5.1 7.7 0.4 32.0

G-H 3D 6.4 6.5 2.7 8.3

G-H 2D 3.5 3.9 0.5 5.7
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Fig. 3. Left: navigation results. The 3D positions are also projected to plane for clarity.
Right: focal length vs. mean error.

4 Conclusions

The objective of this work was to realize 2D-3D pose estimation for omnidi-
rectional vision using line-plane correspondences. The pose was computed by
a stochastic estimation method, which accounts for uncertainties in the image
data.

The experimental results clearly demonstrate that our combination of 2D-3D
pose estimation with omnidirectional vision does provide exact results for navi-
gation within relatively big environments. The results of our house experiments
show that we still obtain good results, if we utilize our method for conventional
2D-3D object pose estimation.

Especially the 2D-navigation was found out to be very robust in respect to
changes of focal length. The change of the focal length scales the image radially.
Since the images of vertical world lines are radial lines in the image they are
invariant in this scaling. On the other hand the positions of image points on the
radial lines are not invariant. This motivates studies on the differences in the
robustness of point-line and line-plane pose estimation in 2D-navigation.

In the future we would like to automate the point extraction from the image
in order to construct a ready to use method for robotics. This is plausible as the
calculation time for the pose estimation (including 3D-visualization) is under 1
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second using a scripting language (CLUCalc, see [11] ) on a 3 GHz Pentium 4
computer.
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Abstract. Industrial part assembly has come a long way and so has
visual quality inspection. Nevertheless, the key issue in automated in-
dustrial quality inspection, i.e. the pose recovery of the objects under
inspection, is still a challenging task for assemblies with more than two
rigid parts. This paper presents a system for the pose recovery of assem-
blies consisting of an arbitrary number of rigid subparts. In an offline
stage, the system extracts edge information from CAD models. Online,
the system uses a novel kernel particle filter to recover the full pose of the
visible subparts of the assembly under inspection. The accuracy of the
pose estimation is evaluated and compared to state-of-the-art systems.

1 Introduction

Visual inspection is an important part of most manufacturing work flows. In
the context of large scale production, great effort is being put into automating
this task. Especially car manufacturers regard automated visual inspection as
a vital part of their quality assurance programs. This paper proposes a system
targeted to be part of an industrial production environment in which assemblies
are handled by industrial robots and inspected with a monocular camera. The
system’s purpose is to measure the pose parameters of a group of parts that
have been assembled to a complex aggregate. The resulting aggregate pose might
afterwards be fed into a detection stage to pick out fault configurations.

The pose estimation problem lies at the very heart of any automated visual
inspection task. The more accurate aggregate pose parameters can be deter-
mined, the more sensitive and specific subsequent fault detection stages can
distinguish correct from unwanted assembly configurations. Presently, the prob-
lem can be solved fast and accurately [1], [2], given the correspondence between
a set of characteristic object features and measurements such as intensity ima-
ges, laser-range data, etc. Unfortunately, this kind of information is usually not
available beforehand. Establishing correspondences, e.g. by means of Iterative
Closest Point approaches [3], becomes increasingly complex when dealing with
articulated objects like assemblies, i.e. multi-body systems whose rigid parts are
connected by joints. With an increasing number of parts, complexity arises from
inter-part occlusion and growing ambiguity in the assignment of observed im-
age features to specific assembly parts. This might be one reason why, to our
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knowledge, it has not been attempted yet to estimate the pose parameters of
multi-part assemblies from monocular images in the context of automated vi-
sual inspection. The approach presented here employs a kernel particle filter
that doesn’t need a priori correspondence information. The tradeoff is reduced
accuracy, though it will be shown in Sect. 5 that it does not suffer too much
compared to results reported for state-of-the-art systems which recover the pose
of single rigid bodies.

Kernel particle filters (KPFs) have recently been introduced by Chang &
Ansari [4] who use it in the field of visual tracking. KPFs combine particle filters
with a mean shift algorithm. The particle filter first creates a sample set rep-
resentation of a posterior probability density. Afterwards, mean shift iterations
move the particles towards the modes of the posterior probability density. It is
shown in [4] that KPFs maintain a compact representation of the modes of the
posterior, especially in high dimensional state spaces.

The work presented here is based on the approach of Schmidt et al. [5] who
use a KPF to estimate ten pose parameters of a human’s upper body model from
monocular color images. Unfortunately, their KPF operates on an unnormalized
state space of d dimensions. Accordingly, for the inherent kernel density esti-
mation, d bandwidth parameters must be specified manually. Within industrial
applications each manually set parameter increases the complexity of system op-
eration. This is why the KPF presented in this paper uses a state space that is
variance normalized as it was suggested in [6]. This strategy reduces the number
of bandwidth parameters to one. Nevertheless, preliminary experiments revealed
that the remaining bandwidth parameter was notoriously hard to specify. The
system proposed in this paper therefore enhances the KPF with a variable band-
width selection technique. The technique was introduced by Comaniciu et al. [7]
and was originally used in the context of mean shift image segmentation. As it
will be shown in the evaluation section, this enhancement allows to use the same
bandwidth parameter setting for different measurement scenarios.

This paper makes three major contributions: First, the proposed system uses
a unique kernel particle filter that operates on a variance normalized state space
and further enhances the approach of Schmidt et al. [5] with a variable band-
width selection scheme. Second, the system is the first to employ kernel particle
filtering in the field of automated visual inspection. It recovers the pose of ar-
ticulated objects without explicitly solving the correspondence problem. Third,
the paper provides a detailed evaluation of the system’s measurement accuracy
and characteristics based on real world images. The system is shown to be com-
petitive to state-of-the-art systems that focus on the single rigid body case.

The remainder of the paper is organized as follows: The next section presents a
brief system overview. Section 3 then specifies how features extracted from CAD
descriptions are used to model the appearance of assemblies under varying pose
parameterizations. Afterwards, the new kernel particle filter is detailed in Sect.
4. A thorough evaluation of the system’s measuring accuracy and a comparison
to state-of-the-art systems is given in Sect. 5. Finally, an outlook concludes this
contribution.
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2 System Overview

Our system operates in two stages. During an offline stage, contour edge features
are automatically extracted from 3D CAD data. This is done for each rigid
assembly part. The resulting feature models are manually put together to a
kinematic tree, i.e. a tree-like representation of rigid parts that are connected
by joints. Within the system, kinematic trees represent ideal assemblies and the
joint parameter ranges that reflect possible pose changes of rigid parts.

The second stage of system operation is an online stage. A monocular camera
takes images of an assembly under inspection. The assembly is presented to the
camera by an industrial robot. Alternatively, it is possible to have the assembly
attached to a fixture and the camera being mounted to an industrial robot. In
either case, the coordinate system transformation between the camera and the
root node of the kinematic tree is known. The image is preprocessed with a
SUSAN filter [8], yielding an edge image from which the approximate Euclidean
distance transform is calculated [9]. Finally, the system uses the new KPF to
find the pose parameters which register the rigid part models best to the edges
observed in the image.

3 Assembly Model

Within manufacturing work flows, 3D CAD descriptions of processed objects
are generally available. Accordingly, the system described in this paper auto-
matically extracts edge features from 3D CAD data. The results are manually
grouped to kinematic trees. The approach is based on our framework presented
in [10]. A brief overview is provided here for clarity.

The automatic feature extraction determines contour edges, i.e. edges which
possibly occur as part of the object’s silhouette against an arbitrary background.
It proceeds as follows: First, the set Ec of a CAD model’s potential contour edges
is found by analyzing the angle between all of the model’s adjacent triangles:

Ec =
{
E|isconvex(E,N1

E ,N
2
E) ∧ αE = �(N 1

E ,N
2
E) > 0

}
(1)

where N 1
E ,N

2
E represent the normals of two adjacent triangles and E the edge

shared between them. The angle αE allows to assign a score to each element of
Ec, because more acute angles yield a more frequent appearance of edges under
different perspective projections. All elements of Ec with a certain minimum
score are taken as contour edges that together represent an assembly part.

The feature extraction stage precomputes the visibility of all elements in Ec

w.r.t. all possible discrete view-angles upon them and stores the results in a run-
length encoded visibility map. Furthermore, oriented bounding boxes (OBBs)
are fitted automatically to the vertex data contained in the originating CAD
models. By indexing into the visibility maps and performing occlusion checks on
the OBBs, the system can later infer the visible contour edges of the assembly
for a specific pose parameter assignment in a very fast and efficient manner.
The resulting online edge contour prediction has a worst time complexity that
is linear in the number of visible contour edge elements and OBBs.
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4 Kernel Particle Filter

This section details the new kernel particle filter for assembly pose recognition.
First, it provides a brief description of the particle filter which generates a sample
set representation of a posterior probability density. The posterior relates the
space of assembly poses to an intensity image of the inspected aggregate. Second,
the iterative mean shift procedure that locates posterior modes is described.
Third, the variable bandwidth selection inherent to the mean shift mode finding
is presented.

4.1 Particle Filter

Let the d degrees of freedom of an assembly pose be represented by a configu-
ration state vector x ∈ Rd. Furthermore, let an observation of the assembly be
denoted as y. Assume, too, that a prior p(x) is given from which state vectors
can be sampled. In our case, p(x) is uniformly distributed over all physically
possible assembly poses. The latter are specified manually during the system’s
offline stage and describe physical limits of the assembly pose parameters. A
sample set representation of the posterior probability density p(x|y) can then
be obtained by particle filtering [11], which in our case degenerates to factored
sampling because there is no sequence of observations over time but only one
image measurement. Factored sampling draws samples {s(n)}N

n=1 from the prior
and assigns each sample a weight w(n) = p(y|s(n)) corresponding to a measure-
ment density. Afterwards, the weights are normalized such that they integrate to
one. The set {s(n),w(n)}N

n=1 is now a sample set approximation to the posterior.
To evaluate the measurement density p(y|s(n)), the assembly model is first

used to determine the contour edges visible under pose parameterization s(n).
The edge elements are then projected to the 2D image space by applying the
model of the fully calibrated camera that captured the image. Afterwards, a
set M of 2D control points is positioned equidistantly along the projected edge
elements. Let I denote the set of edge pixels extracted from y. The partial directed
Hausdorff distance between M and I is then defined as [12]

hf (M, I) = f th
m∈M min

i∈I
‖i−m‖ (2)

where f th
z∈Zg(z) denotes the f -th quantile of g(z) over an ordered set Z, for some

value of f between zero and one. According to [12], hf (M, I) defines a measure for
the similarity between M and I that is quite robust against outliers. The term
mini∈I ‖i − m‖ is pre-calculated once per observation y, using a chamfering
technique [9]. Once the partial directed Hausdorff distance is computed, the
measurement density is expressed as a Gaussian weighting function

p(y|s(n)) = exp
(
−h

f(M, I)2

2σ2c2

)
(3)

where σ is the standard deviation and c a constant normalizing hf (M, I) to [0, 1].
Equation 3 converts hf (M, I) into a likelihood that can be combined with other
cue likelihoods as suggested in [5]. The value of σ was chosen experimentally.
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4.2 Mean Shift Based Mode Estimation

The system described in this paper recovers the pose of an assembly by locating
the most prominent mode of p(x|y). However, sampling the posterior exhaus-
tively in a high-dimensional space would demand excessive numbers of samples.
To alleviate this problem, [4], [6] and [5] successfully use mean shift based mode
detection. The procedure helps in maintaining a compact representation of the
posterior modes and thus significantly reduces the number of samples needed to
represent p(x|y).

Mean shift based mode detection is based on kernel density estimation, which
is also known as the Parzen window method [13]. Given the set of d-dimensional
samples and weights resulting from Sect. 4.1, the kernel density estimate (KDE)
of the posterior with kernel K and bandwidth parameter b can be written as

p̂(x|y) =
1

Nbd

N∑
n=1

K

(
x− s(n)

b

)
w(n) . (4)

In this paper, K is the radially symmetric Epanechnikov kernel:

K(x) =
{

1
2c

−1
d (d+ 2)(1− ‖x‖) : ‖x‖ ≤ 1

0 : otherwise
(5)

where cd is the volume of the unit d-dimensional sphere. The gradient of p̂(x|y)
can be estimated and the samples {s(n)}N

n=1 shifted towards stationary points
in the posterior probability density. This technique is known as the mean shift
procedure [14]. In short, it proceeds by iteratively shifting each sample to the
mean position calculated by

m(s(n)) =

∑N
l=1 K

(
s(n)−s(l)

b

)
w(l)s(l)∑N

l=1 K
(

s(n)−s(l)

b

)
w(l)

. (6)

In (4), the KDE is constructed from a radially symmetric kernel. However, the
s(n) encode translational and rotational pose parameters from different scales for
which a radially symmetric kernel might not be appropriate. Thus, PCA is used
as a whitening step to obtain a set {s(n)

v }N
n=1 of variance normalized samples.

In summary, the mean shift based mode estimation proceeds by initially gen-
erating a sample set with weights {s(n),w(n)}N

n=1. After variance normalization,
the samples are moved to their mean positions calculated from (6). The shifted
samples are then reprojected to the original space by applying the inverse whiten-
ing matrix, resulting in updated samples s(n)′ . This in turn allows to update the
weights w(n) by evaluating the measurement density as described in Sect. 4.1.
However, the mean shift procedure was originally designed not to shift the sam-
ples but only some mode descriptors. Shifting the samples affects the KDE. To
alleviate this effect the weights must be normalized by computing

w(n)′ =
p(y|s(n)′)
q(s(n)′)

(7)
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where q(s(n)′) is the new proposal density determined by

q(s(n)′) =
1

Nbd

N∑
l=1

K

(
s(n)′ − s(l)′

b

)
. (8)

Once the sample weights have been normalized, the mean shift procedure can
be repeated. Within our experiments, five iterations were usually sufficient to
locate the posterior modes. The modes can be determined by calculating

x̂(s(n)′) =
∑

s(l)′∈Sh(s(n)′ )

w(l)′s(l)′ (9)

with Sh(s(n)′) denoting a hyper-sphere around a certain sample. The most
prominent mode is the x̂(s(n)′) with the largest accumulated weight.

4.3 Variable Bandwidth Selection

Experiments with real data revealed that the bandwidth parameter b from Sect.
4.2 is hard to specify. Fixed settings tend to over- or undersmooth the posterior
after a few iterations of mean shift. In the context of mean shift image segmen-
tation, [7] proposed a variable bandwidth selection scheme that we adapted to
our kernel particle filter. It is based on the concept of a sample point density
estimator that selects a different bandwidth b = b(s(n)) for each sample s(n):

p̂sp(x|y) =
1
N

N∑
n=1

1
b(s(n))d

K

(
x− s(n)

b(s(n))

)
w(n) (10)

where p̂sp(x|y) is the sample point density estimate of the posterior. It can be
shown that the following choice of b(s(n)) significantly reduces the bias of the
density estimator [7]:

b(s(n)) = b0

(
λ

f(s(n))

) 1
2

(11)

where λ is a proportionality constant. The true density f(s(n)) in (11) is un-
known. However, a pilot density f̃ can be used that is obtained with the initial
bandwidth parameter b0 and the fixed bandwidth KDE as in (8).

The proportionality constant λ divides the range of density values into low and
high densities [7]. For densities that are locally low, i.e. smaller than λ, b(s(n)) is
increased w.r.t. b0. Locally high densities result in a decreased local bandwidth. A
good choice of λ is the geometric mean of the pilot density values. Effectively, the
adaptive bandwidth selection scheme still depends on a bandwidth parameter.
However, b0 only serves as a reference bandwidth that is changed according to
local density fluctuations. The approach enabled us to use the same bandwidth
setting for all experiments reported in the next section.
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5 System Evaluation

In order to evaluate the system’s measurement accuracy and precision, experi-
ments with two different assemblies were carried out. Both were constructed
from wooden toy building blocks like screws, nuts and bars. Concerning the
pose estimation problem, these parts are rather challenging because they have
coated surfaces which reflect light strongly and provide little structure.

The first assembly was used to study a simple scenario in detail and is illus-
trated in Fig. 1. It consisted of a single screw with hexagonal head that was
screwed into a block. A static camera was calibrated to the block and the as-
sembly captured under four different camera elevation angles (0◦, 30◦, 60◦ and
90◦). For each angle, 125 images were captured, measuring five different screw
positions. The whole procedure was carried out for a large and a small zoom
setting, resulting in image scales of 0.1 and 0.3 mm per pixel and a total of
1000 image measurements taken. Afterwards, the new KPF described in this pa-
per determined the six pose parameters of the screw w.r.t. the block within the
captured images (using 500 particles and five iterations of mean shift). Finally,
the screw’s rotation and translation around the screw axis were compared to
the ground truth that had been measured manually with Vernier calipers and a
protractor.

Fig. 1. A simple screw-block assembly. Left: Elevation 60◦, image scale 0.1 mm per
pixel. Right: Elevation 0◦, image scale 0.3 mm per pixel.

The results of the first experiment are illustrated in Fig. 2. The graphs in the
top row depict the mean absolute pose estimation error and standard deviation
for the measurement of the rotation around the screw axis. They show that the
screw rotation is measured most accurately and precisely under a small eleva-
tion angle around 0◦, i.e. when the hexagonal screw head is seen straight from
above. Under these ideal conditions, the screw rotation can still be measured
with reasonable precision even if the size of the screw within the image is com-
paratively small. However, it can be seen as well that the measurement precision
quickly decays with increasing elevation angle. For elevations much larger than
30◦, rotation measurements might be too unprecise even when the screw covers
large parts of the image. On the other hand, the bottom row of graphs in Fig. 2
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illustrates that the screw translation is measured best under a large camera ele-
vation angle around 90◦. It is thus impossible to measure screw translation and
rotation most accurately and precisely from the same camera perspective.
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Fig. 2. Mean absolute pose estimation error and standard deviation. Top row: Screw
rotation measurements. Top left: Image scale was 0.1 mm per pixel. Top right: Image
scale was 0.3 mm per pixel. Bottom row: Screw translation measurements. Bottom left:
Image scale was 0.1 mm per pixel. Bottom right: Image scale was 0.3 mm per pixel.

The second assembly was a complex model airplane built from 20 parts which
is illustrated in Fig. 3. To measure the pose parameter ground truth for all
20 parts manually would have been impossible, so we focused on the five most
accessible parts that are shown on the right hand side of Fig. 3. As ground truth,
we manually measured the most strongly varying rotation parameter of parts 1,
2, 3 and 5 and the most strongly varying translational parameter of parts 1 and
4 w.r.t. their parent within the kinematic tree. A static camera was calibrated
to the fixture to which the airplane was mounted. Afterwards, 50 images of the
assembly were captured in which the pose parameters of the five parts were
changed systematically.

Recovering all pose parameters of the assembly simultaneously would have
failed because the sample space would simply have been too large. Instead, the
kinematic tree was recursively traversed depth-first and the six pose parameters
of each rigid part recovered individually. This approach is potentially less robust
but did not lead to any problems here. As for the first assembly, the new KPF was
parameterized with 500 particles and five iterations of mean shift. The results
are summarized in Tables 1 and 2, together with results from two other recent
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1

3
4

5

2

Fig. 3. An airplane assembled from 20 parts in two different poses. The ground truth
was manually measured for the numbered parts.

inspection systems [15], [16]. In [16], hierarchical template matching was used
to recover the pose of an oil cap. In a second experiment, an ignition plug was
inspected. Unfortunately, the authors only specify mean absolute measurement
errors. In [15], a 2D-3D pose estimation procedure for the visual inspection of
single rigid bodies is reported together with a detailed analysis of the system’s
measurement accuracy and precision. Tables 1 and 2 only state the best-case
results published there regarding the inspection of an oil cap.

Comparing the results, it can be seen that our system recovers pose para-
meters with a competitive mean absolute error and standard deviation, at least
in the case of translational pose parameters. Concerning the recovery of rota-
tional parameters, the absolute error has on average a slightly higher standard
deviation than the system reported in [15].

Table 1. Mean absolute error and standard deviation of angle measurements

part 1 part 2 part 3 part 5 Kölzow [15] Bank et al. [16]
μ [◦] -0.4 -0.4 -1.4 -0.3 -0.5 1.0
σ [◦] 3.1 0.6 3.1 2.1 1.6 -

Table 2. Mean absolute error and standard deviation of translation measurements

part 1 part 4 Kölzow [15] Bank et al. [16]
μ [mm] 0.2 0.3 -0.3 0.5
σ [mm] 0.5 0.6 0.5 -

6 Conclusion and Future Work

We have presented a unique system that recovers the pose parameters of assem-
blies by using a new kernel particle filter. Regarding the mean absolute error
and standard deviation of the measurements, our system performs comparable
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to state-of-the-art systems that focus on the single rigid body case. However, the
measurement density evaluation within the new KPF is very expensive in terms
of computational load. This is why, for the assembly with 20 parts, inspection
took about five to ten seconds per part on a Pentium IV 2.0 GHz processor. As
a next step, we will therefore implement the edge prediction in OpenGL. This
should increase the speed by up to two orders of magnitude.
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Abstract. We propose a method for combining geometric and real-
aperture methods for monocular 3D reconstruction of static scenes at
absolute scales. Our algorithm relies on a sequence of images of the ob-
ject acquired by a monocular camera of fixed focal setting from differ-
ent viewpoints. Object features are tracked over a range of distances
from the camera with a small depth of field, leading to a varying degree
of defocus for each feature. Information on absolute depth is obtained
based on a Depth-from-Defocus approach. The parameters of the point
spread functions estimated by Depth-from-Defocus are used as a regular-
isation term for Structure-from-Motion. The reprojection error obtained
from Bundle Adjustment and the absolute depth error obtained from
Depth-from-Defocus are simultaneously minimised for all tracked object
features. The proposed method yields absolutely scaled 3D coordinates
of the scene points without any prior knowledge about the structure of
the scene. Evaluating the algorithm on real-world data we demonstrate
that it yields typical relative errors between 2 and 3 percent. Possible
applications of our approach are self-localisation and mapping for mobile
robotic systems and pose estimation in industrial machine vision.

1 Introduction

The knowledge of three-dimensional structure plays an important role in many
fields of research such as navigation, obstacle avoidance, and object detection.
Depth-from-Stereo [1] was one of the first methods for recovering depth infor-
mation as it is inspired by human vision. Hereby the known geometry of the
cameras is used to triangulate the spatial position of corresponding points from
two images that are acquired from different viewpoints. The disadvantage of
stereo vision is its need for a pair of precisely calibrated cameras, making it
complex and costly for many applications. Therefore spatial scene reconstruction
using monocular camera systems is often a preferrable solution. Structure-from-
Motion is such an alternative: From corresponding points in at least two images
acquired sequentially at different camera positions the spatial positions of the

K. Franke et al. (Eds.): DAGM 2006, LNCS 4174, pp. 607–616, 2006.
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points are recovered. The problem is that the scene can be reconstructed only
up to a scaling factor as long as the camera positions are unknown.

Methods to establish point correspondences from different images require the
detection and assignment of salient object features. In [2] image features are pro-
posed that serve well for tracking algorithms. Widely used methods are SIFT fea-
tures [3], involving the extraction of scale invariant features using a staged filter-
ing approach, or the Kanade-Lucas-Tomasi (KLT) feature detector described in [4]
which is based on the Harris corner detector and takes into account affine motion.

A different approach to scene reconstruction utilises position variant appear-
ance, e.g. Shape-from-Shading [5], Depth-from-Defocus [6], and Depth-from-
Focus [7]. Depth-from-Defocus methods rely on the fact that a real lens blurs
the observed scene before the imaging device records it. The amount of blurring
depends on the actual lens, but also on the distance of the observed object to the
lens. In [8] this property is used to estimate depth simultaneously for all scene
points from only one or two images. Depth information is extracted out of a sin-
gle image showing sharp discontinuities (edges) [9]. A survey of existing methods
is given in [6]. In [10] a method is proposed that computes Depth-from-Defocus
in real-time using structured lighting. Depth-from-Focus uses images taken by
a single camera at different focus settings to compute depth. The focus settings
for the image depicting a point with minimal blurring are used to compute the
absolute depth [11]. Further work in this field includes Shape-from-Focus [12]
and Inverse Optics [13].

So far, no attempt has been made to combine the precise relative scene recon-
struction of Structure-from-Motion with the absolute depth data of Depth-from-
Defocus. A work related to this paper was published in [14], where a method
to recover affine motion and defocus simultaneously is proposed. However, the
spatial extent of the scene is not reconstructed in [14], since planar objects are
a requirement for the described method.

The main contribution of this paper consists of a novel combination of
Structure-from-Motion (a geometric method) with Depth-from-Defocus (a real-
aperture method). We will show that the combination of these methods yields a
3D scene reconstruction at absolute scales based on an image sequence acquired
with a monocular camera.

2 Structure-from-Motion and Depth-from-Defocus

Structure-from-Motion recovers the spatial scene structure using a monocular
camera. A pre-requisite for Structure-from-Motion is the geometric calibration
of the camera in terms of estimating the internal parameters such as focal length,
distortion parameters, etc. [15]. Subsequently, salient feature points are extracted
and tracked across the sequence. The motion of these features relative to the
camera is then used to minimise the Bundle Adjustment [16] error term

ESfM ({Tj}, {Xi}) =
N∑

i=1

M∑
j=1

[P (TjXi)− xij ]
2 (1)
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with respect to the M camera transforms Tj and the N scene points Xi. Here, xij

denotes the 2D pixel coordinates of feature i in image j. The function P denotes
the projection of 3D scene points to image coordinates and Tj the transform
of the camera coordinate system of image j with respect to an arbitrary world
coordinate system. To facilitate the integration of defocus information into the
Structure-from-Motion framework, the image sequences are acquired such that
the object is blurred in the first image of the sequence, becoming increasingly
focused in the middle and blurred again in the last images. The focal settings of
the camera are adjusted according to the maximal and minimal distance of the
object. It may be necessary to fully open the aperture in order to obtain a small
depth of field.

Depth-from-Defocus directly recovers the spatial scene structure using a
monocular camera. The depth D of the tracked feature points is calculated by
measuring the amount of defocus, expressed e.g. by the standard deviation σ
of the Gaussian-shaped point spread function (PSF) that blurs the image. An
exact description of the PSF due to diffraction of light at a circular aperture is
given by the radially symmetric Airy pattern A(r) ∝ [J1(r)/r]

2, where J1(r) is
a Bessel function of the first kind [17]. For practical purposes, however, when
a variety of additional lens-specific influencing quantities (e.g. chromatic aber-
ration) is involved, the Gaussian function is a reasonable approximation to the
PSF [6]. In the following, σ will be referred to as the “radius” of the PSF.

Measuring σ is the most important part of the depth estimation. The classical
Depth-from-Defocus approach uses two images of the same object taken at two
different focal settings [6]. In [9] it is shown that a-priori information about the
image intensity distribution, e.g. the presence of sharp discontinuities (edges),
allows the computation of the PSF radius σ based on a single image. This is
achieved by estimating the value of σ that generates the observed intensity dis-
tribution from the known ideal intensity distribution. Since in our scenario no
such a-priori information is available, we suggest the emprirical determination
of the so-called Depth-Defocus-Function, expressing the standard deviation σ of
the Gaussian PSF as a function of depth D, based on a calibration procedure.

3 Spatial Scene Reconstruction by Combining
Structure-from-Motion and Depth-from-Defocus

3.1 The Depth-Defocus-Function and Its Calibration

The Depth-Defocus-Function S(D) = σ expresses the radius σ of the Gaussian
PSF as a function of depth D, i.e. the distance between the object and the
lens plane. It is based upon the lens law v−1 + D−1 = f−1 [17]. An object at
distance D is focused if the distance between lens and image plane is v, with f
denoting the focal length of the lens. Varying the image plane distance v by a
small amount Δv causes the object to be defocused as the light rays intersect
before or behind the image plane. In the geometric optics approximation, a point
in the scene is transformed into a so-called circle of confusion of diameter |Δv|/κ
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in the image plane, where κ is the f-stop number expressing the focal length in
terms of the aperture diameter. Empirically, we found that for small |Δv| the
resulting amount F of defocus can be modelled by a zero-mean Gaussian, which
is symmetric in Δv:

F (Δv) =
1
φ1

e−
1

φ2
Δv2

+ φ3 . (2)

Here, the amount of defocus is described in terms of the radius σ of the Gaussian
PSF. But since the Depth-Defocus-Function expresses the relation between the
depth of an object and its defocus, the image plane is assumed to be fixed while
the distance D of the object varies by the amount ΔD, such that ΔD = 0 refers
to an object that is well focused. But since neither D nor ΔD are known, the
functional relation needs to be modelled with respect to Δv:

1
v +Δv

+
1
D

=
1
f
. (3)

A value of Δv �= 0 refers to a defocused object point. Solving Eq. (3) for Δv and
inserting Δv in Eq. (2) yields the Depth-Defocus-Function

S(D) =
1
φ1

e
− 1

φ2
( fD

D−f −v)2

+ φ3 . (4)

Calibrating the Depth-Defocus-Function S(D) for a given lens corresponds to
determining the parameters φ1, φ2, and φ3 in Eq. (4). This is achieved by ob-
taining a large set of measured (σ,D) data points and perform a least mean
squares fit to Eq. (4), where D is the distance from the camera and σ the ra-
dius of the Gaussian PSF G used to blur the well focused image according to
Iij = G(σ) ∗ Iifi . Here, Iifi represents a small region of interest (ROI) around
feature i in the image fi in which this feature is best focused, and Iij a ROI of
equal size around feature i in image j.

For calibration, an image sequence is acquired while the camera approaches
at uniform speed a calibration rig displaying a checker board. The sharp black-
and-white corners of the checker board are robustly and precisely detectable [15]
even in defocused images. Small ROIs around each corner allow the estimation
of defocus using their greyvalue variance χ. The better focused the corner, the
higher is the variance χ. We found experimentally that the parameterised defocus
model according to Eq. (4) is also a reasonable description of the dependence of
χ on the depth D. For our calibration sequence the camera motion is uniform
and the image index j is strongly correlated with the object distance D. Hence,
Eq. (4) is fitted to the measured (χ, j) data points for each corner i, such that
the location of the maximum of S yields the index fi of the image in which the
ROI around corner i is best focused. This ROI corresponds to Iifi . The fitting
procedure is applied to introduce robustness with respect to pixel noise. For non-
uniform camera motion the index fi can be obtained by a parabolic fit to the
values of χ around the maximum or by directly selecting the ROI with maximal
χ. The depth D of each corner is reconstructed from the pose of the complete
rig according to [18].
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Fig. 1. Depth-Defocus-Functions of two lenses with f = 12 mm (left) and f = 20 mm
(right), fitted to the measured data points according to Eq. (4), respectively

For each tracked corner i, we compute for each ROI Iij the amount of defocus,
i.e. the σ value relative to the previously determined best focused ROI Iifi . By
employing the bisection method, we determine the value of σ for which the root
mean square deviation between G(σ)∗Iifi and Iij becomes minimal. The Depth-
Defocus-Function is then obtained by a least mean squares fit to all determined
(σ,D) data points. Two examples are shown in Fig. 1 for lenses with focal lengths
of 12 mm and 20 mm and f-stop numbers of 1.4 and 2.4, respectively. Objects
at a distance of about 0.8 m and 0.6 m, respectively, are in focus, corresponding
to the minimum of the curve.

3.2 Combining Motion, Structure, and Defocus

The Structure-from-Motion analysis involves the extraction of salient features
from the image sequence which are tracked using the KLT technique [4]. To
facilitate the integration of defocus information, a ROI of constant size is ex-
tracted around each feature point at each time step. For each tracked feature,
the best focused image has to be identified in order to obtain the increase of
defocus for the other images. We found that the greyvalue variance as a mea-
sure for defocus does not perform well on features other than black-and-white
corners. Instead we make use of the amplitude spectrum |FI (ω)| of the ROI
extracted around the feature position. High-frequency components of the am-
plitude spectrum denote sharp details, whereas low-frequency components refer
to large-scale features. Hence, the integral over the high-frequency components
serves as a measure for the sharpness of a certain tracked feature. However, since
the highest-frequency components are considerably affected by pixel noise and
defocus has no perceivable effect on the low-frequency components, a frequency

band between ω0 and ω1 is taken into account according to H =
ω1∫
ω0

|FI (ω) |dω

with ω0 = 1
4ωmax and ω1 = 3

4ωmax, where ωmax is the maximum frequency. The
amount of defocus increases with decreasing value of H . The defocus measure H
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Fig. 2. From the left: Image index vs. defocus measure H for a tracked image feature;
image index vs. PSF radius σ; image index vs. inferred depth D

is used to determine the index of the best focused ROI for each tracked feature
in the same manner as the greyvalue variance χ in Section 3.1. The value of H
cannot be used for comparing the amount of defocus among different feature
points since the maximum value of H depends on the image content. The same
is true for the greyvalue variance. Hence, both the integral H of the amplitude
spectrum as well as the greyvalue variance are merely used for determining the
index of the image in which a certain feature is best focused.

The defocus, i.e. the radius σ of the Gaussian PSF, is then computed relative
to the best focused ROI according to Section 3.1. The depth D is obtained by
inverting the Depth-Defocus-Function S(D) according to Eq. (4). The encoun-
tered two-fold ambiguity is resolved by using information about the direction
of camera motion, which is obtained either based on a-priori knowledge or by
performing a Structure-from-Motion analysis according to Eq. (1), yielding in-
formation about the path of the camera. If the estimated value of σ is smaller
than the minimum of S(D), the depth is set to the value at which S(D) is
minimal. For an example feature, the calculated defocus and the inferred depth
values are shown in Fig. 2.

A general property of the KLT algorithm is that the accuracy of the feature
tracker decreases with increasing defocus of the reference pattern. Hence, the
feature positions are refined by repeating the tracking procedure for all features,
starting from the “sharpest” image located near the middle of the sequence which
displays the largest value of H averaged over all features, proceeding towards
either end of the sequence and using the ROIs extracted from this image as
reference patterns. The 3D coordinates Xi of the scene points are then computed
by searching for the minimum of the combined error term

Ecomb ({Tj}, {Xi}) =
N∑

i=1

M∑
j=1

[
(P (TjXi)− xij)

2 + α
(
S([TjXi]z)− σij

)2] (5)

with respect to the M camera transforms Tj and the N scene points Xi. The
value of σij corresponds to the estimated PSF radius for feature i in image j, α is
a weighting factor, S the Depth-Defocus-Function that calculates the expected
defocus of feature i in image j, and [·]z the z coordinate, i.e. the depth D, of a
scene point. The correspondingly estimated radii σij of the Gaussian PSFs define
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Fig. 3. True (dots) and reconstructed (crosses) 3D pose of the checker board (α = 0.42)

a regularisation term in Eq. (5), such that absolutely scaled 3D coordinates Xi

of the scene points are obtained. The values of Xi are initialised according to the
depth values estimated based on the Depth-from-Defocus approach. To increase
the accuracy of the reconstructed 3D scene points, we only make use of feature
positions extracted from images in which the feature is not strongly blurred.
To minimise the error term Ecomb the Levenberg-Marquardt algorithm [19] is
employed.

4 Experimental Evaluation

In order to validate our approach we first reconstructed a planar object with
known ground truth, using a Baumer 1032× 776 pixels CCD camera. A checker
board as shown in Fig. 3 with 10× 8 squares of size 15× 15 mm2, respectively,
was used. The 99 corners serve as features and are extracted in every image
using the method described in [15] to assure sub-pixel accuracy. The true pose
of the checker board is obtained according to [18] based on the given size of
the squares. Note that in [18] the true pose of the checker board is determined
by applying a least mean squares fit on a single image, whereas the proposed
algorithm estimates the 3D structure of a scene by means of a least mean squares
fit applied to the whole image sequence. Comparing the obtained results with
the determined true pose of the object is actually a comparison between two
methods conducting different least mean squares fits.

The deviation Erec of the reconstructed 3D scene point coordinates Xi from

the ground truth values Xtrue
i is given by Erec =

[
1
N

∑N
i=1 (Xi −Xtrue

i )2
]1/2

.
To determine an appropriate weight parameter α we computed Erec for different
α values in the range between 0 and 1. For α = 0 the global minimisation
is equivalent to Structure-from-Motion initialised with the calculated Depth-
from-Defocus values. One must keep in mind, however, that the absolute scaling
factor is then part of the gauge freedom of the Bundle Adjustment method,
resulting in a corresponding “flatness” of the error function. Small α values lead
to an instable convergence. The value of Erec levels off to 16 mm for α ≈ 0.3
and obtains its minimum value of 7 mm for α = 0.42. The root mean square
deviation of the reconstructed size of the squares from the true value of 15 mm
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Fig. 4. Dependence of Erec (left diagram), Erepr (right diagram, dashed curve, left
axis), and Edef (right diagram, solid curve, right axis) on the weight parameter α

then amounts to 0.2 mm or 1.3%. The most accurate scene reconstruction results
are obtained with α between 0.3 and 0.5. The reconstructed 3D scene points Xi

for α = 0.42 are illustrated in Fig. 3, the dependence of Erec on α in Fig. 4 (left).
In addition to the reconstruction error Erec, a further important error measure

is the reprojection error Erepr =
[

1
MN

∑N
i=1

∑M
j=1 (P (TjXi)− xij)

2
]1/2

denot-
ing the root-mean-square deviation between the measured 2D feature positions
xij and the reconstructed 3D scene points Xi reprojected into the images using
the reconstructed camera transforms Tj . The defocus error denotes the root-
mean-square deviation between measured and expected radii σij of the Gaus-

sian PSFs according to Edef =
[

1
NM

∑N
i=1

∑M
j=1

(
S([TjXi]z)− σij

)2]1/2

. Fig. 4
(right) shows the relation between the weight parameter α, the reprojection error
Erepr, and the defocus error Edef . For α > 0.3 the defocus error stabilises to 0.58
pixels per feature. Larger α values lead to a stronger influence of the Depth-from-
Defocus values on the optimisation result, leading to an increasing reprojection
error Erepr due to the inaccuracy of the estimated σij values. Although the depth
values derived by Depth-from-Defocus are noisy, they are sufficient to establish
a reasonably accurate absolute scale. Hence, this first evaluation shows that the
combined approach is able to reconstruct scenes at absolute scales without prior
knowledge. For constant f-stop number, pixel size, and relative accuracy of the
inferred depth D, it can be shown that the required focal length and aperture
of the lens are largely proportional to

√
D (proof omitted here). Hence, our ap-

proach is restricted to the close-range domain (D ∼ 1 m) as long as standard
video cameras and lenses are used.

