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Abstract. This paper aims at showing that Physics is very close to
the substitution-diffusion paradigm of symmetric ciphers. Based on this
analogy, we present a new Cellular Automata algorithm, termed Crystal,
implementing fast, parallel, scalable and secure encryption systems. Our
approach provides a design principle to ensure an invertible dynamics for
arbitrary neighborhood. Thus, several variants of our CA can be devised
so as to offer customized encryption-decryption algorithms. Considering
larger data blocks improve both security and speed (throughput larger
than 10Gbps on dedicated hardware).

1 Introduction

As introduced by Shannon [7], symmetric block ciphers are usually based on r
rounds of diffusion and confusion operations applied to a plain text message M .
This transformation is usually considered in a purely mathematical framework,
with no reference to any physical process despite the fact that the term diffusion
actually refers to a well known physical phenomena.

It seems that the contribution of physics to classical cryptography (quantum
cryptography thus excluded) has been only to provide some vocabulary but no
design principles and the few physical devices that have been proposed to encode
a message are usually rather exotic and their security hard to prove [6].

Here we claim that the analogy between classical physics and symmetric block
cipher is strong, natural and useful. This claim is made very clear when consid-
ering discrete physical models such lattice gases automata (LGA) used to model
fluids [1].

These models consist of a discrete space time abstraction of the real world. N
point-particles move on a regular lattice in D spatial dimensions. The possible
velocities of each particle are restricted by the lattice topology: the propagation
P moves, in one time step Δt, a particle from one site to one of its neighbor.
Thus, if z is the lattice coordination number, particles may have z possible veloc-
ities. A collision C occurs between particles entering the same site from different
directions. The result of such a collision is to create new particles in some di-
rections and to remove some particles in others. Particle motion and collision
are repeated alternatively for any chosen amount of time. Mathematically, the
dynamics of our discrete fluid can be described by

M(t + Δt) = PCM(t)
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where M(t) is the configuration of the particles over the full lattice at iteration
t. This dynamics is structurally identical to the diffusion-confusion paradigm of
cryptography. Diffusion is produced by an operator P and operator C imple-
ments a substitution box.

The other relevant ingredient from Physics is the second principle of thermo-
dynamics which states that all configurations evolve to a final state which seems
to contain no more memory of the initial situation. As such, this process is a
good encryption mechanism. Deciphering, fortunately, is possible since the mi-
croscopic laws of physics are fully symmetrical with respect to past and future.
Theoretically then, there is a way to come back. It is however highly impractical
with real physical systems: one would have to reach every single particle of the
system and to reverse its microscopic velocity with arbitrary precision.

On the contrary, with LGA systems, this time reversal is possible since the cal-
culation is Boolean and performed without truncation error. We can thus reverse
the arrow of time by simply inverting the direction of motion of each particles:
M(t) = RM(t), where R is the so-called time-reversal operator. Therefore, a
deciphering mechanism is already embedded in a system obeying CRC = R and
PRP = R. It is then identical to the ciphering steps because

(CP )rR(PC)r = (CP )r−1CPRPC(PC)r−1

= (CP )r−1R(PC)r−1 = R (1)

It is well known that time-reversibility in a physical system is highly sensitive
to any small perturbation. Thus, the keying mechanism for the cipher may be
viewed as errors that are deliberately introduced to prevent an attacker to reverse
time.

Due to their properties of producing a complex behavior, cellular automata
(CA) have been considered by several authors as a way to build cryptographic
devices [5,9,4]. Several of the proposed CA are designed to produce a sequence of
bits out of a secrete key and, as such, provide a stream cipher in which a sender
and a receiver can both produce the same complex sequence of bits starting from
an initial state given by the key.

However, when symmetric block ciphers are devised, it is necessary that en-
cryption can be inverted in order to be able to decipher an encoded message.
Therefore, a central question arises about how to build invertible CA’s.

