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Preface

This volume constitutes the proceedings of the International Conference on Cel-
lular Automata for Research and Industry, ACRI 2006, which took place in Per-
pignan, France, September 20–23, 2006. The conference, which was organized by
the laboratory of Mathematics and Physics for Systems (MEPS), University of
Perpignan, France, was the seventh in a series of conferences inaugurated in 1994
in Rende, Italy: ACRI 1996 in Milan, Italy, ACRI 1998 in Trieste, Italy, ACRI
2000 in Karlsruhe, Germany, ACRI 2002 in Geneva, Switzerland and ACRI 2004
in Amsterdam, The Netherlands.

The ACRI conference is traditionally focussed on challenging problems and
new research in theoretical aspects including cellular automata tools and com-
putational sciences. It is also concerned with applications and the solution of
problems from the fields of physics, engineering and life sciences. Its primary
goal is to discuss problems from various areas, to identify new issues and to
enlarge the research field of CA. Since its inception, the ACRI conference has
attracted an ever growing community and has raised knowledge and interest in
the study of cellular automata for both new entrants into the field as well as
researchers already working on particular aspects of cellular automata.

First invented by von Neumann, cellular automata models have been popu-
larized and investigated in several areas during the last decades. They provide
a mathematically rigorous framework for a class of discrete dynamical systems
that allow complex, unpredictable behavior to emerge from the deterministic
local interactions of many simple components acting in parallel.

ACRI 2006 brought together over 100 distinguished mathematicians, com-
puter scientists and other researchers working in the field of CA theory and
applications. A special interest was devoted to the general concepts, theories,
methods and techniques associated with modelling, analysis and implementa-
tion in various systems (e.g., biological, physical, ecological, social). Cellular
Automata are classically run on a regular lattice and with perfect synchronicity
and homogeneity. ACRI 2006 encouraged recent trends which consider asynchro-
nous, inhomogeneous and non–autonomous cellular automata with unstructured
environments. In order to highlight the multidisciplinarity of the cellular au-
tomata research area, the First International Workshop on Crowds and Cellular
Automata was organized within the scope of ACRI 2006 at the University of
Perpignan, 19–20 September.

The volume contains 72 refereed papers addressing various important topics
in cellular automata, covering theoretical results and highlighting potential ap-
plications. A total of 53 papers were presented as oral talks and 19 as posters
during the conference by speakers coming from about 15 different countries.
These papers were selected among 100 submitted contributions. Each paper was
reviewed by at least two members of the scientific committee. We are extremely
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grateful to these referees, who accepted the difficult task of selecting papers.
Their expertise and efficiency ensured the high quality of the conference. The
volume also contains 11 extended abstracts dealing with crowds and cellular
automata, which were presented during the C&CA workshop.

Five invited speakers of worldwide reputation presented the latest trends in
the field in the context of standard cellular automata and beyond. We would like
to take this opportunity to express our sincere thanks to Raffaello D’Andrea from
Cornell University, Paolo De Los Rios from the Ecole Polytechnique Fédérale de
Lausanne, Sergey Gavrilets from the University of Tennessee, Moshe Sipper from
Ben–Gurion University, and Marco Tomassini from the Université de Lausanne,
who kindly accepted our invitation to give plenary lectures at ACRI 2006. More-
over, we were very honored that Andrew Wuensche from the University of Sussex
accepted to give a demo of Discrete Dynamics Lab and show his very recent work
on 2D hexagonal cellular automata with computational abilities.

This volume is divided into two parts. The first part deals with theoretical
aspects and computational analysis of CA and the second one with applications
derived from physical, biological, environmental and other systems. Each part is
partitioned into chapters containing a number of papers in alphabetical order.

It should be stressed that this conference would have been impossible with-
out the help and continuous encouragement of a number of people, especially
the members of steering committee, who strongly supported the organization of
ACRI 2006 in Perpignan. First of all, we would like to thank the authors, who
showed their interest in ACRI 2006 by submitting their papers for consideration.
We wish to extend our gratitude to Stefania Bandini and Andrew Adamatzky,
the organizers of the first workshop “Crowds and Cellular Automata” (C&CA),
who helped to introduce the ACRI conference to other scientific communities.

It is a pleasure to express our sincere thanks to our colleagues of the Orga-
nizing Committee and to Paolo Mereghetti for the successful job he carried out
in editing this volume. A special word of thanks goes to Yves Maurissen for the
huge amount of work he did during the organization of this conference and the
practical assistance he provided to the participants.

Finally, the organization of ACRI 2006 was made possible thanks to the finan-
cial or technical support of the board and several departments of the University
of Perpignan (Centre de Ressources Informatiques – CRI, Service de la Commu-
nication, etc), the Scientific and Parallel Computing Group from the University
of Geneva (Switzerland), the commune of Perpignan, the Academia of Science
(Morocco) and other institutions and local authorities.

September 2006 Samira El Yacoubi
Bastien Chopard
Stefania Bandini
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M. Pla-Castells, I. Garćıa-Fernández, R.J. Mart́ınez

A Linear Cellular Automaton over a Vector Space and Its Application
to a Generalized Special Relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402

T. Sato

A Cellular Automata Model for Ripple Dynamics . . . . . . . . . . . . . . . . . . . . . 407
L. Sguanci, F. Bagnoli, D. Fanelli

A Cellular Automata Simulation Tool for Modelling and Automatic
VLSI Implementation of the Oxidation Process in Integrated Circuit
Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417

G.C. Sirakoulis

Urban, Environmental and Social Modeling

Automatic Detection of Go–Based Patterns in CA Model of Vegetable
Populations: Experiments on Geta Pattern Recognition . . . . . . . . . . . . . . . . 427

S. Bandini, S. Manzoni, S. Redaelli, L. Vanneschi

Urban Sprawl: A Case Study for Project Gigalopolis Using SLEUTH
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436

M. Caglioni, M. Pelizzoni, G.A. Rabino

A Full Cellular Automaton to Simulate Predator-Prey Systems . . . . . . . . . 446
G. Cattaneo, A. Dennunzio, F. Farina

Lava Invasion Susceptibility Hazard Mapping Through Cellular
Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452

D. D’Ambrosio, R. Rongo, W. Spataro, M.V. Avolio, V. Lupiano

Exploring the DNA of Our Regions: Classification of Outputs from the
SLEUTH Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462

N. Gazulis, K.C. Clarke

Improved Cell-DEVS Models for Fire Spreading Analysis . . . . . . . . . . . . . . . 472
M. MacLeod, R. Chreyh, G. Wainer



XIV Table of Contents

A Cellular Automata Approach for Modelling Complex River
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482

P. Topa

Social Distances Model of Pedestrian Dynamics . . . . . . . . . . . . . . . . . . . . . . . 492
J. W ↪as, B. Gudowski, P.J. Matuszyk

Traffic and Boolean Networks

Cellular Automata and Its Application to the Modeling of Vehicular
Traffic in the City of Caracas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502

A. Aponte, J.A. Moreno

Scale-Free Automata Networks Are Not Robust in a Collective
Computational Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512

C. Darabos, M. Giacobini, M. Tomassini

Simulation of Heterogeneous Motorised Traffic at a Signalised
Intersection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522

P. Deo, H.J. Ruskin

Some Applications and Prospects of Cellular Automata in Traffic
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532

B. Goldengorin, A. Makarenko, N. Smelyanec

Stochastic Cellular-Automaton Model for Traffic Flow . . . . . . . . . . . . . . . . . 538
M. Kanai, K. Nishinari, T. Tokihiro

Coupled Random Boolean Network Forming an Artificial Tissue . . . . . . . . 548
M. Villani, R. Serra, P. Ingrami, S.A. Kauffman

Multi–agents and Robotics

Dynamics of Emergent Flocking Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557
M. Aoyagi, A. Namatame

A Maze Routing Algorithm Based on Two Dimensional Cellular
Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564

Shahram G., M.R. Meybodi

Optimal 6-State Algorithms for the Behavior of Several Moving
Creatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571

M. Halbach, R. Hoffmann, L. Both



Table of Contents XV

Evolutionary Learning in Agent-Based Combat Simulation . . . . . . . . . . . . . 582
T. Honda, H. Sato, A. Namatame

Cellular Automata Based Role-Delegation in RBAC . . . . . . . . . . . . . . . . . . . 588
J.-C. Jeon, K.-Y. Yoo

Modeling Robot Path Planning with CD++ . . . . . . . . . . . . . . . . . . . . . . . . . . 595
G. Wainer

Crypto and Security

Authentication Based on Singular Cellular Automata . . . . . . . . . . . . . . . . . . 605
J.-C. Jeon, K.-Y. Yoo

Concatenated Automata in Cryptanalysis of Stream Ciphers . . . . . . . . . . . . 611
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Abstract. Realistic simulation of biological evolution by necessity re-
quires simplification and reduction in the dimensionality of the corre-
sponding dynamic system. Even when this is done, the dynamics remain
complex. We utilize a Stochastic Cellular Automata model to gain a
better understanding of the evolutionary dynamics involved in the ori-
gin of new species, specifically focusing on rapid speciation in an island
metapopulation environment. The effects of reproductive isolation, mu-
tation, migration, spatial structure, and extinction on the emergence of
new species are all studied numerically within this context.

1 Introduction

From the fossil records and radioactive dating we know that life has existed on
earth for more than 3 billion years [1]. Until the Cambrian explosion around 540
million years ago, life was restricted mainly to single-celled organisms. From the
Cambrian explosion onward however, there has been a steady increase in bio-
diversity, punctuated by a number of large extinction events. These extinction
events caused sharp but relatively brief dips in biodiversity and the fossil record
supports these claims. In our attempt to understand some of the dynamics in-
volved in this process, we decided to look at the speciation process and see if
we could model it in a way that would provide insight into some of the factors
which determine the dynamic behavior of what is an extremely complex process.

Speciation is the process by which new species are formed via evolutionary dy-
namics. Speciation can be controlled (or driven) by a number of factors including
mutation, recombination and segregation, genetic drift, migration, natural and
sexual selection [1,2,3]. Throughout this paper we say that two populations are
of different species if they are reproductively isolated, i.e., no mating producing
both viable and fertile offspring between the two populations occurs. That is,
we will use the biological species concept [1,2]. In our model, we can identify
reproductively isolated populations by measuring the differences in their genes;

S. El Yacoubi, B. Chopard, and S. Bandini (Eds.): ACRI 2006, LNCS 4173, pp. 3–12, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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if their genes are sufficiently different, then there is a very low probability that
they can mate to produce viable and fertile offspring.

Speciation processes are difficult to verify via experiments or observations.
Primary of course is the fact that the time-scales involved in speciation typi-
cally are much longer than human life span. In addition, there does not exist a
continuous fossil record documenting new species, i.e., there are many gaps in
the fossil record. Moreover, existing data on genetic differences between extant
species can be interpreted in a number of alternative ways.

We are thus led to different methods of investigating the speciation process by
using mathematical models. By necessity, models limit the number of parameters
associated with complex behavior. This implies that all factors may not be taken
into account in the simulation of complex processes. However, computer models
do provide a metaphor for the actual dynamics, assuming of course the model’s
algorithms accurately reflect in some sense the actual dynamics being modeled,
i.e., the model is consistent.

Here, we describe a stochastic cellular automata explicit genetic model of
speciation in an island metapopulation. Typically, cellular automata used in bi-
ological application are characterized by a rather small number of states: two
or, very rarely, three, usually focusing on whether a patch is occupied or not
[4,5,6,7,8,9,10,11,12]. However, even the simplest known biological organisms
have hundreds of genes and hundreds of thousands of DNA base pairs [1,3]. This
implies that the number of possible genetic states for an organism is astronom-
ically large. For example, assuming that an organism has only 500 genes each
coded by 1000 DNA base pairs, there can be potentially 4500000 ≈ 9.9× 10301029

different genetic states. This enormous dimensionality requires one to develop
new methods of modeling, analyzing, and visualizing the behavior of the corre-
sponding cellular automata. Below we describe some of the approaches that we
have developed within the context of studying speciation.

2 The CA Deme-Based Metapopulation Model

A common method for performing numerical studies of biological evolution and
speciation is to use an individual-based model in which a finite collection of
individuals are tracked through the birth-reproduction-death cycle as well as
the migration-mutation-survival cycle. Unfortunately, individual-based models
require an enormous amount of computational resources to obtain meaningful
results and are currently not practical for studying large-scale biological diversifi-
cation. Here, instead of an individual-based model we build a deme-based model
[3,13,14] in which for each local population we explicitly describe only the ge-
netic state of its most common genotype. This simplified approach is justified if
mutation and migration are sufficiently rare and the local population size is suf-
ficiently small so that only a negligible amount of genetic variation is maintained
within each local population most of the time. We will ignore the dynamics of
local population sizes. Following Hubbell [15], we disregard ecological differences
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between the species. Our main focus will be on genetic incompatibilities (i.e.
reproductive isolation) between different populations.

Reproductive isolation will be defined by the threshold model [3,13] in which
two genotypes are not reproductively isolated and, thus, belong to the same
species if they differ in less than Km genes. We will refer to parameter Km as
mating threshold. In some implementations of the model, we allow for multiple
populations per patch. A simple heuristic approach for doing this is to introduce
another threshold genetic distance, say Kc (> Km), reaching which will allow for
coexistence in a patch. We will refer to parameter Kc as coexistence threshold.
If the genetic divergence between two populations is below Kc, the competition
between them prevents their coexistence.

We consider here a large area divided into smaller connected areas called
patches. Each patch can be empty or occupied by one or more populations.
We model the habitat patches as nodes on a two dimensional grid. This is a
spatially explicit metapopulation model (which is often also called a lattice model
or stepping-stone model), in which migration is restricted to close or neighboring
patches.

Our metapopulation model simulates evolution of bit strings in a two dimen-
sional geometry. Each bit string can be considered to represent the DNA of a
population. The length L of this binary DNA string is specified as input. Note
that the number of possible genetic states is 2L. We then simulate metapopula-
tion dynamics within and between a given set of habitat niches (or patches).

What we are left with then after a time is a situation in which many geneti-
cally different populations exist in different habitat patches. Through a clustering
process, we can then determine which populations are close to each other ge-
netically by some measure. This process of grouping thus determines clusters of
similar populations, or species.

Our model dynamics occur on a time generation basis. For each generation we
determine stochastically whether each of the major events occurs in the following
order:

1. Patch Extinction.
2. Single Population Extinction.
3. DNA Strand Mutation.
4. Population Migration.

Patch extinction is a situation where all populations in a specific patch go
extinct. The exact details are not important, it could be due to depletion of a
viable food supply in the habitat patch or due to some catastrophic extinction
event which wipes out the populations such as a fatal disease epidemic.

Single population extinction can occur under similar circumstances, however
rather than the whole patch (which can include many populations) going extinct,
only a single population within the patch goes extinct.

Migration of individuals has two effects. First, migrants can found a new pop-
ulation in a patch previously not occupied by a species. Second, migrants coming
into an occupied patch can bring genes that may spread in a local population
(see below).
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Bit strings change independently at each locus. The probability per generation
that an allele at a locus changes to an alternative state is set to be

μe = μ+m N , (1)

where μ is the probability of mutation per locus, m is the probability of migra-
tion, and N is the number of neighboring populations of the same species that
have the alternative allele fixed at the locus under consideration. Expression (1)
utilizes the fact that the probability of fixation of an allele that does not affect
fitness is equal to its frequency [16]. With migration, new alleles are brought in
the patch both by mutation (at rate μ) and migration (at rate mN ). In this ap-
proximation, the only role of migration is to bring in new alleles that are quickly
fixed or lost by random genetic drift. For example, if initially both the focal
population and its four neighbors have allele 0 at the locus under consideration,
then the probability that an alternative allele 1 is fixed in the focal population
per generation is μe = μ. However, once this has happened, the probability of
focal population switching back to allele 0 is μe = μ+ 4m. If the migration rate
m is much larger than the mutation rate per locus μ, switching back will hap-
pen much faster. As time increases, populations accumulate different mutations,
diverge genetically and become reproductively isolated species.

3 Model Implementation

There are two main computer programs utilized to implement our model of the
speciation process, Evolve and Cluster. As described above, Evolve simulates the
evolution of bit strings in a two dimensional grid based geometry undergoing
evolutionary dynamical processes. Cluster then determines which group of bit
strings or populations are within a specified Hamming distance of each other. The
clustering method is single linkage clustering [17] with an input parameter K.
In most cases, we set parameter K to the mating threshold Km. This procedure
produces clusters of mutually compatible populations (i.e. biological species).

Since the clustering process is hierarchical in nature, output from Cluster can
also be used to identify and group populations in a taxonomic manner, providing
insight into the hierarchical structure of the simulated populations. For example,
let us specify an increasing sequence of clustering thresholds K1 < K2 < K3 <
. . .. Then, all populations at a genetic distance less than K1 can be thought of
as belonging to the same species, all populations at genetic distances that are
larger or equal than K1 but are smaller than K2 can be thought of as belonging
to different species within the same genus, all populations at genetic distances
that are larger or equal than K2 but are smaller than K3 can be thought of as
belonging to different species and genera within the same family, etc.

Evolve-Cluster accepts a wide variety of input and produces a wide variety
of output. In order to provide focus on identifiable trends, we will concentrate
in this paper on the following input to and output from the Evolve-Cluster
simulations as shown in Table 1. (Note that there is no correlation between the
input and output items, they are just lists).
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Table 1. Evolve-Cluster Input/Output Parameters of Interest

Input Parameters Output
Geometry (1D, 2D, size) Number of Clusters (Species), NS

Bitwise Mutation Probability, μ Average Pairwise Distance, d̄
Deme Extinction Probability, ED Average Distance from Founder, d̄f

Population Extinction Probability,Ep Time to Speciation, T
DNA strand length, L Duration of Radiation Event, τ
Population Migration Probability, m Cluster Diameter
Patch Carrying Capacity Cluster Range Distribution
Mating, Coexistence and Clustering Thresholds Cluster Average Pairwise Distance

One can visualize our model as follows: Each population is a point in a genetic
hyperspace; the clade (i.e., the whole system of populations) is a cloud of points
which changes its size, structure, and location in the genetic hyperspace. The
diameter of this cloud can be characterized by the average pairwise distance d̄
between members of the clade measuring how diversified the clade is. The average
distance to the founder d̄f characterizes the extent of the overall change (see
Figure 1). As time increases, populations get farther and farther away from each
other while at the same time moving farther away from the founding population.
Of course there is a limit as to how much d̄f and d̄ increase due to the finite
number of loci under consideration. In fact it can be shown that d̄f → L

2 and
d̄ → L

2+g(μ) as t → ∞. [Here, g(μ) → 0 as μ → ∞ and g(μ) > 0 for all μ > 0.
Essentially g(μ) ∼ 1/μ.]

In addition, we can easily calculate how long it takes for speciation to occur,
how many species emerge, and what parameters affect the rate of speciation and
species diversity.

d̄f = 0

d̄

(a) t = 0

d̄

d̄f

(b) t > 0

Fig. 1. The average pairwise distance d̄ and the average distance to the founder d̄f at
two different time moments. The clades are represented by the spheres.

Figure 2 illustrates a typical speciation curve (i.e., the number of species or
clusters vs. time). This figure also explains the meaning of two statistics: the



8 M.A. Saum and S. Gavrilets

0 5000 10000
0

50

100

Generation

N
um

be
r

of
Sp

ec
ie

s
Time to Speciation (T )

Duration of Radiation (τ )

Fig. 2. A typical speciation curve

time to speciation T and the duration of radiation τ . Note that the number of
species stays at 1 for a small amount of time, then rises relatively quickly to
reach a stochastic equilibrium level.

All data and results reported in this paper are based on multiple runs of the
same set of parameters, usually between 30 and 50 repeats.

Distance from the Founder, d̄f

One quick check that our model is working well is based on analysis of how certain
dynamics match the theory. In [18, Eq. 4c], it was shown that the averageHamming
distance from a single founding population changes according to equation

d̄f (t) =
L

2
[1 − exp(−c(μ)t)] (2)

where c(μ) a function only of μ, the mutation rate. This is basically a solution
to a random walk problem on the binary hypercube. Our model showed that
the fit to Equation 2 over hundreds of runs with varying parameter sets truly
is a function only of the mutation rate μ and time. This perhaps is the single
best indication that our model is performing well with prediction and is inter-
nally consistent with the basic mathematical evolutionary theory concepts of
mutation, migration, and extinction.
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4 Parameter Studies

Since the Evolve-Cluster model seems to be modeling some aspects of the speci-
ation process well when compared with other models, it now remains to identify
other characteristics of our model. Specifically we will be analyzing the effect of
changing input parameters to first see if the results make qualitative sense and
then use our model to uncover hidden trends and quantitative results.

Geometry Size, Mating Threshold, and Clustering Threshold

Figure 3 contains summary graphs of nine different parameter sets. The graphs
are ordered from top to bottom increasing in 2-D geometry size, 10×10, 14×14,
and 20 × 20. The graphs are ordered from left to right increasing in mating
threshold Km = 5, 10, and 15. Each graph is the summary of fifty runs with
L = 256, m = 0.02 and μ = 0.00004. On each graph there are five curves. The
three speciation curves are for the different clustering thresholds K, while the
other two curves are the average pairwise distance (d̄) between all populations
and the average distance from the founder (d̄f ) as a function of time.

In our model, extensive diversification occurs relatively fast. The graphs in
Figure 3 illustrate the fact that d̄ dominates initially, while d̄f eventually becomes
larger than d̄ and stays that way. In addition, the asymptotics are consistent
with those discussed in the previous section. This trend can be understood by
considering the metaphor introduced above; the ball changes diameter quicker
than moving away from the origin initially, i.e., genetic changes go into producing
diversity at a rate quicker than moving the clade as a whole genetically away from
the founding population. After a short time, movement away from the founder
dominates while at the same time genetic diversity between the populations also
increases.

In our model, the probability of a genetic change μe (see equation 1) depends
on the number of neighboring populations of the same species and, thus, on
mating threshold Km. With a higher Km, there are more neighbors of the same
species which effectively reduces the rate of change and dampens d̄ expansion.
This is evidenced by the fact that the higher the mating threshold Km, the closer
the curves d̄ and d̄f track each other. Since the number of loci L and mutation
probability μ are the same in all of these cases, the d̄f curve is the same in all
graphs as expected. It also appears that the larger the size of the system, the
greater the difference between d̄ and d̄f , although the asymptotics still remain
the same as described above. This can be explained by the fact that with a larger
geometry, d̄ increases unchecked by physical boundaries until boundary effects
coupled with the finite number of loci L effectively dampens d̄ expansion and
the asymptotics take over.

As the clustering threshold K increases, the number of species decreases.
This is as expected, since larger clusters (clusters containing more populations)
implies there are less clusters. It is also clear that the number of species increases
as geometry size increases. It appears here that boundary effects do play a role
in speciation, effectively suppressing the speciation process to some extent.
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Fig. 3. The effects of geometry size, mating threshold Km, and clustering threshold K
on the number of species NS , the average pairwise distance d̄, and the average distance
to the founder d̄f as functions of time

The time to speciation T increases asKm increases. This is due to the fact that
it takes longer to accumulate enough genetic differences to separate populations
into new species. The duration of radiation τ increases as Km increases. This is
due to the observation that radiation still occurs, but is not as rapid as at lower
mating threshold values, more evidence of negative mutation pressure applied
by the higher mating threshold.

There are other observations which can be made from the graphs shown in
Figure 3, including

– T increases as geometry size increases,
– τ is approximately constant as geometry size increases,
– The difference between the number of species at different clustering levels

remains constant in time,
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– The difference between the number of species at different clustering levels is
approximately constant as mating threshold increases,

– The difference between the number of species at different clustering levels
increases as geometry size increases,

– τ appears to be much less that T in all cases.

Migration and Patch Carrying Capacity

One of the parameter studies undertaken was to increase the carrying capacity
of each patch in the geometry so that multiple populations per patch could
exist at any time. With multiple populations allowed, the evolutionary dynamics
consist of a series of population splits followed by accumulation of additional
genetic differences between emerging species which eventually allows for their
coexistence in the same patch (when genetic distance is > Kc), which in turn
leads to range expansions and increase in the number of populations per patch.

Figure 4 illustrates some results for a clustering threshold of K = 2 letting mi-
gration rate m vary. Part (a) shows the number of species in the system which we
normalized by the patch carrying capacity (i.e., the number of populations per
patch). Note that increasing the patch carrying capacity increases the number
of species NS in the system disproportionately. NS is essentially constant with a
slight decreasing trend as m increases. Part (b) shows that the average pairwise
distance d̄ increases with the patch carrying capacity; d̄ does not appear to de-
pend on the migration rate. Overall, allowing for multiple populations per patch
stimulates population expansion into multiple ecological habitat niches allowing
for rapid speciation to occur in parallel resulting in even more diversification, all
in approximately the same time frame.
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Fig. 4. The effects of migration rate m on the normalized number of species and on
the average pairwise distance d̄ in a model with 1, 2, 4 or 8 populations per patch

5 Conclusions

Our CA based metapopulation model allows us to investigate the dynamics of
genetic diversification in a large dimensional state space. The adaptive radiation
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regime observed in the model is a rich source of data for helping one to better
understand the speciation process.
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Abstract. In this work standard lattice cellular automata and random Boolean
networks are extended to a wider class of generalized automata networks having
any graph topology as a support. Dynamical, computational, and problem solv-
ing capabilities of these automata networks are then discussed through selected
examples, and put into perspective with respect to current and future research.

1 Introduction

Cellular automata (CA) have been widely used since their introduction by Ulam and
Von Neumann at the beginning of the 1950s. They have turned out to be an extremely
flexible and simple model for studying many phenomena in a large variety of fields.
Indeed, it would be hard to name a single area of investigation where CA have not been
used with some success. This can be seen in two recent books [6,33] in which the fo-
cus is either on CA’s modeling capabilities [6], or on their intrinsic computational and
pattern formation properties [33]. In Wolfram’s book the claim is even more ambitious,
since CA are seen as the computational model at the source of almost all natural phe-
nomena. Without necessarily accepting such “grand” claims, it should be granted that
CA are indeed an extremely useful model. The “secrets” of the wide applicability of
CA models are to be found in their structural simplicity, the fact that they can approx-
imate continuous fields by a simpler discrete model which is easier to understand and
to implement numerically, and by their universal computational properties. Structural
simplicity is apparent in the use of rules that act locally in a regular lattice, and universal
computational properties of CA have been known for a long time [33].

On the whole, and although there are many variations on the central theme, CA have
been seen in general as simple homogeneous automata laid out on a regular grid, in-
teracting in a small geometrically regular neighborhood. On the other hand, in recent
years there has been substantial research activity in the science of networks, motivated
by a number of innovative results, both theoretical and applied. Starting from the semi-
nal 1998 paper of Watts and Strogatz [31], networks have been recognized as a central
model for the description of countless phenomena of scientific, social and technolog-
ical interest. Typical examples include the Internet, the World Wide Web, social ac-
quaintance networks, electric power supply networks, biological networks, and many
more. The key idea is that most real networks, both in the natural world as well as
in man-made structures, have mathematical properties that set them apart from regular
lattices and random graphs, which were the two main topologies studied until then. In-
spired by previous qualitative observations made by social scientists, Watts and Strogatz
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introduced an algorithmic construction for small-world networks 1 in which pairs of
vertices are connected by short paths through the network. The existence of short paths
between any pair of nodes has been found since then in real networks as diverse as
the Internet, airline routes, the World Wide Web, neural, genetic, and metabolic net-
works, citation and collaboration networks, and many others [22] . The presence of
short paths is also a property of standard random graphs as those constructed according
to the Erdös-Rényi model [22], but what sets real networks apart from random graphs
is a larger clustering coefficient, a measure that reflects the locality of a structure. The
topological structure of a network has a marked influence on the dynamical processes
that may take place on it, a point that has been strikingly demonstrated, for example, by
the fault-tolerant properties of the Internet [2], and by the spreading of epidemics [23].

Regular lattices and random networks (which are also regular in a statistical sense)
have been thoroughly studied in many disciplines. For instance, the dynamics of lat-
tices and random networks of simple automata have received a great deal of attention
[16,12,6,33]. Starting from the above facts, conceiving of irregular networks of au-
tomata does not take a large stretch of imagination and could prove useful. Due to
their novelty, and in spite of their potential interest, there have been comparatively few
studies of the computational and dynamical properties of automata networks. Notable
exceptions are [26,30,24,27,28,19] which mainly deal with extensions of classical CA,
and a few recent articles on Boolean automata networks [3,4,21,13].

My intention in the present work is twofold: first, to define in a systematic manner a
wider class of CA built on top of general networks, and second, to review recent work
on their dynamical and computational properties in the new environment. Thus, I shall
first present a graph-theoretic unified view of automata networks, followed by examples
taken from the fields of automata computation and dynamics, and random boolean net-
works. The automata considered will be static, in the sense that the supporting network
topology does not change in time. However, this is not a good assumption for many sys-
tems either because faults dynamically affect nodes and links, or just because the nature
of the interaction between network nodes is itself dynamical as in social networks of
interacting agents. Here I shall deal briefly with the effect of network perturbations but
not with intrinsically dynamical network systems.

2 Cellular and Networked Automata

Cellular Automata are dynamical systems in which space and time are discrete. A stan-
dard d-dimensional cellular automaton consists of a finite or infinite d-dimensional grid
of cells, i.e. a regular lattice, each of which can take on a value from a finite, typically
small, set of valuesΣ. The value of each cell at time step t is a function of the values of
a small local neighborhood of cells at time t−1. The cells update their states simultane-
ously according to a given local rule. Asynchronous CA with a given sequential update
order can also be considered (see section 6).

1 Small-world network is a general term meaning that a graph that has this property has both
a small diameter and a clustering coefficient that is larger than that of a corresponding ran-
dom graph. Watts–Strogatz small-world networks are just one particular family of graphs that
possess these properties.



16 M. Tomassini

Formally, a cellular automaton A is a quadruple

A = (Σ,U, d, f),

where Σ is a finite set of states, U is the cellular neighborhood, d ∈ Z+ is the dimen-
sion of A, and f is the local cellular interaction rule, also referred to as the transition
function.

Given the position of a cell, i, i ∈ Zd, in a regular d-dimensional uniform lattice, or
grid (i.e., i is an integer vector in a d-dimensional space), its neighborhood U is defined
by:

Ui = {i, i + r1, i + r2, . . . , i + rn−1},
where n is a fixed parameter that determines the neighborhood size, and rj is a fixed
vector in the d-dimensional space.