In order to demonstrate the performance of our approach on a non-planar test
object of known dimensions we applied our method to the cuboid-shaped object
shown in Fig. 5. This object displays a sufficient amount of texture to generate
“good features to track” [4]. In addition, black markers on white background with
known mutual distances are placed near the edges of the cuboid. As described in
Section 3.2, feature points are extracted and tracked using the KLT algorithm,
and the 3D coordinates of the scene points are obtained by minimising the error
term Ecomb according to Eq. (5).

The reprojection error Erepr for α = 0.5 amounts to 4.99 pixels. After remov-
ing tracking outliers (detected by their associated very large reprojection errors
of more than 3Erepr) the value of Erepr drops to 1.08 pixels while Edef amounts
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Fig. 5. 3D reconstruction of a cuboid and a lava stone (α = 0.5)

to 0.24 pixels. In order to verify the absolute scale, we compared for α = 0.5
the reconstructed pairwise distances between the black markers on the object
(as seen e.g. in the top right corner of the front side) to the corresponding true
distances. For this comparison we utilised a set of three pairs of markers with
an average true distance of 23.3 mm. The corresponding reconstructed average
distance amounts to 23.9 mm, which is 2.6% larger than the ground truth value.

As a real-world object, we examined the lava stone shown in Fig. 5. The result-
ing reprojection error Erepr amounts to 2.77 pixels. After outlier rejection, Erepr

decreases to 0.96 pixels while Edef amounts to 0.19 pixels. The reconstructed
shape of the lava stone was again obtained with α = 0.5. The reconstruction is
approximately 2.3% larger than the real object.

In all examples, the fact that the reconstructed absolute scale of the scene ap-
pears to be systematically somewhat too large is likely due to a slight deadjust-
ment of the camera lens after calibration, which may readily occur for standard
video lenses as a consequence e.g. of vibrations or variable ambient temperature.

5 Summary and Conclusion

We have described a method for combining geometric and real-aperture meth-
ods for monocular 3D reconstruction of static scenes at absolute scales. The
proposed algorithm is based on a sequence of images of the object acquired by
a monocular camera of fixed focal setting from different viewpoints. Feature
points are tracked over a range of distances from the camera, resulting in a vary-
ing degree of defocus for each tracked feature point. After determining the best
focused image of the sequence, we obtain information about absolute depth by
a Depth-from-Defocus approach. The inferred PSF radii for the corresponding
scene points are utilised to compute a regularisation term for an extended Bun-
dle Adjustment algorithm that simultaneously optimises the reprojection error
and the absolute depth error for all feature points tracked across the image se-
quence. The proposed method yields absolutely scaled 3D coordinates of the
object feature points without any prior knowledge about the scene structure.
We have demonstrated experimentally that the proposed algorithm yields ab-
solutely scaled 3D coordinates of the feature points with typical relative errors
between 2 and 3 percent. Possible application scenarios of our approach are in
the domains of self-localisation and mapping for mobile robotic systems as well
as pose estimation in the context of industrial machine vision tasks.
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Abstract. This paper presents a stereo matching algorithm for obtaining dense 
disparity maps. Our main contribution is to introduce a new cost aggregation 
technique of a 3D disparity-space image data, referred to as the Optimal Path 
Cost Aggregation. The approach is based on the dynamic programming princi-
ple, which exactly solves one dimensional optimization problem. Furthermore, 
the 2D extension of the proposed technique proves an excellent approximation 
to the global 2D optimization problem. The effectiveness of our approach is 
demonstrated with several widely used synthetic and real image pairs, including 
ones with ground-truth value. 

1   Introduction 

Stereo matching is used in many applications, therefore computational stereo has tradi-
tionally been, and continues to be one of the most actively researched topics in com-
puter vision. In a survey [9] Scharstein and Szeliski categorize and compare a wide 
array of algorithms, from window-level correlation to dynamic programming. More 
recent survey and evaluation by Brown et al. [2] focus on correspondence methods, 
methods for occlusion, and real-time implementations. It is commonly accepted that the 
local methods [1, 11, 13] are contrasted with the global methods [4, 5, 8, 12]. Global 
correspondence methods exploit nonlocal constraints and the use of these constraints 
makes the computational complexity of global matching significantly greater than that 
of local matching. Many approaches aim to obtain accurate dense disparity map by 
using 2D global optimization. Unfortunately, the exact solution of 2D global optimiza-
tion problem can be found only with exponentially complex algorithms. Dynamic Pro-
gramming (DP) techniques [3, 4, 7] reformulate the 2D global task to the set of one 
dimensional optimization problems. Global approaches like Graph Cuts [5] and Belief 
Propagation [10] resign itself to approximate solutions that can be found by polyno-
mially complex algorithms, but still both approaches is rather slow.  

To solve the 2D optimization problem avoiding the exponential complexity of the 
global solution we introduce a new cost aggregation algorithm, referred to as the 
Optimal Path Cost Aggregation (OPCA).The proposed algorithm uses the same prin-
ciple as DP and has the same computational complexity. However, the presented 
technique accumulates the 2D global cost and, thus, finds an approximate solution of 
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2D global optimization problem. In the framework of the proposed approach stereo 
matching is considered as a cost aggregation process of an input 3D disparity-space 
image (DSI), like in the work [13] for example. Cost aggregation techniques are usu-
ally associated with local methods. However, we aim to solve global optimization 
problem using a cost aggregation algorithm. That is, to find for each disparity d and 
pixel p of a stereo image, the cost (the energy) of the best global solution, which in-
clude this particular pair (d, p). Eventually, the final optimal solution (or the optimal 
disparity map) can be easily extracted by analyzing the 3D optimal cost data.  

V

D

U

x

y

Disparity Map

Optimal Surface

 

Fig. 1. Geometric interpretation of DSI 

2   Disparity Space Image Processing Approach 

The DSI representation is very popular in stereo matching [2,9] due to the clear geo-
metric interpretation of this model. Indeed, the sought disparity map should coincide 
with one of all the possible surfaces in the DSI as it is shown in Fig. 1. Furthermore, 
the global optimization approach assumes that an integral of the initial cost values 
over such a surface should satisfy a chosen optimality criterion.  

The 3D approach assumes that DSI has dimensions row0≤u≤Umax, col-
umn0≤v≤Vmax, and disparity0≤d≤Dmax. The stereo images suppose to be rectified, each 
element (u, v, d) of the DSI projects to the pixel (u, v) in the left image and to the 
pixel (u-d, v) in the right image. To be strict, we assume that the row size of the right 
image bigger than the left one: -Dmax≤ur≤Umax instead of 0≤ur≤Umax. The row index 
u=0 is associated with pixels column x= Dmax in the both stereo images. Let En(u, v, d) 
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Fig. 2. Scheme of a DSI cost aggregation process 

denote the DSI cost value assigned to element (u, v, d) at the DSI cost aggregation 
step n. Initial cost values (or pixelwise distance) E0(u, v, d) are calculated using one of 
the pixel-to-pixel matching metrics that interested readers can find in a survey paper 
by Brown et al. [3]. In our work absolute difference is considered:  

0 1 2( , , ) ( , ) ( , ) ,E u v d I u v I u d v= − −  (1) 

where I1(u,v) and I2(u,v) are the left and the right stereo image respectively. The initial 
DSI of the Tsukuba stereo pair obtained with equation (1) is illustrated in Fig. 2 (a).  

We introduce the minimal projection of the DSI onto the (U, V) plane that is used 
as an approximation to the sought disparity map. So, the minimal projection is defined 
by 

( , ) arg min ( , , ).n n
d

P u v E u v d=  
(2) 

The minimal projections of the initial DSI and the processed one are illustrated in 
Fig. 2 (e) and (f).  

To compare the various solutions P(u,v) of the processed DSI we introduce the 
conditional distance between two stereo images as an evaluation criterion. The  
is defined as follow 

1 2 0
, , ,

( , | ( , )) ( , , ( , )) ( , ) ( , ) ;u v
u v u v u v

I I P u v E u v P u v P u v P u vλ μ= + ∂ + ∂  
(3) 
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where ∂uP(u,v) = P(u+1,v)- P(u,v) denotes the discrete version of the partial derivative 
operator;  and μ are discontinuity weights or regularization parameters that add 
smoothness constraints to the sought solution P(u,v).  

It is natural to assume that the best matching of stereo images is achieved with the 
disparity map P(u,v), which minimizes the conditional distance between the im-
ages. Thus, we can formulate our problem as follow: find the disparity map function 
P(u,v), which minimize the conditional distance between the matched stereo images I1 
and I2 i.e. 

0
, , ,

( , ) arg min ( , , ) .u v
P u v u v u v

P u v E u v P P Pλ μ= + ∂ + ∂  
(4) 

Unfortunately, the exact solution of such a problem can be found only with expo-
nentially complex algorithms. Let us consider two special cases of the conditional 
distance  that allow the exact solution of Eq. (4) using non-exponentially complex 
algorithms. Those are: 
•  and μ=0. This special case does not imply any smoothness constraints of the dis-
parity map function P(u,v), and thus the general problem is naturally reduced to 
Umax×Vmax the mutually independent sub-problems of the pixel-to-pixel matching. For 
such a singularity of the conditional distance , the minimal projection P0(u,v) of the 
initial DSI calculated by Eq. (2) satisfies the exact solution of Eq. (4). An example of 
a disparity map without smoothness constraints is illustrated in Fig. 2.(e).  
•  or μ=0. This special case implies only one-dimensional smoothness constraints of 
the disparity map function P(u,v), and thus the general problem can be reduced to 
Umax or Vmax the mutually independent sub-problems of the one-dimensional optimiza-
tion. Such problems can be solved by means of the DP algorithm. An example of a 
disparity map with one-dimensional smoothness constraints is illustrated in Fig. 2. (f).  

Let us consider the DP algorithm for the case μ=0.Then Eq. (4) is rewritten as  

0 0 0 0 0( | ) arg min ( , , ( | )) ( | ) ,u
P u u

P u v E u v P u v P u vλ= + ∂  (5) 

where v0 is a fixed index of V dimension of the processed DSI. The final solution is a 
bunch of one-dimensional functions P(u|v0) with different fixed index v0, where each 
discrete function P(u|v0) coincides with the optimal path through the 2D DSI trellis as 
it is shown in Fig. 3. Here the 2D DSI is a slice (v= v0) of the 3D DSI like in 
Fig. 2 (c). The term “optimal” means that the sum of the cost values along this path 
plus the weighted length of the path is minimal among all other possible paths.  

The optimal path problem is usually addressed with the method of dynamic pro-
gramming. The method consists of step-by-step control and optimization that is given 
by a recurrence relation 

{ }
max[0, ]

( , ) ( , ) min ( 1, ) ,

(0, ) (0, ).

λ
+ ∈

= + − + + +

=

n n n
d k D

n n

S u d E u d S u d i d k

S d E d

 (6) 

By using the recurrence relation the minimal value of the objective function in 
Eq.(5) can be found at the last step of optimization. Next, the algorithm works in 
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Fig. 3. The optimal path trough the DSI trellis 

reverse order and recovers a sequence of optimal steps (using the lookup table K(u,d) 
of the stored values of the index k in the recurrence relation (6)), and eventually the 
optimal path by 

max max

( 1) ( ) ( , ( )),

( ) arg min ( , ).

− = +
=

d

P u P u K u P u

P U S U d
 (7) 

Unfortunately, the DP algorithm does not solve 2D optimization problem. How-
ever, the recurrence computational scheme Eq. (6) might be used as the base for an 
effective cost aggregation, and we show the way in the next section. 

3   Optimal Path Cost Aggregation Algorithm 

In this section we introduce the OPCA as a simple transformation of the 2D DSI ma-
trix, i.e.  

{ }1( , ) ( , ) ,n nE u d A E u d+ =  (8) 

where A{•} denotes the OPCA operator. The operator must replace the cost values 
En(u,d) of the processed 2D DSI to the value that is equal to the sum of the costs over 
the sub-optimal path, which include the particular point (u, d): 

max max

1 ( )
0 0

( , ) min ( , ( )) ( ) .
U U

n n j
d P u

j j

E u d E j P j P jλ+ = = =

= + ∂  (9) 

Let us divide the sought sub-optimal path in Eq. (9) into two region, i.e. 

( )

( )max

1 ( )
0

( )

( , ) min ( , ( )) ( )

                min ( , ( )) ( ) ( , ).

u

n n j
d P u

j

U

n j n
d P u

j u

E u d E j P j P j

E j P j P j E u d

λ

λ

+ = =

= =

= + ∂ +

+ + ∂ −

 (10) 
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(a)                                                               (b) 

       
(c)                                                         (d) 

Fig. 4. (a) Test stereo image Teddy. (b) Disparity map with diagonal OPCA. (b) Disparity map 
with v-directional OPCA. (b) Disparity map with two-pass OPCA. 

We note that the DP algorithm can be used in the reverse index direction. In such a 
case the recurrence operator in Eq. (6) is rewritten 

{ }
max[0, ]

max max

( , ) ( , ) min ( 1, ) ,

( , ) ( , ).

R
n n n

d i D

n n

S u d E u d S u d i d i

S U d E U d

λ
+ ∈

= + + + + +

=
 (11) 

Finally, using the direct recurrence in Eq. (6) and the reverse recurrence in Eq. 
(11), the optimal sum in Eq. (10) can be evaluated, yielding: 

{ }1( , ) ( , ) ( , ) ( , ) ( , ).R
n n n n nE u d A E u d S u d S u d E u d+ = = + −  (12) 

Now, if we apply the OPCA operator Eq. (12) to each v slice of the initial 3D DSI 
matrix E0(u,v,d), as it is shown in the scheme Fig.2., then the sought disparity map 
P(u,v) is just the minimal projection Eq. (2) of the aggregated DSI. In this case the 
solution in Fig. 4.(c) exactly coincides with the disparity map obtained by the DP 
algorithm. However, the key benefit of the proposed scheme is that we rid of the 
graph recovery in Eq. (7). Instead of this, we handle the aggregated costs of the DSI. 
Consequently, of the OPCA operator can be applied repeatedly.  
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For instance, if the fist application of the OPCA is v-directional (the 3D DSI is cut 
to the Vmax 2D DSI sub-matrixes as in the scheme Fig. 2.), next we can apply the 
OPCA in the u-direction (the 3D DSI is cut to the Umax 2D DSI sub-matrixes). In 
other words, the two-pass cost aggregation is carried out: 

{ }{ }0( , , ) ( , , ) .uv u vE u v d A A E u v d=  (13) 

The cost value Euv(u,v,d) is proportional to the sum of the initial costs over optimal 
surface Fig. 1. It means that the solution obtained with the two-pass OPCA is an ap-
proximation to 2D optimization problem. The result of such approximation is illus-
trated by the disparity map in Fig. 4. (d). The comparison with other global optimiza-
tion algorithms (Graph Cuts and Belief Propagation) demonstrates that even the two-
pass OPCA algorithm achieves the better result. Furthermore, to improve the resultant 
disparity map the base operator Eq. (12) can be applied in other directions different 
from the above considered u and v directions(e.g., in a diagonal direction as it is 
shown in Fig. 4. (b)).  

For example, the four-pass OPCA can be calculated by 

{ }{ }{ }{ }/\ / \ 0( , , ) ( , , ) .uv u vE u v d A A A A E u v d=  (14) 

The proposed algorithm with use of the OPCA is now summarized as follows: 

• Prepare a 3D DSI array, (u, v, d):(x, y) and set initial cost values E0 using Eq. (1). 
• Iteratively update cost values En using the OPF that is defined in Eq. (12) with 

various DSI cut directions, until the quality of minimal projection of the processed 
DSI does not improve. 

• To carry out the quality evaluation use the conditional distance criterion defined in 
Eq. (3). 

• Utilize the minimal projection Eq. (2) of the updated DSI as the sought disparity 
map.  

Usually four steps of the iteration process Eq. (14) are sufficient. The running time 
of each OPCA iteration is on the order of O(UVD), where UV is approximately the 
size of the stereo image; D is the range of disparities.  

4   Computer Experiments 

In this section experimental results are presented to illustrate the performance of the 
OPCA method. To demonstrate the effectiveness of our algorithm, we have applied it 
to several test stereo images. Initial cost values are set by using the absolute differ-
ence of image intensities for each pixel. For the color images the norm has to be the 
vector distance (the square root of the sum of the squared differences of the color 
vector components). In our computer experiment both regularization weights λ=μ  is 
set proportional to the mean value of the initial costs of the processed DSI, because 
such a choice refers to the early path definitions [8], where the path roughness was 
penalized by additional cost values included in this path.    
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Fig. 5 presents the comparative results of different global stereo matching methods on 
two test stereo images”Teddy” (450×375 Disp. 32) and “Cones” (450×375 Disp. 32). 
The quantitative evaluation of the processing results is based on the Mean Squared Error 
criterion relative to the ground truth disparity maps and given in Table 1.  

Table 1. Quantitative evaluation of the results in Fig. 5 

Methods Teddy Cones 

BP 1.58 2.21 

GC 0.91 1.34 

OPCA 0.63 0.79 

So numerical analysis on the base of the mean squared errors (MSE) criterion 
shows that the proposed algorithm has advantage over conventional global optimiza-
tion matching algorithms. Furthermore, the OPCA algorithm is much faster than global 
methods. 

5   Conclusion 

A new stereo matching method based on the OPCA technique has been proposed. The 
proposed aggregation technique is based on the dynamic programming principle, 
which exactly solves one dimensional optimization problem. The OPCA can be util-
ized repeatedly in contrast to dynamic programming. Furthermore, the application of 
the 2D extension of the OPCA proves an excellent approximation to the global 2D 
optimization problem.  

Acknowledgements 

This work has been supported by EC grant IST-027110 for the HERMES project and 
by the Spanish MEC under projects TIC2003-08865. M. Mozerov also acknowledges 
the support of the Ramon y Cajal research program, Ministerio de Educacion y 
Ciencia, Spain.  

References 

1. Bhatand, D. N., Nayar, S. K.: Ordinal measures for image correspondence. IEEE Trans. 
Pattern Analysis and Machine Intelligence, Vol. 20 (1998) 415-423 

2. Brown, M. Z., Burschka, D., and Hager, G. D.: Advances in computational stereo. IEEE 
Trans. Pattern Analysis and Machine Intelligence, Vol. 25 (2003) 993–1008  

3. Gong, M., and Yang, Y-H.: Fast unambiguous stereo matching using reliability-based dy-
namic programming. IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 27 
(2005) 998-1003  



626 M. Mozerov 

4. Hirschmuller, H.: Accurate and efficient stereo processing by semi-global matching and 
mutual information. Proc. Computer Vision and Pattern Recognition (CVPR 2005), Vol. 2 
(2005) 807-814 

5. Kim, J., Kolmogorov, V., and Zabih, R.: Visual correspondence using energy minimiza-
tion and mutual information. Proc. International Conference on Computer Vision, (2003) 
1033–1040 

6. Lin, M. H., and Tomasi, C.: Surfaces with occlusions from layered stereo. IEEE Trans. 
Pattern Analysis and Machine Intelligence, Vol. 26 (2004) 073–1078 

7. Ohta, Y., and Kanade, T.: Stereo by intra – and intra-scanline search using dynamic pro-
gramming. IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 7 (1985) 139-154 

8. Roy, S., and Cox, I. J.: A maximum-flow formulation of the N-camera stereo correspon-
dence problem. Proc. Int’l Conf. Computer Vision, (1998) 492-499 

9. Scharstein, D., and Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo corre-
spondence algorithms. International Journal of Computer Vision, Vol. 47 (2002) 7–42  

10. Sun, J., Shum, H. Y., and Zheng, N. N.: Stereo matching using belief propagation. IEEE 
Trans. Pattern Analysis and Machine Intelligence, Vol. 25 (2003) 787–800  

11. Tomasi, C., and Manduchi, R.: Stereo matching as a nearest-neighbor problem. IEEE 
Trans. Pattern Analysis and Machine Intelligence, Vol. 20 (1998) 333–340 

12. Zhao, H.: Global optimal surface from stereo. Proc. Int’l Conf. Pattern Recognition, Vol. 1 
(2000) 101-104 

13. Zitnik, C. L., and Kanade, T.: A cooperative algorithm for stereo matching and occlusion 
detection. IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 22 (2000) 675-684 



Tracking Camera Parameters of an Active
Stereo Rig

Thao Dang and Christian Hoffmann

Institut für Mess und Regelungstechnik, University of Karlsruhe, Germany

Abstract. This contribution presents an approach for the continuous
self-calibration of an active stereo rig with verging cameras. The proposed
self-calibration recovers extrinsic parameters up to scale as well as the
focal lengths of both cameras. Three different categories of constraint
equations are evaluated and formulated as a Gauss-Helmert model for
self-calibration: bundle adjustment with reduced parameter vector, the
epipolar constraint, and the trilinear constraints. The optimization of the
constraints is implemented as a robust Iterated Extended Kalman Filter
that allows initial stereo calibration as well as continuous tracking of the
camera parameters. The performance of the algorithm is demonstrated
on synthetic and real imagery.

1 Introduction

Stereo self-calibration refers to the automatic determination of extrinsic and in-
trinsic camera parameters of a stereo rig without prior information about the
observed scene. Particularly, no special calibration objects are required and the
calibration can be maintained continuously while the sensor is in use. We believe
that especially in the automotive field, self-calibration is a vital ability required
for the introduction of stereo cameras in the market. The objective of this con-
tribution differs from many self-calibration tasks since we assume that an initial
guess of the camera calibration is readily available (e.g. camera orientation is
given with errors up to a few degrees), and our self-calibration has to refine these
initial guesses and track slow drift in the camera calibration parameters. We thus
address only part of the full self-calibration problem, however, we believe that
this simplification is valid for a variety of applications e.g. when the parameters
of the stereo rig are given within the tolerances of the manufacturing process or
in active vision when (perturbed) commanded camera parameters are available.

We have developed an active camera platform consisting of three cameras
(Fig. 1): one tele camera for monoscopic vision tasks and two cameras for stere-
opsis. The camera platform is capable of vergence, i.e. all cameras can be rotated
independently. The vision sensor is intended to implement active vision capabil-
ities for autonomous driving. Additionally, the platform constitutes an excellent
test bed for stereo self-calibration.

Several approaches to the calibration of an active stereo rig with verging
cameras have been described in the literature: Some use careful offline calibra-
tion of the camera parameters and the motor axes and then rely solely on the

K. Franke et al. (Eds.): DAGM 2006, LNCS 4174, pp. 627–636, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



628 T. Dang and C. Hoffmann

Fig. 1. a. The active camera platform mounted in our experimental vehicle. The plat-
form consists of two (stereo) cameras and a tele camera. The two stereo cameras can
be rotated independently about their yaw axes while the tele camera is capable of both
horizontal and vertical rotations to compensate vehicle pitch. b. Schematic view of the
active camera platform (C1, C2: stereo cameras, C3: tele camera, M: mirror).

commanded motor angles [1]. Others employ online self-calibration, but restrict
themselves to update only two extrinsic camera orientation angles and thus in-
herently assume ideal mechanical setups [2,3].

The goal of this work is to derive a recursive approach that continuously up-
dates five extrinsic parameters and the focal lengths of both cameras by means of
a robust, iterated extended Kalman filter (IEKF). We investigate three different
constraints that may be used in tracking the calibration parameters: recursive
bundle adjustment with reduced dimension of the parameter state vector, the
epipolar constraint between a pair of stereo images, and the trifocal constraint. A
Gauss-Helmert type model is employed to ensure that physically relevant errors
are minimized. We find that recursive bundle adjustment and the epipolar con-
straint may complement each other in practical applications: bundle adjustment
provides highest accuracy (and might suffice on its own in some environments),
the epipolar constraint is not affected by independently moving objects in the
scene and may thus stabilize the calibration process. We propose an algorithm
that combines both the epipolar constraint for instantaneous measurements and
recursive bundle adjustment integrating spatio-temporal correspondences. The
algorithms are demonstrated on both synthetic and real imagery.

The paper is organized as follows: Sec. 2 briefly outlines the mathematical
camera model used to describe our active vision system. The recursive self-
calibration based on a robust IEKF and the different geometric constraints are
presented in Sec. 3. Our algorithm is evaluated on synthetic and real-life imagery
(Sec. 4). Sec. 5 summarizes our results and concludes the paper.

2 Camera Model

Throughout this paper, we employ the ideal pinhole model to describe the stereo
cameras (see e.g. [4]). Using this model, a 3d pointX and its 2d image coordinatesx
(both in homogenous coordinates) are related by the following projective equation

x = λKR [I,−C] X = λPX with K =
[

f 0 cx

0 f cy

0 0 1

]
, (1)

where λ is an unknown scalar factor. The matrix K comprises the intrinsic
camera parameters, i.e. the focal length f and the image center [cx, cy]T . Aspect
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Fig. 2. Extrinsic parameters of active stereo rig. The world coordinate system (WCS)
is attached to the baseline b of the stereo cameras.

ratio and image skew are omitted here since they are negligible in most modern
CCD and CMOS cameras. The rotation matrix R and the vector C specify the
extrinsic camera parameters. For simplicity, we abbreviate perspective projection
according to (1) by x = π(X). The inversion of the pinhole projection will be
denoted as X = Π−1(x, XZ). Please note that depth component XZ of X is
required for a unique reprojection of x.

Fig. 2 depicts the extrinsic parameters of our active camera platform. We
define a world coordinate system (WCS) whose origin lies in the center of the
baseline and whose X-axis is aligned with the baseline. To eliminate the re-
maining degree-of-freedom (DOF), we impose that the Z-axis of the WCS is
parallel to the plane defined by the baseline and the optical axes of the right
camera. Given this WCS, it is convenient to represent camera orientations as a
concatenation of yaw–pitch–roll rotations with angles ω = [y, p, r]T :

R(ω) = R(y, p, r) = RZ(r)RX(p)RY (y) , (2)

where RZ ,RX ,RY are rotations about the Z–, X–, and Y –axis, respectively.
The projection matrices PL and PR can be obtained from Fig. 2:

PR = KRRR [I,−CR] (3)
PL = KLRL [I,−CL] (4)

with RR = R(yR, 0, rR),RL = R(yL, pL, rL),CR = [b/2, 0, 0]T and CL =
[−b/2, 0, 0]T .

The stereo rig has thus six extrinsic parameters: yL, pL, rL denote the ori-
entation of the left camera with respect to the WCS, yR, rR specify the yaw
and roll angles of the right camera (the pitch angle is omitted since the WCS
is aligned with the optical axis of the right camera), and b is the base length of
the stereo cameras. Since cameras are scale blind, we will not update b in our
self-calibration and assume that the base length is precisely known.

3 Self-calibration

Bundle adjustment.Consider a set of object points Xi, i ∈ Sb that is moving
rigidly through space, i.e. with a simple motion model Xi(k+1)=R(ω(k))Xi(k)+
V(k). The projections of these object points in the left and right images are de-
noted xR,i,xL,i, respectively, and we are given noisy measurements x̂R,i(k) =
xR,i(k) + eR,i(k), x̂L,i(k) = xL,i(k) + eL,i(k).
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The objective of bundle adjustment is to find the 3d structure Xi, the object
motion (ω,V), and the camera parameters (ωR, ωL, fR, fL) such that the dis-
tance between the projections xR,i,xL,i and the measured coordinates x̂R,i, x̂L,i

is minimal over all frames k of a sequence. Bundle adjustment has been widely
used in photogrammetry and as a refinement step for off-line camera calibration
since it can provide highly accurate results. However, it has several shortcom-
ings: First, it requires an initial guess of the parameters with sufficient quality to
guarantee convergence. Second, it is usually implemented as a batch approach
that requires that all input data is given at once. Third, the parameter space is
high dimensional since each tracked point Xi introduces three additional DOF,
resulting in difficult and time consuming optimization procedures. As stated ear-
lier, we assume that a sufficient initial guess is available and cover only the latter
problems. A robust Iterated Extended Kalman Filter will be used, so that all
data will be processed as soon as it arrives. To reduce the state dimension, we
decompose each Xi into its projection onto the right image xR,i and its depth
ρi: ρi cannot be recovered directly and is thus included in the parameter vector,
whereas xR,i is treated as a (directly accessible) observation in the measurement
constraint as will be shown later. Thus, in our formulation each tracked param-
eter introduces only one DOF and the dimension of the state vector is reduced
significantly.

Given a true image position xR,i(k) and the true depth ρi(k) of a tracked
point, we can reconstruct Xi(k) via inverse pinhole projection

Xi(k) = Π−1
R (xR,i(k), ρi(k)) . (5)

Using Xi(k), we are able to predict image positions xR(k+1) and xL(k):

xR(k + 1) = πR(R(ω(k))X(k) + V(k))
xL(k) = πL(X(k)) (6)

Thus, for each time instant k, Eqs. (5) and (6) constitute an implicit mea-
surement constraint between the observed quantities and the parameter vector
zb = [ρi, ω,V, ωR, ωL, fR, fL]T

hb (zb,xR,i(k),xL,i(k),xR,i(k+1)) =[
πR{R(ω)Π−1

R (xR,i(k),ρi))+V}−xR,i(k+1)

πL{Π−1
R (xR,i(k),ρi)}−xL,i(k)

]
= 0 (7)

Using this constraint, the objective of our self-calibration is to minimize at each
k the pixel error 1 ∑

i∈Sb

∥∥∥(eR,i(k), eL,i(k), eR,i(k+1))T
∥∥∥2 (8)

subject to the constraint

hb (zb, x̂R,i(k)−eR,i(k), x̂L,i(k)−eL,i(k), x̂R,i(k+1)−eR,i(k+1)) = 0 (9)
1 In fact, each pixel error is actually weighted by its inverse covariance matrix. This

is omitted for brevity.
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evaluated for all features i ∈ Sb. Implicit measurement constraints as given by
Eqs. (8–9) are related to Gauss-Helmert models (e.g. [5]). We wish to emphasize
that Eq. (8) minimizes a physically relevant geometric error corresponding to
pixel distances in the image. In addition, the dimension of the parameter vector
in our optimization problem is N+13 (where N is the number of tracked points),
while standard bundle adjustment would require 3N+13 elements.

Epipolar constraint. The epipolar constraint was introduced by [6] and
constitutes an elementary relation between two stereo images. Geometrically, it
states that the optical centers of both the left and right camera and correspond-
ing image points xL and xR all lie within the same plane. This constraint is
expressed mathematically using the fundamental matrix F:

he (F,xL,xR) = xT
LFxR = 0 . (10)

It is straightforward to show that for our camera model described in Sec. 2, the
fundamental matrix is given by

F = KL
−T RL [CR−CL]× RT

RKR
−1 , (11)

where [.]× denotes the skew-symmetric matrix operator. Please note that the
epipolar constraint (10) does not involve the 3d position of the observed object
point, i.e. the epipolar constraint decouples the extrinsic camera parameters
from the 3d structure of the observed scene. Furthermore, the epipolar constraint
constitutes only a necessary condition for two image points to correspond to the
same object point since it neglects matching errors along the epipolar line.

Given noisy image positions x̂R,i = xR,i + eR,i and x̂L,i = xL,i + eL,i, our
objective is to find the camera parameters (ωR, ωL, fR, fL) that minimize the
sum of squared pixel errors: ∑

i∈Se

∥∥∥(eR,i, eL,i)
T
∥∥∥2 (12)

subject to the epipolar constraints

he (F, x̂L,i−eL,i, x̂R,i−eR,i) = 0 ∀i ∈ Se . (13)

Even though the epipolar constraint has some theoretical disadvantages com-
pared to bundle adjustment since it does not provide as much information, it
still has some practical benefits: First, the parameter space for self-calibration is
small since an explicit representation of the scene structure is not required. Sec-
ond, the epipolar constraint between stereo images does not require the rigidity
of the observed scene and is thus unaffected by independently moving objects.

Trilinear constraints. The trilinear conditions formulated in [7] relate the
coordinates of corresponding points in three images. Similar to the epipolar con-
straint, the trilinearities decouple scene structure from camera calibration since
they do not require the 3d position of the observed point explicitly. Contrary
to the epipolar constraint, however, they provide a sufficient condition for three
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image coordinates to correspond to the same object point. For more details on
the trilinear constraint, the reader is referred to [4].

Consider a triplet of corresponding image points xR,i(k),xL,i(k),xR,i(k+1)
in the current right, left and subsequent right camera frame, respectively. For
brevity, we denote these image positions by xA,xB,xC and their associated
projection matrices are given by

A = KRRR [I,−CR] (14)
B = KLRL [I,−CL] (15)
C = KRRR [R(ω(k)),V(k)−CR] , (16)

where (ω(k),V(k)) describes the 3d motion of the stereo rig.
The geometry of three cameras can be captured elegantly by the trifocal tensor

[8]. In this contribution, we employ a Euclidean parametrization of the trifocal
tensor and compute T from the projection matrices A,B,C as

Tqr
l = (−1)l+1 det

⎡⎣∼al

bq

cr

⎤⎦ . (17)

bq and cr refer to the q-th and r-th row of the matrices B and C, respectively.
∼al is the matrix A without the l-th row.

Using the trifocal tensor, the trilinear constraints between point triplets are
given by:

gqr(T,xA,xB,xC) =
3∑

l=1

xA
l

(
xB

q xC
r T

33
l − xC

r T
q3
l − xB

q T
3r
l + T qr

l

)
= 0 . (18)

Eq. (18) actually yields nine constraints for the possible choices of q, r ∈ {1, 2, 3}.
Four of these constraints are linearly independent [7], but as shown in [5], the tri-
linearities impose only three constraints onto the geometry of the image triplet
if a minimal parametrization is used. An optimal choice of the constraints is non
trivial, in fact the selection of the constraints should be adapted to the current
motion of the stereo and the position of the observed 3d point. This has not yet
been implemented in our work. Instead, we found that for our stereo rig with fixed
base length, a combination of two trilinear constraints (q, r) = (1, 1), (1, 2) and the
epipolar constraint between the left and right stereo frame gives adequate results.

Using the selected constraints and given i triplets of corresponding points in
three images, our self-calibration algorithm has to minimize the cost function∑

i∈St

∥∥∥(eR,i(k), eL,i(k), eR,i(k+1))T
∥∥∥2 (19)

subject to the constraint⎡⎣g11(T, x̂R,i(k)−eR,i(k), x̂L,i(k)−eL,i(k), x̂R,i(k+1)−eR,i(k+1))
g12(T, x̂R,i(k)−eR,i(k), x̂L,i(k)−eL,i(k), x̂R,i(k+1)−eR,i(k+1))

he (F, x̂L,i−eL,i, x̂R,i−eR,i)

⎤⎦ = 0 (20)

for all i ∈ St.
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Recursive optimization. In the preceding sections we have derived three
geometric optimization criteria. If we assume that the measurement errors eR, eL

are realizations of a Gaussian white noise process, we can solve our
self-calibration problem using an Iterated Extended Kalman filter (IEKF) with
implicit measurement formulation as described in e.g. [9]. The state vector z of
the IEKF comprises the depths of all N tracked bundle adjustment features in
the set Sb, object motion and camera parameters:

z = [ρ1, . . . , ρN , ω,V, yR, rR, yL, pL, rL, fR, fL]T . (21)

While the measurement equations of the filter are given by Eqs. (8,9), (12,13)
and (19,20), we still need to define the system model that governs the dynamics
of our state vector. For simplicity, we assume that the camera is moving with a
constant velocity model pertubated by Gaussian white noise, i.e.[

ω(k+1)
V(k+1)

]
=
[

ω(k)
V(k)

]
+
[

nω(k)
nV (k)

]
. (22)

If additional information is available (such as e.g. commanded steering angles and
accelerations or more precise vehicle motion models), it should be incorporated
at this point. However, we found that the simple motion model already provides
good results in our first experiments. The depths ρi then evolve as

ρi(k+1) = [0, 0, 1] (R(ω(k))Xi(k) + V(k)) , i ∈ Sb (23)

with Xi(k) = Π−1
R (xR,i(k), ρi(k)). The dynamics of the extrinsic camera param-

eters are assumed to be governed by⎡⎢⎣
yR(k+1)
rR(k+1)
yL(k+1)
pL(k+1)
rL(k+1)

⎤⎥⎦ =

⎡⎢⎣
yR(k)
rR(k)
yL(k)
pL(k)
rL(k)

⎤⎥⎦+

[
1 0
0 0
0 1
0 0
0 0

] [
uR(k)
uL(k)

]
+ nωR,ωL(k) , (24)

where uR, uL denote the commanded yaw angles of the right and left stereo
camera, respectively. The covariance matrix of the system noise nωR,ωL is small
when no command signals have been sent to the motors and large when new gaze
directions are set. Similarly, constant focal lengths are assumed with additive
Gaussian white noise nf [

fR(k+1)
fL(k+1)

]
=
[

fR(k)
fL(k)

]
+ nf (k) . (25)

Feature points for recursive bundle adjustment, epipolar constraint, and trilin-
ear constraints are acquired using Lowe’s SIFT feature detector [10]. In addition,
the search region used for feature matching is predicted using the current filter
state and its uncertainty. As indicated above, robustness is an essential prop-
erty of our self-calibration algorithm since correlation based matching is prone
to occasional gross errors due to periodic patterns or occlusions and there may
be independently moving objects in the scene. We have thus employed random
sampling in the innovation stage of the IEKF as proposed in [11].
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Fig. 3. a. Comparison of self-calibration results on various noise levels. The plot shows
the mean 3d reconstruction error obtained with the different self-calibration methods.
b. Second and third stereo frame of sample sequence. The automatically selected fea-
tures are also shown: +: successfully tracked features, ♦: stereo features for epipolar
constraint, ∗: invalid tracking features.

4 Examples

The proposed self-calibration was first evaluated on simulated data. We ran-
domly generated synthetic stereo sequences of a moving point cloud with 40
points. Each sequence was 50 stereo frames long and Gaussian white noise was
added to the image coordinates of all points in both images. The initial guess
for the stereo calibration deviated 2◦ in each component from the true extrinsic
parameters and differed by 10% from the true focal lengths.

To assess the self-calibration results, we compute the mean relative 3d recon-
struction error of all points in the last frame of the sequence. Given the true im-
age coordinates xL and xR in both images and the estimated camera parameters
ω̂L and ω̂R, we can determine the 3d position X̂ of the corresponding object point
using Hartley’s triangulation method [12]. The relative 3d reconstruction error is
then computed as εrel = ||X̂−X||/||X||, where X denotes the true 3d position.

Fig. 3a depicts the results of the proposed algorithm. The standard deviations
of the pixel error varied from 0 to 1 pixels and 50 independent simulations were
run on each noise level. We compared three different versions of the algorithms:
a) using only the epipolar constraint, b) using only the trifocal constraint, and
c) using recursive bundle adjustment only. We found that bundle adjustment
gives best results, but as indicated above, is the most time consuming method.