The standard definition of CA uses the so-called ”gather-update” paradigm [1]
(first get the neighbor values and then update the cell). It is well known that
finding the inverse of a CA rule when the gather-update paradigm is used is a
difficult task [3]. A procedure to produce a reversible CA rule (the rule is its own
inverse) is the so-called technique of Fredkin [8]: a reversible cellular automata
can be constructed by using the following rule:

s(r, t + 1) = f(s(N(r), t)) ⊕ s(r, t − 1)

where f is arbitrary and N designate the neighborhood of cell r. This rule is said
to be of second order since it requires state t and t−1 to compute the evolution.
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Another approach to produce invertible CA uses the so-called block-permuta-
tion CA [3]. The central idea is to partition the CA cells into adjacent blocs of
size w × w, with respect to origin (ox, oy), and to define a function F applying
the block to itself. By changing the partition offset (ox, oy), one obtains a family
of different transformations of the cell space. Several of these transformation can
be composed so as to produce a CA rule. Within this paradigm of block-partition
CA, an invertible CA can be designed by taking the function F invertible. This
approach however is restricted to regular, Cartesian grids and is non-local.

Finally, a last paradigm to implement a CA rule is the collision-propagation
paradigm of LGA discussed above to model discrete physical systems. In this
approach, it has been noted that the dynamics is reversible (i.e. is its own inverse)
when the collision operator implements a reversible physical processes.

Our approach exploits this last paradigm to build a general reversible CA in
a possibly irregular topology, of arbitrary dimension, through the introduction
of three inter-related operators P , R and C. The main advantage of this formu-
lation is that it offers an effective way to build both a hardware and a software
device, with high scalability. In addition, it reconciliates the well admitted Shan-
non generic model of symmetric cryptography (confusion and diffusion) with the
promising domain of complex dynamical systems (e.g CA) that are often con-
sidered as exotic and non-reliable cryptographic methods.

2 Description of the Algorithm

We first discuss a simple instance of the algorithm and then we formalize a
general approach. Let us consider a 2D square periodic lattice with z bits per site
and containing a N -bit message. With N bits distributed over the z directions,
the lattice size must be

√
N/z ×

√
N/z.

When z = 8, each lattice site has eight neighbors, four along the main lattice
directions, as well as four along the diagonals. This so-called D2Q8 topology
defines the action of P . Note that the z links are two-way between the intercon-
nected neighbors; they are labeled by a direction index j = 0, ..., (z − 1) so that
opposite directions j and j′ are such that j′ = j + (z/2) mod z. By definition,
the reverse operator R swaps the content of direction j and j′. By construction,
we thus have R2 = 1, i.e. R−1 = R.

The collision C is implemented as lookup table. In order to ensure CRC = R,
the following randomized algorithm is used (here z = 8):

for all a=0 to 255, such that C(a) is still undefined
do b=rand(0,255)
until C(R(b)) is undefined
C(a)=b; C(R(b))=R(a);

endfor

The cipher key K is a N -bit string. It can be easily constructed from a N ′-bit
string, with N ′ ≤ N , using any acceptable padding procedure.
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With these ingredients, we propose the following block cipher algorithm

algorithm Crystal(M,K) // M is the message, K the key
reverse(M), reverse(K)
propagation(M), propagation(K)
repeat r times
M=M+K
collision(M), collision(K)
propagation(M), propagation(K)

end repeat
M=M+K
return M, K

end algorithm

Note that operators R, C and P act locally but, by extension we also use the
same symbols to denote the synchronous action of R, C and P at all sites.

It can be shown that Crystal both encodes and decodes the blocks. Indeed
the above algorithm can be expressed in a matrix formulation

(
M ′

K ′

)
=

(
1 1
0 1

) [
PC

(
1 1
0 1

)]n

PR

(
M
K

)

in which we assume a modulo 2 algebra so that
(

1 1
0 1

) (
M
K

)
=

(
M ⊕ K

K

)

In addition, we define the product of the operator PC by a matrix as

PC

(
1 1
0 1

)
=

(
PC PC
0 PC

)

In order for our scheme to be reversible, we need
(

1 1
0 1

) [
PC

(
1 1
0 1

)]n

PR

(
1 1
0 1

)[
PC

(
1 1
0 1

)]n

PR =
(

1 0
0 1

)

This is achieved provided that

PRP = R−1 CR−1C = R

The proof follows by applying the same procedure as used in eq. 1 and by the
fact that, in a modulo 2 algebra

(
1 1
0 1

)2

=
(

1 0
0 1

)

Note that in simple and regular topologies we have R = R−1. However, the
above formulation shows that any topology of interconnected cells for which
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PRP = R−1 and CR−1C = R hold can be used to implement the Crystal
algorithm.