The local transition rule f
f : Σn → Σ,

maps the state si ∈ Σ of a given cell i into another state from the set Σ, as a function of
the states of the cells in the neighborhoodUi. In uniform CA f is identical for all cells,
whereas in non-uniform ones f may differ between different cells, i.e., f depends on i,
fi.

For a finite-size CA of size N (such as those treated herein) a configuration of the
grid at time t is defined as

C(t) = (s0(t), s1(t), . . . , sN−1(t)),

where si(t) ∈ Σ is the state of cell i at time t. The progression of the CA in time is then
given by the iteration of the global mapping, also called evolution operator Φ

Φ : C(t) → C(t+ 1), t = 0, 1, . . .

through the simultaneous application in each cell of the local transition rule f . The
global dynamics of the CA can be described as a directed graph, referred to as the CA’s
phase space.

For one-dimensional CA with two possible states per cellf is a function f : {0, 1}n →
{0, 1}, and the neighborhood size n is usually taken to be n = 2r + 1 such that:

si(t+ 1) = f(si−r(t), ..., si(t), ..., si+r(t)),

where r ∈ Z+ is a parameter, known as the radius, representing the standard one-
dimensional cellular neighborhood. The domain of f is the set of all 2n n-tuples. For
finite-size grids, spatially periodic boundary conditions are frequently assumed, result-
ing in a circular grid for one-dimensional systems and a torus for two dimensional ones;
formally, this implies that cellular indices are computed modulus N .

To visualize the behavior of a one-dimensional CA one can use a two-dimensional
space-time diagram, where the horizontal axis depicts the configuration C(t) at a cer-
tain time t and the vertical axis depicts successive time steps, with time increasing down
the page (for example, see Fig. 1).
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We now extend the previous concepts to Generalized Automata Networks (GAN).
With respect to standard CA, the most important change concerns the network topology:
whilst in CA this topology is a d-dimensional regular lattice, GAN can be built on any
connected graph. Let G = (V,E) be a graph, where V is a set of vertices and E is a set
of edges. E is a binary relation on V ; it is either symmetric if the edge is unordered, as
in undirected graphs, or it is an ordered pair, as in directed graphs. Both cases arise in
GAN. With these definitions, a GAN on V is a quadruple (G,Σ,U, {fi|i ∈ V }). The
only change with respect to lattice synchronous CA is in the local transition function
f which now depends on the degree ki of vertex i, i.e. the number of neighbors can
be different for different i ∈ V . This can be formalized as: fi : Σki → Σ. As in
the case of CA, non-uniform GAN can be defined by allowing fi to depend not only
on the degree ki of vertex i, but also on the position of i in the graph G. Likewise,
asynchronous GAN can be defined by explicitly stating a sequence of vertex updates,
including random sequences. In this paper I deal with binary, i.e. Σ = {0, 1}, uniform
and non-uniform, synchronous and partially asynchronous GAN.

3 Small-World and Scale-Free Graphs

In this section I shall describe the main network types that will be used or referred
to in the sequel. Although the following material is well known, I include a succint
description for the sake of completeness so as to make the paper more self-contained.
The reader is referred to the original works for more details.

The Watts–Strogatz Model. Following Watts and Strogatz [31], a small-world graph
can be constructed starting from a regular ring of N nodes in which each node has
k neighbors (k � N ) by simply systematically going through successive nodes and
“rewiring” each link with a certain probability β. When an edge is deleted, it is re-
placed by an edge to a randomly chosen node. If rewiring an edge would lead to a du-
plicate edge, the graph is left unchanged. This procedure will create a number of links,
called shortcuts, that join distant parts of the lattice. Shortcuts are the hallmark of small
worlds. While the average path length2 between nodes scales logarithmically with the
number of nodes in a random graph, in Watts-Strogatz graphs it scales approximately
linearly for low rewiring probability but goes down very quickly and tends towards the
random graph limit as β increases. This is due to the progressive appearance of short-
cut edges between distant parts of the graph, which obviously contract the path lengths
between many vertices. However, small world graphs typically have a higher clustering
coefficient3 than random graphs, and a degree distribution P (k) close to Poissonian.

The Barabási–Albert Model. Albert and Barabási were the first to realize that real
networks grow incrementally and that their evolving topology is determined by the way
in which new nodes are added to the network. They proposed an extremely simple
model based on these ideas [1]. One starts with a small clique of m0 nodes. At each

2 The average path length L of a graph is the average value of all pairs shortest paths.
3 The clustering coefficient C of a node is a measure of the probability that two nodes that are

its neighbors are also neighbors among themselves. The average 〈C〉 is the average of the Cs
of all nodes in the graph.
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successive time step a new node is added such that its m ≤ m0 edges link it to m nodes
already in the graph. When choosing the nodes to which the new nodes connect, it is
assumed that the probability π that a new node will be connected to node i depends
on the current degree ki of i. This is called the preferential attachment rule. Nodes
with already many links are more likely to be chosen than those that have few. The
probability π(ki) of node i to be chosen is given by:

π(ki) =
ki∑
j kj

,

where the sum is over all nodes already in the graph. The model evolves into a station-
ary network with power-law probability distribution for the vertex degree P (k) ∼ k−γ ,
with γ ∼ 3, which justifies the name scale-free. As for Watts–Strogatz small-worlds,
scale-free graphs have short average path length and clustering coefficients that are
higher than those of the corresponding random graphs with comparable number of ver-
tices and edges.

The Barabási–Albert model is by no means the only way for constructing scale-free
graphs. For example, the BA incremental construction introduces historical correla-
tions, due to the non-equilibrium dynamics of the construction process, and also degree
correlations to some extent. Other constructions, such as the configuration model, may
produce uncorrelated scale-free graphs. It is also possible to build scale-free graphs with
a given degree distribution function, i.e. with an exponent γ 	= 3. Here these distictions
are not crucial, although the reader is referred to the specialized literature for details
(see [22] and references therein).

4 Dynamics and Pattern Formation in GAN

In a recent work, Marr and Hütt [19] have investigated the connection between net-
work topology and the corresponding impact on network dynamics for binary GAN in
a systematic manner. The tools of their analysis were similar to those employed by Wol-
fram [32] in his study of the emerging spatio-temporal patterns in one-dimensional CA.
Although there are other, more rigorous classifications, Wolfram four-classes system,
together with Langton’s λ parameter [18] are still useful to understand the dynamical
behavior of those CA, and an analogous of this classification was used in [19].

Marr and Hütt studied Watts–Strogatz small-world graphs, Barabási–Albert scale-
free graphs, and random networks. They defined two main classes of binary GAN
Ω1(κ) and Ω2(κ), each depending on a single parameter κ. This parameter takes into
account the fact that in CA the transition function is defined for a constant number of
neighbors while, by definition, this is not the case in GAN. In the first class λ remain
constant, while in the second one it varies with κ.

Marr and Hütt showed by numerical simulation that the pattern formation capabil-
ity of binary GAN strongly depends on the topology of the underlying network and
that there are marked differences between GAN belonging to the two classes. By us-
ing temporal entropies, they found that in Watts–Strogatz small worlds increasing the
rewiring probability progressively destroys local collective behavior, and beyond the
small-world regime long-range correlations disappear. In Barabási–Albert scale-free
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graphs, variation of the degree correlations through rewiring without changing the de-
gree distribution, leads to an inhomogeneous distribution in word entropy of the time
series for the symbolic dynamics of individual nodes. From that point of view, nodes
with low degree have a far greater entropy than their regular graph counterparts. On
average, however, the word entropy is similar to that of CA. There are many other in-
teresting considerations in the paper of Marr and Hütt for which we do not have space
here; the reader is referred to the original work for details.

5 Collective Tasks on GAN: Density and Synchronization

The density and the synchronization tasks are prototypical distributed computational
problems for binary CA. The design, evolution, and performance evaluation of one-
dimensional CA that approximately perform those tasks has a long history; an excellent
review appears in [7]. The tasks are briefly described below.

The density Task. The density task for a finite one-dimensional CA of size N is de-
fined as follows. Let C(0) be the initial configuration of the CA, i.e. the sequence of
bits that represents the state of each automaton at time 0, and let ρ0 be the fraction of
1s in the initial configuration. The task is to determine whether ρ0 is greater than or
less than 1/2. If ρ0 > 1/2 then the CA must relax to a fixed-point configuration of all
1’s, otherwise it must relax to a fixed-point configuration of all 0’s, after a number of
time steps of the order of the grid size N . Here N is set to 149, the value that has been
customarily used in research on the density task (taking N odd avoids the case where
ρ0 = 0.5 for which the problem is undefined).

Fig. 1. The density task. Cell states are represented horizontally (black stands for 1). Time in-
creases down the page. The initial density of ones is 0.416.

This computation is trivial for a computer with a central control: just scanning the
array and adding up the number of, say, 1 bits will provide the answer in O(N) time.
However, it is nontrivial for a small radius one-dimensional CA since such an automaton
can only transfer information at finite speed relying on local information exclusively,
while density is a global property of the configuration of states. An example is given in
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Fig. 1. It has been shown that the density task cannot be solved perfectly by a uniform,
two-state CA with finite radius [17], although a slightly modified version of the task
allows perfect solution by such an automaton [5], or by a combination of automata [11].

The performance of a CA rule on the density task is defined as the fraction of cor-
rect classifications over n = 104 randomly chosen initial configurations (ICs). ICs are
sampled according to a binomial distribution among the 2N possible binary strings i.e.,
each bit is independently drawn with probability 1/2 of being 0. Clearly, this distribu-
tion is strongly peaked around ρ0 = 1/2 and thus makes a difficult case for the CA to
classify. The best CA found to date either by evolutionary computation or by hand have
performances around 0.8 [7].

Using his small-world construction, and thus relaxing the regular lattice constraint,
Watts [30] has been able to obtain GAN with performance around 0.85, with the same
mean connectivity 〈k〉 as in the regular CA case. Moreover, given that different nodes
may have now different degrees, Watts used a simple majority rule 4 as a transition
function, a rule that cannot classify density in a regular CA. In [27] it was shown that
such high-performance GAN can be obtained automatically and easily with a simple
evolutionary algorithm, starting from either regular or completely random graphs.

The Synchronization Task. The one-dimensional synchronization task was introduced
in [9]. In this task the CA, given an arbitrary initial configuration C(0), must reach
a final configuration, within m � 2N time steps, that oscillates between all 0s and
all 1s on successive time steps, i.e. if C(m) is such a final configuration, and (say)
C(m) = {0}n, one hasC(m+2k+1) = {1}n, andC(m+2k) = {0}n, k = 0, 1, . . ..
Figure 2 depicts the space-time diagram of a CA that solves the task for the given initial
configuration.

As with the density task, synchronization also comprises a non-trivial computation
for a small-radius CA, and it is thus extremely difficult to come up with CA rules that,
when applied synchronously to the whole lattice produce a stable attractor of oscillating
all 0s and all 1s configurations. Das et al. were able to automatically evolve very good
ring CA rules of radius three for the task by using genetic algorithms [9]. Sipper did the
same for quasi-uniform CA, i.e. CA with a few different rules instead of just one [25],
attaining excellent performance for radius-one CA. The performance of a CA on this
task is evaluated by running it on randomly generated initial configurations, uniformly
distributed over densities in the range [0, 1], with the CA being run for M � 2N time
steps. Performance values close to 1 have been obtained.

Task Performance on Watts–Strogatz Networks. Figure 3 shows that GAN obtained
by artificial evolution of the network topology without including any preconceived de-
sign issue, yield high-performance automata networks in the same class of those con-
structed by Watts and better than ring CA for the density task. The simple majority rule
was used at each node. In these figures φ is the fraction of shortcuts in the graph; thus
φ = 0 corresponds to the ring case while φ = 1 approaches the random graph case.

The results for the synchronization task (not reported here) are similar [28]. Thus,
relaxing the regularity condition of the network, one can easily obtain GAN that are at

4 The majority rules attributes to the central cell the state of the majority of neighbors, including
the cell itself. In case of tie, the state is chosen uniformly at random.
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Fig. 2. A one-dimensional CA correctly performing the synchronization task
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Fig. 3. Density task. The φ - performance values of the 50 best individuals found by evolution
starting from rings and random graphs. For comparison, Watt’s results (redrawn from [30])are
also plotted.

least as good as the best designed or evolved CA for the tasks, with a similar average
number of neighbors. Besides, if instead of using the simple majority rule the local
transition function f was made itself to evolve, results would probably be even better.
In fact, in a recent work Mesot and Teuscher [21] shown that randomly interconnected
boolean automata using arbitrary boolean functions at the nodes (see section 6) can
perform the synchronization and density task with high performance.

Task Performance on Scale-Free Networks. In [8] Albert and Barabási type networks
(see section 3) were constructed to be used as support for CA computations with 〈k〉 =
{6, 12}. Results depicted in Figure 4 show that performance on the density task of CA
mapped on scale-free networks are above 0.7 for networks with a smaller m0, the size
of the initial kernel. When a certain threshold is reached (m0 about 14 for 〈k〉 = 6
and 35 for 〈k〉 = 12), performances drop dramatically. This means that the more the
structure of the scale-free network become star-like, with a unique oversized cluster
and only small satellites weakly connected (m → 1), the information circulates with
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more difficulties. Results for scale-free graphs built using the configuration model are
comparable. One can thus conclude that scale-free network topologies are less suitable
than Watts–Strogatz small worlds as a substrate for the density task. The results are
even worse than those obtained in rings [7] using specialized rules.
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Fig. 4. Performance vs m0 of scale-free networks (built on the Albert and Barabási model) on
the density task. The circles represent the performance of networks with an average connection
〈k〉 = 6 and triangles 〈k〉 = 12.

The relative unsuitability of scale-free nets for collective task solving is confirmed
by the numerical study of their behavior under noise for the density task. Using a proba-
bilistic fault model, it appears that Watts–Strogatz type networks are much more robust
than scale-free ones, as they tolerate a higher amount of errors without compromising
task performance too much [8]. This is a surprising result, given that scale-free net-
works are notoriously very robust under random node or link failure [2]. Needless to
say, Watts–Strogatz small worlds also have much better faul-tolerance capabilities than
rings for the same task.

6 Generalized Boolean Networks

Random Boolean Networks (RBN) are directed GAN that have been introduced by
Kauffman more than thirty years ago in a landmark paper [15] as a highly simplified
model of genetic regulatory networks. In a RBN with N nodes, a node represents a
gene and is modeled as an on-off device, meaning that a gene is expressed if it is on
(1), and it is not otherwise (0). Each gene receives K randomly chosen inputs from
other genes. Initially, one of the possible Boolean functions of K inputs is assigned at
random to each gene. The network dynamics is discrete and synchronous: at each time
step all nodes simultaneously examine their inputs, evaluate their Boolean functions,
and find themselves in their new states at the next time step. Over time, the system
travels through its phase space, until a point or cyclic attractor is reached whence either
it will remain in that point attractor forever, or it will cycle through the states of the
periodic attractor. Since the system is finite and deterministic, this will happen at most
after 2N time steps.
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This extremely simple and abstract model has been studied in detail by analysis and
by computer simulations of statistical ensembles of networks and it has been shown to
be capable of extremely interesting dynamical behavior. We summarize the main results
here (a full description is found in [16]).

First of all, it has been found that, as some parameters are varied such as K , or the
probability p of expressing a gene, i.e. of switching on the corresponding node’s state,
the RBN can go through a phase transition. Indeed, for every value of p, there is a
critical value of connectivity K such that for values of K below this critical value the
system is in the ordered regime, while for values of K above this limit the system is
said to be in the chaotic regime. In classical RBN K = 1 corresponds to the ordered
regime, K = 2 is critical, and K ≥ 3 means that the system is in the chaotic phase.
Kauffman found that for K = 2 the size distribution of perturbations in the networks
is a power law with finite cutoff that scales as the square root of N . Thus perturbations
remain localized and do not percolate through the system. The mean cycle length scales
at most linearly with N for K = 2. Kauffman’s suggestion is that cell types correspond
to attractors in the RBN phase space, and only those attractors that are short and stable
under perturbations will be of biological interest. Thus, according to Kauffman,K = 2
RBN lying at the edge between the ordered phase and the chaotic phase can be seen as
abstract models of genetic regulatory networks.

RBN are interesting in their own as complex dynamical systems and have been
throughly studied as such using the concepts and tools of statistical mechanics. How-
ever, I believe that the original view of Kauffman, namely that these models may be
useful for understanding real cell regulatory networks, is still a valid one, provided that
the model is updated to take into account present knowledge about the topology of real
gene regulatory networks, and the timing of events, without loosing its attractive sim-
plicity. In the following I shall describe a couple of ways in which the Kauffman model
could be modified in order to take into account a number of experimental observations
that were not available at the time (more details of the model can be found in [13]).

The Network Model. Kauffman’s RBN model rests on three main assumptions:

– The nodes implement Boolean functions and their state is either on or off;
– The nodes that affect a given node in the network are randomly chosen and are a

fixed number;
– The dynamics of the network is synchronous in time.

The binary state simplification could seem extreme but actually it represents quite well
“threshold phenomena” in which variables of interest suddenly change their state, such
as neurons firing or genes being switched on or off.

Random networks with fixed connectivity degree were a logical generic choice in the
beginning, since the exact couplings in networks were generally unknown. Today it is
more open to criticism since it does not correspond to what we know about the topology
of biological networks. In fact, many biological networks, including genetic regulatory
networks, seem to be of the scale-free type or of a hierarchical type (see [29] and refer-
ences therein) but not random, according to present data. For scale-free networks, this
means that the degree distribution function P (k) is a power law P (k) ∼ k−γ , usually
with 2 < γ < 3, instead of a Poisson distribution as in a random graph, or a delta
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distribution as in a classical RBN. Thus the low connectivity suggested by Kauffman
for candidate stable systems is not found in such networks, where a wide range of de-
grees is present instead. The consequences for the dynamics may be important, since in
scale-free graphs there are many nodes with low degree and a low, but not vanishing,
number of highly connected nodes. Along this line, M. Aldana has recently presented
a detailed analysis of Boolean networks with scale-free topology [3]. He definened a
phase space diagram for boolean networks, including the phase transition from ordered
to chaotic dynamics, as a function of the power law exponent γ. He also made exhaus-
tive simulations for several relatively small values of N , the network size.

The model of [13] has in common with Aldana’s the scale-free topology of the net-
works, although the graphs are constructed in a different way. But, in contrast to Al-
dana’s, a suitable semi-synchronous dynamics is defined for the system, instead of using
the customary synchronous update.

As sais above, according to present data many biological networks, including genetic
regulatory networks, show a scale-free output distribution Pout(k) and a Poissonian in-
put distributionPin(k) [29]. The networks used in Giacobini’s et al. work [13] have been
generated according to a mixed generalized/poisson random graph : first a sequence of
N out-degrees that satisfies a power-law distribution with exponent γ is assigned to N
nodes; then, every out-going edge is assigned as input to one of the N nodes chosen at
random (excluding self-connections). The resulting networks have a scale-free distrib-
ution of the output degrees and a Poisson distribution of the input degrees.

Synchronous, Asynchronous and Semi-Synchronous Network Dynamics. Standard
RBN update their state synchronously. This assumption simplifies the analysis, but it
is open to discussion if the network has to be biologically plausible. In particular, for
genetic regulatory networks, this is certainly not the case, as many recent experimental
observations tend to prove. Rather, genes seem to be expressed in different parts of
the network at different times, according to a strict sequence (see, for instance, [10]).
Thus a kind of serial, asynchronous update sequence seems to be needed. Asynchronous
dynamics must nevertheless be further qualified, since there are many ways for serially
updating the nodes of the network.

Several researchers have investigated the effect of asynchronous updating on classi-
cal RBN dynamics in recent years [14,20]. Harvey and Bossomayer studied the effect
of asynchronous updating on some statistical properties of network ensembles, such as
cycle length and number of cycles. They used un update sequence in which the next
cell to be updated is chosen at random with uniform probability and with replacement.
[14]. They found that many features that arise in synchronous RBN do not exist, or
are different in non-deterministic asynchronous RBN. Thus, while point attractors do
persist, there are no true cyclic attractors, only so-called loose ones and states can be in
more than one basin of attraction. Also, the average number of attractors is very differ-
ent from the synchronous case: even for K = 2 or K = 3, which are the values that
characterize systems at the edge of chaos, there is no correspondence between the two
dynamics. Mesot and Teuscher [20] studied the critical behavior of asynchronous RBN
and concluded that they do not have a critical connectivity value analogous to synchro-
nous RBN and they behave, in general, very differently from the latter, thus confirming
the findings of [14].
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Considering the above reults and what is known experimentally from microarray data
about the timing of events in genetic networks it seems that neither fully synchronous
nor completely random asynchronous network dynamics are suitable models. Synchro-
nous update is implausible because events do not happen all at once, while completely
random dynamics does not agree with experimental data on gene activation sequences
and the model does not show stable cyclic attractors of the right size. Thus, the activa-
tion/update sequence in a RBN should be in some way related to the topology of the
network. A topology-driven semi-synchronous update method, called Cascade Update
(CU) has been proposed in [13]. Such an update scheme is certainly not a faithful model
for true biological gene activation sequences which are clearly not the same for differ-
ent regulatory networks. But the scheme is closer to biological reality than previously
proposed ones namely, fully synchronous and various asynchronous policies.
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Fig. 5. probability distributions of the number of different attractors (a), and of the length of the
attractors (b) for network realizations having N = 50 nodes evolving using cascade update
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The CU consists in an asynchronous sequence of synchronously updated blocks of
nodes. At the beginning of the evolution of the network, a node, say i, is randomly
chosen and updated. Then, in the next time step, the block of the nodes to whom i
projects is synchronously updated. The process continues, updating at each time step
a new block formed by all the nodes in the network to which the nodes updated in the
previous time step project. This scheme is deterministic: once the first node is chosen,
the sequence of all the successive updates is unique and will reach a cycle, since the
dynamical system is finite. As a consequence, the attractors of the dynamics cannot be
loose attractors, they have to be true point or cyclic ones.

The results found in [13] by extensive numerical simulation covering Aldana’s or-
dered regime, edge of chaos, and chaotic phase confirm that the behavior of the network
model is biologically plausible, showing cyclic attractors of reasonable length. This can
be seen in Fig. 5 where average results are reported for a network size N = 50 and
a power lae exponent γ = 2.48 which places the system at the edge between the or-
dered and the chaotic phase. This intermediate regime, the analogous of Kauffman’s
K = 2, is the one where perturbations remain localized, according to Aldana, and thus
the system enjoys the necessary stability.

7 Conclusions

Relaxing the regularity constraints in cellular automata gives rise to generalized au-
tomata networks (GAN). Although in this way the systems become more complex to
describe ant to analyze, they also show a richer set of dynamical behaviors. Here we
have reviewed a number of those GAN, ranging from networks for collective task solv-
ing, to biological-like Boolean GAN. It has been seen that GAN have better problem
solving capabilities than CA, while at the same time offering superior fault-tolerance
behavior, except in the scale-free case, which is rather fragile from this point of view.
As models of biological regulatory networks, GAN are more credible than customary
RBN. They correctly describe the observed network topologies, and their dynamics is
also on the right track qualitatively. GAN have been known for a number of years now,
but they are still mostly unexplored. The review presented here and the work cited is
only a first step toward their characterization.
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Abstract. The major features of conventional cellular automata include
the inalterability of topology and the absence of memory. The effect of
simple memory (memory in cells and links) on a particular reversible,
structurally dynamic cellular automaton in the hexagonal tessellation is
explored in this paper.

Keywords: Structurally Dynamic, Cellular Automaton, Memory, Hexag-
onal.

1 A Hexagonal Cellular Automaton

Cellular Automata (CA) are discrete, spatially explicit extended dynamic sys-
tems. A CA system is composed of adjacent cells or sites arranged as a regular
lattice, which evolves in discrete time steps. Each cell is characterised by an
internal state whose value belongs to a finite set. The updating of these states
is made simultaneously according to a common local transition rule involving
only the neighborhood of each cell. Thus, if σ(T )

i is taken to denote the value
of cell i at time step T , the site values evolve by iteration of the mapping :
σ

(T+1)
i = φ

(
σ

(T )
j ∈ Ni

)
, where φ is an arbitrary function which specifies the

cellular automaton rule operating on the neighborhood N of the cell i .
This paper deals with a particular two dimensional totalistic CA rule, the

parity rule: σ(T+1)
i =

∑
j∈Ni

σ
(T )
j mod 2, acting on cells with two possible state

values (0 and 1). Despite its formal simplicity, the parity rule exhibits complex
behaviour [1]. Figure 1 shows an example of the parity rule operating on a
hexagonal tessellation starting from an active cell with its six neighbors also
active. This will be the initial configuration all throughout this article.

2 Cellular Automata with Memory

Standard CA are ahistoric (memoryless): the transition function depends on the
neighborhood configuration of the cells only at the preceding time step. Historic
memory can be embedded in the CA dynamics by featuring every cell by a

S. El Yacoubi, B. Chopard, and S. Bandini (Eds.): ACRI 2006, LNCS 4173, pp. 30–40, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



A Structurally Dynamic Cellular Automaton 31

Fig. 1. A hexagonal CA with the parity rule. Evolving patterns up to T = 8.

mapping of its states in the previous time steps . Thus, what is here proposed
is to maintain the transition rules (φ) unaltered, but make them act on the cells
featured by a function of their previous states: σ(T+1)

i = φ
(
s
(T )
j ∈ Nj

)
, s(T )

i

being a state function of the series of states of the cell i up to time-step T .
Thus, cells can be featured by a weighted mean value of their previous states:

m
(T )
i (σ(1)

i , σ
(2)
i , . . . , σ

(T )
i ) =

σ
(T )
i +

T−1∑
t=1

αT−tσ
(t)
i

1 +
T−1∑
t=1

αT−t

≡ ω
(T )
i

Ω(T )
[1],

and the s values are obtained rounding the m ones: s(T )
i = round(m(T )

i ), with
s
(T )
i = σ

(T )
i if m(T )

i = 0.5 . Memory becomes operative after T = 3, with the
initial assignations s(1)i = σ

(1)
i , s(2)i = σ

(2)
i .

In the two state scenario, geometrically discounted memory does not affect the
scenario if α ≤ 0.5, but if α ≥ 0.61805, cells with state history 001 or 110 will be
featured after T = 3 as 0 and 1 respectively instead of 1 and 0 (last states), and
the patterns of the ahistoric and historic models typically diverge from T = 4.
This is so in Fig.2, which shows the effect of full memory: α = 1.0, in which
case s(T )

i = mode(σ(1)
i , . . . , σ

(T )
i ). Memory truncates the expansive evolution of

the parity rule, particularly at high values of the memory factor α in which case
small size oscillators of short period tend to appear. Thus, in Fig.2 a period two
oscillator appears as early as at T = 4. But the effect is also dramatic at low
values of α: the progression in size turns out restrained and the aspect of the
patterns differs notably from that of the ahistoric ones. The effect of memory in
cells on CA has been studied in the references by Alonso-Sanz et al. .

Fig. 2. Effect of full memory on the parity rule starting as in Fig.1

Note that the memory mechanism here adopted is accumulative in its de-
mand of knowledge of past history: to calculate the memory charge ω(T )

i stated
in [1], it is not necessary to know the whole

{
σ

(t)
i

}
series, while it suffices to
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(sequentially) proceed as: ω(T )
i = αω

(T−1)
i + σ

(T )
i . Let us point out here that

the implementation of memory adopted in this work, keeping the transition rule
unaltered but applying it to a function of previous states, can be adopted in any
dynamical system (see some simple examples in [2]-[5]).

3 Reversible Cellular Automata with Memory

The memory mechanism considered here is different from that of other CA with
memory reported in the literature. Typically, higher-order-in-time rules incor-
porate memory into the transition rule. Thus, in second order in time rules:
σ

(T+1)
i = Φ

(
σ

(T )
j ∈ Ni, σ

(T−1)
j ∈ Ni

)
. Particularly interesting is the reversible

formulation based on the substraction modulo the number of states (noted �):
σ

(T+1)
i = φ

(
σ

(T )
j ∈ Ni

)
� σ

(T−1)
i , reversed as σ(T−1)

i = φ
(
σ

(T )
j ∈ Ni

)
� σ

(T+1)
i .

Figure 3 shows the evolving patterns of the reversible formulation of the example
of Fig.1. As a rule, the pattern at T = 0 in the reversible simulations here is the
same as that at T = 1.

Fig. 3. A reversible hexagonal CA with the parity rule starting as in Fig.1

To preserve reversibility, the reversible formulation with memory must be :
σ

(T+1)
i = φ

(
s
(T )
j ∈ Ni

)
� σ

(T−1)
i [7] . Figure 4 shows an example starting as in

Fig.3 . The general considerations regarding the inertial effect of memory in the
irreversible scenario apply in the reversible implementation. Thus starting as in
Fig.3 but with full memory, a period four oscillator appears as at T = 5.

Fig. 4. A reversible hexagonal CA with α = 0.6 memory starting as in Fig.3

For reversing from T it is necessary to know not only σ
(T )
i and σ

(T+1)
i but

also ω(T )
i to be compared to Ω(T ), to obtain: s(T )

i =

⎧⎪⎪⎨
⎪⎪⎩

0 if 2ω(T )
i < Ω(T )

σ
(T+1)
i if 2ω(T )

i = Ω(T )

1 if 2ω(T )
i > Ω(T )

.

Then to obtain s
(T−1)
i , it is necessary to obtain: ω(T−1)

i =
1
α

(
ω

(T )
i − σ

(T )
i

)
. But
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in order to avoid the division by the memory factor (recall that operations with
real numbers are not exact in computer arithmetic), it is preferable to work

with γ(T−1)
i = ω

(T )
i −σ

(T )
i , and to compare these values to Γ (T −1) =

T−1∑
t=1

αT−t.

This leads to : s(T−1)
i =

⎧⎪⎪⎨
⎪⎪⎩

0 if 2γ(T−1)
i < Γ (T − 1)

σ
(T )
i if 2γ(T−1)

i = Γ (T − 1)

1 if 2γ(T−1)
i > Γ (T − 1)

. Continuing in the

reversing process : γ(T−2)
i = γ

(T−1)
i − ασ

(T−1)
i and Γ (T − 2) =

T−2∑
t=1

αT−t . In

general : γ(T−τ)
i = γ

(T−τ+1)
i − ατ−1σ

(T−τ+1)
i and Γ (T − τ) =

T−τ∑
t=1

αT−t, giving:

s
(T−τ)
i =

⎧⎪⎪⎨
⎪⎪⎩

0 if 2γ(T−τ)
i < Γ (T − τ)

σ
(T−τ+1)
i if 2γ(T−τ)

i = Γ (T − τ)

1 if 2γ(T−τ)
i > Γ (T − τ)

.