The stereo calibration tracking was also tested on real imagery. Fig. 3b shows
sample frames of the sequence with the extracted features. We have chosen a
version of our algorithm combining at most 30 tracking features Sb in bundle
adjustment and 30 stereo features Se in the epipolar constraint. The vehicle was
first driving straight for about 40 frames and then made a left turn. This is also
reflected in the estimated motion parameters (ω,V) (Fig. 4). The cameras were
rotated twice in the sequence: first about 15◦ to the left before starting the turn
at frame 38, second about −15◦ after completing the turn (frame 168). Both
changes in the gaze direction are captured by the self-calibration.

Since ground truth for this real imagery example was not available, we used
stereo reconstruction results to asses the performance of our self-calibration.
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Fig. 4. Extracted 6d ego motion (a,b) and camera parameters (c,d,e) for the sequence
depicted in Fig. 3b. The cameras were rotated twice: 15◦ to the left before starting the
turn (frame 38) and then 15◦ to the right after leaving the curve in frame 162.

Stereo reconstruction was performed by first rectifying the images with the es-
timated camera parameters, so that all corresponding pixels in both rectified
frames should have the same y-coordinate. Then, correlation based matching as
described in [13] was performed. Please note that we fully relied on the stereo
rectification and used only a 1d search region for stereo matching, so that erro-
neous camera parameters have great influence on the matching performance.

The left column of Fig. 5 displays the stereo reconstruction results using the
initial stereo parameters. As the initial parameter setting was just a manual
guess of the camera parameters, stereo reconstruction was not possible here.
Valid disparity images are already obtained after two frames and at frame 30 —
just before rotating the cameras to the left —, the self-calibration has converged
to reliable camera parameters. The estimated stereo calibration even remains
valid after the two camera rotations in frames 38 and 168 and gives satisfying
results over the whole sequence.

5 Conclusion

This contribution presented the self-calibration of an active stereo rig based on
three different criteria: bundle adjustment with reduced dimension of the pa-
rameter vector, epipolar constraint, and trilinear constraints. The optimization
of the camera parameters is implemented as a robust Iterated Extended Kalman
filter that minimizes physically relevant errors in the image plane. The synthetic
examples in Sec. 4 reveal that bundle adjustment with reduced parameter vector
outperforms the other constraints by nearly a factor of three in terms of accu-
racy. However, since the epipolar constraint is not deteriorated by independently
moving objects, it may be beneficial in practical applications to combine two
sets of bundle adjustment and epipolar constraint features to stabilize the self-
calibration process. Such a combination was tested on a real imagery sequence.
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Fig. 5. Stereo reconstruction results obtained with the stereo calibration from Fig. 4
(top: right camera frames, bottom: disparity images). Note that the initial calibration
parameters at frame 0 are set manually and do not allow meaningful 3d reconstruction.

The proposed algorithm allowed both initial calibration refinement as well as a
continuous update of the parameters of the active stereo system. We envision
that our results may also contribute to the self-calibration of standard stereo
rigs in a variety of applications. Future work will focus on the incorporation of
lens distortion parameters into the camera parameter tracking.
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Abstract. In real world scenes, objects to be classified are usually not visible
from every direction, since they are almost always positioned on some kind of
opaque plane. When moving a camera selectively around those objects for clas-
sifying them in an active manner, a hemisphere is fully sufficient for positioning
meaningful camera viewpoints. Based on this constraint, this paper addresses the
problem of handling planned camera actions which nevertheless lead to view-
points beyond the plane of that hemisphere. Those actions arise from the uncer-
tainty in the current vertical camera position combined with the view planning
method’s request of a relative action. The latter is based on an optimized and
interpolating query of a knowledge base which is built up in a Reinforcement
Learning training phase beforehand.

This work discusses the influence of three different, intuitive and optimized,
methods for handling invalid action suggestions generated by Reinforcement
Learning. Influence is measured by the difference in classification results after
each step of merging the image data information with active view planning.

Keywords: Active Vision, Viewpoint Selection, Reinforcement Learning.

1 Introduction

The basic idea of active object recognition is the optimized selection of the viewpoints
relative to an item in order to classify it reliably with a minimal amount of recorded
sensor data, such as camera images. Naturally, this comes along with the necessity of
moving a camera around the considered object and fusing the gathered information. As-
piring to optimality, some kind of camera movement planning is required, which in our
approach is based on Reinforcement Learning [11]. We have already shown in various
publications [4] [5] that this approach outperforms a random viewpoint selection when
the camera movement is restricted to a circular path around the object.

The enhancement from the 1-dimensional path to the complete, 2-dimensional
sphere around the item is quite simple at a first glance. But the restriction appearing in
practice is that the majority of objects is positioned on an opaque plane, like a table or
the floor. Consequently, cameras cannot be positioned in any way to take a meaningful
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K. Franke et al. (Eds.): DAGM 2006, LNCS 4174, pp. 637–646, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



638 C. Derichs and H. Niemann
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Fig. 1. The elementary structure of the active view planning system

image from below those objects. Keeping this in mind, it is a reasonable approach to ini-
tially model the object only with image information gained from camera viewpoints that
are arranged on a hemisphere around this object. In contrast to this modeling, later real
world camera movements, as well as their horizontal and vertical positions relative to
the considered object, are almost always afflicted with uncertainty. In particular, a cam-
era controlling mobile robot may encounter an object worth classifying at some time
during its so far undirected movement in an arbitrary environment. So regarding the
relation between camera and object position, no initial alignment of coordinate systems
can be done. Consequently, incoming information is limited to the recorded image of the
object. Based on this information, a probabilistic suggestion about the relative camera
position and the object class can then be established and an optimal next viewpoint for
recognition can be calculated. Approaching the latter mostly means moving the whole
robot as well as changing the camera angle, both being afflicted with inaccuracy.

Now the problem regarding the hemisphere constraint results from the fact that the
software part (see figure 1) might randomly choose or even plan a relative action which
actually would not result in a position on the mentioned hemisphere. Unfortunately, nei-
ther the hardware front end is not able to detect such an invalid action without actually
performing it. Since the movement is at least partially performed when eventually rec-
ognizing the impracticability of the proposed action, a replanning would waste one step
in the recognition process, which is considered worst-case in optimal, active view plan-
ning. Therefore, the hardware in particular must not reject or request an action from
the software part, but has to promptly handle the given action instruction somehow.
Considering the other direction, in order to keep the approach universal the software is
assumed to not explicitely get to know anything about the success of the real action, it
merely obtains the next image. In our framework, success information is just used for
rating executed actions (see chapter 2).

Thus, the problem under consideration is how to immediately deal with requested ac-
tions that are invalid in a sense of camera movement constraints and how to adapt this to
the knowledge representation, in fact without raising the planning effort disproportion-
ately. The latter is exactly the point most of the related work is missing. For example,
[9] explicitely puts a lot of effort into the exact recovery of conditions obtained before
performing a failed action in order to try another action then. [10] proposes an approach
which emerges from robot navigation and modifies a planned, demanded action or ac-
tion sequence if this did not lead to a recognizable state enhancement in the preceding
time steps. Of course, in our active view planning system we cannot wait for the system
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to recognize such a dead end. Other work from the area of Replanning displaces the er-
ror handling work towards the training phase, like [2], which alternately inhibits action
components during training in order to directly learn backup plans. Similarly, [13] in-
troduces a plan transformation that varies a proposed action to similar one which is most
probably valid. But this transformation advice is again based on an expanded training
phase including the buildup of a plan library. Thus, those approaches are worth con-
sidering if training complexity is not a matter. A completely different, Reinforcement
Learning adjusted idea is suggested by [6], which incorporates the risk of a valid action
to become invalid due to some inaccuracy into an action’s rating. A similar approach
and it’s common disadvantages are discussed in chapter 3.

Chapter 2 gives an outline of the basic methods of Reinforcement Learning and ex-
plains the role of the problem specific variables within this framework. Afterwards, chap-
ter 3 first introduces the probabilistic description of the class and pose assumptions of an
object via a set of particles and then shows three methods for propagating these particles
according to the action handling direction under consideration. Chapter 4 compares the
proposed methods regarding their impact on experimental classification results.

2 Reinforcement Learning

2.1 Basic Principles
In a basic Reinforcement Learning approach, the three decisive items are states st, ac-
tions at that lead to new positions and rewards rt that rate the performed action at

given state st as its starting point. A timestamp t clarifies that in the assumed environ-
ment we have multiple episodes of T temporally successive actions 〈a1,a2, . . . ,aT 〉
and resulting states 〈s1, s2, . . . , sT+1〉 each.

For our purpose:
• States within the development environment are multi-modal probability distribu-

tions (see [4] [5]). They are discrete concerning the number of object classes Ωκ and
continuous within the values for horizontal (Φh) and vertical (Φv) camera positions rel-
ative to the object. Consequently, they contain probabilistic assumptions about the class
and pose of an object under consideration. Those assumptions arise from the informa-
tion extracted from the image data f t the camera acquires in each time step. Thus, the
state densities can be presented by

st = p(q(t)| 〈f〉t , 〈a〉t−1) with q = (Ωκ, Φh, Φv)T
. (1)

Here, 〈f〉t = f t,f t−1, . . . ,f1 and 〈a〉t−1 = at−1, . . . ,a1 indicate the fusion of all
image information and camera movement knowledge gathered during a whole episode.
Therefore, the probability distribution st itself is a fused product of information gathered
in multiple time steps. For a detailed explanation of the fusion procedure refer to [3].
•Actions are the movements of the camera in-between the taking of two consecutive

images. For the purpose of this work, actions at = (ah,t, av,t)
T are limited to two

components, the horizontal (ah) and the vertical (av) movement of the camera fixed on
a predefined hemisphere around the object.
• Rewards follow the usual definition in Reinforcement Learning

Rt =
∞∑

n=0

γnrt+n with γ ∈ [0; 1] , (2)
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where rt is the immediate reward when analyzing a next state st and γ is a weight-
ing factor whose influence is increasingly reduced with a growing step indicator n.
Summing up the sequentially appearing rewards rt results in a forward-looking reward,
called return R, when at time step t within an episode. In practice, episode lengths are
finite and summation in (2) is aborted accordingly. Since rewards are calculated from
the resulting state representation st, the choice of a significant property of those den-
sities is the crucial task in Reinforcement Learning. So we decided for high rewards
when the most probable class Ωκ out of k classes has high confidence, according to

rt = max
i

∫
Φh

∫
Φv

p(qi(t+ 1)| 〈f〉t+1 , 〈a〉t) dq
i with qi = (Ωκ=i, Φh, Φv)T

.

(3)
Consequently, rewards in this approach obey the relation k−1 ≤ rt ≤ 1.

2.2 Calculation of the Behavior Policy

Now given a rewarding rule, we can build up a knowledge base during training con-
taining action-value functions Q which represent the quality of an action a in state s
depending on the return’s expectation value:

Q(s,a) = E {Rt|st = s, at = a} (4)

Of course, during training we acquire a fully calculated return Rt since we perform
the whole episode before expanding the knowledge base. But at runtime in every time
step t we can only make assumptions about the future behavior, so an expectation value
is the appropriate formulation. In general, we cannot expect to get only such states s
during evaluation that we have already seen in the training phase, since we work in
a continuous environment. To nevertheless be able to declare a best action in every
situation we acquire, an approximation term Q̂(s,a) is necessary:

Q̂(s,a) =

∑
(s′,a′)

K (d (θ(s,a), θ(s′,a′)))Q(s′,a′)∑
(s′,a′)

K (d (θ(s,a), θ(s′,a′)))
. (5)

– (s′,a′) are the state-action pairs already stored in the knowledge base.
– θ(s,a) is the resulting multi-modal density function when transforming s accord-

ing to an action a. The various rules for this transformation are the gist of this paper
and will be extensively discussed in chapter 3.

– d calculates the distance between two density functions using the extended
Kullback-Leibler distance

– K(x) = exp(−x2/D2) is a Gaussian kernel for weighting those distances d. The
free kernel parameter D determines the smoothness or rather the local fineness of
the approximation in (5).

Readdressing the topic of this work, the approximative character of Q̂(s,a) is—next
to the movement uncertainty—the main reason for obtaining invalid actions during run-
time at all. The final step for finding the best action in the current state is an optimized
global Adaptive Random Search [12] over all actions in question, followed by a local
Simplex. Consequently, we obtain the optimal considered action ă:

ă = argmax
a

Q̂(s,a). (6)
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3 Handling Critical Actions

To understand the complete process when invalid actions occur, we first give a more
precise insight into the structure of the multi-modal densities representing the states st.
Note that in object recognition tasks, pose and class probability functions are gener-
ally not normally distributed. So unfortunately we cannot make use of the well known
Kalman Filter [8] for the necessary density propagation. Instead, the proposed method
applies a Particle Filter [1] to that problem, resulting in a probability density that is
represented by a set Γt =

{
ρ1

t , . . . , ρ
N
t

}
of N single particles ρt. Each of those par-

ticles ρ =
{
Ω̃κ, Φ̃h, Φ̃v, ω

}
contains information about the class Ω̃κ, the horizontal

pose (Φ̃h) and the vertical pose (Φ̃v) it is representing. Additionally it holds an entry for
its own weighting ω. Density propagation is then easily accomplished via the Conden-
sation algorithm which is directly aligned to those particle representations. For details
about this method refer to [7].

The purpose of this work is to provide and compare meaningful instructions for cam-
era movements based on invalid movement demands, i.e. when they would exceed ei-
ther the north pole or the hemisphere’s plane in the vertical direction. Note that the north
pole was additionally addressed as a critical edge in order to provide some symmetry to
the planning task. Besides, this assumption should prevent problems when integrating
actions’ costs into the learning process, which is outside the scope of this paper.

Finally, the movement adaption strategiesH are :
1.) Pseudo-Persistence PF with Penalization F
2.) Movement up to the Critical Edge and Stopping S
3.) Edge-Reflected MovementR
To keep things concise, we reduce the following examinations to the critical, vertical

action a and state component Φ, respectively. Camera movements are called valid if
Φ ∈ Υ = [0◦; 90◦] for the resulting vertical camera position Φ. Actions ending up at
Φ = 90◦ are named a+, those leading to Φ = 0◦ are called a−. Please note that we can
exactly determine having reached 0◦ or 90◦ via the camera mechanics whereas all other
position specifications are just probabilistic. This is due to the inaccuracy of relative
actions which have to be performed by the hardware, e.g. a mobile robot. In particular,
we will show the demand of repeating a performed action a which accordingly cannot
be done exactly. Thus the repeated action is symbolized by ã.

1.) The first approach is quite intuitive and obeys mainly the idea of Reinforcement
Learning. Here, the actual proceeding concerning the camera movement is to return to
the starting point if a required vertical action ă turns out to be inexecutable during mo-
tion. Otherwise the action is simply performed. Considering the former, that means we
can divide the whole movement process at this time step into two sub-movements indi-
cated by subscripts α and β. So, first an action aα = a

+/−
α physically takes the camera

to a critical edge. Then we need to reverse this action in order to go back to the starting
point. Regarding the action inaccuracies the rule for this is aβ = −ã+/−

α (see the left
drawing of figure 2). Please remember that we cannot just fix the camera in the starting
point for this time step since we don’t know about the possible success of a movement
before actually trying it (see section 1). Since then the camera position would only
change relative to the action inaccuracy, this behavior is called pseudo-persistence. To
understand the particle handling correctly, remember that the software part in figure 1
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}
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theoretical action a
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Fig. 2. Exemplary camera movement handling for invalid actions using the pseudo-persistence
(left) or edge-reflection method (right). The inaccuracy within the second sub-action aβ is chosen
exemplary.

is not aware of any information about the hardware’s action operability. So each par-
ticle of the current state density is moved in a translative manner just according to its
represented hypothesis and the proposed action ă. To point out the resulting similarities
and differences between propagating the particles in the state representation and the
physical action handling, invalid actions (combinations of sub-movements) are mapped
to the one valid, but still theoretical action a which would result in the corresponding
final camera position:

a =

⎧⎨⎩a+
α − ã+

α if ă > a+
α

a−α − ã−α if ă < a−α
ă else

; Φ̃(ρt+1) =
{
Φ̃(ρt) if Φ̃(ρt) + ă �∈ Υ

Φ̃(ρt) + ă else
(7)

Above all, that implies that huge amounts of particles might change position even if
only pseudo-persistence movement is physically performed.

Knowing that an illegal move leads to a next view from almost the same position,
which in general adds very little new information to the classification task, it appears to
be a rational and Reinforcement Learning consistent idea to punish those actions during
training. So, if using the pseudo-persistence method PF and applying the punishment
F to the reward function (rt = F in (3)), it should be possible to learn to avoid those il-
legal actions during the following evaluation phase. However, that is where the problem
occurs with this approach. Since we have no a-priori knowledge about the domain of
appearing rewards for valid moves in general it is impossible to establish an optimal F
beforehand. So either the determination of adequate values for such a punishment has to
be integrated into a far more complex and time consuming learning process [6] or it has
to be set generously high by hand. The latter is obviously suboptimal since also legal
movements into the border area would be partially disadvantaged because of the approx-
imation mentioned in (5). This means that optimal next best viewpoints might be ig-
nored merely because of their proximity to the illegal area, which is a quite well known
problem in Reinforcement Learning. Even originally valid actions within an episode
during training could be negatively affected if an invalid action follows later on in the
same episode, regarding the return (2) with γ > 0. Nevertheless, this is the approach a
problem-unspecific Reinforcement Learning method would apply. Thus, chapter 4 will
also show the classification results when applying various punishment terms F .



Handling Camera Movement Constraints in Reinforcement Learning 643

2.) The second approach tackles the afore mentioned problem of unadjusted pun-
ishment terms by avoiding their occurrence in general. This is simply done by stop-
ping a critical camera movement if either the north pole or the hemisphere’s plane is
reached, thus aβ = 0. This way, non-executable actions cannot be avoided either, but
each of them can again be uniquely mapped to a valid action and can be rated by the
usual Reinforcement Learning reward (3). Again, density particles have to be handled
with the same procedure, yielding the following directions:

a =

⎧⎨⎩a+
α if ă > a+

α

a−α if ă < a−α
ă else

; Φ̃(ρt+1) =

⎧⎨⎩
90◦ if Φ̃(ρt) + ă > 90◦

0◦ if Φ̃(ρt) + ă < 0◦

Φ̃(ρt) + ă else
(8)

Please note that stopping at the critical edges differs from most other, possibly ran-
domly chosen successive actions in the way that it is deterministic. In particular, each
particle can be propagated in exactly the same manner a camera would move when be-
ing located at this particle’s parameter hypotheses - in fact without knowing the real
outcome of the camera movement beforehand.

3.) The obvious drawback of the previous approach is the preference of edges as
arrival points for the camera movement. Since we always permit relative vertical ac-
tions within the range of [−90◦; 90◦[ , theoretically every second move ends up at
one of those two edges during the Reinforcement Learning training phase, since we
only perform random actions here. Intuitively, this might result in a heavily unbalanced
knowledge base built during this training.

In order to overcome this potential barrier as well, our proposed idea for an optimized
action handling is the edge-reflected movement and particle propagation, respectively.
As the name says, a remaining action potential aP is continued in the reverse direction
whenever reaching a critical edge at runtime, thus |aβ | = |ă|− |aα|. The corresponding
illustration can be found in the right drawing of figure 2. This way, each valid move-
ment has exactly two related movements it can emerge from, the originally valid and
the reflected one. In contrast to the edge-stopping method this relation is one-to-one
now. This results in a uniform probability distribution for reaching any viewpoint in the
next time step. Additionally, the deterministic behavior is assured once more and the
calculation instructions can be expressed as:

a =

⎧⎨⎩ a+
α − (ă− ã+

α ) if ă > a+
α

a−α + (ã−α − ă) if ă < a−α
ă else

;

Φ̃(ρt+1) =

⎧⎨⎩
180◦ − Φ̃(ρt)− ă if Φ̃(ρt) + ă > 90◦

−Φ̃(ρt)− ă if Φ̃(ρt) + ă < 0◦

Φ̃(ρt) + ă else
. (9)

4 Experimental Results

For experimental evaluation of our active object recognition task, we have chosen four
classes of real toy figures, discriminable by a quiver and a lamp. Corresponding to the
2-dimensional approach of this paper, figure 3 shows some examples of images that can
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be acquired from viewpoints situated on the hemisphere around the object. Please note
that every recorded image was superposed by a uniform Gaussian noise before process-
ing it any further. This way overall classification results are equally downgraded, but
differences in the various applied methods for action handling will be more distinguish-
able. For classification itself image features are extracted by a Principal Component
Analysis using only the ten best eigenvectors in the transformation matrix.

Classes

1

4

3

2

Fig. 3. Views of the toy object classes

Reinforcement Learning training was done with 50 episodes per class, each contain-
ing eight camera actions in between nine recorded images, whereas all actions were per-
formed completely randomly. These training stages were separately executed for every
combination of action handlingH ∈ {P−1, P0, P0.5, S,R} and weighting γ ∈ {0, 0.5}
introduced in (2). During the evaluation phase, 50 exploiting episodes were performed
for each class based on the particular knowledge base built up during training. The ker-
nel parameter D, which varies K(x) in (5), was set to a well-proven value of D = 10
(see [5]). Figure 4 shows the classification results we achieved with the various com-
binations after the fusion of the information data of n images. Results are displayed
up to a step width of n = 5 since later results just converge to a saturation and thus
would just reduce clarity. In any case, the most important values are those of early steps
(n = 2, 3) as they show the immediate gain or loss in classification certainty most real
decisions would rely on. Concerning this, it is obvious that the proposed new methods
of H = S,R clearly outperform those based on a punishment for invalid camera ac-
tions. Nevertheless, especially the right chart of figure 4 points out that there are indeed
penalization terms (like F = 0) that can achieve a comparably high learning quality.
But as mentioned, this comes at a price of having a priori knowledge about the range of
the regular Reinforcement Learning rewards, and then it still needs some experience and
object specific previous knowledge to optimize the punishment value. Those precondi-
tions cease to apply when using the improved edge-reflecting or edge-stopping method.

Since results for H = S are quite close to those of H = R regarding the recogni-
tion rates, we should additionally pay attention to the pose estimation accuracy which
might turn the balance then. To evaluate this, in figure 5 we additionally depicted the
localization error of the vertical object pose after n steps of image fusion. Therefore, we
concentrated onH = S,R and again distinguished between γ = 0 and γ = 0.5. These
results explicitely show that, for pose estimation accuracy as well, the edge-reflected
method is the one to prefer. As with the classification results, we achieve obvious en-
hancements mainly within the early steps. Obviously, when using H = S, the accu-
mulation of particles at one of the critical edges for invalid camera movement demands
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Fig. 4. Recognition rate [%] after n planned actions and information fusion. The various columns
display the influence of the compared action handling methods H for invalid action demands.
The left figure (γ = 0) considers one-step returns in the Reinforcement Learning, the right one
(γ = 0.5) represents ahead looking returns.

takes effect, resulting in an unbalanced distribution and thus a more imprecise pose
representation. Regarding the weighting γ we can postulate that its value does not af-
fect the general ranking of the three proposed action handling methods. Thus, it can be
considered a noncritical parameter for the method selection decision.

5 Summary and Future Work

The focus of this work was on object recognition tasks with predefined constraints in
valid camera positions and thus camera movements. Therefore, we emphasized the prob-
lem of providing an immediate alternative camera movement direction when the re-
quested one turns out to be non-executable. For that purpose, we compared three dif-
ferent action handling approaches and their influence on the underlying state density
representation. Summing up the visualized results, the edge-reflecting version for han-
dling non-executable actions turned out to outperfor the others in practice, according
to our presumption. We pointed out the advantage of the edge-stopping and the edge-
reflecting methods compared to other approaches introduced in the literature. In partic-
ular, the former explicitly support our demand of classification with a minimal number of
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Fig. 5. Estimation error in the vertical object pose [◦] after n planned actions and information
fusion. Values are compared for the edge-stopping (H = S) and the edge-reflecting (H = R)
action handling methods. Again, the left figure shows results for γ = 0 and the right one for
γ = 0.5 in the Reinforcement Learning return function (2).
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camera movements since they avoid replanning and thus discarding already performed
movements.

Further work on this topic will concentrate on the assignment of costs to the various
movement actions, bringing the proposed problem to a completely new dimension. One
of the main questions is whether the applied action handling methods can address cost
integration at all. In any case, adjustment should nevertheless be a complex procedure.
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12. A. Törn and A. Žilinskas. Global Optimization, volume 350 of Lecture Notes in Computer
Science. Springer, Heidelberg, 1987.

13. R. van der Krogt, M. de Weerdt, and C. Witteveen. A Resource Based Framework for Plan-
ning and Replanning. In In Proceedings of the IEEE/WIC International Conference on In-
telligent Agent Technology, pages 173–186, Halifax, Canada, 2003.



The Inversion Camera Model�
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Abstract. In this paper a novel camera model, the inversion camera
model, is introduced, which encompasses the standard pinhole camera
model, an extension of the division model for lens distortion, and the
model for catadioptric cameras with parabolic mirror. All these different
camera types can be modeled by essentially varying two parameters. The
feasibility of this camera model is presented in experiments where object
pose, camera focal length and lens distortion are estimated simultane-
ously.

1 Introduction

In a typical application utilizing wide angle lens cameras, the cameras’ images
have to be rectified before they can be used. Various lens distortion models
have been suggested for this purpose, like the widely used polynomial model [5],
the bicubic model [7], the rational model [1] or the division model [3]. Another
type of imaging systems that are particularly useful for navigation applications
are catadioptric cameras, since they allow a 360 degree view in a single image.
Geyer and Daniilidis showed in [4] how such systems can be modeled quite easily
mathematically.

In this paper a novel camera model, the inversion camera model, is introduced,
which combines the pinhole camera model, a lens distortion model and a model
for catadioptric cameras with parabolic mirrors. As is shown later on, the lens
distortion model is just the division model introduced by Fitzgibbon in [3] and
the catadioptric camera model has been first presented by Geyer and Daniilidis
in [4]. However, the authors found that both models can be represented in much
the same way using inversion in a sphere. This also extends the division model
to lenses with an angular field of view (FOV) of 180 degrees or more.

Inversion in a sphere can be represented as a (tri-)linear function in the Ge-
ometric Algebra of conformal space, which makes this algebra an ideal math-
ematical framework to work with the inversion camera model. The inversion
camera model can be expressed as an algebraic entity of Geometric Algebra, i.e.
a multivector, and a covariance matrix can be associated with it, which makes it
directly applicable to statistical linear estimation methods as presented in [10,9].
This is demonstrated in section 3, where results of the simultaneous estimation
of object pose, camera focal length and lens distortion are presented.
� This work has been supported by DFG grant SO-320/2-3.
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(a) Basic pinhole camera setup (b) Pinhole camera setup with inversion

(c) Projective camera with lens distor-
tion

(d) Parabolic catadioptric camera

Fig. 1. Different cameras representable by inversion camera model

A detailed understanding of Geometric Algebra is not necessary to follow the
ideas presented in this paper. General introductions to Geometric Algebra can
be found in [11,6,2]. Discussions of the application of Geometric Algebra to the
estimation of geometric entities and operators, which are most closely related to
this text, are [12,10,9].

The structure of this paper is as follows. First a general introduction to the
inversion camera model is given, which is followed by a detailed discussion of
the representation of lens distortion and parabolic mirror imaging systems. Fi-
nally, experiments on the simultaneous estimation of pose, focal length and lens
distortion are presented to test the feasibility of the inversion camera model.

2 The Inversion Camera Model

The basic setup of the inversion camera model is shown schematically in figure
1 for the different imaging setups. Figure 1(a) shows the setup of the pinhole
camera model. Point F is the focal point or optical center, point X is a world
point and Y is the image of X on the image plane Pimg. In a typical problem
setup, the image point Y is given and the projection ray L has to be evaluated.
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If the pinhole camera’s internal calibration is given, the projection ray L can
immediately be evaluated in the camera’s coordinate frame.

In the inversion camera model this pinhole camera setup is represented as
shown in figure 1(b). The sphere Sinv with center Cinv is used to perform an
inversion of the image plane Pimg which results in the sphere Simg. In partic-
ular, image point Y is mapped to point Z. In figure 1(b) the center Cinv of
inversion sphere Sinv coincides with the focal point F . In this case the inversion
of Y in Sinv results again in a point on the projection ray L, independent of
the inversion sphere radius. Therefore, this setup is equivalent to the standard
pinhole camera setup.

Figure 1(c) demonstrates what happens when the inversion sphere is moved
below the focal point. Now the image point Y is mapped to Z under an inversion
in Sinv. The corresponding projection ray L is constructed by F and Z and thus
does not pass through Y anymore. It will be shown later on that this results in
a lens distortion model similar to the division model proposed by Fitzgibbon [3].

Simply by moving the inversion sphere Sinv and the image plane Pimg, cata-
dioptric cameras with a parabolic mirror can be modeled. This construction is
shown in figure 1(d), and is based on work by Geyer and Daniilidis [4]. An in-
version of image point Y in sphere Sinv generates point Z. In this case, it is
equivalent to an inverse stereographic projection of Y on the image sphere Simg,
which is how this mapping is described in [4]. The corresponding projection ray
L is again the line through F and Z.

The image Y of a world point X generated in this way is equivalent to the
image generated by a parabolic mirror whose focal point lies in F , as is shown
in [4]. That is, a light ray emitted from point X that would pass through the
focal point F of the parabolic mirror, is reflected down parallel to the central
axis of the parabolic mirror. This is also indicated in figure 1(d). The reflected
light ray intersects the image plane Pimg exactly in the point Y .

While the construction for the parabolic mirror in terms of a stereographic
projection has been known for some while, the authors recognized that the stereo-
graphic projection can be replaced by an inversion, which makes this model read-
ily representable in the Geometric Algebra of conformal space (CGA). In the fol-
lowing the mathematical details of the inversion camera model will be discussed.

Mathematical Formulation. In all calculations that follow, a right handed
coordinate system is assumed, whereby e1 points towards the right along the
horizontal image plane direction, e2 points upwards along the vertical image
plane direction and e3 points from the image plane center towards the focal
point or optical center. This implies that objects that are in front of the camera
will have a negative e3 coordinate.

The geometric setup of the inversion camera model as presented in the previ-
ous section, can be modeled algebraically in CGA as follows. Like all transfor-
mations in Geometric Algebra, the image point transformation in the inversion
camera model will be represented by a versor K. That is, if Y represents an
image point, then Z := K Y K̃ is the transformed image point. As can be seen
in figure 1 the point Z will in general not lie on the image plane. However, the
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goal is to find a K such that Z lies on the ’correct’ projection ray. The trans-
formed image point in the image plane can then be estimated by intersecting
the projection ray with the image plane.

One of the simplest forms K can take on is

K = Ts S T̃s D, (1)

where S is a sphere centered on the origin, Ts is a translator (translation oper-
ator) and D a dilator (isotropic scaling operator). This form was also found to
behave well numerically. The dilator scales the image, which has the same effect
as varying the focal length, if the inversion sphere Sinv := Ts S T̃s is centered
on the focal point (cf. figure 1(b)). If the inversion sphere is not centered on
the focal point, the dilator also influences the distortion. In the following, the
transformation K Y K̃ is analyzed in some detail.

To simplify matters, it is assumed that Ts translates the inversion sphere only
along the e3 axis. Furthermore, S is a sphere of radius r centered on the origin.
This is expressed in CGA as S := eo− 1

2 r
2 e∞ and Ts := 1− 1

2 τs e3 e∞. It may
then be shown that Sinv = Ts S T̃s = s1 e3 + 1

2 s2 e∞ + eo, with s1 := τs and
s2 := τ2

s − r2. The inversion sphere Sinv can thus be regarded as a vector with
two free parameters, that influence the sphere’s position along e3 and its radius.

The dilation operator D for a scaling by a factor d ∈ R is given by D =
1 + 1−d

1+d E, where E := e∞ ∧ eo. For brevity we define τd := − 1−d
1+d , such that

D = 1− τd E. The image point transformation operator K is then given by

K = Sinv D = k1 e3 + k2 e∞ + k3 eo + k4 e3 E, (2)

with k1 := s1, k2 := 1
2 s2 (1− τd), k3 := 1 + τd and k4 := −τd s1.

In the model setup, the image plane Pimg passes through the origin and is
perpendicular to e3. That is, image points lie in the e1−e2-plane. An image point
will be denoted in Euclidean space by y ∈ R3 and its embedding in conformal
space by Y := C(y) ∈ G4,1, that is Y = y + 1

2 y2 e∞ + eo. The embedded
image point Y is then mapped to the point Z on the image sphere Simg, via
Z = K Y K̃. Intersecting the line through the focal point F and the transformed
point Z with the image plane gives the respective undistorted Euclidean image
point yd ∈ R3. From a straight forward, if tedious calculation, it follows that

yd =
−(s21 − s2) d

s1 (s2 − s1) + (s1 − 1) d2 y2
y =

β

1 + αy2
y, (3)

where α := (s1−1) d2

s1 (s2−s1) and β := −(s2
1−s2) d

s1 (s2−s1) . Note that yd/β is the division model
as proposed by Fitzgibbon in [3].

Typically, lens distortion models are used to remove the distortion in an image
independent of the focal length or angular field of view (FOV) of the imaging
system that generated the image. This is usually done by either requiring that
lines which appear curved in the image have to be straight, or by enforcing
multi-view constraints given a number of images of the same scene. The rectified
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image can then be used for any other type of application. For this purpose and
for lenses with a FOV of at most 180◦, the inversion model is equivalent to the
division model.

However, here the applicability of the inversion model as a camera model is
investigated. That is to say, the lens distortion of a camera system is modeled
directly in the context of a constraint equation. This is shown in section 3 in the
context of monocular pose estimation.

Focal Length and Lens Distortion Relationship. The distortion generated
by the inversion model as given in equation (3), has the effect that focal length
and distortion are not independent, since α and β are not independent. The fac-
tor β mainly represents an overall scaling of the image, while α mainly influences
the distortion. The exact relationship will be discussed in the following.

First of all, note that the interrelation of α and β does not represent a draw-
back as compared to the division model, if the image rectification is done inde-
pendently and previous to any other calculations, as pose estimation. However,
if the inversion camera model is used directly in a constraint equation as in
equation (5) in section 3, then not every level of distortion can be rectified for
every focal length or field of view (FOV).

The relationship between the transformed image point yd and the initial image
point y is given by the factor ω := β

1+α y2 , such that yd = ω y. The factor ω is
therefore a function of the squared radial distance y2 of an image point from the
image center. The locations of constant ω in an image thus form concentric circles
about the image center. These circles will be called iso-circles in the following.
An iso-circle of particular interest in the analysis is the one that touches the
upper and lower borders of the image, i.e. its radius is equal to half the vertical
extent of the image. This particular iso-circle will be called vertical iso-circle and
its radius will be denoted by ρv.

The value of ω for image points on the vertical iso-circle is directly related
to the vertical angular field of view (vFOV). Note that the relation to the focal
length is more complex if lens distortion is present, since the focal length is now
a function of y2. That is, the focal length depends on the position of an image
point in the image. It is therefore more useful to define an effective focal length
(EFL) as the focal length of the image points on the vertical iso-circle.

The value of ω for image points on the vertical iso-circle will by denoted by ωv

and is given by ωv = β
1+α ρ2

v
. The Euclidean position vector f of the focal point

is in the following parameterized as f = τf e3. That is, if the image is neither
scaled nor distorted, τf is the focal length. It may be shown that the EFL fe is
related to ωv by fe = τf/ωv.

It is possible to vary the inversion sphere center τs and the image scaling d
such that the diagonal angular field of view (dFOV), i.e. the image distortion,
is varied, while fe and thus the vFOV are kept constant. This relationship is
shown in figure 2.

Here τf = 1, r = 0.5 and the image plane size was assumed to be 23.7 ×
15.6mm, which is the CCD-chip size of a D70 digital SLR camera. The middle,
green line shows the relation between the vFOV and the diagonal angular field
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Fig. 2. Vertical vs. diagonal field of view (FOV) for pinhole model (middle, green
graph), maximum trapezoidal (top, red graph) and maximum cushion (bottom, blue
graph) distortion. Inversion sphere radius is 0.5.

of view (dFOV) for a standard pinhole setup. The top, red line gives the relation
for maximum trapezoidal distortion and the bottom, blue line for the maximum
cushion distortion. It was found that the maximum dFOV does not depend on
τf or r. The location of the kink in the minimum dFOV plot does depend on
the combination of τf and r, though.

To check, whether the inversion camera model can model actual lenses, the
vFOV and dFOV of two lenses were measured and plotted. The first was the
zoom lens SIGMA DC 18-125mm, 1:3.5-5.6 D, set to 18mm. This lens lies in the
achievable distortion range of the inversion camera model.

The second lens was the Nikkor AF Fisheye 10.5mm, 1:2.8 G ED. This lens
is a corrected fisheye, whereby the image does not appear circular but fills the
whole image. This is achieved by obtaining a 180◦ FOV only along the diagonal
and compressing the image more along the vertical than the horizontal. As can
be seen in figure 2 the 10.5mm lens cannot correctly be represented by the
inversion camera model. This is due to the different type of projection of fisheye
lenses, which cannot be modeled by the inversion camera model. In the pose
estimation experiments presented in section 3, it turns out that the inversion
camera model approximates the 10.5mm lens well enough, though, to achieve
good pose estimation results.

It is important to note that the above analysis is only an indicator whether a
lens may be representable in the inversion camera model, since the actual lens
distortion will in general be a more complex function. However, it was already
shown in [3] that the division model, which is equivalent to the inversion model in
the case of lens distortion, is a sufficiently good approximation of lens distortion
for many applications.

Catadioptric Camera with Parabolic Mirror. With respect to figure 1(d),
the generation of image point Y from world point X via reflection at a parabolic
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mirror, can be represented mathematically by projecting X onto the sphere Simg

followed by an inversion in the sphere Sinv. In contrast to the inversion model
setup for lens distortion, the focal point F lies on the image plane in this case.

The relation of the physical parabolic mirror with respect to the mathemat-
ical setup is indicated in figure 1(d). In a standard setup the sphere Simg has
unit radius and is centered on the focal point F of the parabolic mirror. The
corresponding parabolic mirror then has to pass through the intersection points
of Simg with the image plane Pimg. The inversion sphere Sinv has to be centered
on Cinv and has to pass through the intersection points of Simg with Pimg. This
fixes the radius of Sinv to be

√
2.

