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Preface

This volume constitutes the proceedings of the International Conference on Cel-
lular Automata for Research and Industry, ACRI 2006, which took place in Per-
pignan, France, September 20-23, 2006. The conference, which was organized by
the laboratory of Mathematics and Physics for Systems (MEPS), University of
Perpignan, France, was the seventh in a series of conferences inaugurated in 1994
in Rende, Italy: ACRI 1996 in Milan, Italy, ACRI 1998 in Trieste, Italy, ACRI
2000 in Karlsruhe, Germany, ACRI 2002 in Geneva, Switzerland and ACRI 2004
in Amsterdam, The Netherlands.

The ACRI conference is traditionally focussed on challenging problems and
new research in theoretical aspects including cellular automata tools and com-
putational sciences. It is also concerned with applications and the solution of
problems from the fields of physics, engineering and life sciences. Its primary
goal is to discuss problems from various areas, to identify new issues and to
enlarge the research field of CA. Since its inception, the ACRI conference has
attracted an ever growing community and has raised knowledge and interest in
the study of cellular automata for both new entrants into the field as well as
researchers already working on particular aspects of cellular automata.

First invented by von Neumann, cellular automata models have been popu-
larized and investigated in several areas during the last decades. They provide
a mathematically rigorous framework for a class of discrete dynamical systems
that allow complex, unpredictable behavior to emerge from the deterministic
local interactions of many simple components acting in parallel.

ACRI 2006 brought together over 100 distinguished mathematicians, com-
puter scientists and other researchers working in the field of CA theory and
applications. A special interest was devoted to the general concepts, theories,
methods and techniques associated with modelling, analysis and implementa-
tion in various systems (e.g., biological, physical, ecological, social). Cellular
Automata are classically run on a regular lattice and with perfect synchronicity
and homogeneity. ACRI 2006 encouraged recent trends which consider asynchro-
nous, inhomogeneous and non-autonomous cellular automata with unstructured
environments. In order to highlight the multidisciplinarity of the cellular au-
tomata research area, the First International Workshop on Crowds and Cellular
Automata was organized within the scope of ACRI 2006 at the University of
Perpignan, 19-20 September.

The volume contains 72 refereed papers addressing various important topics
in cellular automata, covering theoretical results and highlighting potential ap-
plications. A total of 53 papers were presented as oral talks and 19 as posters
during the conference by speakers coming from about 15 different countries.
These papers were selected among 100 submitted contributions. Each paper was
reviewed by at least two members of the scientific committee. We are extremely
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grateful to these referees, who accepted the difficult task of selecting papers.
Their expertise and efficiency ensured the high quality of the conference. The
volume also contains 11 extended abstracts dealing with crowds and cellular
automata, which were presented during the C&CA workshop.

Five invited speakers of worldwide reputation presented the latest trends in
the field in the context of standard cellular automata and beyond. We would like
to take this opportunity to express our sincere thanks to Raffaello D’ Andrea from
Cornell University, Paolo De Los Rios from the Ecole Polytechnique Fédérale de
Lausanne, Sergey Gavrilets from the University of Tennessee, Moshe Sipper from
Ben—Gurion University, and Marco Tomassini from the Université de Lausanne,
who kindly accepted our invitation to give plenary lectures at ACRI 2006. More-
over, we were very honored that Andrew Wuensche from the University of Sussex
accepted to give a demo of Discrete Dynamics Lab and show his very recent work
on 2D hexagonal cellular automata with computational abilities.

This volume is divided into two parts. The first part deals with theoretical
aspects and computational analysis of CA and the second one with applications
derived from physical, biological, environmental and other systems. Each part is
partitioned into chapters containing a number of papers in alphabetical order.

It should be stressed that this conference would have been impossible with-
out the help and continuous encouragement of a number of people, especially
the members of steering committee, who strongly supported the organization of
ACRI 2006 in Perpignan. First of all, we would like to thank the authors, who
showed their interest in ACRI 2006 by submitting their papers for consideration.
We wish to extend our gratitude to Stefania Bandini and Andrew Adamatzky,
the organizers of the first workshop “Crowds and Cellular Automata” (C&CA),
who helped to introduce the ACRI conference to other scientific communities.

It is a pleasure to express our sincere thanks to our colleagues of the Orga-
nizing Committee and to Paolo Mereghetti for the successful job he carried out
in editing this volume. A special word of thanks goes to Yves Maurissen for the
huge amount of work he did during the organization of this conference and the
practical assistance he provided to the participants.

Finally, the organization of ACRI 2006 was made possible thanks to the finan-
cial or technical support of the board and several departments of the University
of Perpignan (Centre de Ressources Informatiques — CRI, Service de la Commu-
nication, etc), the Scientific and Parallel Computing Group from the University
of Geneva (Switzerland), the commune of Perpignan, the Academia of Science
(Morocco) and other institutions and local authorities.

September 2006 Samira El Yacoubi
Bastien Chopard
Stefania Bandini
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Distributed Sensing, Actuation, Communication,
and Control in Emerging Industrial Applications

R. D’Andrea

Cornell University, 101 Rhodes Hall Ithaca, NY 14853
rd28@cornell.edu

The continued development of inexpensive sensors, embedded computation, and
communication networks has greatly increased the opportunity for designing,
deploying, and controlling large interconnected systems. Applications range from
“smart” structures embedded with sensors, actuators, and compute power, to
multi—vehicle autonomous systems.

This talk will present our experiences with these types of systems, ranging
from the very theoretical to the very applied.
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Models of Complex Networks and How Diseases
Spread on Them

P. De Los Rios

Laboratoire de Biophysique Statistique — ITP — FSB, Ecole Polytechnique Fédérale
de Lausanne (BSP),
1015 Lausanne Switzerland
Paolo.DeLosRios@epfl.ch

Complex heterogeneous networks have recently become one of the leading frame-
works to describe a variety complex systems. After a review of the current evi-
dence and of the corresponding models, I will address the spreading of epidemics
on complex networks: current understanding, approximation methods and ways
to systematically improve them.

S. El Yacoubi, B. Chopard, and S. Bandini (Eds.): ACRI 2006, LNCS 4173, p. 2, 2006.
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CA Simulation of Biological Evolution in
Genetic Hyperspace

Michael A. Saum' and Sergey Gavrilets!»2

! Department of Mathematics
University of Tennessee, Knoxville
Knoxville, TN
msaum@math.utk.edu
2 Department of Ecology and Evolutionary Biology
University of Tennessee, Knoxville
Knoxville, TN
gavrila@tiem.utk.edu

Abstract. Realistic simulation of biological evolution by necessity re-
quires simplification and reduction in the dimensionality of the corre-
sponding dynamic system. Even when this is done, the dynamics remain
complex. We utilize a Stochastic Cellular Automata model to gain a
better understanding of the evolutionary dynamics involved in the ori-
gin of new species, specifically focusing on rapid speciation in an island
metapopulation environment. The effects of reproductive isolation, mu-
tation, migration, spatial structure, and extinction on the emergence of
new species are all studied numerically within this context.

1 Introduction

From the fossil records and radioactive dating we know that life has existed on
earth for more than 3 billion years [1]. Until the Cambrian explosion around 540
million years ago, life was restricted mainly to single-celled organisms. From the
Cambrian explosion onward however, there has been a steady increase in bio-
diversity, punctuated by a number of large extinction events. These extinction
events caused sharp but relatively brief dips in biodiversity and the fossil record
supports these claims. In our attempt to understand some of the dynamics in-
volved in this process, we decided to look at the speciation process and see if
we could model it in a way that would provide insight into some of the factors
which determine the dynamic behavior of what is an extremely complex process.

Speciation is the process by which new species are formed via evolutionary dy-
namics. Speciation can be controlled (or driven) by a number of factors including
mutation, recombination and segregation, genetic drift, migration, natural and
sexual selection [1,2,3]. Throughout this paper we say that two populations are
of different species if they are reproductively isolated, i.e., no mating producing
both viable and fertile offspring between the two populations occurs. That is,
we will use the biological species concept [1,2]. In our model, we can identify
reproductively isolated populations by measuring the differences in their genes;

S. El Yacoubi, B. Chopard, and S. Bandini (Eds.): ACRI 2006, LNCS 4173, pp. 3-12, 2006.
© Springer-Verlag Berlin Heidelberg 2006



4 M.A. Saum and S. Gavrilets

if their genes are sufficiently different, then there is a very low probability that
they can mate to produce viable and fertile offspring.

Speciation processes are difficult to verify via experiments or observations.
Primary of course is the fact that the time-scales involved in speciation typi-
cally are much longer than human life span. In addition, there does not exist a
continuous fossil record documenting new species, i.e., there are many gaps in
the fossil record. Moreover, existing data on genetic differences between extant
species can be interpreted in a number of alternative ways.

We are thus led to different methods of investigating the speciation process by
using mathematical models. By necessity, models limit the number of parameters
associated with complex behavior. This implies that all factors may not be taken
into account in the simulation of complex processes. However, computer models
do provide a metaphor for the actual dynamics, assuming of course the model’s
algorithms accurately reflect in some sense the actual dynamics being modeled,
i.e., the model is consistent.

Here, we describe a stochastic cellular automata explicit genetic model of
speciation in an island metapopulation. Typically, cellular automata used in bi-
ological application are characterized by a rather small number of states: two
or, very rarely, three, usually focusing on whether a patch is occupied or not
[4,5,6,7,8,9,10,11,12]. However, even the simplest known biological organisms
have hundreds of genes and hundreds of thousands of DNA base pairs [1,3]. This
implies that the number of possible genetic states for an organism is astronom-
ically large. For example, assuming that an organism has only 500 genes each
coded by 1000 DNA base pairs, there can be potentially 4590090 ~ 9.9 x 10301029
different genetic states. This enormous dimensionality requires one to develop
new methods of modeling, analyzing, and visualizing the behavior of the corre-
sponding cellular automata. Below we describe some of the approaches that we
have developed within the context of studying speciation.

2 The CA Deme-Based Metapopulation Model

A common method for performing numerical studies of biological evolution and
speciation is to use an individual-based model in which a finite collection of
individuals are tracked through the birth-reproduction-death cycle as well as
the migration-mutation-survival cycle. Unfortunately, individual-based models
require an enormous amount of computational resources to obtain meaningful
results and are currently not practical for studying large-scale biological diversifi-
cation. Here, instead of an individual-based model we build a deme-based model
[3,13,14] in which for each local population we explicitly describe only the ge-
netic state of its most common genotype. This simplified approach is justified if
mutation and migration are sufficiently rare and the local population size is suf-
ficiently small so that only a negligible amount of genetic variation is maintained
within each local population most of the time. We will ignore the dynamics of
local population sizes. Following Hubbell [15], we disregard ecological differences
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between the species. Our main focus will be on genetic incompatibilities (i.e.
reproductive isolation) between different populations.

Reproductive isolation will be defined by the threshold model [3,13] in which
two genotypes are not reproductively isolated and, thus, belong to the same
species if they differ in less than K, genes. We will refer to parameter K,, as
mating threshold. In some implementations of the model, we allow for multiple
populations per patch. A simple heuristic approach for doing this is to introduce
another threshold genetic distance, say K. (> K,,), reaching which will allow for
coexistence in a patch. We will refer to parameter K. as coexistence threshold.
If the genetic divergence between two populations is below K., the competition
between them prevents their coexistence.

We consider here a large area divided into smaller connected areas called
patches. Each patch can be empty or occupied by one or more populations.
We model the habitat patches as nodes on a two dimensional grid. This is a
spatially explicit metapopulation model (which is often also called a lattice model
or stepping-stone model), in which migration is restricted to close or neighboring
patches.

Our metapopulation model simulates evolution of bit strings in a two dimen-
sional geometry. Each bit string can be considered to represent the DNA of a
population. The length L of this binary DNA string is specified as input. Note
that the number of possible genetic states is 2”. We then simulate metapopula-
tion dynamics within and between a given set of habitat niches (or patches).

What we are left with then after a time is a situation in which many geneti-
cally different populations exist in different habitat patches. Through a clustering
process, we can then determine which populations are close to each other ge-
netically by some measure. This process of grouping thus determines clusters of
similar populations, or species.

Our model dynamics occur on a time generation basis. For each generation we
determine stochastically whether each of the major events occurs in the following
order:

1. Patch Extinction.

2. Single Population Extinction.
3. DNA Strand Mutation.

4. Population Migration.

Patch extinction is a situation where all populations in a specific patch go
extinct. The exact details are not important, it could be due to depletion of a
viable food supply in the habitat patch or due to some catastrophic extinction
event which wipes out the populations such as a fatal disease epidemic.

Single population extinction can occur under similar circumstances, however
rather than the whole patch (which can include many populations) going extinct,
only a single population within the patch goes extinct.

Migration of individuals has two effects. First, migrants can found a new pop-
ulation in a patch previously not occupied by a species. Second, migrants coming
into an occupied patch can bring genes that may spread in a local population
(see below).
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Bit strings change independently at each locus. The probability per generation
that an allele at a locus changes to an alternative state is set to be

pe =p+mN, (1)

where p is the probability of mutation per locus, m is the probability of migra-
tion, and A is the number of neighboring populations of the same species that
have the alternative allele fixed at the locus under consideration. Expression (1)
utilizes the fact that the probability of fixation of an allele that does not affect
fitness is equal to its frequency [16]. With migration, new alleles are brought in
the patch both by mutation (at rate x) and migration (at rate mA/). In this ap-
proximation, the only role of migration is to bring in new alleles that are quickly
fixed or lost by random genetic drift. For example, if initially both the focal
population and its four neighbors have allele 0 at the locus under consideration,
then the probability that an alternative allele 1 is fixed in the focal population
per generation is g, = p. However, once this has happened, the probability of
focal population switching back to allele 0 is p. = p + 4m. If the migration rate
m is much larger than the mutation rate per locus p, switching back will hap-
pen much faster. As time increases, populations accumulate different mutations,
diverge genetically and become reproductively isolated species.

3 Model Implementation

There are two main computer programs utilized to implement our model of the
speciation process, Evolve and Cluster. As described above, Fvolve simulates the
evolution of bit strings in a two dimensional grid based geometry undergoing
evolutionary dynamical processes. Cluster then determines which group of bit
strings or populations are within a specified Hamming distance of each other. The
clustering method is single linkage clustering [17] with an input parameter K.
In most cases, we set parameter K to the mating threshold K,,. This procedure
produces clusters of mutually compatible populations (i.e. biological species).

Since the clustering process is hierarchical in nature, output from Cluster can
also be used to identify and group populations in a taxonomic manner, providing
insight into the hierarchical structure of the simulated populations. For example,
let us specify an increasing sequence of clustering thresholds K7 < Ky < K3 <
.... Then, all populations at a genetic distance less than K; can be thought of
as belonging to the same species, all populations at genetic distances that are
larger or equal than K; but are smaller than Ky can be thought of as belonging
to different species within the same genus, all populations at genetic distances
that are larger or equal than K5 but are smaller than K3 can be thought of as
belonging to different species and genera within the same family, etc.

Evolve-Cluster accepts a wide variety of input and produces a wide variety
of output. In order to provide focus on identifiable trends, we will concentrate
in this paper on the following input to and output from the Evolve-Cluster
simulations as shown in Table 1. (Note that there is no correlation between the
input and output items, they are just lists).
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Table 1. Evolve-Cluster Input/Output Parameters of Interest

Input Parameters Output

Geometry (1D, 2D, size) Number of Clusters (Species), Ng
Bitwise Mutation Probability, p Average Pairwise Distance, d
Deme Extinction Probability, Ep Average Distance from Founder, df
Population Extinction Probability, F}, Time to Speciation, T'

DNA strand length, L Duration of Radiation Event, 7
Population Migration Probability, m Cluster Diameter

Patch Carrying Capacity Cluster Range Distribution

Mating, Coexistence and Clustering Thresholds Cluster Average Pairwise Distance

One can visualize our model as follows: Each population is a point in a genetic
hyperspace; the clade (i.e., the whole system of populations) is a cloud of points
which changes its size, structure, and location in the genetic hyperspace. The
diameter of this cloud can be characterized by the average pairwise distance d
between members of the clade measuring how diversified the clade is. The average
distance to the founder d; characterizes the extent of the overall change (see
Figure 1). As time increases, populations get farther and farther away from each
other while at the same time moving farther away from the founding population.
Of course there is a limit as to how much d ¢ and d increase due to the finite
number of loci under consideration. In fact it can be shown that d ;= é and
d— 2+§(M) as t — oo. [Here, g(u) — 0 as u — oo and g(p) > 0 for all g > 0.
Essentially g(p) ~ 1/u.]

In addition, we can easily calculate how long it takes for speciation to occur,
how many species emerge, and what parameters affect the rate of speciation and
species diversity.

SH]
ISH

\‘m

(a)t=0 b)t>0
Fig. 1. The average pairwise distance d and the average distance to the founder d; at

two different time moments. The clades are represented by the spheres.

Figure 2 illustrates a typical speciation curve (i.e., the number of species or
clusters vs. time). This figure also explains the meaning of two statistics: the



8 M.A. Saum and S. Gavrilets

\Time to Speciation (7T°)
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Duration of Radiation (7)
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0 5000 10000
Generation

Fig. 2. A typical speciation curve

time to speciation T and the duration of radiation 7. Note that the number of
species stays at 1 for a small amount of time, then rises relatively quickly to
reach a stochastic equilibrium level.

All data and results reported in this paper are based on multiple runs of the
same set of parameters, usually between 30 and 50 repeats.

Distance from the Founder, Jf

One quick check that our model is working well is based on analysis of how certain
dynamics match the theory. In [18, Eq. 4¢], it was shown that the average Hamming
distance from a single founding population changes according to equation

dy(t) = 11~ exp(—c(u)t) 2)

where ¢(u) a function only of u, the mutation rate. This is basically a solution
to a random walk problem on the binary hypercube. Our model showed that
the fit to Equation 2 over hundreds of runs with varying parameter sets truly
is a function only of the mutation rate p and time. This perhaps is the single
best indication that our model is performing well with prediction and is inter-
nally consistent with the basic mathematical evolutionary theory concepts of
mutation, migration, and extinction.
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4 Parameter Studies

Since the Evolve-Cluster model seems to be modeling some aspects of the speci-
ation process well when compared with other models, it now remains to identify
other characteristics of our model. Specifically we will be analyzing the effect of
changing input parameters to first see if the results make qualitative sense and
then use our model to uncover hidden trends and quantitative results.