4 Reversible Structurally Dynamic Cellular Automata

Structurally dynamic cellular automata (SDCA) were suggested by Ilachinski
and Halpern [9]. The essential new feature of this model is that the connections
between the cells are allowed to change according to rules similar in nature to the
state transition rules associated with the conventional CA. This means that given
certain conditions, specified by the link transition rules, links between rules may
be created and destroyed; the neighborhood of each cell is now dynamic rather
than fixed throughout the automaton, so state and link configurations of an
SDCA are both dynamic and are continually interacting.

In the Ilachinski and Halpern model, an SDCA consists of a finite set of
binary-valued cells numbered 1 to N whose connectivity is specified by an N×N
connectivity matrix in which λij equals 1 if cells i and j are connected; 0 oth-
erwise. So, now : N (T )

i = {j
/
λ

(T )
ij = 1} and σ

(T+1)
i = φ

(
σ

(T )
j ∈ N (T )

i

)
. The

distance between two cells i and j, δij , is defined as the number of links in the
shortest path between i and j. We say that i and j are direct neighbors if δij ≤ 1,
and that i and j are next-nearest neighbors if δij = 2. There are two types of
link transition functions in an SDCA: couplers and decouplers, the former add
new links, the later remove links. The set of coupler and decoupler determines
the link transition rule: λ(T+1)

ij = ψ
(
l
(T )
ij , σ

(T )
i , σ

(T )
j

)
.

Instead of introducing the formalism of the SDCA, we deal here with just
one example in which the decoupler rule removes all links connected to cells in
which both values are zero (λ(T )

ij = 1 → λ
(T+1)
ij = 0 iff σ

(T )
i + σ

(T )
j =0) and

the coupler rule adds links between all next-nearest neighbor sites in which both
values are one (λ(T )

ij = 0 → λ
(T+1)
ij = 1 iff σ

(T )
i + σ

(T )
j =2 and δ

(T )
ij = 2).
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Let us consider the case of Fig.5 , in which, again, the initial hexagonal lattice

(with next-nearest neighborhood : ) is seeded as in Fig.1. After the first
iteration, most of the lattice structure has decayed as an effect of the decoupler
rule, so that the active value cells and links are confined into a small region.
After T = 4, the link and value structures become a period-two oscillator.

Fig. 5. The ahistoric SDCA described in the text starting as in Fig.1

The Fredkin’s reversible construction is feasible in the SDCA scenario extend-
ing the � operation also to links: λ(T+1)

ij = ψ
(
λ

(T )
ij , σ

(T )
i , σ

(T )
j

)
�λ(T−1)

ij . Figure 6
shows the evolution of the reversible formulation of the SDCA of Fig.5 up to
T = 4. At variance with what happens in the irreversible formulation in Fig.5,
the initial lattice structure does not decay at T = 2 (nor at posterior time-steps)
because of the adding of the structure at T = 0 (at T − 1), supposed to be the
same that as at T = 1. The planar representation of the web of connections may
appear ambiguous. Let us mention an example in Fig.6: the central cell seems to
be connected to every cell of its neighborhood at T = 2 as it is at T = 1, but this
is not so because of the superposition of webs, which causes the deletion of the
links of the central cell at T = 2 in Fig.6. The segments that cross the central cell
connect only its neighbor active cells, new conexions at T = 2 not overlapped.
Link transitions rules do not alter auto-connections, but substraction of patterns
may. Thus, for example, in Fig.6 every cell is autoconnected at T = 0 and T = 1,
but the substraction of these patterns leads to the complete disappearance of
auto-connections at T = 2. Auto-connections are not represented in figures, but
of course they affect the mass updating.

Fig. 6. The reversible structurally dynamic CA starting as in Fig.5, up to T = 4

5 A Reversible Structurally Dynamic Cellular
Automaton with Memory

Memory can be embedded in links in a similar manner as in state values, so
the link between any two cells is featured by a mapping of its previous values :
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l
(T )
ij = round(m(T )

ij ), l(T )
ij = λ

(T )
ij if m(T )

ij = 0.5, after m(T )
ij =

ω
(T )
ij

Ω(T )
[2] ,

with ω
(T )
ij = λ

(T )
ij +

T−1∑
t=1

αT−tλ
(t)
ij = ω

(T−1)
ij + αλ

(T )
ij

The distance between two cells in a historic model (dij) is defined in terms
of the l instead of the λ values, so that i and j are direct neighbors if dij = 1,
and are next-nearest neighbors if dij = 2; N (T )

i = {j/d(T )
ij = 1}. Generaliz-

ing the approach to embedded memory introduced in Section 2, the unchanged
transition rules (φ and ψ) may operate on the featured link and mass values:
σ

(T+1)
i = φ

(
s
(T )
j ∈ Ni

)
, λ(T+1)

ij = ψ
(
l
(T )
ij , s

(T )
i , s

(T )
j

)
[10]. A period-two oscillator

is generated at T = 6 with full memory in Fig.7.

Fig. 7. The SDCA with full memory starting as in Fig.5 from T = 4 to T = 11

A generalisation of the Fredkin’s reversible construction is feasible in the
SDCA scenario endowed with memory as: σ(T+1)

i = φ
(
s
(T )
j ∈ N

(T )
i

)
� σ

(T−1)
i ,

λ
(T+1)
ij = ψ

(
l
(T )
ij , s

(T )
i , s

(T )
j

)
�λ(T−1)

ij . Now, for reversing from T it is necessary to

know not only σ(T )
i , l(T )

ij , σ(T+1)
i , and l(T+1)

ij , but also ω(T )
i and ω(T )

ij , proceeding
for reversing in connections as stated for mass values in Section 3. Figure 8 shows
the initial effect of memory with α = 0.6 in the initial scenario of Fig.6 .

Fig. 8. The reversible structurally dynamic CA with α = 0.6 memory starting as in
Fig.6. Evolution from T = 5 up to T = 8

The evolving patterns in the reversible SDCA model with full memory con-
verge from T = 7 to a period-two oscillator, one of whose components has no
active mass cell. In the α = 0.9 memory model a period-four oscillator is gener-
ated at T = 11. If α ≥ 0.61805, the pattern at T = 4 has only the central cell
alive and the hexagonal web of connections restored, which clearly determines
the difference in the evolution compared to that of the ahistoric model.

Figure 9 shows the patterns at T = 13 for the ahistoric and α = 0.6 reversible
SDCA with the initial steps shown in Figs. 6 and 8 . In the ahistoric model, the
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web of connections is so dense in its central area that it is impossible to discern it.
The web appears dramatically cleared in the historic model with the small value
of the memory factor α = 0.6. The clearing of the web of connections together
with a restraint in the advance of mass, mark the inertial effect of memory.

Fig. 9. Patterns at T = 13 of the ahistoric and α = 0.6 memory SDCAs

Figure 10 shows the evolution of mass density, the average number of nearest
neighbors and next-nearest neighbors per site, and the effective dimension : the
average ratio of the number of next-nearest to nearest neighbors per site (a
discrete analogue to the continuous Hausdorff dimension, that in a hexagonal
lattice is : 12/7=1.714) in the simulations of Fig.9. The smoothing effect of
memory is seen again in Fig.10: i) the tendency to grow of the mass and the
two neighbor densities is clearly restrained with memory, ii) the evolution of the
effective dimension is less erratic with memory.

6 Other Memories

Memory may be embedded either in cells but not in connections, or else, only
in connections. Figure 11 shows an example in the latter scenario.

Average-like memory models can readily be proposed by generalizing the

memory charges as: ω(T )
i =

T∑
t=1

δ(t)σ(t)
i , ω(T )

ij =
T∑

t=1

δ(t)λ(t)
ij , with Ω(T ) =

T∑
t=1

δ(t) . The geometric discount model considered till now (δ(t) = αT−t) is just

one of the many possible weighting functions.
Alternatively, previous states can be pondered with the weight : δ(t) = tc.

Choosing integer c parameter values allows working only with integers by com-
paring the 2ωi and 2ωij figures across the lattice to the factor Ω(T ). For c = 0,
we have the full historic model, the larger the value of c, the more heavily the
recent past is taken into account, and consequently the closer the scenario to the
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Fig. 10. Evolution of mass density, average number of nearest neighbors and next-
nearest neighbors per site, and effective dimension in the ahistoric (upper curves) and
α = 0.6 simulations of Figs. 6 and 8 up to T=20 implemented in a lattice of size 43×43

Fig. 11. The evolving patterns of the SDCA described in text with memory only in
connections. Full memory. Evolution from T = 4 to T = 7 starting as in Fig.6 .

ahistoric one. Figure 12 shows an example of the effect of integer-based memory
implementation with δ(t) = t .

Another weight with the same integer-based property, is ct. This memory
weight is not operative with cells and links with two states, but it becomes
operative when allowing three states (0,1,2), in which case the m(T )

i and l
(T )
ij

values are to be compared to the hallmarks 1/2 and 3/2, assigning the last
state/link value in the case of an equality to any hallmark. In order to work
with integers and save computing demands, it is preferable to compare the 2ω
values to the hallmarks 1 and 3 [5]. Figure 13 shows the effect of δ(t) = 2t

memory starting as in Fig. 6 but allowing cells to have three states (links remain
two-valued). The cells of the neighborgood of the central cells reach state 2 at
T = 2 in Fig.13 because 0 �3 1 =2. Memory has effect already at T = 4 as the
central cell has zero mass value in the ahistoric model.
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Fig. 12. The evolving patterns of the SDCA described in text, with integer-based
memory δ(t) = t. Evolution from T = 4 to T = 7 starting as in Fig.6.

Fig. 13. The evolving patterns of the three-states reversible SDCA described in the
text. Square cells are at state 2. Evolution with δ(t) = 2t memory in cells. Patterns
from T = 2 up to T = 5 starting as in Fig.6.

Reversing is easier in the integer-based memory scenarios than in that of geo-
metric discount as ω(T )

i = ω
(T−1)
i +δ(T )σ(T )

i and ω(T )
ij = ω

(T−1)
ij +δ(T )λ(T )

ij read-
ily reverse, without the computational inconvenience of division by α. Working
only with integers (à la CA) is a clear computational advantage. Nevertheless,
the inct and tc , share the same drawback : they explode at high values of t.

7 Discussion

The effect of memory embedded in cells and links on a particular reversible
structurally dynamic cellular automaton starting from a simple hexagonal sce-
nario is qualitatively (pictorially) studied in this work. As a rule, geometrically
discounted memory has been shown to produce an inertial effect that tends to
preserve the main features of initial conditions. This notably alters the ahistoric
dynamics, even if a low level of memory is implemented.

A complete analysis of the effect of memory on reversible structurally dy-
namic CA (RSDCA) is left for future work which will develop a phenomenol-
ogy of RSDCA with memory, i.e. the full analysis of the rule space based
on the morphological classification of patterns formed, the intrinsic parame-
ters (e.g. λ and Z), the structure of global transition graphs, the entropy and
other dynamics-related issues. Potential fractal features are also to come under
scrutiny [11].

Some critics may argue that memory is not in the realm of CA (or even of Dy-
namic Systems), but we believe that the subject is worth studying. At least CA
with memory can be considered as a promising extension of the basic paradigm.
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A major impediment to modeling with CA stems from the difficulty of utilizing
the CA complex behavior to exhibit a particular behavior or perform a partic-
ular function: embedding memory in states and links broadens the spectrum of
CA as a tool for modeling.

The SDCA seem to be particularly appropriate for modelling the human brain
function (links/synapses connect cells/neurons) in which the relevant role of
memory is apparent. Reversibility in this context would avoid the possibility of
”reinventing history”. Models similar to SDCA have beeen adopted to build a
dynamical network approach to quantum space-time physics [12]. Reversibility
is an important issue at such a fundamental physics level.

Apart from their potential applications, SDCA with memory have an aesthetic
and mathematical interest on their own. The study of the effect of memory on
CA has been rather neglected and there have been only limited investigations
of SDCA1. Nevertheless, it seems plausible that further study on SDCA (and
SDLGA [19]) with memory2 should turn out to be profitable.

Acknowledgement. Supported by CICYT Grant AGL2002-04003-C03-02AGR.
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Abstract. For simulating physical and chemical processes on molecular
level asynchronous cellular automata with probabilistic transition rules
are widely used being sometimes referred to as Monte-Carlo methods.
The simulation requires huge cellular space and millions of iterative steps
for obtaining the CA evolution representing the real scene of the process.
This may be achieved by allocating the CA evolution program onto a
multiprocessor system. As distinct from the synchronous CAs which is
extremely efficient, the asynchronous case of parallel implementation is
stiff. To improve the situation we propose a method for approximating
asynchronous CA by a superposition of a number of synchronous ones,
each being applied to locally separated blocks forming a partition of the
cellular array.

1 Introduction

The increase of computing power both of individual computers and of multi-
processor systems enhance the development of simulation methods for obtaining
new knowledge about natural and technological processes. Usually, simulation of
spatial dynamics in physics is performed by partial differential equations (PDE)
solution. But in case when processes under simulation are nonlinear or have dis-
continuous behavior PDE are impuissant. Bright manifestation of the situation
is kinetics of nano-systems, such that epitaxial growth on silicon crystal [1], au-
tovawes and oscillations during the oxidation of carbon monoxide on catalyst
surface [2,3], where the direct modeling of possible movements of particles and
their stochastic interactions in a discrete space is used. Due to the stochastic
character of the processes the models are sometimes classified as ”Random Se-
lection Algorithms of Monte-Carlo methods” [4,5], actually being asynchronous
CA with probabilistic transition rules. It is clear, that very small size of real
”particles”, i.e. molecules or atoms, stipulate the necessity of huge size of the
CA, and real speed of their movements requires large simulation time. Thus, the
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N 14.15 (2006), 2) Siberian Branch of Russian Academy of Sciences, Integration
Project 29 (2006).
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capability of simulation is constrained by the performance of modern computers.
The situation might be essentially improved by using multiprocessor supercom-
puters which are available for scientific community nowadays, but as distinct to
the synchronous CA parallelization of asynchronous CA evolution is a hard task.

A natural way to achieve acceptable parallelization efficiency is to transform
the given asynchronous CA into a synchronous one, which approximate its evo-
lution. The advantages of such an approach is twofold. First, its implementation
is faster, because of the decrease of random number generator use. Second, al-
location of a CA onto many processors for parallel simulation becomes easier
and more efficient. The idea has been already exploited for a particular case of
surface reaction simulation [6]. Here we aim at the development of systematic
method and present some results of its experimental investigation.

Apart from the Introduction and the Conclusion the paper contains three
sections. The second section contains definitions of used concepts. In the third
section asynchronous to block-synchronous transformation and its justification
are given. The fourth section is dedicated to parallel implementation of of block-
synchronous CA.

2 Formal Statement of the Problem

The class of CA under investigation is a mathematical model of the phenomena
consisting of elementary actions of particles. A particle may be interpreted as a
real atom or molecule. Elementary actions are mostly the following: adsorption of
particles from the medium (gas) , sublimation, dissociation, diffusion, chemical
reaction. The processes are stochastic, probability of each action being condi-
tioned by physical parameters. The class of CA modeling the above processes
differs from that of classical cellular automata in the following: 1) transition rules
are probabilistic and deal not only with Boolean states, but also with integers
and sometimes with symbols, 2) a single transition rule is allowed to update a
group of cells at once, being a particular case of substitution systems)from [7] or
[8], 3) the mode of operation is asynchronous, i.e. each time only one updating
act is performed, the cells to be updated being randomly chosen.

A CA with the above features is further referred to as a kinetic asynchronous
CA, being denoted as CAα and represented by three concepts CA = 〈A,M, θ〉,
where A is a state alphabet, M – the set of elementary automata names, θ – a
transition rule. There is no constraints imposed to the alphabet. As for the set
of names, 2D Cartesian lattice M = {m : m = i, j, i = 0, . . . , I; j = 0, . . . , J},
is considered, m being used instead of (i, j) for short. A set Ω = {a,m) : a ∈
A,m ∈ M} forms a cellular arrays, where a pair (a,m) is called a cell, a ∈ A
and m ∈ M . On the set M naming functions ϕ : M → M may be defined. If
mk = ϕ(m), then mk is a neighbor of a cell named m.

A subset of cells

S(m) = {(v0,m), (v1, ϕ1(m)), . . . , (vq, ϕq(m))} (1)
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form a local configuration, a cell (v0,m) being referred to as its reference cell,
the set of cells names in it

T (m) = {m,ϕ1(m), . . . , ϕq(m)} (2)

being called as an underlying template. Two local configurations S(m) and S′(m)
with the same reference cells represent an elementary act of cellular array up-
dating,

θ(m) : S(m) → S′(m), T ′(m) ⊆ T (m), (3)

where S′(m) = {(uk, ϕk(m)) : k = 0, 1, . . . , p, p ≤ q, is a next-state local config-
uration, whose cell states uk = fk(v0, v1, . . . , vq), k = 0, 1, . . . , p, are transition
functions values.

Application of θ(m) to all cells of Ωt transfers the cellular array into the next
global state Ωt+1, which is considered as an iteration. In CAα this transition
may be represented as a transient sequence

σα(Ωt) = (Ωt, . . . , Ωt+lτ , . . . , Ωt+μτ ), (4)

where τ is a micro-step for one updating, and Ωt+μτ = Ωt+1, μ = |M |. All
possible transient evolutions starting from Ωt and ending at Ωt+1 constitute
an ensemble γα(Ω), whose cardinality is |γα(Ω)| = μ!. The sequence Σ(Ω0) =
(Ω0, . . . , Ωt, . . . , ΩT ) is referred to as an evolution, the set of all possible evolu-
tions of a CAα starting from an Ω is denoted as ΓCAα

(Ω).

3 Approximation of an Asynchronous CA by a
Block-Synchronous One

Since synchronous CA are preferable for parallel implementation, there is a nat-
ural intention to transform a given CAα into a synchronous one preserving the
evolution of CAα. Unfortunately, there is no exact method known by now how to
do this, hence, we make an attempt to obtain an approximate one. The idea used
is to impose some order on the random choice of cells to be updated, making
this in such a way as to bring no distortion in the evolution progress but only re-
stricting the possible choice of state-transition sequences. Moreover, introducing
synchronicity, one should be cautious for conservation behavioral correctness. It
is most important because of the fact that in CAα multicell updating is used,
i.e. some cells are updated at once. The correctness condition (in [8] referred
to as noncontradictoryness) requires that no two simultaneous acts of updating
change the same cell state at the same time. Formally, the sufficient correctness
condition is as follows.

T ′(m) ∩ T ′(ϕl(m)) = ∅ ∀m ∈ M, ∀l ∈ 1, . . . , q, (5)

where T ′(m) and T ′(ϕl(m) are underlying templates for S′(m) and S′(ϕl(m))
in (3). It is clear that CAα are always correct because only a single (although a
multicell one) is allowed at a time.
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We shall say that a CAβ approximates a CAα if

Γβ(Ω) ⊆ Γα(Ω) ∀Ω ∈ A×M. (6)

and construct the approximation in the form of a block-synchronous CA (further
denoted as CAβ) which operates as follows.

1. On Ω a set of partitions Π = {Π1, . . . , Πk, . . . , Πb} is defined as follows:

Πk = {B1
k, . . . , B

g
k, . . . , B

G
k },

⋃
g

Bg
k = Ω,

⋂
g

Bg
k = ∅, G = |M |/b. (7)

Bg
k having the underlying template

TB(mk) = {mk, ψ1(mk), . . . , ψl(mk), . . . , ψb(mk)} (8)

mk being a reference cell name of a block Bg
k ∈ Πk.

2. A transition Ωt → Ωt+1 is divided into b steps, the resulting arrays forming
a sequence:

σβ(t) = (Ωt, Ωt+t′ , . . . , Ωt+t′k, . . . , Ωt+t′b), t′ =
t

b
, (9)

where on k-th step, k = 1, . . . , b, θ(m) is applied synchronously to reference
cells (vk,mk) of all blocks Bg

k ∈ Πk, g = 1, . . . , G.
3. Partitions Πk ∈ Π are processed in a random order, the ensemble γβ of

transient sequences in the transitions Ωt+t′k → Ωt+t′(k+1) having the cardinality
|γβ | = b!.

Theorem 1. A CAβ = 〈A,M, θ〉 is an approximation of an ACα, if

T ′(m) ⊆ TB(m), (10)

where T ′(m), TB(m) are underlying templates of θ(m) and Bg
k , respectively.

Proof. To prove the Theorem it is sufficient to show that the relation γβ(Ω) ⊆
γα(Ω) holds for each iteration Ωt → Ωt+1. The latter, according to (9), may be
represented as a sequence of synchronous transitions Ωt+t′k → Ωt+t′(k+1) which
also belong to the set of cellular arrays included in σα(Ω(t)) (4). It follows from
two facts: 1) condition (10) of the Theorem provides the correctness condition
(5) of the synchronous step , and 2) property (7) of CAβ ensures that the result
does not depend on the mode of operation. Moreover, in the sequence of syn-
chronous steps the portion of next-state values used as arguments in functions
(3), being equal to μk

q , increases with k in the similar way than it takes place
in asynchronous case. So, the whole iteration result is equal to the result of an
asynchronous iterative step, which proves the Theorem.

Taking into account the approximation concept (6), the approximation accuracy
may be assessed only as the relation between the numbers Qβ of transient se-
quences σα(Ω(t)) encapsulated in a transition Ω(t) → Ω(t + 1) of CAβ , and
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the total numbers of transient sequences in γα(Ω), which yields ε = G!b!
μ! How

serious is the discrepancy from the true process under simulation depends on
many factors and may be clarified only by a comprehensive experimental study.

Example 2. The most simple model of epitaxial growth on Silicon (Si) surface
is a composition of two following actions: 1) absorption of Si-atoms from the gas
with the probability pa; 2) diffusion of the absorbed atoms over the surface. An
atom diffuses to a neighboring cell if it has n > 0 neighbors (n = 1, 2, 3, 4), whose
states is less that that of its own. The probability of the diffusion act is p′ =
0, 054−n, and the choice among n possible directions to move to is equiprobable,
so pd = p′/n. The process may be described by an CAα= 〈A,M, θ〉 where A = N,
M = {(i, j) : i = 0, . . . , I, j = 0, . . . , J}. A cell (a, (i, j)) corresponds to a site on
a Si crystal surface, where the thickness of the adsorbed layer is equal to a atoms.
The transition rule θ(i, j) is a superposition of ϑads responsible for absorbtion,
and ϑdiff (i, j))) responsible for diffusion.

ϑads = {(v0, (i, j))}
pa→ {(v0 + 1, (i, j))};

ϑdiff = {(v0, (i, j)), (v1, ϕ1(i, j)), (v2, ϕ2(i, j)), (v3, ϕ3(i, j)),
(v4, ϕ4(i, j))}

pd→ {(u0, (i, j)), (u1, ϕ1(i, j)), (u2, ϕ2(i, j)),
(u3, ϕ3(i, j)), (u4, ϕ4(i, j))},

(11)

where

u0 =
{
v0 if (∀k : uk ≥ v0) ∧ (rand > pn),
vk + 1 if (uk < v0) ∧ (rand < pn) ∧ (1/n ≤ k/n ≤ (k + 1)/n). (12)

rand being a random number in the interval [0,1].

Fig. 1. The dependence P (t′) for ACα simulating epitaxial growth and its approxima-
tion by a CAβ , |M | = 200 × 200, pa = 0.2, t′ = t/500
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The simulation process shows the formation of islands of adsorbed atoms on
the Si surface. One of the features under investigation is the dependence of
total perimeter P (t) of the islands on time. The perimeter P is computed as
a number of cell pairs having different states. During the process this number
exhibits oscillations, which are of interest for the researcher. In Fig.1 a few first
waves produced both by CAα and CAβ of such oscillations are shown, CAβ being
obtained according to the above method with the block-size 3 × 3. The mean
square error of approximation computed according the above experiment data
is E = 0.0412. Moreover, CAβ simulation is 1.5 times faster, than CAα.

4 Parallel Implementation of CAα

When simulating spatial dynamics on N processors the simulation space is
divided into N parts, each allocated and processed in its own processor, the
processors exchanging data each iteration. Time for transmitting a data pack-
age Ttrans = Tlat + V Tbit, where Tlat is latency time, V -the amount of bits in
the package, and Tbit - bit transmission time. From the relation Tlat � Tbit it
follows, that the exchange efficiency depends directly on package size. That is
why parallel implementation of synchronous CA evolution, where all border cells
states may be packed in one package, is extremely efficient, the speedup being
close to N provided that

Tcomputation � Ttransmission (13)

Unfortunately, CAα parallelization allows no package to be formed, because any
delay in cell state transmission breaks the correctness condition (5). So, each
state change on the border of the array allocated in a processor requires an
exchange to be performed. It leads to the slow down instead of speeding up,
because (13) cannot be reached even with very large arrays.

The situation is quite different for CAβ , because, border cells states of the
results of synchronous steps may be transmitted in a package. The experimen-
tal results (Table 1), obtained by running the CAβ simulation program on the
cluster MVS-1000/128 of Siberian Supercomputer Center, show quite acceptable
speedup for large enough cellular array size.

Table 1. Time T (min), speedup S = TN/T1, and efficiency C = T1/(NTN ) in
performing 104 iterations of CAβ simulation from the Example 1, array size being
6000 × 6000

N 1 4 9 16 25
T 817.08 212.91 113.66 55.52 41.65
S 1 3.83 7.18 14.78 19.64
C 1 0.95 0.79 0.92 0.78
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5 Conclusion

The problem of parallel simulation of kinetic asynchronous CA evolution is con-
sidered. It is shown that to make parallel implementation speedup acceptable
it is necessary to approximate it by a a block-synchronous CA. An algorithm
for constructing a block-synchronous approximation is given and approximation
error is assessed. Experimental results are presented which show the approxima-
tion error to be admissible for probabilistic algorithms, and speedup of parallel
implementation quite acceptable.
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Abstract. Regional analysis in systems theory has been studied for
systems described by partial differential equations [6]. In this paper, we
propose an approach based on Cellular Automata (CA) models. The ap-
proach is considered for real-valued additive CA. The problem of regional
controllability is explored and connected with actuators structures. The
so-called rank condition is established. Dual results for the observability
of additive CA are developed.

Keywords: Additive real-valued Cellular Automata, Regional control-
lability, Regional Observability, Actuators, Sensors.

1 Introduction

Amongst the most important problems in systems analysis are the controllability
and the observability ones. These concepts have been extensively developed, see
[2] and the references therein. For controllability issues, one normally considers
a control system on a time interval [0, T ] and asks whether some particular
target state zd is reachable. On an other hand the observability consists in the
state reconstruction based on the knowledge of the system dynamics together
with an output function [3]. An extension which is very important in practical
applications is that of regional controllability and observability. Regional analysis
of DPS is based on the following principle. We consider a given region (sometimes
said subregion) ω, as a subdomain of Ω to which we pay a particular attention.
That is to say instead of studying an objective problem on the whole Ω, we can
focus only on the subregion ω (with the possibility to take ω = Ω). This allows
the generalization of the controllability and different other concepts in systems
analysis.

Cellular automata are increasingly being used for representing geographical
processes including many applications ranging from urban to environmental sys-
tems. They have also been recognized for a long time as an effective way of
simulating biological phenomena. They are discrete dynamic systems consisting
of similar elements which directly interact with their nearest neighbors. Even if
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the interaction is based on simple local rules, the resulting structures from the
CA evolution may be extremely complex. The aim of this paper is to consider
additive cellular automata in the context of systems theory. We propose CA as
an alternative modeling approach in the sense that they may be viewed from
a mathematical point of view, as discrete counterpart to PDEs, for exploring
regional controllability and observability. In [4] an appropriate way to introduce
control and observation in CA to make them more useful in systems theory is
given. In this paper we consider a simplified approach in the case of real-valued
additive cellular automata to explore regional controllability and observability.

2 Considered Systems

2.1 Additive Real-Valued CA Models

In this paper we consider a class of cellular automata models evolving in a space
domain D ⊆ Rr assumed to be unbounded with respect to all the variables.

• The space domain D is represented by a regular lattice L. Each site or cell
is denoted ci with i = (i1, i2, . . . , ir) ∈ Ω ⊆ Zr.

• The state of the system is updated using a set of rules that take into account
the values of the site and its neighboring cells given by {ci+k , k ∈ L}, where L
is a part of Ω satisfying −L ⊆ L and such that 0 ∈ L.

The CA evolves over a succession of time steps and the values of all the sites
in the lattice are updated synchronously in time with t = 0, 1, . . . , T − 1, T .

• At time t, the neighborhood of the cell ci is Vi = i + L, assuming that
L = V0.

• We denote zt
i the state of the cell ci at time t, where the state values range

in the state space E = R. We denote z0
i the initial state of the cell ci (i.e. at time

t = 0).
• When the system is autonomous, i.e. without control, we assume that the

state of the cell ci is given by the additive transition rule

zt+1
i =

∑
k∈L

βkz
t
i+k , i ∈ Ω (1)

where the coefficients (βk) are real positive and satisfy the following conservation
law ∑

k∈L

βk = 1 (2)

which leads to
∑
i∈Ω

zt
i =

∑
i∈Ω

z0
i . When the system is excited by a control ξt

i then

the state is given by

zt+1
i =

∑
k∈L

βkz
t
i+k + ξt

i , i ∈ Ω , t = 0, 1, 2, · · · (3)
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Remark 1
1. In the above hypothesis, we assume that Ω is stable for the addition of Zr

and 0 ∈ Ω.
2. The hypothesis Vi = i + L means that the neighborhoods of the cell ci are

deduced from each other by translation.
3. The condition −L ⊆ L is a symmetry hypothesis. In the case where the

neighborhood are not symmetric one can extend them by symmetry consid-
ering βk = 0 if k 	∈ L.

2.2 State Explicit Form

We are going to establish a direct calculation rule. For that purpose, we introduce
the following generalizing definition.

Definition 1. Consider a cell ci. A neighborhood of order t of ci is the set V t
i

given by
V 0

i = {i} , V 1
i = Vi, V t+1

i =
⋃

j∈V t
i

Vj

Thus we can deduce easily from the above definition that V t+1
i = V t

i + L and
V t

i = i+ Lt for all t ∈ N while Lt = V t
0 is the neighborhood of order t of the

origin cell 0 defined by

L0 = {0} , L1 = L, Lt+1 = Lt + L, t = 0, 1, 2, . . .