If the location and radius of the inversion sphere Sinv is fixed, the only free
parameter left in the inversion camera model from equation (1) is the dilation,
i.e. scaling of the image.

It may be shown that the relation between the image scaling d and the focal
length of the parabolic mirror μ is given by d = 1/(2μ). The image point trans-
formation operator for such a parabolic mirror setup is therefore K = Sinv D
whereby

Sinv = −e3 − 1
2 e∞ + eo, D = 1 +

2μ− 1
2μ+ 1

E. (4)

3 Experiments

The accuracy of the inversion camera model as compared to other lens distortion
models, is the same as that of the division model introduced in [3]. A comparison
of a number lens distortion models, including the division model can be found
in [1], where it is shown that the division model with one free parameter has
a rectification quality that is comparable to a fourth order radial polynomial
approach with two free parameters.

To demonstrate the feasibility of the inversion camera model in the context
of an application, monocular pose estimation experiments were carried out. In
these experiments not only the pose of a known object from a single camera view
was estimated but also the camera’s focal length and lens distortion. In the case
of a catadioptric imaging system with a parabolic mirror, the object’s pose and
the mirror’s focal length were computed.

The monocular pose estimation treated here, assumes that a model of the ob-
ject is known, whose pose in space (location and orientation) is to be estimated.
This model is given as a set of feature points, and it is also assumed that the
correspondences between object feature points and image points are known.

Monocular Pose Estimation. The problem is therefore to evaluate the trans-
formation operator (motor) M , such that a model point X comes to lie on the
projection ray of a corresponding image point Y . If lens distortion is present or
a catadioptric imaging system is used, the image point has to be transformed to
a rectified point Z, via Z = K Y K̃, where K implements the inversion camera
model. Hence, the transformed model point X has to lie on the projection ray
through the focal point F and Z. This can be formulated in CGA as
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(K Y K̃) ∧ F ∧ e∞

)
∧ (M X M̃) = 0. (5)

If K is known, then this is basically the same as the pose estimation constraint
in [13]. In contrast to [13] both operators M and K are estimated here us-
ing the same concepts as in [10,9]. That means, equation (5) is written as a
multilinear equation which is quadratic in the components of M and K. This
equation is then linearized so that a Gauss-Markov model can be employed to
estimate M and K iteratively. The Gauss-Markov estimation is started from a
very rough, automatically computed heuristic estimate and can be refined using
Gauss-Helmert estimation. The whole estimation process is thus automatic and
no a priori knowledge about a starting pose is necessary.

Experimental Setup. Note that the simultaneous estimation of object pose,
focal length and lens distortion is only numerically stable if the object has a
sufficiently large appearance in the image and its extension along the optical
axis is at least the same as its extension parallel to the image plane. For the
following experiments the model of a house was used which was approximately
20× 15× 15cm in size (L×H×W).

This house model was moved by a robot arm in front of a stationary camera.
Since the robot movements have a positioning uncertainty of below 1 mm, these
positions can be used as ground truth. Note that the model was not rotated since
an exact calibration of the rotation center with respect to the model was not
possible. The model was translated in an area of approximately 50cm parallel
to the image plane and 35cm perpendicular to the image plane. The closest
approach of the object to the camera was approximately 10cm.

Neither an internal nor an external calibration of the cameras was carried out
before the pose estimation experiments. However, the CCD-chip size in millime-
ters and its resolution in pixels were known and it was assumed that the optical
axis passes at a right angle through the center of the CCD-chip.

Two different cameras were used. A Nikon D70 digital SLR camera with a
pixel size of 7.8× 7.8μm and a resolution of 3008× 2000 pixel was used to take
pictures with three different lenses: the zoom lens SIGMA DC 18-125mm, 1:3.5-
5.6 D, set to 18mm, the Nikkor AF Fisheye 10.5mm, 1:2.8 G ED, and the Sigma
8mm 1:4.0 EX DG Circular-Fisheye. The other camera was a LogLux camera-
link camera with a resolution of 1280×1024 pixel and a pixel size of 6.7×6.7μm,
which was used with the parabolic mirror catadioptric imaging system.

Eight markers were attached to the visible corners of the house model. The
correspondences between these model points and their apparent positions in the
images were found manually. The constraint equation given in equation (5) was
then used to estimate the object pose and camera model parameters for each of
the images taken. For each camera-lens setup the house was moved to the same
six positions. Because no external calibration of the cameras with the robot arm
was available, the pose estimation accuracy is measured as the difference between
the true and the estimated object translations.

In fact, the 15 difference vectors between all pairs of the 6 house positions were
evaluated separately for the true and the estimated house positions. Then the
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rotation was found that best aligned the true and estimated difference vectors.
This is basically an external calibration of the camera. Two quality measures
were then calculated. First, the root mean squared (RMS) Euclidean distance
between the true and estimated aligned difference vectors and second, the RMS
of the ratio of the Euclidean distance between the difference vectors and the
length of the true vector. That is, the latter is the RMS percentage error.

The algorithm was implemented in CLUScript, an interpreted programming
language, and was executed with CLUCalc [8]. The software was run on a 1.6GHz
Pentium M processor. An optimized implementation in C++ may be expected
to increase the execution speed by a factor of 10.

Results. The results of the experiments are shown in table 1. It may be sur-
prising that the pose estimation is most accurate for the fisheye lenses, which
were found not to be exactly representable by the inversion camera model. This
is because the house model only appeared in part of the image, whose distor-
tion can be modeled quite well locally. Furthermore, the camera could be placed
closer to the objects with the fisheye lenses (8mm, 10.5mm), than with the 18mm
lens. The larger error in the LogLux camera results are mainly due to the low
effective resolution when using a parabolic mirror. A 360 degree view is in this
case mapped to a circular band in the image.

Note again that these pose estimation results were achieved without a full
camera calibration. Instead focal length and lens distortion were estimated si-
multaneously with the object pose.

Table 1. Experimental results of pose estimation

Camera/Lens RMS Err. Rel. RMS Err. Mean Iter. Mean Time
D70 / 8mm 2.63mm 1.48% 5.17 0.41s
D70 / 10.5mm 2.37mm 1.50% 5.50 0.41s
D70 / 18mm 5.51mm 3.12% 5.17 0.42s
LogLux / Cata. 7.87mm 3.66% 8.83 0.70s

4 Conclusions

In this paper a novel camera model is introduced, the inversion camera model.
It combines in a single model the standard pinhole camera model, the division
model of lens distortion and the model of parabolic mirror imaging systems. The
inversion camera model is based on the inversion of image points in a sphere,
which can be be expressed in a straight forward manner in Geometric Algebra
as a multilinear operator. This also implies that the camera model operator can
be treated just like any other transformation operator in Geometric Algebra,
as for example, a Euclidean transformation. Thus linear statistical estimation
methods as presented in [10,9] can be applied.

The experimental results show that this camera model can be employed suc-
cessfully in the simultaneous estimation of object pose, and camera model pa-
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rameters in a ’half’ calibrated camera setup. Next to the model’s good behaviour
in an actual application, it is also another example of the unifying nature of Ge-
ometric Algebra.
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Abstract. Algorithms for metric 3d reconstruction of scenes from cali-
brated image sequences always require an initialization phase for fixing
the scale of the reconstruction. Usually this is done by selecting two
frames from the sequence and fixing the length of their base-line. In this
paper a quality measure, that is based on the uncertainty of the recon-
structed scene points, for the selection of such a stable image pair is
proposed. Based on this quality measure a fully automatic initialization
phase for simultaneous localization and mapping algorithms is derived.
The proposed algorithm runs in real-time and some results for synthetic
as well as real image sequences are shown.

1 Introduction

In recent years the fully automatic 3d reconstruction of scenes and camera tra-
jectories from monocular image sequences has received a lot of attention. In the
early work of [7] and [6], the extraction of feature points together with their
uncertainty represented by covariance matrices was developed. More recently,
feature extraction and tracking of features across image sequences was improved
by [24], [14] and [13]. This reliable feature extraction methods enabled the 3d
reconstruction from image sequences (e.g. [1], [29],[18]) using robust estimation
of the epipolar geometry. The use of self-calibration techniques (cf. [20],[19]) or
prior knowledge of the internal camera calibration leads to a metric 3d recon-
struction, that is defined up to a similarity transformation. In the calibrated
case efficient real-time algorithms, that are also able to cope with planar scenes
were developed by [17] and [25]. Starting from this prerequisites the field of real-
time simultaneous localization and mapping has recently emerged and was given
much attention by many researchers (e.g. [4],[3],[5],[27],[15],[23]).

As the calibrated 3d reconstruction is only defined up to a similarity transfor-
mation, somehow fixing the scale is an important task. Although scale is a gauge
parameter and therefore does not affect the overall accuracy of the reconstruction
it does affect the stability of the reconstruction algorithms and must therefore be
chosen carefully. Usually this is done by initially selecting two reference images
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and fixing the length of their base-line. Those key-frames are selected based on
image sharpness and disparity (cf. [16]), based on the distribution of matched
points in the images (cf. [12]), based on selecting the most appropriate motion
model (cf. [28],[21],[22]) or based on evaluating the bundle-adjustment of the
whole sequence (cf. [26]).

The contribution of this work is to present a statistically motivated measure
for the quality of the pair of reference images. Based on this quality measure
an efficient algorithm is proposed, that automates the manual setting of initial
number of frames or the initialization phase required for example by the approach
of [4]. It turns out, that, in case of known internal camera calibration, this is
a very efficient alternative to the model selection approach of [28],[21] and [22],
who proposed to decide when the base-line is large enough by checking, if the
image pair is related only by a homography or the full epipolar constraint. A
drawback of this approach is, that it cannot handle planar objects, which our
approach can.

To achieve this goal, another subject of recent computer vision research is
employed. It has been studied by [2] [11], [10],[8] and [9], how uncertainties can
be efficiently represented and propagated for geometric reasoning tasks involving
projective geometric entities. Especially the work of [9], who showed how covari-
ance matrices easily transform for various projective geometric constructions,
plays a key role in this work.

The paper is organized as follows: In section 2 first the shape of confidence
ellipsoids of scene points resulting from a given point correspondence and camera
pose is exploited. Based on this shape, more explicitly its roundness, a measure
for the quality of the image pair for the task of fixing the scale is derived. In
section 3 an algorithm is outlined, that is used to determine the optimal image
pair for fixing the scale of a 3d reconstruction. Finally some results on simulated
and real image sequences are shown in section 4.

2 Confidence Ellipsoids of Scene Points

Now the propagation of uncertainty from two measured corresponding image
points on the reconstructed scene point is analyzed. If a scene point X is observed
by two projective cameras ′ and ′′, the image coordinates are

x′ ∼= ′X (1)

and
x′′ ∼= ′′X (2)

Denoting with (·) the first two rows of the skew-symmetric matrix inducing the
cross-product

(x) =
(

0 −x3 x2

x3 0 −x1

)
(3)

the two conditions can be written as

(x′) ′X = − ( ′X)x′ = 0 (4)
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Fig. 1. Scene geometry: Projecting rays of two corresponding image points x′
i and

x′′
i together with their uncertainties ′

i and ′′
i are observed by two cameras. The

corresponding scene point Xi has the uncertainty ellipsoid CXX . The roundness of this
object, i.e. the ratio of its smallest and longest axis, is a measure of the quality of the
scene geometry.

and
(x′′) ′′X = − ( ′′X)x′′ = 0 (5)

if the image points are not at infinity. Both expressions are linear in the scene
point as well as in the image points, i.e.(

(x′) ′

(x′′) ′′

)
︸ ︷︷ ︸

4×4

X = 0 (6)

and (
− ( ′X)

− ( ′′X)

)
︸ ︷︷ ︸

4×6

(
x′

x′′

)
= 0 (7)

Now the scene point coordinates and the two image point coordinates are
assumed to be random variables. Note that, as all three quantities are homoge-
neous, the covariance matrices of their distributions are singular. Let the covari-
ance matrices of the image points x′ and x′′ be given by ′ and ′′ respectively,
then it has been shown by [9], that the covariance matrix XX of the distribution
of the scene point coordinates X is proportional to the upper left 4×4-submatrix

XX =
(
N−1
)
1:4,1:4

(8)

of the inverse of

5×5
=

⎛⎝ T

( ( ′
′′

)
T

)−1

X

XT 0

⎞⎠ (9)
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Note, that no specific distribution must be assumed, as all arguments regard
only the second moments. We have neglected the effect of the uncertainty of the
projection matrices ′ and ′′ here, as the relative orientation of the two cameras
is determined by many points, so that it is of superior precision compared to a
single point.

Now the effect of normalizing the homogeneous vector X = [XT
0 , Xh]T to

Euclidean coordinates on its covariance matrix XX is analyzed. For this to be
meaningful it is assumed, that the cameras are calibrated, so that the reconstruc-
tion is Euclidean, i.e. defined up to a similarity transformation. The Jacobian of
a division of X0 by Xh is

e =
∂X0/Xh

∂X0
=

1
Xh

(
3×3 −X0

Xh

)
(10)

and hence by linear error propagation the covariance matrix of the distribution
of the corresponding Euclidean coordinates is

(e) = e XX
T
e (11)

The roundness of the confidence ellipsoid is directly related to the condition
number of the 3d reconstruction of the point. Therefore it is a measure, how well
the two camera poses are suited for the task of 3d reconstruction. Hence, using
the singular value decomposition of this covariance matrix

(e) =

⎛⎝λ1 0 0
0 λ2 0
0 0 λ3

⎞⎠ T (12)

its roundness is defined as the square root of the quotient of the smallest and
the largest singular value

R =
√
λ3

λ1
(13)

This measure lies between zero and one, is invariant to scale changes and only
depends on the relative geometry of the two camera poses, the image points
and the object. If the two camera centers are the same, it is equal to zero. If
the object is equally far away from the two cameras and the projecting rays
of the image points are orthogonal and their covariance matrices are identical

and isotropic, it is equal to
√

1
2 . This is the maximum under the assumption

of isotropic covariance matrices. The maximum of one is reached for the same
configuration as before except for the covariance matrices of the projecting rays.
The principal axis of this covariance matrices must therefore be aligned with
the epipolar plane with the extension perpendicular to it being

√
2 times the

extension perpendicular to the viewing direction.

3 Determining the Optimal Image Pair

Now the roundness measure of the previous section will be put into the context
of finding the optimal image pair for fixing the scale of a 3d reconstruction. Of
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course the global optimal solution can only be found by checking all image pairs.
As our intended application is the real-time initialization of a simultaneous local-
ization and mapping system, the proposed algorithm fixes the first frame of the
sequence and terminates, when the first acceptable second frame is reached. The
acceptability will be determined via the roundness of the confidence ellipsoids of
the reconstructed scene points. The details are as follows:

1. Fix the first image of the sequence and let its projection matrix be

′ = [ |0]

2. Extract the interest points q′
i together with their covariance matrices q′

iq
′
i

from this image and apply the known camera calibration matrix to the
image coordinates and their covariance matrices, yielding the directions

x′
i = −1q′

i

and their covariance matrices

′
i = −1

q′
iq

′
i

−T

3. For each new image of the sequence do the following
(a) Extract the interest points q′′

i together with their covariance matrices
q′′

i q′′
i

from this new image and apply the known camera calibration
matrix yielding again the directions

x′′
i = −1q′′

i

and their covariance matrices

′′
i = −1

q′′
i q′′

i

−T

(b) Determine the point correspondences x′
i ↔ x′′

i and relative orientation ,
t to the first image of the sequence according to the algorithm proposed
in [17]. The camera matrix for the current image is then

′′ = [ | − t]

(c) Determine the scene point positions Xi for each found correspondence
by forward intersection. This can for example be done by solving the
homogeneous equation system (6) using the singular value decomposition
of the matrix .

(d) Determine the roundness Ri (cf. equation (13)) of each scene point Xi’s
confidence ellipsoid as outlined in the previous section.

(e) If the mean roundness is above a given threshold T , use this image
pair to fix the scale of the reconstruction and continue with the main
application.
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Fig. 2. Left: Synthetic image sequence trajectory of the translation experiment, where
the camera faces the object and is moved to the right. Right: Roundness measure
against video frame for the synthetic translation experiment. A maximum is reached
at the frame, where the angle of the rays is approximately 35◦. As the distance to the
object increases, the roundness decreases again.

4 Results

To evaluate the usefulness of the proposed roundness measure, experiments on
synthetic as well as real image sequences were carried out. The setup for the
synthetic experiments is shown on the left hand sides of figure 2 and figure
3. The cameras where assumed to be normalized and the image points where
assumed to have isotropic and equal covariance matrices. Note, that by definition
the overall scale is irrelevant, since the proposed roundness measure only depends
on the relative scales and is therefore scale-invariant.

In the first experiment, depicted in figure 2, the camera was facing the object
and then moved to the right. The resulting roundness measure is shown on the
right hand side in figure 2. It can be observed, that a maximum roundness is
reached, where the angle of the projecting rays is approximately 35◦. As the
distance of the second camera to the object increases, the roundness decreases
again. The optimal image pair, i.e. the pair yielding highest stability, is therefore
not only dependent on the intersection angle of the projecting rays, but also on
the relative distances of the cameras to the object.

The second synthetic experiment was to rotate the camera around the object
at equal distance as depicted on the left hand side of figure 3. The resulting
roundness measure is shown on the right hand side in figure 3. It can be seen,

that it directly corresponds to the rotation angle and the maximum of
√

1
2 is

reached at an angle of 90◦, where the intersection of the rays is optimal for the
accuracy of the 3d reconstruction.
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Fig. 3. Left: Synthetic image sequence trajectory of the rotation experiment, where
the camera is moved at equal distance around the object. Right: Roundness measure

against video frame for the synthetic rotation experiment. The maximum of
√

1
2

is
reached at the angle of 90◦.

Finally a real image sequence was taken using a cheap hand-held consumer
web-cam. Two exemplary frames are depicted in figure 4. Features were ex-
tracted and tracked and the roundness measure was computed for each frame
with respect to the first image, which is depicted on the left hand side in figure
4. The resulting roundness measure is shown in figure 5. In the first 25 frames
the camera was not moved, so that the roundness measure stays near to zero.
When the camera starts moving, the expected accuracy of the depth of the 3d
reconstruction, and hence the proposed roundness measure, is increasing. After
about 110 frames the roundness measure reached the threshold T =

√
1
10 . This

threshold is not a critical parameter but a minimal requirement stemming from
the goal of achieving a condition number of approximately 10 for the 3d recon-
struction. The corresponding last frame is depicted on the right hand side in
figure 4. It can be seen, that still enough corresponding points can be identified,
so that the determination of the relative orientation between the frames is not
an issue. Note also, that all processing was performed in real-time.

5 Conclusion

A fully automatic real-time algorithm for initially fixing the scale of the 3d
reconstruction in simultaneous localization and mapping applications with cal-
ibrated cameras was proposed. As the metric reconstruction is fixed up to a
similarity transformation in the calibrated case, the shape of the confidence el-
lipsoids of reconstructed scene points is a meaningful quantity. The roundness
of this confidence ellipsoids can be used to decide, when the accuracy of the
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Fig. 4. Left: First image of the real image sequence. Right: Last image of the real image
sequence, where the roundness of the scene point covariance matrices was sufficiently
high.

Fig. 5. Roundness measure against video frame for the real image sequence. The cam-

era was not moved for the first 25 frames. The threshold value of T =
√

1
10

was reached
after the movement was sufficiently large on the frame depicted on the right in figure 4.

reconstruction is most stable, as it is directly related to the condition number
of the 3d reconstruction of the point. Hence, choosing the image pair for which
this roundness is maximal is the most stable choice for initially fixing the scale
of a 3d reconstruction.

The proposed algorithm was demonstrated to work on synthetic as well as
real monocular image sequences. Since the most complex operations are only
the inversion of a 5× 5-matrix and two singular value decompositions of a 4× 4-
and a 3× 3-matrix, the dominant part of the computation time is taken by the
feature extraction and tracking, enabling a real-time initialization phase.
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Abstract. This contribution describes an automatic method to retrieve
the diffuse radiometric surface model of moving persons or other objects
along with the object geometry using a multi-camera system. The multi-
camera equipped studio allows synchronised capture of the foreground
action and a visual hull computation is then used to compute a 3D model
of that scene. The diffuse surface reflection parameters are computed
using the 3D model from that process together with an illumination
map of the studio. The illumination map is a high dynamic range image
generated from a series of images of the studio using a camera equipped
with a spherical (fish-eye) lens. With this setup our method is able to
capture any action in the studio under normal lighting.

1 Introduction

The integration of virtual, synthetic objects into real scenes has many applica-
tions in film and TV productions, for product and architectural visualisation. For
highly realistic results it is important to match the lighting of the real with the
synthetic components. Methods to capture the scene lighting of environments
using high dynamic range images (HDRI) were pioneered by Paul Devebec [1]
and are now widely used in production. These methods involve building up a
panoramic representation, by either mapping the environment onto a sphere or
a cube. The inserted virtual object is then lit by this HDR illumination map and
pasted into the background plate, which is an image of the real scene.

Any object to be inserted into the HDR environment needs to have a surface
description that gives the surface properties along with the object shape (or
geometry) for the rendering system. This might be the BRDF (bidirectional
reflectance distribution function) in the general case or more simplified colour,
diffuse and specular reflection parameters. For synthetic objects these parameters
are usually assigned manually in the rendering system.

The accurate measurement of the BRDF requires a very defined environment.
Approaches usually assume a calibrated environment where camera parameters
and object shape are precisley known, e.g. by using a laser scanner [2,3,4]. Further
a fixed point light source with known position is used for the computation.
Debevec et al. [5] described a method to capture an image based representation
of a face by taking a series of images under controlled variation of a light source.
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The setups for the mentioned approaches are designed to acquire the surface
properties offline and are not able to capture a live action.

The aim for the approach described in this paper is to integrate a sequence
of images taken from an actor in a studio into a different lighting situation.
This task is also called re-lighting. Since the actor is moving it is not possible
to use offline modelling tools like a laser scanner to create highly accurate 3D
geometry. Furthermore the dynamic range of the images is limited (8-bit). The
approach described here uses a multi-camera system that can capture images of
a moving actor synchronously in a chroma-keying environment. A 3D model of
the actor is generated using a visual hull computation. A brief outline of this step
is given together with an overview of our approach in the next section. A more
detailed description of the studio setup can be found in [6]. In addition to the 3D
geometry an illumination map is created using spherical (fisheye) HDR images of
the studio. The use of the illumination map makes our approach applicable to any
lighting situation found in realistic production scenarios. For the computation
of the surface properties we currently focus on the diffuse component.

The remainder of this paper describes a method for calibrating the radiometry
of the camera system in section 3. Section 4 introduces a new method for the
robust computation of radiometric surface properties from multi-camera images.
The paper finishes with some results and concluding remarks.

2 Overview

The computation of radiometric surface properties from multi-camera images
consists of the following processing steps:

1. Geometrical calibration of the multi-camera system
2. Foreground/background segmentation
3. 3D reconstruction using a visual hull computation
4. Radiometric camera calibration
5. Capture of an illumination map of the studio lighting environment
6. Computation of radiometric surface properties

The steps 1-3 are common practice to generate a 3D polygonal surface model
O of the actor or object: The geometrical calibration uses a 1m x 1m planar chart.
The cameras used for our experiments were Sony DXC-9100P cameras operating
in 25 fps progressive mode. From a set of 10-20 multi-camera still frames the
calibration method computes a set of camera parameters simultaneously con-
sidering centre-point shift and radial distortions. The segmentation is based on
a chroma-keying facility that is available in the experimental studio, but other
methods are applicable (e.g. difference keying). The visual hull computation is
based on a hierarchical octree approach similar to [7,8] with refinement using
super-sampling and (moderate) Gaussian smoothing [9] followed by a marching
cubes iso-surface generation.

The radiometric camera calibration consists of two steps: The set-up phase
is basically a colour balance that defines the operating mode of the camera.
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Fig. 1. Flow diagram of the transfer functions s and f that transform the scene radiance
into image brightness (adapted from [10])

The radiometric calibration estimates the transfer function of the cameras that
relates the scene radiance L to the image brightness I measured by the cameras.
Fig. 1 explains this concept (see [10] for more details); The image brightness I
caused by a scene radiance L is here defined by the optical transfer function s
and the camera response function f:

I = f(Ei) (1)

Ei = s(L) (2)

With the image irradiance Ei.
The optical transfer function s considers optical effects, like vignetting, lens

aberrations, depth of focus and effects like fixed pattern noise. In this work
these effects are not considered, with exception of vignetting for the capture
of illumination maps. The camera response function f however is very impor-
tant, because the cameras usually have non-linear response. In the case of the
broadcast-style Sony video cameras used, this is a deliberate feature (gamma
characteristic) to compress the irradiance range. The inverted camera response
f−1 gives the relation of image brightness to the scene radiance (ignoring optical
effects here).

A map of the illumination B is generated using images from the studio taken
with a spherical lens (fisheye lens) and standard HDRI techniques as outlined in
the next section.

With the 3D model O of the foreground object and the illumination map B
we can now define a model that describes the expected observation of the illumi-
nation of the foreground object from the observation cameras. Fig. 2 illustrates
this set-up.

The last step is the computation of radiometric surface properties that com-
putes the dominant diffuse surface reflectance parameters. This approach is de-
tailed in section 4.

3 Multi-camera Radiometric Calibration and Capture of
Illumination Map

The goal of the radiometric camera calibration is to colour balance the multi-
camera system and to determine the response functions of the individual cam-
eras. The colour balance sets for each camera the red, green and blue channel
to a reference white and black object in the scene that are visible to all cam-
eras simultaneously. As reference object a Macbeth ColorcheckerTM chart for
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Fig. 2. Relation of a point P on the foreground object O and the spherical background
model B. N represents the surface normal of the surface point, L represents the direc-
tion of an incoming light ray and Vi is a vector pointing to camera i.

the white and black level was used. A program has been developed to set the
radiometric parameters available in the cameras used 1. The colour balance de-
termines the range [Ei,min, Ei,max] of the image irradiance that is mapped to
the dynamic range of the camera, which is 8-bit per channel after digitisation.
All scene objects with a radiance lower than the black or higher than the white
point are clipped.

The second step of the radiometric calibration is to estimate the camera
response function f for each camera. We are using the method described in
[11]. This method computes a discrete lookup table for the camera response
function from a number of images taken under varied camera exposure2 of a
static scene. This process is also known as radiometric auto-calibration. The
more recent method described in [10] has the advantage that it is assuming a
monotone response function (which is usually the case) and a restricted num-
ber of parameters. This makes the estimation of the parameters better condi-
tioned.

The illumination map of the lighting situation is created using a digital stills
camera (Nikon D100) equipped with a spherical lens (Costal Optics 185o field
of view). Fig. 3 shows a picture taken in the experimental studio. A series of
pictures is taken with different exposure times (as describe above) so that even
the brightest lights are mapped into the dynamic range of the digital camera
(i.e. not over exposed) and detail is retained in the dark areas. This method is
called bracketing. After radiometric auto-calibration of the camera the series of
images is combined into one HDRI, as described in [11]. The spherical images
are transformed into a latitude-longitude mapping for further use.

1 The Sony DXC-9100P cameras allow only for setting of gain for red and blue and a
’master pedestal’ (black level).

2 Preferably the exposure time (integration time) is varied over changing the lens
aperture. In addition a neutral density filter is used to allow the capture of highlights
in the studio lamps.
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Fig. 3. A picture of the studio taken with a Costal Optics spherical lens showing all
major light sources

For the use as a model of the illumination the position and orientation of the
spherical probe camera and its internal parameters have to been known. This is
done by registering the camera to the coordinate reference system of the multi-
camera system. For this purpose a number of known positions in the studio are
manually extracted in the spherical camera images and a modified calibration
method is used to compute the camera pose and internal parameters.

The illumination map will be taken roughly from the position of the actors.
The approximation of the studio lighting is assuming that the extent of the acting
area is small compared to the distance of the lights to the probing camera. For
many practical configurations it is sufficient to use only one (half) sphere since
all the major light sources can be captured. This is neglecting any light bouncing
from the other half sphere which can not always be tolerated. In this case both
hemispheres have to be provided.

4 Computation of Radiometric Surface Properties

Using the configuration shown in Fig. 2 the expected appearance of a foreground
object can be computed using its computed 3D shape O and the illumination
map B by rendering a synthetic view for the viewpoint of camera i. Instead of
using a general BRDF we are using a simplified reflection model, as common in
many rendering systems to compute the intensity of a pixel I:

I = kdId + ksIs + Ie (3)

with the diffuse reflection coefficient kd, Id the diffuse component, Is the specular
component and Ie the error term that covers the (residual) model error. The
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determination of the specular reflection coefficient ks requires quite accurate
surface normals and is neglected here, ie. ks = 0.

The diffuse component can be computed as the irradiance E by integrating
all incoming light rays Lin:

Id = E =
∫

Ω(N)

Lin(ω)(Nω)dω (4)

in the direction ω and Ω upper hemisphere over surface point with the surface
normal N.

The intensity of the light rays Lin is taken from the illumination map. The
computation of Id can be done with standard rendering systems that provide
global illumination rendering.

An often used strategy for computing global illumination is to generate a
number of rays in random directions from the 3D point on the object surface.
For accurate results many rays are necessary and this requires long computation
times (up to several hours per frame). Therefore a specialised renderer has been
developed that gives a fast computation from the illumination map: For each 3D
point on the object surface the irradiance is determined by integrating directly
over the related area in the illumination map taking occlusions into account.
The area corresponds to the surface hemisphere, i.e. the surface normal marks
the centre point of this area. This method is reducing the computational effort
significantly (typically in the order of minutes on a recent PC).

The parameter kd has three components (one for each colour channel) and
can be approximated:

kd =
I − Ie
Id

(5)

The error term Ie is used to compensate for errors in the illumination model
and is a global parameter here.

In the case that the foreground object has a surface with significant specular
reflection these will appear as highlights in the camera images, as depicted on the
head in the left image of Fig. 6. A significant highlight is usually overexposed, ie.
the image brightness values are clipped. Under these conditions it is not possible
to recover the surface colour. However, it is possible to recover the colour from
a different camera. This is done by determining the 3D coordinate of a pixel by
reprojecting it onto the 3D model. In the next step this point is projected into
all available images. Omitting all invisible surface elements (using a depth test)
a set of colour values for the surface element can be retrieved. The highlight can
be replaced by the median value from the list.

5 Results

Fig. 4 shows results of a test production. A scene with a boy was captured
using 12 cameras simultaneously (just one camera image shown). Using a visual
hull computation as outlined in section 2 this gives a 3D model of the scene
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as depicted in the top right of Fig. 4. The model is made of 3000 triangles
and shows some typical artefacts due to principle limitations of the visual hull
reconstruction.

Fig. 4. Input image (top left) and wireframe rendered image of the 3D model with
3000 triangles (top right). The irradiance image (bottom left) and the estimated diffuse
reflectance (bottom right).

The picture on the left bottom of Fig. 4 shows the irradiance image using the
3D scene model and an illumination map of the studio captured as described
in section 3. The bottom right picture shows the computed diffuse reflectance
for the input image. It can be clearly seen that most of the shading effects have
been compensated. The remaining problems (like the area on the boy’s chest)
are mainly due to errors in the visual hull.

Fig. 5 gives an example of the usage of the computed reflectance model in a
different illumination environment. The boy is sitting on a ’space scooter’ and is
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moving forward from the inside of a room (top image) into bright sunlight. The
pictures are rendered with Cinema 4D (a commercial animation and rendering
package). The bottom left of Fig. 5 shows the use of the original camera image in
this situation and the right image shows the use of the reflectance map computed
with our method. It can be seen that the use of our reflectance model is producing
more realistic results under these changed lighting conditions. A video with the
results can be found in [12].

Fig. 5. An example of usage of the reflectance model. The top image shows the boy in
a room. In the bottom he is rendered in bright sunlight using the original image (left)
and our reflectance model (right).

Fig. 6 depicts an example of a person with a more shiny skin. In this case
the specular components appear as highlights in the image (left). The image on
the right shows the elimination of these highlights by using image information
from the other cameras of the multi-camera system as described in the previous
section.

6 Conclusions

This contribution described a method to estimate the diffuse reflectance param-
eters of actors captured with a multi-camera system by using an illumination
map and a 3D model of the actors.
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Fig. 6. Compensation of specular hightlights by using image information from the
multi-camera system

The results in the previous sections have shown that the proposed approach
is increasing the range in which the illumination can be changed from the orig-
inal studio lighting. The additional operational overhead for achieving that is
relatively low since only the illumination map has to be captured in addition to
the set-up of the multi-camera system.

A limiting factor of the method is the quality of the 3D models in this ap-
proach. In particular the surface normals that can be derived from the visual
hull computation are not very precise. The diffuse component of the reflection
can still be computed quite robustly since it is integrating over the hemisphere of
each object surface point. The specular components are very sensitive to wrong
surface normals. Therefore this paper was focussing on the diffuse components.

However more work will be carried out in the future to increase quality of the
surface reflectance parameters. This will mainly target the accuracy of the 3D
reconstruction that would allow better estimation of the surface normals and
finally the consideration of the specular components.
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Abstract. This paper presents an optimization framework for the 3D
reconstruction of the surfaces from stereo image pairs. The method is
based on employing popular graph cut methods under the dual mesh op-
timization technique. The constructed system produces noticeably better
results by running two separate optimization processes that communi-
cate with each other. The communication mechanism makes our system
more robust against local minima and it produces extra side informa-
tion about the scene such as the unreliable image sections. We validated
our system by running experiments on real data with ground truth and
we compared our results with the other optimization methods, which
showed the accuracy and effectiveness of our method.

1 Introduction

The classical breakdown of 3D surface recovery from stereo suggests that first the
correspondences between the image pairs should be established and then the 3D
surface is reconstructedusing these correspondences[9]. The newer techniques take
the approach of a global solution by incorporating the correspondence and the 3D
reconstruction steps into the same process. This process is larger and more complex
but the results are far better than the classical methods if the problem complexity
is addressed properly. One common method to manage this larger problem is to
pose it as an energy optimization task. An energy functional that penalizes locally
unsmooth anddiscontinuous 3D structure is formulated.Optimization of this func-
tional on the stereo image pairs would produce the desired 3D surface. Despite the
elegance and unified nature of such systems, optimizing these functionals are not
trivial. The problem is fundamentally NP-Hard and the approximation methods
are sensitive to initializations, local minima, and image noise.

Recently, graph cut methods gained popularity in optimizing energy function-
als of Computer Vision problems. Graph cuts can guarantee optimal functional
values for some restricted cases[10][8]. For the other cases, they guarantee an up-
per bound in error from the optimal result[6]. Furthermore, since they are based
on the deep theory of graph and flow algorithms, there are numerically stable and
efficient algorithms for performing cuts[4]. Although the types of energy func-
tionals that can be optimized by graph cuts are limited[13][7], the limitations are
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not very restrictive. As a result, graph cuts were applied to many stereo prob-
lems including multi-camera scene reconstruction[12], occlusion detection[11],
and stereo with plane fitting and layering[3].

Energy optimization with the dual mesh approach was proposed for depth
estimation from stereo pairs[2] and tracking of ultrasound tongue sequences[1].
The dual mesh method is a framework that employs two instances of a known
energy optimization method. It works on the principle of two simultaneous and
interacting optimization processes. The energy optimizations start from the two
ends of the search space and the optimizations continue until they find the same
position in the search space. The interaction between the optimization processes
is used to force the mesh with the high energy towards the other. The dual
mesh method was shown to be relatively insensitive to local minima due to its
two-way sweep of the search space. It does not have any initialization problems.
However, the system can only be used for continuous depth recovery and it might
be sensitive to local minima depending on the optimization methods used.

In this paper, we describe a system that uses graph cut energy optimization
methods under the framework of dual mesh optimization. The system introduces
a number of novel enhancements to both graph cuts and dual mesh framework
to achieve a noticeably better energy optimization which results in more accu-
rate 3D surface recovery. The system eliminates the dependency on the initial
configuration because the initializations are done exactly the same way for all
system input. The proposed system produces other important side information
about the 3D scene such as the unreliable image parts for 3D reconstruction
without any additional computational load.

Section 2 formally introduces the dual mesh energy. The details of graph cut op-
timization under the dual mesh framework is explained in Section 3. Experiments
and validation work is discussed in Section 4. Section 5 concludes the paper.

2 The Dual Mesh Energy

A deformable mesh is a set of horizontally and vertically connected points in 3D
space. Each point mij is a mesh element and the mesh elements form a 3D surface
or set of 3D surfaces. The mesh elements have fixed x and y positions. The z
positions of the mesh elements can change. The z position of a mesh element
mij is also called the depth value of the element and it is given by the function
depth(mij). A deformable mesh is positioned in a 3D volume and it interacts with
the contents of the volume to localize any desirable 3D surface while maintaining
the surface properties such as local continuity and smoothness. The movements
of the deformable mesh is governed by an energy functional, which forces the
deformable mesh to move towards the 3D surface positions that overlap with
the existing real world surfaces. For our system, the energy functional of the
deformable mesh M is dependent on the mesh N and it is written as

EMesh(M,N) =
∑
i=1

∑
j=1

EData(mij) + ESmoothness(mij) + ETension(mij , nij)

(1)
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The term ESmoothness(mij) is for satisfying the smoothness constraint of the
mesh. Regularization based approaches or using convex functions as smoothness
term extend smoothness everywhere. Although these kinds smoothness terms
makes the resulting systems more efficient and robust against noise, they do not
work well at the object boundaries. For example, [2] can only recover continuous
surfaces because it uses such a smoothness term. Non-convex functions can pre-
serve discontinuities but they are more sensitive to local minima and optimizing
such functions require more computational power.

Potts style smoothness terms are very simple but effective. They preserve
discontinuities and their computational complexity is fair. We use a Potts style
smoothness term to keep the discontinuities with a four-neighborhood system.

ESmoothness(mij) = V (mij ,mi+1j) + V (mij ,mij+1) (2)

where

V (mij ,mkl) =

⎧⎪⎨⎪⎩
0 depth(mij) = depth(mkl),
λ1 |depth(mij)− depth(mkl)| ≤ thresh1,

λ2 otherwise.

The tension energy is not always active. It is a mechanism that the dual
mesh optimization framework employs to communicate information between the
two separately deforming meshes. Under this framework, the functionals of two
meshes are optimized separately at different initial 3D positions and it is ex-
pected that local minima, occlusions, and discontinuities will prevent them find-
ing the same position at the end of the optimizations. When this happens, the
tension term is activated to push the mesh with the worse position towards the
other mesh. The details of this term is explained in section 3. We again use a
Potts based model for the tension term.