Geometry Size, Mating Threshold, and Clustering Threshold

Figure 3 contains summary graphs of nine different parameter sets. The graphs
are ordered from top to bottom increasing in 2-D geometry size, 10 x 10, 14 x 14,
and 20 x 20. The graphs are ordered from left to right increasing in mating
threshold K,, = 5,10, and 15. Each graph is the summary of fifty runs with
L = 256, m = 0.02 and p = 0.00004. On each graph there are five curves. The
three speciation curves are for the different clustering thresholds K, while the
other two curves are the average pairwise distance (d) between all populations
and the average distance from the founder (ds) as a function of time.

In our model, extensive diversification occurs relatively fast. The graphs in
Figure 3 illustrate the fact that d dominates initially, while d; eventually becomes
larger than d and stays that way. In addition, the asymptotics are consistent
with those discussed in the previous section. This trend can be understood by
considering the metaphor introduced above; the ball changes diameter quicker
than moving away from the origin initially, i.e., genetic changes go into producing
diversity at a rate quicker than moving the clade as a whole genetically away from
the founding population. After a short time, movement away from the founder
dominates while at the same time genetic diversity between the populations also
increases.

In our model, the probability of a genetic change p. (see equation 1) depends
on the number of neighboring populations of the same species and, thus, on
mating threshold K,,. With a higher K,,, there are more neighbors of the same
species which effectively reduces the rate of change and dampens d expansion.
This is evidenced by the fact that the higher the mating threshold K,,, the closer
the curves d and d r track each other. Since the number of loci L and mutation
probability 4 are the same in all of these cases, the d ¢ curve is the same in all
graphs as expected. It also appears that the larger the size of the system, the
greater the difference between d and dy, although the asymptotics still remain
the same as described above. This can be explained by the fact that with a larger
geometry, d increases unchecked by physical boundaries until boundary effects
coupled with the finite number of loci L effectively dampens d expansion and
the asymptotics take over.

As the clustering threshold K increases, the number of species decreases.
This is as expected, since larger clusters (clusters containing more populations)
implies there are less clusters. It is also clear that the number of species increases
as geometry size increases. It appears here that boundary effects do play a role
in speciation, effectively suppressing the speciation process to some extent.
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Fig. 3. The effects of geometry size, mating threshold K, and clustering threshold K
on the number of species N, the average pairwise distance d, and the average distance
to the founder dy as functions of time

The time to speciation T increases as K, increases. This is due to the fact that
it takes longer to accumulate enough genetic differences to separate populations
into new species. The duration of radiation 7 increases as K, increases. This is
due to the observation that radiation still occurs, but is not as rapid as at lower
mating threshold values, more evidence of negative mutation pressure applied
by the higher mating threshold.

There are other observations which can be made from the graphs shown in
Figure 3, including

— T increases as geometry size increases,

— T is approximately constant as geometry size increases,

— The difference between the number of species at different clustering levels
remains constant in time,
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— The difference between the number of species at different clustering levels is
approximately constant as mating threshold increases,

— The difference between the number of species at different clustering levels
increases as geometry size increases,

— 7 appears to be much less that 7" in all cases.

Migration and Patch Carrying Capacity

One of the parameter studies undertaken was to increase the carrying capacity
of each patch in the geometry so that multiple populations per patch could
exist at any time. With multiple populations allowed, the evolutionary dynamics
consist of a series of population splits followed by accumulation of additional
genetic differences between emerging species which eventually allows for their
coexistence in the same patch (when genetic distance is > K,), which in turn
leads to range expansions and increase in the number of populations per patch.

Figure 4 illustrates some results for a clustering threshold of K = 2 letting mi-
gration rate m vary. Part (a) shows the number of species in the system which we
normalized by the patch carrying capacity (i.e., the number of populations per
patch). Note that increasing the patch carrying capacity increases the number
of species Ng in the system disproportionately. Ng is essentially constant with a
slight decreasing trend as m increases. Part (b) shows that the average pairwise
distance d increases with the patch carrying capacity; d does not appear to de-
pend on the migration rate. Overall, allowing for multiple populations per patch
stimulates population expansion into multiple ecological habitat niches allowing
for rapid speciation to occur in parallel resulting in even more diversification, all
in approximately the same time frame.

Nyl pop @K=2 | L — Tpop
N/2 pops @ K=2 2 pop
ok - Ny/4 pops @ K=2 i ol - ;l::PQ
-- Ny8 pops @ K=2 pop
bl ) Y VIY! E T R B
0.01 1e-06 1e-05 0.0001 0.001 001
m

(a) (b)

Fig. 4. The effects of migration rate m on the normalized number of species and on
the average pairwise distance d in a model with 1, 2, 4 or 8 populations per patch

ol i el
Te-06 le-05 0.0001 0.001

5 Conclusions

Our CA based metapopulation model allows us to investigate the dynamics of
genetic diversification in a large dimensional state space. The adaptive radiation
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regime observed in the model is a rich source of data for helping one to better
understand the speciation process.
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We have recently shown that genetically programming game players, after
having imbued the evolutionary process with human intelligence, produces
human—competitive strategies for three games: backgammon, chess endgames,
and robocode (tank—fight simulation). Evolved game players are able to hold
their own — and often win — against human or human—based competitors. This
talk has a twofold objective: first, to review our recent results of applying ge-
netic programming in the domain of games; second, to formulate the merits of
genetic programming in acting as a tool for developing strategies in general, and
to discuss the possible design of a strategizing machine.
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Abstract. In this work standard lattice cellular automata and random Boolean
networks are extended to a wider class of generalized automata networks having
any graph topology as a support. Dynamical, computational, and problem solv-
ing capabilities of these automata networks are then discussed through selected
examples, and put into perspective with respect to current and future research.

1 Introduction

Cellular automata (CA) have been widely used since their introduction by Ulam and
Von Neumann at the beginning of the 1950s. They have turned out to be an extremely
flexible and simple model for studying many phenomena in a large variety of fields.
Indeed, it would be hard to name a single area of investigation where CA have not been
used with some success. This can be seen in two recent books [6,33] in which the fo-
cus is either on CA’s modeling capabilities [6], or on their intrinsic computational and
pattern formation properties [33]. In Wolfram’s book the claim is even more ambitious,
since CA are seen as the computational model at the source of almost all natural phe-
nomena. Without necessarily accepting such “grand” claims, it should be granted that
CA are indeed an extremely useful model. The “secrets” of the wide applicability of
CA models are to be found in their structural simplicity, the fact that they can approx-
imate continuous fields by a simpler discrete model which is easier to understand and
to implement numerically, and by their universal computational properties. Structural
simplicity is apparent in the use of rules that act locally in a regular lattice, and universal
computational properties of CA have been known for a long time [33].

On the whole, and although there are many variations on the central theme, CA have
been seen in general as simple homogeneous automata laid out on a regular grid, in-
teracting in a small geometrically regular neighborhood. On the other hand, in recent
years there has been substantial research activity in the science of networks, motivated
by a number of innovative results, both theoretical and applied. Starting from the semi-
nal 1998 paper of Watts and Strogatz [31], networks have been recognized as a central
model for the description of countless phenomena of scientific, social and technolog-
ical interest. Typical examples include the Internet, the World Wide Web, social ac-
quaintance networks, electric power supply networks, biological networks, and many
more. The key idea is that most real networks, both in the natural world as well as
in man-made structures, have mathematical properties that set them apart from regular
lattices and random graphs, which were the two main topologies studied until then. In-
spired by previous qualitative observations made by social scientists, Watts and Strogatz
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introduced an algorithmic construction for small-world networks ! in which pairs of
vertices are connected by short paths through the network. The existence of short paths
between any pair of nodes has been found since then in real networks as diverse as
the Internet, airline routes, the World Wide Web, neural, genetic, and metabolic net-
works, citation and collaboration networks, and many others [22] . The presence of
short paths is also a property of standard random graphs as those constructed according
to the Erdos-Rényi model [22], but what sets real networks apart from random graphs
is a larger clustering coefficient, a measure that reflects the locality of a structure. The
topological structure of a network has a marked influence on the dynamical processes
that may take place on it, a point that has been strikingly demonstrated, for example, by
the fault-tolerant properties of the Internet [2], and by the spreading of epidemics [23].

Regular lattices and random networks (which are also regular in a statistical sense)
have been thoroughly studied in many disciplines. For instance, the dynamics of lat-
tices and random networks of simple automata have received a great deal of attention
[16,12,6,33]. Starting from the above facts, conceiving of irregular networks of au-
tomata does not take a large stretch of imagination and could prove useful. Due to
their novelty, and in spite of their potential interest, there have been comparatively few
studies of the computational and dynamical properties of automata networks. Notable
exceptions are [26,30,24,27,28,19] which mainly deal with extensions of classical CA,
and a few recent articles on Boolean automata networks [3,4,21,13].

My intention in the present work is twofold: first, to define in a systematic manner a
wider class of CA built on top of general networks, and second, to review recent work
on their dynamical and computational properties in the new environment. Thus, I shall
first present a graph-theoretic unified view of automata networks, followed by examples
taken from the fields of automata computation and dynamics, and random boolean net-
works. The automata considered will be static, in the sense that the supporting network
topology does not change in time. However, this is not a good assumption for many sys-
tems either because faults dynamically affect nodes and links, or just because the nature
of the interaction between network nodes is itself dynamical as in social networks of
interacting agents. Here I shall deal briefly with the effect of network perturbations but
not with intrinsically dynamical network systems.

2 Cellular and Networked Automata

Cellular Automata are dynamical systems in which space and time are discrete. A stan-
dard d-dimensional cellular automaton consists of a finite or infinite d-dimensional grid
of cells, i.e. a regular lattice, each of which can take on a value from a finite, typically
small, set of values Y. The value of each cell at time step ¢ is a function of the values of
a small local neighborhood of cells at time ¢t — 1. The cells update their states simultane-
ously according to a given local rule. Asynchronous CA with a given sequential update
order can also be considered (see section 6).

! Small-world network is a general term meaning that a graph that has this property has both
a small diameter and a clustering coefficient that is larger than that of a corresponding ran-
dom graph. Watts—Strogatz small-world networks are just one particular family of graphs that
possess these properties.
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Formally, a cellular automaton A is a quadruple
A= (2,U,d,f),

where Y is a finite set of states, U is the cellular neighborhood, d € Z7 is the dimen-
sion of A, and f is the local cellular interaction rule, also referred to as the transition
function.

Given the position of a cell, i,i € Z d ina regular d-dimensional uniform lattice, or
grid (i.e., iis an integer vector in a d-dimensional space), its neighborhood U is defined
by:

Ui = {i,i+r1,i+r2,...,i—|—rn_1},

where n is a fixed parameter that determines the neighborhood size, and r; is a fixed
vector in the d-dimensional space.
The local transition rule f
f: 2" =X

maps the state s; € X of a given cell i into another state from the set X, as a function of
the states of the cells in the neighborhood U;. In uniform CA f is identical for all cells,
whereas in non-uniform ones f may differ between different cells, i.e., f depends on i,
fi-

For a finite-size CA of size IV (such as those treated herein) a configuration of the
grid at time ¢ is defined as

C(t) = (so(t), s1(t),...,sn-1(t)),

where s;(t) € X is the state of cell i at time ¢. The progression of the CA in time is then
given by the iteration of the global mapping, also called evolution operator ®

&:C(t) - C(t+1), t=0,1,...

through the simultaneous application in each cell of the local transition rule f. The
global dynamics of the CA can be described as a directed graph, referred to as the CA’s
phase space.

For one-dimensional CA with two possible states per cell f isa function f : {0,1}" —
{0, 1}, and the neighborhood size n is usually taken to be n = 2r + 1 such that:

$i(t+1) = f(si—r(t), s 8i(1), s Sir (1)),

where r € Z7T is a parameter, known as the radius, representing the standard one-
dimensional cellular neighborhood. The domain of f is the set of all 2™ n-tuples. For
finite-size grids, spatially periodic boundary conditions are frequently assumed, result-
ing in a circular grid for one-dimensional systems and a torus for two dimensional ones;
formally, this implies that cellular indices are computed modulus V.

To visualize the behavior of a one-dimensional CA one can use a two-dimensional
space-time diagram, where the horizontal axis depicts the configuration C'(¢) at a cer-
tain time ¢ and the vertical axis depicts successive time steps, with time increasing down
the page (for example, see Fig. 1).
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We now extend the previous concepts to Generalized Automata Networks (GAN).
With respect to standard CA, the most important change concerns the network topology:
whilst in CA this topology is a d-dimensional regular lattice, GAN can be built on any
connected graph. Let G = (V, E) be a graph, where V' is a set of vertices and E is a set
of edges. E is a binary relation on V; it is either symmetric if the edge is unordered, as
in undirected graphs, or it is an ordered pair, as in directed graphs. Both cases arise in
GAN. With these definitions, a GAN on V is a quadruple (G, X, U, {f;|i € V'}). The
only change with respect to lattice synchronous CA is in the local transition function
f which now depends on the degree k; of vertex i, i.e. the number of neighbors can
be different for different i € V. This can be formalized as: f; : Y% — X. As in
the case of CA, non-uniform GAN can be defined by allowing f; to depend not only
on the degree k; of vertex ¢, but also on the position of 7 in the graph G. Likewise,
asynchronous GAN can be defined by explicitly stating a sequence of vertex updates,
including random sequences. In this paper I deal with binary, i.e. ¥’ = {0, 1}, uniform
and non-uniform, synchronous and partially asynchronous GAN.

3 Small-World and Scale-Free Graphs

In this section I shall describe the main network types that will be used or referred
to in the sequel. Although the following material is well known, I include a succint
description for the sake of completeness so as to make the paper more self-contained.
The reader is referred to the original works for more details.

The Watts—Strogatz Model. Following Watts and Strogatz [31], a small-world graph
can be constructed starting from a regular ring of N nodes in which each node has
k neighbors (K < N) by simply systematically going through successive nodes and
“rewiring” each link with a certain probability 5. When an edge is deleted, it is re-
placed by an edge to a randomly chosen node. If rewiring an edge would lead to a du-
plicate edge, the graph is left unchanged. This procedure will create a number of links,
called shortcuts, that join distant parts of the lattice. Shortcuts are the hallmark of small
worlds. While the average path length? between nodes scales logarithmically with the
number of nodes in a random graph, in Watts-Strogatz graphs it scales approximately
linearly for low rewiring probability but goes down very quickly and tends towards the
random graph limit as (§ increases. This is due to the progressive appearance of short-
cut edges between distant parts of the graph, which obviously contract the path lengths
between many vertices. However, small world graphs typically have a higher clustering
coefficient® than random graphs, and a degree distribution P (k) close to Poissonian.

The Barabasi—Albert Model. Albert and Barabési were the first to realize that real
networks grow incrementally and that their evolving topology is determined by the way
in which new nodes are added to the network. They proposed an extremely simple
model based on these ideas [1]. One starts with a small cligue of mg nodes. At each

% The average path length L of a graph is the average value of all pairs shortest paths.

3 The clustering coefficient C' of a node is a measure of the probability that two nodes that are
its neighbors are also neighbors among themselves. The average (C') is the average of the C's
of all nodes in the graph.
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successive time step a new node is added such that its m < mg edges link it to m nodes
already in the graph. When choosing the nodes to which the new nodes connect, it is
assumed that the probability 7 that a new node will be connected to node ¢ depends
on the current degree k; of ¢. This is called the preferential attachment rule. Nodes
with already many links are more likely to be chosen than those that have few. The
probability 7(k;) of node i to be chosen is given by:

> j k; ’
where the sum is over all nodes already in the graph. The model evolves into a station-
ary network with power-law probability distribution for the vertex degree P(k) ~ k™7,
with v ~ 3, which justifies the name scale-free. As for Watts—Strogatz small-worlds,
scale-free graphs have short average path length and clustering coefficients that are
higher than those of the corresponding random graphs with comparable number of ver-
tices and edges.

The Barabdsi—Albert model is by no means the only way for constructing scale-free
graphs. For example, the BA incremental construction introduces historical correla-
tions, due to the non-equilibrium dynamics of the construction process, and also degree
correlations to some extent. Other constructions, such as the configuration model, may
produce uncorrelated scale-free graphs. It is also possible to build scale-free graphs with
a given degree distribution function, i.e. with an exponent -y ## 3. Here these distictions
are not crucial, although the reader is referred to the specialized literature for details
(see [22] and references therein).

(ki)

4 Dynamics and Pattern Formation in GAN

In a recent work, Marr and Hiitt [19] have investigated the connection between net-
work topology and the corresponding impact on network dynamics for binary GAN in
a systematic manner. The tools of their analysis were similar to those employed by Wol-
fram [32] in his study of the emerging spatio-temporal patterns in one-dimensional CA.
Although there are other, more rigorous classifications, Wolfram four-classes system,
together with Langton’s A parameter [18] are still useful to understand the dynamical
behavior of those CA, and an analogous of this classification was used in [19].

Marr and Hiitt studied Watts—Strogatz small-world graphs, Barabasi—Albert scale-
free graphs, and random networks. They defined two main classes of binary GAN
{21 (k) and 23(k), each depending on a single parameter . This parameter takes into
account the fact that in CA the transition function is defined for a constant number of
neighbors while, by definition, this is not the case in GAN. In the first class A remain
constant, while in the second one it varies with .

Marr and Hiitt showed by numerical simulation that the pattern formation capabil-
ity of binary GAN strongly depends on the topology of the underlying network and
that there are marked differences between GAN belonging to the two classes. By us-
ing temporal entropies, they found that in Watts—Strogatz small worlds increasing the
rewiring probability progressively destroys local collective behavior, and beyond the
small-world regime long-range correlations disappear. In Barabdsi—Albert scale-free
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graphs, variation of the degree correlations through rewiring without changing the de-
gree distribution, leads to an inhomogeneous distribution in word entropy of the time
series for the symbolic dynamics of individual nodes. From that point of view, nodes
with low degree have a far greater entropy than their regular graph counterparts. On
average, however, the word entropy is similar to that of CA. There are many other in-
teresting considerations in the paper of Marr and Hiitt for which we do not have space
here; the reader is referred to the original work for details.