The recursive calculation rule of the state may be generalized in the following
result.

Proposition 1. The state of a cell given by (3) may be calculated using the
initial state of the neighboring cells by

zt
i =

∑
�∈Lt

Ct
�z

0
i+� +

t−1∑
s=0

∑
�∈Lt−1−s

Ct−1−s
� ξs

i+� , t ≥ 1 (4)

where the coefficients Ct
k ∈ R+, assumed to be equal to 0 for k /∈ Lt, are given

by the recursive formula⎧⎪⎨
⎪⎩
C0

k = δ0k if k ∈ Ω

Ct+1
k =

∑
�∈L

β�C
t
k−� if k ∈ Lt+1 t = 0, 1, 2, · · ·

Remark 2
1. If the coefficients depend on time and on the cell ci, then we have

zt+1
i =

∑
k∈L

βi,t
k zt

i+k + ξt
i
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and the state of the system may be expressed by

zt
i =

∑
k∈Lt

Ci,t
k z0

i+k +
t−1∑
s=0

∑
�∈Lt−1−s

Ci,t−1−s
� ξs

i+�, i ∈ Ω, t = 0, 1, 2, · · ·

where the coefficients Ci,t
k (= 0 for k /∈ Lt) may be calculated, for all i ∈ Ω, by

the relations⎧⎪⎨
⎪⎩
Ci,0

k = δ0k if k ∈ Ω

Ci,t+1
k =

∑
�∈L

βi,t
� Ci+�,t

k−� if k ∈ Lt+1 t = 0, 1, 2, · · ·

2. The coefficients Ct
k can be expressed using the coefficients β� by

Ct
k =

∑
1≤j≤t

∑
�j∈L

δ

(
k,

t∑
i=1

�i

)
t∏

i=1

β�i

where δ(i, j) = 1 for i = j and δ(i, j) = 0 otherwise.

3. The coefficients Ct
k satisfy the same conservation law (2) than the (βk)’s,

i.e.
∑

k

Ct
k = 1, t = 0, 1, 2, · · ·

3 Regional Controllability of Additive CA

3.1 The Controlled System

We assume now that the system is excited on a subregion of the lattice denoted
by L1 with L1 ⊂ L and indexed in Ω1 ⊂ Ω, by a control ut ∈ U ⊆ R. Each cell
cj of Ω1 is excited, at time t, by a term utgj where the function

g : j ∈ Ω1 → gj ∈ R∗
+

defines the space distribution of the control on Ω1. The cells which are not in
Ω1 are not excited by the control but they also receive the effect of the control
via the neighboring cells.

The state of a cell ci can be calculated by the same rule but some of the cells
are augmented by the control effect. For a cell ci which neighborhood is Vi, two
cases may be considered.

Case 1: Consider the case where Ω1∩Vi = ∅, then no neighboring cell is excited
by the control, and we have

zt+1
i =

∑
�∈L

β�z
t
i+�
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Case 2: In the case where Ω1 ∩ Vi 	= ∅, then the cells which are in Ω1 ∩ Vi are
excited (those which are in Ωc

1 ∩ Vi are not). We obtain

zt+1
i =

∑
i+�∈Ω1∩Vi

β�

(
zt

i+� + gi+�u
t
)

+
∑

i+�/∈Ω1∩Vi

β�z
t
i+�

With the convention that
∑
∅

(.) = 0, the last formula may generalize the two

cases and written in the form

zt+1
i =

∑
i+�∈Ω1∩Vi

β�z
t
i+� +

∑
i+�/∈Ω1∩Vi

β�z
t
i+� + ut

∑
i+�∈Ω1∩Vi

β�gi+�

=
∑
�∈L

β�z
t
i+� + biu

t

where bi =
∑

i+�∈Ω1∩Vi

β�gi+�. In the more general case where p controls ut
k are

applied on p disjoint zones Ωk we obtain the general formula

zt+1
i =

∑
�∈L

β�z
t
i+� +

p∑
k=1

bki u
t
k (5)

with
bki =

∑
i+�∈Ωk∩Vi

β�g
k
i+� (6)

The initial states z0
i , i ∈ Ω, are assumed to be given.

Example 1. Consider the system evolving in Ω = Z where the neighborhoods
are given by Vi = {i− 1, i, i+ 1} and the following state transition rules

zt+1
i =

1
7
(
2zt

i−1 + 3zt
i + 2zt

i+1
)

=
1∑

�=−1

β�z
t
i+� (7)

with β0 = 3
7 , β1 = β−1 = 2

7 . We excited this system in Ω1 = {5} (pointwise
action) by the control ut ∈ R with g5 = 1 we obtain the coefficient

bi =
1∑

�=−1

β�gi+� =
2
7
δi4 +

3
7
δi5 +

2
7
δi6

and the following state transition rules of controlled system is

zt+1
i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
7

(
2zt

i−1 + 3zt
i + 2zt

i+1

)
+ 2

7u
t if i = 4 or i = 6

1
7

(
2zt

i−1 + 3zt
i + 2zt

i+1

)
+ 3

7u
t if i = 5

1
7

(
2zt

i−1 + 3zt
i + 2zt

i+1

)
otherwise
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3.2 Actuators

Consider again the controlled system described by (5) with z0
i given in R, are

equal to 0 except in a finite number of cells. Considering the controls ut
k ∈ R,

the state of the cell ci denoted by zt
i (u) satisfies

zt+1
i (u) =

∑
�∈L

β�z
t
i+� (u) +

p∑
k=1

bki u
t
k , i ∈ Ω, t = 0, 1, . . . , T − 1

The controls are (ut
k)t,k and they are located in a control space

U =
{
u =

(
ut

k

)
t,k

/ ut
k ∈ R ; 0 ≤ t ≤ T − 1, 1 ≤ k ≤ p

}
� RpT

We introduce the notion of actuator as stated in [2] for systems governed by
partial differential equations.

Definition 2
1. An actuator is a couple (Ω1, g) where Ω1 ⊂ Ω is a sub-lattice of connected
cells and g : j ∈ Ω1 → gj ∈ R∗

+.
2. Ω1 is the actuator support and g is the space distribution of the actuator.
3. The actuator is said to be pointwise if its support Ω1 is reduced to one cell.
Otherwise the actuator is said to be a zone actuator.

When the system is excited on p sub-domains Ωk of Ω, each cell cj is affected
by the term gju

t
k. The previous definition is generalized as follows.

Definition 3
1. The sequence of couples

{(
Ωk, g

k
)

; k = 1, 2, . . . , p
}

is said to be a sequence
of actuators if each

(
Ωk, g

k
)

is an actuator and Ωk ∩Ω� = ∅ for k 	= �.
2. The sequence of actuators is pointwise (respectively zone) if each actuator(
Ωk, g

k
)

is of pointwise (respectively zone) type.

3.3 Regionally Controllable CA

Consider a given nonempty sub-domain (region) ω ⊆ Ω and denote by |ω| the
number of celles of ω. In this section we consider the statement of regional con-
trollability of systems modeled by cellular automata. From the previous section,
the state of the controlled system (on p zones Ωk) may be calculated directly
using the initial conditions by the formula

zt
i (u) =

∑
�∈Lt

Ct
�z

0
i+� +

p∑
k=1

t−1∑
s=0

∑
�∈Lt−1−s

Ct−1−s
� us

kb
k
i+� , t = 0, 1, 2, . . . (8)

Definition 4
1. The system (5) is said to be regionally controllable on ω (or ω-controllable) if

∀ (ξi)i∈ω ⊆ R, ∀
(
z0

i

)
i∈Ω

⊆ R, ∃u ∈ U / zT
i (u) = ξi, ∀i ∈ ω (9)

2. If the system is ω-controllable, then the sequence of actuators is said to be
ω-strategic.
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The relation zT
i (u) = ξi, ∀i ∈ ω is equivalent to

p∑
k=1

T−1∑
s=0

⎛
⎝ ∑

�∈LT−1−s

CT−1−s
� bki+�

⎞
⎠ us

k = ξi −
∑

�∈LT

CT
� z

0
i+�

Assume that the set ω is ordered by considering the one-to-one mapping σ :
{1, 2, . . . , |ω|} ⊆ N → ω and denote ηi = ξi −

∑
�∈LT

CT
� z

0
i+�, thus the relation (9)

becomes

p∑
k=1

T−1∑
s=0

⎛
⎝ ∑

�∈LT−1−s

CT−1−s
� bkσ(j)+�

⎞
⎠ us

k = ησ(j), j = 1, . . . , |ω|

or equivalently
p∑

k=1
Gk uk = η where

Gk =

⎛
⎝ ∑

�∈LT−1−s

CT−1−s
� bkσ(j)+�

⎞
⎠

j,s

∈ M|ω|,T (R)

η =

⎛
⎜⎝ η1

...
η|ω|

⎞
⎟⎠ ∈ R|ω|, uk =

⎛
⎜⎝

u0
k
...

uT−1
k

⎞
⎟⎠ ∈ RT

The space M|ω|,T (R) is the set of all matrixes with |ω| rows and T columns.
Let us denote

u =

⎛
⎜⎝ u1

...
up

⎞
⎟⎠ ∈ RpT , G = [G1, . . . , Gp] ∈ M|ω|,pT (R)

thus the system is ω−controllable if and only if

∀η ∈R|ω| ∃ u ∈ RpT such that G u = η

which is equivalent to the surjectivity of the mapping G : RpT → R|ω|. This
is stated in the following rank condition theorem which is a usual characteri-
zation for the controllability in systems theory, both for lumped systems than
distributed ones and also in regional analysis [1].

Theorem 1. Rank condition.
The system (5) is ω-controllable if and only if

rank G = |ω| (10)

And we have the immediate following corollary.
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Corollary 1. The system (5) is not ω-controllable if ω is not finite or if T <
|ω|
p
.

The proof results from the fact that, in these cases, we have |ω| = rankG ≤
min (|ω| , pT ) ≤ pT.

Remark 3
1. In the case of one actuator, one needs the controllability time T such that
T ≥ |ω|. Whilst in the case of p actuators p ≥ 2 the ω-controllability can be
achieved at time T such that

T ≥ |ω|
p

(11)

2. Notice that the results needs the region ω to be finite even if the actuators
support are unbounded.

Corollary 2. Assume now that the region to be controlled is composed by one
cell c ∈ Ω or ω = {c} , then |ω| = 1. The system (5) is {c}-controllable if and
only if (

p⋃
k=1

Ωk

)
∩

⎛
⎝ ⋃

1≤t≤T

W t
c

⎞
⎠ 	= ∅ (12)

where the sets W t
i ⊆ V t

i are given by

W t
i =

{
j such that Ct

j−i > 0
}

(13)

4 Regional Observability of Real-Valued Additive CA

Consider again the CA model with the transition rule (1)

zt+1
i =

∑
�∈L

β�z
t
i+� , i ∈ Ω, t = 0, 1, . . . , T − 1 (14)

The initial state z0
i is given in R, and supposed to be unknown on a given

nonempty finite region ω ⊆ Ω and equal to zero out of ω. Consider an output
given by the relation

yt
k =

∑
j∈Ωk

hk
j z

t
j , t = 0, 1, . . . , T − 1, k = 1, . . . , q (15)

The output function gives partial measurements of the state over a subdomain
Ωk.

As for the controllability concept, we consider the observability as stated in the
case of continuous systems. We also consider the sensors approach as introduced
in [2].
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Definition 5
1. A sensor is a couple (Ω1, h) where Ω1 ⊆ Ω is a set of connected cells and
h : j ∈ Ω1 → hj ∈ R∗

+.
Ω1 is the support of the sensor and h is the spatial distribution of the sensor.
2. The sensor is said to be pointwise if Ω1 is reduced to one cell. In the other
cases the sensor is said to be a zone sensor.

When the observation is made via q disjoint locations Ωk of Ω the previous def-
inition is naturally extended. A sequence of couples {

(
Ωk, h

k
)

; k = 1, 2, . . . , q}
is a sequence of sensors if Ωk ∩ Ω� = ∅ for all k 	= � and, for all k,

(
Ωk, h

k
)

is
a sensor as defined in 5 .

In the case of q sensors, the output is given by the vector function {yt
k}1≤k≤q ,

on the time interval 0, 1, . . . , T − 1. Now we consider the problem of regional
observability, i.e. the problem of determination of the system state on the cells
of a given region ω, based on the measurements given in (15).

Definition 6
1. The system (14) together with the output (15) is said to be observable on the
region ω (or ω-observable) if the output {yt

k}1≤k≤q allow a unique reconstruction
of the initial states of the cells of ω.

2. When the system is ω-observable, the sequence of sensors is said to be
ω-strategic.

Taking into account the system dynamics, the above definition is equivalent to[
yt

k = 0 , t = 0, 1, · · · , T − 1, k = 1, . . . , q
]

=⇒
(
z0

i = 0, ∀i ∈ ω
)

(16)

Using (4) and extending by 0 the Ct
� and the ht

i to all Ω, we obtain

yt
k =

∑
j∈Ωk

hk
i z

t
i =

∑
i∈Ω

hk
i

(∑
�∈Ω

Ct
�z

0
i+�

)
=
∑
m∈Ω

(∑
i∈Ω

hk
iC

t
m−i

)
z0

m

=
|ω|∑
j=1

(∑
i∈Ωk

hk
iC

t
σ(j)−i

)
z0

σ(j)

where σ : {1, . . . , |ω|} → ω is a one-to-one mapping defined previously. Addi-
tionally the relations may be rewritten in the form

Hkz
0 = yk , k = 1, . . . , q

with
Hk =

(∑
i∈Ωk

hk
iC

t
σ(j)−i

)
t,j

∈ MT,|ω| (R)

yk =

⎛
⎜⎝

y0
k
...

yT−1
k

⎞
⎟⎠ ∈ RT

z0 =

⎛
⎜⎝

z0
σ(1)
...

z0
σ(|ω|)

⎞
⎟⎠ ∈ R|ω| ;
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which can be put in the reduced form H z0 = y where

H =

⎡
⎢⎣H1

...
Hq

⎤
⎥⎦ ∈ MqT,|ω| (R) , y =

⎛
⎜⎝ y1

...
yq

⎞
⎟⎠ ∈ RqT

The matrix H is of order (qT, |ω|) and the system is ω-observable if and only
if H is injective. Using the identity dim (kerH) + rankH = |ω| we obtain the
result.

Theorem 2. Rank condition.
The system (14) together with the output (15) is ω-observable if and only if the
matrix H is such that

rank H = |ω| (17)

Corollary 3. The system (14) together with the output (15) can not be ω-

observable on a region ω during the time T if ω is not finite or if T <
|ω|
q
.

The proof results from the previous theorem because in this case |ω| = rankG ≤
min (qT, |ω|) ≤ qT.

Remark 4. In the case of one sensor, we need the time observation T ≥ |ω|,
whilst in the case of q ≥ 2 sensors the observation time must satisfy T ≥ |ω|

q
and then can be smaller.

Corollary 4. If we assume that the regional observation is to be done on the
region having one given cell c ∈ Ω, in this case we have |ω| = |{c}| = 1. The
system (14) augmented with the output (15) is {c}-observable if and only if

c ∈
T−1⋃
t=0

q⋃
k=1

⋃
i∈Ωk

W t
i (18)

where the sets W t
i are defined in (13).
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Abstract. Glazier and Graner’s Cellular Potts Model (CPM) has found use in a 
wide variety of biological simulations. However, most current CPM 
implementations use a sequential modified Metropolis algorithm which restricts 
the size of simulations. In this paper we present a parallel CPM algorithm for 
simulations of morphogenesis, which includes cell-cell adhesion, haptotaxis and 
cell division. The algorithm uses appropriate data structures and checkerboard 
subgrids for parallelization. Communication and updating algorithms 
synchronize properties of cells simulated on different computer nodes. We 
benchmark our algorithm by simulating cell sorting and chondrogenic 
condensation.  

Keywords: Computational biology, morphogenesis, parallel algorithms, 
Cellular Potts Model, multiscale models, pattern formation. 

1   Introduction 

Simulations of complex biological phenomena like development, wound healing and 
tumor growth, collectively known as morphogenesis, must handle a wide variety of 
biological agents, mechanisms and interactions at multiple length scales.  

Glazier and Graner’s Cellular Potts Model (CPM) [1] has become a common 
technique for morphogenesis simulations because it easily adapts to describe cell 
differentiation, growth, death, shape changes and migration and the secretion and 
absorption of extracellular materials. CPM simulations treat many biological and non-
biological phenomena, including sorting due to cell-cell adhesion, chicken limb bud 
growth, Dictyostelium discoideum morphogenesis, liquid drainage in fluid foams and 
foam rheology [2-6]. 

The CPM approach to modeling makes several choices about how to describe cells 
and their behaviors and interactions. First, it describes cells as spatially extended but 
internally structureless objects with complex shapes. Second, it describes most cell 
behaviors and interactions in terms of effective energies and elastic constraints.  
These first two choices are the core of the CPM approach. Third, it assumes perfect 
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damping and quasi-thermal fluctuations, which together cause the configuration and 
properties of the cells to evolve continuously to minimize the effective energy, with 
realistic kinetics. Fourth, it discretizes the cells and associated fields onto a lattice. 
Finally, the classic implementation of the CPM employs a modified Metropolis 
Monte-Carlo algorithm which chooses update sites randomly and accepts them with a 
Metropolis-Boltzmann probability.  

Since these choices are relatively independent from each other, we can modify 
some of them to optimize our computation without discarding our basic modeling 
philosophy. For example, because the acceptance probabilities for updates can be 
small (10-4 – 10-6) the classic lattice-based Metropolis algorithm may run slower than 
continuum off-lattice implementations. Since the typical discretization scale is 2-5 
microns per lattice site, CPM simulations of large tissue volumes require large 
amounts of computer memory. Current practical single-processor sequential 
simulations can handle about 105 cells. However, a full model of the morphogenesis 
of a complete organ or an entire embryo would require the simulation of 106 – 108 

cells, or between 10 – 1000 processor nodes.  
Clearly, we need a parallel algorithm which implements the CPM and runs on the 

Beowulf or High Performance Computing Clusters (HPCC) [7] available in most 
universities. Wright et al. [11] implemented a parallel version of the original Potts 
model of grain growth. In this model the effective energy consists only of local grain 
boundary interactions, so a change of a single pixel changes only the energies of its 
neighbors.  

Gusatto et al.’s recent random-walker (RW) implementation of the CPM [15] ran 
approximately six times faster than the standard algorithm on a single processor. In 
addition, their algorithm parallelizes fairly easily, though a two processor 
implementation ran only about 15% faster than a one processor version. The standard 
CPM Metropolis algorithm always rejects spin flips inside a cell, which wastes much 
calculation time. The RW approach attempts flips only at cell boundaries, reducing 
the rejection rate and increasing speed. However, the parallel scheme for this 
algorithm requires shared memory with all processors sharing the same lattice sites, 
limiting the total lattice size to the memory size of a single computer. Adapting the 
RW algorithm to accommodate large scale simulations on distributed memory 
clusters will still require development of an appropriate spatial decomposition 
algorithm. 

The main difficulty in all forms of CPM parallelization is that the effective energy 
is non-local. The effective energy terms for cell-cell adhesion, haptotaxis and 
chemotaxis are local, but the constraint energy terms, e.g. for cell volume and surface 
area, have an interaction range of the diameter of a cell. Changing one lattice site 
changes the volume of two cells and hence the energy associated with all pixels in 
both cells. For example, if a cell’s pixels are divided between the subdomains located 
on two nodes and the nodes attempt updates affecting the cell simultaneously, without 
communication, one node has stale information about the state of the cell. If we use a 
simple block parallelization, where each processor calculates a predefined rectangular 
subdomain of the full lattice, non-locality greatly increases the frequency of 
interprocessor communication for synchronization and, because of communication 
latency, the time each processor spends waiting rather than calculating. To solve this 
problem, we use an improved data structure to describe cells and decompose the 
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subdomain assigned to each node into smaller subgrids chosen so that corresponding 
subgrids on different nodes do not interact, a method known as a Checkerboard 
Algorithm. These algorithms are based on those Barkema and his collaborators 
developed for the Ising model, see, e.g. [9]. These methods allow successful parallel 
implementation of the CPM using MPI [9, 10].  

On the other hand, an intrinsic inconvenience of the classical CPM ameliorates one 
difficulty which Ising model parallelization faces. In MPI parallelization, the larger 
the number of computations per pixel update, the smaller the ratio of message passing 
to computation, which results in less latency delay and greater efficiency. In the Ising 
model, the computational burden per pixel update is small (at most a few floating 
point operations), which increases the ratio of message passing to computation in a 
naive partition. However, in the CPM, the ratio of failed update attempts to accepted 
updates is very large (104 or more in some simulations). Only accepted updates 
change the lattice configuration and potentially stale information in neighboring 
nodes. The large effective number of computations per update reduces the burden of 
message passing. However, because we can construct pathological situations which 
have a high acceptance rate, we need to be careful to check that such situations do not 
occur in practice. 

2   The Glazier-Graner Cellular Potts Model 

Glazier and Graner’s CPM generalizes the Ising model from statistical mechanics, 
and shares its core idea of modeling dynamics based on energy minimization under 
imposed fluctuations. The CPM uses a lattice to describe cells. We associate an 
integer index to each lattice site (pixel) to identify the space a cell occupies at any 
instant. The value of the index at a pixel (i, j, k) is l if the site lies in cell l. Domains 
(i.e. collection of pixels with the same index) represent cells. Thus, we treat a cell as a 
set of discrete subcomponents that can rearrange to produce cell motion and shape 
changes. As long as we can describe a process in terms of a real or effective potential 
energy, we can include it in the CPM framework by adding it to the effective energy. 
The CPM models chemotaxis and haptotaxis by adding a chemical potential energy, 
cell growth by changing target volumes of cells and cell division by a specific 
reassignment of pixels. If a proposed change in lattice configuration (i.e. a change in 
the index number associated with a pixel) changes the effective energy by E, we 
accept the change with probability: 

0,)(;0,1)( / >Δ=Δ≤Δ=Δ Δ− EeEPEEP TE  (1) 

where T is the effective temperature of the simulation in units of energy. 
A typical CPM effective energy might contain terms for adhesion, a cell volume 

constraint and chemotaxis: 

E = EAdhesion + EVolume + EChemical (2) 

We discuss each of these terms below.  

Cell–cell adhesion energy: In Equation 2, AdhesionE  phenomenologically describes the 

net adhesion/repulsion between two cell membranes. It is the product of the binding 
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energy per unit area, )'(')( στστJ  and the area of interaction of the two cells. 

)'(')( στστJ depends on the specific properties of the interface between the interacting 

cells: 

))]}',','('),,,((1[{
)',',')(,,(

)''()( kjikjiJE
kjikji

Adhesion σσδστστ −=  (3) 

where the Kronecker delta, 0)',( =σσδ  if 'σσ ≠ and 1)',( =σσδ  if 'σσ = , 

ensures that only the surface sites between different cells contribute to the adhesion 
energy. Adhesive interactions act over a prescribed range around each pixel, usually 
up to fourth-nearest-neighbors.  

Cell size and shape fluctuations: A cell of type τ has a prescribed target volume v(σ,τ) 
and volume elasticity , target surface area s(σ,τ), and membrane elasticity 'λ . Cell 
volume and surface area change due to growth and division of cells. VolumeE  exacts an 

energy penalty for deviations of the actual volume from the target volume and of the 
actual surface area from the target surface area: 

2

cellsall
target

'2

cellsall
target )),(),(()),(),((

−−

= −+− τστσλτστσλ σσ ssvvEvolume  (4) 

Chemotaxis and haptotaxis: Cells can move up or down gradients of both diffusible 
chemical signals (i.e. chemotaxis) and insoluble extracellular matrix (ECM) 
molecules (i.e. haptotaxis). The energy terms for both chemotaxis and haptotaxis are 
local, though chemotaxis requires a standard parallel diffusion equation solver for the 
diffusing field: 

)()( xCEchemical σμ=  (5) 

where 
→
)(xC  is the local concentration of a particular species of signaling molecule in 

extracellular space and (σ) is the effective chemical potential. 

3   Data Structures and Algorithms 

System Design Principles 
Our parallel CPM algorithm tries to observe the following design principles: to 
implement the CPM model without systematic errors, to homogeneously and 
automatically distribute calculations and memory usage among all processor nodes, 
and to use Object-Oriented programming and MPI to improve portability. 

Spatial Decomposition Algorithm 
Our parallel algorithm homogeneously divides the lattice among all processor nodes, 
one subdomain per node. During a CPM simulation some cells cross boundaries 
between nodes. If nodes attempted to update pixels in these cells simultaneously, cell 
properties like volume and surface area would stale and energy evaluations would be 
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incorrect. We use a multi-subgrid checkerboard method to solve this problem: In each 
node we subdivide the subdomain into four subgrids indexed from 1-4. During the 
simulation, at all times we restrict calculations in each node to the same index 
subgrid. Since these subgrids are much larger than a cell diameter, we guarantee that 
no calculation in one node affects the calculations occurring simultaneously in any 
other node. In principle, we should switch subgrids after each pixel update to recover 
the classical algorithm. Since acceptance rates are low, on average, we should be able 
to make many update attempts before switching between subgrids. However, because 
acceptance is stochastic, we would need to switch subgrids at different times in 
different nodes, which is inconvenient. In practice we can update many times per 
subgrid (which means accepting that we will sometimes use stale positional 
information from the adjacent subgrids), because the subgrids are large, the 
acceptance rate small and the effects of stale positional information just outside the 
boundaries fairly weak. We use a random switching sequence (the switching sequence 
each time is different and random, for example, 1234, 2341, 4123, 3124 …) to switch 
between subgrids frequently enough to make the effect of stale positional information 
negligible compared to the stochastic fluctuations intrinsic to Monte Carlo methods. 
Fig. 1 illustrates the algorithm. 

Node 
(Subdomain)

Subgrid

Cell

 
Fig. 1. Spatial decomposition: Each computer node hosts a subdomain which has four subgrids. 
At any time, each node performs calculations on only one subgrid. At all times, all nodes work 
on the subgrids with the same index number (indicated by the shading in the figure).  

Data Structures 
Two basic data structures of the parallel CPM algorithm are the cell and the pixel. 
During simulations, cells move between subdomains controlled by different nodes. 
Cells can also appear due to division and disappear due to cell death. In the classical 
single-processor algorithm, each cell has its own global cell index number. This data 
structure works efficiently on a single processor. In a parallel algorithm, this data 
structure for cells requires a Cell Index Number Manager to handle cell division, 
disappearance and handoff between nodes. For example, when a cell divides in a 
particular node, the node sends a request to the Manager to obtain a new cell index 
number and the Manager needs to notify all other nodes about the new cell. Instead, 
we assign each cell two numbers, a node ID and an index ID. The Node ID is the 
index number of the node in which the cell was generated and the index ID, like the 
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old index number, is the index number of the cell generation sequence. Since cell IDs 
are now unique, each node can generate new cells without communicating with other 
nodes. Since cells may move between nodes, we dynamically allocate the memory for 
cell data structures on creation or appearance and release it when a cell moves out of 
the node or disappears. To optimize the usage of memory and speed data access, the 
index in each pixel is a pointer to the cell data structure. 

 
Communication and Updating 
In the spatial decomposition algorithm, when the program switches between different 
subgrids, the communication algorithm transfers two types of information: lattice 
configurations and cell volumes. In 2D, each subgrid needs to communicate with 8 
neighboring subgrids (in 3D, 26 neighboring subgrids) and the communication 
algorithm sequentially sends and receives corresponding data according to the spatial 
organization of the subgrids.  Sending and receiving could take place within a node, 
in which case the algorithm is just a memory copy. Fig. 2 illustrates the 
communication algorithm. After the communication, the program needs to 
dynamically update cell structures and buffers. The program also needs to check 
whether any cells cross between subgrids and implement the corresponding creation 
or destruction operations. 

 
Fig. 2. Communication algorithm: After each change of subgrid, each node needs to transfer 
data to neighboring nodes. Lattice sites and associated variables (volume, surface area,…) 
located within the buffer area are transferred so neighboring subgrids contain correct cell 
configurations and characteristics. 

4   Benchmark Results 

The following benchmarks used the Biocomplexity cluster at the University of Notre 
Dame. The cluster consists of 64 dual nodes, each of which contains two AMD 64 bit 
Opteron 248 CPUs (clock frequency 2.2 GHz) and 4GB of RAM.  

Cell Sorting  
Steinberg’s Differential Adhesion Hypothesis (DAH), states that cells adhere to each 
other with different strengths depending on their types [12]. Cell sorting results from  
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random motions of the cells that allow them to minimize their adhesion energy, 
analogous to surface-tension-driven phase separation of immiscible liquids. If cells 
of the same type adhere more strongly, they gradually cluster together, with less 
adhesive cells surrounding the more adhesive ones. Based on the physics of the 
DAH, we model cell-sorting due to variations in cell-specific adhesivity at the cell 
level. Fig. 3 shows two simulation results for different adhesivities. All other 
parameters and the initial configurations of two simulations are the same. In 
simulation (a), cell type 1 has higher adhesion energy with itself (is less cohesive) 
than cell type 2 is with itself. The heterotypic (type 1-type 2) adhesivity is 
intermediate. During the simulation cells of type 2 cluster together and are 
surrounded by cells of type 1. In simulation (b), the adhesivity of cell type 1 with 
itself is the same as the adhesivity of cell type 2 with itself and greater than the 
heterotypic adhesivity. This energy hierarchy results in partial sorting.  

 
Fig. 3. Cell sorting simulation: Cell type 1 (Dark). Cell Type 2 (Light). The two simulations 
use the same initial cell configuration and target volumes (150), the only differences between 
(a) and (b) are the different adhesion constants. (a) Adhesion constants: J1-1=14, J2-2=2, J1-2=11, 
J1,2-ECM=16. (b)  Adhesion constants: Adhesion energy J1-1=14, J2-2=14, J1-2=16, J1,2-ECM=16. The 
lines indicate the boundaries of the subdomains assigned to each node in a 16 node simulation. 

In this simulation the lattice size is (288x288) and we distributed it in 
homogeneous subdomains of size 72x72 on a 16 node cluster. Each subgrid has 
36x36 pixels.  
  