Such a topology can be constructed in a very general way, with possibly a
different number of neighbors for each cell. The key condition is to distinguish
the input and output links of the cell and to impose a suitable symmetry relation
between them. This is detailed below.

Let R be a one-to-one mapping from the inputs to the output, as shown for
instance in fig. 1 (a). So, within a cell there must be the same number of input
and output ports. The collision operator C is also a one-to-one transformation
of the the input data into the output data. This mapping is constructed so that
CR−1C = R. The propagation operator P transfers these output data to the
input ports of the corresponding neighboring cells, as illustrated in fig. 1 (b).
In order to build a reversible CA rule the following must be true: for each link
connecting output j of cell r to input � of cell r′, there is a second link connecting
output �′ of cell r′ to input j′ of cell r. If j and � are such that j = R(j′) and
�′ = R(�) (see fig. 1) then, by construction PRP = R−1.

jm

j’

m’

input

output

j

j’

cell r

input

output

l’

l

cell r’

input

output

(a) (b)

Fig. 1. (a) Illustration of the reverse operator R. (b) Illustration of the propagation
operator P .

Therefore, any irregular interconnection topology obeying this pairwise sym-
metry can be devised to obtained a reversible dynamics. More generally, an
invertible dynamics can be obtained by having two collision operators C and
C′ such that C′R−1C = R. Thus, we can also think of our algorithm as a way
to connect different processors, each running locally an invertible encryption
process C and whose decryption is C′.

Within this relatively large framework, we can easily imagine several keying
mechanisms, such as a secret topology, a secret collision or the more classical
choice of secret bit string K.
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3 Throughput and Security

We derive some properties of our cryptographic system in the case of the D2Q8
topology. These properties allow us to quantify both the security and the per-
formances of the Crystal algorithm.

(1) A required property of a cipher is a high sensitivity to a little modification
in the initial message M . We observe in fig. 2 that, after a number r of rounds
equals to the lattice diameter d = (1/2)

√
N/z, a single bit error causes an

avalanche of the full lattice size. The average Hamming distance between two
messages initially differing only by one bit is (1/2)N as expected for two random
messages. Based on the speed at which information travels in the lattice, the

0 200iteration
0

1

ha
m

m
in

g 
di

st
an

ce

nx=64, 100 configurations

60 150iteration
0.49

0.51

ha
m

m
in

g 
di

st
an

ce

0 100iteration
0

1

ha
m

m
in

g 
di

st
an

ce

nx=4, 100 configurations

0 20iteration
0.0

0.8

ha
m

m
in

g 
di

st
an

ce

(a) (b)

Fig. 2. Evolution of the Hamming distance between two messages initially differing only
by one bit. In (a) we have N = 64 × 64 × 8 = 32768 bits and in (b) N = 4 × 4 = 128
bits. Comparison with the ideal curve (eq. 2 is given with the doted parabola. The
solid line parabola is the theoretical estimate of eq. 3). Finally, the vertical line show
the iteration r = (

√
2/2)
�

N/z at which the plateau should be reached.

Hamming distance can at best evolve as (see [2])

H(r) =
1
2
z(2r + 1)2 (2)

In numerical experiments, the speed at which the 1/2 plateau is reached is less
than predicted by eq. 2 because after a collision, only about z/2 bits differ from
the reference configuration. From fig. 3, we can assume that the error propagates
roughly as a disk. Its diameter grows on average by one lattice site at each
iteration. Thus, during the first r =

√
N/z/2 rounds, H behaves as

H(r) =
z

2
πr2 (3)
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Fig. 3. Snapshot of the error propagation region, after 16 and 32 iterations, in a system
of size 64×64. The non-blank regions indicates where the two configurations differ. The
darker the gray, the more are the bits that differ. The dashed-line disks have radius 16
and 32, respectively; thus, the error propagates at speed one for this topology.