ETension(mij , nij)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 depth(mij) = depth(nij)
∞ depth(mij) > depth(nij)
λ3 ∗ (depth(nij)− depth(mij)) (depth(nij)− depth(mij)) ≤ thresh2,

λ3 ∗ thresh2 otherwise.

Note that due to the working mechanism of the dual mesh framework, the
elements nij of mesh N normally cannot have depth values less than the depth
values of mij of mesh M .

Data energy is the term responsible for the deformation of the deformable
mesh with the scene data. If the stereo pair is viewing a volume V (Fig. 1),
and if the point P in this volume is visible from both cameras, then classical
stereo analysis states that the image points pl and pr on the left and right
images should belong to similar image regions. Therefore, the Sum of Squared
Differences (SSD) between the local neighborhoods around the corresponding
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image points is a good data energy term. For a given mesh element m at 3D
point P in volume V (Fig. 1), the data energy term is written as

EData(m) =
∑

i

∑
j

(ILij − IRij)2, (3)

where ILij and IRij are the left and right image neighborhoods around the
image points pl and pr of point P . Note that m does not have to be on a real
surface in volume V . For any 3D position inside V the above data term can be
calculated. If m is on a real world 3D surface, it is expected that the data energy
term stays smaller.

Left
Image
plane

V

P

Pl Pr

Right
Image
plane

Fig. 1. A volume V is viewed by a stereo camera system

3 Graph Cut Based Dual Mesh Optimization for 3D
Surface Recovery

Classically, stereo can be viewed as the problem of assigning a depth value label
for each pixel p in the images. The depth value labels are chosen to be integers
representing the distance between the image planes and the 3D point whose
projection on the image plane is the pixel p (Fig. 1). There are only a finite
number of labels. Therefore, we can formally define this labeling in terms of
depth value sets. Let L and R be two sets of pixels in the left and right images
respectively on the same epipolar line pair, and let D be the set of possible depth
values. For any pixel pl in set L there is a corresponding depth value label in set
D that ties pl to the pixel pr in set R, which contains only the epipolar conjugate
pixels of L. Note that choosing a label from set D for a pixel pl is equivalent to
choosing a corresponding pixel pr for pl and vice versa. A labeling f represents
the complete matching of all pixels in the set L to their labels in the set D.

It is possible to minimize only the data energy term (Equation 3) to find the D
labels by choosing the pl and pr pixels that maximize the data energy term. This
mapping would be in polynomial time complexity. However, this mapping would
also produce a rough depth map even at good image regions because of the very
local decision base. We therefore need to figure out a more global formulation
for the labeling problem.
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3.1 Graph Cut Optimization

A more robust labeling can be achieved with the help of the deformable mesh
structure defined in Section 2. The elements of the mesh would represent the pixels
and their depths in a stereo image. Therefore, the x and y positions of the mesh el-
ements cannot change. The z position of the mesh would represent the estimated
depth value of the pixel. The labels that minimize the associated mesh energy
would produce a 3D surface or surface set that would satisfy smoothness and good
SSD values between the pixel correspondences. The brute force implementation
of the above deformable mesh optimization is NP-hard, hence an approximation
method is required. Recently, graph cuts became popular in approximate function
optimization after the introduction of α-expansion algorithm[6], which proves the
existence of an upper bound on error from the optimal result.

Graph cut based optimization methods need a special type of graph con-
structed first. We add a new node to the graph for each mesh element and since
each mesh element represents a pixel, the special graph has a node for each pixel
in the image. Two terminal nodes named the source (s) and the sink (t) are also
added to the graph. Each node in the graph is connected to the terminal nodes
with links called t− links. The weight of a t− link is chosen as the EData term
of the mesh element corresponding to the node. Semantically, any graph node
connected to s node has the depth label of s. Similarly, nodes connected to t
node has the depth label of t. All pixel nodes are connected to their neighbors by
n-links with the cost ESmoothness of the pixel node(Fig. 2-a). The initial labeling
of the graph is called f0.

The α-expansion algorithm uses z position values of the volume as the depth
labels. For each depth label, a new graph is constructed with the sink node
representing the current configuration and the source node representing the new
depth label. Note that every time the graph is reconstructed, weights of the links
are recalculated. The α-expansion algorithm performs an s− t cut on this graph
by using one of the max flow/min cut algorithms from the literature. After the
partitioning, the nodes will have only one t-link, which means that each node
will have only one label(Fig. 2-b). In other words, after one α-expansion some
mesh elements can change their labels to α, and the others will keep their labels.
Once all depth labels are tried as the source node, an iteration is completed.
The α-expansion continues with other iterations until there is no improvement
in the total energy.

The above method was shown to be a very effective approximation method
in assigning labels to pixels when there is a special type of energy functional
involved. However, since it is still an approximation method, a better approxi-
mation is always helpful for a number of applications including stereo analysis.
The next section explains how we use the dual mesh framework to achieve a
better approximation.

3.2 Graph Cuts Under Dual Mesh Framework

Dual mesh optimization framework[2,1] was originally developed for finding the
approximate optimal values of contour positions in ultrasound or depth labels
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Fig. 2. (a) The α-expansion special graph with two nodes p and q. (b) The new
labeling of the nodes after one α-expansion step.

in stereo. The basic idea of dual mesh optimization is to pose the problem as a
label assignment problem for each pixel or contour element. The continuity and
smoothness of the labels are satisfied by optimizing an energy functional of a de-
formable mesh that assigns a depth position for each mesh element. The main ar-
gument of dual mesh approach is to employ two separate deformable mesh struc-
tures and initialize them at the opposite ends of the search space of the labels. By
employing known optimization methods from the literature, the mesh energies
are minimized separately and they start deforming independently(Figure 3). The
deformable meshes usually stop deforming at different 3D positions due to local
minima, which is a common problem in optimizing complex energy functionals.
The dual mesh framework addresses the local minima problem by pushing the
deformable mesh with the larger energy towards the other mesh. The biggest
advantage of the dual mesh structure is that it can employ any optimization
method to optimize each deformable mesh and the resulting 3D mesh positions
will be better than what that specific optimization method can achieve.

Mesh-1 Mesh-2
Disparity Range

Fig. 3. Two deformable mesh structure localizing the same 3D surface

We borrow the idea of the dual mesh framework to use it with graph cut
based optimization methods. The dual mesh approach provides a facility for
the graph cut method to improve the results by showing a better direction of
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deformations which cannot be achieved by the graph cut method itself. The
proposed optimization method stages are as follows:

– Start two graph cut optimization processes to minimize the dual mesh en-
ergies defined by Equation 1. The first optimization will use the maximum
possible depth values as the initial label (mesh N). The other optimization
will use the minimum possible depth values as the initial label (mesh M).
The ETension term of the energy will not be used at this phase.

– After the optimization, take the final labeling of the corresponding mesh
elements mij and nij in the two meshes and activate the ETension term
for each mesh element that has different labeling in the other mesh. The
ETension element is activated by adding its cost to the t− link of the mesh
element.

– The above step will bias the mesh elements of the two meshes to find the
same depth positions. However, it is not guaranteed that they will find the
same positions due to other energy terms.

– If all of the two mesh elements find the same depth positions, then the
optimizations ends. Otherwise, we deactivate the ETension term and start
doing the same steps until convergence occurs or we see no improvement in
the overall mesh energy.

– At the end of this process, the final labels are assigned to each stereo image
pixels. If the corresponding mesh elements mij and nij have the same depth
label, then pixel pij is assigned the same label. Otherwise, pixel pij gets the
label of the smaller energy element.

The above procedure has several advantages. First, when compared to the
graph cut methods, it produces noticeably closer results to the optimal value.
This advantage is expected because we compare two almost identical graph cut
optimization processes to bias the estimations towards the better one. The sec-
ond advantage of this method is that, the corresponding mesh elements mij and
nij that do not find the same depth positions would give us valuable information
about the scene. These kinds of positions are actually problematic for stereo
analysis because they correspond to occlusions, depth discontinuities, or tex-
tureless image areas. This information is very important in knowing what depth
estimation values are more reliable than the others. Finally, unlike the original
dual mesh method, our new method allows recovery of discontinuous 3D surface
patches due to the employment of the Potts style smoothness function.

4 Experiments and System Validation

We implemented our system by using the graph cut library provided by [13]. We
tested our system exhaustively to observe its performance in real world against
the other methods and to validate the claims we made. For these experiments,
we employed BVZ algorithm [5] as the underlying graph cut method of the dual
mesh framework for its simplicity, though we could have used any graph cut
method. For all the experiments, we used the stereo data and the ground truth
provided by the Middlebury image base[14].
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There are three main experiments we performed. First, we compared our
results with the popular graph cut systems, BVZ[5], KZ1[12], and KZ2[11]. Table
1 shows that our method is always better than the BVZ, which is the underlying
graph cut algorithm for our method. In some cases, the errors get very close
to KZ1 and KZ2 algorithms which are much more sophisticated than the BVZ
algorithm, which is very encouraging. Note that it is not fair to compare our dual
mesh method to KZ1 and KZ2 methods directly because dual mesh method is
dependent on the BVZ optimization method. We provided the numbers for the
other methods just to show the scale of the difference between methods. We are

Table 1. Comparison of the dual mesh algorithm with other graph cut based algo-
rithms. The numbers are percentage errors compared to ground truth on non-occluded,
discontinuous, and all image regions.

Tsukuba Venus Teddy Cones
Algorithm Non-Occ All Disc Non-Occ All Disc Non-Occ All Disc Non-Occ All Disc

BVZ 1.96 4.20 9.71 2.03 3.69 12.1 17.3 25.8 28.8 19.2 28.3 25.7
KZ1 1.83 2.48 6.42 1.06 1.52 5.53 12.0 17.9 22.4 5.78 12.9 13.2
KZ2 1.33 2.15 6.94 1.22 1.78 5.99 12.5 18.8 22.1 6.08 13.2 13.3

Dual Mesh 1.91 4.13 9.50 1.64 3.29 10.5 13.0 21.9 25.2 9.37 19.6 17.5
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Fig. 4. The dual mesh disparity values compared with the ground truth and BVZ
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working on implementing the KZ1 and KZ2 based dual mesh algorithms and
we expect that such systems would produce better results than the KZ1 and
KZ2 systems. Figure 4 shows the obtained disparity images from our system
compared to BVZ method and the ground truth for the images of Table 3.
Visual inspection of this data shows the accuracy and effectiveness of our system
especially in images with discontinuities, occlusion and textureless regions. Note
that we used exactly the same parameter set as the BVZ method when we
compare our dual mesh method to BVZ in all the experiments.

For the second experiment, we tested the dual mesh capability of capturing
the unreliable image areas. Textureless, occluded and discontinuous regions are
problematic parts of the images for stereo analysis. Knowing such regions would
make the subsequent processing more convenient. Dual mesh structure can be
used for partial detection of these areas by checking the intermediate positions of
the mesh elements during the optimization. If there are mesh elements mij and
nij that do not find the same positions, then we mark these areas as problematic
areas. Table 2 shows the percentage of the problematic pixels detected and the
overlap of these pixels with the occluded image regions from the ground truth
of the Tsukuba image. Notice that 38% of the problematic pixels are occluded.
We visually verified that the rest of the problematic pixels are from textureless
regions and depth discontinuities. We are working on producing the ground truth
data to quantitatively verify this claim.

For the third experiment, we like to show that the results obtained by the
dual mesh method cannot be obtained by a single optimization process. We
run the BVZ method with the random labeling as suggested by [5]. Due to the
randomness factor, we repeated the run 10 times and recorded the best, the
worst and the average errors. We also modified the BVZ method so that it takes

Table 2. Detection of unreliable pixels. Occluded pixels are obtained from ground
truth.

Number Percentage
Pixels 109921 100.0
Problematic Meshels of Dual Mesh 1312 1.19
Problematic And Occluded 504 0.45

Table 3. The effects of using different labeling methods

Non-occluded All Discontinuity
Algorithm Areas Areas Areas

BVZ Random (Best) 18.9 28.0 25.5
BVZ Random (Avg) 19.3 28.4 25.7

BVZ Random (Worst) 19.6 28.6 26.1
BVZ Regular-1 (One Mesh) 19.0 28.1 25.4
BVZ Regular-2 (One Mesh) 18.9 28.0 25.5

Dual Mesh 9.37 19.6 17.5
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the same labeling order as our dual mesh labelings. Since we have two separate
optimizations, there are two different labeling orders(regular-1 and regular-2).
Table 3 shows the percentage errors from each run compared to our dual mesh
on the Cones image. We obtained similar results on other images. As the results
clearly show, the dual mesh approach produces better results.

5 Conclusions

Graph cut methods gained popularity in optimizing energy functionals of Com-
puter Vision problems due to their effectiveness and closeness to the optimality.
We presented an optimization framework that noticeably improves the graph
cut based stereo methods. The system is based on deformable dual mesh opti-
mization that employs two graph cut optimization processes. The processes com-
municate with each other to come up with a better 3D surface that cannot be
achieved by a single optimization. Furthermore, the communication mechanism
makes our system more robust against local minima. The method can also extract
other useful information about the scene such as the unreliable image sections.
Although we employed the BVZ algorithm as the underlying graph cut method,
our framework can employ any graph cut methods to improve the results.

We validated the system by running several experiments and compared our
results with the ground truth and other stereo algorithms. We quantitatively
observed that our method noticeably improves the graph cut optimization re-
sults. We also visually observed the improvements. Overall, the results are very
encouraging.

The system is open to further enhancements. We are working on implementing
more sophisticated graph cut algorithms to be used as optimization methods.
We are also working on making the system computationally more efficient by
using a tighter communication mechanism between the meshes. It is also planned
to use this system as a general label assignment method for image/volume seg-
mentation, contour tracking, and motion analysis.
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Abstract. We propose a probabilistic formulation of 3D segmentation
given a series of images from calibrated cameras. Instead of segmenting
each image separately in order to build a 3D surface consistent with
these segmentations, we compute the most probable surface that gives
rise to the images. Additionally, our method can reconstruct the mean
intensity and variance of the extracted object and background. Although
it is designed for scenes, where the objects can be distinguished visually
from the background (i.e. images of piecewise homogeneous regions),
the proposed algorithm can also cope with noisy data. We carry out the
numerical implementation in the level set framework. Our experiments on
synthetic data sets reveal favorable results compared to state-of-the-art
methods, in particular in terms of robustness to noise and initialization.

1 Introduction

Recovering the spatial structure of a scene from multiple views is one of the old-
est and most fundamental problems in computer vision with many applications
in computer graphics, robot navigation, object recognition, and tracking. The
literature on 3D reconstruction could be divided into four major classes: shape
from stereo, shading, texture, and silhouettes.

Stereovision requires to match points from different images that correspond
to the same point in the scene. The earliest algorithms that incorporate a large
number of views use carving techniques to obtain a volumetric representation
of the scene assuming Lambertian properties of the objects [18,10]. The space
carving framework suffers from several limitations. Once a voxel is carved away,
it cannot be recovered. Moreover, if one voxel is removed in error, further voxels
can be erroneously removed in a cascade effect. These limitations are partially
alleviated by the probabilistic space carving method [1]. Others have suggested
to guide a deformable surface model by a measure based on local correspondences
toward a steady state [6,5]. All these methods require a textured surface in order
to match points.

Shape from shading methods, on the other hand, are mainly designed for ho-
mogeneous objects [8,9]. They are based on the diffusing properties of Lamber-
tian surfaces and aim at reconstructing the object shape from light reflectance.

K. Franke et al. (Eds.): DAGM 2006, LNCS 4174, pp. 688–697, 2006.
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A difficulty of this concept is the requirement of a known illumination model or
the necessity to estimate illumination together with the shape.

A similar problem appears with texture-based methods [12]. They need a
known texture pattern in order to reconstruct a 3D surface by means of its
distortion in the image.

In case of sparsely textured objects, which are known challenges to stereo-
and texture-based techniques, silhouettes exhibit the dominant image feature.
The algorithm presented in this paper belongs to this type of silhouette-based
techniques. Such methods usually try to estimate the visual hull of the observed
objects. The visual hull of an object is defined as the maximal shape that yields
the same silhouette as the observed object [11]. The earliest attempts use a vol-
umetric representation of the scene and are referred to as volume intersection
techniques in the literature. That is, the space is discretized by a fixed voxel grid
and each voxel is labeled as opaque or transparent. An early paper reporting a
volumetric representation of the visual hull is due to Martin and Aggarwal [13].
They segment the input images in advance by a simple intensity thresholding
and then back-project the estimated silhouettes to a surface representation. Since
then, silhouettes have been used in many different algorithms. Octree-based rep-
resentations have been employed by [15,19,7], and in [17] the authors presented
a Hough-like voting scheme that back-projects image features into a volumetric
space. In addition to volumetric approaches, some surface-based ones have been
presented. In [3] and [20] apparent contours are used to reconstruct a 3D shape.
Although the authors obtain better results, the reconstruction works only locally.

Yezzi and Soatto recently proposed stereoscopic segmentation as a variational
framework for global 3D region segmentation from a collection of images of a
scene [21]. They couple the segmentations of each image through the evolution
of a single 3D surface rather than separate 2D contours, which makes their
method robust to erroneous camera calibration. Upon a closer look, it turns out
that stereoscopic segmentation has certain limitations. Its main drawback is the
definition of the energy in the image domain that results in a very local evolution.
Consequently, it needs an accurate initialization in order to capture the correct
object topology. In addition, the algorithm is prone to noise as the strictly local
surface evolution is mainly determined by single camera observations.

In this paper, we propose a probabilistic Bayesian formulation of 3D recon-
struction which aims at estimating the most likely 3D shape given the observed
images. In contrast to stereoscopic segmentation, this yields a more global evo-
lution that makes better use of the available information from multiple cameras.
As a consequence, our method has a larger radius of convergence and is more
robust to noise than previous techniques.

Paper organization. In the next section, the probabilistic framework of the
proposed method is presented and discussed. A variational formulation and a
respective level set implementation are developed in Section 3. In Section 4 we
show experimental results. Finally, we provide a conclusion in Section 5.
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2 Probabilistic Volume Intersection

2.1 Bayesian Inference

Let V be a discretized volume and I1, . . . , In : Ω �→ R a collection of calibrated
input images with perspective projections π1, . . . , πn. Given the set of images,
we are looking for the most probable surface Ŝ that gives rise to these images,
that is

Ŝ = arg max
S∈Λ

P (S | {I1, . . . , In}), (1)

where Λ is the set of all closed surfaces lying inside of the volume V . By means
of the Bayes formula we obtain (omitting the normalization constant):

P (S | {I1, . . . , In}) ∝ P ({I1, . . . , In} | S) · P (S). (2)

Assuming that all voxels are independent leads to

P (S | {I1, . . . , In}) ∝

⎡⎣ ∏
xijk∈V

P ( {Il(πl(xijk))}l=1,...,n | S)

⎤⎦dx

· P (S), (3)

where dx denotes the discretization step. The exponent dx is introduced to
ensure the correct continuum limit. The resulting expression is then invariant to
refinement of the grid.

According to a certain surface estimate S, the voxels can be divided into two
classes: lying inside an object or belonging to the background. Hence, the volume
V can be expressed as V = RS

obj ∪ RS
bck. Considering this partitioning, we can

proceed with

P (S | {I1, . . . , In}) ∝

⎡⎣ ∏
xijk∈RS

obj

P ( {Il(πl(xijk))}l=1,...,n | xijk ∈ RS
obj)

⎤⎦dx

·

⎡⎣ ∏
xijk∈RS

bck

P ( {Il(πl(xijk))}l=1,...,n | xijk ∈ RS
bck)

⎤⎦dx

· P (S).

To simplify the notation, we denote

Pobj(x) := P ( {Il(πl(x))}l=1,...,n | x ∈ RS
obj)

Pbck(x) := P ( {Il(πl(x))}l=1,...,n | x ∈ RS
bck)

(4)

for x ∈ V (see fig. 1) and come to the following expression

Ŝ = argmax
S∈Λ

⎡⎣ ∏
xijk∈RS

obj

Pobj(xijk) ·
∏

xijk∈RS
bck

Pbck(xijk)

⎤⎦dx

· P (S). (5)
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(x)P , P (x)obj bck

Fig. 1. Volume representation. Two probabilities Pobj , Pbck are assigned to each voxel
for membership to one of the objects and background, respectively.

2.2 Joint Probabilities

In order to compute the joint probabilities P ( {Il(πl(x))}l=1,...,n | x ∈ RS
obj )

and P ( {Il(πl(x))}l=1,...,n | x ∈ RS
bck ), we have to combine information from

different images. This could be achieved by assuming independence of the image
observations yielding

Pobj(x) =
n∏

i=1

P (Ii(πi(x)) | x ∈ RS
obj)

Pbck(x) = 1−
n∏

i=1

[
1− P (Ii(πi(x)) | x ∈ RS

bck)
]
.

(6)

Note the asymmetry in these expressions. The probability of a voxel being part
of the foreground is equal to the probability that all cameras observe this voxel
as foreground, whereas the probability of background membership describes the
probability of at least one camera seeing background. However, this model has
some disadvantages. In case of noisy images 0 < P ( Ii(πi(x)) | x ∈ RS

obj ) <

1 and 0 < P ( Ii(πi(x)) | x ∈ RS
bck ) < 1, in general. Hence, for n → ∞

the joint probability P ( {Il(πl(x))}l=1,...,n | x ∈ RS
obj ) will converge to 0 and

P ({Il(πl(x))}l=1,...,n |x ∈ RS
obj ) to 1. To dispose this bias for increasing number

of cameras, we have to take the dependency of the observations into account. In
our model we used the geometric mean of the single probabilities:

Pobj(x) = n

√√√√ n∏
i=1

P (Ii(πi(x)) | x ∈ RS
obj)

Pbck(x) = 1− n

√√√√ n∏
i=1

[
1− P (Ii(πi(x)) | x ∈ RS

bck)
]
.

(7)
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They are modeled by Gaussian densities

P (Ii(πi(x)) | x ∈ RS
obj) =

1√
2π · σ

· e−
(Ii(πi(x))−μobj )2

2σ2

P (Ii(πi(x)) | x ∈ RS
bck) =

1√
2π · σ

· e−
(Ii(πi(x))−μbck)2

2σ2 ,
(8)

where μobj , μbck denote the mean intensities of object/background and σ is the
respective standard deviation. We update these values in the course of evolution
by projecting the current surface estimate onto the images as described in [21].
The standard deviation σ is set to the maximum of the deviations of the object
and background regions. Alternatively, above probabilities could be modeled
with two separate standard deviations. However, in our experiments the proposed
model resulted in a faster convergence.

3 Variational Framework

3.1 Variational Formulation

In this section we will convert the maximum a-posteriori estimation into an
energy minimization problem. Applying the negative logarithm to (5) yields in
a continuous formulation the following functional:

E(S) = −
∫

RS
obj

logPobj(x) dx−
∫

RS
bck

logPbck(x) dx− logP (S). (9)

Minimizing this energy functional is equivalent to maximizing the total a-
posteriori probability of all voxel assignments. The first two terms are related
to the external energy and measure the discrepancy between observed images
and images predicted by the model. The last term exhibits the internal energy
and describes the surface shape, thus allowing incorporation of prior knowledge
on the geometry. Note that the functional also incorporates the intensity means
and standard deviation, which are defined by the surface S. Since the unknowns,
surface and radiances, live in an infinite-dimensional space (there exist multiple
solutions S that explain the observed images), we need to impose regularization
in order to make the minimization problem well-posed. This can be achieved by
setting

P (S) = e−ν|S|, (10)

where ν is a weighting constant and |S| denotes the surface area. Inserting this
expression into the above functional yields

E(S) = −
∫

RS
obj

logPobj(x) dx−
∫

RS
bck

logPbck(x) dx+ ν|S|. (11)

In order to reconstruct the smoothest surface consistent with the images, we
omit the data fidelity terms for points, which are visible from neither of the
cameras. This is not restrictive, since no data is available for such points.
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3.2 Level Set Implementation

The numerical implementation of the proposed energy functional (11) has been
carried out within the level set framework [4,14] due to its stability and ability
to handle topological changes automatically. In level set methods, the surface is
implicitly represented by a function φ : V �→ R, whose values are the distances
from the surface, and the interior and exterior of the surface are defined by
φ(x) < 0 and φ(x) ≥ 0, respectively. Hence, we can use the Heaviside function

H(z) =
{

1, if z ≥ 0
0, otherwise (12)

to access these two regions. Expressing the energy functional (11) with respect
to the level set function φ yields

E(φ) = −
∫

V

[logPbck(x)H(φ(x)) + logPobj(x)(1 −H(φ(x)))] dx

+ ν

∫
V

|∇H(φ(x))|dx.
(13)

This formulation has some nice properties. First, its Euler-Lagrange equations
are easy to compute since the implicit function φ occurs as an argument. Second,
it leads to a stable volume-based surface flow. A similar energy functional was
used in [2,16] for image segmentation purposes. The Euler-Lagrange equations
of (13) read

∂φ(x)
∂t

= δ(φ(x)) · [logPbck(x)− logPobj(x)] + νδ(φ(x)) · div
(
∇φ(x)
|∇φ(x)|

)
, (14)

where δ(·) denotes the Dirac function

δ(z) =
d

dz
H(z). (15)

In practice, smoothed versions of H(·) and δ(·) have to be applied [2].

4 Experiments

In Fig. 2 we show results obtained with the proposed algorithm applied to 20
noisy images, four of which are depicted in Fig. 2(a). Fig. 2(c) visualizes the final
result from multiple viewing directions. Obviously, our method is able to deal
with noise as well as lighting effects and leads to an accurate reconstruction of
the two balls. In order to emphasize its robustness a reconstruction generated
by carving techniques is presented for comparison. For the sake of fairness we
added an identical smoothness term in the implementation of the shape carving
method. The estimated mean intensities computed by our algorithm were used
for segmenting the input images separately and independently. As clearly visible
in Fig. 2(d), this approach is susceptible to noise and shading effects, since only
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(a)

(b)

(c)

(d)

Fig. 2. Reconstruction of two spheres. (a) 4 out of 20 input images disturbed by noise,
(b) surface during evolution, (c) reconstructed surface obtained with our probabilistic
method, (d) result obtained with carving techniques.

single observations are taken into account for deciding whether a voxel should
be carved away or not. In contrast, our method is quite robust to noise due to
the averaging effect of integrating data from all views.

Fig. 3 demonstrates the ability of the proposed method to reconstruct com-
plex topologies starting with an arbitrary initialization as opposed to stereo-
scopic segmentation, which requires an approximation of the real topology, as
stated in [21]. The reconstructions of a torus obtained with our method and with
stereoscopic segmentation from the same initial surface are depicted in Fig. 3(c)
and Fig. 3(d), respectively. Note that, similar to stereoscopic segmentation, our
method is bidirectional, i.e., surfaces can evolve inward as well as outward. In
addition, our formulation leads to a surface evolution that allows for bigger
time steps. In contrast to stereoscopic segmentation, the time step size is only
restricted by the smoothness constraint.
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(a)

(b)

(c)

(d)

Fig. 3. Reconstruction of a torus. (a) 4 out of 20 input images, (b) surface during
evolution, (c) reconstructed surface obtained with our method, (d) result obtained
with stereoscopic segmentation [21] from the same initialization.

Finally, Fig. 4 illustrates the behavior of the presented algorithm when applied
to a data set that exhibits ambiguous silhouette information. The cameras are
arranged in such a way that none of them can see the bottom of the vase. Due
to the geometric prior, the lacking information results in the smoothest shape
that is photometrically consistent with the data (note the flat bottom and the
neck of the vase).

All illustrated results were obtained from 20 images with 640×480 pixels using
a C++ implementation running on a Pentium IV with 3.4GHz. All cameras
were situated on a bounding sphere enclosing the scene. For a cubic grid of
128 × 128 × 128 the algorithm takes between 20 and 30 minutes to converge,
which is about a factor 3 faster than stereoscopic segmentation. Moreover, it
can still be substantially accelerated when replacing our preliminary surface
projection algorithm by a more sophisticated implementation.
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(a)

(b)

Fig. 4. Reconstruction of a vase. (a) 4 out of 20 input images. Due to the rotational
symmetry and the arrangement of the cameras, most images look the same. (b) Re-
constructed surface from multiple views.

5 Summary

We have presented a new variational approach to reconstruct smooth shapes from
a number of calibrated camera views. The variational formulation is derived from
a probabilistic setting via Bayesian inference and uses the level set framework to
represent the sought object surface. The mean radiance of object and background
are estimated together with the surface. In comparison to previous methods, the
probabilistic derivation and formulation of the energy on the volumetric instead
of the image domain provides faster convergence and better robustness to noise
or other violations of the assumption of constant object radiance. Moreover, the
optimization is less prone to accurate initializations and allows to reconstruct
more complex topologies. These properties have been confirmed in experimental
evaluation. Future work is focused on applications to real data sets.
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Abstract. In many sports and surveillance scenarios the action is dy-
namic and takes place on a planar surface, while being recorded by two or
more zoom-pan-tilt cameras. Although their position is fixed, these cam-
eras can typically rotate and zoom independently from each other. When
rotation and zoom of each camera are known, one could reconstruct the
dynamic event in 3D and generate different views of the action. Sensors
exist which report zoom and orientation changes of pan-tilt units. In
absence of such sensors, however, we prove that the varying zoom and
rotation of two pan-tilt units can be extracted solely from the planar
homography which exists between both cameras.

1 Introduction

When one mentions cameras and planes, one immediately thinks of planar ho-
mographies relating corresponding points between the different images. In this
theoretical paper, we look at the special case of two time-synchronized zoom-
pan-tilt cameras which observe an unknown dynamic planar event. Due to the
dynamic nature of the event, the only planar homography which can be com-
puted is the one between images from both cameras taken at the same time.
Based on a-priori knowledge of the fixed pivot point around which each pan-
tilt camera rotates, we prove that one can extract from this single homography
all remaining unknowns: the focal length and rotation of each camera. To our
knowledge, this is the first time that information has been extracted from a ho-
mography under these conditions, which are very realistic conditions since most
sports and surveillance scenarios use this setup.

Our main goal is to introduce the mathematics necessary to extract the in-
formation. The theory will be verified on an artificial sport scenario. Due to the
limited extent of this paper, those experiments have been selected which already
demonstrate certain important behavior of the method. Future work will defi-
nitely extend our experiments to more error analysis of artificial and real video
data. However, at this point the experiments already underline the validity of
the presented theory.
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2 Previous Work

Many authors already took a closer look at how to extract data from planar
homographies. The algorithms can be classified based on a-priori knowledge.
For instance, [4] assumes scene structure and internal camera calibration to be
known. A relaxation of these assumptions has been implemented by [5,7] when
only scene geometry is known and the camera internals are recovered together
with the unknown camera externals. The other option is to assume only the
internal calibration to be given beforehand as in [8]. Triggs [6] even takes it a
step further and assumes the internal calibration to be unknown but the same
for every image. Finally, we have the methods which assume no prior knowledge
on scene geometry nor on internal camera calibration. Of the latter category, [2]
and [3] are fine examples of homography decomposition algorithms.

The method we suggest describes an important case which we thought was still
missing. The case of partial knowledge on the external camera parameters, more
specifically a-priori knowledge on the fixed translations of pan-tilt cameras. As
mentioned above, this case is of great practical importance for sport and surveil-
lance events which are typically covered using independently zooming cameras
which rotate around fixed pivot points. Some of the other algorithms mentioned
above could be used in this scenario as well. However, none of them exploit the
fact that camera translations should remain fixed over time and therefore lead to
solutions with varying translations which are intrinsically wrong. Furthermore,
many of the previous works require more than one homography to be given in
order to solve for the unknowns, either by assuming multiple scene planes or
by moving a single plane with respect to the camera. In our case of dynamic
events recorded by two cameras, there is only a single homography which can
be computed at each time instant. We will prove that under the assumption of
fixed camera translations it is possible to extract the varying focal length and
rotation of both cameras from this single homography.

3 Our Notation

A planar homography transfers image correspondences between two images of a
planar surface, taken (at the same time in the case of dynamic events) from two
different camera positions. The planar homography H21 which transfers a point
from image 2 to its corresponding point in image 1, is a 3 × 3 matrix which is
built up as follows:

x1 ∼ H21x2 (1)
H21 = λK1RT

1 BR2K−1
2 (2)

in which xi = [Xi Yi 1]T denotes the corresponding homogeneous point in image
1 and 2 respectively, and in which the symbol ∼ implies that equation 1 is only
defined up to scale. Due to this scale ambiguity a scalar variable λ is present in
equation 2. Ki represents the 3 × 3 internal calibration matrix of image 1 and
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image 2 respectively. Ri is a 3 × 3 orthogonal matrix describing the rotation
of the respective camera in the chosen world coordinate system. B is a 3 × 3
matrix which encapsulates the a-priori information on the camera positions and
the plane in the following fashion:

B = I +
(t1 − t2)
(tT2 n− d)

nT (3)

in which I is the 3 × 3 identity matrix, and ti is a 3 × 1 vector representing
the 3D focal point position of camera 1 and 2 respectively. The 3 × 1 vector n
and scalar d describe the plane. World points belonging to this plane satisfy the
following equation: [X Y Z]n− d = 0. To model the camera zoom explicitly, we
opt for the following parameterization of the internal calibration matrices:

Ki =

⎡⎣fx s u
0 fy v
0 0 1

⎤⎦
i

⎡⎣1 0 0
0 1 0
0 0 fi

⎤⎦ = Kfixed
i

⎡⎣1 0 0
0 1 0
0 0 fi

⎤⎦ (4)

in which fx and fy represent the focal length expressed in pixels along the x and
y direction of the image; in which s represents the pixel skew; in which (u, v)
represents the principal point and fi the relative zoom factor. The influence of
fi can be easily understood as a scaling of the image around the principal point.

4 Our Setup: Knowns and Unknowns

Here we describe our setup and mention which parameters are assumed to be
known, and which still need to be solved for. We have two zoom-pan-tilt cameras
which are positioned at different locations and observe the same dynamic event
taking place on a planar surface. First of all, we assume that for both cameras
the internal calibration matrix Kfixed

i is known beforehand, e.g. through a single
prior calibration using a calibration grid. The only remaining internal unknowns
during the envisioned application are therefore the zoom factors fi of both cam-
eras. Subsequently, we choose our right-handed world coordinate system such
that the plane normal n equals the world’s Z-axis and the scalar d equals 0.
The 3D position ti of each camera in the world coordinate system is assumed
to be known a-priori. To this end, any localization method or a computer vision
algorithm such as [1] can be used. The latter assumes the knowledge of at least
three known world points, which for standardized sports fields and other areas
are not hard to come by. During the envisioned application we assume that the
cameras can only rotate and zoom. Therefore, ti is a constant which only needs
to be determined once. The previous assumptions therefore result in a constant
and known matrix B. So in the end, there remain nine unknowns: the scaling
factor λ, two zooming factors fi and six variables coming from both unknown
rotations Ri. This exactly matches the amount of entries in a 3×3 planar homog-
raphy matrix. The counting argument therefore states that it could be possible
to retrieve these unknowns from a given H21.
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5 Retrieving Our Unknowns

Using images taken simultaneously by both cameras, we can compute a planar
homography H21 for each time instant using the image correspondences between
both images. Furthermore, if the video streams of both cameras are not yet
synchronized, we can exploit the knowledge that the planar events are dynamic
in order to synchronize both streams. Only the correct applied time-shift between
both video streams will lead to planar homographies between both cameras
which have a large number of supporting correspondences. Using the computed
homography H21 and equations 2 and 4, we can derive the following:⎡⎣1 0 0

0 1 0
0 0 1

f1

⎤⎦Hnorm

⎡⎣1 0 0
0 1 0
0 0 f2

⎤⎦ = λRT
1 BR2 (5)

with Hnorm =
(
Kfixed

1

)−1

H21K
fixed
2 (6)

To determine the unknowns we use of the special eigenvalue properties of
all square matrices: det(A) =

∏
eigenvalues and trace(A) =

∑
eigenvalues.

However, before we can use these we need to put equation 5 in the correct
(eigenvalue decomposition) form by right or left multiplying each side of the
equation with its transpose. For the case of right multiplication, we end up with
the following equation, where f

′
1 replaces 1

f1
and f

′
2 replaces f2 for ease and

symmetry of notation:⎡⎣1 0 0
0 1 0
0 0 f

′
1

⎤⎦Hnorm

⎡⎣1 0 0
0 1 0
0 0 f

′2
2

⎤⎦HT
norm

⎡⎣1 0 0
0 1 0
0 0 f

′
1

⎤⎦ = λ2RT
1 BBT R1 (7)

The three eigenvalues of the right-hand side are the eigenvalues of BBT mul-
tiplied by λ2. For the equality to hold, they should equal the eigenvalues of the
left-hand side. The eigenvalues μ of a square matrix A are found by solving
det(A − μI) = 0 in which I is the identity matrix. Using this, it can be easily
proven that the three eigenvalues μ of BBT are not distinct (multiple identical
eigenvalues) only when the two camera centres lie on a line parallel to the plane
normal. However, this specific case is of no interest to us since there would be an
obvious ambiguity (a rotation of both cameras around the plane normal) in the
retrieval of the camera rotations. When assuming the following representation
for Hnorm:

Hnorm =

⎡⎣m0 m1 m2

m3 m4 m5

m6 m7 m8

⎤⎦ (8)

the three eigenvalues μ of BBT must make the following determinant zero:∣∣∣∣∣m00 + m11 + m22f
′2
2 − λ2μ m03 + m14 + m25f

′2
2 f

′
1(m06 + m17 + m28f

′2
2 )

m03 + m14 + m25f
′2
2 m33 + m44 + m55f

′2
2 − λ2μ f

′
1(m36 + m47 + m58f

′2
2 )

f
′
1(m06 + m17 + m28f

′2
2 ) f

′
1(m36 + m47 + m58f

′2
2 ) f

′2
1 (m66 + m77 + m88f

′2
2 ) − λ2μ

∣∣∣∣∣
(9)
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in which mij is shorthand for mimj . By filling in the three known and distinct
eigenvalues μ1, μ2 and μ3 of BBT we arrive at three independent equations in the
three unknowns f

′
1, f

′
2 and λ. These are polynomials of the sixth power in λ and

can seem very difficult to solve at first. However, two independent equations can
already be obtained through simpler means: the special eigenvalue properties
det(A) =

∏
eigenvalues and trace(A) =

∑
eigenvalues. Using equations 7

and 9, and replacing f
′2
i by f“

i and λ2 by λ“ we arrive at:

λ“3(μ1μ2μ3) = f“
1 f

“
2det(Hnorm)2 (10)

λ“
∑
1,2,3

μi =
∑

0,1,3,4

mii + f“
1 (m66 +m77) + f“

2 (m22 +m55) + f“
1 f

“
2m88(11)

The required third equation is found by using the two equations above to
remove the highest order terms in λ“ from equation 9. As expected, no matter
if we set μ equal to μ1, μ2 or μ3 in equation 9, we always end up with the same
equation:

λ“2(μ12 + μ23 + μ13) = c28 + f“
1

(
c22 + c25

)
+ f“

2

(
c26 + c27

)
+ f“

1 f
“
2

∑
0,1,3,4

c2i (12)

in which μij is shorthand for μiμj , and ci is shorthand for the cofactor of element
mi in equation 8. Cofactor ci equals the determinant of the matrix which remains
after deleting the row and column which contain element mi in equation 8.