5 Collective Tasks on GAN: Density and Synchronization

The density and the synchronization tasks are prototypical distributed computational
problems for binary CA. The design, evolution, and performance evaluation of one-
dimensional CA that approximately perform those tasks has a long history; an excellent
review appears in [7]. The tasks are briefly described below.

The density Task. The density task for a finite one-dimensional CA of size N is de-
fined as follows. Let C'(0) be the initial configuration of the CA, i.e. the sequence of
bits that represents the state of each automaton at time 0, and let pg be the fraction of
1s in the initial configuration. The task is to determine whether pg is greater than or
less than 1/2. If py > 1/2 then the CA must relax to a fixed-point configuration of all
1’s, otherwise it must relax to a fixed-point configuration of all 0’s, after a number of
time steps of the order of the grid size N. Here N is set to 149, the value that has been
customarily used in research on the density task (taking N odd avoids the case where
po = 0.5 for which the problem is undefined).

Fig. 1. The density task. Cell states are represented horizontally (black stands for 1). Time in-
creases down the page. The initial density of ones is 0.416.

This computation is trivial for a computer with a central control: just scanning the
array and adding up the number of, say, 1 bits will provide the answer in O(N) time.
Howeyver, it is nontrivial for a small radius one-dimensional CA since such an automaton
can only transfer information at finite speed relying on local information exclusively,
while density is a global property of the configuration of states. An example is given in
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Fig. 1. It has been shown that the density task cannot be solved perfectly by a uniform,
two-state CA with finite radius [17], although a slightly modified version of the task
allows perfect solution by such an automaton [5], or by a combination of automata [11].

The performance of a CA rule on the density task is defined as the fraction of cor-
rect classifications over n = 10* randomly chosen initial configurations (ICs). ICs are
sampled according to a binomial distribution among the 2™V possible binary strings i.e.,
each bit is independently drawn with probability 1/2 of being 0. Clearly, this distribu-
tion is strongly peaked around py = 1/2 and thus makes a difficult case for the CA to
classify. The best CA found to date either by evolutionary computation or by hand have
performances around 0.8 [7].

Using his small-world construction, and thus relaxing the regular lattice constraint,
Watts [30] has been able to obtain GAN with performance around 0.85, with the same
mean connectivity (k) as in the regular CA case. Moreover, given that different nodes
may have now different degrees, Watts used a simple majority rule * as a transition
function, a rule that cannot classify density in a regular CA. In [27] it was shown that
such high-performance GAN can be obtained automatically and easily with a simple
evolutionary algorithm, starting from either regular or completely random graphs.

The Synchronization Task. The one-dimensional synchronization task was introduced
in [9]. In this task the CA, given an arbitrary initial configuration C(0), must reach
a final configuration, within m ~ 2N time steps, that oscillates between all Os and
all 1s on successive time steps, i.e. if C'(m) is such a final configuration, and (say)
C(m) = {0}", one has C(m+2k+1) = {1}",and C(m+2k) = {0}, k=0,1,....
Figure 2 depicts the space-time diagram of a CA that solves the task for the given initial
configuration.

As with the density task, synchronization also comprises a non-trivial computation
for a small-radius CA, and it is thus extremely difficult to come up with CA rules that,
when applied synchronously to the whole lattice produce a stable attractor of oscillating
all Os and all 1s configurations. Das et al. were able to automatically evolve very good
ring CA rules of radius three for the task by using genetic algorithms [9]. Sipper did the
same for quasi-uniform CA, i.e. CA with a few different rules instead of just one [25],
attaining excellent performance for radius-one CA. The performance of a CA on this
task is evaluated by running it on randomly generated initial configurations, uniformly
distributed over densities in the range [0, 1], with the CA being run for M ~ 2N time
steps. Performance values close to 1 have been obtained.

Task Performance on Watts—Strogatz Networks. Figure 3 shows that GAN obtained
by artificial evolution of the network topology without including any preconceived de-
sign issue, yield high-performance automata networks in the same class of those con-
structed by Watts and better than ring CA for the density task. The simple majority rule
was used at each node. In these figures ¢ is the fraction of shortcuts in the graph; thus
¢ = 0 corresponds to the ring case while ¢ = 1 approaches the random graph case.
The results for the synchronization task (not reported here) are similar [28]. Thus,
relaxing the regularity condition of the network, one can easily obtain GAN that are at

* The majority rules attributes to the central cell the state of the majority of neighbors, including
the cell itself. In case of tie, the state is chosen uniformly at random.
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Fig. 2. A one-dimensional CA correctly performing the synchronization task
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Fig. 3. Density task. The ¢ - performance values of the 50 best individuals found by evolution
starting from rings and random graphs. For comparison, Watt’s results (redrawn from [30])are
also plotted.

least as good as the best designed or evolved CA for the tasks, with a similar average
number of neighbors. Besides, if instead of using the simple majority rule the local
transition function f was made itself to evolve, results would probably be even better.
In fact, in a recent work Mesot and Teuscher [21] shown that randomly interconnected
boolean automata using arbitrary boolean functions at the nodes (see section 6) can
perform the synchronization and density task with high performance.

Task Performance on Scale-Free Networks. In [8] Albert and Barabasi type networks
(see section 3) were constructed to be used as support for CA computations with (k) =
{6,12}. Results depicted in Figure 4 show that performance on the density task of CA
mapped on scale-free networks are above 0.7 for networks with a smaller my, the size
of the initial kernel. When a certain threshold is reached (mq about 14 for (k) = 6
and 35 for (k) = 12), performances drop dramatically. This means that the more the
structure of the scale-free network become star-like, with a unique oversized cluster
and only small satellites weakly connected (m — 1), the information circulates with
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more difficulties. Results for scale-free graphs built using the configuration model are
comparable. One can thus conclude that scale-free network topologies are less suitable
than Watts—Strogatz small worlds as a substrate for the density task. The results are
even worse than those obtained in rings [7] using specialized rules.

performance
>

OOOoo s<k>=12
. ; ,

, . , ,
0 5 10 15 20 25 30 35 40
mo

Fig. 4. Performance vs mgo of scale-free networks (built on the Albert and Barabdsi model) on
the density task. The circles represent the performance of networks with an average connection
(k) = 6 and triangles (k) = 12.

The relative unsuitability of scale-free nets for collective task solving is confirmed
by the numerical study of their behavior under noise for the density task. Using a proba-
bilistic fault model, it appears that Watts—Strogatz type networks are much more robust
than scale-free ones, as they tolerate a higher amount of errors without compromising
task performance too much [8]. This is a surprising result, given that scale-free net-
works are notoriously very robust under random node or link failure [2]. Needless to
say, Watts—Strogatz small worlds also have much better faul-tolerance capabilities than
rings for the same task.

6 Generalized Boolean Networks

Random Boolean Networks (RBN) are directed GAN that have been introduced by
Kauffman more than thirty years ago in a landmark paper [15] as a highly simplified
model of genetic regulatory networks. In a RBN with N nodes, a node represents a
gene and is modeled as an on-off device, meaning that a gene is expressed if it is on
(1), and it is not otherwise (0). Each gene receives K randomly chosen inputs from
other genes. Initially, one of the possible Boolean functions of K inputs is assigned at
random to each gene. The network dynamics is discrete and synchronous: at each time
step all nodes simultaneously examine their inputs, evaluate their Boolean functions,
and find themselves in their new states at the next time step. Over time, the system
travels through its phase space, until a point or cyclic attractor is reached whence either
it will remain in that point attractor forever, or it will cycle through the states of the
periodic attractor. Since the system is finite and deterministic, this will happen at most
after 2"V time steps.
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This extremely simple and abstract model has been studied in detail by analysis and
by computer simulations of statistical ensembles of networks and it has been shown to
be capable of extremely interesting dynamical behavior. We summarize the main results
here (a full description is found in [16]).

First of all, it has been found that, as some parameters are varied such as K, or the
probability p of expressing a gene, i.e. of switching on the corresponding node’s state,
the RBN can go through a phase transition. Indeed, for every value of p, there is a
critical value of connectivity K such that for values of K below this critical value the
system is in the ordered regime, while for values of K above this limit the system is
said to be in the chaotic regime. In classical RBN K = 1 corresponds to the ordered
regime, K = 2 is critical, and K > 3 means that the system is in the chaotic phase.
Kauffman found that for K = 2 the size distribution of perturbations in the networks
is a power law with finite cutoff that scales as the square root of N. Thus perturbations
remain localized and do not percolate through the system. The mean cycle length scales
at most linearly with IV for K = 2. Kauffman’s suggestion is that cell types correspond
to attractors in the RBN phase space, and only those attractors that are short and stable
under perturbations will be of biological interest. Thus, according to Kauffman, K = 2
RBN lying at the edge between the ordered phase and the chaotic phase can be seen as
abstract models of genetic regulatory networks.

RBN are interesting in their own as complex dynamical systems and have been
throughly studied as such using the concepts and tools of statistical mechanics. How-
ever, I believe that the original view of Kauffman, namely that these models may be
useful for understanding real cell regulatory networks, is still a valid one, provided that
the model is updated to take into account present knowledge about the topology of real
gene regulatory networks, and the timing of events, without loosing its attractive sim-
plicity. In the following I shall describe a couple of ways in which the Kauffman model
could be modified in order to take into account a number of experimental observations
that were not available at the time (more details of the model can be found in [13]).

The Network Model. Kauffman’s RBN model rests on three main assumptions:

— The nodes implement Boolean functions and their state is either on or off;

— The nodes that affect a given node in the network are randomly chosen and are a
fixed number;

— The dynamics of the network is synchronous in time.

The binary state simplification could seem extreme but actually it represents quite well
“threshold phenomena” in which variables of interest suddenly change their state, such
as neurons firing or genes being switched on or off.

Random networks with fixed connectivity degree were a logical generic choice in the
beginning, since the exact couplings in networks were generally unknown. Today it is
more open to criticism since it does not correspond to what we know about the topology
of biological networks. In fact, many biological networks, including genetic regulatory
networks, seem to be of the scale-free type or of a hierarchical type (see [29] and refer-
ences therein) but not random, according to present data. For scale-free networks, this
means that the degree distribution function P(k) is a power law P(k) ~ k=7, usually
with 2 < v < 3, instead of a Poisson distribution as in a random graph, or a delta
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distribution as in a classical RBN. Thus the low connectivity suggested by Kauffman
for candidate stable systems is not found in such networks, where a wide range of de-
grees is present instead. The consequences for the dynamics may be important, since in
scale-free graphs there are many nodes with low degree and a low, but not vanishing,
number of highly connected nodes. Along this line, M. Aldana has recently presented
a detailed analysis of Boolean networks with scale-free topology [3]. He definened a
phase space diagram for boolean networks, including the phase transition from ordered
to chaotic dynamics, as a function of the power law exponent v. He also made exhaus-
tive simulations for several relatively small values of NV, the network size.

The model of [13] has in common with Aldana’s the scale-free topology of the net-
works, although the graphs are constructed in a different way. But, in contrast to Al-
dana’s, a suitable semi-synchronous dynamics is defined for the system, instead of using
the customary synchronous update.

As sais above, according to present data many biological networks, including genetic
regulatory networks, show a scale-free output distribution P, (k) and a Poissonian in-
putdistribution P;,, (k) [29]. The networks used in Giacobini’s et al. work [13] have been
generated according to a mixed generalized/poisson random graph : first a sequence of
N out-degrees that satisfies a power-law distribution with exponent + is assigned to NV
nodes; then, every out-going edge is assigned as input to one of the [V nodes chosen at
random (excluding self-connections). The resulting networks have a scale-free distrib-
ution of the output degrees and a Poisson distribution of the input degrees.

Synchronous, Asynchronous and Semi-Synchronous Network Dynamics. Standard
RBN update their state synchronously. This assumption simplifies the analysis, but it
is open to discussion if the network has to be biologically plausible. In particular, for
genetic regulatory networks, this is certainly not the case, as many recent experimental
observations tend to prove. Rather, genes seem to be expressed in different parts of
the network at different times, according to a strict sequence (see, for instance, [10]).
Thus a kind of serial, asynchronous update sequence seems to be needed. Asynchronous
dynamics must nevertheless be further qualified, since there are many ways for serially
updating the nodes of the network.

Several researchers have investigated the effect of asynchronous updating on classi-
cal RBN dynamics in recent years [14,20]. Harvey and Bossomayer studied the effect
of asynchronous updating on some statistical properties of network ensembles, such as
cycle length and number of cycles. They used un update sequence in which the next
cell to be updated is chosen at random with uniform probability and with replacement.
[14]. They found that many features that arise in synchronous RBN do not exist, or
are different in non-deterministic asynchronous RBN. Thus, while point attractors do
persist, there are no true cyclic attractors, only so-called loose ones and states can be in
more than one basin of attraction. Also, the average number of attractors is very differ-
ent from the synchronous case: even for K = 2 or K = 3, which are the values that
characterize systems at the edge of chaos, there is no correspondence between the two
dynamics. Mesot and Teuscher [20] studied the critical behavior of asynchronous RBN
and concluded that they do not have a critical connectivity value analogous to synchro-
nous RBN and they behave, in general, very differently from the latter, thus confirming
the findings of [14].
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Considering the above reults and what is known experimentally from microarray data
about the timing of events in genetic networks it seems that neither fully synchronous
nor completely random asynchronous network dynamics are suitable models. Synchro-
nous update is implausible because events do not happen all at once, while completely
random dynamics does not agree with experimental data on gene activation sequences
and the model does not show stable cyclic attractors of the right size. Thus, the activa-
tion/update sequence in a RBN should be in some way related to the topology of the
network. A topology-driven semi-synchronous update method, called Cascade Update
(CU) has been proposed in [13]. Such an update scheme is certainly not a faithful model
for true biological gene activation sequences which are clearly not the same for differ-
ent regulatory networks. But the scheme is closer to biological reality than previously
proposed ones namely, fully synchronous and various asynchronous policies.
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Fig. 5. probability distributions of the number of different attractors (a), and of the length of the
attractors (b) for network realizations having N = 50 nodes evolving using cascade update
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The CU consists in an asynchronous sequence of synchronously updated blocks of
nodes. At the beginning of the evolution of the network, a node, say ¢, is randomly
chosen and updated. Then, in the next time step, the block of the nodes to whom ¢
projects is synchronously updated. The process continues, updating at each time step
a new block formed by all the nodes in the network to which the nodes updated in the
previous time step project. This scheme is deterministic: once the first node is chosen,
the sequence of all the successive updates is unique and will reach a cycle, since the
dynamical system is finite. As a consequence, the attractors of the dynamics cannot be
loose attractors, they have to be true point or cyclic ones.

The results found in [13] by extensive numerical simulation covering Aldana’s or-
dered regime, edge of chaos, and chaotic phase confirm that the behavior of the network
model is biologically plausible, showing cyclic attractors of reasonable length. This can
be seen in Fig. 5 where average results are reported for a network size N = 50 and
a power lae exponent v = 2.48 which places the system at the edge between the or-
dered and the chaotic phase. This intermediate regime, the analogous of Kauffman’s
K = 2, is the one where perturbations remain localized, according to Aldana, and thus
the system enjoys the necessary stability.

7 Conclusions

Relaxing the regularity constraints in cellular automata gives rise to generalized au-
tomata networks (GAN). Although in this way the systems become more complex to
describe ant to analyze, they also show a richer set of dynamical behaviors. Here we
have reviewed a number of those GAN, ranging from networks for collective task solv-
ing, to biological-like Boolean GAN. It has been seen that GAN have better problem
solving capabilities than CA, while at the same time offering superior fault-tolerance
behavior, except in the scale-free case, which is rather fragile from this point of view.
As models of biological regulatory networks, GAN are more credible than customary
RBN. They correctly describe the observed network topologies, and their dynamics is
also on the right track qualitatively. GAN have been known for a number of years now,
but they are still mostly unexplored. The review presented here and the work cited is
only a first step toward their characterization.
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begin to explore the necessary processes that generate this kind of complex
dynamics.
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Abstract. The major features of conventional cellular automata include
the inalterability of topology and the absence of memory. The effect of
simple memory (memory in cells and links) on a particular reversible,
structurally dynamic cellular automaton in the hexagonal tessellation is
explored in this paper.

Keywords: Structurally Dynamic, Cellular Automaton, Memory, Hexag-
onal.

1 A Hexagonal Cellular Automaton

Cellular Automata (CA) are discrete, spatially explicit extended dynamic sys-
tems. A CA system is composed of adjacent cells or sites arranged as a regular
lattice, which evolves in discrete time steps. Each cell is characterised by an
internal state whose value belongs to a finite set. The updating of these states
is made simultaneously according to a common local transition rule involving
only the neighborhood of each cell. Thus, if ai(T) is taken to denote the value
of cell ¢ at time step T, the site values evolve by iteration of the mapping :
UETH) = QS(UJ(T) € M) , where ¢ is an arbitrary function which specifies the
cellular automaton rule operating on the neighborhood A of the cell i .

This paper deals with a particular two dimensional totalistic CA rule, the
parity rule: aZ(TH) = Z a](»T) mod 2, acting on cells with two possible state

JEN;

values (0 and 1). Despite its formal simplicity, the parity rule exhibits complex
behaviour [1]. Figure 1 shows an example of the parity rule operating on a
hexagonal tessellation starting from an active cell with its six neighbors also

active. This will be the initial configuration all throughout this article.

2 Cellular Automata with Memory

Standard CA are ahistoric (memoryless): the transition function depends on the
neighborhood configuration of the cells only at the preceding time step. Historic
memory can be embedded in the CA dynamics by featuring every cell by a

S. El Yacoubi, B. Chopard, and S. Bandini (Eds.): ACRI 2006, LNCS 4173, pp. 30-40, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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N - N Co.