Therefore the minimal number r of rounds needed to mix the information all
over the system must be r = αd where α is some constant larger than 1.

(2) Once the number of round is determined, we may compute the throughput
of the algorithm. As any CA model, the dynamics of our system can be fully
parallelized so that propagation and collision take a constant time for any N .
Then, the time T needed to encrypt is proportional to the number of rounds but
independent of the block size

T ∝ r = αd ∝
√

N/z (4)

and therefore the encryption throughput W is

W =
N

T
∝

√
N (5)

Thus, when large data blocks are encrypted, the throughput increases although
the number of round increases. The reason is that the number of rounds grows
slower than the amount of data. Implementation studies on FPGA indicates that
W > 10Gb/s can be achieved with reasonable resources.

(3) It is commonly accepted that increasing the number of round r increases
security. Therefore, with a full parallel implementation and large data blocks,
both security and throughput are improved when Crystal is used.

Security can be assessed quantitatively by a differential cryptanalysis ap-
proach. The goal is to obtain information on the key K by considering how
two plain text messages M1 and M2 get encrypted into M ′

1 and M ′
2.

With M
(m)
i and K(m) denoting the state of the messages and the key after m

rounds, the algorithm Crystal gives

M
(m)
i = PC

(
M

(m−1)
i ⊕ K(m−1)

)
(6)
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for i = 1, 2. By XORing the above relation for i = 1 and i = 2 and applying
inverse propagation, we obtain

P−1
(
M

(m)
1 ⊕ M

(m)
2

)
= C

(
M

(m−1)
1 ⊕ K(m−1)

)
⊕ C

(
M

(m−1)
2 ⊕ K(m−1)

)
(7)

It is now convenient to define F−1 as

a1 ⊕ a2 ∈ F−1(b) iff b = C(a1) ⊕ C(a2) (8)

For a given collision operator C, F−1 can be computed easily by an exhaustive
search [2]. With definition 8, we can rewrite eq. 7 as

F−1P−1
(
M

(m)
1 ⊕ M

(m)
2

)
= M

(m−1)
1 ⊕ K(m−1) ⊕ M

(m−1)
2 ⊕ K(m−1)

= M
(m−1)
1 ⊕ M

(m−1)
2 (9)

By repeating this relation, one obtains

M
(1)
1 ⊕ M

(1)
2 =

(
F−1P−1)r−1

(
M

(r)
1 ⊕ M

(r)
2

)
(10)

where r is the number of rounds. In [2] we show that if M
(1)
1 ⊕ M

(1)
2 is known

to the attacker, it is rather easy to obtain the secret key K with an extra 2z

operations.
Below we compute how much computational effort is required to obtain M

(1)
1 ⊕

M
(1)
2 from M

(r)
1 ⊕ M

(r)
2 which, by hypothesis, is known since attackers are sup-

posed to have access to any pairs (M, M ′) they want.
Since we assume that r > d, where d is the lattice diameter, M

(r)
1 and M

(r)
2

differ over all N/z lattice sites. In order to perform the backward scheme indi-
cated in eq. 9, one has to find all possible pre-images of P−1

(
M

(m)
1 ⊕ M

(m)
2

)

by F−1. Empirically we observe that the number of pre-image of a given b is
larger than 2z/4. Of course this depends on the choice of C, but this seems to
be a minimal value for a C constructed with our randomized procedure.