Together with equations 10 and 11, equation 12 forms a system of three in-
dependent non-linear equations in three variables. This system is solved in the
following manner, for which the notation becomes too cumbersome to report it
completely in terms of the known values of mi and μi. First, equation 10 is used
to replace the product term f“

1 f
“
2 in equations 11 and 12. Next, after organizing

the latter two equations so that terms in f“
1 and f“

2 show up on the left-hand
side and terms in λ“ on the right-hand side, we obtain the following system:

f“
1 coef1 + f“

2 coef2 = poly1 (13)
f“
1 coef3 + f“

2 coef4 = poly2 (14)

in which coefi are constants which can be computed from the known values of
mi. The term polyi is a third order polynomial in λ“ with coefficients which
are constant and computable from the known values of mi and μi. When both
left-hand sides are linearly dependent, we can make the left-hand sides disap-
pear by subtracting them. In that case, the right-hand sides form a third order
polynomial in λ“ which can be solved. Subsequently, the values of f“

1 and f“
2 can

be determined by substituting the solutions for λ“ in equations 10 and 11. When
the left-hand sides are not linearly dependent, we use linear algebra to solve the
system:

f“
1 =

∣∣∣∣poly1 coef2

poly2 coef4

∣∣∣∣∣∣∣∣ coef1 coef2

coef3 coef4

∣∣∣∣ and f“
2 =

∣∣∣∣ coef1 poly1

coef3 poly2

∣∣∣∣∣∣∣∣ coef1 coef2

coef3 coef4

∣∣∣∣ (15)
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which are both third order polynomials in λ“ with coefficients dependent on
the known values of mi and μi. When we insert equation 15 into equation 10,
we get a sixth order polynomial in λ“. For each solution to λ“ we can retrieve
the corresponding values of f“

1 and f“
2 by using equation 15. Remembering all

the substitutions, we can finally determine the original values of f1 = 1√
f“
1

, of

f2 =
√
f“
2 and of λ = ±

√
λ“ which need to be used in equation 5 to compute:

Hnew =
1
λ

⎡⎣1 0 0
0 1 0
0 0 1

f1

⎤⎦Hnorm

⎡⎣1 0 0
0 1 0
0 0 f2

⎤⎦ = RT
1 BR2 (16)

Since f1 and f2 represent physical zoom factors they necessarily should have
a positive value. The sign of λ can be determined from equation 16, because the
determinant of both sides of the equation should be the same. From equation 16
the rotation matrices R1 and R2 can now be determined using the singular value
decomposition of Hnew = U1S1VT

1 and B = U2S2VT
2 , where Ui and Vi are

orthogonal 3× 3 matrices, and S1 and S2 are identical 3× 3 diagonal matrices.
It is important to note that a singular value decomposition is not unique in the
sense that:

USVT = UDSDT VT = U
′
SV

′T with D =

⎡⎣±1 0 0
0 ±1 0
0 0 ±1

⎤⎦ (17)

From this it follows that:

R1 = U2D2DT
1 UT

1 and R2 = V2D2DT
1 VT

1 (18)

There are only four different combinations of D2DT
1 which ensure that the

rotation matrices R1 and R2 are expressed in a right-handed world coordinate
system, meaning that det(Ri) equals 1.

6 Solving Our Ambiguities

We need to solve a sixth order polynomial in λ“ which can lead up to six different
solutions for λ“. However, taking into account that the result should be a positive
real value (since λ“ = λ2), it is already possible to eliminate some of the solutions.
Furthermore, for the remaining set we can compute the corresponding values of
f“
1 = 1

f2
1

and f“
2 = f2

2 using equation 15. Here again, the values of f“
1 and f“

2 have
to be positive and must be situated in a possible physical zoom range (which can
be known beforehand). This allows us to remove even more implausible solutions.

As mentioned in the previous section, each possible solution for (λ, f1, f2) has
associated with it four solutions for the rotation matrix Ri of camera 1 and 2
respectively. The camera rotations should be such that both viewing frustums
are directed towards the plane and overlap in the plane, since otherwise the
planar homography H21 could not have been determined in the first place. This
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Fig. 1. View of camera 1 and camera 2 on the virtual soccer stadium. Players are
rendered as points on the field. The ball is depicted by a white circle.

constraint is not necessarily enough to arrive at a single solution. However, in
most practical scenarios, the dynamic events such as sports will be recorded with
pan-tilt cameras. The word ’pan-tilt’ implies that the camera cannot perform a
roll motion around its optical axis. In mathematical terms this means that the
X-axis of each camera (equal to the first column of Ri) will always be (close
to) parallel with respect to the plane. An additional constraint is that, events
are typically never recorded up-side down. Therefore, for those scenarios, we
can easily single out the correct solution as the one which obeys the previously
mentioned constraints the most.

7 Experiments

We verify our theory using an artificial soccer scenario. We constructed a virtual
stadium in which two cameras are posted on either side of the soccer field at
the same height with respect to the field, as shown in Figure 1. Since the global
scale of the scene does not matter, the height of the camera positions may be
assumed to equal 1. The resolution of the cameras was taken to be 640x480.

Both cameras rotate and zoom independently. At each time instant, the ran-
domly moving players are rendered in both cameras as points. These points are
detected in both images and used to estimate the planar homography at each
time instant. Due to the discretization noise on the recovered image positions,
the estimated homography does not perfectly match the ground truth homogra-
phy. This allows us to investigate the effect of noise.

Using our method we extract from this homography the zoom and rotation of
both cameras. Using the recovered parameters, the ground truth positions of the
players are re-projected into the images and their projection is compared with
the detected locations in the original images. The average pixel reprojection
error which results is a good measure for the accuracy and suitability of the
extracted zoom and rotation. What is very interesting to notice from Figure 2
is that the influence of the discretization noise increases when the horizontal
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Fig. 2. The average reprojection pixel error in function of the horizontal distance be-
tween both cameras. The height of the camera above the plane is fixed and equals 1.
For each distance, the average reprojection error was computed over 100 trial runs.

distance between both cameras decreases, while their vertical height stays fixed
(equal to 1). Since the absolute scene scale is irrelevant, we can also deduce that
the average reprojection error will increase when the horizontal distance remains
fixed but the height of the cameras increases.

This behavior can be explained as follows. When matrix B would be the
identity matrix then the rotation matrices R1 and R2 merge into a single rotation
matrix in equation 2. Obviously the closer the setup comes to this degenerate
case the more results degrade. The cross-coupling between the rotations of both
cameras diminishes the more matrix B differs from the unity matrix. This can be
achieved by moving the cameras further apart horizontally, bringing them closer
to the plane or making the camera heights differ more, see equation 3. The idea
is that the more the perspective effects of the scene differ between both images,
the less coupling there is between the retrieved camera parameters. This result
was anticipated in section 5, where we stated that the three eigenvalues μ of
BBT would no longer be distinct in the case of no horizontal distance between
both cameras. This degenerate case would render our three equations 10, 11
and 12 linearly dependent, meaning that no closed set of solutions can be found.

Another way of visualizing results is by comparing the ground truth focal
lengths to the retrieved values in function of time, see Figure 3. The average
relative error in focal length was found to be 0.3%. Also the mismatch angle
(rotation angle needed to turn one coordinate system into another) between
the local coordinate frame attached to the ground truth camera and the one
determined by the retrieved rotation can be plotted in function of time. The
average mismatch in rotation was found to be 0.07 degrees.
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Fig. 3. Left: Comparison between the varying ground truth focal length (in pixels) and
the recovered value for camera 1, in function of the frame index. Right: The rotational
difference in degrees between the ground truth rotation and the recovered rotation of
camera 1, in function of the frame index.

Fig. 4. A new virtual viewpoint of the reconstructed soccer game. The dark points
represent the reconstructed player positions. The smaller white points contained within
them, depict the ground truth positions of the players. The ball is depicted by a white
circle.

The position of the players on the field can be determined from the detected
image positions and the recovered camera rotation and zoom. Figure 4 demon-
strates how this then enables us to view the action from a totally new virtual
viewpoint, which would be the main application of our algorithm.
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8 Conclusion and Future Work

In this paper, we put forth the mathematics able to extract the zoom and rota-
tion of two cameras having fixed translation, from a single planar homography.
It was shown how this particular case is very appealing since many scenarios
such as sport events or surveillance lend themselves to this setting. The theory
was tested on an artificial scenario, which demonstrated that the effect of noise
on the final result depends on the setup of the cameras. We could deduce that
the parameter coupling between both cameras becomes less the further the cam-
eras are away from each other, and the closer they are to the plane. Intuitively,
this corresponds to the reasoning that the more the perspective effects of the
scene differ between both cameras, the better conditioned the homography de-
composition is. This paper is very theoretic in nature and is mainly meant to
introduce the mathematics for decomposing a planar homography based on a-
priori knowledge on camera translations. The algorithm was tested on artificial
data on which the effects of discretization noise could already be investigated.
We will run additional experiments which will teach us about the influence of
wrong a-priori information on the camera translations and matrices Kfixed. We
will continue our research by applying the new method to real-life situations,
using real sport and surveillance scenarios.
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Abstract. Dense depth maps can be estimated in a Bayesian sense from
multiple calibrated still images of a rigid scene relative to a reference
view [1]. This well-established probabilistic framework is extended by
adaptively refining a triangular meshing procedure and by automatic
cross-validation of model parameters. The adaptive refinement strategy
locally adjusts the triangular meshing according to the measured image
data. The new method substantially outperforms the competing tech-
niques both in terms of robustness and accuracy.

1 Introduction

The demand for 3D models from 2D images has drastically increased during the
last decade. Applications like web-publishing, surveillance and special effects
for the movie industries rely on accurate representations of the imaged scene.
Therefore, several approaches have been proposed to dense 3D reconstruction.
Stereo matching has mainly been studied in the context of small-baseline stereo
and for almost parallel planes [2].

The development of distinctive image features e.g. SIFT [3] that are able to
find image correspondences between images taken under wide-baseline condi-
tions, reduced the need for a large number of images to cover an important
viewpoint change. High resolution images can be used that offer a high level
of detail for the 3D modeling step. Strecha et al. [1] addressed the problem of
dense stereo from such few high-resolution, wide-baseline images. The authors
employ a probabilistic framework to model the image generation as a statistical
process in order to gain the most probable scene represented by a depth map
relative to a reference view. This estimate is achieved under the assumption that
most surfaces obey the Lambertian model. Gargallo and Sturm [4] presented a
similar approach using multiple depth maps. However, dense stereo still remains
a hard problem and is viewed as the bottleneck of many applications of 3D
reconstruction and view synthesis.

Our method extends the approach proposed by Strecha et al. by using a novel
adaptive refinement technique based on a triangular mesh. The complexity of
the mesh is automatically adjusted according to the measured image data. The
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resulting representation then depends on the amount of texture in the scene and
it does no longer use a predefined homogeneous pixel grid that finds no features
for matching in homogeneous regions. The adaptive method clearly outperforms
the competing methods like the approach of Strecha for scenes containing such
locally homogeneous regions.

Various methods for dense 3D reconstruction depend on a variety of parame-
ters to tune the prior knowledge, like the amount of smoothing in the model of
Strecha or the number of triangles to represent the depth map in our adaptive
refinement method. Therefore, we advocate a cross-validation method for model
selection in 3D reconstruction. The cross-validation enables us to select the pa-
rameters (like smoothing priors) or model complexity in the triangular mesh.
Furthermore, we adapted the mean squared error to compare the different 3D
reconstruction methods.

In this paper we will give a brief description of Strecha’s probabilistic ap-
proach for 3D reconstruction (sec. 2). Our new adaptive refinement technique
is described in section 3. In section 4 our new cross-validation technique is pre-
sented. The comparisons of the different methods and the results of the model
selection are given in section 5.

2 Probabilistic Wide-Baseline Stereo

Strecha et al. [1] developed a performant approach for dense stereo reconstruction
from a few wide-baseline images. Given a set of calibrated input images, the
authors use a probabilistic framework for the estimation of the most probable
depth map relative to a reference view. The procedure is based on a maximum
a posteriori estimation by expectation maximization (EM). The cameras are
calibrated beforehand using a robust interest point detection/description scheme
like [3] and the calibration method described in [5] based on the estimation of the
absolute quadric. An initial solution for EM is obtain from the detected interest
points.

Given a set I = {I1, ..., IN} of N input images and their corresponding cal-
ibration matrices P1, ..., PN , the aim is to estimate a depth map D1 for one
of those images. Typically we have 3 to 10 images available. Without loss of
generality, the first input image I1 can be chosen as the reference view for the
estimation of D1.

If the depth value of the pixel x1 in image I1 is known, the pixel coordinates
can be transformed into any other image Ii of the set by the mapping xi =
li(x1; D1, P1, Pi). This mapping is abbreviated as xi = li(x1). The input images
Ii are modeled as noisy measurements of the true image irradiance I∗1 having a
normally distributed noise ε with zero mean.

Ii(li(x1)) = I∗1 (x1) + ε with ε ∼ N (0, Σ), (1)

where Σ is the covariance matrix. The parameters D1, I∗1 , and Σ are the pa-
rameters to be estimated.
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The method is based on images that were taken under wide-baseline conditions
and faces therefore the problem of occlusions and self-occlusions. In wide-baseline
conditions, we cannot assume that the whole scene is visible in every image. Thus,
only mutually visible information should be used for the computation of image
correspondences. This problem is addressed by introducing a set of visibility
maps V1, . . . , VN ∈ {0, 1}, where Vi(xi) = 1 if the transformed pixel li(x1) is
visible in the image Ii and Vi(xi) = 0 otherwise. The posterior distribution of
the depth map can be written as

p(D1, I
∗
1 , Σ|I) ∼

∫
p(I|D1, I

∗
1 , Σ, V )p(D1, I

∗
1 , Σ|V )p(V )dV (2)

p(I|D1, I
∗
1 , Σ, V ) =

N∏
i=1

∏
xi

N {I∗1 (xi) , Σ} , (3)

where p(I|D1, I
∗
1 , Σ, V ) is the data likelihood. We choose a flat prior for I∗1 and

Σ, which incorporates our expectations on the depth map p(D1, I
∗
1 , Σ|V ) =

exp
(

−R(I∗
1 ,D1)
λ

)
, where λ controls the amount of smoothing. R(I∗1 , D1) is a

data-driven ‘regularizer’ of the depth map. As strong discontinuities should be
allowed depending on the relation of the gradient of the estimated true im-
age I∗1 and the changes in the depth map, this regularization term is defined
as R(I∗1 , D1) = ∇D�

1 T (∇I∗1 )∇D1. T (∇I∗1 ) is the diffusion tensor defined as
T (∇I∗1 ) = 1

|∇I∗
1 |2+2ν2 (∇I∗⊥1 ∇I∗⊥�

1 + ν21), where 1 is the identity matrix, ν a
parameter controlling the degree of anisotropy and∇I∗⊥1 is the vector perpendic-
ular to ∇I∗1 . The diffusion tensors controls the amount of punishment of depth
discontinuities (∇D1). A high value of ν sets T (∇I∗1 ) towards the identity ma-
trix and therefore all depth discontinuities will be treated the same way. Smaller
values of ν will lead to smaller values of R if the image gradient is perpendicular
to the current depth map discontinuity. An EM-algorithm that iteratively max-
imizes the posterior over all feasible depth maps and estimates the expectaion
of the visibility maps is used [1].

3 Adaptive Depth Map

The parameters for smoothness, λ, and anisotropy, ν are globally chosen for the
whole scene. However, the vast majority of scenes are combinations of rough
and smooth parts. But, global values for λ and ν can only be adjusted to one
kind of scene. Locally chosen parameters lead to an extremely large number
of parameters that have to be tuned (see section 4). Here, we present a novel
approach to overcome these problems for scenes with variable smoothness. Our
new approach locally determines the necessary amount of representation (the
degrees of freedom) inside the depth map. This is done by adaptively refining a
triangular representation of the depth map in those regions that need to capture
fine details without over representing homogeneous regions. That means, small
triangles for rough regions, but large and wide-spanning triangles for smooth
regions.
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At the end, the depth map consists of a triangular mesh with a small set
of vertices. The vertices are connected using Delaunay triangulation [6]. The
depth map is represented as a piecewise linear surface. Such a representation is
motivated by the implicit prior knowledge that the scene contains locally planar
patches. Moreover, it has the advantage to reduce the amount of memory space
by an order of magnitude. Therefore the computation time is reduced also. The
mesh refinement method is related to adaptive image polygonalization [7] for
remote sensing.

For the estimation of the visibility maps, the true image irradiance I∗1 , and
the covariance matrix Σ, we used the same method as in 2. The individual depth
values of the pixels are sampled from the linearly interpolated depth map.

We have chosen a greedy approach to estimate the depth map. The optimiza-
tion starts at a high scale resulting in a coarse approximation of the depth map.
The depth map is now iteratively refined as follows. At each iteration, the reso-
lution is locally increased only for the triangles for which depth discontinuities
have not been captured at the current scale (in those regions that really need to
be refined). New vertices have to be introduced on those triangles whose data
likelihood could be substantially improved. From a computational point of view,
this problem could be solved by testing every discrete position of the new vertex,
optimizing its depth and remembering the best position. However, considering
the resulting amount of computational work, this is not feasible.

The data log-likelihood of a triangular image patch P is

LP (I) =

∑
x1∈P Vi(x1)(Ii(li(x1))− I∗1 (x1))tΣ−1(Ii(li(x1))− I∗1 (x1))∑

x1∈P Vi(x1)
. (4)

In order to speed up the computation of the data likelihood for large triangles,
only a subset of the pixels contained in the triangle are randomly selected and
the data likelihood is estimated on this subset only. This sampling technique
corresponds to the Nyström method used in numerical analysis. The greedy
algorithm works as follows.

1. Determine the triangle with the smallest data likelihood.
2. Search for the position of the largest gradient magnitude inside this triangle.
3. Insert a new vertex at this position, adjust the triangulation and optimize

the depth of this vertex according to the new triangulation.

If the triangle with the lowest likelihood is sub-divided, it is most probable
that the resulting refinement will lead to a larger likelihood and therefore to
an improved reconstruction. Accordingly, triangles that already represent the
scene adequately, typically have high data likelihood values and will be left
unchanged. Figure 1 shows the entity of the optimization problem. The Delaunay
triangulation has to be adjusted locally. The depth value changes only for the
newly inserted point.

Figure 2 shows the gradual refinement of the depth map for the city hall scene
in Leuven. The upper left image shows the coarsest approximation on the depth
map and the lower left image is the finest approximation.
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new point

Fig. 1. Inserting a new point in a given Delaunay triangulation. Left: Before insertion.
Right: After insertion.

4 Model Selection

The adaptive mesh refinement method has only one free parameter: the number
of vertices in the triangular mesh. This simplicity is in contrast to the approach
followed by Strecha et al., who have to adjust the amount of smoothing λ and
the degree of local anisotropy ν.

The goal is to automatically choose the parameters that maximize the quality
of the depth map. Therefore, we need an appropriate loss function that estimates
this quality for a specific parameter setting. A simple measure for the deviation
of the two images, the original and the synthesized, is the mean squared error
or in our case the mean squared color differences. Therefore, the error measure
between an input image Ii and an virtual image Ĩi is the data log-likelihood

E(Ii, Ĩi) =

∑
x1

Vi(x1)(yi − ỹi)tΣ−1(yi − ỹi)∑
x1

Vi(x1)
, (5)

where yi = Ii(li(x1)) and ỹi = Ĩi(li(x1)) . (6)

Here, yi = Ii(li(x1)) is the vector of gray values for the different color channels.
For each color channel the gray value is between 0 and 1. For RGB images, the
range of this error measure lies between 0 and 3. The projected mesh does not
cover every pixel in the new image. This fact is expressed by Vi(li(x1)) = 1 (if
visible) or Vi(li(x1)) = 0 (not visible) for every pixel x1 in the reference image.
We are comparing only the visible image regions. This error measure is then
validated by cross validation. The test error is the mean squared error on the
test images. In the experiments presented we used the squared distance instead
of the Mahalanobis distance.

To perform cross validation for a specific parameter setting, the input images
are split up into two independent sets, a training set and a test set. Therefore,
only a subset of the input images is used for the reconstruction algorithm. Then,
using the obtained reconstruction, new virtual images seen from the cameras



Dense Stereo by Triangular Meshing and Cross Validation 713

Fig. 2. Gradual refinement of the depth map for decreasing scales (top left to bottom
left). Bottom right: Textured version of its neighbor on the left.

corresponding to the test images are created. These virtual images are compared
with the original test images by the mean squared error.

To determine the optimal parameter setting for a specific algorithm, the whole
parameter space could be sampled, keeping the best performing configuration.
Such a procedure is redundant and time consuming to select the optimal pa-
rameters. In our greedy approach to increase the model complexity we do not
have to recompute the whole depth map. Instead, we just interrupt the greedy
method at a certain model complexity and compute the test error. This leads to
a decrease of runtime compared to the anisotropy prior methods.

For the Leuven cityhall scene, we show the cross-validation error curves in
figure 3 for the method proposed by Strecha et al. [1]. The setting here consists
of seven images. These are split into a training set of four images and a test
set of three images. The x-axis represents the parameter − log λ and the y-
axis the cross validation error. In both plots, one can nicely see the transition
between the model over-fitting on the left hand side and under-fitting on the
right hand side. In the over-fitting region not enough smoothing was performed.
In the under-fitting area, the smoothness prior of the depth map dominates
the information contained in the data likelihood. Low anisotropy leads to bad
results due to the sensitivity of the smoothness penalty function towards image
gradients (every image gradient permits the existence of depth discontinuities
which lead to under-smoothing in flat, but highly textured areas of the scene).
High values on the other hand ignore the information contained in the image
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Fig. 3. Cross validation errors obtained with the Strecha’s method for two different
choices of the parameter ν. Left: ν = 0.01, Middle: ν = 100. Solid line: mean, dotted
line: standard deviation. Right: bias corrected CV error for adaptive refinement.

gradients. The best results where achieved by setting ν = 100 and λ in the range
of [250 · 10−6 − 2000 · 10−6].

Our method has a much lower tendency to produce an over- or under-fitting.
Furthermore the standard deviation of our method is much smaller. To show
that the adaptive refinement also generates an under- and over-fitting for small
and large number of vertices, respectively, we subtracted an image bias from the
error. The error is dependent on the base-line. The wider the baseline between
training and test images, the larger the error. Shifting the error curve for each
image down by the smallest value corrects this image dependent bias. Figure
3 (right) depicts the bias corrected cross-validation error. Here again one can
clearly see the under- and also an over-fitting area.

5 Results and Comparisons

In this section, we show results of the adaptive refinement method compared to
the method of Strecha et al.. Figure 4 shows the result on the Leuven cityhall
scene. The mean cross validation error achieved is 175.6·10−6 and outperforms all
the different variations of the method presented before. The best configuration
with Strecha’s method achieved so far had the cross validation error 181.3 ·10−6.
Figure 4 shows both the untextured and textured views of the estimated dense
reconstruction using our new adaptive refinement method.

Since the Leuven cityhall is a highly textured scene, figure 5 shows an ex-
ample of a less-textured scene. It demonstrates that the result obtained with
our method still provides a sufficient level of detail while making more sense
for less-textured image regions. The first three columns of table 1 compare the
cross-validation errors of the two methods for different resolutions. The first col-
umn represents the number of triangles of the adaptive depth map. The adaptive
refinement method performs clearly better than the method of Strecha et al..

Figures 6 and 7 are other examples for our adaptive refinement method. This
scene consist of 17 images of a metal lion. Half of the images have been used as
training images and the other half as test images. Therefore, compared to the
office scene before, much more images are used to reconstruct this scene. The
cross validation errors of the two methods at different scale are presented in the
last two columns of table 1. Here again, the adaptive refinement method clearly
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Fig. 4. Untextured and textured views of the reconstructed city hall using the adaptive
triangulation method

outperforms its contender for all resolution levels. The large close-ups in figure
7 clearly show the difference between the depth map representation of the two
methods. While the first method represents the scene in a uniformly sampled
grid, the adaptive refinement method is able to capture the depth features with
detail dependent resolution.

The reconstructions achieved with the method of Strecha et al. contain a
high amount of noise (peaks). A higher amount of smoothing would have lead
to worse results because important depth features would have been wipped out
during the smoothing. The adaptive triangulation method is able to overcome
this problem and it generates better results and therefore it outperforms the
competing methods for all test cases; the reconstructed models achieve a higher
quality using less triangles than alternative approaches.

Table 1. Cross validation error for different scales and resolutions. The ’-’ denotes,
that the reconstruction has not been performed for the corresponding resolution due
to time limits.

Office Scene Lion Scene
resolution # triangles Strecha adapt. ref. # triangles Strecha adapt. ref.
167x126 3’257 0.075 0.065 2’864 0.128 0.102
335x252 13’738 0.076 0.063 18’663 0.167 0.118
670x504 21’147 0.079 0.063 26’876 0.124 0.119

1340x1009 118’369 - 0.064 115’738 - 0.126
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Fig. 5. Results of the method of Strecha (left) and with adaptive refinement (right)

Fig. 6. Results of the method of Strecha et al. in the upper row and of the adaptive
refinement method in the lower row. The images on the left denote the initial solution.
The images on the right show the synthesized images.

6 Conclusion

This paper presented a novel approach for the estimation of dense depth maps,
given a calibrated set of input images. A technique has been introduced to rate
different parameter settings and to compare reconstructions using an objective
measure based on cross validation.

Furthermore, we presented a new way of successively refining the depth map
estimation. The adaptive refinement method based on triangular meshes was
shown to outperform an established method for dense depth map estimation.
The improved quality of the reconstructions is shown by a novel cross-validation
method.
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Fig. 7. Direct comparison of the two methods. The left image shows the result using
the method of Strecha et al. The plot on the right hand side shows the same scene
reconstructed with the adaptive refinement strategy.
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Abstract. In the last twenty years many approaches for contact-free
measurement techniques for object surfaces and approaches for 3d object
reconstruction have been proposed; but often they still require complex
and expensive equipment. Not least due to the rapidly increasing number
of efficient 3d hard- and software system components, alternative low-
cost solutions are in great demand. We propose such a low-cost system
for 3d data acquisition and fast pairwise surface registration. The only
hardware requirements are a simple commercial hand-held laser and a
standard grayscale camera.

1 Introduction

Triangulation-based laser range finders and light-striping techniques are well-
known since more than twenty years (e.g. [1], [2]). Beside other active techniques
– like structured light, coded light, time of flight, Moiré interferometry, etc. (see
e.g. [3] for an overview) – laser range scanners are commonly used for contactless
measuring of surfaces and 3d scenes in a wide range of applications. The field
of application comprises computer graphics, robotics, industrial design, medical
diagnosis, archaeology, multimedia and web design, as well as rapid prototyp-
ing and computer-aided quality control. Most commercial laser scan systems
use a camera and a laser beam or laser plane. The surface recovery is based on
triangulation, i.e. the intersection of the illuminating laser beam and the rays
projected back to the camera. Expensive high-precision actuators are often used
for rotating/translating the laser plane or for rotating/translating the object.

Some alternative hand-held devices avoid expensive actuators and further-
more improve the flexibility of the scanning process. These approaches have to
determine the position and orientation of the laser device on-line. Such an on-line
tracking is done by various mechanisms like optical LED tracking, electromag-
netic sensors or mechanical positioning arms (see e.g. [3], [4]).

Instead of an external tracking system, we propose a real-time self-calibration
of a hand-held laser plane, which is based on a simple analysis of the laser stripes
in the camera images. Thus, the laser line can be swept manually over the ob-
ject during the scan, which has several advantages: (i) Only the lightweight laser
has to be held, which allows a convenient scanning process. (ii) The low-cost

K. Franke et al. (Eds.): DAGM 2006, LNCS 4174, pp. 718–728, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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hardware requirements are even affordable for students and novice developers.
(iii) The illumination direction is flexible and allows an interactive avoidance
of laser shadow problems and outliers. The only precondition is a known back-
ground geometry, which serves as laser calibration target.

Thus, our approach can be regarded as a generalization of Zagorchev and
Goshtasby [4]. They use a reference double-frame, which is placed around the ob-
ject and acts as calibration target. In there approach, the laser is calibrated using
the four visual intersection points of the laser and the double-frame. Detection of
the red laser lines relies on an appropriate analysis of the red components in color
images. However, a standard color camera may impair the detection accuracy,
since only every fourth pixel can capture red light, the remaining pixels are inter-
polated. Our approach exhibits several advantages over [4]: A precise reference
double-frame, which has to be adapted to the object size, is not needed. The cal-
ibration target can be almost arbitrarily shaped (e.g. an arbitrary background).
Moreover, the laser calibration is more robust and accurate, since we use much
more than four points to calibrate the laser, and we rely on subpixel analysis of
grayscale difference images. Due to our subsequent fast surface registration, the
object can be moved freely between different scans. Thus, a repositioning and
recalibration of the camera to get different viewing directions is not necessary;
it is easily possible to scan an object from all sides, even from the bottom.

An outline of the numerous publications dealing with registration techniques
would go beyond the scope of this paper. Therefore, we only give a short overview
of the most related work: A very popular surface registration approach is the
iterative closest point (ICP) algorithm from Besl and McKay [5]. The algorithm
iteratively improves an initial solution according to some fitness criterion. Al-
though many enhancements to the original method have been suggested (e.g.
[6], [7]), it still requires a good initial guess to find the global optimum. Most
approaches are using surface features to find corresponding point pairs. Features
vary from simple properties like curvatures, to complex vectors like point sig-
natures [8], surface curves e.g.[9], [10], spin-images [11] or salient points [12].
However, their usage cannot guarantee unique point correspondences; neverthe-
less, it can highly constrain the search space. A well-known category dealing
with object recognition and localization are the pose clustering approaches (also
known as hypothesis accumulation or generalized Hough transform e.g. [13]). The
drawback of voting tables is their high time and space complexity, particularly
in case of large data sets and high-dimensional search spaces.

The authors of [14] give an thorough overview of current registration tech-
niques and propose a new approach, which is based on a genetic algorithm to
find pose hypotheses and a novel surface interpenetration measure as quality
criterion. Unfortunately, this complex approach needs triangle meshes and a
substantial run-time (5 minutes for 10000 points on a 1.7GHz PC for a pairwise
match). We will show that our approach is able to achieve an adequate match
of bigger data sets in less than a second.

The surface registration method is a significant improvement of the random
sample matching [15], which is an efficient and robust approach for matching
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fragments of broken objects without knowing an initial solution. This method is
based on the RANSAC algorithm introduced in [16]. The repeated procedure is
simple but powerful: First, a likely hypothesis is generated randomly from the
input data set. Subsequently, the quality of the hypothesis (number of contact
points) is evaluated.

2 Hand-Held Laser Scanner

The basic idea of our self-calibrating laser scanner is quite simple. The laser ray,
expanded to a plane by a cylindrical lens, has to intersect two things at the
same time: the (unknown) surface, and the a priori known reference geometry
(usually the background). The visible intersection with the background is used
to calibrate the laser, i.e. to calculate the exact 3d pose of the laser plane ELaser .
With this knowledge we can triangulate new 3d point coordinates of the object’s
surface by intersecting the laser plane with the projecting rays. Certainly, the
camera must have been calibrated so that its external and internal parameters
are exactly known. In our setup we use markers on the background and Tsai’s
camera calibration method [17]. Thus, the exact coordinates of the background
structure with respect to the camera coordinate system are implicitly known.

2.1 On-Line Laser Calibration

In many cases, a simple background (e.g. the natural environment) can be used
for laser calibration. Under the assumption that the background geometry is
known, we can obtain some point coordinates of the visible laser line by inter-
secting background and camera projection rays. Provided that these 3d inter-
section points are linearly independent, they constrain all degrees of the laser
plane’s pose. Although many background shapes are imaginable, the probably
most applicable, available, and easy-to-use background will be the corner of a
room, or two solid boards standing together in an exactly known angle.

Fig. 1. Laser triangulation: 3d scene and 2d camera image. The intersection of a pro-
jection ray r with the laser plane ELaser results in new 3d point p.
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It is important to find the coordinates of the laser line in the camera images
I as precisely as possible. Thus, it is useful to take a reference image IR without
laser light and to use difference images Id = I − IR in the following. As the
laser line will be rather horizontal or vertical, we can reduce the problem to a
1d detection of the laser line in each single column or row of the image, respec-
tively. Without loss of generality, we assume in the following that the laser line
is rather horizontal. We can find the line with subpixel accuracy by calculating
the (weighted) average Y (x) of the “bright” pixel coordinates in each column x.

After obtaining the function Y (x) of the laser line, our next task is to calculate
the 3d pose of the laser plane. We use the RANSAC method [16] to repeatedly
select three random pixels Y (x1), Y (x2), Y (x3), and assume that they belong
to the background. Since the camera’s internal and external parameters have
been calibrated, we can obtain the equation of three “light rays” ri for each of
these pixels and intersect them with the known background geometry, resulting
in three surface points p1, p2, p3. Unless they are linearly dependent, they
define a possible laser plane pose. These hypotheses can be quickly computed
and evaluated using the number of inliers of Y (x) as a quality criterion.

2.2 Triangulation of 3D Points

From the previous step, we know the equation of the laser plane ELaser and a
number of image pixels from Y (x) that are both in that plane and on the object
we are scanning (see Fig. 1). Again we can obtain the equation of a “light ray” r
for each of those pixels. A new surface point of our object can be easily computed
by the intersection p = r ∩ ELaser.

In the process of scanning, the user generally sweeps the laser plane over
the object multiple times. In this way, he can “brush over” outlying values and
increase the precision where necessary. Thus, it often happens that the algo-
rithm obtains several surface points for the same image pixel. These should be
merged using averaging (fast and easy) or median filtering (memory consuming
and slower, but very useful w.r.t. possible outliers).

All 3d points collected with this procedure form the visible surface of the ob-
ject from one viewing direction. To obtain a full 360◦ model, scans from different
directions have to be registrated.

3 Fast Surface Registration

Given a set PA of 3d point coordinates p1, . . . ,pk of the surface A and a set NA

of corresponding 3d surface normals n1, . . . ,nk (outward-pointing unit vectors)
at these points. Referring to [11], we call the combination of a point with its
normal an oriented point. This gives us the set of oriented points A of surface A
and the set of oriented points B of the counter surface B

A := {u = [pu,nu] | pu ∈ PA and nu ∈ NA} , (1)
B := {v = [pv,nv] | pv ∈ PB and nv ∈ NB} . (2)
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A tangential contact between two oriented points a ∈ A and b ∈ B means that
the point coordinates and the respective surface normals coincide. We say a is
in tangential contact with b if pa = ATB ·pb and na = ATB ·nb, where ATB is the
relative transformation in homogeneous coordinate notation. We can construct
a pose hypothesis by assuming a contact between some points on each surface.
More precisely, four given oriented surface points a, c ∈ A and b,d ∈ B are
sufficient, if we assume a tangential contact between a and b as well as between
c and d. This assumption constrains all degrees of freedom of the relative trans-
formation. As illustrated in Fig. 2 (left), we can determine the homogeneous 4×4
transformation matrix by multiplying two frames ATB = F(a, c)−1 · F(b, d),
where the function F(u, v) represents a coordinate system lying between the
oriented points u and v

F(u,v) :=

⎡⎣ puv×nuv

‖puv×nuv‖ puv
puv×nuv×puv

‖puv×nuv×puv‖
pu+pv

2

0 0 0 1

⎤⎦ (3)

with the difference vector puv := (pv−pu)/ ‖pv − pu‖ and the combined normal
vector nuv := nu +nv. To avoid singular frames, we must ensure that the length
of puv and nuv is not zero. An exact coverage of both point pairs with opposed
normals is only possible if their relative distances and angles are identical. To
verify this constraint, we define a 4d relation vector of an oriented point pair

rel (u, v) :=

⎡⎢⎢⎣
duv

cos αuv

cos βuv

δuv

⎤⎥⎥⎦ :=

⎡⎢⎢⎣
‖pv − pu‖
nu · puv

nv · puv

atan2 (nu · (puv × nv), (nu × puv) · (puv × nv))

⎤⎥⎥⎦ , (4)

consisting of the Euclidean point distance duv, the angles of inclination αuv and
βuv between the normals nu and nv, the line connecting pu and pv, and finally
the rotation angle δuv between the normals around the connection line. The
four relations are also illustrated in Fig. 2 (right). Note that the relation vector

A B

pa
pb

pc

pd

na

nb

nc

nd

F(a, c) F(b, d)

ATB

pu

pv

nu

nv

duv

αuv

βuv

δuv

Fig. 2. (Left) relative transformation ATB between supposed contact points; (right) re-
lations between the oriented points u and v
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is invariant under rotation and translation. Incidentally, Wahl, Hillenbrand and
Hirzinger [18] showed that similar relation vectors can be accumulated in feature
histograms for rapid 3d-shape classification. Using these relation vectors, the set
of valid pose hypotheses H can be specified by

H := {(a, b, c,d) | rel(a, c)=rel(b,d); a, c∈A; b, d∈B} . (5)

3.1 Rapid Generation of Likely Pose Hypotheses

In [15] we have proposed a highly efficient method for generating likely pose
hypothesis by using ’spin-tables’. The following improved approach considerably
accelerates the run-time of the hole matching algorithm. In our experiments we
observe an acceleration factor of 40 to 100.