Fig. 1. A hexagonal CA with the parity rule. Evolving patterns up to T' = 8.

mapping of its states in the previous time steps . Thus, what is here proposed
is to maintain the transition rules (¢) unaltered, but make them act on the cells

featured by a function of their previous states: O'(T+1) = gb(s;T) € /\f])7 sET)
being a state function of the series of states of the cell i up to time-step 7.
Thus, cells can be featured by a weighted mean value of their previous states:

T-1
(T) T—t_(t)
o, "+ E a o )
W 6@ ey = =1 Vi 1]

T-1
1 + Z ant
t=1

and the s values are obtained rounding the m ones: s
(T) _ (T) (T)

ET) = Tound(mgT)), with
= 0.5 . Memory becomes operative after T" = 3, with the

M) _ 0 (@ 2 @)

initial assignations s; i i

In the two state scenario, geometrlcally discounted memory does not affect the
scenario if a < 0.5, but if a > 0.61805, cells with state history 001 or 110 will be
featured after T'= 3 as 0 and 1 respectively instead of 1 and 0 (last states), and
the patterns of the ahistoric and historic models typically diverge from T = 4.
This is so in Fig.2, which shows the effect of full memory: @ = 1.0, in which

case sl(»T) = mode(ap), oD

. /). Memory truncates the expansive evolution of
the parity rule, particularly at high values of the memory factor « in which case
small size oscillators of short period tend to appear. Thus, in Fig.2 a period two
oscillator appears as early as at T' = 4. But the effect is also dramatic at low
values of a: the progression in size turns out restrained and the aspect of the
patterns differs notably from that of the ahistoric ones. The effect of memory in

cells on CA has been studied in the references by Alonso-Sanz et al. .

if m,

Fig. 2. Effect of full memory on the parity rule starting as in Fig.1

Note that the memory mechanism here adopted is accumulative in its de-
mand of knowledge of past history: to calculate the memory charge wi(T) stated

in [1], it is not necessary to know the whole {O'i(t)} series, while it suffices to
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(sequentially) proceed as: ng) = angfl) + ai(T). Let us point out here that
the implementation of memory adopted in this work, keeping the transition rule
unaltered but applying it to a function of previous states, can be adopted in any

dynamical system (see some simple examples in [2]-[5]).

3 Reversible Cellular Automata with Memory

The memory mechanism considered here is different from that of other CA with
memory reported in the literature. Typically, higher-order-in-time rules incor-
porate memory into the transition rule. Thus, in second order in time rules:
UETH) = o(0\" ¢ i7J§T_1) € M) . Particularly interesting is the reversible
formulation based on the substraction modulo the number of states (noted ©):

o) = d)(a](»T) eN;) 00" reversed as ol Y = d)(a](»T) eN) oo
Figure 3 shows the evolving patterns of the reversible formulation of the example
of Fig.1. As a rule, the pattern at T' = 0 in the reversible simulations here is the

same as that at T'= 1.

04{-@%1:

Fig. 3. A reversible hexagonal CA with the parity rule starting as in Fig.1

To preserve reversibility, the reversible formulation with memory must be :
o) = ¢(8§T) eN;) o o™V [7] . Figure 4 shows an example starting as in
Fig.3 . The general considerations regarding the inertial effect of memory in the
irreversible scenario apply in the reversible implementation. Thus starting as in

Fig.3 but with full memory, a period four oscillator appears as at T' = 5.

Fig. 4. A reversible hexagonal CA with a = 0.6 memory starting as in Fig.3

For reversing from T it is necessary to know not only O'Z(T) and J§T+1) but
0 if 20" < Q(T)

also w!™ to be compared to £2(T), to obtain: s = L T+ i 9™ — o2T) -

% % %

1 if 20" > Q(T)
).

K2

- _ 1
Then to obtain sET 1), it is necessary to obtain: ng D= (ng) — O'Z(T) But
o
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in order to avoid the division by the memory factor (recall that operations with
real numbers are not exact in computer arithmetic), it is preferable to work

with 7(T D= Z(T) — O'i(T and to compare these values to I'(T'— 1) Z e,

0 if 2" V<rr-1
This leads to : sz(-T_l) = o'i(T) if 27(T D - =T (T —1) . Continuing in the
1 it 29" Vs -1

T-2
reversing process : 7, 2 ="V —ao"V and N(T -2) = Y ¥t . In
t=1

T—1
general : Wi(T*T) = 7£T77+1) — aT_lo£T77+1) and I'(T — 1) = Z aT=t, giving:
t=1
0 it 297" < (T 1)
SET—T) _ O_i(T—T-Fl) i 2%(T—T) —r(T—7) .
1 it 2977 > (T 1)

4 Reversible Structurally Dynamic Cellular Automata

Structurally dynamic cellular automata (SDCA) were suggested by Ilachinski
and Halpern [9]. The essential new feature of this model is that the connections
between the cells are allowed to change according to rules similar in nature to the
state transition rules associated with the conventional CA. This means that given
certain conditions, specified by the link transition rules, links between rules may
be created and destroyed; the neighborhood of each cell is now dynamic rather
than fixed throughout the automaton, so state and link configurations of an
SDCA are both dynamic and are continually interacting.

In the Ilachinski and Halpern model, an SDCA consists of a finite set of
binary-valued cells numbered 1 to N whose connectivity is specified by an N x N
connectivity matrix in which A;; equals 1 if cells ¢ and j are connected; 0 oth-
erwise. So, now : N = {j/)\gf) =1} and o7V = d)(O'](T) e M), The
distance between two cells ¢ and j, d;;, is defined as the number of links in the
shortest path between i and j. We say that ¢ and j are direct neighbors if 6;; < 1,
and that ¢ and j are next-nearest neighbors if 6;; = 2. There are two types of
link transition functions in an SDCA: couplers and decouplers, the former add
new links, the later remove links. The set of coupler and decoupler determines
the link transition rule: )\gH) = 7,ZJ(ZEJT)7 O’Z(T), UJ(T)) .

Instead of introducing the formalism of the SDCA, we deal here with just
one example in which the decoupler rule removes all links connected to cells in
which both values are zero ()\g) =12\ =0 iff JZ(T) + J§T) =0) and

i
the coupler rule adds links between all next-nearest neighbor sites in which both

values are one (/\( ) =0 /\(TH) =1 iff ai(T) + O'J(»T) =2 and 6§JT) =2).
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Let us consider the case of Fig.5 , in which, again, the initial hexagonal lattice

(with next-nearest neighborhood : (@) is seeded as in Fig.1. After the first
iteration, most of the lattice structure has decayed as an effect of the decoupler
rule, so that the active value cells and links are confined into a small region.
After T = 4, the link and value structures become a period-two oscillator.

VAVAVAVAN
VAVAVAVAVAVS

\VAVAVAVAVAN
\VAVAVAV/

Fig. 5. The ahistoric SDCA described in the text starting as in Fig.1

The Fredkin’s reversible construction is feasible i 1n the SDCA scenario extend-
ing the © operation also to links: )\(]T'H = w()\(T) 7 UJ(T)) @)\g_l) . Figure 6
shows the evolution of the reversible formulation of the SDCA of Fig.5 up to
T = 4. At variance with what happens in the irreversible formulation in Fig.5,
the initial lattice structure does not decay at T' = 2 (nor at posterior time-steps)
because of the adding of the structure at 7= 0 (at T — 1), supposed to be the
same that as at T' = 1. The planar representation of the web of connections may
appear ambiguous. Let us mention an example in Fig.6: the central cell seems to
be connected to every cell of its neighborhood at T' = 2 as it is at T' = 1, but this
is not so because of the superposition of webs, which causes the deletion of the
links of the central cell at 7' = 2 in Fig.6. The segments that cross the central cell
connect only its neighbor active cells, new conexions at T" = 2 not overlapped.
Link transitions rules do not alter auto-connections, but substraction of patterns
may. Thus, for example, in Fig.6 every cell is autoconnected at T'= 0 and T = 1,
but the substraction of these patterns leads to the complete disappearance of
auto-connections at T' = 2. Auto-connections are not represented in figures, but
of course they affect the mass updating.

VAVAVAVAVAVAVAVAVAY AVAVAV VAVAVAV
AVAVAVAV a4 VAVAVAVAN

VAVAVAVAVaVaVAVAVAY: AVA AVA
NAANANININININING VAVAVA AVAVAVA

Fig. 6. The reversible structurally dynamic CA starting as in Fig.5, up to T'=4

5 A Reversible Structurally Dynamic Cellular
Automaton with Memory

Memory can be embedded in links in a similar manner as in state values, so
the link between any two cells is featured by a mapping of its previous values :
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(T)
W
lg) = round(m (JT)) ZEJT) = )\EJT) if mg) = 0.5, after mg) = QZ(JT) 2] ,

with w,(r) = )\(T + Z ™ t)\ Z(]T—l) + a)\(,r)

The distance between two cells in a historic model (d;;) is defined in terms
of the [ instead of the A values, so that ¢ and j are direct neighbors if d;; = 1,
and are next-nearest neighbors if d;; = 2; Ni(T) = {j/dg) = 1}. Generaliz-
ing the approach to embedded memory introduced in Section 2, the unchanged
transition rules (¢ and ) may operate on the featured link and mass values:

ot = o(s5" € Ni) AT = (1D, s 57) [10]. A period-two oscillator

i 771 ]
is generated at T =6 w1th full memory in F1 .

Fig. 7. The SDCA with full memory starting as in Fig.5 from T'=4 to T = 11

A generalisation of the Fredkin’s reversible construction is feasible in the
SDCA scenario endowed with memory as: O'(T+1) = (;5( (T) ¢ N(T)) (T_l)

/\Z(.JTH) = zp(l () .8, ), s; ) @/\ . Now, for reversing from T it is necessary to
know not only O'(T), lg), ai(TH), nd [(7+Y , but also ng and wijr), proceeding

for reversing in connections as stated for mass values in Section 3. Figure 8 shows
the initial effect of memory with « = 0.6 in the initial scenario of Fig.6 .

Fig. 8. The reversible structurally dynamic CA with o = 0.6 memory starting as in
Fig.6. Evolution from T'=5up to T =8

The evolving patterns in the reversible SDCA model with full memory con-
verge from T = 7 to a period-two oscillator, one of whose components has no
active mass cell. In the @ = 0.9 memory model a period-four oscillator is gener-
ated at T = 11. If o > 0.61805, the pattern at T" = 4 has only the central cell
alive and the hexagonal web of connections restored, which clearly determines
the difference in the evolution compared to that of the ahistoric model.

Figure 9 shows the patterns at 7' = 13 for the ahistoric and a = 0.6 reversible
SDCA with the initial steps shown in Figs. 6 and 8 . In the ahistoric model, the
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web of connections is so dense in its central area that it is impossible to discern it.
The web appears dramatically cleared in the historic model with the small value
of the memory factor a = 0.6. The clearing of the web of connections together
with a restraint in the advance of mass, mark the inertial effect of memory.

VAVAVAVAVAVAVAVAYAVAVAVAVAVAVAVAVAVAVAVAYAVAVAVAVAVAVAVAVAY
VAVAVAVAVAVAVA‘ \VAVAV, 'AVA' \VAVAVVAVAVAVAVAVAVAVAN
AVAVA A'A‘ AVAVA AVAVAVAVAVAVAVAV

(.. o
DRI,
=%§=v ‘hﬂﬂﬂﬂﬂﬂﬂ

A%\ WVA WWAVAVAVAVAVAVAVAVAV/

NANA AVA'VVAVA‘ \VAVAVAVAVAVAVAVAY
JAVAVAVAVAVAVAVA AVAVA AVAVA 'AVAVANSAVAVAVAVAVAVAVAVA
NAANNININININNININININININININININININININININININININ

Fig. 9. Patterns at T' = 13 of the ahistoric and o = 0.6 memory SDCAs

Figure 10 shows the evolution of mass density, the average number of nearest
neighbors and next-nearest neighbors per site, and the effective dimension : the
average ratio of the number of next-nearest to nearest neighbors per site (a
discrete analogue to the continuous Hausdorff dimension, that in a hexagonal
lattice is : 12/7=1.714) in the simulations of Fig.9. The smoothing effect of
memory is seen again in Fig.10: ¢) the tendency to grow of the mass and the
two neighbor densities is clearly restrained with memory, i¢) the evolution of the
effective dimension is less erratic with memory.

6 Other Memories

Memory may be embedded either in cells but not in connections, or else, only
in connections. Figure 11 shows an example in the latter scenario.
Average-like memory models can readily be proposed by generalizing the
T

memory charges as: o.) Zé ® ngT) = Zé(t))é-;) , with £2(T)

Z 5(t) . The geometric discount model considered till now (§(t) = a® %) is just

one of the many possible weighting functions.

Alternatively, previous states can be pondered with the weight : §(¢) = t°.
Choosing integer ¢ parameter values allows working only with integers by com-
paring the 2w; and 2w;; figures across the lattice to the factor £2(T). For ¢ =0,
we have the full historic model, the larger the value of ¢, the more heavily the
recent past is taken into account, and consequently the closer the scenario to the
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Fig.10. Evolution of mass density, average number of nearest neighbors and next-
nearest neighbors per site, and effective dimension in the ahistoric (upper curves) and
a = 0.6 simulations of Figs. 6 and 8 up to T=20 implemented in a lattice of size 43 x 43

‘ AVAVAVAVA
AV AVAVAVAVA A AVAVA Gy AVAVAVAVAV

Fig.11. The evolving patterns of the SDCA described in text with memory only in
connections. Full memory. Evolution from T = 4 to T' = 7 starting as in Fig.6 .

ahistoric one. Figure 12 shows an example of the effect of integer-based memory

implementation with §(t) =t .
Another weight with the same integer-based property, is ¢!. This memory

weight is not operative with cells and links with two states, but it becomes
operative when allowing three states (0,1,2), in which case the m ) and l
values are to be compared to the hallmarks 1/2 and 3/2, assigning the last
state/link value in the case of an equality to any hallmark. In order to work
with integers and save computing demands, it is preferable to compare the 2w
values to the hallmarks 1 and 3 [5]. Figure 13 shows the effect of §(¢) = 2¢
memory starting as in Fig. 6 but allowing cells to have three states (links remain
two-valued). The cells of the neighborgood of the central cells reach state 2 at
T = 2 in Fig.13 because 0 ©3 1 =2. Memory has effect already at T = 4 as the
central cell has zero mass value in the ahistoric model.
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Fig.12. The evolving patterns of the SDCA described in text, with integer-based
memory 6(t) = t. Evolution from 7' =4 to T' = 7 starting as in Fig.6.

VAVAVAVAVAVAVAVAVAVAY
A\VAVAY WMW \VAVAVA
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Fig. 13. The evolving patterns of the three-states reversible SDCA described in the
text. Square cells are at state 2. Evolution with 6(¢) = 2° memory in cells. Patterns
from T = 2 up to T = 5 starting as in Fig.6.

Reversing is easier in the integer-based memory scenarios than in that of geo-
metric discount as w(T) Z(T_l) —|—6(T)J§T) and wi(jr) = wZ(JT 2 +6(T ))\g? read-
ily reverse, without the computational inconvenience of division by «. Working
only with integers (@ la C'A) is a clear computational advantage. Nevertheless,

the inc! and t¢ , share the same drawback : they exzplode at high values of t.

7 Discussion

The effect of memory embedded in cells and links on a particular reversible
structurally dynamic cellular automaton starting from a simple hexagonal sce-
nario is qualitatively (pictorially) studied in this work. As a rule, geometrically
discounted memory has been shown to produce an inertial effect that tends to
preserve the main features of initial conditions. This notably alters the ahistoric
dynamics, even if a low level of memory is implemented.

A complete analysis of the effect of memory on reversible structurally dy-
namic CA (RSDCA) is left for future work which will develop a phenomenol-
ogy of RSDCA with memory, i.e. the full analysis of the rule space based
on the morphological classification of patterns formed, the intrinsic parame-
ters (e.g. A and Z), the structure of global transition graphs, the entropy and
other dynamics-related issues. Potential fractal features are also to come under
scrutiny [11].

Some critics may argue that memory is not in the realm of CA (or even of Dy-
namic Systems), but we believe that the subject is worth studying. At least CA
with memory can be considered as a promising extension of the basic paradigm.
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A major impediment to modeling with CA stems from the difficulty of utilizing
the CA complex behavior to exhibit a particular behavior or perform a partic-
ular function: embedding memory in states and links broadens the spectrum of
CA as a tool for modeling.

The SDCA seem to be particularly appropriate for modelling the human brain
function (links/synapses connect cells/neurons) in which the relevant role of
memory is apparent. Reversibility in this context would avoid the possibility of
"reinventing history”. Models similar to SDCA have beeen adopted to build a
dynamical network approach to quantum space-time physics [12]. Reversibility
is an important issue at such a fundamental physics level.

Apart from their potential applications, SDCA with memory have an aesthetic
and mathematical interest on their own. The study of the effect of memory on
CA has been rather neglected and there have been only limited investigations
of SDCA'. Nevertheless, it seems plausible that further study on SDCA (and
SDLGA [19]) with memory? should turn out to be profitable.

Acknowledgement. Supported by CICYT Grant AGL2002-04003-C03-02 AGR.
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Abstract. For simulating physical and chemical processes on molecular
level asynchronous cellular automata with probabilistic transition rules
are widely used being sometimes referred to as Monte-Carlo methods.
The simulation requires huge cellular space and millions of iterative steps
for obtaining the CA evolution representing the real scene of the process.
This may be achieved by allocating the CA evolution program onto a
multiprocessor system. As distinct from the synchronous CAs which is
extremely efficient, the asynchronous case of parallel implementation is
stiff. To improve the situation we propose a method for approximating
asynchronous CA by a superposition of a number of synchronous ones,
each being applied to locally separated blocks forming a partition of the
cellular array.

1 Introduction

The increase of computing power both of individual computers and of multi-
processor systems enhance the development of simulation methods for obtaining
new knowledge about natural and technological processes. Usually, simulation of
spatial dynamics in physics is performed by partial differential equations (PDE)
solution. But in case when processes under simulation are nonlinear or have dis-
continuous behavior PDE are impuissant. Bright manifestation of the situation
is kinetics of nano-systems, such that epitaxial growth on silicon crystal [1], au-
tovawes and oscillations during the oxidation of carbon monoxide on catalyst
surface [2,3], where the direct modeling of possible movements of particles and
their stochastic interactions in a discrete space is used. Due to the stochastic
character of the processes the models are sometimes classified as ”Random Se-
lection Algorithms of Monte-Carlo methods” [4,5], actually being asynchronous
CA with probabilistic transition rules. It is clear, that very small size of real
”particles”, i.e. molecules or atoms, stipulate the necessity of huge size of the
CA, and real speed of their movements requires large simulation time. Thus, the

* Supported by 1)Presidium of Russian Academy of Sciences, Basic Research Program
N 14.15 (2006), 2) Siberian Branch of Russian Academy of Sciences, Integration
Project 29 (2006).
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© Springer-Verlag Berlin Heidelberg 2006
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capability of simulation is constrained by the performance of modern computers.
The situation might be essentially improved by using multiprocessor supercom-
puters which are available for scientific community nowadays, but as distinct to
the synchronous CA parallelization of asynchronous CA evolution is a hard task.