Simulation of Chondrogenic Condensation 
Fig. 4 shows the simulation result for a simulation of chondrogenic condensation 
(cartilage formation) in a chicken limb bud simulation run on 16 nodes with a total 
lattice size of 1200x1200 sites. In this simulation, we used an externally-supplied 
chemical pre-pattern (Activator concentration calculated from a pair of coupled 
reaction-diffusion equations) to control cell differentiation and condensation. 
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Fig. 4. Simulation of chondrogenic condensation during limb-bud formation. The lines indicate 
the boundaries of the subdomains assigned to each node for a 16 node simulation.  

Efficiency of the Parallel Algorithm 
We used the cell sorting (lattice size 288x288) and chondrogenesis simulations 
(lattice size1200x1200) to analyze the efficiency of our parallel algorithm. We ran 
both simulations on 4, 9 and 16 nodes with switching between subgrids after each 
Monte Carlo Step (defined as as many lattice update attempts as the number of lattice 
sites in the subgrid). This switching rate is relatively slow and results in significant 
effects from stale parameters. Table 1 summarizes the simulation running times. We 
define the relative efficiency, f: 

nT

T
f

n /

4/4=  (6) 

where 
nT  is the running time of the simulation on n nodes. Since the smallest cluster 

on which our program runs uses 4 nodes, we use the running time on 4 nodes as a 
reference value. Fig. 5 plots the relative efficiency vs. the number of nodes. The cell 
sorting simulation is less efficient than the limb bud simulation because the small 
(288x288) lattice increases the ratio of communication time to computation time. The 
larger the subdomain size, the more efficient the calculation. 

Table 1. Calculation time for different tests 

Number of Nodes Tests 
4 9 16 

Cell Sorting Simulation. Lattice size 
288x288. 10,0000 MCS 

3351 
Sec. 

2352 
Sec. 

1807 
Sec. 

Chondrogenesis Simulation. Lattice size 
1200x1200. 10,000 MCS 

4188 
Sec. 

2050 
Sec. 

1305 
Sec. 

The Gillespie stochastic simulation algorithm acceleration strategy based on “tau-
leaping” is a powerful tool for large-scale stochastic biochemical simulations [13][14]. 
Instead of processing each reaction event, it moves forward in time by “leaps” that 
include many reaction events. Though it currently applies only to spatially 
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homogeneous models, its extension to parallel simulation of inhomogeneous models 
would be valuable and could greatly increase the size of feasible CPM simulations.  
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Fig. 5. Relative Efficiency as defined in equation 6 vs. the number of nodes used in the 
calculation. Bullets and solid squares correspond to cell sorting and chondrogenesis simulations 
respectively.  

5   Discussion and Future Work 

One issue with our algorithm is whether its results deviate from the classical 
algorithm significantly. Our switching algorithm works on subgrids one at a time. If 
the configuration is far from equilibrium, energies and configurations change rapidly 
and the dynamics of cells at subgrid boundaries could differ from those in the 
classical algorithm. For instance, if a cell’s target volume is much larger than its 
current volume, the cell should grow rapidly and isotropically, while in our algorithm, 
a cell at a subgrid boundary might grow anisotropically. A higher switching frequency 
reduces this problem but also reduces the computational efficiency. In such case, 
smoothly changing the target value to the equilibrium one would solve this problem.  

The parallel algorithm uses the standard CPM site selection algorithm which 
wastes time by selecting non boundary spins that cannot be updated. We plan to 
combine our parallel algorithm with the Random Walker algorithm [15] which selects 
only boundary spins to further improve our simulation efficiency. 

6   Conclusions 

Sequential versions of the CPM model are extensively used to simulate cell 
morphogenesis. However, large-scale morphogenesis simulations require a parallel 
implementation. In this paper, we have proposed a parallel CPM algorithm using 
appropriate data structures and checkerboard updating. The algorithm reproduces 
examples of cell sorting and limb bud formation and shows good scalability, which an 
improved site-selection algorithm like the RW algorithm should be able to improve 
further. 
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Abstract. This paper reports classification of CA (cellular automata)
rules targeting efficient synthesis of reversible cellular automata. An an-
alytical framework is developed to explore the properties of CA rules
for 3-neighborhood 1-dimensional CA. It is found that in two-state 3-
neighborhood CA, the CA rules fall into 6 groups depending on their
potential to form reversible CA. The proposed classification of CA rules
enables synthesis of reversible CA in linear time.

1 Introduction

Since the invention of homogeneous structure of Cellular Automata (CA), it has
been employed for modeling physical systems with a diversity. The CA structure
is significantly simplified with an 1-dimensional CA, each cell having two states
(0/1) with uniform 3-neighborhood (self, left and right neighbor) dependencies
among the CA cells [8]. However, to model a wide variety of physical systems
that are non-homogeneous in nature, non-homogeneousCA structure (also called
as hybrid CA) is evolved as an alternative to the uniform structure. A number
of researchers have directed their attention to hybrid CA [1,2] since 1980s and
explored the potential design with 1-dimensional hybrid CA, specially for V LSI
(Very Large Scale Integration) domain [2].

A special class of CA, referred to as reversible CA, had attracted the re-
searchers for a long time to model a number of applications in hydrodynam-
ics, dynamical systems, heat conduction, wave scattering, nucleation, dendritic
growth, physical modeling, etc. [7]. The dynamical properties of reversible cel-
lular automata were investigated in [6]. For V LSI applications, linear/additive
reversible CA structure, had been developed [2]. Due to its importance, we have
also focused our work on reversible CA. An analytic scheme has been devel-
oped to explore the properties of CA rules. The complete classification of 3-
neighborhood CA rules are done depending on their potential to form reversible
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CA. This classification in effect makes it possible to synthesize reversible CA in
linear time. To facilitate further discussion, we introduce the basics of cellular
automata in the following section.

2 Cellular Automata Basics

A Cellular Automaton (CA) consists of a number of cells organized in the form
of a lattice. In 3-neighborhood, the next state of the ith CA cell is

St+1
i = fi(St

i−1, S
t
i , S

t
i+1)

where fi is the next state function and St
i−1, S

t
i & St

i+1 are the states of its
neighbors at time t. The St = (St

1, S
t
2, · · · , St

n) is the present state of the CA. If
the left neighbor of the left most cell and right neighbor of the right most cell
are null (0), the CA is null boundary. The fi is also expressed in the form of a
truth table. The decimal equivalent of its output is referred to as the ‘Rule’ Ri

[8]. Three such rules, in two state (0/1) CA, are illustrated in Table 1. The set

Table 1. Truth table for rule 90, 150 and 75

Present state : 111 110 101 100 011 010 001 000 Rule
(RMT ) (7) (6) (5) (4) (3) (2) (1) (0)

(i) Next State : 0 1 0 1 1 0 1 0 90
(ii) Next State : 1 0 0 1 0 1 1 0 150
(iii) Next State : 0 1 0 0 1 0 1 1 75

of rules R =< R1,R2, · · · ,Ri, · · · ,Rn > that configures the CA cells is called
the rule vector. The state transition diagram of a CA may contain cyclic and
non-cyclic states (a state is called cyclic if it lies in a cycle). A CA is reversible
if it contains only cyclic states (Fig.1).
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Fig. 1. State transition of a reversible CA with rule vector < 105, 177, 170, 75 >
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The reversible linear/additive CA forms a cyclic group [2], and so popularly
called as group CA. In view of the structural similarity with linear/additive
group CA in the state transition diagram, we refer reversible CA as group CA.

From the view point of Switching Theory, a combination of the present states
(1st row of Table 1) can be viewed as the Min Term of a 3-variable (St

i−1, S
t
i , S

t
i+1)

switching function. Therefore, each column of the first row of Table 1 is referred
to as Rule Min Term (RMT ). The RMT s of two consecutive cell rules Ri and
Ri+1 are related while a CA changes its state [3,5]. Such relation (Table 2)
among the RMT s is employed to classify the CA rules in characterizing CA
behavior.

Definition 1. A rule is Balanced if it contains equal number of 1s and 0s in its
8−bit binary representation; otherwise it is an Unbalanced rule.

Definition 2. A rule is a Non-group Rule if its presence in a rule vector makes
the CA non-group (irreversible). Otherwise, the rule is a Group Rule.

This work concentrates on characterization of group rules. Identification of such
rules, out of total 256 rules for two-state 3-neighborhood CA, follows.

3 Identification of Group Rules

The group rules are the basic building blocks of group/reversible CA. The fol-
lowing theorem separates out a section of rules, that are not the group rules.

Theorem 1. An unbalanced rule is a non-group rule [4].

Example 1. The CA < 105, 177, 170, 75> is a group CA (Fig.1). Therefore, all
of the four rules are group rules. On the other hand, the CA < 105, 177, 171, 75>
is non-group. The presence of the unbalanced rule 171 (binary value 10101011)
makes the CA non-group. That is, 171 is a non-group rule.

There are 8C4 = 70 balanced CA rules in 3-neighborhood. However, all of them
are not the group rules (balanced non-group rules). For characterization of group
rules, the concept of Reachability Tree is introduced [3,5].

Reachability Tree: a binary tree, defines the reachability of CA states. Left
edge of a node is the 0-edge (0) and 1-edge (1) is the right edge. The nodes
of level i are constructed following the selected RMT s of Ri+1 for next state
computation. The number of leaf nodes denotes the number of reachable states.

Fig.2 represents the reachability tree for a CA < 90, 15, 85, 15>. The RMT s
of the CA rules are noted in Table 3 (ds denote don′t care bits). The decimal
numbers within a node at level i represent the RMT s following which the cell
(i+1) changes its state. For example, the root node (level 0) is constructed with
RMT s 0, 1, 2 and 3 as cell 1 can change its state following the RMT s 0, 1, 2,
and 3. For the RMT s 0 and 2 of rule 90 (Table 3), the next states are 0 and it is
1 for the RMT s 1 and 3. Therefore, the node at level 1 after the 0-edge of level
0 contains the RMT s 0, 1, 4 & 5 (Table 2).
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Table 2. Relationship
among RMT s

RMT at RMT s at
ith rule (i + 1)th rule
0 or 4 0, 1
1 or 5 2, 3
2 or 6 4, 5
3 or 7 6, 7

Table 3. RMT values of the CA < 90, 15, 85,
15 > rules

RMT 111 110 101 100 011 010 001 000 Rule
(7) (6) (5) (4) (3) (2) (1) (0)

First cell d d d d 1 0 1 0 90
Second cell 0 0 0 0 1 1 1 1 15
Third cell 0 1 0 1 0 1 0 1 85
Fourth cell d 0 d 0 d 1 d 1 15

0 1
(1,3) (0,2)

100 1
(6) (0)(2)(4)

0 1
(5,7) (4,6)

0 01 1

0 1
(1,3) (0,2)

1 10 0

0 1
(5,7) (4,6)

0 1 10
(6) (2)(4) (0)

0 1
(0,2) (1,3)

0 1 0
(4,5) (0,1) (6,7)

1
(2,3)

0, 1, 2, 3

2, 3, 6, 70, 1, 4, 5

Fig. 2. Reachability tree for the CA < 90, 15, 85, 15 >

Definition 3. Two RMT s are equivalent if both result in the same set of RMT s
effective for the next level of reachability tree.

For example, the RMT s 0 and 4 are equivalent as both results in the same set
of effective RMT s {0, 1} (Table 2) for the next level of reachability tree.

Definition 4. Two RMT s are sibling at level i+ 1 if they are resulted in from
the same RMT at level i of the Reachability Tree.

The RMT s 0 and 1 are the sibling RMT s as these two are resulted in either
from RMT 0 or from RMT 4 (Table 2). If a node of Reachability Tree associates
an RMT k, it also associates the sibling of k.

Theorem 2. The reachability tree for a group CA is balanced [5].

Example 2. The CA < 90, 15, 85, 15 > is group. Its reachability tree (Fig.2) is
balanced.

Theorem 3. The reachability tree of a 3-neighborhood null boundary CA is bal-
anced if each edge, except the leaf edges, is resulted from exactly two RMT s of
the corresponding rule [5].

Example 3. Consider the 4-cell group CA of Fig.2. Each intermediate edge of
the reachability tree is resulted from exactly two RMT s.

Corollary 1. All the nodes except leaves of the reachability tree for a group CA
is constructed with 4 RMT s [3].
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Theorem 4. At each level, except the root, of the reachability tree for a group
CA, there are either 2 or 4 unique nodes.

Proof. Each node of the reachability tree for a group CA is constructed with 4
RMT s (Corollary 1) and the sibling RMT s (Definition 4) are associated with
the same node. Since there are 4 sets of sibling RMT s (0 & 1, 2 & 3, 4 & 5,
and 6 & 7), 3 different organizations of RMT s for the nodes are possible – {0,
1, 2, 3} & {4, 5, 6, 7}, {0, 1, 4, 5} & {2, 3, 6, 7} and {0, 1, 6, 7} & {2, 3, 4, 5}.
This implies, if a node at level i is constructed with N1 ={0, 1, 2, 3}, then there
exists another node at that level constructed from N2 ={4, 5, 6, 7}. Therefore,
minimum number of unique nodes in a reachability tree of a group CA is 2.

It is obvious from Theorem 3 that the 2 out of 4 RMT s (Corollary 1) of a
node in the reachability tree for group CA are d (d = 0/1) and the rest 2 are d′.
Therefore, 2 RMT s of N1 or N2 are d, and the other 2 are d′. So, another two
nodes may be possible at level i taking 2 RMT s that produce d from N1 and
another 2 RMT s from N2. Hence the maximum number of possible nodes in a
reachability tree for a group CA is 4.

Theorem 5. A balanced rule with same value for the RMT set {0, 2, 3, 4} or
{0, 4, 6, 7} or {0, 1, 2, 6} or {0, 1, 3, 7} is a non-group rule [3].

Corollary 2. The number of balanced non-group CA rules in 3-neighborhood
dependency is 8 [3].

From Theorem 5, it can be identified that the balanced non-group rules are
– 29, 46, 71, 116, 139, 184, 209 and 226. Therefore, out of 70 balanced rules the
rest 62 are the group rules (listed in Table 4). These 62 rules can only form the
reversible (group) CA. However, any sequence of such rules in a CA rule vector
does not necessarily imply that the resulted CA is group CA.

Theorem 6. Only a specific sequence of group rules forms a group CA [3].

Example 4. The CA < 90, 15, 85, 15 > is a group CA. However, the CA R =<
90, 85, 15, 15 > is a non-group CA even though each R′ ∈ R is a group rule.

It directs that the sequence of rules to form a group CA follows a specific relation.
The classification of group rules based on the relation is reported next.

4 Classification of Group Rules

This section identifies the relations among group rules and reports classification
of 62 group rules to find the sequence of rules for a group CA.

4.1 Formation of Rule Class

Let us consider, the rules R1, R2, · · ·, Ri are selected for cell 1, cell 2, · · ·,
cell i respectively to form an n−cell group CA satisfying the theorems 2 and 3.
Further, consider S is the set of all group rules (|S| = 62). Now, the (i+ 1) cell
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can support a set of rules Sj ∈ S so that any rule of Sj can be selected as Ri+1.
We refer the class of (i+ 1)th cell as C – that is, the class of Sj is C.

Lemma 1: There are 6 possible classes of group CA cells in 3-neighborhood.
Proof: Each node of the reachability tree of a group CA contains 4 RMT s
(Corollary 1). Since the sibling RMT s are associated with the same node in the
reachability tree and there are 4 sets of sibling RMT s (0 & 1, 2 & 3, 4 & 5, and
6 & 7), 3 different organizations of RMT s for the nodes are possible – {0, 1, 2,
3} & {4, 5, 6, 7}, {0, 1, 4, 5} & {2, 3, 6, 7}, and {0, 1, 6, 7} & {2, 3, 4, 5}.
Therefore, if the reachability tree contains a node with RMT s {0, 1, 2, 3} at ith

level, it also contains a node with RMT s {4, 5, 6, 7}.
Whenever a level is having only 2 unique nodes (Theorem 4), the RMT s of the
nodes may be organized as one of the 3 possible combinations of RMT s. For
that case, the rule Ri+1 is declared as of class I, II, or III respectively. On the
other hand, if the level contains 4 unique nodes, then the RMT s of the nodes
may be organized as any two combinations of the 3 possible combinations of
RMT s. Whenever the nodes are organized like class I & II, I & III, and II &
III, the class of that cell is declared as IV , V , and V I respectively. Therefore,
there are 6 classes of group rules.

Rules under each class: Since the CA is group, out of 4 RMT s of a node, the two
RMT s are 0 and another two are 1 (Theorem 3). For class II (RMT partition
is {0, 1, 4, 5} & {2, 3, 6, 7}), 0 & 4 (similarly 1 & 5, 4 & 6, and 5 & 7) are
the equivalent RMT s (Definition 3) and both of these contribute same set of
RMT s for the next level. Hence any of the equivalent RMT s may be grouped
together to generate a node for the next level. The number of RMT s of that
node becomes 2. This results in the CA as non-group (Corollary 1). Therefore,
equivalent RMT s under the same node can not be grouped to give d (d = 0/1)
simultaneously. Hence 4 groupings of RMT s out of 4C2 = 6 are possible in each
node for class II. Therefore, the number of group rules of class II is 4 × 4 = 16.
Since equivalent RMT s are not associated with the same node for class I and
III, 4C2 = 6 groupings are possible for each node. Hence number of rules for
those classes are 6 × 6 = 36 (Table 4).

4.2 Relationship Between Ri and Ri+1

From the known Ri and its class, we can find the nodes of the reachability tree
that are resulted for Ri+1 – that is, the class of Ri+1. Let us consider the class
of Ri be I (Fig.3). Therefore, two unique nodes having RMT s {0, 1, 2, 3} and
{4, 5, 6, 7} are available at the (i−1)th level. Now consider the RMT s of Ri are
clustered as {0, 1, 4, 5} and {2, 3, 6, 7}, where the RMT s of a set are the same,
either 0 or 1. In Fig.3(a), the RMT s {0, 1, 4, 5} are considered as 0, and it is 1 for
the RMT s {2, 3, 6, 7}. Therefore, the RMT s are grouped as (0, 1), (2, 3), (4, 5)
and (6, 7). Each edge of the nodes is resulted from any one of these groups. Hence
two edges are connecting the node having RMT s {0, 1, 2, 3} with its children
resulted from (0, 1) and (2, 3). Therefore, the two children (for next level) of
that node are having RMT s {0, 1, 2, 3} and {4, 5, 6, 7} (Table 2) (Fig.3(a)).
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Table 4. Class Table

Class RMT s of nodes Rules
I {0, 1, 2, 3} 51, 53, 54, 57, 58, 60, 83, 85, 86,

{4, 5, 6, 7} 89, 90, 92, 99, 101, 102, 105, 106, 108,
147, 149, 150, 153, 154, 156, 163, 165, 166,
169, 170, 172, 195, 197, 198, 201, 202, 204

II {0, 1, 4, 5} 15, 30, 45, 60, 75, 90, 105, 120, 135,
{2, 3, 6, 7} 150, 165, 180, 195, 210, 225, 240

III {0, 1, 6, 7} 15, 23, 27, 39, 43, 51, 77, 78, 85,
{2, 3, 4, 5} 86, 89, 90, 101, 102, 105, 106, 113, 114,

141, 142, 149, 150, 153, 154, 165, 166, 169,
170, 177, 178, 204, 212, 216, 228, 232, 240

IV {0, 1, 2, 3} 60, 90, 105, 150, 165, 195
{4, 5, 6, 7}
{0, 1, 4, 5}
{2, 3, 6, 7}

V {0, 1, 2, 3} 51, 85, 86, 89, 90, 101, 102, 105, 106, 149,
{4, 5, 6, 7} 150, 153, 154, 165, 166, 169, 170, 204
{0, 1, 6, 7}
{2, 3, 4, 5}

VI {0, 1, 4, 5} 15, 90, 105, 150, 165, 240
{2, 3, 6, 7}
{0, 1, 6, 7}
{2, 3, 4, 5}

Similarly, the children of another node having RMT s {4, 5, 6, 7} are constructed
with RMT s {0, 1, 2, 3} and {4, 5, 6, 7} – that is, the nodes are same with the
other two nodes of that level. Therefore, the next level of the reachability tree
contains two unique nodes having RMT s {0, 1, 2, 3} and {4, 5, 6, 7} (Fig.3(a)).
Hence the class of Ri+1 is I.

Further, if the RMT s of Ri are grouped as (0, 1), (2, 3), (4, 6), and (5, 7)
(Fig.3(b)), the nodes of level i, generated from the node of level (i − 1) with
RMT s {0, 1, 2, 3}, are having RMT s {0, 1, 2, 3} and {4, 5, 6, 7}. The other two
nodes at level i, generated from the node with RMT s {4, 5, 6, 7}, are having
RMT s {0, 1, 4, 5} and {2, 3, 6, 7}. In this case, the next level of reachability
tree contains four unique nodes having RMT s {0, 1, 2, 3}, {4, 5, 6, 7}, {0, 1, 4,
5}, and {2, 3, 6, 7}. Therefore, the organizations of RMT s support the property
of both the classes I & II. Therefore, the class of Ri+1 is IV .

Table 5 partly displays the relationship among group rules. The first column
shows the class of Ri. Column 2 notes the RMT s of unique nodes at level (i−1).
Whereas, Column 3 shows the grouping of RMT s for Ri. The RMT s of unique
nodes at level i are shown in Column 4. Based on the unique nodes at level i, the
class of Ri+1 is decided and is reported in Column 5. The details of relationship
are reported in Table 6. The first and second columns represent the class of ith

cell and the Ri respectively. The class of (i+ 1)th cell is noted third column.
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Fig. 3. Determination of class relationship

Table 5. Class Relationship between Ri and Ri+1

(1) (2) (3) (4) (5)
Class RMT s of Groupings of RMT s of Class

of unique nodes RMT s unique nodes of
Ri at level (i − 1) at level (i − 1) at level i Ri+1

I {0, 1, 2, 3} (0, 1), (2, 3) {0, 1, 2, 3} I
{4, 5, 6, 7} (4, 5), (6, 7) {4, 5, 6, 7}

(0, 2), (1, 3) {0, 1, 4, 5} II
(4, 6), (5, 7) {2, 3, 6, 7}
(0, 3), (1, 2) {0, 1, 6, 7} III
(4, 7), (5, 6) {2, 3, 4, 5}
{(0, 1), (2, 3) {0, 1, 2, 3} IV
(4, 6), (5, 7)} {4, 5, 6, 7}

or {(0, 2), (1, 3) {0, 1, 4, 5}
(4, 5), (6, 7)} {2, 3, 6, 7}

II {0, 1, 4, 5} (0, 1), (4, 5) {0, 1, 2, 3} I
{2, 3, 6, 7} (2, 3), (6, 7) {4, 5, 6, 7}

IV {0, 1, 2, 3} (0, 1), (2, 3) {0, 1, 2, 3} I
{4, 5, 6, 7} (4, 5), (6, 7) {4, 5, 6, 7}
{0, 1, 4, 5} {(0, 1), (2, 3) {0, 1, 2, 3} IV
{2, 3, 6, 7} (4, 6), (5, 7)} {4, 5, 6, 7}

or {(0, 2), (1, 3) {0, 1, 4, 5}
(4, 5), (6, 7)} {2, 3, 6, 7}

First and Last rule: In this work, we have concentrated only on null boundary
CA. Therefore, there are 222

= 16 effective rules for R1 as well as for Rn. The
RMT s 4, 5, 6 and 7 are the don’t care for R1 and there are only 4 effective
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RMT s (0, 1, 2, 3) for R1. Similarly, the effective RMT s for Rn are 0, 2, 4 and
6. That is, rule 105 and 9 are equivalent if selected as the R1.

Corollary 3. If R =< R1,R2, · · · ,Rn > is a group CA, then R1 and Rn must
be balanced over their effective 4 RMT s [3].

It signifies that the unbalanced rule 3 is a group rule when it is selected as the
R1. The rule 3 is balanced over its effective (least significant) 4 RMT s. There
are 4C2 = 6 rules (out of total 16 effective rules for the R1) that are balanced
over their least significant 4 RMT s. Table 7 identifies such 6 rules. From similar
consideration, Table 8 lists all such 6 group rules for the Rn.

The classification of CA rules ensures efficient synthesis of the reversible CA
in O(n) time. For example, say rule 9 is selected randomly as R1 from Table
7 while synthesizing 4-cell reversible CA. Therefore, the class of 2nd cell rule
is III. From Class III of Table 6, say rule 177 is selected randomly as the R2.
Therefore, the class of R3 is found to be V (Table 6). We select rule 170 as R3.
The class of last cell is, therefore, II. Rule 65 is selected randomly for R4 from

Table 6. Relationship of Ri and Ri+1

Class of Ri Class of
Ri Ri+1

I 51, 60, 195, 204 I
85, 90, 165, 170 II

102, 105, 150, 153 III
53, 58, 83, 92, 163, 172, 197, 202 IV
54, 57, 99, 108, 147, 156, 198,201 V

86, 89, 101, 106, 149, 154, 166, 169 VI
II 15, 30, 45, 60, 75, 90, 105, 120, 135, I

150, 165, 180, 195, 210, 225, 240
III 15, 51, 204, 240 I

85, 105, 150, 170 II
90, 102, 153, 165 III

23, 43, 77, 113, 142, 178, 212, 232 IV
27, 39, 78, 114, 141, 177, 216, 228 V
86, 89, 101, 106, 149, 154, 166, 169 VI

IV 60, 195 I
90, 165 IV
105, 150 V

V 51, 204 I
85, 170 II
102, 153 III

86, 89, 90, 101, 105, 106, 149, 150,
154, 165,166, 169 VI

VI 15, 240 I
105, 150 IV
90, 165 V
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Table 7. First Rule Table

Rules for Groupings RMT s of nodes Class of
R1 of RMT s for level 2 R2

3, 12 (0, 1) {0, 1, 2, 3} I
(2, 3) {4, 5, 6, 7}

5, 10 (0, 2) {0, 1, 4, 5} II
(1, 3) {2, 3, 6, 7}

6, 9 (0, 3) {0, 1, 6, 7} III
(1, 2) {2, 3, 4, 5}

Table 8. Last Rule Table

Rule class Rule set
for Rn for Rn

I 17, 20, 65, 68
II 5, 20, 65, 80
III 5, 17, 68, 80
IV 20, 65
V 17, 68
VI 5, 80

Table 8. Therefore, the synthesized reversible (group) CA is < 9, 177, 170, 65>.
The synthesis algorithm is reported in [4].

5 Conclusion

This paper reports the classification of CA rules. It is found that there are only 62
rules for two-state 3-neighborhoodCA that may form reversibleCA. The relation
among such rules are identified to ensure synthesis of reversibleCA in linear time.
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Abstract. Over the past 20 years, the study of cellular automata has
emerged as one of the most interesting and popular forms of “new math-
ematics”. The study of cellular automata has broadened into many varia-
tions of the original concepts. One such variation is the study of
one-dimensional fuzzy cellular automata. The evolution and dynamics
of the majority of one-dimensional fuzzy cellular automata rules can be
determined analytically using techniques devised by the second author.
It turns out that only 9 rules (out of 256), three of which are trivial, fail
to comply with the techniques given. We give a brief overview of finite
cellular automata and their fuzzification. We summarize the method used
to study the majority of fuzzy rules and give some examples of its appli-
cation. We analyze and uncover the dynamics of those few rules which do
not conform to such techniques. Using new techniques, combined with
direct analysis, we determine the long term evolution of the 4 remaining
rules (since two of them were treated in detail elsewhere). We specifically
analyze rules 172 and 202 and then, by deriving equivalences to the final
two rules, we complete the program, initiated in 2003, of determining the
long term dynamics of all 256 one-dimensional fuzzy cellular automata,
thereby showing that chaotic dynamics are incompatible with this type
of fuzziness, in sharp contrast with boolean cellular automata.

1 Introduction to Cellular Automata

We begin by introducing the definitions and properties of general cellular au-
tomata which will allow us to understand the techniques used and results ob-
tained in this paper. In general, a cellular automaton is a regular uniform lattice
of cells with each cell containing a discrete variable or value. The lattice may be
either finite or infinite and the total state of the automaton is completely spec-
ified by the value at each cell. The value or state of the automaton evolves in
discrete time steps wherein each new cell value is determined based on the cur-
rent value of the cells within the automaton. Each cell and its value is updated
simultaneously i.e. All new cell values are based solely on those of the previous
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automaton’s state. The majority of studies focus on rules which evolve a cell’s
value based on the cells within a given neighborhood of the cell, usually the
cell’s value itself and those immediately adjacent to it. These are referred to as
local rules. The most elementary form of cellular automata are one-dimensional
boolean cellular automata which consists of a single strip or sequence containing
boolean values. The strip is usually considered infinite in both the positive and
negative direction and any finite sequence is simply imposed onto an infinite
background of zero cells. The neighborhood of each cell consists of itself and
its immediately adjacent neighbors (the cell preceding it and the other which
follows it). In other words, a local rule is a mapping of the following form:
g : {0, 1}3 �→ {0, 1}.

If we then fix a cell in the automaton’s evolution and denote it x0 we may then
consider its evolution as an infinite sequence of boolean values where we may ac-
cess any value of the sequence via its index. This allows us to define a map f (the
local rule) for the automaton by mapping each cell xi via the mapping f(xi) =
g(xi−1, xi, xi+1). Since g maps the set of values in {0, 1}3 to the set {0, 1},
we may describe the map g as follows: (000, 001, 010, 011, 100, 101, 110, 111) �→
(r0, r1, ..., r7) where each ri = 0 or 1. This gives us 28 = 256 possible local func-
tions to study. We conveniently name each rule based on the numerical value of
the binary string r7, r6, ..., r0. In other words, we name the rule via the value of
the sum:

Rule Name =
7∑

i=0

ri2i.

Since we are dealing with binary values, we may express each local rule in a
disjunctive normal form (DNF) using the binary operators and and or, [5]. That
is, we write the local rule as an expansion of “ors” and of “ands” of the 3-tuples
which generate a 1 under the given local rule i.e., we can always write

g(x1, x2, x3) = ∨i|ri=1 ∧3
j=1 x

dij

j ,

where dij is the j-th digit from left to right of the binary representation of i and
where x0 represents ¬x (the negation of x).