How long does it take to find two corresponding point pairs (one for A and one
for B)? Assume, that we have two identical surfaces, each with n surface points.
Having chosen a point pair of A, the probability to select the corresponding point
pair of B by chance is 1/n2. Thus, we have to compare an average of n2 +1 point
pairs, which results in an expensive run-time complexity of O(n2). But with a
simple trick, the problem can computed much faster:

Assume we alternately choose random point pairs of A and B, and store them
in a hash table, using rotational invariants as table indices. Under the assumption
that the invariants are unique, we only need to process an average of 1.2 · n
pairs until a hash collision occurs. This will provide the much better run-time
complexity of O(n). This approach complies with the ’birthday attack’ [19] - an
efficient cryptological strategy to generate two different documents with similar
digital signatures (hash values). Let us concretize the algorithm. Instead of a
hash table, we use 4d relation tables (one per surface), and the four invariant
relations (4) as table indices. This leads to the following search loop:

1. Randomly choose an oriented point pair a, c ∈ A and calculate rel(a, c).
2. Insert the point pair into the relation table: RA[rel(a, c)] = (a, c).
3. Read out same position of the opposite relation table: (b,d) = RB[rel(a, c)];

if there is an entry ⇒ new pose hypothesis (a, b, c,d).
4. Randomly choose an oriented point pair b,d ∈ B and calculate rel(b,d).
5. Insert the point pair into relation table: RB [rel(b,d)] = (b,d).
6. Read out same position of the opposite relation table: (a, c) = RA[rel(b,d)];

if there is an entry ⇒ new pose hypothesis (a, b, c,d).

These steps will be repeated until the hypothesis is good enough, all combi-
nations are tested, or the time exceeds a predefined limit. Optionally the hy-
potheses selection in step 3 and 6 can be improved further by comparing local
features; i.e. we only select hypotheses that satisfy feature(a) = feature(b)
and feature(c) = feature(d). In our experiments we use the local mean cur-
vature, which enables us to reject over 95%. We found that 4d relation tables
with 324 entries offer a good trade-off between accuracy and efficiency. Using
2× 2 bytes per entry, one relation table requires a reasonable memory capacity
of four megabytes. The proposed algorithm offers a run-time complexity of O(n)



724 S. Winkelbach, S. Molkenstruck, and F.M. Wahl

for the first hypothesis, but since the relation tables get filled continuously, the
complexity converges to O(1) for further hypotheses.

3.2 Fast Hypotheses Verification

After generating a pose hypothesis we must measure its matching quality. For
this we adopt the approach of [15], where the proportion of overlapping area Ω
(where surface A is in contact with the opposite surface B) is estimated. We
assume that the surfaces are in contact at areas where the distances between
surface points are smaller than some predefined ε. In contrast to [15] we do
not have to consider fragment penetrations. Suppose that x1, . . . ,xn ∈ A are
independent random points. Let contactB(x) be a function which determines
whether a point x is in contact with surface B

contactB(x)=
{

1 if distB(x) < ε,
0 else with distB(x)=min

y∈B

∥∥x− ATB · y
∥∥ . (6)

The function distB(x) returns the minimal distance of a point x w.r.t. surface
B. It can be implemented efficiently by using a kd-tree data structure (see [20]),
which offers a logarithmical time complexity for the closest point search. Now
Ω can be approximated up to an arbitrary level of confidence. Considering the
margin of error, for every additional random point, the approximation of Ω can
be recomputed as

Ω ≈
∑n

i=1 contactB(xi)
n

± 1.96
2
√
n

(7)

with a 95% level of confidence. Ω can also be regarded as the probability that
a random point x ∈ A is in contact with the opposite surface B. Thus Ω can
be forecasted by an efficient Monte-Carlo strategy using a sequence of random
points, combined with a dropout if the upper bound of the confidence inter-
val is considerably worse than the last best match. In this manner the quality
estimation gets faster and faster, whenever the hypothesis is improved.

4 Experimental Results and Conclusion

For experimental evaluation, we used a grayscale CCD camera with XGA resolu-
tion, connected to a standard AMD-Athlon PC with 2.2GHz. The scanning accu-
racy naturally depends on the exactness of the camera calibration and on the tri-
angulation angle. To evaluate the accuracy of our laser scanner, we have scanned
a well-known test object under a reasonable triangulation angle of about 30-35◦,
and a distance of 600 mm to the camera. The object’s front surface consists of
two planar faces with a 50.25 mm step in depth. The scan result contains this step
within a tolerance of less than 0.4 mm. The measured (unfiltered) depth values
of each surface are very accurate and show an RMS error of only 0.37 mm. Fig. 3
shows a scan line of the unfiltered depth values. The accuracy can be further im-
proved by using appropriate time and space filtering (average and/or median).
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Fig. 3. Scan line of two planar faces
with a 50.25mm step in depth

Fig. 4. Rotational registration error over time,
median±quantiles of 100 test runs

Our surface registration approach performs very well with all of our test ob-
jects. Since the registration algorithm is a random process, we carried out 100
test series of each pairwise match. Fig. 4 shows the median rotational error over
time in the case of two scans of the Beethoven bust (shown in Fig. 2). Both
surfaces consist of approximately 60000 points with a surface overlap of 35%. As
can be seen, after an execution time of only 0.5 seconds, 50% of all passes have
already achieved a rotational accuracy of less than 2◦. For accuracy evaluation
we used a high-precision turn table, which provides the ’ground truth’. The out-
standing registration efficiency is also documented in Table 1. The table presents
a comparative study of the root mean square (RMS) distance, rotational error,
and execution time between the registration approach in [15] and our substantial
improvement. As can be seen, we achieve an impressive speed-up of factor 80 in
this case. The results of all other test series are similar (factor 40–100 depending
on data size and overlap).

Fig. 5 presents some result images of our scanning and registration method. In
the first row one can see a side view of four scans of a clay mole (height 145 mm)
under different angles of rotation of about 90◦ from one to the next. The second
row shows a camera image of the mole and three images of the registration result
of all four scans. In the third image of this row, the different scans have been
colored in different shades of gray in order to show the surface interpenetration

Table 1. Registration performance of 100 test runs: comparison of root mean square
(RMS) distance, rotational error (RotE), and execution time to achieve an RMS dis-
tance of less than 3mm

using approach of [15] after our improvement
mean median min max mean median min max

RMS [mm] 2.22 1.94 0.64 5.00 1.03 0.98 0.69 1.64
RotE [ ◦ ] 2.36 2.23 0.37 6.16 1.10 1.03 0.11 2.09
Time [ s ] 28.85 28.05 0.60 >60 0.38 0.35 0.05 0.95
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Fig. 5. (Row 1) scans of a test object. (Row 2) camera image; registered scans; each
scan in a different color; back view. (Row 3) camera image and two views consisting of
four registered scans. (Row 4) two views of a head consisting of two registered scans.
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and the fusion edges. The third row shows a Beethoven bust (height 170 mm) –
a camera image, and the registration result from two different sides. Although
it is easily possible to texturize the scenes using the camera images, we only
show the untexturized scans to demonstrate that even small shape details are
acquired accurately. For example, the “BEETHOVEN” engraving on the back
can be read very well although it is only 0.4 to 0.7 mm in depth. In the last row
we present scan and registration results of one of the authors’ head. He was sit-
ting on a chair in the corner of a room, the walls served as background for laser
calibration. Between the two scans, the camera has not been moved, instead the
person has turned his head.

The horizontal artifacts (stripes) that are visible on flat surfaces in most
scan results are caused by slight inaccuracies during on-line laser calibration.
They can be effectively reduced using space and/or time filtering. Gaps in the
scanned surface appear at places the camera cannot see (“shadow”), when the
corresponding area is too dark, or when it has been scanned so quickly that the
laser did not intersect it in any image.

With these impressive results, we have demonstrated that simple low-cost
equipment is sufficient to build up a system for 360◦-object-reconstruction, which
is superior to other techniques (e.g. scanning flexibility and registration effi-
ciency).
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Abstract. Variational techniques are a popular approach for recon-
structing the surface of an object. In previous work, the surface is repre-
sented either implicitly by the use of level sets or explicitly as a triangle
mesh. In this paper we describe new formulations and develop fast algo-
rithms for surface reconstruction based on partial differential equations
(PDEs) derived from variational calculus using an explicit, purely point-
based surface representation. The method is based on a Moving Least-
Squares surface approximation of the sample points. Our new approach
automatically copes with complicated topology and deformations, with-
out the need for explicit treatment. In contrast to level sets, it requires
no postprocessing, easily adapts to varying spatial resolutions and is in-
variant under rigid body motion. We demonstrate the versatility of our
method using several synthetic data sets and show how our technique
can be used to reconstruct object surfaces from real-world multi-view
footage.

1 Introduction

Many interesting problems in computer vision can be formulated as minimi-
sation problems of an energy functional given as a surface or curve integral
over a scalar-valued weight function. The variational formulation of these kinds
of problems lead to a curve or surface evolution PDE. Among the well-known
variational methods successfully applied in computer vision are Geodesic Active
Contours [3]. While originally designed for segmentation of objects in 2D it can
be easily generalised to 3D [4]. Caselles et al., Zhao et al. and Savadijev et al.
use this approach to model surfaces from unstructured point clouds [4,22,19].
Geodesic active contours were also employed for the detection and tracking of
moving objects in 2D [16]. Furthermore, minimal surfaces may be employed for
3D reconstruction of static objects from multiple views, as proposed by Faugeras
and Keriven [6].
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All of these problems fit into one unifying framework [9]. There, a mathemat-
ical analysis of weighted minimal hypersurfaces is given in arbitrary dimension
and for a general class of weight functions. An Euler-Lagrange equation is derived
that yields the necessary minimality condition. As an application example, the
static 3D reconstruction of a surface is generalised towards a global space-time re-
construction of the evolving surface [8]. A common feature of the aforementioned
approaches is that object geometry is implicitly defined as the zero level-set of
a function extending over the entire space. For an explicit representation, the
object shape has to be extracted using marching-cube-like techniques [15] in a
post-processing stage.

In contrast to the Eulerian approach, Duan et al. propose a PDE-based de-
formable model that takes the Lagrangian approach [5], i.e., shape and topology
of the deformable object is always explicitly represented throughout the compu-
tation. The surface is typically represented as a triangle mesh. This model is used
for surface reconstruction from volumetric images, point clouds and reconstruc-
tion from 2D multiple views. Goldlücke and Magnor recently also incorporated
an explicit surface representation into their framework for space-time coherent
reconstruction [7]. While this technique to solve PDEs directly yields an explicit
representation of the solution, the topology information encoded in the mesh
connectivity requires explicit handling when the surface topology changes. Com-
plex local mesh operations such as the deletion and creation of edges, faces, or
vertices render this approach hard to implement robustly.

Recently, purely point-based models have gained increasing popularity in tra-
ditional computer graphics as well as in the field of geometric modelling. Those
models offer great flexibility since they neither store, nor have to maintain,
any connectivity information. In this paper, we make use of this new modelling
paradigm in the context of computer vision. Specially, we apply point-based ge-
ometry representation to the problem of PDE-based surface reconstruction. We
unite several algorithms for point-based geometry processing under a common
framework for PDE-based surface evolution. Our approach combines the im-
plicit recovery of the surface topology inherent to level sets with the flexibility of
a point based geometry representation stemming from the lack of connectivity
information. In particular, our point-based PDE solver does not require any post-
processing nor explicit handling of topology changes and easily adapts to varying
spatial resolutions. Moreover, it is also invariant under rigid body motion while
level sets are vulnerable to numerical diffusion under such circumstances.

The rest of this paper is organised as follows: Section 2 reviews some pre-
requisites concerning point-based geometry representation that are at the very
heart of our work. In Sect. 3, we briefly review the mathematical framework
of weighted minimal hypersurfaces and introduce our PDE-based surface recon-
struction algorithm. We apply it to the problem of reconstructing surfaces from
unstructured point clouds and deal with the problem of surface reconstruction
from multiple views in Sect. 4. Section 5 concludes our work and presents some
ideas for future work.
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2 Review of Point-Based Models

This section briefly summarises some well-known algorithms from point-based
modelling. Each of these algorithms is designed for its very special purpose,
for example normal estimation or outlier detection. In the following sections,
we unite them under a common framework for PDE-based surface evolution on
point-based models.

Point Sample Neighbourhood and Normal Estimation. Our surface
representation consists of an unstructured point cloud P in 3D space, made up
of n oriented disks that describe an underlying manifold surface S. Contrary
to polygonal representations, in a point-based setting all local computations are
based on spatial proximity between samples, instead of geodesic proximity and
the known connections between mesh vertices. For dense samples and small Eu-
clidean neighbourhoods, both notions are similar [2]. Geodesic neighbourhoods
are proposed by Klein and Zachmann [12]. While this work more reliably es-
timates topologically correct neighbours, it is only applicable to static point
sets since the computational cost for building the underlying datastructures is
too high for the applications we have in mind. Therefore, our neighbourhood
structure relies on the notion of the k-nearest neighbours with respect to the
Euclidean distance, denoted Nk, which was already successfully used in [18].

This neighbourhood structure can be computed efficiently using a hierarchical
space partitioning technique, for example kD-trees.

Since normal vectors are not necessarily given a-priori or may change if the
shape of the model changes, they have to be estimated by analysing the local
neighbourhood of a sample point. As has been demonstrated in [11], a surface
normal can then be estimated by performing an eigenanalysis of the covariance
matrix of the local neighbourhood Nk. The eigenvector with the smallest eigen-
value defines the least-squares plane through the centroid of the neighbourhood
Nk and can therefore serve as an approximation to the local surface normal.

MLS Projection. The set of oriented disks defining our model does not pro-
vide a mathematically smooth surface definition. To compute a smooth surface
that approximates the sample points P , Levin [13,14] introduces a projection
operator based on a Moving Least-Squares (MLS) optimisation. This approach
has first been applied to point-based geometry in R3 by Alexa et al. [1]. The MLS
projection takes a point r in space and projects it onto a polynomial that locally
approximates the underlying surface in the vicinity of r. The computation of the
polynomial can be split in two steps. First of all, a reference plane H is fitted to
the surface samples around r using a weighted least-squares optimisation. This
reference plane provides a local parameterisation of the sample points and is
used in a second least-squares fit to compute a bivariate polynomial. A global
approximation is built by blending the local polynomials.

Both the computation of the reference domain and the polynomial approxima-
tion employ a radially symmetric Gaussian weighting function θ(d) = e−d2/h2

.
The parameter h corresponds to the anticipated spacing between neighbouring
samples. In what follows, we always adapt the bandwidth to the local sampling
density of the surface as proposed in [17].



732 C. Linz, B. Goldlücke, and M. Magnor

Surface Refinement. The quality of the surface reconstruction from an
unstructured point set heavily depends on the sampling density of the point
set. If the object is undersampled, the reconstructed surface will not be able
to recover details present in the original object. Based on the surface definition
reviewed in the preceding paragraph, several methods for up- and downsampling
of point sets have been proposed [1,17,18]. However, these methods are expensive
due to the nature of the projection operator and typically generate oversampling.
An algorithm that overcomes these problems was proposed by Guennebaud et
al. [10]. We employ this method in our framework to ensure a sufficient sampling
density.

To achieve a uniform distribution of all samples, we let neighbouring point
samples repel each other. We use an algorithm for point relaxation introduced
by Turk [20] for resampling a surface defined by polygons. This approach has
been adapted to point-based geometries by Pauly et al. [17].

Outlier Detection. Noise and outliers are almost always present in a point-
sampled geometry. Weyrich et al. proposed a set of fast heuristics to detect
outliers in point sets [21]. The underlying criteria all deliver an estimator χ(p) ∈
[0, 1] which specifies the likelihood for a point sample p to be an outlier. All
criteria are solely based on the analysis of the k-nearest neighbours Nk of p.
The final classification is then computed as a weighted average of the heuristics.
The weighting of the criteria depends on the type of the underlying surface. We
refer the interested reader to [21] for details on this.

Overview. In the next section, we integrate the point-based graphics tools
reviewed in this section in a framework for PDE-based surface evolution algo-
rithms. Using the point-based models, it is easier and more elegant to obtain a
solution to these evolutions. In particular, our approach overcomes the need to
keep the surface in a consistent manifold state as it is the case with evolution
algorithms based on triangle meshes. Moreover, compared to implicit level set
representations, the point-based surface easily adapts to varying spatial resolu-
tions and may readily be rendered without the need for prior surface extraction.

3 PDE-Based Surface Reconstruction and Point-Based
Models

We now turn to the mathematical framework we build our work upon. In [9], a
mathematical analysis of weighted minimal hypersurfaces is given in arbitrary
dimension and for a general class of weight functions. The aim is to find a k-
dimensional regular hypersurface Σ ⊂ Rn which minimises the energy functional

A(Σ) :=
∫

Σ

Φ(s)dA(s). (1)

We restrict the weight function Φ to depend solely on the surface point s. The
necessary condition for a surface to be a minimum of this functional is to satisfy
the Euler-Lagrange equation

Ψ := 〈Φs,n〉 − Tr(S), (2)
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where S is the shape operator of the surface. The result presented in [9] is more
general in that the weight function may also depend on the surface normal n.
We do not consider this general case in this paper.

One of the fundamental questions in practise is how to solve the Euler-
Lagrange equation (2). Only in a very limited number of simple cases can an
analytic solution be derived directly. In all other cases, one has to numerically
solve the surface evolution equation

∂

∂τ
Στ = Ψn, (3)

where Στ represents the surface Σ ⊂ Rn and τ is the evolution parameter. If
we start with an initial surface Σ0 and let it evolve using (3), it will eventually
converge to a steady state, yielding a solution to the Euler-Lagrange equation.

We will now present our framework to solve (3) using a point-based approach.
For validation, we first test our solver with a surface reconstruction from unor-
ganised 3D sample points, which are distributed on synthetic objects whose
geometry is precisely known. Our reconstruction technique and error function is
similar to the work of Zhao et al. [22] and Caselles et al. [4], yet we are using the
more general framework of Goldlücke and Magnor [9]. The target point cloud
defines a point-based model in the sense of Sect. 2, and our surface evolution is
implemented using a purely point-based model as well.

The error functional is modelled as the signed distance function D(s) for each
surface sample s of the evolving surface to the closest point t on the target
surface:

A(Σ) :=
∫

Σ

Φ(s)dA(s), (4)

where Φ(s) := D(s). (5)

The signed distance D(s) from an arbitrary point s ∈ R
3 to a known surface Σ is

the distance between s and the closest point t ∈ Σ, multiplied by ±1, depending
on which side of the surface s lies. In a point-based setting, the distance is hence
computed as

D(s) = (s− t) · nt, (6)

that is the normal component of the distance to the closest point on the target
surface. In fact, we compute the signed distance function of s to a local tangent
plane in t. Since our surface Σ is closed, this simple rule works well.

According to [5], we add an extra term to (3), yielding

∂

∂τ
Στ = [vΦ+ 〈Φs,n〉 − Tr(S)Φ]n. (7)

The term vΦ allows the model to capture arbitrary non-convex shapes and avoids
that the model gets stuck into local minima during deformation. v is a constant
velocity. Using Euler integration, we yield the following iterative formulation of
the evolution process:

pτ+Δ = pτ +ΔΨnp, (8)
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Fig. 1. Evolution on triangle meshes compared to evolution in a point-based setting.
The evolution force Ψ (red vector) has to be distributed to the neighbouring sample
points to achieve a behaviour comparable to triangle meshes. The dashed line illustrates
the idealised MLS approximation of the sample points.

where pτ denotes the position of the surface point of the deformable model Στ

at time instant τ and np its normal. Δ denotes the time step and may be used
to control the evolution speed.

We approximate the value Tr(S) in (7) by the mean curvature values ob-
tained from the MLS approximation presented in Sect. 2. Likewise, 〈Φs,n〉 is
approximated using fourth-order accurate central differences. Therefore, we first
compute the one-ring neighbourhood of a sample s and displace the entire neigh-
bourhood structure by a fixed amount in positive and negative normal direction.
Since the evolution along the signed distance function does not yield a uniform
point distribution and, moreover, often produces undersampled regions, we ap-
ply the upsampling scheme in combination with the point relaxation introduced
in Sect. 2 to the evolving surface to ensure a good surface approximation in the
next iteration. Moreover, we detect outliers that originate from an overshoot-
ing evolution force using the heuristics introduced in Sect. 2 to avoid incorrect
normals and curvature values. Since the evolution is based on these values, er-
rors would else amplify during the iterative process. Compared to evolutions
on triangle meshes, we have to take care that the per-point evolution force Ψ
also affects the sample points in a small neighbourhood, Fig. 1. By weighting
the forces using a Gaussian kernel, we are able to mimic an evolution behaviour
similar to triangle meshes.

4 Results and Applications

We validate our point-based approach using several models. As a first step, we
choose a model of a torus that requires an explicit topology change, Fig. 2.
The surface topology is recovered implicitly by the MLS surface approximation
without the need for additional operations. Using an explicit surface representa-
tion with connectivity information such as triangle meshes would have required
complex local mesh operations which render this approach hard to implement
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(a) Σ10 (b) Σ15 (c) Σ20

Fig. 2. Shape recovery with implicit topology change. The initial point surface Σ0 was
a sphere surrounding the target surface.

(a) Original Igea (134345
samples)

(b) Reconstructed Igea
(160700 samples) using 25
neighbours

(c) Reconstructed Igea
(160700 samples) using 80
neighbours

Fig. 3. Reconstruction with varying spatial resolutions: The original model is shown
on the left, a reconstruction based on a small neighbourhood is depicted in the middle.
The reconstruction on the right uses a larger neighbourhood. The initial points are
distributed on an sphere enclosing the geometry.

robustly. Figure 3 shows the results of the evolution on a more complex model. It
also shows the adaptivity of the point-based model to different spatial resolutions
by a varying interpolation radius, determined by the size of the neighbourhood
structure. Higher spatial resolutions are easily obtained by placing more sam-
ple points in the desired regions. Grid-based level sets on the contrary require
a more complex restructuring of the underlying grid. In both cases, the initial
point surface Σ0 was an appropriately scaled sphere surrounding the object.

In a second step, we use our point-based PDE solver to reconstruct real-world
object geometry from multiple 2D images. First, however, we need some addi-
tional notation for colour and visibility of surface samples. Let Ik denote the
image associated with camera k. Each camera projects the scene onto the image
plane via a fixed projection of the form πk : R3 → R2. Then, Ik ◦ πk(s) denotes
the colour of the projection of s into the image taken by camera k. For each sur-
face point s ∈ R3, let νk(s) denote whether s is visible in camera k in the presence
of a surface Σ or not. An error measure, taking care of photo-consistency of the
evolving surface with the input images, can now be defined as
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ΦC(s) :=
1

|Vs|(|Vs| − 1)

l∑
i,j=1

νi(s)νj(s) · χi,j(s,Nk) (9)

χi,j(s,Nk) :=
1
|Nk|

∑
q∈Nk

((Ii ◦ πi)(q)− ĪNk
i ) · ((Ii ◦ πi)(q) − ĪNk

i ). (10)

ĪNk
i denotes the mean colour value in the k-neighbourhood Nk of a surface

sample. This functional is a reasonable discretization of the error functional in-
troduced in [9] for point-based models.

Using this definition of the error functional, we are able to reconstruct the
surface of an object given multiple views. We test our method on multi-view
footage of a dancer, recorded from 8 cameras distributed around the scene. All
input images are segmented into foreground and background using a thresholding
technique. The results obtained with our point-based approach on a fixed frame
of the dancer sequence are shown in Fig. 4. Our point-based PDE solver clearly
smoothes the initial surface Σ0 obtained from a space-carving approach and
improves photo-consistency. Compared to the approach taken in [8], the use of a
point-based model gives comparable results at lower implementation complexity
since explicit handling of topology changes is completely avoided.

5 Summary and Conclusions

In this paper, we have introduced a purely point-based technique to reconstruct
explicit surfaces from implicit PDE definition. We demonstrated that this rep-
resentation in combination with the powerful Moving Least-Squares surface ap-
proximation unites the advantages of a level set-based representation, i.e., im-
plicit recovery of surface topology, with direct accessibility of an explicit model
based on triangle meshes. Our representation does not depend on an underlying
grid-structure and hence easily adapts to varying spatial resolutions and is invari-
ant under rigid body motions. We showed the general applicability of point-based
geometry representation to surface reconstruction using synthetic data sets as
well as real-world data. Compared to a direct representation based on triangle
meshes, the point-based model used in our work is more flexible, especially when
topology changes are involved. It is thus the more natural choice for iterative
surface evolution. Compared to level set-based surface representations, the point-
based models are far less memory-consuming. Our, yet unoptimised, point-based
implementation already outperforms a similar implementation using level sets.

We believe that with growing interest in point-based models in the research
community, the flexibility of this surface representation will be exploited for vari-
ous tasks in computer vision. One could, for example, extend the implementation
of reconstruction from multiple views described in Sect. 4 to reconstructions in
space-time as has been outlined in [7,8]. Furthermore, a detailed analysis of
the convergence properties and a quantification of the approximation quality
as compared to grid-based level sets would be helpful. Also, the computational
complexity of our approach needs more investigation.
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(a) Initial model

(b) Final result after 180 iterations

Fig. 4. Initial and final point set for a fixed frame, coloured with per-point colour
information derived from the best two cameras. Photo-consistency has clearly improved
in the final result as can be judged by the decrease of black and grey areas on the arms
of the dancer.
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Abstract. This paper shows an approach for automatic learning of ef-
ficient representations for robust image features. A video sequence of a
3D scene is processed using structure-from-motion algorithms, which pro-
vides a long validated track of robust 2D features for each tracked scene
region. Thus each tracked scene region defines a class of similar feature
vectors forming a volume in feature space. The variance within each class
results from different viewing conditions, e.g. perspective, lighting con-
ditions, against which the feature is not invariant. We show on synthetic
and on real data that making use of this class information in subspace
methods, a much sparser representation can be used. Furthermore, less
computational effort is needed and more correct correspondences can be
retrieved for efficient computation of the pose of an unknown camera
image than in previous methods.

1 Introduction

Registering a camera against a previously learned scene requires an efficient rep-
resentation of the scene content for lookup. We show how feature-based camera
pose computation can benefit from a class-based representation of learned scene
features: During an offline phase, a camera is moved within a scenario or around
an object. By using structure from motion techniques [9] we track a natural fea-
ture across many images and process its appearances, i.e. we learn how a feature
typically changes (e.g. due to perspective, light). The camera trajectory as well
as the 3D locations in the scene are reconstructed and the image appearances (2D
features) of the 3D locations are learned and organized in a database optimized
for fast lookup and high recognition rates, which are main new contributions.

Such robust or invariant 2D features have been quite a busy research topic
during the last years. However, they have usually been studied in 2D environ-
ments or on planes only [7], because an objective evaluation in cluttered 3D
scenes is difficult. As a difference compared to previous feature evaluations, we
propose the following method: In the online phase a database query is performed
for every 2D feature of a camera image returning the likeliest learned 3D feature
class. We estimate the camera pose based on these 2D-3D correspondences us-
ing robust estimation techniques. Afterwards we check how many of the 2D-3D
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correspondences are inliers, which is a quite natural criterion of the fitness of the
feature representation, since it directly resembles the pose estimation problem.

The paper is structured as follows: In the next section we compare different
image registration techniques as well as we briefly review the work on feature
evaluation. Afterwards we show the steps of our method, scene learning and
feature organisation in the offline phase and registration in the online phase. In
the last section we compare results of different representations.

2 Previous Work

Early marker-less approaches on registering views in Augmented Reality scenar-
ios tried to compute orientation only, e.g. using the Fourier-Mellin-Transform
[4]. This is a global transformation of the whole image, which breaks if dif-
ferent parts of the image undergo different perspective distortions, clutter and
occlusion. To solve for this, various local features have been studied during the
last years. They have been applied successfully for image-to-image matching,
panorama registration and more recently also 6DOF camera pose computation
[3]. The principle is that a particular detector/descriptor combination produces
the same - or a slightly different - feature vector for the same 3D region un-
der different conditions, while producing other vectors for differently looking
regions. The feature vector can be interpreted as a signature. Among all the
detector/descriptor pairs, DoG/SIFT [5] is known to perform well [7] and can
be computed quite fast. Although being invariant only against scale, rotation
and affine brightness change of a 2D image, it is robust against mislocation,
perspective effects and several other distortions. Robust means that small vio-
lations of the invariance assumptions will cause only small disturbances of the
feature vector. In that case the feature vectors occupy a small continuous area
in the feature space. This makes it well-suited for our purposes and we will use
it throughout this paper, though the proposed techniques can also be applied to
other features with such properties.

For a 2D feature to provide significant information to discriminate it from
others, the descriptions must be quite high-dimensional. On the other hand,
when one seeks to find a similar feature vector in the space of all possible features,
we run into the curse of dimensionality if the description vector is too large.
One way of organizing points in high dimensional spaces is space-partitioning
using kd-trees[8]. For the typical SIFT feature dimension of 128 a complete
binary space partitioning would create a tree with 2128 (more than 1038) leaves.
Therefore we compare different methods of learning the relevant parts of the
high-dimensional feature descriptions, which have been applied successfully in
face recognition [2] and other classification tasks, often however only on the
raw image signal: Multiple discriminant analysis (“fisher-faces”) and principle
component analysis (“eigen-faces”) and show the advantages over the technique
of using vector entries with largest variance, which is a common feature space
matching technique today [3]. In contrast to PCA-SIFT [6], we are not interested
in the subspace of all feature descriptions a DoG/SIFT operator can produce
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on the set of all images ever possible. This encodes what all descriptors do have
in common. We explicitly want to learn what is different between the clusters
of features in our scene. The learning is deliberately based on the knowledge
that different representatives belong to the same class like in [13], while we do
not only seek for one representative per class but we also look for a transformed
small representation to make a fast distinction between the classes possible.

In that sense the idea is somewhat related to the Randomized Trees approach
[10], which does not rely on high-level features but on massive simple tests.
Instead of performing a nearest neighbor search in one tree and applying a
decision, they propose a soft-classification by using several trees, where each
tree node encodes class probabilities. The final classification is performed by
combining the probabilities. While this is an interesting approach in the handling
of the probabilities, the authors have proposed it only for recognition and pose
computation of single objects, presumably because the simple decisions made
in the trees sacrifice discriminative power for the sake of speed. They have not
evaluated whether the approach does also extend to larger scale scenarios.

3 Scene Database

To register a view in the online phase we use a database of features which has to
be set up offline. To create the database we take an image sequence of the scene
and use a feature-based structure from motion system similar to [9] to calibrate
the images and to reconstruct 3D points from corresponding 2D interest points.
Each interest point is assigned a descriptor (in the simplest case the grey values
of the image region around the point or, more complex, the SIFT descriptor),
which can be represented as a high-dimensional vector.

3.1 3D Features

If the descriptors for corresponding 2D points do not vary too much across
several images, we can assume that the invariance/robustness properties of the
feature type are still satisfied, e.g. for SIFT features that the 2D image regions
are projections of a three dimensional locally continuous surface from similar
viewpoints and that all projections of this surface result in similar descriptors.
We call the surface a 3D feature and assign it a 3D point. However, we do not
want to reconstruct the surface here but the class of descriptors it produces,
which is a novelty compared to previous approaches. They form a continuous
area in descriptor space and their differences are e.g. due to small localisation
distortions or transformations against which the descriptor is not completely
invariant. Combining incremental structure from motion (in contrast to the ref-
erence image technique of [3]) allows to process long image sequences with lots
of descriptor measurements.

If each class of descriptors covers a coherent and relatively small part in the
high-dimensional descriptor space, and any two distinct classes are at different
locations in this space, we can view the matching process as a classification
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problem. For each 2D feature detected in the online phase we try to find the
best matching class in descriptor space. Beis and Lowe proposed an approxi-
mate nearest neighbor search on a kdtree partitioning the descriptor space [8].
The partitioning should at best represent the distribution of the various classes,
therefore some parts in the feature space are more interesting than others. To
traverse a balanced binary tree of depth d (e.g. d = 15) we have to pass d deci-
sion hyperplanes, which divide the feature space. This tree has 2d leaves (distinct
areas in feature space). If d is too large (for instance the original vector size 128),
this leads to an unmanageable number of bins (2128). Even for depths not much
larger than 20, the tree is over-fitted and only sparsely populated, unless one
uses a huge number of features. For a small d on the other hand the question is
extremely important, which is the best partitioning of the space and what are
good dividing hyperplanes. Beis and Lowe solve the problem by computing the
variance of each descriptor dimension across all features and select only the most
variant entries. Instead, we propose to apply classical methods of dimensionality
reduction from pattern recognition. These methods are compared next.

3.2 Dimensionality Reduction

From the offline phase we have many 3D features, which we saw in several
images. Each 3D feature defines a class with mean and scatter in feature space.
Let Di

c ∈ Rh be the ith (of nc) descriptor vector for class c (of a total of n
classes). Since it has h entries, we have an h-dimensional descriptor space (e.g.
for SIFT typically h = 128). We want to find the reduction transformation
R(Di

c) = di
c : Rh �→ Rl, which shrinks our descriptor to a low dimension number

l (e.g. l = 15). However, the descriptor should not lose too much discriminative
information needed for matching.

Principle Components Analysis. The most popular approach to dimension-
ality reduction is principle component analysis (PCA). PCA computes the mean
and scatter of all descriptors (see [11]). We define different means as follows:

μc =
1
nc

∑
i

Di
c μ =

1∑
c nc

∑
c

∑
i

Di
c μMeans =

1
n

∑
c

μc (1)

Σ =
∑

c

(
∑

i

((Di
c − μ)(Di

c − μ)T )) (2)

The principal components are now the eigenvectors of Σ according to [11]:

Σej
Σ = λj

Σej
Σ (3)

where ej
Σ are sorted according to their eigenvalues λj

Σ , λ0
Σ being the largest. Let

êi
Σ = 1√

λi
Σ

ei
Σ . Finally, we define the reduction transformation for PCA as:

RPCA(Di
c) = (ê0

Σ ê1
Σ ... êl

Σ)T (Di
c) (4)
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A slight modification of PCA, which we call PCA-Means takes into account
classes and is computed only using the means of the classes, which gives an
equal weight to each class and does not prefer strongly populated classes over
small ones. The only difference in computation is that we replace equation (2)
by equation (5), where ΣMeans is also called the inter class scatter matrix:

ΣMeans =
∑

c

((μc − μMeans)(μc − μMeans)T ) (5)

Compared to classical PCA definition, the mean is neglected in our PCA
reduction methods (eq. 4). However, since our reduction transformation is linear,
the mean also transforms linear and introduces a constant offset for all features,
which can be ignored since we are only looking for the nearest neighbor.

PCA is designed to minimize the reconstruction error, therefore it is suitable
for compression and un-compression of similar vectors in high-dimensional space.
However, it does not account for classes and does not aim at preserving separabil-
ity of vectors in reduced space. In other words, PCA preserves what is common
between two classes, not what is different. The goal of finding a linear transfor-
mation that maximizes class separability is the topic of discriminant analysis.

Multiple Discriminant Analysis. We propose an extension of multiple dis-
criminant analysis (MDA) [11], which falls back smoothly to PCA in case only
sparse within class information is available. The idea of MDA is to represent
each class of descriptors by a mean and scatter and find a transformation R that
minimizes within class scatter while maximizing the scatter of all class means.
The within class scatter Σc and the total scatter matrix Σtotal (imagine as an
average within class distribution) are defined as:

Σc =
1

(nc − 1)

∑
i

((Di
c − μc)(Di

c − μc)T ) Σtotal =
1
n

∑
c

Σc

The rows of the reduction transformation matrix are the solutions ej to the
generalized eigenvalue problem [11]:

ΣMeansej = λjΣtotalej (6)

If Σtotal is nonsingular, the system can be converted to a standard eigenvalue
problem like equation (3). However, particularly when Σtotal is estimated from
few samples in the high-dimensional space, it will be singular, mainly because of
missing data. A full rank can be enforced by applying ridge regularization [12] to
the total scatter matrix, i.e. we add diag(σ2) (a diagonal matrix with entries σ2).
Small values of σ do not affect the shape of Σtotal, while larger ones make the
diagonal dominate the matrix and very large values make it in fact a multiple
of the identity matrix. In that case, equation (6) is the same as equation (3)
for PCA-Means, therefore the value of sigma controls between MDA and pure
PCA behavior. Since we do not want to lose within class shape information, we
compute a minimum noise level, as the smallest existing eigenvalue of equation
(6). This leads to a smooth transition from PCA-Means to MDA as soon as
within class scatter is available.
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Fig. 1. Exemplary distribution of features of 20 classes (randomly chosen) of a real
video sequence of 400 images projected to the first two axes (left), the first two MDA
axes (right). MDA representation shows more distinct local clusters .

Most Variant Entries. The approach chosen by Beis and Lowe [8] can also
be viewed in the context of dimensionality reduction. They compute the vari-
ance for each vector entry separately. This corresponds to only taking into ac-
count the diagonal elements of Σ of equation (2) and sort vector components by
these values. By disregarding the off-diagonal elements, the relations between
the vector entries are thrown away. This is suboptimal for descriptors whose
components are correlated, which is certainly the case for the SIFT descriptor,
because the soft-binning technique distributes gradients into different vector en-
tries upon mislocalization. In other words, the entries of the SIFT descriptor
are not uncorrelated as a strictly diagonal scatter matrix would imply. The re-
sulting reduction matrix is a pure permutation of the columns of the identity
matrix.

3.3 Database Representation

Using a transformation of the previous section we can transform the original
vectors into a space where the dimensions are sorted by importance. We build a
kdtree in that space and choose the depth d = log2(c) such that in average each
bin holds a class. In our novel transformed space we follow the method of [8].

Once the database is set up, we can extract 2D features from an unknown
image. Each feature is transformed according to our reduction and traverses the
tree using the backtracking strategy [8] until a better match in reduced space
cannot be found, a maximum error in reduced space is reached or - if real-time
is an issue - a (constant) maximum number of comparisons has been reached.
The best match so far or “no match” is returned. The “no match” statement is
particularly important because it decreases the false positive rate. Fewer outliers
again speed up robust pose computation.
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4 Experiments

In this section we show results on synthetic data as well as on videos of 3D scenes
and compare the different reduction techniques, particularly PCA, the largest
variance method [3] and ridge-regularized MDA.

Synthetic Data. By empirical tests on real images of several scenes, we found
that the SIFT descriptors of most 3D features do indeed cluster. For a series
of feature tracks we found that in our scenarios the descriptors (vectors from
[0; 200]128) of the same 3D feature usually have a maximum standard deviations
of up to 15 (in principal component direction), seldomly higher. As pointed out
before the entries of the SIFT descriptor are not independant if we consider the
unavoidable 3D scale space mislocation (because of the soft-binning). Therefore,
when creating synthetic data, we do not enforce independance of these com-
ponents when creating synthetic features. The class of descriptors refering to a
3D feature is simulated by an anisotropic gaussian distribution in 128D with
standard deviation along the principal axes of σj ∈ [1; 15]. The class means are
sampled from a uniform distribution across the whole feature space [0; 200]128.