A natural way to achieve acceptable parallelization efficiency is to transform
the given asynchronous CA into a synchronous one, which approximate its evo-
lution. The advantages of such an approach is twofold. First, its implementation
is faster, because of the decrease of random number generator use. Second, al-
location of a CA onto many processors for parallel simulation becomes easier
and more efficient. The idea has been already exploited for a particular case of
surface reaction simulation [6]. Here we aim at the development of systematic
method and present some results of its experimental investigation.

Apart from the Introduction and the Conclusion the paper contains three
sections. The second section contains definitions of used concepts. In the third
section asynchronous to block-synchronous transformation and its justification
are given. The fourth section is dedicated to parallel implementation of of block-
synchronous CA.

2 Formal Statement of the Problem

The class of CA under investigation is a mathematical model of the phenomena
consisting of elementary actions of particles. A particle may be interpreted as a
real atom or molecule. Elementary actions are mostly the following: adsorption of
particles from the medium (gas) , sublimation, dissociation, diffusion, chemical
reaction. The processes are stochastic, probability of each action being condi-
tioned by physical parameters. The class of CA modeling the above processes
differs from that of classical cellular automata in the following: 1) transition rules
are probabilistic and deal not only with Boolean states, but also with integers
and sometimes with symbols, 2) a single transition rule is allowed to update a
group of cells at once, being a particular case of substitution systems)from [7] or
[8], 3) the mode of operation is asynchronous, i.e. each time only one updating
act is performed, the cells to be updated being randomly chosen.

A CA with the above features is further referred to as a kinetic asynchronous
CA, being denoted as CA, and represented by three concepts CA = (A4, M, 0),
where A is a state alphabet, M — the set of elementary automata names, 6 — a
transition rule. There is no constraints imposed to the alphabet. As for the set
of names, 2D Cartesian lattice M = {m : m =14,5,i =0,...,1;j =0,...,J},
is considered, m being used instead of (i, ) for short. A set 2 = {a,m) : a €
A,m € M} forms a cellular arrays, where a pair (a,m) is called a cell, a € A
and m € M. On the set M naming functions ¢ : M — M may be defined. If
my = @(m), then my, is a neighbor of a cell named m.

A subset of cells

S(m) = {(vo,m), (v1, p1(m)), .., (vg, pq(m))} (1)
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form a local configuration, a cell (vg, m) being referred to as its reference cell,
the set of cells names in it

T(m) = {m’ Qpl(m)’ SE) ‘Pq(m)} (2)

being called as an underlying template. Two local configurations S(m) and S’(m)
with the same reference cells represent an elementary act of cellular array up-
dating,

0(m) : S(m) — S'(m), T'(m) C T(m), (3)

where S’(m) = {(ug, px(m)) : k =0,1,...,p,p < ¢, is a next-state local config-
uration, whose cell states ux, = fr(vo,v1,...,v4), k=0,1,...,p, are transition
functions values.

Application of 8(m) to all cells of £2; transfers the cellular array into the next
global state (2,11, which is considered as an iteration. In CA, this transition
may be represented as a transient sequence

Ja(Qt) = (Qtv’”;Qt+l‘r7~'~79t+;ﬂ')7 (4)

where 7 is a micro-step for one updating, and 2yy,r = 2,11, p = |[M]. All
possible transient evolutions starting from 2, and ending at 2,41 constitute
an ensemble 7,(£2), whose cardinality is |y, (£2)] = u!. The sequence X' (§2y) =
(20,...,82,...,027) is referred to as an evolution, the set of all possible evolu-
tions of a CA,, starting from an (2 is denoted as I'cp_({2).

3 Approximation of an Asynchronous CA by a
Block-Synchronous One

Since synchronous CA are preferable for parallel implementation, there is a nat-
ural intention to transform a given CA, into a synchronous one preserving the
evolution of CA,,. Unfortunately, there is no exact method known by now how to
do this, hence, we make an attempt to obtain an approximate one. The idea used
is to impose some order on the random choice of cells to be updated, making
this in such a way as to bring no distortion in the evolution progress but only re-
stricting the possible choice of state-transition sequences. Moreover, introducing
synchronicity, one should be cautious for conservation behavioral correctness. It
is most important because of the fact that in CA, multicell updating is used,
i.e. some cells are updated at once. The correctness condition (in [8] referred
to as noncontradictoryness) requires that no two simultaneous acts of updating
change the same cell state at the same time. Formally, the sufficient correctness
condition is as follows.

T'm)NT (pi(m)) =0 VYme M, Viel,...q, (5)

where T"(m) and T’(¢;(m) are underlying templates for S’(m) and S’(¢;(m))
in (3). It is clear that CA,, are always correct because only a single (although a
multicell one) is allowed at a time.
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We shall say that a CAg approximates a CA,, if
I'p(2) CIL(2) VR2eAxM. (6)

and construct the approximation in the form of a block-synchronous CA (further
denoted as CAg) which operates as follows.
1. On 2 a set of partitions IT = {II4,...,II},..., Ty} is defined as follows:

Iy ={By,....B},....Bf}, |UB{=0 (\Bl=0, G=[M|/b. (7)
g g

B{ having the underlying template

Tp(mg) = {my, ¥1(mr), ..., Yi(my), ..., Yp(my) } (8)

my, being a reference cell name of a block Bf € IIj.
2. A transition 2; — (2,17 is divided into b steps, the resulting arrays forming
a sequence:

t
o3(t) = (2, Qugers s Quqviey o, Qeqy), = b 9)
where on k-th step, &k = 1,...,b, 6(m) is applied synchronously to reference

cells (vy,my) of all blocks BY € I, g =1,...,G.

3. Partitions Il € II are processed in a random order, the ensemble 3 of
transient sequences in the transitions (214 — (2444 (r41) having the cardinality
[y8] = bL.

Theorem 1. A CAg = (A, M, ) is an approximation of an AC,, if
T'(m) C Tp(m), (10)

where T"(m), Tp(m) are underlying templates of 6(m) and Bf, respectively.

Proof. To prove the Theorem it is sufficient to show that the relation vy5(£2) C
Yo (£2) holds for each iteration 2; — 2;11. The latter, according to (9), may be
represented as a sequence of synchronous transitions 2,4 4x — 2, 4/(x41) which
also belong to the set of cellular arrays included in o, (§2(¢)) (4). It follows from
two facts: 1) condition (10) of the Theorem provides the correctness condition
(5) of the synchronous step , and 2) property (7) of CAg ensures that the result
does not depend on the mode of operation. Moreover, in the sequence of syn-
chronous steps the portion of next-state values used as arguments in functions
(3), being equal to * " increases with k in the similar way than it takes place
in asynchronous case. So, the whole iteration result is equal to the result of an
asynchronous iterative step, which proves the Theorem.

Taking into account the approximation concept (6), the approximation accuracy
may be assessed only as the relation between the numbers Qg of transient se-
quences oo (f2(t)) encapsulated in a transition 2(¢) — 2(t + 1) of CAg, and
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the total numbers of transient sequences in v, ({2), which yields € = G!,bl How
serious is the discrepancy from the true process under simulation depends on
many factors and may be clarified only by a comprehensive experimental study.

Example 2. The most simple model of epitaxial growth on Silicon (Si) surface
is a composition of two following actions: 1) absorption of Si-atoms from the gas
with the probability ps; 2) diffusion of the absorbed atoms over the surface. An
atom diffuses to a neighboring cell if it has n > 0 neighbors (n = 1,2, 3,4), whose
states is less that that of its own. The probability of the diffusion act is p’ =
0,05, and the choice among n possible directions to move to is equiprobable,
80 pg = p’'/n. The process may be described by an CA,= (A, M, 0) where A = N,
M={(i,j):i=0,...,1,7=0,...,J}. A cell (a,(i,7)) corresponds to a site on
a Si crystal surface, where the thickness of the adsorbed layer is equal to a atoms.
The transition rule 6(i, j) is a superposition of 9,45 responsible for absorbtion,
and Va5 ¢(i,7))) responsible for diffusion.

)
Daas = {(vo, (i,7))} = {(vo + 1, (i, 4)};
ﬂdlff {(1}07(i7j))7(1)1,<,01(i7j)),(1)2 902(7' J)) (037903(iaj))7 (11)
(U47<p4(i7j))} o {(UO, (Z’j))’ (u1,<p1(z j)) (u2’<p2(i7j))7
(u3, p3(i, 7)), (ua, ¢a(i, 5))},
where
_{vo if (Vk:ug>wv) A (rand > py),
O7 Vg +1if (up <wo) A (rand <pn) A (1/n <k/n < (k+1)/n).
rand being a random number in the interval [0,1].

(12)
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Fig. 1. The dependence P(t') for AC, simulating epitaxial growth and its approxima-
tion by a CAg, |M| = 200 x 200, p, = 0.2, t' = t/500
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The simulation process shows the formation of islands of adsorbed atoms on
the Si surface. One of the features under investigation is the dependence of
total perimeter P(t) of the islands on time. The perimeter P is computed as
a number of cell pairs having different states. During the process this number
exhibits oscillations, which are of interest for the researcher. In Fig.1 a few first
waves produced both by CA,, and CAg of such oscillations are shown, CAg being
obtained according to the above method with the block-size 3 x 3. The mean
square error of approximation computed according the above experiment data
is £ = 0.0412. Moreover, CAs simulation is 1.5 times faster, than CA,.

4 Parallel Implementation of CA,

When simulating spatial dynamics on N processors the simulation space is
divided into N parts, each allocated and processed in its own processor, the
processors exchanging data each iteration. Time for transmitting a data pack-
age Tirans = Tiat + VTpit, where Tj,¢ is latency time, V-the amount of bits in
the package, and Tp;; - bit transmission time. From the relation Tjq: > Ty it
follows, that the exchange efficiency depends directly on package size. That is
why parallel implementation of synchronous CA evolution, where all border cells
states may be packed in one package, is extremely efficient, the speedup being
close to N provided that

Tcomputation > Ttransmission (13)

Unfortunately, CA, parallelization allows no package to be formed, because any
delay in cell state transmission breaks the correctness condition (5). So, each
state change on the border of the array allocated in a processor requires an
exchange to be performed. It leads to the slow down instead of speeding up,
because (13) cannot be reached even with very large arrays.

The situation is quite different for CAg, because, border cells states of the
results of synchronous steps may be transmitted in a package. The experimen-
tal results (Table 1), obtained by running the CAg simulation program on the
cluster MVS-1000/128 of Siberian Supercomputer Center, show quite acceptable
speedup for large enough cellular array size.

Table 1. Time T (min), speedup S = Tn/T1, and efficiency C = T1/(NTn) in
performing 10* iterations of CAs simulation from the Example 1, array size being
6000 x 6000

N 1 4 9 16 25

T 817.08 212.91 113.66 55.52 41.65
S 1 3.83 7.18 14.78 19.64
C 1 0.95 0.79 0.92 0.78
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5 Conclusion

The problem of parallel simulation of kinetic asynchronous CA evolution is con-
sidered. It is shown that to make parallel implementation speedup acceptable
it is necessary to approximate it by a a block-synchronous CA. An algorithm
for constructing a block-synchronous approximation is given and approximation
error is assessed. Experimental results are presented which show the approxima-
tion error to be admissible for probabilistic algorithms, and speedup of parallel
implementation quite acceptable.
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Abstract. Regional analysis in systems theory has been studied for
systems described by partial differential equations [6]. In this paper, we
propose an approach based on Cellular Automata (CA) models. The ap-
proach is considered for real-valued additive CA. The problem of regional
controllability is explored and connected with actuators structures. The
so-called rank condition is established. Dual results for the observability
of additive CA are developed.

Keywords: Additive real-valued Cellular Automata, Regional control-
lability, Regional Observability, Actuators, Sensors.

1 Introduction

Amongst the most important problems in systems analysis are the controllability
and the observability ones. These concepts have been extensively developed, see
[2] and the references therein. For controllability issues, one normally considers
a control system on a time interval [0,7] and asks whether some particular
target state z4 is reachable. On an other hand the observability consists in the
state reconstruction based on the knowledge of the system dynamics together
with an output function [3]. An extension which is very important in practical
applications is that of regional controllability and observability. Regional analysis
of DPS is based on the following principle. We consider a given region (sometimes
said subregion) w, as a subdomain of 2 to which we pay a particular attention.
That is to say instead of studying an objective problem on the whole {2, we can
focus only on the subregion w (with the possibility to take w = §2). This allows
the generalization of the controllability and different other concepts in systems
analysis.

Cellular automata are increasingly being used for representing geographical
processes including many applications ranging from urban to environmental sys-
tems. They have also been recognized for a long time as an effective way of
simulating biological phenomena. They are discrete dynamic systems consisting
of similar elements which directly interact with their nearest neighbors. Even if

S. El Yacoubi, B. Chopard, and S. Bandini (Eds.): ACRI 2006, LNCS 4173, pp. 48-57, 2006.
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the interaction is based on simple local rules, the resulting structures from the
CA evolution may be extremely complex. The aim of this paper is to consider
additive cellular automata in the context of systems theory. We propose CA as
an alternative modeling approach in the sense that they may be viewed from
a mathematical point of view, as discrete counterpart to PDEs, for exploring
regional controllability and observability. In [4] an appropriate way to introduce
control and observation in CA to make them more useful in systems theory is
given. In this paper we consider a simplified approach in the case of real-valued
additive cellular automata to explore regional controllability and observability.

2 Considered Systems

2.1 Additive Real-Valued CA Models

In this paper we consider a class of cellular automata models evolving in a space
domain D C R" assumed to be unbounded with respect to all the variables.

e The space domain D is represented by a regular lattice £. Each site or cell
is denoted ¢; with i = (i1,42,...,i,) € 2 CZ".

e The state of the system is updated using a set of rules that take into account
the values of the site and its neighboring cells given by {c;+x , k € L}, where L
is a part of {2 satisfying —L C L and such that 0 € L.

The CA evolves over a succession of time steps and the values of all the sites
in the lattice are updated synchronously in time with ¢t =0,1,..., 7 —1,7T.

e At time t, the neighborhood of the cell ¢; is V; = i + L, assuming that
L=V,.

e We denote zf the state of the cell ¢; at time ¢, where the state values range
in the state space £ = R. We denote 2? the initial state of the cell ¢; (i.e. at time
t=0).

e When the system is autonomous, i.e. without control, we assume that the
state of the cell ¢; is given by the additive transition rule

2t = Zﬁszﬁ_k , 1€8 (1)

keL

where the coefficients () are real positive and satisfy the following conservation

law
> Be=1 (2)
keL
which leads to Z 2t = Z z). When the system is excited by a control & then
e i
the state is given by
A =N "Bl € i€, =012, (3)

keL
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Remark 1

1. In the above hypothesis, we assume that {2 is stable for the addition of Z"
and 0 € 2.

2. The hypothesis V; = i + L means that the neighborhoods of the cell ¢; are
deduced from each other by translation.

3. The condition —L C L is a symmetry hypothesis. In the case where the
neighborhood are not symmetric one can extend them by symmetry consid-
ering B, =0if k & L.

2.2 State Explicit Form

We are going to establish a direct calculation rule. For that purpose, we introduce
the following generalizing definition.

Definition 1. Consider a cell c¢;. A neighborhood of order t of ¢; is the set V!
given by
Vio — {Z}, Vil “ Vt+1 U V
jevt

Thus we can deduce easily from the above definition that V™' = V! + L and
Vi=i+ L, for all t € N while L; = VJ is the neighborhood of order ¢ of the
origin cell 0 defined by

Lo={0}, Li=L, Liyy=Li+L, t=01,2,...

The recursive calculation rule of the state may be generalized in the following
result.

Proposition 1. The state of a cell given by (3) may be calculated using the
initial state of the neighboring cells by

Z_ZCMHPLZ oot t=1 (4)
(€L, s=04eLli_1_s

where the coefficients Ci € Ry, assumed to be equal to O for k ¢ Ly, are given
by the recursive formula

CY = by, if kel
Cit'= Y By if k€ Lyt t=0,1,2,--
LeL

Remark 2
1. If the coefficients depend on time and on the cell ¢;, then we have

t+1 Zﬁzttk+£

keL
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and the state of the system may be expressed by

Zc”z?+k+z Yooyt i€, t=0,1,2,-

k€L, s=0fL€Lli—1-s

where the coefficients C,i’t (=0 for k ¢ L;) may be calculated, for all i € £2, by
the relations

C,’:';O — 601{: lf k S Q
Cotl = Y g Ct i ke Ly t=0,1,2,- -
ict

2. The coefficients C}. can be expressed using the coefficients 3, by

SO 31530301 £

1<j<t ;€L

where 6(i,7) = 1 for i = j and (4, j) = 0 otherwise.

3. The coefficients C} satisfy the same conservation law (2) than the (8x)’s,

ie. Y Cp=1, t=0,1,2-

3 Regional Controllability of Additive CA

3.1 The Controlled System

We assume now that the system is excited on a subregion of the lattice denoted
by £1 with £; C £ and indexed in £, C £2, by a control u‘ € U C R. Each cell
cj of §2y is excited, at time ¢, by a term u’g; where the function

g:jEQlﬁngRi

defines the space distribution of the control on 2;. The cells which are not in
{21 are not excited by the control but they also receive the effect of the control
via the neighboring cells.

The state of a cell ¢; can be calculated by the same rule but some of the cells
are augmented by the control effect. For a cell ¢; which neighborhood is V;, two
cases may be considered.