For example consider Rule 218: Since 218 = 1 ·27 +1 ·26 +1 ·24 +1 ·23 +1 ·21

it is represented by the binary mapping: (000, 001, 010, 011, 100, 101, 110, 111) �→
(0, 1, 0, 1, 1, 0, 1, 1) which gives the following function in DNF.

g218(x1, x2, x3) = (¬x1 ∧ ¬x2 ∧ x3) ∨ (¬x1 ∧ x2 ∧ x3) ∨ (x1 ∧ ¬x2 ∧ ¬x3) ∨
(x1 ∧ x2 ∧ ¬x3) ∨ (x1 ∧ x2 ∧ x3). (1)

When we apply this rule to any triple (0, 1, 0), (0, 0, 1), etc. starting from a single
“1” seed value against a background of zeros its evolution continues indefinitely
left and right and may be computed for any finite number of time states. By
setting the cells to small colored blocks, black for 1 and white for 0, we can
visualize its dynamics as it is normally done these days (cf., [11], [12]).
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2 Introduction to FCA’s

The properties of binary cellular automata have their origins in works by Von Neu-
mann [9] and Wolfram [11]. We turn our attention to a variation of the elementary
binary cellular automaton. We “fuzzify” the automaton by removing the binary
restriction and thus allowing the cell values to be any real number in the interval
[0, 1]. We must then redefine the operations of the binary maps to suit those of our
new values. We alter the operations in the DNF of each of the rules for binary cel-
lular automata as follows: (x∨y) becomes (x+y), (x∧y) becomes (x ·y) and (¬x)
becomes (1 − x). Since each x

dij

j ∈ [0, 1] in the DNF we know that the product∏3
j=1 x

dij

j is also a positive number in [0, 1]. The rule sum

g(x1, x2, x3) =
7∑

i=0

ri ·
3∏

j=1

x
dij

j

is thus maximized when ri = 1 and minimized when ri = 0 for all i = 0, 1, ..., 7.
These values correspond to fuzzy rules g0(x1, x2, x3) = 0 and g255(x1, x2, x3) = 1
respectively. Furthermore, since each of the fuzzy rules are essentially partial
sums of fuzzy rule 255, we may bound all the local fuzzy rules above and below
which guarantees that for any fuzzy local rule we map back into the interval
[0, 1].

For example, let us again consider Rule 218. From above, we recall that the
DNF of this rule is given by (1) above. We can fuzzify this using the identifica-
tions x ∨ y = x+ y etc. defined above to find:

g218(x, y, z) = (1 − x)(1 − y)z + (1 − x)yz + x(1 − y)(1 − z) + xy(1 − z) + xyz

= x+ z − 2xz + xyz

We may then choose a seed value of any α ∈ [0, 1] and examine the evolution
of the automaton over several discrete time steps. Let us choose, for example,
α = 0.5. This gives an evolution similar to rule 218 above with the number 0.5
scattered about. The space-time diagram is very similar to the one found in the
discrete (or boolean) case which does not lead to anything of much interest.
In fact, we can show that for any fuzzy rule the space-time diagram produced
by an arbitrary seed α ∈ (0, 1) approaches the boolean space-time diagram

Table 1. Fuzzy rule 218 running on the 3 seeds (0.25, 0.5, 0.75)

time state
0 0 0 0 0 0.25 0.5 0.75 0 0 0 0
1 0 0 0 0.25 0.5 0.718 0.5 0.75 0 0 0
2 0 0 0.25 0.5 0.699 0.679 0.660 0.5 0.75 0 0
3 0 0.25 0.5 0.687 0.737 0.749 0.724 0.667 0.5 0.75 0
4 0.25 0.5 0.679 0.753 0.786 0.794 0.778 0.741 0.666 0.5 0.75

· · · · · ·
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as α → 1−. However, we may also consider the dynamics of a fuzzy cellular
automaton with several seeds on a background of zeros. For example, we now
choose three consecutive seeds of 0.25,0.5,0.75. This generates a much more
interesting evolution as seen in Table 1.

It is important to note that the above method of fuzzification is not unique.
We may choose to transform the binary expressions into functions on the interval
using alternative fuzzy logics (cf., [5],[8]).

3 Long Term Dynamics of FCA

By using a powerful enough computer, we may generate any finite number of
iterations of a local fuzzy rule. However, it is also interesting to analyze the
evolution of an automaton’s value as the number of iterations approaches infinity
analytically. To study the dynamics of fuzzy cellular automata further, let us
adopt a notation which will allow us to manipulate them more easily. We recall
that we may reference any cell xi of an automata via its index i with respect to
a chosen cell x0. Now, let us denote the value of the given cell xi after t time
steps (i.e. t applications of a given local rule) by xt

i. We denote the space-time
diagram of a given cell xt

i as the set of cells {xt+p
j |p ≥ 0 and (i−p) ≤ j ≤ (i+p)}.

The space-time diagram of a given cell represents the evolutionary values which
are dependent on the vertex value xt

i. We may then denote any finite fuzzy
automaton on a background of 0’s via the finite sequence x−k, ..., x0, xq for some
k, q ≥ 0. In the simplest case where the automaton acts on a single value α ∈
[0, 1], note that the space-time diagram has vertex x0

0 = α and xm
±n is the n-th

cell to the right/left of the seed value at time m.
We examine three types of sequences found in space-time diagrams which are

generated by local fuzzy rules. Those which form the positive diagonals, those
which form the negative diagonals and those which form the vertical sequences
in the space-time diagram. We denote the limits of these sequences as L+

i , L
−
i ,

and L0
i respectively, where, for the diagonal sequences, i denotes the sequence

beginning with the i-th iterate of the x0 element, xi
0 under the local rule. In the

case of vertical sequences, i refers to the sequence beginning with the i-th value
left/right of the initial value, i.e. the element x0

i .
To determine the long term dynamics of a given fuzzy cellular rule we pro-

ceed with the method described in [5], a technique which can be summarized
as follows: We fix a given seed value which will distinguish both diagonal and
vertical sequences. We then use the given rule to derive basic theoretical esti-
mates of the initial diagonal sequences. We proceed by using the continuity of
the fuzzified local rule as a function of three variables to prove the existence
and value of the initial limits. Finally, when applicable we use an iterative ap-
proach to obtain a value for all subsequent limits. To utilize the above scheme
to derive the limits of the required sequences we must first enforce the following
two conditions on a local rule gn, 0 < n < 255: Condition (I): The equa-
tions: gn(x, y, z) − x = 0, gn(x, y, z) − y = 0 and gn(x, y, z) − z = 0 can each
be solved uniquely for x, y, z respectively, for given values of (y, z), (x, z), (x, y)
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respectively in [0, 1]2. Though not crucial, we also include a second condition,
Condition (II): The outer most (initial) left/right diagonal sequences converge
to the limits L−

0 and L+
0 respectively.

Without loss of generality, let us consider the right diagonal sequence from
the right most value of a finite initial string imposed onto a background of
zeros. Let the vertex of the space-time diagram take the value x0

0 = α. We
may then compute the values xm

m = gn(x(m−1)
(m−1), 0, 0). Now by Condition (II)

we know that limm→∞ xm
m = L+

0 or more appropriately L+
0 (α). We may then

proceed to the following sequence immediately below or more precisely L+
1 (α).

We know xm
(m−1) = gn(x(m−1)

(m−2), x
(m−1)
(m−1), 0). Thus L+

1 (α) = limm→∞ xm
(m−1) =

gn(L+
1 (α), L+

0 (α), 0). Now, we use Condition (I) to solve for the unique value
L+

1 (α). Now that we possess both L+
0 (α) and L+

1 (α), we may continue in a
similar manner for the third limit, L+

2 (α). Again, we use the relation

xm
(m−2) = gn(x(m−1)

(m−3), x
(m−1)
(m−2), x

(m−1)
(m−1))

and the fact that the limit L+
2 (α) = limm→∞ xm

(m−2) = gn(L+
2 (α), L+

1 (α), L+
0 (α))

can be solved uniquely for L+
2 (α), by Condition (I). We then simply proceed in-

ductively to receive L+
k (α) = gn(L+

k (α), L+
k−1(α), L+

k−2(α)) which holds for each
k ≥ 2. Then, by applying Condition (I), we can solve for the limit L+

k (α) uniquely
in terms of the previous 2 limits L+

k−2(α), L+
k−1(α) and thus the induction holds.

We may apply a similar method for the left diagonal sequences using the left
most value in the finite automaton as the vertex for the space-time diagram. We
note from the above discussion that if we take the limit of both the right and left
diagonals, we can obtain an iterative equation for the right/left diagonal limits
L+

k (α) and L−
k (α). Furthermore, we may take the limk→∞ of both to determine

the long term behavior of the limits of the diagonal sequences. We also consider
the limits of the vertical sequences in a similar manner and note that not all
such sequence must have limit but if so it must be one of the L±

k ’s, or the limit
limk→∞ L±

k = L± itself, where the k generally usually depends on the choice of
the column[5].

Returning to the example of Rule 218 above we analyze the 2-seed case.
In order to generate a space-time diagram using non-zero adjacent seed values
α, β ∈ (0, 1), we set the left most seed value as x0

0 = α. We can see easily from
its space-time diagram that L−

0 = α. This can also be shown easily through
derivation by noting g218(0, 0, z) = z, thus the left most sequence becomes simply
a string of α. A similar argument shows that the second left diagonal sequence
is also trivially the second seed value using again the relation g218(0, α, z) = z.

By our above conditions and the existence of the first 2 limits, induction of
the method on the recurrence xk+1

j = g218(xk
j−1, x

k
j , x

k
j+1) shows that the left

diagonal sequence {xi+k
−k }k≥0 has the limit L−

i for all i ≥ 2. Thus, letting k → ∞
in the above recurrence, we obtain

lim
k→∞

xk+i
−k = lim

k→∞
g218(x

(k+i)−1
−(k+1) , x

(k+i)−1
−k , x

(k+i)−1
−(k−1) )
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and this, in turn, implies that L−
i = L−

i−2 + L−
i − 2L−

i−2L
−
i + L−

i−2L
−
i−1L

−
i =

1
2−L−

i−1
. This holds for all i ≥ 2. From this we can also determine the long term

value of the limits. We note that as k increases, so does the value of the limit and
as k → ∞ the value L− = limk→∞ L−

i approaches the continued fraction L− =
1

2− 1
2−···

= 1, (see [10]). To uncover the evolution of the right diagonal sequences,

we take advantage of the symmetry property g218(x, y, z) = g218(z, y, x) of this
rule. So, setting the right most seed to be x0

0 = β we can simply state that
L+

0 = β, L+
1 = α and then L+

i = 1
2−L+

i−1
for all i ≥ 2. Again, the limit of these

is the continued fraction L+ = 1
2− 1

2−···
= 1. Thus, since both the left and right

diagonals converge to 1 we can state that the diagonal sequences converge to 1
as well, as per [5].

4 Long Term Dynamics of Exceptional FCA

We note that in order to apply the above techniques to a finite fuzzy cellular
automaton on a background of zeros, the local rules must satisfy Conditions
(I) and (II). The automata which violate Condition I are precisely those which
have the property gn(x, x, x) − x = 0 for all x ∈ [0, 1]. (i.e. each point along
the diagonal of the cube [0, 1]3 is a fixed point of the local rule). We call these
exceptional. A search shows that only nine fuzzy rules are exceptional, that is,
fuzzy rules 170, 172, 184, 202, 204, 216, 226, 228 and 240. However, we need
not consider the trivial rules g240(x1, x2, x3) = x1, g204(x1, x2, x3) = x2 and
g170(x1, x2, x3) = x3 since they produce trivial evolutions (left, right or zero
shifts in their evolution). As for the remaining six local fuzzy rules, the compli-
cated dynamic evolution of fuzzy rule 184 was recently tackled in [4]. However,
since the symmetry property g184(x, y, z) = g226(z, y, x) holds for the two rules
184 and 226, it follows (by space-time diagram reflection) that the results in
[4] give corresponding results for 226. The remaining 4 rules are now of in-
terest and we find similarities in these rules just as we did in their boolean
counterparts. We may first break these 4 rules into two pairs using the reflec-
tional equivalencies: g172(x, y, z) = g228(z, y, x), and g202(x, y, z) = g216(z, y, x).
Indeed, we may equate the first two pairs of fuzzy rules with the conjugation
equivalencies: g202(x, y, z) = 1 − g172((1 − x), (1 − y), (1 − z)) or g216(x, y, z) =
1− g228((1− x), (1− y), (1− z)). Thus, we may restrict our study to a mere two
of the four exceptional rules, one per pair. As per custom with boolean rules, we
chose those with the lowest rule numbers in each class for the sake of argument.

4.1 Rule 172

The first of the four exceptional rules, rule 172, has binary form 101011002 and so
the binary mapping: (000, 001, 010, 011, 100, 101, 110, 111) �→ (0, 0, 1, 1, 0, 1, 0, 1)
gives the DNF g172(x1, x2, x3) = (¬x1 ∧x2 ∧¬x3)∨ (¬x1 ∧x2 ∧x3)∨ (x1 ∧¬x2 ∧
x3) ∨ (x1 ∧ x2 ∧ x3). Fuzzifying the DNF produces the local rule g172(x, y, z) =
(1 − x)y(1 − z) + (1 − x)yz + x(1 − y)z + xy(1 − z) + xyz = y(1 − x) + xz. For
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our analysis it is helpful to note that g172(0, y, z) = y, g172(x, 0, z) = xz, and
g172(x, y, 0) = (1 − x)y.

We note that the one initial seed fuzzy case is similar to the binary case for
any initial seed α ∈ [0, 1] and so we omit it, as there is nothing new. Let us
then move forward to the case where we begin with 2 initial adjacent seed values
α, β ∈ [0, 1]. It is easy to see that its evolution consists in two vertical sequences
and no non-trivial diagonal sequences. For our analysis let use denote the left
most non-zero value as x0

0 = α. Again, the first sequence, {xj
0}j≥0, trivially

converges to L0
0 = α. The second sequence, {xj

1}j≥0, can be recursively defined
as xk+1

1 = g172(α, xk
1 , 0) = xk

1(1 − α) thus we can derive that xk
1 = β(1 − α)k.

When α = 1 the sequence becomes 0 and when α ∈ (0, 1) we deduce that
xk+1

1 = xk
1(1 − α) ≤ xk

1 thus the sequences is decreasing. Since the sequence
is bounded, we know that it converges to some limit say L0

1. We then take the
equation xk+1

1 = xk
1(1 − α) and let k → ∞ which gives us L0

1 = L0
1(1 − α) and

since α 	= 1, we have L0
1 = 0. Even more interesting is the case consisting of

three initial seeds, say α, β, γ ∈ [0, 1] which evolves in a seemingly very complex
fashion, very quickly. The terms become increasingly more complicated especially
those in the middle sequence. Denoting the left most seed value by x0

0 = α, the
first vertical sequence, {xj

0}j≥0, trivially has the limit L0
0 = α. Furthermore,

using an argument similar to the two seed case above, and excluding the trivial
case where β = 1, we can deduce that the right most sequence, {xj

2}j≥0, is
a decreasing sequence. However, we cannot yet claim it converges to the limit
L0

2 = 0 since we must compute limk→∞ xk+1
2 = limk→∞ g172(xk

1 , x
k
2 , 0). Thus we

must first show that the sequence {xj
1}j≥0 itself converges to a limit. Now comes

a delicate existence argument.
Let α, β, γ 	= 0, as the other cases are simpler. In order to prove the existence

of the limit of {xj
1}j≥0, we consider the relation xk+1

1 = g172(α, xk
1 , x

k
2) = xk

1 −
α(xk

1 − xk
2). Observe that if (xk

1 − xk
2) ≥ 0 for all sufficiently large k, we can

conclude that the sequence xk
1 is eventually decreasing (and since it is bounded

below by zero) it converges to a non-negative limit. To this end, for given k, note
the identity xk+1

1 −xk+1
2 = xk

1−α(xk
1 −xk

2)−xk
2(1−xk

1) = (1−α)(xk
1−xk

2)+xk
1x

k
2 .

Assume, if possible, that as k → ∞, xk
1 actually increases to a limit, say, L0

1.
Then L0

1 ≥ x0
1 = β > 0. Since xk+1

1 = g172(α, xk
1 , x

k
2) = xk

1 − α(xk
1 − xk

2) and
xk

2 is decreasing, it follows that, in the limit, we have L0
1 = L0

1 − α(L0
1 − L0

2) or
L0

1 = L0
2. On the other hand, L0

2 = g172(L0
1, L

0
2, 0) in the limit too, a relation

which gives L0
1L

0
2 = 0. Combining the two equalities regarding the limits we get

L0
1 = L0

2 = 0. But this contradicts the limit relation L0
1 > 0. It follows that

xk
1 cannot increase to a limit and thus there exists a subscript, call it k again,

such that xk+1
1 < xk

1 . Thus, for this k, xk
1 > xk

2 on account of the remarks at
the opening of this paragraph. This along with the stated identity above, shows
that xk+1

1 > xk+1
2 , which in turn gives xk+2

1 > xk+1
1 and this must hold for every

sufficiently large k. Hence xk
1 is eventually decreasing and thus it has a limit.

Combining the above arguments we get that its limit L0
1 = L0

2 = 0.
From here we use induction to handle the general case of n-seeds. If the rule

is run on an initial string of size n, say α0, α1, ..., αn−1 ∈ (0, 1), we proceed in a
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similar manner. First, we set the vertex to be x0
0 = α0 and note that again the

left most sequence, {xj
0}j≥0, is trivially α0 and thus L0

0 = α0. We may then prove
existence of limits from right to left using arguments similar to those above. Once
the existence of limits for all sequences has been determined we may simply use
the local rule to deduce that the right most sequence {xj

n−1}j≥0 has limit L0
n−1.

Then, as above, we move left along the sequences to deduce that L0
i = 0 for

i = (n− 1), (n− 2), ..., 2, 1.
Now that we have solved Rule 172 for n-seeds, we may use the relationship

g172(x, y, z) = g228(z, y, x), to simply invert the entire pattern and run the evo-
lution of Rule 172, then reverse the pattern again to obtain the solution. In
other words, the space-time diagrams are refletions of each other and hence the
limits do not change. Thus the evolution will consist of only vertical sequences
of which, in this case, the right most is the trivial sequence of simply the right
most seed value and the remainder of the vertical sequences all tend to zero.

4.2 Rule 202

The final exceptional rule (up to equivalence) is Rule 202. Due to page limi-
tations we need only sketch the process. Since 202 = 110010102, its DNF is
g202(x1, x2, x3) = (¬x1∧¬x2∧x3)∨(¬x1∧x2∧x3)∨(x1∧x2∧¬x3)∨(x1∧x2∧x3).
The evolution of the one seed boolean case is a simple left shift. Fuzzification
gives the local fuzzy rule g202(x, y, z) = (1−x)(1−y)z+(1−x)yz+xy(1−z)+xyz
or g202 = (1−x)z+xy. As before we identify the special values g202(0, y, z) = z,
g202(x, 0, z) = (1 − x)z and g202(x, y, 0) = xy. We again note that the one seed
fuzzy case is similar to the boolean case. This has the obvious analysis of con-
taining a single, left diagonal sequence with limit L0

0 = α and no non-trivial
right diagonal or vertical sequences.

In the two-seed case α, β ∈ (0, 1), denote the left most non-zero value as the
vertex x0

0 = α. This case now produces several left diagonal sequences. Again, the
first left diagonal sequence, {xj

−j}j≥0, trivially converges to L−
0 = α. The second

sequence is {xj+1
−j }j≥0 which because of xk+1

−k = g202(0, α, xk
−(k−1)) = xk

−(k−1),
continues infinitely as the second seed β and so L−

1 = β. In general, we may
consider the following recurrence relation for the various diagonals:

xj+k
−j = g202(x

j+k−1
−(j+1), x

j+k−1
−j , xj+k−1

−(j−1)) = (1 − xj+k−1
−(j+1))x

j+k−1
−(j−1) + xj+k−1

−(j+1)x
j+k−1
−j .

When k = 0 we get L−
0 = α, when k = 1 we have L−

1 = β. Now, the exis-
tence of the subsequent limits is the most delicate problem. However, noting that
xj+2
−j − xj+1

−(j−1) = αβ(1 − α)j+1 holds for every j = 0, 1, . . ., it follows that the

sequence xj+2
−j is increasing (and it is bounded) and thus has a finite limit, L−

2 .
Necessarily, L−

2 = g202(α, β, L−
2 ). Solving this for L−

2 gives L−
2 = β once again.

This argument can now be generalized to show that for each k, the sequences xj+k
−j

are all increasing and so their limit L−
k exists for each k ≥ 2, and again L−

k = β.
It may seem that a more interesting case would arise by extending the number
of initial seeds to n seeds. However, mimicking the previous situation shows that
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the results remain the same. That is, if the seeds are α, β, γ, . . . ,∈ (0, 1), in that
specific order from left to right, then for a given set of seeds, and for each k, the
resulting sequences xj+k

−j are increasing and so each L−
k exists, and L−

k = β for
every k ≥ 1. Thus, the space-time diagram of FCA 202 is deterministic.

The dynamics of rule 202 can then immediately be applied to determine the dy-
namics of rule 216. Since g202(x, y, z) = g216(z, y, x), the pattern obtained when
running rule 216 on n initial seeds, say α0, α1, ..., αn−1, is a simple reflection of
the pattern which occurs when we run rule 202 on the reverse of the initial string.
Thus, we obtain only right diagonals (no left diagonal or vertical sequences). Set-
ting our initial cell to be the right most seed value or x0

0 = αn−1, the first right
diagonal then converges to the right most seed value, or L+

0 = αn−1. All further
right diagonal sequences then converge and their limit is the second right most
seed value or L+

i = αn−2 for all i ≥ 1. By induction, this holds for all n ≥ 2.

5 Conclusion

In [5] an analytical method was developed for handling fuzzy rules (FCA) as
defined in [1]. The technique, however, fails for so-called exceptional FCA. By
an exceptional rule we mean an FCA whose fixed points consists of a continuum
of real numbers. It can be shown that there are only 9 such exceptional FCA
out of a total number of 256 (namely FCA 170, 172, 184, 202, 204, 216, 226,
228 and 240). The general method described in [5] combined with work in [3-7],
was used to show that all but possibly these 9 FCA admit dynamics at infinity
which do not admit sensitive dependence on the initial conditions, that is, for
all but possibly these 9 there cannot be chaotic evolution (in the traditional
sense) in their space-time diagrams. Now, of these 9 remaining fuzzy rules, the
dynamics of 3 of them are trivial, namely FCA 170, 204 and 240. The dynamics
of the most complicated exceptional rule namely, FCA 184, considered in [4] did
not exhibit sensitive dependence on initial seeds and so no chaos reigns, there
is no complexity. Since the space-time diagrams of FCA 184 and FCA 226 are
reflections of one another, the same result is true for FCA 226. This left only FCA
172 (its counterpart FCA 228), and FCA 202 (and its counterpart 216) whose
dynamic evolution was possibly suspect. In this paper we show that neither FCA
172 nor FCA 202 can admit chaotic space-time diagrams (and so a fortiori nor
can FCA 228 and FCA 202), thus completing the study of the general dynamics
of all 256 FCA. Finally, we point out that this technique is also applicable under
other fuzzy logics, a topic we shall undertake in a future work.
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Abstract. Modelling of Large Scale Systems is an interesting research area 
since it combines issues of risk management and human decision. Strongly re-
lated with social, environmental and economic consequences, such issues impel 
scientific community to investigate for efficient and applicable solutions. To 
this direction, phenomena involving mass human presence, as crowd panic or 
extended natural processes, as earthquakes, have been simulated, using a com-
putational intelligent technique, based on Cellular Automata (CA). CA are very 
effective in simulating physical systems, capturing the essential features of sys-
tems where global behaviour arises from the collective effect of simple compo-
nents which interact locally. Moreover, they are also one of the most suitable 
computational structures for VLSI realization. The evaluation of each model is 
based on its response to real data. In both cases, an efficient graphical user in-
terface has been developed, in order to study various hypotheses concerning the 
prominent features of each model. 

1   Introduction 

Large-Scale Systems are characterised by a large number of variables and nonlineari-
ties. Such systems, i.e. earthquakes, tsunamis, lava flow, forest fire propagation or 
crowd movement under panic, cause phenomena of mass destruction. Consequently, 
economic, environmental as well as social reasons call for their thorough study of 
high importance. Progress in the area of computer science and electronics provides all 
necessary tools for the design and implementation of large-scale systems models 
observing them and control them. Furthermore, the use of suitable computational 
tools, such as cellular automata (CA) as alternatives to standard simulation methods, 
enables us to model more accurately distinct features of these dynamical systems. 

Alternative CA models that have been developed to model large-scale systems-
phenomena are reported in the next two sessions. More specifically, the first one 
simulates the progress of a mass destruction physical phenomenon, i.e. the earth-
quake, based on a potential value analysis while the second one simulates issues of 
risk management and human decision, namely, pedestrian dynamics during the 
evacuation of a closed area. The efficiency of both models is detected with the use of 



 Cellular Automata Modelling of Large Scale Systems 89 

real data. Both models are supplied with a graphical user interface (GUI) aiming at 
sufficient investigation. 

2   The Earthquake Process Model 

The earthquake models presented so far were based on a mass–spring model either in 
one (1-d) or two (2-d) dimensions. The proposed potential–based model is a 2-d dy-
namic system constituted of cells–charges [1]. It aims at the simulation of seismic 
activity with the use of potentials. It simulates earthquake activity in correspondence 
to the quasi-static 2-d version of the Burridge-Knopoff spring-block model [2], as 
well as, to the Olami-Feder-Christensen (OFC) model [3]. 

A new approach towards the reordering and the improvement of the presented 
models is based on the idea of implementing their capacitor–inductor analogue. The 
LC circuit resembles a mass–spring system. Energy transformation is similar to the 
mechanical oscillation that takes place in the mass–spring system, where the potential 
energy of the spring is converted into the kinetic energy of the mass and vice versa. A 
step forward is the assumption that each cell of the CA can be well described by the 
value of its potential. Since the system is conservative every single area of it can be 
uniquely characterised by a scalar quantity, the potential. Each cell–charge creates 
around an electrostatic field. The value of the potential that characterises each CA site 
is the resultant value of the potential if there is taken under consideration only the 
existence of four (or eight) source charges around (von Neumann/Moore neighbour-
hood). The system balances through the exercitation of electrostatic Coulomb–forces 
among charges, without the existence of any other form of interconnection in–
between. Such kinds of forces are also responsible for this level to be bonded with a 
rigid but moving plane below.  

From an electronic point of view, it is attempted the presentation of an analogue 
computer based on a digital platform using CA as the essential intermediate stage. In 
analogue computers, electrical phenomena are used to model the problem being 
solved and all computations are performed by using properties of electrical quantities. 
The 2-d CA model reproduces prominent features of earthquake data, with continuous 
states and discrete time. 

The dynamics of the model is driven by the existence of simple update rules that 
take place in discrete steps. Specifically, if the potential Vi,j of the (i,j) cell exceeds 
the threshold value Vth of the level below, the balance is disturbed. The removal of the 
cell reorders the values of the potential at its vicinity, driving to a cascade phenome-
non, i.e, the model’s equivalent to an earthquake [4]. Since the system is conservative 
the value of the potential of the cell (i,j) is equally shared either to its four or eight 
neighbours (von Neumann/Moore neighbourhood).This model stores only one real–
value field, i.e. the potential. Moreover, the use of closed boundary conditions has 
been adopted in order the model to present strong forms of in-homogeneity at the 
boundaries, alike earthquake faults at the surface. 

The model has been tested and calibrated with the use of real data. Its effectiveness 
and reliability are detected by comparing the Gutenberg-Richter law scheme obtained 
by real data to that resulted through simulation. Recorded data and simulation results 
quite match, both presenting power-law behaviour with an acceptable divergence [5]. 
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The CA model is structured in a way to provide a variety of measurements [6], such 
as the “critical state”, i.e., the state of the system after a large number of earthquake 
simulations and the “cascade (earthquake) size”, which is defined as the total number 
of cells that participate in a single earthquake procedure, which stands as long as the 
condition Vi,j >Vth is true. This magnitude is a measure of the total energy released 
during the evolution of the earthquake, hence a measure of the earthquake magnitude. 

Finally, the CA model is equipped with a user–friendly interface, enabling interac-
tive simulation. It is enriched with various parameter options as well as with the abil-
ity of automatic introduction of real data. It is also provided with the efficiency of 
monitoring all the aforementioned measurements (Fig. 1). 

 

Fig. 1. The GUI of the Earthquake Process CA model 

3   The Crowd Dynamics Model 

During the last decade, crowd is modelled as composed of discrete individuals rather 
than being treated as homogeneous mass, like flowing fluid [7]. A major constraint 
was the enormous number of calculations required. Computational power of modern 
computers changed this situation. Further simplification of modelling such processes 
can be achieved by the use of computational techniques such as CA. Regarding the 
simulation of pedestrian dynamics, 2-d CA models are reported either treating pedes-
trians as particles subject to long-range forces [8] or using walkers leaving a trace by 
modifying their paths [9]. 

A 2-d CA model that aims at the simulation of crowd dynamics during the evacua-
tion of a closed area has been proposed. CA cells obtain discrete values, thus indicat-
ing their status; either free or occupied. The grid is uniform and invariant with respect 
to direction. During each time step, an individual chooses to move in one of the eight 
possible directions of its vicinity. A particle cannot overcome more than one cell at a 
time step, meaning that it moves with a maximum velocity of one cell per time step. 

Regarding the local CA rule, for each occupied cell a 3x3 matrix is evaluated 
(Fig.2), pointing the closest direction to an exit. The matrix depends on the refer-
ence cell and its eight closest neighbours and the values of its elements indicate the 
distance from the exit. The distance is defined as the minimum number of cells 
needed to be covered in order the exit to be reached, moving strictly either vertically 
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or horizontally. Each element represents a possible updated spatial state of the occu-
pied cell at the next time step. All possible routes are detected, and the particle moves 
towards the shortest one to the next time step. Provided that more than one escaping 
points exist, the process is repeated, taking place for each exit separately. The particle 
does not move towards the target unless it is free and it moves if no other particle 
targets the same cell. In case that more than one particles target the same cell, priority 
is given to the one that fronts the exit. 

A graphical user interface (GUI) based on Matlab® has been developed enhancing 
the surveillance perspectives of a certain area (Fig. 2). Distinguishing features of the 
evacuated area are adjustable, incorporating both topological-oriented parameters and 
parameters that describe the crowd formation. All crowd characteristics are individual 
dependent. The evacuation process can be demonstrated for several exit locations and 
it can also be enriched with obstacles at various locations. Moreover, population is 
adjustable including different types of individuals. 

    

Fig. 2. Left side: A median matrix example. The values of the elements indicate the distance 
from the exit. Right side: A snapshot of the GUI. Different coloured particles correspond to 
different groups of individuals. Black dots correspond to obstacles. 