Therefore, for each lattice site, at least 2z−2 values are possible for M
(r−1)
1 ⊕

M
(r−1)
2 . This requires to select (N/z)2z−2 candidates for M

(r−1)
1 ⊕ M

(r−1)
2 . The

same argument can be repeated r − d times. After that, we can quickly exclude
some possibilities. Indeed, at this point, we know that the error has not been
able to propagate up to the outer boundary of the lattice. For these lattice
sites, M

(d−1)
1 ⊕ M

(d−1)
2 must be zero. Thus the number of sites for which the

exploration continues is (
√

N/z − 2)2. If we undo one more step, even more
possibilities can be excluded and the pre-images of “only” (

√
N/z − 4)2 sites

must be investigated.
Following this idea for the d − 1 steps, one has to explore 32 × 52 × ... ×

(
√

N/z − 1)2 possible configurations1, each with 2z/4 = 2(z−2) possible values.

1 For a D2Q8 topology.
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An inferior bound for this number is (see [2])

(
32 × 52 × ... × (

√
N/z − 1)2

)
2z−2 > (d/2)2d2z−2 =

1
4

(
N

z

)d

2z−2

Thus, in total (undoing the rounds beyond and below the diameter) implies to
investigate

N > (N/z)r−d2(z−2)(r−d)(N/z)d2z−4 = (N/z)r2(z−2)(r−d)+(z−4) (11)

candidates for M
(1)
1 ⊕ M

(1)
2 .

Let us define the security measure S as the logarithm of our estimate of N

S = log2 N (12)

A security of S = 128 is usually considered as safe. Eq. 11 can be shown as a
graph. In figure 4 (a), we show how r must change with respect to N , for a given
security level S. In figure 4 (b) we show how security S increases with N when
we take the number of round r as twice the diameter d.
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Fig. 4. (a) Number of rounds r as a function of block size N , to keep a given security
level S. Note that r must be larger than the diameter d. The limit r = d is shown by
the dashed curve. (b) Security S as a function of block size N , for r = 2d.

4 Conclusion

A first specificity of Crystal with respect to standard block ciphers is that it is
made of many fully identical components (the sites). Hence, it is local, scalable,
fully parallel and fits naturally on silicon.

Second, Crystal can be tailored in many different variants, so as to provide
each user with a unique encryption-decryption method, whose details can be kept
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secret in addition to the key. The simplest way to customize Crystal is to choose
a personal substitution box C. Indeed a large number of C’s can be generated
with the same level of security. Other ways to customize the algorithm is to have
a main substitution box C and a second one C′ active only at some secrete cells.
Finally the shape of the encryption domain can be a secrete information.

In conclusion, we have described a new cipher which is cost effective to develop
and implement, simple to analyze and which efficiently addresses the increasing
needs for high throughput, high security and high level of versatility.

References

1. B. Chopard and M. Droz. Cellular Automata Modeling of Physical Systems. Cam-
bridge University Press, 1998.

2. B. Chopard and S. Marconi. Discrete physics: a new way to look at cryptography.
Technical report, University of Geneva, 2005.
http://arXiv.org/abs/nlin.CG/0504059.

3. Jerome Durand-Lose. Representing reversible cellular automata with reversible
block cellular automata. Discrete Mathematics and Theoretical Computer Sciences
Proceedings AA (DM-CCG), pages 145–154, 2001.

4. E. Franti, S. Goschin, M. Dascalu, and N. Catrina. Criptocel: Design of cellular
automata based cipher schemes. In Communications, circuits and systems, volume 2,
pages 1103–1107. ICCCAS, IEEE, 2006.

5. Howard Gutowitz. Cryptography with dynamical systems. In E.Goles and
N.Boccara, editors, Cellular Automata and Cooperative phenomena. Kluwer Aca-
demic Press, 1993.

6. Pour la Science: dossier hors srie, editor. L’Art du Secret, 2002.
7. Claude Shannon. Communication theory of secrecy systems. Bell Syst. Tech. Jour-

nal, 28:656–715, 1949.
8. T. Toffoli and N. Margolus. Cellular automota machines: a new environment for

modelling. MIT Press, 1987.
9. Stephen Wolfram. Cryptography with cellular automata. In Advances in Cryptol-

ogy: Crypto85, volume 218 of Lectures Notes in Computer Science, pages 429–432.
Springer Verlag, 1986.


	Introduction
	Description of the Algorithm
	Throughput and Security
	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