We compare the average number of comparisons until the nearest neighbor
has been found and the percentage of correctly classified points. As can be seen
in figure (3) PCA, PCA-Means and MDA represent the data in a way that
more features are classified correctly than in the variance method. Furthermore
they need less comparisons on average, which means that search can be stopped
after a lower fixed total number of comparisons in the tree. This improves camera
registration speed. MDA and PCA methods do perform nearly the same, however
it seems that MDA suffers slightly from overfitting onto the uncertain covariance
matrices caused by the few measurements per class. If we generate the synthetic
data in a way that the Σtotal is not isotropic but that all Σc are slightly biased
towards a main orientation, MDA outperforms all other methods.

3D Scenes. Using the structure from motion approach similar to [9] we set up
several 3D scenes. The left part of figure (4) shows a rendered sequence with real
texture, for which the camera poses are perfectly known but for which feature
positions in 3D space have been created by structure from motion. The right
part of figure (4) shows a livingroom scene, for which real images sequences have
been captured and reconstructed. We perform an exhaustive search in the feature
space to evaluate the database, therefore we always get the nearest neighbor in
transformed space. A feature is defined to be correctly classfied if the 3D point is
projected by the camera pose within 5 pixel distance to the detected 2D feature.
We give only the mean number of correct 2D-3D matches as opposed to a mean
percentage because the unknown test views produce features which have not
been seen before, therefore the fraction is less significant than the total number.
Figure (4) shows that MDA performs slightly better than the PCA methods
but clearly better than variance and that a reduction to 15 dimensions can be
succesfully applied not only without loss of matches but also with improved
speed, since we can work on the smaller vectors.
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Fig. 2. Percentage of correctly classified synthetic features after exhaustive search in
reduced space. Left: All features were placed in the tree. Right: Only class means were
placed in the tree.

Fig. 3. Left: Percentage of correctly classified synthetic features after exhaustive search
in reduced space using 500 classes of 20-50 features each. Right: Average number of
comparisons needed until nearest neighbor was found.

To evaluate the quality of the representation for real-time pose estimation
applications, we limit the number of comparisons per feature to 50 and compare
our methods to the method used in [3] (Var). Using a fixed reduced vector size
of l = 20 leads to about the same number of correct matches in our scenario.
For a fair comparison of runtime, we set l = 20 and count the total number
of basic comparisons the cpu had to perform on the sofa scenario in order to
compute tentative 2D-3D correspondences needed by a robust pose estimation
algorithm. As can be seen in figure (5) (rows 3 and 4) our methods produce
more correct correspondences, while requiring only 15 percent of operations.
When reducing size to l = 10 the number of correct matches reduces by about
10 percent, the number of operations decreases even to 8 percent. The amount
of memory required is also drastically reduced in our method, since we only
use low-dimensional representatives instead of all the high-dimensional ones. In
this comparison it can be seen (upper two rows) that the number of correct
matches is slightly lower when only the class means are used in the tree, this is
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Fig. 4. Upper Row: Rendered (semi-artificial) castle sequence (640x480 pixels). 3D
feature locations of 4612 classes. Lower Row: Real sofa sequence (352x288 pixels). 3D
feature locations of 2748 classes. Lower left (castle) and right (sofa): Number of correct
nearest neighbors in database depending on reduction, standard deviation is about 15
percent of measurement.

Method mean num. comp. std.dev. comp. num. inliers

MDA 982 4 311.5
PCA-Means 964 9 314.2

MDA (all features) 972 10 336.9
PCA-Means (all features) 960 10 337.1

Var (all features) 6397 13 324.5

Fig. 5. Comparison of basic operations performed in the sofa scenario.Upper two rows:
only means are stored in the tree. Lower three rows: all features stored in the tree.

persumably because of too few measurements per class resulting in inaccurate
mean and scatter estimation. However, in certain applications using only one
class representative might be preferrable.

5 Conclusion

We proposed exploiting class information for representation of features in a
database for fast retrieval. Furthermore we described a method for learning rel-
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evant variances of robust features in a particular scene in which registration is
desired. We used an inlier criterion for 2D-3D correspondences to evaluate the
representation on real 3D environments which resembles the pose estimation
problem. As expected, on feature vectors where components are not indepen-
dant of one another (presumably as most features) PCA and MDA outperform
maximum variance as used in the literature [3] [8] and allow reducing feature size
by a large factor. We showed that using a sparse database rather than putting
all features into the database classifies better if gaussian distributions can be
assumed and estimated reliably. Future work should evaluate other class shapes,
which might be represented by several clusters. MDA on the other hand did not
show up as significantly better than the PCA methods on real images, maybe
because of missing feature data for scatter estimation within the classes. This
means that when speed is an issue in the offline phase, the PCA methods can be
used without losing much performance, because the PCA transformation needs
less time to be determined.
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Abstract. Today’s processes to extract man-made objects from mea-
surement data are quite traditional. Often, they are still point based,
with the exception of a few systems which allow to automatically fit sim-
ple primitives to measurement data. At the same time, demands on the
data are steadily growing. The need to be able to automatically trans-
form object representations, for example, in order to generalize their
geometry, enforces a structurally rich object description. Likewise, the
trend towards more and more detailed representations requires to exploit
structurally repetitive and symmetric patterns present in man-made ob-
jects, in order to make extraction cost-effective. In this paper, we address
the extraction of building façades in terms of a structural description. As
has been described previously by other authors, we use a formal gram-
mar to derive a structural façade description in the form of a derivation
tree. We use a process based on reversible jump Markov Chain Monte
Carlo (rjMCMC) to guide the application of derivation steps during the
construction of the tree.

1 Introduction

The extraction of man-made objects from sensor data has a long history in re-
search [1]. Especially for the modelling of 3D buildings, numerous approaches
have been reported, based on monoscopic, stereoscopic, multi-image, and laser
scan techniques. While most of the effort has gone into sensor-specific extrac-
tion procedures, very little work has been done on the structural description of
objects.

Modelling structure though is very important for downstream usability of the
data, especially for the automatic derivation of coarser levels of detail (LoD) from
detailed models (a process called generalization). Being able to deliver different
LoDs tailored to different customers needs, to context-adapted visualizations,
such as on mobile displays, or simply to cut down rendering time of large mod-
els is essential for 3D models to enter the market. The Sig3D group has defined
five levels of detail for building models [3]. However, the definition of discrete
LoDs alone does not imply any path to derive one level from the other in an au-
tomated way. Experience from 2D map generalization in cartography shows that
generalization purely based on geometric information is indeed a hard problem,
which becomes even worse in 3D.

K. Franke et al. (Eds.): DAGM 2006, LNCS 4174, pp. 750–759, 2006.
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Representing structure is not only important for the later usability of the
derived data, but also as a means to support the extraction process itself. A
fixed set of structural patterns allows to span a certain subspace of all possible
object patterns, thus forms the model required to interpret the scene. Especially
for man-made structures such as building façades, a large number of regularity
conditions hold. In interactive measurement processes, introducing structural
descriptions can cut down acquisition time, since repeated or mirrored parts can
be introduced in one step.

This paper elaborates on the grammar-based extraction of façade descriptions.
The grammar is used to guide the generation of possible façade layouts using
a reversible jump Markov Chain Monte Carlo (rjMCMC) process to explore
solution space.

2 Related Work

Grammars have been extensively used to model structures. For modelling plants,
Lindenmayer systems were developed by the biologist Aristid Lindenmayer [7].
They have also been used for modelling streets and buildings [6,4]. But Linden-
mayer systems are not necessarily appropriate for modelling buildings. Buildings
differ in structure from plants and streets, in that they don’t grow in free space
and modelling is more a partition of space than a growth-like process.

For this reason, other types of grammars have been proposed for architectural
objects. Stiny introduced shape grammars which operate on shapes directly [8].
The rules replace patterns at a point marked by a special symbol. Mitchell de-
scribes how grammars are used in architecture [5]. The derivation is usually done
manually, which is why the grammars are not readily applicable for automatic
modelling tools.

Wonka et al. developed a method for automatic modelling which allows to
reconstruct different kinds of buildings using one rule set [9]. The approach is
composed of a split grammar, a large set of rules which divide the building into
parts, and a control grammar which guides the propagation and distribution of
attributes. During construction, a stochastic process selects among all applicable
rules.

Dick et al. introduce a method which generates building models from measured
data, i.e. several images [2]. This approach is also based on the rjMCMC method.
In a stochastic process, 3D models with semantic information are built.

3 Grammar-Based Façade Reconstruction

In this section, the basic concept of our method is described. The distinctive
feature of our approach is that we combine a grammar-based façade descrip-
tion with a rjMCMC-based exploration of the derivation tree. Thus, compared
to existing rjMCMC approaches, we gain the ability to explicitly model super-
structures, such as regularity and symmetry, in a hierarchical way. Compared to
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existing grammar-based approaches, we use rjMCMC and the associated evalu-
ation functions to guide the application of derivation rules and thus achieve a
measurement data driven instantiation of the derivation tree.

For our experiments, we use terrestrial laser scan data and images. For the
moment, we concentrate on façades, i.e., the measurement data consists of point
clouds and orthorectified images of single façades (fig. 1).

Fig. 1. Point cloud and orthorectified image of a façade

3.1 Model Description Using a Façade Grammar

The façade model is described in terms of a recursive partition of space. We
obtain a partition from the application of a derivation rule of the split gram-
mar. The overall façade partition is represented by a derivation tree. Each node
corresponds to one of the symbols of the grammar. There are two kinds of sym-
bols, the first one being nonterminals (tab. 1). Geometrically, nonterminals do
not represent façade geometry directly but serve as containers which hold other
objects, represented in the derivation tree by nonterminal or terminal children.
Some of this containers imply that their children have identical properties while
others don’t. SymmetricFaçade indicates symmetries in the façade and can
be derived in SymmetricFaçadeSide which represent the left side and the
mirrored right side of the façade and an optional SymmetricFaçadeMiddle.
The second group contains the terminal symbols, which represent façade ge-
ometry and cannot be subdivided further (tab. 2). The start symbol is the

Table 1. Nonterminal symbols corresponding to containers

AboveDoor FaçadeRow SymmetricPartFaçade
AboveWindow Gable SymmetricPartFaçadeMiddle
Façade GroundFloor SymmetricPartFaçadeSide
FaçadeArray IdenticalFaçadeArray SymmetricFaçade
FaçadeColumn PartFaçade SymmetricFaçadeMiddle
FaçadeElement StaircaseColumn SymmetricFaçadeSide

symbol Façade. Starting from it, the subdivision can be made by rules simi-
lar to the ones introduced by [9]. The model is expressed as a derivation tree
with Façade as root. Derivation rules have a left side which consists of one



Reconstruction of Façade Structures 753

Table 2. Terminal symbols corresponding to façade geometry

Door StaircaseWindow Window
DoorArch Wall WindowArch

symbol and a right side which may comprise several symbols in a certain spa-
tial layout. As an example, a grammar rule splits Façade into GroundFloor
and PartFaçade. Fig. 2 shows two examples of the subdivision of façades. In
both cases the façade is subdivided into GroundFloor and the upper floors
represented by PartFaçade. The GroundFloor is partitioned in different
FaçadeElements which contain a Door or a Window each. The upper floors
are modeled in different ways. In the first case it is a SymmetricPartFaçade
with a IdenticalFaçadeArray of Windows inside. The second consists of
two different IdenticalFaçadeArrays with different types of Windows.

The model is described by a parameter vector θ which contains the derivation
tree and the attributes of the symbols.

Fig. 2. Example subdivision of façades

3.2 Exploration of the Derivation Tree Using RjMCMC

For the model generation we use a stochastic method. We are searching for the
model with parameter vector θ with the highest probability p(θ|DSDI) under
given scan (Ds) and image data (DI). The parameter vector θ encodes the
current state of the derivation tree, including attributes.

To obtain the value of θ, we use a Markov Chain simulation. This simulates a
random walk in the space of θ. The process is led by a transition kernel P (θt|θt−1)
and converges to a stationary distribution p(θ|DSDI).

During the simulation façade elements are added, deleted or changed. The first
two operations change the number of elements on the façade and thus the dimen-
sion of the parameter vector θ. The basic Markov Chain Monte Carlo method
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doesn’t support dimension changes of θ and therefore we use the rjMCMC
method. This method allows a change in the dimension of the parameter vector
θ and thereby the number of façade elements can vary during the simulation.
The rjMCMC method requires reversibility. For each change from state θ1 to
state θ2 there must exist a reverse change from θ2 to θ1.

The rjMCMC method uses a scoring function for the evaluation of changes in
the parameter vector to accept or reject a proposed jump, as well as a jumping
distribution that proposes these jumps. The work flow of the method is as fol-
lows. Beginning with a start value of θ (corresponding to the grammar symbol
Façade) a jump is determined by the jumping distribution according to the
current state (expressed by θ). This jump is executed and the scoring function
is used to decide if it is accepted. If the jump is rejected the changes are undone.

3.3 Jumping Distribution

A change is proposed depending on the jumping distribution Jt(θt|θt−1) that ex-
presses the likelihood for each change. At the moment, the probability is assigned
to each change manually depending on an assumed likelihood of the result. For
example, a change Façade → IdenticalFaçadeArray is more likely than
Façade→ FaçadeArray because façades build regular structures. We expect
to improve the distribution for some changes with further analysis of façade
structure. Each state change is in one of the following categories:

– Application of a split rule from the grammar. Façade elements are divided
horizontally, vertically or in both directions and each part becomes a new
symbol (see fig. 3). The split indicates a change in the façade. If the ground
floor differs from the rest of the façade, a split is applied.

Fig. 3. Split rules

In fact, one grammar rule comprises a set of changes to the parameter vector
θ, since the associated attributes have to be chosen, such as the number
and size of children. Fig. 4 shows an example where one rule splits the
symbol Façade into FaçadeColumns. The number of columns and their
width is determined randomly. If a Façade can be divided into several
FaçadeColumns the general rule stands for all rules of this kind with any
number and position of columns.

– Changes in structure. Even after derivation of new containers according to
the previous step, a second set of state changes allows to modify parameters,
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Fig. 4. One parameterized split rule represents splits which differ in number and ge-
ometry

Fig. 5. Changes which modify splits

e.g. the number of columns or the position of the parting lines between
columns (see fig. 5). The same can be done starting from a child symbol.
The position and extent of a symbol may change. In this case, the neighbor
symbols which are involved in the change have to be changed as well.

– Replacement of symbols. This allows to interchange one symbol in the deriva-
tion tree by another symbol. In this case, the geometry stays the same, but
the denotation changes. This is for example used in the case of the symbols
Façade and AboveWindow. The rules

Façade → SymmetricFaçade
AboveWindow → WindowArch

AboveWindow → Wall

allow to replace this symbols by other symbols.

To ensure reversibility, each change can be applied from left to right and vice
versa. This is a difference to the way split grammars are used, but is a require-
ment for the rjMCMC approach.

3.4 Scoring Functions

For the evaluation of changes, we use different methods which can be divided into
two groups. The first group contains methods which test the general plausibility
of the model of the façade. The second group evaluates how good the model fits
the data by comparing it to range and image data. In any case, the evaluation
functions return a score which is used to decide if the change is accepted or
rejected.
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The general plausibility depends on the alignment, the extent and the position
of the façade elements. Windows are usually arranged in rows and columns.
Therefore, such layouts are assigned a high acceptance score. The same holds for
symmetric layouts. We consider the size and the aspect ratio of façade elements
to rate their probability. We also use the size for the rating of the subdivision
into rows, columns and arrays. A row which is five meters high is not very likely
and thus has a low acceptance score. The last general criterion is the position
of the elements. A door in the third floor is not very likely, so only doors in the
ground floor are assigned a high score. For the general plausibility we can use
the same scoring functions as given in [2]. The alignment is rated by

falign(θ) =
R∑

r=1

[V ar(tr) + V ar(br) + V ar(rr − lr)] +

C∑
c=1

[V ar(lc) + V ar(rc) + V ar(tc − bc)]

where tr,br, lr, rr are top, bottom, left and right coordinates of the façade ele-
ment (window or door) belonging to the row r and tc,bc, lc, rc the same for the
column c. The function V ar(x) denotes the empirical variance of the elements
of x. The symmetry is evaluated by

ssym(θ) =
R∑

r=1

[(lr − l) + (rr − r)]2

where lr are the leftmost points of the elements of row r, rr are the rightmost
points of the elements of row r, and l and r are the left and right coordinates of
the façade.

These evaluation functions test the configuration of windows, thus they can be
applied only after terminal symbols exist in the model. The acceptance is defined
by a threshold. Fig. 6 shows two configurations of façade elements. The left and
right configurations have an alignment score of 0.013 and 0.1, respectively. The
symmetry scores are 0.06 and 0.2.

Fig. 6. Façade elements aligned and disturbed

To evaluate the match of the data to the model, scan and image data are
used. In the first case, the fact that window points typically lie behind the
façade is exploited. In the second case, color difference has been used since
windows typically appear darker than the surrounding façade. In both cases, the
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information is used for the subdivision into rows, columns, and arrays as well.
For example, upon division into rows, the resulting row strips are correlated
to obtain an acceptance score. Additionally, in image data a color change may
indicate a changeover of ground floor and first floor.

A proposed split of a container can demand that the children have the same
properties. In this case we calculate the correlation of each children in the
image data and a mesh of the scan data. The correlation value determines
whether the split is accepted or not. Fig. 7 shows a proposed partition in a
IdenticalFaçadeArray in the left. The right part shows the mesh of the
scan data and the partition in the upper and lower part. In this example image
and scan correlation result in high values and the change is accepted.

Fig. 7. Proposed partition in an IdenticalFaçadeArray, point cloud of the façade,
mesh of the point cloud and partition in upper and lower part

For a split that differentiates the children another criterion is used. Here we use
color changes as obtained from strong image gradients or the region boundaries
of planar segmentation. We score the split of a FaçadeElement into Door or
Window and surrounding elements with edge detection in image data and the
gradient of the mesh of the point cloud. Additionally we use the mean distance
of points and the façade plane.

4 Results

We tested this approach on façade data. The input data is the 3D point cloud
and an orthorectified image calculated using the point cloud. Fig. 8 shows the
result of our method applied to the data shown in fig. 1 and the drivation tree
is shown in fig. 9. The façade is found to be symmetric so the root of the deriva-
tion tree is SymmetricFaçade. The two children are SymmetricFaçadeSide
and SymmetricFaçadeMiddle whereas the first child represents both the left
and the mirrored right side of the façade. In this case a two times three sub-
division is proposed for each side. And each part contains a Window of the
same size and position based on a fixed point. The middle part is subdivided
in FaçadeElements which contain a Door and a Window respectively. The
Wall parts are not displayed in image and tree.
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Fig. 8. Resulting façade image

Fig. 9. Derivation tree of the façade shown in fig. 1

5 Conclusions and Outlook

In this paper, we have proposed a new approach for the reconstruction of façade
structures. It combines two previously reported approaches, namely the gener-
ation of artificial façade structures using grammars, and the reconstruction of
façades using rjMCMC. Compared to existing grammar-based approaches, we
gain the ability to reconstruct façades based on measurement data. Compared
to existing rjMCMC approaches, by using a grammar, we obtain a hierarchical
façade description and the ability to evaluate superstructures such as regularity
and symmetry at an early stage, i.e., before terminal symbols such as Window
are instantiated.

We have shown first results in terms of symbols, rules, and score functions.
However, much remains to be done. First, we plan to enlarge our set of deriva-
tion rules as well as to improve our scoring functions. A systematic capture of
façade images is under way, by which we hope to gain more insight into typical
façade patterns, which will help us to improve the definition of derivation rules
of our grammar. Finally, we are looking into ways how the required jumping
distributions can be derived from training data.
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1 RS Dynamics s.r.o., 149 00 Prague 4, Starochodovská 1359, Czech Republic
dupac@rsdynamics.com

http://www.rsdynamics.com
2 Czech Technical University, Faculty of Electrical Engineering
Department for Cybernetics, Center for Machine Perception

121 35 Prague 2, Karlovo náměst́ı 13, Czech Republic
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Abstract. Stable Wave Detector (SWD) is a new multiscale landmark
detector in the intensity image. SWD belongs to a group of interest-point-
like operators aiming at detecting repeatedly distinguished entities regard-
less of their semantics. The speed and the robustness of landmark detec-
tion and the precision of landmark localization are main issues. The target
landmarks are blobs which correspond to local maxima/minima of inten-
sity (positive and negative peaks). The detector is based on the phase of
the first harmonic wave in the moving window. The localization is a re-
sult of an integral transformation rather than a derivative. Thus, the blob
detector is inherently robust to noise. The SWD provides subpixel local-
ization of blobs together with the estimate of its precision, the measure of
the strength/significance and the estimate of the size/scale for each blob.

1 Motivation

This work is a part of a larger project leading to a hand-held instrument for
on-line 3D positioning of geophysical measurements. The proposed method uses
video sequences captured by a calibrated stereo rig. The required precision is
in order of 0.1 meter in the area of several hundreds meters. The requirement
for online processing and a hand-held battery-powered system induces hard con-
straints to computational complexity of used algorithms which should simul-
taneously meet challenging precision requirements. The subpixel measurement
is required because enlarging camera resolution leads to quadratically growing
amount of data compared to the linear gain in precision.

What are the landmarks to search? We were inspired by the nature. It is
known that dogs are short-sighted and cannot see sharply. Nevertheless, they live
in the 3D world and can hunt. The first author is short-sighted too, however, even
without glasses he can also feel a 3D structure of the world. Another observation
concerns fast movements. If something moves very fast then we are unable to
recognize details of it. However, we feel its position and speed. These observations
are our arguments to seek same integral units as blobs rather than differential
structures as corners or edges, i.e., the whole window instead of its corners and
its center instead of the border.

K. Franke et al. (Eds.): DAGM 2006, LNCS 4174, pp. 760–769, 2006.
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2 State-of-the-Art

The proposed method can be broadly classified among interest-point-like oper-
ators aiming at detecting repeatedly distinguished entities without considering
their semantics. These entities are mainly used for matching in different images,
stereo, image retrieval, categorization, object recognition, etc. There is a popular
group of corner detectors originated in Moravec detector [11] improved by Har-
ris [4]. Fast implementation of Harris detector is provided in [12]. Comparison of
interested point detectors is given in [15]. An overview of existing interest point
detectors can be found in [9].

Corners are not inherently scale invariant, i.e., a multi-scale Harris detector
does not localize the same local structure at the same point in different scale.
Mikolajczyk [9] choose the ‘correct’ scale as maxima of Laplacian-of-Gaussian in
the scale space. Deriche [1] approached this problem by fitting the line through
the locations at different scales and searched where the series of points converge.
Lowe’s detector searches maxima of Difference of Gaussian [7] in the scale space.

It was noticed by many that richer structures in images compared to local,
‘derivative-based’ corners can bring additional benefit. Proposed methods are
detectors based on affine normalization around Harris points [9,14], a detector
of ‘maximally stable extremal regions’ [8], an edge-based region detector [16], a
detector based on intensity extrema [17], and the detectors of ‘salient regions’
based on entropy [5] or wavelet transform [6]. The performance of above region
detectors is compared in [3,10] where the performance to change in viewpoint,
scale, illumination, defocus and image compression are considered.

The proposed blob detector was motivated by practical observations and a
signal processing theory. Its robustness and speed is derived from basic properties
of Fourier transformation, dot product and phase of the first harmonics. A global
difference of phase of the first harmonics between two omnidirectional images
was used to find their relative orientation [13].

3 Stable Wave Detector

The target patterns in the images are blobs, i.e., local minima or maxima of
intensity. In 1D, the blob corresponds to a positive or a negative peak. Let us
start our explanation with an experiment in 1D which motivated our approach
and gave it the name. The examples of ideal peaks will be shown in Section 3.2.
The single scale SWD algorithm will be introduced in Section 3.3. Main com-
ponents of SWD are described in Sections 3.4 and 3.5. The extension of SWD
to multiscale is given in Section 3.6. Section 3.7 describes how to apply SWD to
detect blobs in 2D.

3.1 What Is Stable Wave?

The word ‘wave’ comes from Fourier transform which is our basic tool. The term
‘stable’ says that we seek the wave in the signal (or image) which is stable / well
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localized in some sense. The idea of the stable wave originates from a simple
experiment in 1D. Let us consider data of length N > 2T , T ≥ 4 containing a
peak of width about T/2. Then suppose that the peak is located somewhere in
the closed interval [x0−T/2, x0 +T/2], where T < x0 < (N −T ). The following
iterative algorithm can localize the peak:

1. Define frame F1, as [x0 − T/2, x0 + T/2− 1].
2. For frame Fi, compute Fourier coefficients a, b and phase ϕi ∈ (−π, π] of the

first harmonic wave (i.e., with a period T ).
3. Estimate the peak location relatively to frame Fi as

xi = T
4 (1 − 2ϕi

π ) ; ϕi < 0 , (maxima)

xi = T
4 (3 − 2ϕi

π ) ; ϕi > 0 , (minima)
(1)

4. Define a new frame Fi+1 centered around xi.

Repeat steps 2-4 until the process converges, i.e , until Fi+1 is the same as Fi

(the peak is stable) or diverges |xi − x0| > T/2 or oscillates i > T .
The process typically converges in the first or the second iteration for the

ideal peak without noise (Section 3.2). The algorithm works well also for edges
for which xi is a zero crossing instead of an extreme.

An interesting observation is that the precise knowledge of the peak width is
not crucial. The algorithm works well up to about an octave below and over the
optimal T . The amplitude

A =
√

(a2 + b2) (2)

can measure the strength of response (suitability) of a period T for a given peak.

3.2 Ideal Peaks

Examples of ideal shapes from the SWD point of view are cosine, Gaussian,
rectangle and other similar symmetric shapes. The detector localizes peaks of
‘ideal shape’ with the subsample precision similarly as humans would localize
them intuitively when looking at them. For example, the detector finds the
maximum of Gaussian or the center of a rectangle.

Figure 1 shows the examples of ideal peaks (solid curves) suitable for SWD
with frames of width 16 (line segments bellow the curves). The dotted curves
visualize the results of SWD algorithm at variable frame lengths. The dotted
curves are cosine waves with the amplitude found by SWD centered at the peak
location found by a single scale SWD. The cosine curves are shifted up to have
positive values for better visualization. SWD algorithm successfully found peaks
even if the frame length was far from the period of the signal or from the double
of the peak width.

3.3 Outline of the Single-Scale SWD Algorithm

The algorithm described in Section 3.1 just motivated SWD. A practical SWD
algorithm is sketched in this section for the single-scale. Let us consider data to
be a row vector D of length N and the expected width of the peaks be near T/2.
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Fig. 1. Examples of ideal peaks (solid curves), frames (line segments) of length T = 16,
and stable waves found by SWD at different periods (T ∈ {4, 8, 12, 16, 20, 24, 28, 32},
dotted curves). a) Sine wave (T = 16, ϕ = 0.69. b) Gaussian y = exp(−(x−22.76)2/16)).
c) 8-sample-wide rectangle.

The SWD algorithm consists of four forward steps.

1. The input data are divided into n overlapping frames Fi of length T . The
frames should overlap more than T/2. Efficient choice of the overlap is de-
scribed in Section 3.4.

2. For each frame Fi, Fourier coefficients ai, bi are computed. (Section 3.4)
3. Candidate frames are found as cosine frames meeting Consistent Neighboring

Frame (CNFr) criterion (Section 3.5).
4. Having a candidate frame Fi, a subsample location xi of the peak inside the

frame can be found using Equation (1).

3.4 The Efficient Computation of Fourier Coefficients

In the discrete case, Fourier coefficients are computed as dot products ai = Fi ·S,
bi = Fi · C, where Fi are intensity data in the frame i and

St = sin(2π(t/T )) , Ct = cos(2π(t/T )) , t = 0, . . . , T − 1 .

To compute all coefficient ai, bi for whole data of the length N , the frame length
T , and an arbitrary overlap Ω, the number of multiplication would be

O(N,Ω) = 2N
T

T −Ω
.

For example O(N, 2/3T ) = 6N , O(N, 3/4T ) = 8N , O(N, 4/5T ) = 10N .
The choice of the frame overlap is an important decision which influences both

speed and precision. Looking at the properties of sine and cosine functions, we
found 3/4T to be the best choice. The reason is the well known fact that the sine
wave (the first base function) is the cosine wave (the second base function) shifted
by a quarter of a period, i.e., cosϕ = sin(ϕ+π/2). Exploring this fact, significant
amount of computation can be saved for frame shift equal to T/4 ∼ π/2.
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Dot product a1
i = Fi · S can be written as
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where Dc
i are dot products of a part of the frame with a part of the cosine wave

and similarly Ds
i are dot products of a part of a frame with a part of a sine

wave. The two neighboring frames have 3/4T overlap, therefore, six of the eight
partial dot products differ only in the signs and it is not necessary to compute
them twice. As a result, only 2N (instead of 8N) multiplications are needed for
data containing N samples.

3.5 Consistent Neighboring Frame (CNFr) Criterion

The principle of the criterion can be illustrated on the example of Gaussian
depicted in Figure 1b. The frames of length T = 16 and overlap 3/4 T are
shown as line segments below the curves. Table 1 shows the first two Fourier
coefficients, phases and amplitudes for the frames of length 16. The frame 4
containing the maximum of the peak is a negative cosine frame (−bi > |ai|)
surrounded by the two sine frames (|bi| < |ai|). Frames containing rising edge
have negative sine coefficients and frames containing falling edge have positive
sine coefficients as it could be expected considering the similarity to sine wave.
Each cosine frame does not contain a peak. For example falling edge of Gaussian
produces cosine frames (frames 7, 8 in Table 1) which do not contain any peak.
CNFr criterion can be summarized as:

– A cosine frame Fi contains a stable minimum if
bi > k|ai| & bi+1 > k|ai+1| & ai > 0 & ai+1 < 0 or
bi > k|ai| & bi+1 < k|ai+1| & bi−1 < k|ai−1| & ai−1 > 0 & ai+1 < 0 .

– A cosine frame Fi contains a stable maximum if
−bi > k|ai| & − bi+1 > k|ai+1| & ai < 0 & ai+1 > 0 or
−bi > k|ai| & − bi+1 < k|ai+1| & − bi−1 < k|ai−1| & ai−1 < 0 & ai+1 > 0 .

The number k < 1 (near 1) moderates the criterion on the frame to be considered
as cosine. It reduces the chance to loose the candidate due to noise and other
perturbations when the both coefficients have similar absolute values. The exact
choice of k is not crucial; we used the value 7/8.

3.6 Multi-scale SWD Algorithm

A good peak of a certain width has responses for several different SWD periods
as can be seen in Figure 1. In the case of a sine wave, the localization precision
was better than 0.04 of the sample for T ∈ {8, 12, 16, 20, 24}). The strongest
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Table 1. Gaussian and frames of SWD, a is a sine coefficient, b is a cosine coefficient,
ϕ is the phase relative to the frame

Frame 1 2 3 4 5 6 7 8 9
ai -0.01 -0.12 -0.46 -0.31 0.38 0.42 0.09 0.00 0.00
bi 0.01 0.11 0.12 -0.38 -0.31 0.25 0.18 0.02 0.00
ϕi 2.17 2.38 2.88 -2.25 -0.70 0.54 1.11 1.34 1.45

Amplitude 0.01 0.16 0.47 0.49 0.49 0.49 0.21 0.02 0.00

response (the amplitude of the stable wave) was at T = 16 (i.e., natural period
of the signal). Similar results are for Gaussian (the precision was better than
0.03 for T ∈ {8, 12, 16, 20, 24, 28, 32}) and for a rectangle (the peak was detected
at T ∈ {4, 8, 12, 16, 20, 24, 28, 32}, and even zero localization error occurred at
T ∈ {12, 16, 20, 24, 28}).

Even though SWD algorithm does not require the precise knowledge of the
peak width, its estimate must be provided. Such estimate may not be available
in many practical situations or the peak width may vary in a wide range. The
developed multiscale algorithm searches a hierarchy of peaks at several width
levels similarly to the others multiscale detectors [9,7].

Considering excellent multiscale property of SWD, we can afford 2n step in
scale which is more sparse than 1.4n used by Mikolajczyk [9], or Lowe[7]. The
integer scale allows a more efficient computation compared to a non-integer.

Similarly to [9,7] we can choose the best scale (or filter out weak peaks)
according to the strength of the response measured as the amplitude A, see
Equation (2).

The quality of the peak found can be measured as a variance of the locations
found at different nearby scales. Good peaks are stable for more than an octave
difference of the frame size. We evaluate the stability at approximately a half of
an octave lower (TL) and higher (TH) than the original scale (T ) where the peak
was detected. The word ‘approximately’ means that we always choose an integer
period. For example, for the scale with T = 16 we choose TL = 12 and TH = 24.
We estimate the multiscale stability as min(|xi −xL|, |xi− xH |), where xi is the
initial estimate at the period T , xL is estimated using the frame of length TL

centered around xi, and xH is estimated using the frame of length TH centered
around xi.

3.7 Stable Wave Detector in 2D

Let us observe the example of an ideal blob in 2D in Figure 2a similarly as we
observed ideal peaks in 1D. Looking at the intensity along the line (e.g., row
or column of the image) passing a blob, there is a peak. The peak in intensity
along the line in the image is a necessary condition for the blob presence. In
addition, the peak provides two independent constraints – one for rows, second
for columns. As we can see in Figure 2, the results of SWD-1D on the rows
passing the blob lie on the line (with subpixel precision). Similarly, the results
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of SWD-1D on a column passing the blob lie on an another line. The two lines
are almost perpendicular. The 2D location of the blob can be estimated as the
intersection of these two lines.

(a) (b) (c)

Fig. 2. The image of blobs in a calibration pattern. a) Black stars in the middle of the
dark patch show the results of SWD-1D along the rows and the columns of the image.
b) Results of SWD-2D on the original image. c) Results of SWD-2D on the image with
artificially added noise (S/N = 1). The blob locations found by SWD-2D are depicted
as white triangles and the diameter of black hexagons indicates the scale.

More thorough mathematical explanation of this approach can be derived
from 2D Fourier Transformation (FT) and phase-based methods of stereo match-
ing. The 2D FT is a vector function giving a phase and an amplitude to a vector
[fh, fv] (horizontal and vertical frequency). Two independent frequency vectors
are needed to obtain a 2D phase information. For better imagination, vector
F1 = [f, 0] corresponds to the wave parallel with axis x. F2 = [0, f ] is the wave
parallel to axis y. F3 = [f, f ] is the wave parallel to the line y = 1− x.

Let us look in detail on the integral of Fourier coefficient a for F1. The base
function S(x, y) depends on x only. The integral can be decomposed as

a =
∫

x,y

S(x, y) I(x, y)dxdy =
∫

x

s(x) i(x)dx .

i(x) =
∫

y

I(x, y)dy .

In the discrete case, it means the following. First, sum the intensity I(row,
column) over the row to get a function i(column) and then transform function
i(column) by 1D FT to get the phase in the horizontal direction.

The phases corresponding to frequency vectors F1, F2 can be used to localize
the peak similarly as SWD-1D does. However this solution is not good. The
application of CNFr criterion would be difficult. Intuitively, the other problem
is that the integrals for Fourier coefficients contain a large neighborhood of the
blob. The solid square in Figure 2a shows the optimal square window to detect
the blob. The square areas in its corners bring just noise to the integrals.

Our SWD-2D algorithm combines the observation from Figure 2 with the
mathematical derivation. In short, we detect the peaks in rows and fit the vertical



Stable Wave Detector of Blobs in Images 767

line v through them. Next, we detect the peaks in columns and fit the horizontal
line h through them. The location of the peak is estimated as the intersection of
lines h and v. The detailed algorithm is described in [2] due to lack of space.

4 Implementation and Experiments

The SWD-2D algorithm has been implemented in MATLAB and tested on syn-
thetic and real data. The experiments are described in detail in [2].

Robustness to noise in 1D case was extensively tested. The results are sum-
marized in Figure 3.
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Fig. 3. Robustness of SWD-1D to uniform noise. a) Maximum (circles) and average
(stars) localization error as the function of noise level added to original signal containing
two Gaussian peaks (narrow peak – solid line, wide peak – dotted line). The results
come from 100 repeats. b) Example of signal with noise level 0.01. c) Example of signal
with noise level 1.

The robustness to noise of WSD-2D was tested on the real image of the camera
calibration pattern consisting of black circular dots. The detail of the image is
depicted in Figure 2b. The original real image was degraded by the addition of
the increasing amount of uniform noise (Figure 2c). The localization proved to
be stable to noise level about 1. The achieved precision is below 0.05 of a pixel
for original image and below 0.15 of a pixel up to noise level 0.3.

Let us show detected blobs on a real image of a rock garden. The purpose of
the experiment is to display visually where blobs are detected. The second aim
is to demonstrate the potential of the proposed method for stereo matching. The
rock garden is captured from two different view points. The reader can see that
many blobs in the first image have a corresponding partner in the second image.

5 Conclusions and Future Work

We have proposed a new blob detector which seems to have several favorable
properties for practical applications. It is precise and fast. We believe that it is
a right way to our application target – implementing it in the batter-powered
hand-held instrument for on-line 3D positioning of geophysical measurements.
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(a) (b)

Fig. 4. Illustration of SWD on the rock garden image. The blob locations found by
SWD-2D are depicted as triangles and the diameter of hexagons indicates the scale.
White color is used for minima, black for maxima. (a) The detail of the first image; (b)
The detail of the second image, taken from different place.

The semantic-less interest point-like detectors have had an enormous attention
in the computer vision community in last few years. Our thorough comparison
to them needs our further attention. We need to move from the MATLAB im-
plementation to C language to be able to perform computation time tests and
comparisons with other algorithms and implementations. We also would like to
extend our method to cope with color images.
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Dupač, Jan 760

Elger, Christian E. 404
Erez, Yael 1

Fehr, Janis 263
Fischer, Bernd 424, 708
Franke, Uwe 475
Fritsch, Jannik 212
Fritz, Mario 232
Fussenegger, Michael 122

Garbe, Christoph 525
Gebken, Christian 587
Gelautz, Margrit 465
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Härtel, Volker 739
Hegerath, Andre 202
Hellwich, Olaf 111
Hertel, Ilka 162
Herzog, Dennis 576
Hill, N. Jeremy 404
Hinterberger, Thilo 404
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