Case 1: Consider the case where 21 NV; = ), then no neighboring cell is excited
by the control, and we have

t+1 t
2 —E Bezite

LeL
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Case 2: In the case where £2; N'V; # (), then the cells which are in £, N'V; are
excited (those which are in 2§ NV, are not). We obtain

A= Y Bl i)+ Y Bezly

i+e2INV; i+LE 21NV
With the convention that Z() = 0, the last formula may generalize the two
0

cases and written in the form

2t = Z Beziy + Z Bezly o +u! Z Begi+e

i+Le21NV; i+LE 21NV iHE1NV;
t t
= Z Beziyy + biu
teL
where b; = Z Begite. In the more general case where p controls u} are
i+Le21NV;
applied on p disjoint zones {2, we obtain the general formula
p
t+1 t k, t
z T = ZﬂzziM—FZbi uy, (5)
terL k=1
with
k_ k
by = Z 5egi+e (6)
iH+LEQLNV;

The initial states 2!, i € §2, are assumed to be given.

Ezample 1. Consider the system evolving in {2 = Z where the neighborhoods
are given by V; = {i — 1,4,i+ 1} and the following state transition rules

1
1
2t = - (22{_1 +32{ + 22/ ) = E Beziys (7)
=1

with Gy = :;7 61 =01 = ? We excited this system in ; = {5} (pointwise
action) by the control u' € R with g5 = 1 we obtain the coefficient

! 2 3 2
by = E ite = 0 b b;
Z:AﬁeQM 7 4+7 5+7 6

and the following state transition rules of controlled system is

1 (220 +32f+ 220 )+ 2ut if i=4dori=6
2= L (220 324+ 220 ) + 3ul if i=5

3 (220 + 32t 4+ 228 ,) otherwise
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3.2 Actuators

Consider again the controlled system described by (5) with z) given in R, are
equal to 0 except in a finite number of cells. Considering the controls uf, € R,
the state of the cell ¢; denoted by z! (u) satisfies

P
szrl(u):ZﬂngM(u)—&—beufc , tef2, t=0,1,...,T—-1
el k=1

The controls are (u},), , and they are located in a control space
Uz{u: (ur), Jub €eR;0<t<T—1, 1§k§p}:]RpT

We introduce the notion of actuator as stated in [2] for systems governed by
partial differential equations.

Definition 2

1. An actuator is a couple (£21,g) where 1 C {2 is a sub-lattice of connected
cells and g : j € 1 — g; € R,

2. (11 is the actuator support and g is the space distribution of the actuator.

8. The actuator is said to be pointwise if its support £21 is reduced to one cell.
Otherwise the actuator is said to be a zone actuator.

When the system is excited on p sub-domains {2} of {2, each cell ¢; is affected
by the term g;ul. The previous definition is generalized as follows.

Definition 3

1. The sequence of couples {(Q;wgk) s k=1,2,... ,p} s said to be a sequence
of actuators if each (Q;wgk) is an actuator and 2 N 2y =0 for k # L.

2. The sequence of actuators is pointwise (respectively zone) if each actuator
(92, g%) is of pointwise (respectively zone) type.

3.3 Regionally Controllable CA

Consider a given nonempty sub-domain (region) w C {2 and denote by |w| the
number of celles of w. In this section we consider the statement of regional con-
trollability of systems modeled by cellular automata. From the previous section,
the state of the controlled system (on p zones {2;) may be calculated directly
using the initial conditions by the formula

p t—1
)= 00, + 33 N ot bty L t=0,1,2,... (8)
teL, k=15=0/fEL; 1 s

Definition 4
1. The system (5) is said to be regionally controllable on w (or w-controllable) if

V(€)icw SRV (2),cn CR, FuelU /2] (u) =&, View (9)

2. If the system is w-controllable, then the sequence of actuators is said to be
w-strategic.
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The relation 2! (u) = &;, Vi € w is equivalent to
p T-1
T—1—s1.k s __ T_0
> >, < b | up =6— > Cfz)y
k=1s=0 \l€Lr_1_5 {eLT

Assume that the set w is ordered by considering the one-to-one mapping o :
{1,2,...,|w|} €N — w and denote n; = & — Z C{ 2,4, thus the relation (9)

LeLr
becomes
p T-—1
T—1—s.k )
> Yo Ol e | Ui = 0y T =1
k=1 s=0 leEL_1_5
P
or equivalently > Gy up =n where
k=1
T—1-s1k
Gr=| > O "Wy | €Mpur(R)
beLr_1_s jos
m “%
n = c ]R|w|’ up = cRT
T-1
Nw| Uy,

The space M|, 7 (R) is the set of all matrixes with |w| rows and T' columns.
Let us denote

Ui
u= : e RPT, G =[Gy,...,Gp] € M| pr (R)

Up
thus the system is w—controllable if and only if
vn eR“l 3 u € RPT such that G u= 7

which is equivalent to the surjectivity of the mapping G : R*T — RI“|. This
is stated in the following rank condition theorem which is a usual characteri-
zation for the controllability in systems theory, both for lumped systems than
distributed ones and also in regional analysis [1].

Theorem 1. Rank condition.
The system (5) is w-controllable if and only if

rank G = |w| (10)

And we have the immediate following corollary.
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Corollary 1. The system (5) is not w-controllable if w is not finite or if T <
|w]

p

The proof results from the fact that, in these cases, we have |w| = rankG <
min (jw|,pT) < pT.

Remark 3

1. In the case of one actuator, one needs the controllability time 7" such that
T > |w|. Whilst in the case of p actuators p > 2 the w-controllability can be
achieved at time T such that

T> (11)

2. Notice that the results needs the region w to be finite even if the actuators
support are unbounded.

Corollary 2. Assume now that the region to be controlled is composed by one
cell c € 12 or w = {c}, then |w| = 1. The system (5) is {c}-controllable if and
only if

p
<U Qk> n| |J wi]#0 (12)
k=1 1<t<T

where the sets WE C V! are given by

Wi ={j such that Cj_; >0} (13)

4 Regional Observability of Real-Valued Additive CA
Consider again the CA model with the transition rule (1)

zf+1:Zﬂng+e , e, t=0,1,...,T—1 (14)
leL

The initial state 2z is given in R, and supposed to be unknown on a given
nonempty finite region w C {2 and equal to zero out of w. Consider an output
given by the relation

vh=Y_Rhfz . t=01,....T—1, k=1,....4 (15)
JERk

The output function gives partial measurements of the state over a subdomain
2.

As for the controllability concept, we consider the observability as stated in the
case of continuous systems. We also consider the sensors approach as introduced
in [2].
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Definition 5

1. A sensor is a couple (21, h) where £1 C £ is a set of connected cells and
h:j€8 —hjeRE.

£21 is the support of the sensor and h is the spatial distribution of the sensor.
2. The sensor is said to be pointwise if {21 is reduced to one cell. In the other
cases the sensor is said to be a zone sensor.

When the observation is made via ¢ disjoint locations 2, of {2 the previous def-
inition is naturally extended. A sequence of couples {(Q;€7 hk) i k=1,2,...,q}
is a sequence of sensors if 2 N 2p =0 for all k # £ and, for all k, (Q;€7 hk) 1
a sensor as defined in 5 .

In the case of ¢ sensors, the output is given by the vector function {y}}, . <o
on the time interval 0,1,...,7 — 1. Now we consider the problem of regional
observability, i.e. the problem of determination of the system state on the cells
of a given region w, based on the measurements given in (15).

Definition 6
1. The system (14) together with the output (15) is said to be observable on the
region w (or w-observable) if the output {yi}1<k<q allow a unique reconstruction
of the initial states of the cells of w.

2. When the system is w-observable, the sequence of sensors is said to be
w-strategic.

Taking into account the system dynamics, the above definition is equivalent to
Yo =0,t=0,1,--- , T—1,k=1,....q] = (2} =0, Vi e w) (16)
Using (4) and extending by 0 the C} and the h! to all {2, we obtain

Uk = Z hf f: Zh? <Z CEZ?M) = Z (Z hi’gcfni> ZS’L

JES2 €42 lef? mef2 \ief?

ol
=2 (Z hy Cﬁ(j)i) Z5(j)

j=1 \ie2y
where o : {1,...,|w|} — w is a one-to-one mapping defined previously. Addi-
tionally the relations may be rewritten in the form

szoz Yi > k:1a7q

with
Hy = (Zie()k hfcfy(j)fi)tj € Mru| (R)
vy
Yp = : eR”
yérl
Za(1)
20 = € Rl
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which can be put in the reduced form H 2° = y where
H,y Y1

H=|: | eMgu®), y=|: |eRT
H, Yq

The matrix H is of order (¢T, |w|) and the system is w-observable if and only
if H is injective. Using the identity dim (ker H) + rankH = |w| we obtain the
result.

Theorem 2. Rank condition.
The system (14) together with the output (15) is w-observable if and only if the
matric H is such that

rank H = |w| (17)

Corollary 3. The system (14) together with the output (15) can not be w-
observable on a region w during the time T if w is not finite or if T < |w|
q

The proof results from the previous theorem because in this case |w| = rankG <
min (¢7T, |w|) < ¢T.

Remark 4. In the case of one sensor, we need the time observation T > |w|,

w
whilst in the case of ¢ > 2 sensors the observation time must satisfy T > |
q
and then can be smaller.

Corollary 4. If we assume that the regional observation is to be done on the
region having one given cell ¢ € £2, in this case we have |w| = |{c}| = 1. The
system (14) augmented with the output (15) is {c}-observable if and only if

T-1 ¢q
ceJ U U Wi (18)

t=0 k=1 i€y,

where the sets W} are defined in (13).

7
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Abstract. Glazier and Graner’s Cellular Potts Model (CPM) has found use in a
wide variety of biological simulations. However, most current CPM
implementations use a sequential modified Metropolis algorithm which restricts
the size of simulations. In this paper we present a parallel CPM algorithm for
simulations of morphogenesis, which includes cell-cell adhesion, haptotaxis and
cell division. The algorithm uses appropriate data structures and checkerboard
subgrids for parallelization. Communication and updating algorithms
synchronize properties of cells simulated on different computer nodes. We
benchmark our algorithm by simulating cell sorting and chondrogenic
condensation.

Keywords: Computational biology, morphogenesis, parallel algorithms,
Cellular Potts Model, multiscale models, pattern formation.

1 Introduction

Simulations of complex biological phenomena like development, wound healing and
tumor growth, collectively known as morphogenesis, must handle a wide variety of
biological agents, mechanisms and interactions at multiple length scales.

Glazier and Graner’s Cellular Potts Model (CPM) [1] has become a common
technique for morphogenesis simulations because it easily adapts to describe cell
differentiation, growth, death, shape changes and migration and the secretion and
absorption of extracellular materials. CPM simulations treat many biological and non-
biological phenomena, including sorting due to cell-cell adhesion, chicken limb bud
growth, Dictyostelium discoideum morphogenesis, liquid drainage in fluid foams and
foam rheology [2-6].

The CPM approach to modeling makes several choices about how to describe cells
and their behaviors and interactions. First, it describes cells as spatially extended but
internally structureless objects with complex shapes. Second, it describes most cell
behaviors and interactions in terms of effective energies and elastic constraints.
These first two choices are the core of the CPM approach. Third, it assumes perfect

S. El Yacoubi, B. Chopard, and S. Bandini (Eds.): ACRI 2006, LNCS 4173, pp. 58 —67, 2006.
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damping and quasi-thermal fluctuations, which together cause the configuration and
properties of the cells to evolve continuously to minimize the effective energy, with
realistic kinetics. Fourth, it discretizes the cells and associated fields onto a lattice.
Finally, the classic implementation of the CPM employs a modified Metropolis
Monte-Carlo algorithm which chooses update sites randomly and accepts them with a
Metropolis-Boltzmann probability.

Since these choices are relatively independent from each other, we can modify
some of them to optimize our computation without discarding our basic modeling
philosophy. For example, because the acceptance probabilities for updates can be
small (10 = 10 the classic lattice-based Metropolis algorithm may run slower than
continuum off-lattice implementations. Since the typical discretization scale is 2-5
microns per lattice site, CPM simulations of large tissue volumes require large
amounts of computer memory. Current practical single-processor sequential
simulations can handle about 10° cells. However, a full model of the morphogenesis
of a complete organ or an entire embryo would require the simulation of 10° — 10
cells, or between 10 — 1000 processor nodes.

Clearly, we need a parallel algorithm which implements the CPM and runs on the
Beowulf or High Performance Computing Clusters (HPCC) [7] available in most
universities. Wright et al. [11] implemented a parallel version of the original Potts
model of grain growth. In this model the effective energy consists only of local grain
boundary interactions, so a change of a single pixel changes only the energies of its
neighbors.

Gusatto et al.’s recent random-walker (RW) implementation of the CPM [15] ran
approximately six times faster than the standard algorithm on a single processor. In
addition, their algorithm parallelizes fairly easily, though a two processor
implementation ran only about 15% faster than a one processor version. The standard
CPM Metropolis algorithm always rejects spin flips inside a cell, which wastes much
calculation time. The RW approach attempts flips only at cell boundaries, reducing
the rejection rate and increasing speed. However, the parallel scheme for this
algorithm requires shared memory with all processors sharing the same lattice sites,
limiting the total lattice size to the memory size of a single computer. Adapting the
RW algorithm to accommodate large scale simulations on distributed memory
clusters will still require development of an appropriate spatial decomposition
algorithm.

The main difficulty in all forms of CPM parallelization is that the effective energy
is non-local. The effective energy terms for cell-cell adhesion, haptotaxis and
chemotaxis are local, but the constraint energy terms, e.g. for cell volume and surface
area, have an interaction range of the diameter of a cell. Changing one lattice site
changes the volume of two cells and hence the energy associated with all pixels in
both cells. For example, if a cell’s pixels are divided between the subdomains located
on two nodes and the nodes attempt updates affecting the cell simultaneously, without
communication, one node has stale information about the state of the cell. If we use a
simple block parallelization, where each processor calculates a predefined rectangular
subdomain of the full lattice, non-locality greatly increases the frequency of
interprocessor communication for synchronization and, because of communication
latency, the time each processor spends waiting rather than calculating. To solve this
problem, we use an improved data structure to describe cells and decompose the
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subdomain assigned to each node into smaller subgrids chosen so that corresponding
subgrids on different nodes do not interact, a method known as a Checkerboard
Algorithm. These algorithms are based on those Barkema and his collaborators
developed for the Ising model, see, e.g. [9]. These methods allow successful parallel
implementation of the CPM using MPI [9, 10].

On the other hand, an intrinsic inconvenience of the classical CPM ameliorates one
difficulty which Ising model parallelization faces. In MPI parallelization, the larger
the number of computations per pixel update, the smaller the ratio of message passing
to computation, which results in less latency delay and greater efficiency. In the Ising
model, the computational burden per pixel update is small (at most a few floating
point operations), which increases the ratio of message passing to computation in a
naive partition. However, in the CPM, the ratio of failed update attempts to accepted
updates is very large (10° or more in some simulations). Only accepted updates
change the lattice configuration and potentially stale information in neighboring
nodes. The large effective number of computations per update reduces the burden of
message passing. However, because we can construct pathological situations which
have a high acceptance rate, we need to be careful to check that such situations do not
occur in practice.

2 The Glazier-Graner Cellular Potts Model

Glazier and Graner’s CPM generalizes the Ising model from statistical mechanics,
and shares its core idea of modeling dynamics based on energy minimization under
imposed fluctuations. The CPM uses a lattice to describe cells. We associate an
integer index to each lattice site (pixel) to identify the space a cell occupies at any
instant. The value of the index at a pixel (i, j, k) is [ if the site lies in cell /. Domains
(i.e. collection of pixels with the same index) represent cells. Thus, we treat a cell as a
set of discrete subcomponents that can rearrange to produce cell motion and shape
changes. As long as we can describe a process in terms of a real or effective potential
energy, we can include it in the CPM framework by adding it to the effective energy.
The CPM models chemotaxis and haptotaxis by adding a chemical potential energy,
cell growth by changing target volumes of cells and cell division by a specific
reassignment of pixels. If a proposed change in lattice configuration (i.e. a change in
the index number associated with a pixel) changes the effective energy by AE, we
accept the change with probability:

P(AE)=1,AE < 0; P(AE)=¢ %" AE >0 (1)

where T is the effective temperature of the simulation in units of energy.
A typical CPM effective energy might contain terms for adhesion, a cell volume
constraint and chemotaxis:

E= EAdhesion + EVolume + EChemical (2)
We discuss each of these terms below.

Cell—cell adhesion energy: In Equation 2, F phenomenologically describes the

Adhesion
net adhesion/repulsion between two cell membranes. It is the product of the binding
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energy per unit area, J and the area of interaction of the two cells.

7(o)7'(0")

J ()70 depends on the specific properties of the interface between the interacting
cells:
EAdhesion = z{‘]r(a)r'(o—')[l _5(0-(1’ j,k),O"(i’,j',k'))]} (3)
(YRS

where the Kronecker delta, 6(o,0')=0 if o#0'and 6(0,0')=1 if o=0",

ensures that only the surface sites between different cells contribute to the adhesion
energy. Adhesive interactions act over a prescribed range around each pixel, usually
up to fourth-nearest-neighbors.

Cell size and shape fluctuations: A cell of type 7has a prescribed target volume v(0;, 1)
and volume elasticity 2, target surface area s(0,7), and membrane elasticity A'. Cell
volume and surface area change due to growth and division of cells. E|,  exacts an

energy penalty for deviations of the actual volume from the target volume and of the
actual surface area from the target surface area:

Evotune = Y Ag(W(0,T) = Ve (O, )+ D A (5(0.7) = e (O 7))’ )

all—cells all—cells

Chemotaxis and haptotaxis: Cells can move up or down gradients of both diffusible
chemical signals (i.e. chemotaxis) and insoluble extracellular matrix (ECM)
molecules (i.e. haptotaxis). The energy terms for both chemotaxis and haptotaxis are
local, though chemotaxis requires a standard parallel diffusion equation solver for the
diffusing field:

Echemical = IU(O-)C()_":) (%)

where C(x) is the local concentration of a particular species of signaling molecule in
extracellular space and u(o) is the effective chemical potential.

3 Data Structures and Algorithms

System Design Principles

Our parallel CPM algorithm tries to observe the following design principles: to
implement the CPM model without systematic errors, to homogeneously and
automatically distribute calculations and memory usage among all processor nodes,
and to use Object-Oriented programming and MPI to improve portability.