Regarding the VLSI architecture of the model, the hardware implementation can be 
achieved with the translation of the CA algorithm into a synthesizable subset of a 
hardware description language (HDL), namely VHDL [Very High Speed Integrated 
Circuit (VHSIC) HDL]. More specifically, the CA rule, described earlier and based 
on the minimum distance from the exit, is used to produce the interface and the be-
havioural parts of the VHDL code. The lattice size and the 2-d neighbourhood width 
(nine cells in the examined case) of the CA model are used to produce the structural 
part of the resulting VHDL code. The final VHDL code has a mixed behavioural and 
structural form. Its architecture contains both behavioural and structural parts, such as 
concurrent statements. Simulation results of the VHDL code are guaranteed to be 
found in complete agreement with the compilation results of the CA model. The 
VHDL code would be ready to accomplish the design processes of analysis, elabora-
tion, and simulation; so that the next design process of synthesis (i.e. the translation of 
register-transfer-level (RTL) design into a gate-level net-list) can take place [10]. The 
process of design synthesis presupposes the usage of a commercial VLSI CAD  
system, which will automatically produce, after the completion of the VHDL code  
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Fig. 3. A 2-d CA structure (left) and the architecture of a single cell of the CA model (right)  

synthesis, the schematic and the layout of the corresponding dedicated processor. Fig. 3 
depicts the schematic of the corresponding CA cell. Such an implementation achieves 
high simulation performance with low hardware overhead. 

4   Conclusions 

This paper shortly introduces main ideas and results of our computational CA ap-
proach, for modelling complex large scale systems. These CA models can be further 
enriched, adding new elementary processes to account situations of increasing com-
plexity. A 2-d CA model has been proposed and calibrated in order to successfully 
simulate the earthquake activity in a specific region. The study of the seismic activity 
stands on a potential–based analysis. The advantage of this method is that vector 
analysis is avoided, also attaining the best use of the current computing power. Hence, 
this model may be used for risk analysis of endangered areas in terms of long term 
forecasting of the earthquake activity at various situations. Future research objectives 
include application of the CA model to new real cases, expecting improvements and 
extensions towards a more physical and less empirical model. 

Furthermore, a 2-d CA pedestrian dynamics model has also been presented. Cer-
tain attributes of crowd behaviour, e.g., collective effects, collisions and delaying 
factors have been successfully encountered during simulation. The developed inter-
face provides the ability for observing various situations of room evacuation process. 
As future work, based on the flexibility of the proposed model, it could be possible to 
analyse video sequences related to crowd escaping in order to calibrate the CA model. 
Data from video monitoring could be supplied to the model to realize whether the 
model is capable of reproducing phenomena under panic circumstances. In terms of 
circuit design and layout, silicon-area utilization and maximization of clock speed, 
CA are efficient computational structures for VLSI realization. Hence, the VLSI im-
plementation of the proposed CA algorithm, translated into a synthesizable subset of a 
hardware description language (VHDL), is straightforward with low hardware over-
head. Consequently, it is feasible the perspective of an integrated surveillance system, 
with camera based monitoring algorithms that could provide all necessary video data. 
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Abstract. This paper describes a model of three-dimensional cellular
automata allowing to simulate different phenomena in the fields of com-
puter graphics or image processing. Our method allows to combine them
together in order to produce complex effects such as automatic texturing,
surface imperfections, or biological retina multi-layer cellular behaviours.
Our cellular automaton model is defined as a network of connected cells
arranged in a natural and dynamic way, which affords multi-behavior ca-
pabilities. Based on cheap and widespread computing systems, real-time
performance can be reached for simulations involving up to a hundred
thousand cells. The efficiency of such an approach is illustrated by a set
of CA related to computer graphics –e.g. erosion, sedimentation, or veg-
etal growing processes– and image analysis –e.g. retina simulation.

Keywords: cellular automata, geometric modeling, image processing,
environmental and biological systems, surface effects, fluid simulation.

1 Introduction

This paper presents a model for simultaneous and real-time simulations of sur-
face effects. It refers to the field of Cellular Automata (CA) intended for 3D
geometric modeling and image processing and applied to various purposes such
as texture synthesis, surface imperfections or simulations of natural phenomena,
or retina structure and behaviour simulations as well. We believe that CA are
an acceptable solution to deal with the inherent complexity to that domain.

The complex behavior and the diversity that can be observed at a macroscopic
level is essentially due to the fact that there are numerous particles with continual
interactions. Of course, it is not possible to study all the phenomena coming back
at the atomic level. We must consider the right level of abstraction. Although
computer reality consists of electrons moving through electronic components,
their behaviour can be described in terms of electronics, then logic, bits and
instructions, algorithms and data structure, languages, software engineering, etc.
So when working at a given level, the upper level description can lead to unify
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phenomena that were previously considered as individual cases. In our case, a
level likely to unify the study of surface effects is to consider the surface as a set
of small pieces of materials interacting locally –taking into account its thickness,
density, color, or elasticity.

Literature about computer graphical CA has become more and more active,
especially since Graphics Processing Unit (GPU) became popular [4,20] and
since a fundamental book that covers all practical aspects of CA was published
by Stephen Wolfram [22]. We mention hereafter some key steps of the CA evo-
lution in this domain. Published in the mid-80s, Thalmann[17] is one of the first
computer graphics references directly dealing with the CA issue. In the late 80s
and early 90s, CA became quite popular in various fields of computer graphics
studies [13,14,16,7,15]. At that time, a work on tumor growth simulation [5] ini-
tiated the use of CA for graphical interpretation in biology. In 1991, both Turk
[19] and Witkin et al. [21] presented outstanding approaches for texturing; the
main idea was to make a texture projection of a 2D reaction-diffusion CA func-
tion. In the late 90s, an approach of restricted hyper-texture CA [8] led to a new
model, which was called 3DSCA -for 3D Surface CA-. A series of surface simula-
tions could be generated with this model, unfortunately with many restrictions.
In 2003, Tran et al. [18] proposed a CA implemented on GPU, and Harris et al.
[12,11] presented even more complex simulations of natural behaviors (boiling
fluids) using GPU programming.

Recently, very interesting results were obtained in generating realistic textures
with surface imperfections including corrosion, weathered stone, impacts, scra-
tches or even lichen growth. But most of those simulations were designed on a
single purpose with a specific and restricted model and the modeled effects re-
quire special ad hoc data structures. Our present goal is to improve the former
3DSCA model in order to design a flexible approach, open to any type of multi-
behavior surface simulation. This model basically relies on a dynamic data struc-
ture combined with CA rules which do not depend on the number of neighbours.

Section 2 describes the general architecture of our model: the generation of
initial cells defining the notion of grid type, the way those cells are stored into
a non-trivial geometric data structure, and a method for building a regular web
of connected cells. Rules of applied cellular automata, design considerations,
and corresponding results are detailed in section 3. Finally, section 4 concludes
this paper and puts forward some of the related future work emphasizing CA
computations based on Graphics Processing Unit (GPU).

2 Merging Cellular Automata

In our approach a surface is a set of cells that are locally interacting together
and with the environment of the object they are part of. We show that their
limited but non null capabilities can be simulated using the discrete nature of
cellular automata. A set of simple rules can produce a wide range of 3D surface
simulations. So we define a geometric and dynamic cellular network that has
the following advantages: no restriction is made on the input polygon type, any
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number of vertices, concavities, or holes being accepted; multiple input objects
and natural linking between cells of different 3D sources are automatically man-
aged; any type of grids -random, square, triangular or hexagonal- are accepted;
cell movements are left possible in all directions; and the cellular structure has no
limited number of neighborhood cells or communication types. Our model allows
any of the classical natural phenomena to be simulated –e.g.patina/corrosion–
and demonstrates the ability to easily code many types of formal CA, such as
the famous life game CA [17]. To achieve this aim, we merge and synchronize
different cellular automata that are constructed on the same principle. Specific
geometrical and CG information on this model are explained in [10].

From polygons to initial cells. The fol-
lowing figure illustrates the cell structure of
our new model. This structure is composed
of two main areas: two data fields (t) and
(t+1) which respectively allow to transmit
and to receive information separately, and
the four possible cellular states. Note that
this kind of meta-state has the advantage
of increasing CA computation as only non-
sleeping cells can interact with their neighborhood. Both a random selection
of cells position or a pre-selected order can be used to distribute cells over the
polygon structure. Harmonious pattern dispositions are restricted to three cases:
triangular, square and hexagonal grid. Furthemore, in our model, polygons can
be of any type, the cell repartition remains the same, and input polygons and
grids are only used for initially positioning the cells.

Dynamic space boxes and cellular network. A new structure called Dy-
namic Space Boxes (DSB) was introduced in order to efficiently determine the
neighbor of any cell. This structure relies on a space partition into boxes so that
each cell has to be compared with the other cells inside its own box and with all
the cell inside the 26-direct neighbor boxes.

The following figure illustrates the 3D

(a) (b) (c)

relationship between cells and englobing
boxes: (a) tested cells are represented by
crosses, possible neighbors by squares,
and cells that should not be tested by
triangles; (b) tested cells are inside the
gray box surrounded by the 26 direct neighbor boxes; (c) segments denote suc-
cessful connections between cell elements and the central tested box. In associ-
ation with DSB, a special data structure was used to access and store 3D cells.
This structure is based on dynamic double-linked-list space tree.

The first step of the connection algorithm consists in traversing the space-
structure and connecting every cell Ci to its surroundings making a web of con-
nected cells. For this purpose, we check cells on the 27 boxes (i.e. 26 surrounding
+ current) that are elements of a sphere of center Ci and radius ri. The value
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Fig. 1. Radius values ri of the neighborhood sphere depending on the grid type

ri is set so that only direct neighbor cells are connected. For the square grid (of
size cs), ri is set to 2.cs − ε and for the triangular and hexagonal grids we use
ri =

√
3.cs − ε. Figure 1 gives a graphical interpretation for each different grid.

Harmonizing the cellular network. Once a neighbor list has been defined
for each cell, the second step is to apply an attraction/repulsion function to the
entire system. This function has to repulse cells that are very close or too far
from each other and attract the ones that are nearby. After system convergence,
the last step consists in keeping only the best links –once again– depending on
the type of grid, respectively four or eight for square grids, six for triangular
grids, and three for hexagonal grids.

However, this current model presents some limitations. First the harmoniza-
tion is not trivial and could be improved. For instance, the pre-computation
time is very long. Another drawback is that even if a cell knows its neighbor
number, the current data structure does not provide the relative positions be-
tween neighbors. This property is essential for oriented-rule CA [22], and that is
why it is appropriate to call this model surface cellular network instead of sur-
face cellular automaton. Fortunately, many interesting results can be obtained
without harmonizing the connected web or having cellular orientation map. In
fact, self-identity and deduced-from-all CA can already be tested; this is what
is proposed in the following sections.

3 Current CA Model and Experimental Fields of Study

For a given cell, the number of neighbors is not necessarily constant. Our cellu-
lar automaton model thus requires the use of symmetrical rules. Therefore only
restricted directional data transfer CA are presented in this section. Neverthe-
less, the following subsections shows the capabilities and especially the strong
potential variety of application field that our model is able to produce.

Results presented in this paper were generated using an AMD AthlonTM64X2
Dual Core 4400+ CPU 2.21GHz with 2Go of RAM and a NVidiaTMGeForce
7800 graphical card. For the implementation we used C++ language on MS-
Visual StudioTM2005 and MS-WindowsTM2000 as operating system. Real-time
was reached for geometric models composed of less than a hundred thousand
cells.
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Fig. 2. Multi surface effects on the Stanford bunny : (a) fractures, (b) Voronöı diagram
and hyper texture, (c) watermap, (d) solvent simulation

This section is organized as follows. Each subsection presents a different level
of using our model: subsection 3.1 describes the cell states used to control the
cellular network sequences; subsection 3.2 lists graphical applications mainly in
the field of automatic texturing and simulations such as cracks and melting; sub-
section 3.3 illustrates how fluids can be simulated with watercolor or weathering
effects such as erosion, sedimentation, or lichen propagation; subsection 3.4 il-
lustrates how non-trivial image analysis processing can be simulated based on
the retina pipeline non-linear architecture.

Most subsections present a table showing transition rules with their lexical,
logical, and global behavior descriptions using a C-like pseudo-code for condi-
tional gates. Symbol interpretations of equations are: C: current cell; gs: general
state of C; v, vc, p: cell vertex (i.e. position and orientation), cell color, and cell
potential; k: active neighbor number at C; kp kc: as k with true potential and
non-null color attributes.

3.1 General States CA

In our approach, general states define the behavior and the existence of a cell: to
be or not in terms of geometry and time sequence. The very simple set of rules
presented in table 1 are essential for making this model simultaneously flexible,
multi-task, and fast computing. The first and second rules maintain initialisation
and synchronisation updatings. The third and fourth activate or deactivate a cell
so that only useful region of the network is used. The last state transition rule
randomly selects seed-cells that can be used for generating Voronöı diagram,
fluid and pigment or sediment spring, high pressure region for fracture, etc.

3.2 Automatic Texturing CA

Automatic texturing owns to the field of computer graphics (CG). Although it
is not the direct purpose here, it allows to visualize global behaviour of CA. As
only few CG plates can be presented in this paper, samples of resulting images
or animations can be found at www.iutsd.uhp-nancy.fr/isn/StGo.
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Table 1. General state transition rules

Behaviors State transition rules: ∀C Characteristics
First CA step Ct+1 ← Ct Initialization

CA steps Ct ← Ct+1 Synchronization: updating
Sleeping all gst+1 ← sleepingCell Powerless

Active all gst+1 ← activeCell Powerful
Random selection ∀ seed type if(randselected) ⇒ Seed values

statet+1 ← randomvalue(seed type)

Table 2. Computer graphical automatic texturing CA transition rules

Behaviors State transition rules: ∀C Characteristics
Spreading color vct+1 ← vct+ Cnvct

kc+1 Propagation
Melting-like vt+1 ← vt+ Cnvt

k+1 Averaging vert.
Crack-like (∃Ck �= C)?|vc : vc | gst+1 ← Sleepingcell Derivative
Corrosion (pt > 0)?|pt+1 ← (pt − Δp) Destruction

|(pt ≤ 0)?|gst+1 ← Sleepingcell

else(kp > k
2 )?|pt+1 ← Maxp

Life game (kp �= 2)?|(kp = 3)?|pt+1 : pt+1 Reproduction
Maze-like (kp �= 2 ‖ 4)?|(kp = 3)?|pt+1 : pt+1 Construction

Regrouping (pt)?|((kp < k
2 )?|(pt+1) : (pt+1)) Digression-dif.

The first two lines of table 2 propose the spreading color –see figure 2(b)– and
melting-like simulations. These effects are very similar as they simply average the
surrounding area respectively in terms of color and vertices (position + normal).
However, we can observe that the first one surrounds the surface and the second
one drastically changes the 3D topology. To generate a crack-like pattern –see
figures 2(a) and 5– we first use a regular color propagation, which provides a
Voronöı diagram [2]. We then determine the color derivative to define area edges
with a single pass CA. And finally, we associate the resulting derivative potential
to fracture the structure of the object. Corrosion as well as patina simulation
can be interpreted as a kind or propagation substracting at each time step a
potential of each corroded cells and spreading with a random factor proportional
to the number of neighbor corroded cells. The last three lines of table 2 present
well-known CA where basically, cell behavior depends on the equilibrium of the
surroundings –see figure 3. In the first case (i.e. life game), we seek a specific
number (2 ) for stability, and its tangent (3 ) for sudden state change. Rules
of the second case are almost identical to the game of life. Surprisingly, the
result is completely different: after a few steps, the system converges to a maze-
like pattern with sometimes instable areas. Concerning the ”regrouping” CA, it
belongs to the family of activation/inhibition.

3.3 Fluid CA

In this subsection, we propose to show how action of fluids can be modeled
using our cellular networks model. Of course, as we have a CA approach the
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Fig. 3. Three famous CA: (a) life game; (b) maze-like; (c) reaction diffusion

fluid does not ”exist” in terms of particle or flow fields; only CA states and
CA transition rules remain to simulate fluid interaction on solid, i.e. erosion,
evaporation, pigment or sediment concentration, and sedimentation. All fluid
properties are demonstrated in the following paragraph as we propose an original
and non-trivial simulation: i.e. watercolor simulation.

Table 3. Fluid CA transition rules

Simulations State transition rules: ∀C Characteristics
Watercolor (see detailed formula Erosion, evaporation,

in the main text) and sedimentation
Moss propagation Only if no-moss:

(minh < pt < maxh)?Create(Cmoss) Spontaneous seed
(randfct(mossAround))?Create(Cmoss) Growth around
Only if moss:
(pt < 1)?pt+1 ← (pt + δage) : Aging
gst+1 ←cellToBeRemoved state Dying

Direct fluid effect, e.g. watercolor. The emphasis is on real-time generation
of the most salient features of watercolor on a 3D surface within a gravity field.
Compared to other works [1] our simulation must be as simple as possible. So we
only use two parameters: the potential corresponding to the quantity of water
in a cell and the quantity of pigments. The effect we want to obtain consists of
pigments spreading in every direction on the surface. The first hypothesis is that
at every step, the potential of a cell becomes the average of its potential and
the potentials of its neighbor cells. The second hypothesis is that gravity force is
partially compensated by viscosity and surface tension. That is why the fluid is
not only moving in the direction where the slope is the steepest but also diffusing
in every direction proportionally to its slope, and we assume that pigments are
moving that way too. The potential of the current cell Cpt+1 is:

pc,t+1 =
pc,t

∑
i pi,t

(
1 + (hihc)

d(Ci,Cc)

)
1 + k

−Δp; (1)

where Ci denotes a neighbor cell, (hihc)/d(Ci, Cc) the slope and k the number
of neighbors. This phenomena is illustrated in figure 4 and also in figures 2(c)
(watermap) and (d) (solvent simulation).
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Fig. 4. Watercolor simulation: (a) seeds; (b) and (c) watercolor edge darkerning; (d)
main spreading due to gravity; (e) drying process

Indirect fluid effects, e.g. vegetal growth. In the real world weathering
effect of fluid is not limited to erosion and sedimentation, it can also indirectly
produce the growth of vegetal such as moss or lichen. To simulate such an effect
we must introduce another parameter in the current model: the faculty of a cell
to generate another cell. The figure 5 illustrates how powerful can be cellular
automata. Based on a simple right-angled parallelepiped (six polygons) we first
used a fracture CA simulation in order to generate surface irregularities over
the 3D lattice. We then applied a waterflow CA simulation to determine where
the humidity would be not too low and not too high to make moss seed appear.
Finally we applied a self generated moss CA to make the moss propagate in a
natural way over the lattice surface. Details of this model can be found in [6].

Fig. 5. Auto generated cellular moss covering a simple lattice

3.4 Retina Simulation

The last field of study where we propose to apply our CA model is the ar-
chitectural modeling of biological retina. Two aspects of the retina are taken
into account: a simplified pipeline model of artificial retina based on cellular au-
tomata, and a 3D cellular network of the cone photoreceptors. Since the study
is under way, details can be found in two publications: [3] for the topological 3D
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Fig. 6. Retina simulation using cellular network

approach with simple cellular behavior, and [9] for a real-time pipeline based cel-
lular automaton and GPU-based model. Figure 6 illustrates key steps of retina
simulation using CA: (a) eye globe; (b) cellular topology around fovea area; (c)
corresponding cellular network; (d) contour detection using CA; (e) interactive
cellular automata.

4 Conclusion and Future Work

We have presented a model of three-dimensional multi cellular automata allow-
ing to simulate many phenomena in the fields of computer graphics and image
processing. We detailed the process for constructing a web of connected cells.
We also proposed a way to organise cellular network in any type of grid, and
presented different types of CA network. Finally, to show this model capacities
for different fields of study, we have applied a series of regular CA to simulate
the following phenomena: spreading and diffusion CA, crack-pattern CA, envi-
ronmental systems such as fluids and vegetation growth, and biological systems
such as retina simulation.

From this basis, we are interested in investigating oriented-dependent CA
models. Furthermore, we are also convinced that GPU programming has to play
a major part in the application of CA. Hence we are studying new approaches in
order to take into account the inherent constraints to that type of programming.
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Abstract. Das et al. have reported characterization of reachable/non-reachable 
CA states recently. Their scheme has only offered the characterization under a 
null boundary CA (NBCA). However, in hardware implementation, a periodic 
boundary CA (PBCA) is suitable for constructing cost-effective schemes such 
as a linear feedback shift register structure because of its circular property. 
Thus, this paper provides two decision algorithms for classification of reach-
able/non-reachable state and group/non-group CA based on periodic boundary 
condition.  

1   Introduction 

Study of cellular automata (CA) and its evolutions were initiated in the early 1950s as 
a general framework for modeling complex structures capable of self-reproduction 
and self-repair, and the compiled work was reported in [1]. Since then many research-
ers have taken interest in the study of CA for modeling the behavior of complex  
system. A new phase of activities started with Wolfram [2], who pioneered the inves-
tigation of CA mathematical models for self-organizing statistical systems. He identi-
fied several characteristic features of self-organization in uniform three-neighborhood 
(left, self and right) finite CA with two states (0 or 1) per cell, and has reported one-
dimensional, periodic, boundary additive CA with the help of polynomial algebra [3]. 
Studies of null and periodic boundary CA and some experimental observations have 
also been reported by Pries et al. [4]. 

The major CA-based models of a wide variety of applications have been proposed 
in [5]. Current intensive interest in this field can be attributed to the phenomenal 
growth of VLSI technology that permits cost-effective realization of the simple struc-
ture of local-neighborhood CA. Wolfram has proposed a method to check the non-
reachable condition of a state in a uniform CA [3]. Wuensche has proposed a method 
to compute the predecessors of a CA state that further can be extended to check its 
non-reachable condition [6]. A group CA has been projected as a generator of pseudo-
random patterns of high quality, and a class of non-group CA has been established to 
be an efficient hashing function generator [5]. In recent years, characterizations of 
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reachable/non-reachable CA states and group/non-group CA were reported by Das et 
al. [7]. Their scheme, which has only offered the characterization under a null bound-
ary CA (NBCA), has adopted an approach to find its predecessors. However, in hard-
ware implementation, a periodic boundary CA (PBCA) is suitable for constructing 
cost-effective schemes such as a linear feedback shift register structure because of its 
circular property. Thus, we propose an analysis to decide the reachable/non-reachable 
states and group/non-group CA based on periodic boundary condition. 

The rest of the paper is organized as follows. In Section 2, we give a brief descrip-
tion of a CA. Section 3 provides decision algorithm of the reachable/non-reachable 
states of a PBCA. A distinction to characterize the group/non-group of a PBCA is 
presented in Section 4, followed by discussion and conclusion in Section 5. 

2   Cellular Automata 

A CA is a dynamic system in which space and time are discrete. Each cell of a CA 
consists of a discrete variable. The cells evolve in discrete time steps according to 
some deterministic rule that depends only on local neighbors. The value of it at time t 
(the time step) is defined as the present states of the cell. The next state of a cell at 
(t+1) is estimated from the present states of the cell and in its two neighborhoods 
(three-neighborhood dependency). 

The next state transition of ith cell can be represented as a function of the present 
states of the (i-1)th, ith and (i+1)th cells, 

Qi(t + 1) = f(Qi-1(t), Qi(t), Qi+1(t)) 

where f  is known as the rule of the CA denoting the combinational logic. 

Table 1. State transition for rule 60 and 150 

 111 110 101 100 011 010 001 000 Rule 

Next state 0 0 1 1 1 1 0 0 60 
Next state 1 0 0 1 0 1 1 0 150 

For a two-state and three-neighborhood CA, there can be a total of 23 distinct 
neighborhood configurations. If each of these neighborhood configurations is as-

signed with a Boolean value, there can be a total of 
322 (256) distinct mappings from 

all these neighborhood configurations to the next state. Each mapping is called a 
“rule” of the CA. If the next-state function of a cell is expressed in the form of a truth 
table, then the decimal equivalent of the output is conventionally called the rule num-
ber for the cell. Table 1 specifies two particular sets of transition from a neighborhood 
configuration to the next state. 

The first row gives all eight possible states of the three neighboring cells (the left, 
itself, and the right neighborhood) at the time instance t. The second and third rows 
give the corresponding states of the ith cell at time instance t+1 for two illustrative 
CA rules. The combinational logic equivalent for rule 60 and 150 is given as 
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Rule 60 Qi(t + 1) = Qi-1(t) ⊕ Qi(t) 

Rule 150 Qi(t + 1) = Qi-1(t) ⊕ Qi(t) ⊕ Qi+1(t) 

where ⊕ denotes XOR (that is, addition modulo-2). 
The rule 60 and 150 are involved only XOR logic. In this case, if the rule of a CA 

cell includes only XOR logic, it is called a linear rule. Otherwise, rule involving 
XNOR logic is referred to as complement rule. If all the cells of a CA have linear 
rule, it is called a linear CA. A CA having a combination of XOR and XNOR rules is 
called an additive CA, whereas a CA having AND-OR rule is non-additive CA. 

A CA is called uniform CA if all the CA cells have the same rule, otherwise it is 
called hybrid CA. If the left (right) neighbor of the leftmost (rightmost) terminal cell 
is connected to 0-state, then the CA is called a NBCA (Fig. 1 (a)). Otherwise, if the 
extreme cells are adjacent to each other, the CA is called a PBCA (Fig. 1 (b)). 

 
Fig. 1. CA with different boundary conditions (a) null boundary CA, (b) periodic boundary CA 

If a CA contains only cyclic states, it is called a group CA. Each state of a group 
CA has only one predecessor. So, all states of a group CA are reachable state. But if a 
CA contains both cyclic and non-cyclic states, it is called a non-group CA. Any states 
of a non-group CA have no predecessor or a number of predecessors. Therefore any 
states of a non-group CA are reachable or non-reachable state. The proposed two 
algorithms report the decision of a reachable/non-reachable state and group/non-group 
CA based on a periodic boundary condition. 

3   Classification of Reachable or Non-reachable State 

This section investigates that a state of CA is reachable state or non-reachable state 
based on a PBCA. A state having n cells is presented by < S0 S1 ⋅⋅⋅ Sn-2 Sn-1 >. We can 
consider four cases on the value of the first and last cell of a state as shown in Table 2. 
A CA is said to be a NBCA if the left (right) neighborhood of the leftmost (rightmost) 
terminal cell is connected to logic 0-state. That is, the values of the left most cell and 
the right most cell of NBCA are all 0. Therefore, if those values are 0, then the  
next value of cell 1 and cell 4 represents d (don’t care). Rule Min Term (RMT) is the  
decimal expression of present states [7]. Table 3 offers the set of RMTs S′i+1  
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Table 2. State transition for a four-cases having rule (90, 204, 60, 102) 

RMT 
111 
(7) 

110 
(6) 

101 
(5) 

100 
(4) 

011 
(3) 

010 
(2) 

001 
(1) 

000 
(0) 

Rule 

Cell 1 d d d d 1 0 1 0 90 
Cell 2 1 1 0 0 1 1 0 0 204 
Cell 3 0 0 1 1 1 1 0 0 60 
Cell 4 d 1 d 0 d 1 d 0 102 

(a) Case 1 : A state having the first cell (= ’0’) and last cell (= ’0’) 
 

RMT 
111 
(7) 

110 
(6) 

101 
(5) 

100 
(4) 

011 
(3) 

010 
(2) 

001 
(1) 

000 
(0) 

Rule 

Cell 1 0 1 0 1 1 0 1 0 90 
Cell 2 1 1 0 0 1 1 0 0 204 
Cell 3 0 0 1 1 1 1 0 0 60 
Cell 4 d 1 d 0 d 1 d 0 102 

(b) Case 2 : A state having the first cell (= ’0’) and last cell (= ’1’) 
 

RMT 
111 
(7) 

110 
(6) 

101 
(5) 

100 
(4) 

011 
(3) 

010 
(2) 

001 
(1) 

000 
(0) 

Rule 

Cell 1 d d d d 1 0 1 0 90 
Cell 2 1 1 0 0 1 1 0 0 204 
Cell 3 0 0 1 1 1 1 0 0 60 
Cell 4 0 1 1 0 0 1 1 0 102 

(c) Case 3 : A state having the first cell (= ’1’) and last cell (= ’0’) 
 

RMT 
111 
(7) 

110 
(6) 

101 
(5) 

100 
(4) 

011 
(3) 

010 
(2) 

001 
(1) 

000 
(0) 

Rule 

Cell 1 0 1 0 1 1 0 1 0 90 
Cell 2 1 1 0 0 1 1 0 0 204 
Cell 3 0 0 1 1 1 1 0 0 60 
Cell 4 0 1 1 0 0 1 1 0 102 

(d) Case 4 : A state having the first cell (= ’1’) and last cell (= ’1’) 

Table 3. State transition of RMTS 

RMT at ith rule RMTs at (i+1)th rule 
0 or 4 0, 1 
1 or 5 2, 3 
2 or 6 4, 5 
3 or 7 6, 7 

at(i+1)th cell rule on which the cell can change its state for an RMT chosen at the ith 
cell rule for state change. 

To check that a state is reachable state or non-reachable state, we define following 
two properties. At the first, the set of S′i+1 is RMTs at (i+1)th rule transferred from 
RMT at ith rule. If RMT at ith rule is m, RMTs at (i+1)th rule are changed to (2m)  
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mod 8 and (2m+1) mod 8. For instance, if RMT at ith rule m is 2, RMTs at (i+1)th 
rule are changed to {4, 5}. At the second, the set of S″i+1 is the value that the (i+1)th 
bit of a state is equal to the present state in the (i+1)th cell. For example, if the third 
bit of a state is 1, the set of S″3 is {2, 3, 4, 5} in the case 4. Following Algorithm 1 
decides that a state is reachable state or non-reachable state. 

 
Algorithm 1. FindReachableOrNonreachable_PBCA 
 
Input : Rule[n][8], state[n], n 
Output : if non-reachable state, return 1. Otherwise, return 0. 
Step 1 : Select one of the four cases. 

If state[1] = 0 and state[n] = 0, select and reference case 1. 
Else if state[1] = 0 and state[n] = 1, select and reference case 2. 
Else if state[1] = 1 and state[n] = 0, select and reference case 3. 
Else if state[1] = 1 and state[n] = 1, select and reference case 4. 

Step 2 :  
(a) Find S1 where Rule[1][j] = state[1], 

 if case 1 or case 3 is selected, j = 1, 2, 3, 4. Otherwise j = 1, ⋅⋅⋅ , 8. 
(b) If S1 has 4, 5, 6 and 7, replace by 0, 1, 2 and 3 respectively. 
(c) If S1 = φ, return 1 as the state is non-reachable. 