Spatial Decomposition Algorithm

Our parallel algorithm homogeneously divides the lattice among all processor nodes,
one subdomain per node. During a CPM simulation some cells cross boundaries
between nodes. If nodes attempted to update pixels in these cells simultaneously, cell
properties like volume and surface area would stale and energy evaluations would be
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incorrect. We use a multi-subgrid checkerboard method to solve this problem: In each
node we subdivide the subdomain into four subgrids indexed from 1-4. During the
simulation, at all times we restrict calculations in each node to the same index
subgrid. Since these subgrids are much larger than a cell diameter, we guarantee that
no calculation in one node affects the calculations occurring simultaneously in any
other node. In principle, we should switch subgrids after each pixel update to recover
the classical algorithm. Since acceptance rates are low, on average, we should be able
to make many update attempts before switching between subgrids. However, because
acceptance is stochastic, we would need to switch subgrids at different times in
different nodes, which is inconvenient. In practice we can update many times per
subgrid (which means accepting that we will sometimes use stale positional
information from the adjacent subgrids), because the subgrids are large, the
acceptance rate small and the effects of stale positional information just outside the
boundaries fairly weak. We use a random switching sequence (the switching sequence
each time is different and random, for example, 1234, 2341, 4123, 3124 ...) to switch
between subgrids frequently enough to make the effect of stale positional information
negligible compared to the stochastic fluctuations intrinsic to Monte Carlo methods.
Fig. 1 illustrates the algorithm.

Subgrid

Cell

Node
(Subdomain)

Fig. 1. Spatial decomposition: Each computer node hosts a subdomain which has four subgrids.
At any time, each node performs calculations on only one subgrid. At all times, all nodes work
on the subgrids with the same index number (indicated by the shading in the figure).

Data Structures

Two basic data structures of the parallel CPM algorithm are the cell and the pixel.
During simulations, cells move between subdomains controlled by different nodes.
Cells can also appear due to division and disappear due to cell death. In the classical
single-processor algorithm, each cell has its own global cell index number. This data
structure works efficiently on a single processor. In a parallel algorithm, this data
structure for cells requires a Cell Index Number Manager to handle cell division,
disappearance and handoff between nodes. For example, when a cell divides in a
particular node, the node sends a request to the Manager to obtain a new cell index
number and the Manager needs to notify all other nodes about the new cell. Instead,
we assign each cell two numbers, a node ID and an index ID. The Node ID is the
index number of the node in which the cell was generated and the index ID, like the
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old index number, is the index number of the cell generation sequence. Since cell IDs
are now unique, each node can generate new cells without communicating with other
nodes. Since cells may move between nodes, we dynamically allocate the memory for
cell data structures on creation or appearance and release it when a cell moves out of
the node or disappears. To optimize the usage of memory and speed data access, the
index in each pixel is a pointer to the cell data structure.

Communication and Updating

In the spatial decomposition algorithm, when the program switches between different
subgrids, the communication algorithm transfers two types of information: lattice
configurations and cell volumes. In 2D, each subgrid needs to communicate with 8
neighboring subgrids (in 3D, 26 neighboring subgrids) and the communication
algorithm sequentially sends and receives corresponding data according to the spatial
organization of the subgrids. Sending and receiving could take place within a node,
in which case the algorithm is just a memory copy. Fig. 2 illustrates the
communication algorithm. After the communication, the program needs to
dynamically update cell structures and buffers. The program also needs to check
whether any cells cross between subgrids and implement the corresponding creation
or destruction operations.

Subgrid Subgrid

Node
{Subdomain)

Subgrid 3L bgrid Subgrid

/

Fig. 2. Communication algorithm: After each change of subgrid, each node needs to transfer
data to neighboring nodes. Lattice sites and associated variables (volume, surface area,...)
located within the buffer area are transferred so neighboring subgrids contain correct cell
configurations and characteristics.

4 Benchmark Results

The following benchmarks used the Biocomplexity cluster at the University of Notre
Dame. The cluster consists of 64 dual nodes, each of which contains two AMD 64 bit
Opteron 248 CPUs (clock frequency 2.2 GHz) and 4GB of RAM.

Cell Sorting
Steinberg’s Differential Adhesion Hypothesis (DAH), states that cells adhere to each
other with different strengths depending on their types [12]. Cell sorting results from
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random motions of the cells that allow them to minimize their adhesion energy,
analogous to surface-tension-driven phase separation of immiscible liquids. If cells
of the same type adhere more strongly, they gradually cluster together, with less
adhesive cells surrounding the more adhesive ones. Based on the physics of the
DAH, we model cell-sorting due to variations in cell-specific adhesivity at the cell
level. Fig. 3 shows two simulation results for different adhesivities. All other
parameters and the initial configurations of two simulations are the same. In
simulation (a), cell type 1 has higher adhesion energy with itself (is less cohesive)
than cell type 2 is with itself. The heterotypic (type 1-type 2) adhesivity is
intermediate. During the simulation cells of type 2 cluster together and are
surrounded by cells of type 1. In simulation (b), the adhesivity of cell type 1 with
itself is the same as the adhesivity of cell type 2 with itself and greater than the
heterotypic adhesivity. This energy hierarchy results in partial sorting.

(a) (b)

Fig. 3. Cell sorting simulation: Cell type 1 (Dark). Cell Type 2 (Light). The two simulations
use the same initial cell configuration and target volumes (150), the only differences between
(a) and (b) are the different adhesion constants. (a) Adhesion constants: J, =14, J, =2, J =11,

’ Y22 > Y12

=16. (b) Adhesion constants: Adhesion energy J =14, J, =14, J =16, J , ., =16. The

J
1.2-ECM > Yog 1.2-ECM
lines indicate the boundaries of the subdomains assigned to each node in a 16 node simulation.

In this simulation the lattice size is (288x288) and we distributed it in
homogeneous subdomains of size 72x72 on a 16 node cluster. Each subgrid has
36x36 pixels.

Simulation of Chondrogenic Condensation

Fig. 4 shows the simulation result for a simulation of chondrogenic condensation
(cartilage formation) in a chicken limb bud simulation run on 16 nodes with a total
lattice size of 1200x1200 sites. In this simulation, we used an externally-supplied
chemical pre-pattern (Activator concentration calculated from a pair of coupled
reaction-diffusion equations) to control cell differentiation and condensation.
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Chemical concentration MCS = 10000

pre-pattem

Initial configuration

Fig. 4. Simulation of chondrogenic condensation during limb-bud formation. The lines indicate
the boundaries of the subdomains assigned to each node for a 16 node simulation.

Efficiency of the Parallel Algorithm

We used the cell sorting (lattice size 288x288) and chondrogenesis simulations
(lattice size1200x1200) to analyze the efficiency of our parallel algorithm. We ran
both simulations on 4, 9 and 16 nodes with switching between subgrids after each
Monte Carlo Step (defined as as many lattice update attempts as the number of lattice
sites in the subgrid). This switching rate is relatively slow and results in significant
effects from stale parameters. Table 1 summarizes the simulation running times. We
define the relative efficiency, f:

T, /4
ST In (6)

n

where T is the running time of the simulation on 7 nodes. Since the smallest cluster

on which our program runs uses 4 nodes, we use the running time on 4 nodes as a
reference value. Fig. 5 plots the relative efficiency vs. the number of nodes. The cell
sorting simulation is less efficient than the limb bud simulation because the small
(288x288) lattice increases the ratio of communication time to computation time. The
larger the subdomain size, the more efficient the calculation.

Table 1. Calculation time for different tests

Tests Number of Nodes
4 9 16
Cell Sorting Simulation. Lattice size 3351 2352 1807
288x288. 10,0000 MCS Sec. Sec. Sec.
Chondrogenesis Simulation. Lattice size 4188 2050 1305
1200x1200. 10,000 MCS Sec. Sec. Sec.

The Gillespie stochastic simulation algorithm acceleration strategy based on “tau-
leaping” is a powerful tool for large-scale stochastic biochemical simulations [13][14].
Instead of processing each reaction event, it moves forward in time by “leaps” that
include many reaction events. Though it currently applies only to spatially
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homogeneous models, its extension to parallel simulation of inhomogeneous models
would be valuable and could greatly increase the size of feasible CPM simulations.

1.0+ n\l.
0.8 \-

—e— 288x288
—=— 1200x1200
[ ]

0.4+ S —
4 8 12 16 20
Number of Nodes

Relative Efficiency f

Fig. 5. Relative Efficiency as defined in equation 6 vs. the number of nodes used in the
calculation. Bullets and solid squares correspond to cell sorting and chondrogenesis simulations
respectively.

5 Discussion and Future Work

One issue with our algorithm is whether its results deviate from the classical
algorithm significantly. Our switching algorithm works on subgrids one at a time. If
the configuration is far from equilibrium, energies and configurations change rapidly
and the dynamics of cells at subgrid boundaries could differ from those in the
classical algorithm. For instance, if a cell’s target volume is much larger than its
current volume, the cell should grow rapidly and isotropically, while in our algorithm,
a cell at a subgrid boundary might grow anisotropically. A higher switching frequency
reduces this problem but also reduces the computational efficiency. In such case,
smoothly changing the target value to the equilibrium one would solve this problem.

The parallel algorithm uses the standard CPM site selection algorithm which
wastes time by selecting non boundary spins that cannot be updated. We plan to
combine our parallel algorithm with the Random Walker algorithm [15] which selects
only boundary spins to further improve our simulation efficiency.

6 Conclusions

Sequential versions of the CPM model are extensively used to simulate cell
morphogenesis. However, large-scale morphogenesis simulations require a parallel
implementation. In this paper, we have proposed a parallel CPM algorithm using
appropriate data structures and checkerboard updating. The algorithm reproduces
examples of cell sorting and limb bud formation and shows good scalability, which an
improved site-selection algorithm like the RW algorithm should be able to improve
further.
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Abstract. This paper reports classification of C'A (cellular automata)
rules targeting efficient synthesis of reversible cellular automata. An an-
alytical framework is developed to explore the properties of C' A rules
for 3-neighborhood 1-dimensional C'A. It is found that in two-state 3-
neighborhood C' A, the C'A rules fall into 6 groups depending on their
potential to form reversible C A. The proposed classification of C' A rules
enables synthesis of reversible C'A in linear time.

1 Introduction

Since the invention of homogeneous structure of Cellular Automata (C'A), it has
been employed for modeling physical systems with a diversity. The C'A structure
is significantly simplified with an 1-dimensional C'A, each cell having two states
(0/1) with uniform 3-neighborhood (self, left and right neighbor) dependencies
among the C'A cells [8]. However, to model a wide variety of physical systems
that are non-homogeneous in nature, non-homogeneous C'A structure (also called
as hybrid CA) is evolved as an alternative to the uniform structure. A number
of researchers have directed their attention to hybrid C'A [1,2] since 1980s and
explored the potential design with 1-dimensional hybrid C' A, specially for V LST
(Very Large Scale Integration) domain [2].

A special class of C'A, referred to as reversible C'A, had attracted the re-
searchers for a long time to model a number of applications in hydrodynam-
ics, dynamical systems, heat conduction, wave scattering, nucleation, dendritic
growth, physical modeling, etc. [7]. The dynamical properties of reversible cel-
lular automata were investigated in [6]. For V LST applications, linear/additive
reversible C'A structure, had been developed [2]. Due to its importance, we have
also focused our work on reversible CA. An analytic scheme has been devel-
oped to explore the properties of C'A rules. The complete classification of 3-
neighborhood C'A rules are done depending on their potential to form reversible

* This work is supported by sponsored CA Research Projects, Department of CST,
Bengal Engineering & Science University, Shibpur, India.

S. El Yacoubi, B. Chopard, and S. Bandini (Eds.): ACRI 2006, LNCS 4173, pp. 68-77, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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C'A. This classification in effect makes it possible to synthesize reversible C A in
linear time. To facilitate further discussion, we introduce the basics of cellular
automata in the following section.

2 Cellular Automata Basics

A Cellular Automaton (C'A) consists of a number of cells organized in the form
of a lattice. In 3-neighborhood, the next state of the i** C'A cell is

Sit+1 = fi(Sit—lv va Sf—&-l)

where f; is the next state function and S}_;, S} & S!,, are the states of its
neighbors at time ¢. The §* = (S, S5, -+, SfL) is the present state of the C'A. If
the left neighbor of the left most cell and right neighbor of the right most cell
are null (0), the C'A is null boundary. The f; is also expressed in the form of a
truth table. The decimal equivalent of its output is referred to as the ‘Rule’ R;
[8]. Three such rules, in two state (0/1) CA, are illustrated in Table 1. The set

Table 1. Truth table for rule 90, 150 and 75

Present state : 111 110 101 100 011 010 001 000 Rule
(RMT) (1) (6) (5) (4) (3) (2) (1) (0)

(i) NextState: 0 1 0 1 1 0 1 0 90
(i) Next State: 1 0 0 1 0 1 1 0 150
(ifi) Next State: 0 1 0 0 1 0 1 1 75

of rules R =< R1,Ro, -+, Ri, -+, Ry > that configures the C'A cells is called
the rule vector. The state transition diagram of a C'A may contain cyclic and
non-cyclic states (a state is called cyclic if it lies in a cycle). A CA is reversible
if it contains only cyclic states (Fig.1).

/@\

Bt

(s ) )
B

Fig. 1. State transition of a reversible C A with rule vector < 105,177,170,75 >
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The reversible linear/additive C'A forms a cyclic group [2], and so popularly
called as group CA. In view of the structural similarity with linear/additive
group C'A in the state transition diagram, we refer reversible C A as group C A.

From the view point of Switching Theory, a combination of the present states
(15" row of Table 1) can be viewed as the Min Term of a 3-variable (S!_,, S!, S!, ;)
switching function. Therefore, each column of the first row of Table 1 is referred
to as Rule Min Term (RMT). The RMTs of two consecutive cell rules R; and
Ri+1 are related while a C'A changes its state [3,5]. Such relation (Table 2)
among the RMTs is employed to classify the C'A rules in characterizing C'A
behavior.

Definition 1. A rule is Balanced if it contains equal number of 1s and 0s in its
8—bit binary representation; otherwise it is an Unbalanced rule.

Definition 2. A rule is a Non-group Rule if its presence in a rule vector makes
the CA non-group (irreversible). Otherwise, the rule is a Group Rule.

This work concentrates on characterization of group rules. Identification of such
rules, out of total 256 rules for two-state 3-neighborhood C'A, follows.

3 Identification of Group Rules

The group rules are the basic building blocks of group/reversible C' A. The fol-
lowing theorem separates out a section of rules, that are not the group rules.

Theorem 1. An unbalanced rule is a non-group rule [4].

Ezample 1. The CA < 105,177,170,75 > is a group C'A (Fig.1). Therefore, all
of the four rules are group rules. On the other hand, the CA < 105,177,171,75 >
is non-group. The presence of the unbalanced rule 171 (binary value 10101011)
makes the C'A non-group. That is, 171 is a non-group rule.

There are 8C, = 70 balanced C'A rules in 3-neighborhood. However, all of them
are not the group rules (balanced non-group rules). For characterization of group
rules, the concept of Reachability Tree is introduced [3,5].

Reachability Tree: a binary tree, defines the reachability of C'A states. Left
edge of a node is the 0-edge (0) and 1-edge (1) is the right edge. The nodes
of level ¢ are constructed following the selected RMT's of R;y1 for next state
computation. The number of leaf nodes denotes the number of reachable states.

Fig.2 represents the reachability tree for a CA < 90,15,85,15 >. The RMT's
of the C'A rules are noted in Table 3 (ds denote don't care bits). The decimal
numbers within a node at level ¢ represent the RMT's following which the cell
(14 1) changes its state. For example, the root node (level 0) is constructed with
RMTs 0, 1, 2 and 3 as cell 1 can change its state following the RMT's 0, 1, 2,
and 3. For the RMT's 0 and 2 of rule 90 (Table 3), the next states are 0 and it is
1 for the RMT's 1 and 3. Therefore, the node at level 1 after the 0-edge of level
0 contains the RMTs 0, 1, 4 & 5 (Table 2).
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Table 2. Relationship Table 3. RMT values of the CA < 90,15, 85,

among RMT's 15 > rules

RMT at RMTs at RMT 111 110 101 100 011 010 001 000 Rule
i'" rule (i + 1) rule (7) (6) (5) (4) (3) (2) (1) (0)
Oor4 0,1 Firstcell d d d d 1 0 1 0 90
lorb 2,3 Secondecell 0 0 O O 1 1 1 1 15
2 or 6 4,5 Thirdecell 0 1 0 1 0 1 0 1 85
Jor7 6,7 Fourthcell d 0 d 0 d 1 d 1 15

“4.5)

o) 1 o 1
a3’ o2 a3y o2 .
&/ Noxdy Neoy VN YN (6

Fig. 2. Reachability tree for the CA < 90, 15,85,15 >

0.1)

Definition 3. Two RMT's are equivalent if both result in the same set of RMT's
effective for the next level of reachability tree.

For example, the RMT's 0 and 4 are equivalent as both results in the same set
of effective RMT's {0, 1} (Table 2) for the next level of reachability tree.

Definition 4. Two RMT's are sibling at level i + 1 if they are resulted in from
the same RMT at level i of the Reachability Tree.

The RMTs 0 and 1 are the sibling RM7T's as these two are resulted in either
from RMT 0 or from RMT 4 (Table 2). If a node of Reachability Tree associates
an RMT k, it also associates the sibling of k.

Theorem 2. The reachability tree for a group CA is balanced [5].

Ezample 2. The CA < 90,15,85,15 > is group. Its reachability tree (Fig.2) is
balanced.

Theorem 3. The reachability tree of a 3-neighborhood null boundary C' A is bal-
anced if each edge, except the leaf edges, is resulted from exactly two RMT's of
the corresponding rule [5].

Example 3. Consider the 4-cell group C A of Fig.2. Each intermediate edge of
the reachability tree is resulted from exactly two RMT's.

Corollary 1. All the nodes except leaves of the reachability tree for a group C'A
is constructed with 4 RMT's [3].
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Theorem 4. At each level, except the root, of the reachability tree for a group
CA, there are either 2 or 4 unique nodes.

Proof. Each node of the reachability tree for a group C'A is constructed with 4
RMTs (Corollary 1) and the sibling RMT's (Definition 4) are associated with
the same node. Since there are 4 sets of sibling RMTs (0 & 1,2 & 3,4 & 5,
and 6 & 7), 3 different organizations of RMT's for the nodes are possible — {0,
1,2,3} & {4,5,6,7},{0,1,4,5} & {2, 3,6, 7} and {0, 1, 6, 7} & {2, 3, 4, 5}.
This implies, if a node at level 7 is constructed with Ny ={0, 1, 2, 3}, then there
exists another node at that level constructed from Ny ={4, 5, 6, 7}. Therefore,
minimum number of unique nodes in a reachability tree of a group CA is 2.

It is obvious from Theorem & that the 2 out of 4 RMTs (Corollary 1) of a
node in the reachability tree for group C' A are d (d = 0/1) and the rest 2 are d'.
Therefore, 2 RMT's of N1 or N5 are d, and the other 2 are d’. So, another two
nodes may be possible at level ¢ taking 2 RMT's that produce d from N; and
another 2 RMT's from N,. Hence the maximum number of possible nodes in a
reachability tree for a group CA is 4.

Theorem 5. A balanced rule with same value for the RMT set {0, 2, 3, 4} or
{0, 4, 6, 7y or {0, 1, 2, 6} or {0, 1, 3, 7} is a non-group rule [3].

Corollary 2. The number of balanced non-group C'A rules in 3-neighborhood
dependency is 8 [3].

From Theorem 5, it can be identified that the balanced non-group rules are
—29, 46, 71, 116, 139, 184, 209 and 226. Therefore, out of 70 balanced rules the
rest 62 are the group rules (listed in Table 4). These 62 rules can only form the
reversible (group) C' A. However, any sequence of such rules in a C'A rule vector
does not necessarily imply that the resulted C'A is group C'A.

Theorem 6. Only a specific sequence of group rules forms a group CA [3].

Example 4. The CA < 90,15,85,15 > is a group C'A. However, the CA R =<
90, 85, 15,15 > is a non-group C'A even though each R’ € R is a group rule.

It directs that the sequence of rules to form a group C' A follows a specific relation.

The classification of group rules based on the relation is reported next.

4 Classification of Group Rules

This section identifies the relations among group rules and reports classification
of 62 group rules to find the sequence of rules for a group C A.

4.1 Formation of Rule Class

Let us consider, the rules Ri, Ro, -+, R; are selected for cell 1, cell 2, ---,
cell 7 respectively to form an n—cell group C'A satisfying the theorems 2 and 3.
Further, consider S is the set of all group rules (|S| = 62). Now, the (i + 1) cell
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can support a set of rules S; € S so that any rule of S; can be selected as Ri41.
We refer the class of (i + 1) cell as C — that is, the class of Sj is C.

Lemma 1: There are 6 possible classes of group C'A cells in 3-neighborhood.
Proof: Each node of the reachability tree of a group C'A contains 4 RMT's
(Corollary 1). Since the sibling RMT's are associated with the same node in the
reachability tree and there are 4 sets of sibling RMTs (0 & 1,2 & 3,4 & 5, and
6 & 7), 3 different organizations of RMT's for the nodes are possible — {0, 1, 2,
3} & {4, 5,6, 7}, {0, 1, 4, 5} & {2, 3, 6, 7}, and {0, 1, 6, 7} & {2, 3, 4, 5}.
Therefore, if the reachability tree contains a node with RMTs {0, 1, 2, 3} at *"
level, it also contains a node with RMT's {4, 5, 6, 7}.

Whenever a level is having only 2 unique nodes (Theorem 4), the RMT's of the
nodes may be organized as one of the 3 possible combinations of RMT's. For
that case, the rule R,41 is declared as of class I, I1, or I11] respectively. On the
other hand, if the level contains 4 unique nodes, then the RMTs of the nodes
may be organized as any two combinations of the 3 possible combinations of
RMTs. Whenever the nodes are organized like class I & I1, I & I11, and IT &
111, the class of that cell is declared as IV, V, and VI respectively. Therefore,
there are 6 classes of group rules.

Rules under each class: Since the C'A is group, out of 4 RMT's of a node, the two
RMT's are 0 and another two are 1 (Theorem 3). For class I (RMT partition
is {0, 1, 4, 5} & {2, 3, 6, 7}), 0 & 4 (similarly 1 & 5, 4 & 6, and 5 & 7) are
the equivalent RMTs (Definition 3) and both of these contribute same set of
RMTs for the next level. Hence any of the equivalent RMT's may be grouped
together to generate a node for the next level. The number of RMT's of that
node becomes 2. This results in the C'A as non-group (Corollary 1). Therefore,
equivalent RMT's under the same node can not be grouped to give d (d = 0/1)
simultaneously. Hence 4 groupings of RMTs out of *Cy = 6 are possible in each
node for class I1. Therefore, the number of group rules of class I is 4 x 4 = 16.
Since equivalent RMT's are not associated with the same node for class I and
III, *Cy = 6 groupings are possible for each node. Hence number of rules for
those classes are 6 x 6 = 36 (Table 4).

4.2 Relationship Between R; and Ri4+1

From the known R; and its class, we can find the nodes of the reachability tree
that are resulted for R;;1 — that is, the class of R;11. Let us consider the class
of R; be I (Fig.3). Therefore, two unique nodes having RMT's {0, 1, 2, 3} and
{4, 5,6, 7} are available at the (i — 1)*" level. Now consider the RMT's of R; are
clustered as {0, 1, 4, 5} and {2, 3, 6, 7}, where the RMT's of a set are the same,
either O or 1. In Flig.3(a), the RMTs {0, 1,4, 5} are considered as 0, and it is 1 for
the RMTs {2, 3, 6, 7}. Therefore, the RMT's are grouped as (0, 1), (2, 3), (4, 5)
and (6, 7). Each edge of the nodes is resulted from any one of these groups. Hence
two edges are connecting the node having RMT's {0, 1, 2, 3} with its children
resulted from (0, 1) and (2, 3). Therefore, the two children (for next level) of
that node are having RMT's {0, 1, 2, 3} and {4, 5, 6, 7} (Table 2) (Fig.3(a)).
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Table 4. Class Table

Class RMT's of nodes Rules
1 {0, 1, 2, 3} 51, 53, 54, 57, 58, 60, 83, 85, 86,
{4,5,6,7} 89,90, 92, 99, 101, 102, 105, 106, 108,
147, 149, 150, 153, 154, 156, 163, 165, 166,
169, 170, 172, 195, 197, 198, 201, 202, 204

II {0, 1, 4, 5} 15, 30, 45, 60, 75, 90, 105, 120, 135,
{2, 3,6, 7} 150, 165, 180, 195, 210, 225, 240
111 {0, 1,6, 7} 15, 23, 27, 39, 43, 51, 77, 78, 85,

{2,3,4,5} 86,89, 90, 101, 102, 105, 106, 113, 114,
141, 142, 149, 150, 153, 154, 165, 166, 169,
170, 177, 178, 204, 212, 216, 228, 232, 240

v {0, 1,2 3} 60, 90, 105, 150, 165, 195
{4,5,6, 7}

{0, 1, 4, 5}
{2, 3,6, 7}

VvV {0,1,2,3} 51,85, 86, 89, 90, 101, 102, 105, 106, 149
{4,5,6, 7} 150, 153, 154, 165, 166, 169, 170, 204
{0,1,6, 7}

{2, 3,4, 5}

VI {0, 1, 4, 5} 15, 90, 105, 150, 165, 240
{2,3,6, 7}

{0,1,6, 7}
{2, 3,4, 5}

Similarly, the children of another node having RMTs {4, 5, 6, 7} are constructed
with RMTs {0, 1, 2, 3} and {4, 5, 6, 7} — that is, the nodes are same with the
other two nodes of that level. Therefore, the next level of the reachability tree
contains two unique nodes having RMT's {0, 1, 2, 3} and {4, 5, 6, 7} (Fig.3(a)).
Hence the class of R;41 is I.

Further, if the RMT's of R; are grouped as (0, 1), (2, 3), (4, 6), and (5, 7)
(Fig.3(b)), the nodes of level i, generated from the node of level (i — 1) with
RMTs {0, 1, 2, 3}, are having RMT's {0, 1, 2, 3} and {4, 5, 6, 7}. The other two
nodes at level i, generated from the node with RMT's {4, 5, 6, 7}, are having
RMTs {0, 1, 4, 5} and {2, 3, 6, 7}. In this case, the next level of reachability
tree contains four unique nodes having RMT's {0, 1, 2, 3}, {4, 5, 6, 7}, {0, 1, 4,
5}, and {2, 3, 6, 7}. Therefore, the organizations of RMT's support the property
of both the classes I & II. Therefore, the class of R;y1 is IV.

Table 5 partly displays the relationship among group rules. The first column
shows the class of R;. Column 2 notes the RMT's of unique nodes at level (i —1).
Whereas, Column 3 shows the grouping of RMT's for R;. The RMT's of unique
nodes at level ¢ are shown in Column 4. Based on the unique nodes at level i, the
class of R;41 is decided and is reported in Column 5. The details of relationship
are reported in Table 6. The first and second columns represent the class of i*"
cell and the R; respectively. The class of (i 4+ 1)!" cell is noted third column.
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R;: 0. 1,2 3 4,56, 7 Level i-1
© D @3 @5 6.7
‘ 0.1, 2, 3‘ ‘ 4,5, 6, 7‘ ‘ 0, 1,2, 3‘ ‘ 4,5, 6, 7‘ Level i
~ ~

Nodes of R;,; (two unique nodes — Class I)

(a) Next rule class is I

R;: 0, 1,2 3 4,5 6, 7 Level i-1
©, 1 2,3) 4, 6) 5.7
‘ 0, 1, 2, 3‘ ‘ 4,5, 6, 7‘ ‘ 0, 1, 4, 5‘ ‘ 2, 3, 6, 7‘ Level i

Nodes of R;,; (four unique nodes — Class IV)

(b) Next rule class is IV

Fig. 3. Determination of class relationship

Table 5. Class Relationship between R; and Ri+1

(1) (2) (3) (4) (5)
Class RMTs of Groupings of RMTs of Class
of  unique nodes RMTs unique nodes  of

R; atlevel (i —1) atlevel (¢ —1) atleveli Rit1

I {0, 1, 2, 3} (0,1),(2,3) {0,1,2,3y I
{4, 5, 6, T} (4,5), (6,7) {4,5,6, 7}
(0,2),(1,3) {0,1,4,5} 1II
(4,6), (5,7) {2,3,6, 7}
(0,3),(1,2) {0,1,6, 7} III
(4,7), (5,6) {2, 3,4, 5}
{(0, 1), (2,3) {0,1,2,3} IV
(4,6), (5,7} {4,5,6, 7}
or {(0, 2), (1,3) {0, 1, 4,5}
(4,5), (6,7} {2,3,6,7}

I {0, 1, 4, 5} (0,1), (4,5) {0,1,2,3} I
{2,3,6,7} (2,3),(6,7) {4,5,6, 7}

v {0, 1,2, 3} (0,1),(2,3 {0,1,2,3} I
{4, 5,6, 7} (4,5),(6,7) {4,5,6, 7}
{0,1,4,5} {(0,1),(2,3) {0,1,2,3} IV
{2,3,6,7F (4,6), (5,7} {4,5,6,7}

or {(0, 2), (1,3) {0, 1, 4,5}
(4,5), (6, )} {2,3,6, 7}

First and Last rule: In this 2Work, we have concentrated only on null boundary
CA. Therefore, there are 22° = 16 effective rules for R as well as for R,,. The
RMTs 4, 5, 6 and 7 are the don’t care for Ry and there are only 4 effective
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RMTs (0, 1, 2, 3) for Ry. Similarly, the effective RMT's for R,, are 0, 2, 4 and
6. That is, rule 105 and 9 are equivalent if selected as the R;.

Corollary 3. If R=<R1,Ra, -+, Rn > is a group CA, then Ry and R, must
be balanced over their effective 4 RMT's [3].

It signifies that the unbalanced rule 3 is a group rule when it is selected as the
R1. The rule 3 is balanced over its effective (least significant) 4 RMT's. There
are 1Cy = 6 rules (out of total 16 effective rules for the Rq) that are balanced
over their least significant 4 RMT's. Table 7 identifies such 6 rules. From similar
consideration, Table 8 lists all such 6 group rules for the R,,.

The classification of C'A rules ensures efficient synthesis of the reversible C' A
in O(n) time. For example, say rule 9 is selected randomly as Ry from Table
7 while synthesizing 4-cell reversible CA. Therefore, the class of 2" cell rule
is III. From Class III of Table 6, say rule 177 is selected randomly as the Rs.
Therefore, the class of R3 is found to be V (Table 6). We select rule 170 as Rs.
The class of last cell is, therefore, II. Rule 65 is selected randomly for R4 from

Table 6. Relationship of R; and Ri4+1

Class of R Class of
Ri Rit+1
I 51, 60, 195, 204 I
85, 90, 165, 170 1I
102, 105, 150, 153 111

53, 58, 83, 92, 163, 172, 197, 202 IV

54, 57, 99, 108, 147, 156, 198,201 \%

86, 89, 101, 106, 149, 154, 166, 169 VI

II 15, 30, 45, 60, 75, 90, 105, 120, 135, 1
150, 165, 180, 195, 210, 225, 240

111 15, 51, 204, 240 I
85, 105, 150, 170 II
90, 102, 153, 165 111

23, 43, 77, 113, 142, 178, 212, 232 IV
27, 39, 78, 114, 141, 177, 216, 228  V
86, 89, 101, 106, 149, 154, 166, 169 VI

Y% 60, 195 I
90, 165 v

105, 150 \%

\% 51, 204 I
85, 170 II

102, 153 111

86, 89, 90, 101, 105, 106, 149, 150,

154, 165,166, 169 VI

VI 15, 240 I
105, 150 v

90, 165 \%
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Table 7. First Rule Table Table 8. Last Rule Table
Rules for Groupings RMT's of nodes Class of Rule class  Rule set
R1 of RMTs for level 2 Ra for Rn for Rn
3, 12 (0, 1) {0, 1, 2, 3} I I 17, 20, 65, 68
(2, 3) {4, 5,6, 7} 11 5, 20, 65, 80
5, 10 (0, 2) {0, 1, 4, 5} II I 5,17, 68, 80
(1, 3) {2, 3,6, 7} % 20, 65
6,9 (0, 3) {0, 1,6, 7} 111 A% 17, 68
(1, 2) {2, 3, 4, 5} VI 5, 80

Table 8. Therefore, the synthesized reversible (group) CA is < 9,177,170,65 >.
The synthesis algorithm is reported in [4].

5 Conclusion

This paper reports the classification of C' A rules. It is found that there are only 62
rules for two-state 3-neighborhood C'A that may form reversible C'A. The relation
among such rules are identified to ensure synthesis of reversible C'A4 in linear time.
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Abstract. Over the past 20 years, the study of cellular automata has
emerged as one of the most interesting and popular forms of “new math-
ematics”. The study of cellular automata has broadened into many varia-
tions of the original concepts. One such variation is the study of
one-dimensional fuzzy cellular automata. The evolution and dynamics
of the majority of one-dimensional fuzzy cellular automata rules can be
determined analytically using techniques devised by the second author.
It turns out that only 9 rules (out of 256), three of which are trivial, fail
to comply with the techniques given. We give a brief overview of finite
cellular automata and their fuzzification. We summarize the method used
to study the majority of fuzzy rules and give some examples of its appli-
cation. We analyze and uncover the dynamics of those few rules which do
not conform to such techniques. Using new techniques, combined with
direct analysis, we determine the long term evolution of the 4 remaining
rules (since two of them were treated in detail elsewhere). We specifically
analyze rules 172 and 202 and then, by deriving equivalences to the final
two rules, we complete the program, initiated in 2003, of determining the
long term dynamics of all 256 one-dimensional fuzzy cellular automata,
thereby showing that chaotic dynamics are incompatible with this type
of fuzziness, in sharp contrast with boolean cellular automata.

1 Introduction to Cellular Automata

We begin by introducing the definitions and properties of general cellular au-
tomata which will allow us to understand the techniques used and results ob-
tained in this paper. In general, a cellular automaton is a regular uniform lattice
of cells with each cell containing a discrete variable or value. The lattice may be
either finite or infinite and the total state of the automaton is completely spec-
ified by the value at each cell. The value or state of the automaton evolves in
discrete time steps wherein each new cell value is determined based on the cur-
rent value of the cells within the automaton. Each cell and its value is updated
simultaneously i.e. All new cell values are based solely on those of the previous

* This research is partially supported by an NSERC Canada Research Grant to the
second named author.

S. El Yacoubi, B. Chopard, and S. Bandini (Eds.): ACRI 2006, LNCS 4173, pp. 78-87, 2006.
© Springer-Verlag Berlin Heidelberg 2006



On the Dynamics of Some Exceptional Fuzzy Cellular Automata 79

automaton’s state. The majority of studies focus on rules which evolve a cell’s
value based on the cells within a given neighborhood of the cell, usually the
cell’s value itself and those immediately adjacent to it. These are referred to as
local rules. The most elementary form of cellular automata are one-dimensional
boolean cellular automata which consists of a single strip or sequence containing
boolean values. The strip is usually considered infinite in both the positive and
negative direction and any finite sequence is simply imposed onto an infinite
background of zero cells. The neighborhood of each cell consists of itself and
its immediately adjacent neighbors (the cell preceding it and the other which
follows it). In other words, a local rule is a mapping of the following form:
g:{0,1}3+— {0,1}.

If we then fix a cell in the automaton’s evolution and denote it zy we may then
consider its evolution as an infinite sequence of boolean values where we may ac-
cess any value of the sequence via its index. This allows us to define a map f (the
local rule) for the automaton by mapping each cell z; via the mapping f(x;) =
g(zi1,m;,2541). Since g maps the set of values in {0,1}* to the set {0,1},
we may describe the map g as follows: (000,001,010,011,100,101,110,111) —
(ro, 71, ...,77) where each r; = 0 or 1. This gives us 28 = 256 possible local func-
tions to study. We conveniently name each rule based on the numerical value of
the binary string r7, rg, ..., 7o. In other words, we name the rule via the value of

the sum:
7

Rule Name = Zrﬂi.
i=0

Since we are dealing with binary values, we may express each local rule in a
disjunctive normal form (DNF) using the binary operators and and or, [5]. That
is, we write the local rule