Step 3 : For i = 2 to n–1 
(a) Find S′i such that if m ∈ Si-1, ((2m) mod 8) and ((2m+1) mod 8) are in S′i. 
(b) Find S″i, where S″i = {j} and Rule[i][j] = state[j], j = 1, ⋅⋅⋅ , 8. 
(c) Find Si = S′i S″i. 
(d) If Si has 4, 5, 6 and 7, replace by 0, 1, 2 and 3 respectively. 
(e) If Si = φ, return 1 as the state is non-reachable. 

Step 4 : 
(a) Find S′n such that if m ∈ Si-1, ((2m) mod 8) and ((2m+1) mod 8) are in S′n. 
(b) Find S″n, where S″n = {j} and Rule[i][j] = state[j], 

If case 1 or case 2 is selected, j = 1, 3, 5, 7. Otherwise j = 1, ⋅⋅⋅ , 8. 
(c) Find Sn = S′n S″n. 
(d) If Sn has 4, 5, 6 and 7, replace by 0, 1, 2 and 3 respectively. 
(e) If Sn = φ, return 1 as the state is non-reachable. 

Step 5 : The state is reachable. Return 0. 
 
For example, let us consider the CA having rule (90, 204, 60, 102) and a state hav-

ing cell <1 0 0 1>. Assume that a rule (90, 204, 60, 102) as n 8 two-dimension ma-
trix and a state as n one-dimension matrix. The values of the left most cell and the 
right most cell are ‘1’ and ‘1’, so case 4 is selected and referenced. At the first, we get 
the first bit ‘1’ from a state. And, find S1, where rule[1][j] equals to state[1] (= ‘1’), j 
= 1, ⋅⋅⋅ , 8. Therefore, S1 = {1, 3, 4, 6}. As S1 is not an empty set, a state started with 
‘1’ is reachable. And, S′2 = {0, 1, 2, 3, 4, 5, 6, 7} and S″2 = {0, 1, 4, 5}. So, S2 = S′2  
S″2 = {0, 1, 4, 5} = {0, 1}. As S2 is not an empty set, a state started with ‘10’ is reach-
able. Similarly, S′3 = {0, 1, 2, 3} and S″3 = {0, 1, 6, 7}. So, S3 = S′3 S″3 = {0, 1}. S3 
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is not an empty set. A state started with ‘100’ is reachable accordingly. Finally, S′4 = 
{0, 1, 2, 3} and S″4 = {1, 2, 5, 6}. So, S4 = S′4 S″4 = {1, 2}. S4 is not an empty set. 
So, the state <1 0 0 1> is reachable state. Fig. 2 shows the state-transition diagram of 
the rule (90, 204, 60, 102). 

 
Fig. 2. State-transition diagram of a PBCA having rule (90, 204, 60, 102) 

4   Classification of Group or Non-group CA 

In this section, we decide that a PBCA is group or non-group. Each cell in a PBCA 
has only two states with three-neighborhood interconnections. Step 1 finds that S[i] 
have 0 or 1 with the first rule respectively, where i has 1 and 2. In step 2, we deter-
mine 4 RMTs for the next level using Table 3 of S[j]. Then, we distribute these rules 
into S′[j-1] and S′[j], such that S′[j-1] and S′[j] contain 0 and 1 respectively. If the 
number of S′[j-1] and S′[j] is not same, this PBCA is a non-group. We remove dupli-
cate sets from S′ and assign the sets of S′ to S for the next step. Finally, if the number 
of S[1] and S[2] is not same, the PBCA is a non-group. Otherwise, we can find this 
PBCA is a group. Algorithm 2 checks that the PBCA is group or non-group. 

 
Algorithm 2. CheckGroupOrNongroup_PBCA 
 
Input : Rule[n][8], n 
Output : if non-group, return 1. Otherwise, return 0. 
Step 1 : For i = 1 to 2 

(a) Find S[i] = {j}, where Rule[1][j] = (i-1), j = 1, ⋅⋅⋅ , 8. 
(b) If S[i] has 4, 5, 6 and 7, replace by 0, 1, 2 and 3 respectively. 

Step 2 : If |S[1]| |S[2]|, return 1 as a non-group. 
Step 3 : For i = 2 to n 

Step 3.1 : For j = 1 to 2 
(a) Determine 4 RMTs for  the next level using Table 3 of S[j]. 
(b) Distribute these 4 RMTs into S′[j-1] and S′[j], such that S′[j-1] and S′[j] 

contain the RMTs that are 0 and 1 respectively for Rulei. 
(c) If |S′[j-1]| | S′[j]|, return 1 as a non-group. 
(d) If S′[j-1] and S′[j] have 4, 5, 6 and 7, replace by 0, 1, 2 and 3 respectively. 
(e) If (|S′[j-1]| mod 2) = 1 or (|S′[j]| mod 2) = 1, return 1 as a non-group. 

Step 3.2 : Remove duplicate sets from S′ and assign the sets of S′ to S. 
Step 4 : If |S[1]| |S[2]|, return 1 as a non-group. 
Step 5 : The CA is a group. Return 0. 
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For example, let consider the PBCA having same rule (90, 204, 60, 102) as re-
marked above. As we are considering PBCA, Algorithm 2 selects and references case 
4 in Table 2. From step 1 of Algorithm 2, we choose S[1] = {0, 2, 5, 7} and S[2] = {1, 
3, 4, 6}. In step 3, when i = 2, we find S′[1] = {0, 1, 4, 5} = {0, 1}, S′[2] = {2, 3, 6, 7} 
= {2, 3}, S′[3] = {0, 1, 4, 5} = {0, 1}, S′[4] = {2, 3, 6, 7} = {2, 3}. We can find that 
each set of S′ contains the same number and value respectively, so S′ is reduced re-
moving the duplicates and assigned to S. Therefore, S[1] = {0, 1} and S[2] = {2, 3}. 
When i = 3, S′[1] = {0, 1}, S′[2] = {2, 3}, S′[3] = {6, 7} = {2, 3}, S′[4] = {4, 5} = {0, 
1}. If we should assign S′ to S, we get S[1] = {0, 1} and S[2] = {2, 3}. And, when i = 
4, S′[1] = {0, 3}, S′[2] = {1, 2}, S′[3] = {0, 3}, S′[4] = {1, 2}. Further, assigning S′ to 
S, we get S[1] = {0, 3} and S[2] = {1, 2}. Finally, the number of S[1] and of S[2] are 
the same. So, the PBCA having rule (90, 204, 60, 102) is a group. 

We show another example of the PBCA having rule (102, 60, 90, 60). From step 1, 
we choose S[1] = {0, 3, 4, 7} = {0, 3} and S[2] = {1, 2, 5, 6} = {1, 2}. The number of 
S[1] and S[2] are the same. So, the PBCA is a group in step 1. In step 3, when i = 2, 
we find S′[1] = {0, 1, 6, 7}, S′[2] = {φ}, S′[3] = {φ}, S′[4] = {2, 3, 4, 5}. We can find 
that the PBCA having rule (102, 60, 90, 60) is a non-group because the number of 
S′[1] differs from the number of S′[2]. 

In order to understand, we present a diagram for decision of group or non-group 
CA in Fig. 3. Using Fig. 3, we can check the value of S and S′ in each step easily. Fig. 
3(a) shows that the number of S and S′ is same in each step, respectively. Thus we 
identify that the PBCA having rule (90, 204, 60, 102) is a group, while the PBCA 
having rule (102, 60, 90, 60) is a non-group because the number of S′[1] = {0, 1, 6, 7} 
differs from S′[2] = {φ}. 

S of  
Cell 1

S′ of 
Cell 2 

S of 
Cell 2 

S′ of 
Cell 3 

S of 
Cell 3 

S′ of 
Cell 4 

S of 
Cell 4 

0 1 0 1 0 3 
0 2 5 7 

2 3 
0 1 

2 3 
0 1 

1 2 
0 3 

0 1 2 3 0 3 
1 3 4 6 

2 3 
2 3 

0 1 
2 3 

1 2 
1 2 

(a) The diagram having rule (90, 204, 60, 102) : group CA 

S of 
Cell 1

S′ of 
Cell 2

0 1 6 7 
0 3 

φ
φ1 2 

2 3 4 5 
(b) The diagram having rule (102, 60, 90, 60) : non-group CA  

Fig. 3. The diagram for classification group or non-group CA 

5   Discussion and Conclusion 

We have presented two decision algorithms for characterization of reachable/non-
reachable state and group/non-group on a PBCA. The proposed schemes have the same 
time complexity as Das et al.’s scheme which has only offered the characterization 
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under a null boundary condition while our schemes are based on a periodic boundary 
condition. Moreover, we have reduced the number of loop in comparison with Algo-
rithm 2 of Das et al.’s scheme. We have removed a loop in step 4 by proceeding step 3 
and step 4 simultaneously. Therefore, our scheme reduced the program processing 
time. 

A group CA has been projected as a generator of pseudorandom patterns of high 
quality and a class of non-group CA has been established to be an efficient hashing 
function generator. Moreover, for hardware implementation, PBCA is suitable for 
constructing cost-effective schemes such as a linear feedback shift register structure 
because of its circular property. Thus we expect that our classification can be used as 
efficient applications on the above mentioned criteria and VLSI technology.  
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Abstract. We give a synthetic and formalized account of relationships
between cellular automata (CA) and differential equations (DE): Nu-
merical schemes and phase portraits analysis (via cell-to-cell mappings)
can be translated into CA, and compositions of differential operators and
phase portraits induce CA compositions. Based on DE, CA can be tuned
according to discretization parameters so that faithful CA sequences can
be built describing qualitative as well as quantitative solutions.

1 Introduction

Cellular automata (CA) are parallel context-sensitive rewriting processes which
are used as computation models and as effective ways of simulating physical,
chemical or biological phenomena [20,3,5,26]. With this respect, CA have been
mostly considered as tools giving qualitative information, but quantitative infor-
mation has also been shown reachable [7,6,2,24,23]. This paper generalizes this
fact by setting up in a precise way relationships that exist between CA and (sys-
tems of) ordinary and partial differential equations (DE). These relationships
show how the CA-DE pair can be seen as a generic model to gradually go from
qualitative information to quantitative information and vice versa.

We first recall how CA are related to explicit numerical schemes to solve DE.
Next, we show how integrated phase portraits of autonomous DE are transformed
into CA (making the link with cell-to-cell mapping theory [9]). Compositions of
CA can also be based on their relationships with DE : CA are coupled as are
differential operators in splitting techniques classically used to solve DE [27]; CA
can also be coupled as are invariant regions of DE phase portraits. The finer
(resp. coarser) the involved discretizations in a resolution of a DE, the more
quantitative (resp. qualitative) the computations of the induced CA. By tuning
discretization levels, qualitative descriptions can be related in a controlled way
to quantitative descriptions, yielding what we call here faithful CA sequences.
Looking for the first terms of these sequences, that is, looking for the simplest
meaningful CA, becomes a way of minimizing time and space complexity, but
also a way of understanding the model from a “Kolmogorov complexity point-
of-view”. Based on DE, this search for minimal CA can be driven by studying
how and which features are preserved, deformed, smoothed or swept out. In
particular, we discuss the existence of spurious and eluded fixed points, one of
the main features indicating that maximum coarseness has been reached.

S. El Yacoubi, B. Chopard, and S. Bandini (Eds.): ACRI 2006, LNCS 4173, pp. 112–121, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2 Basics

A cellular automaton (CA) is a simple context-sensitive rewriting mechanism
for which the whole input is processed in parallel using a uniform rewriting
rule. Here, we consider CA defined over lattices embedded in Rn, i.e. additive
subgroups of (Rn, +) spanned by ordered sets of n independent vectors. A CA is a
4-tuple A = (Ln,Q, N, τ) where Ln is a lattice in Rn whose elements are the cells,
and where n ≥ 0 is the CA dimension; Q is a finite set of states; N : Ln → 2Ln

is a neighborhood such that N(x) = φx(N(x0)) where N(x0) is a set of vectors in
Ln starting at x0 ∈ Ln, and φx is a translation sending x0 to x (N is such that
every x has the same form of neighborhood as x0); τ : QN(x0) → Q is a local
transition function. A CA configuration f is a global state, that is, an element
of QLn . The transition function τ is extended as a global transition function
τ̃ : QLn → QLn by applying τ to each cell x as τ̃(f)(x) = τ(φ−x ◦ f |N(x)).
Applying τ̃ once is called a step. A run of a CA is a sequence of consecutive
steps starting at an initial configuration. Note that these definitions just differ
from the classical ones by directly including an CA embedding into Rn.

An ordinary differential equation (ODE) is F (t, u, du
dt , d2u

dt2 , ..., dmu
dtm ) = 0, where

the unknown function u is such that u(t) : R → Y where Y is a differentiable
manifold called the phase space or the state space. A partial differential equation
(PDE) is F (t, x1, ..., xn, u, ∂u

∂t , ∂u
∂x1

, ..., ∂2u
∂x1x2

, ...) = 0, where the unknown func-
tion is such that u(t, x1, ...xn) : R × X → Y where X is called the domain.
Here, Y and X will be restricted to Rn. We shall also only consider initial-value
problems with exactly one solution, i.e. unique u(t, ·) with given prescribed val-
ues u(t0, ·) at a given time t0. When the phase space Y can be decomposed
as a Cartesian product Y1 × ... × Yp, one may consider systems of DE with an
unknown function u = (u1, ..., up).

A numerical method for solving a DE involves three discretization operations
respectively applied to the source space of u, the phase space Y , and the differ-
ential equation itself: (1) Discretizations of the source space generally rely on
embedded lattices. For example, regular discretizations of R2 can be obtained
from lattices L2 ⊂ R2 spanned by two orthogonal vectors of norms δt and δx
with an offset shift, i.e. {(t, x) ∈ R2|t = iδt + σt, x = jδx + σx, i, j ∈ Z}. (2)
Discretizations of the phase space Y – henceforth denoted by Ydisc – are called
quantifications. Regular discretizations can also be used here, but the most com-
mon ones are based on floating-point numbers which are non-regular finite quan-
tifications. Sending Y to Ydisc is done by quantification projection functions.
Quantifications and their projection functions lead to round-off errors. (3) Dis-
cretizations of the DE can be obtained by finite difference schemes where the
differential operators are replaced by difference operators involving only points
of the discretized source space (see e.g. [19]). For instance, consider du

dt = f(t, u)
with u : R → R. Let the source discretization be a lattice L1 spanned by a δt
vector. The so-called Euler scheme is based on the two first terms of the Taylor
sequence of u, i.e. U(t0 + δt) = U(t0) + δtf(t0, U(t0)), where U is an approxi-
mation of u. Solving an initial value problem from u(t0) for given δt and Ydisc

is obtained by iterating this scheme: Denoting the i-th time point iδt by ti, we
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get U(ti+1) = U(ti) + δtf(ti, U(ti)), i ≥ 0. As another instance, consider the 2D
heat PDE diffusion process ∂u

∂t = K(∂2u
∂x2 + ∂2u

∂y2 ) and a discretization of its source
space spanned by vectors of respective norms δt, δ, δ. The forward-time central-
space finite difference scheme is defined by U(ti+1, xj , yk) = r(U(ti, xj−1, yk) +
U(ti, xj+1, yk)+U(ti, xj , yk−1))+U(ti, xj , yk+1))+(1−4r)U(ti, xj , yk) where r =
K δt

δ2 . These two examples are explicit numerical schemes: approximations U of u
are built after a map g such that: U(ti+1) = g(U(ti, .), ..., U(ti−m, .), ti, ..., ti−m),
with 0 ≤ m < ∞. In the case that a DE is autonomous, which means that
the solutions do not depend on time, the scheme can be reduced to U(ti+1) =
g(U(ti, .), ..., U(ti−m, .)). Note that a non-autonomous system can be made au-
tonomous by adding the equation dup+1

dt = 1. The following first relationship
between CA and DE has been informally known for a long time (see e.g. [25]):

Proposition 1. (Explicit methods and CA). Let F (u) = 0 be a (system of)
autonomous DE with u : R×Rn → Y , n ≥ 0. Let Ydisc be a finite quantification
of Y , and let L1 ×Ln be a discretization of R × Rn. Then an explicit numerical
scheme g for solving F according to these discretizations can be transformed in
a CA (Ln,Ydisc, Ng, g), where Ng is defined by the points in Ln used in g.

Euler schemes yield 0-dimensional CA (domain spaces are restricted to a single
point)1. Heat diffusion processes in n-dimensions lead to n-dimensional CA.

There is another important way of relating DE to CA: When autonomous, a
(system of) ODE has a solution space R × Y which can be projected without
loss of information to the phase space Y as a vector field called phase portrait.
This vector field can be integrated to obtain a solution flow. For a system of p
autonomous ODE defined by dui

dt = fi(ui) for which Y = Rp, the phase portrait is
−→v (x1, ..., xp) = (f1(u1(.)), ..., fn(up(.))). For instance, reaction phenomena (see
e.g. [14]) are captured by autonomous systems of ODE whose phase portraits
involve swerving-like behavior around attractive singularities (see Fig. 1). One
of these systems is the 2D Fitzhugh-Nagumo equation which describes spatial
propagation of action potential impulses along the nerve axon by du1

dt = (a −
u1)(u1 − 1)u1 − u2 and du2

dt = ε(u1 − bu2) with 0 < a < 1, b > 0, ε ∈ R. One can
discretize such DE by directly referring to their phase portraits: First, consider
a regular discretization Ydisc of Y , and let Φ be a numerical method to solve
the DE with a fixed integration time δt > 0. From each point in Ydisc, we can
integrate the equation by Φ during δt and determine its ending point in Ydisc.
The result is a relation in Ydisc × Ydisc, generally studied under the name of
cell-to-cell mappings [9]. Now, assume that Y includes invariant bounded sub-
domains, that is, regions R ⊂ Y from which the solutions having initial points in
R are strictly contained in R (a sufficient condition for invariance is that every
vector of the vector field on the boundary ∂R is tangent or entering R). Letting
Rdisc be the discretization of R rel. to Ydisc, the sub-relation Rdisc × Rdisc is
finite and defines a possible transition function τΦ of a 0D CA. For instance, in
the case of the Fitzhugh-Nagumo equation, every bounded rectangular domain
1 Such 0D CA ({c}, Q, {c}, τ ) just define finite state paths over a single cell c. They

mainly become of interest when composed with nD CA with n > 0 (see p. 116).
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Fig. 1. To the left, the general appearance of the phase portrait of a 2D reaction DE
system. The framed region is more precisely represented to the right for a Fitzhugh-
Nagumo equation with a = 0.1, ε = 0.005, b = 4, together with some integral solutions.

Fig. 2. A CA of 400 states corresponding to the above invariant region (left of Fig. 1),
i.e. [−0.39, 1.1] × [−0.03, 0.16], discretized by a 20 × 20 grid and integrated by a 4th
order Runge-Kutta method with time step δt = 20 (200 steps of time length 0.1)

containing the parallelogram-like shape of the phase portrait (see Fig. 1) can be
proved invariant [4,16,8].

Proposition 2. (Phase portraits and CA). Let F (u) = 0 be a (system of) au-
tonomous ODE. Let R ⊂ Y be a bounded invariant region and let Rdisc be a
regular discretization of R. Let F (u) = 0 be such that the solutions of the initial
value problems starting from Rdisc exist and are unique, and let Φ be a numeri-
cal scheme to approximate these solutions. Then there are zero-dimensional CA
({c},Rdisc, {c}, τΦ) whose runs also approximate these solutions.

Note that unlike general explicit schemes, Φ has no a priori limitations (e.g.
instability-prone [19]) and can be chosen to be as precise as one wants. Prop. 2
has been already implicitly used to build ad-hoc CA for reaction-diffusion sys-
tems (see e.g. [7,6,2]), and also more explicitly [24].

3 DE Coupling and CA Compositions

An effective and direct way of coupling DE consists of adding differential oper-
ators. The simplest case is expressed as: ∂u

∂t = F (u) = F1(u) + ... + Fm(u). For
instance, the full 2D Fitzhugh-Nagumo reaction-diffusion system includes a re-
action part and a diffusion part: ∂u1

∂t = [(a−u1)(u1−1)u1−u2]+K(∂2u1
∂x2 + ∂2u1

∂y2 )
and ∂u2

∂t = ε(u1 − bu2). One can also add drift components [13], for instance wrt
the x dimension: ∂u1

∂t = H(∂u1
∂x ) + [(a − u1)(u1 − 1)u1 − u2] + K(∂2u1

∂x2 + ∂2u1
∂y2 )
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and ∂u2
∂t = H(∂u2

∂x )+ [ε(u1 − bu2)]. Many meaningful DE models can be designed
following this composition technique (see e.g. [15]). Now, there exists a clas-
sical method to numerically solve such composed DE called operator splitting
(or fractional step method) (see e.g. [27,1]). This method relies on decompos-
ing a DE into its pieces, where each piece is expected to be easier to solve.
For instance, the simplest splitting for the above general equation F (u) is to
solve the sub-equations ∂u

∂t = Fj(u) for j = 1, ..., m by distinct numerical
schemes gj, and to get solution approximations by their direct composition:
U(ti+1) = gm(gm−1(...(g1(U(ti), ...)))). Composing such numerical operators in
this way has a counterpart in the CA side:

Proposition 3. (Splittings and CA). Let ∂u
∂t = F (u) = F1(u)+ ...+Fm(u) be a

DE with u : R×Rn → Y . Let L1×Ln be a discretization of R×Rn, and let the DE
be solvable by an operator splitting for which the sub-equations are ∂u

∂t = Fj(u),
j = 1, ..., m. Assume the involved m numerical schemes can be transformed into
m distinct CA over the same set of states, i.e. Aj = (L(j)

nj ,Q, N (j), τ (j)) for j =
1, ..., m, with nj ≤ n, and such that for each j, the lattice Ln is partitioned into
copies of L(j)

nj according to the variable dimensions involved in the j-th equation.
Then a corresponding CA (Ln,Q, N, τ) is defined by sequentially applying the
Aj’s to Ln, where τ consists of applying τ (j) to each copy of L(j)

nj in Ln.

A special case occurs when some nj = 0 (i.e. the sub-equation is not a PDE): the
corresponding CA is zero-dimensional and the partition of the global reference
lattice Ln consists of its single elements. Reaction-diffusion systems are classic
instances taking advantage of the above composition process [7,6,24]: reaction
terms are associated to 0D CA, and nD diffusion to nD CA.

There is another way of coupling sets of (systems of) autonomous DE which
relies on assembling invariant sub-regions of their phase portraits: Let R be a
region of Rn (with non-empty interior), let Rε = {x ∈ Rn|∃y ∈ R, d(x, y) < ε}
where ε > 0 and d is the Euclidean metric, and let R−ε be the region such that
(R−ε)ε = R. A smooth characteristic function wrt R is a continuous monotonic
function ψ such that ψ ≡ 1 in R−ε, ψ ≡ 0 in the complement of Rε in Rn, and ψ
takes its values in [0, 1] for the other points. Consider M systems of autonomous
DE du

dt = Fj(u) acting on the phase space Y , each of them associated to a
function ψj whose regions Rj have pairwise disjoint interiors. These systems
can be composed by du

dt = F (u) = ψ1F1(u) + ... + ψMFM (u). This can also be
reflected in the CA side:

Proposition 4. (Phase portrait compositions and CA). Consider a DE built
according to the above composition technique. Assume there is a zero-dimensional
CA ({c},Q(j), {c}, τ (j)) corresponding to each region Rj. Then the composed CA
is defined by ({c},Q(1) ∪ ... ∪ Q(M), {c}, τ (1) ◦ .... ◦ τ (M)).

For instance, reaction equations one can be coupled by composing the invariant
regions of their phase portraits. Indeed, let φx denote a horizontal translation of
along the x-axis, let ρ be the reflexion wrt the y-axis and let hα be a scaling with
coefficient α. Let us denote the Fitzhugh-Nagumo equation by Fitz. First, we



Qualitative and Quantitative CA from Differential Equations 117

→

Fig. 3. To the left, the global invariant region of the phase portrait of a Fitzhugh-
Nagumo “double reaction”. To the right, a corresponding CA with 400 states (a 20×20
grid), built by the same integration method as in Fig. 2.

Fig. 4. A run of the CA obtained by composing the above CA (Fig. 3) and a diffusion
CA. This run is sampled every 10 steps from 0 to 60 and only the values of u1 (horizontal
dimension) are shown (the higher the value, the brighter the corresponding point of X).
As expected, the white waves have a higher frequency than the black waves.

translate it to the right: Fitz(1) ≡ φx1 ◦ Fitz with x1 ∈ R+. Second, the system
Fitz(1) can be reflected and scaled: Fitz(2) ≡ hα1 ◦ ρ ◦ Fitz(1) with α1 ∈ R+.
If x1 > 0 is large enough, the invariant regions of Fitz(1) and Fitz(2) lie in
each side of the y-axis, and they are disjoint except for their attractive fixed
point (a case not impairing the composability). DE coupling is then applied by
using characteristic functions ψ1 and ψ2 for their respective invariant regions:
∂ui

∂t = ψ1(u1, u2) · Fitz(1)(u1, u2) + ψ2(u1, u2) · Fitz(2)(u1, u2) (see Fig. 3). This
“double reaction” can be transformed into a CA by composing the CA of each
reaction. Note however that when used in a splitting, the invariant regions must
be chosen so that all the involved CA are defined over the same set of states (cf.
Prop 3). For instance, a double reaction CA composed with a diffusion CA needs
a rectangular global invariant region containing a part of the y-axis. When this
condition is satisfied, the resulting CA runs show two kinds of traveling waves
living together, inducing spirals of two different sizes and frequencies (see Fig. 4).

4 CA Sequences and Tunability

The above constructions establish connections between DE and CA using spe-
cific numerical and composition schemes. However, not much has been said about
their properties. One of the most important one is convergence: Let the source
space be R, and consider F (u) = 0. Let {Lk

1} be a sequence of regular discretiza-
tions of R spanned by δtk with δtk → 0 as k → 0. A numerical scheme to solve
F (u) = 0 is convergent iff for every exact solution u wrt an initial condition and
for every T > 0, the sequence of the computed solutions {Uδtk

} is such that:
max0≤i≤T/δtk

|Uδtk
(ti) − u(ti)| → 0, as Uδtk

(t0) → u(t0) and δtk → 0.
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Proposition 5. (Convergent numerical schemes and CA sequences). Let F (u)
= 0 be a (system of) autonomous DE with u : R × Rn → Y and n ≥ 0. Let g
be any kind of convergent explicit numerical scheme to solve the DE. Then one
can associate a CA sequence {Ai} to g which is also convergent.

Let us discuss the case for which the source space is R. According to their defi-
nition, CA need discretizations of the phase space Y , whereas usual convergence
definitions – like the above one – do not include them. But clearly, if a dis-
cretization of Y does not evolve, |Uδtk

(ti)−u(ti)| could not in general go to zero
as δtk → 0. Therefore, one must consider another sequence of finer and finer
discretizations of Y . For the sake of simplicity, assume these discretizations are
regular and spanned by δyk. For each discretization of R based on δtk, there
is a quantification projection function ρk sending Uδtk

to its quantified version
Uδtk,δyk

such that |ρk(Uδtk
)− Uδtk,δyk

)| < δyk. Hence, {Uδtk,δyk
} can be defined

so as to converge to u. If the associated numerical scheme is explicit, one can
translate this sequence into a convergent CA sequence {Ak}, where the number
of states of each Ak is determined by δyk.

Convergence gives a coherent way of tuning CA wrt the numerical discretiza-
tion parameters. For example, Fig. 5 shows some terms of a CA sequence cor-
responding to a Fitzhugh-Nagumo reaction resolution. Accordingly, we use finer
and finer discretizations of the invariant region of its phase portrait. The runs of
the corresponding reaction-diffusion CA yield more and more quantitative fea-
tures. Exact behaviors and shapes of the solutions are obtained, e.g. curvatures
of the isoclines or dispersion effects [11,6]. Note however that in the general case,
convergence is not sufficient to ensure that a numerical scheme – and therefore
a CA sequence – converges to the true DE solutions. Concepts as consistency,
well-posedness and stability must also be considered (see e.g. [19]).

5 Faithfulness and Qualitativeness

The precedent section emphasizes a fundamental difference between CA and
numerical methods: quantification of the phase space Y is an intrinsic part of
a CA (a finite sets of states), whereas in numerical methods, quantification is
either neglected or considered as a disturbing element. But coarse discretiza-
tions of Y may yield results still bearing the main features of the DE’s solutions.
Thus, we could not only find good solution approximations as discretizations
become finer, we could also search for coarse discretizations of Y for which some
qualitative aspects of the solutions are preserved. The first terms of a conver-
gent CA sequence become important too. When all the terms of a convergent
CA sequence generate some meaningful/qualitative features of the solutions of
a DE, this sequence is said to be faithful to the DE. Faithfulness indicates how
CA could enrich the concept of DE numerical computation by including the
idea of reducing, minimizing, optimizing these computations, and not only by
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Fig. 5. In the left column, elements of a CA sequence for a Fitzhugh-Nagumo reaction
(the representation is the same as in Fig. 2, and small gray rectangles indicate fixed
points). From the top to the bottom, the region Rdisc has been discretized according
to grids of resp. of 22, 62, 182, 542 and 1622 points (multiplication by 3 preserves the
offsets). To the right of each reaction CA is shown a run of the corresponding reaction-
diffusion CA after 5, 10, 15, 20 and 40 steps. As the integration time δt of the reaction
decreases (to be kept proportional to the cell size defined by the discretization and the
quantification projection function, see Prop. 2), the wave frequency decreases too.

providing exact computations. The example given in Fig. 5 shows that faithful
CA sequences exist, even for non-trivial cases like reaction-diffusion DE: traveling
waves occur at very coarse discretization levels of the phase space. Spirals are
just more square-like when the phase space is reduced to very few states.

Of course, the qualitative properties of a DE solution space are not easily
described in a full general setting. Nevertheless, phase spaces contain some deci-
sive features, like for instance in the autonomous case, singularities of their phase
portraits – i.e. fixed and periodic points (see e.g. [10]). With this respect, when
using coarse discretizations, two main problems may occur: spurious fixed points
appear or real fixed points are eluded. To ensure faithfulness, a natural expected
condition is to avoid these. In the case of ODE systems, determining the real
fixed points requires to solve dui

dt (x) = 0, for every i. In the Fitzhugh-Nagumo
case, this amounts to solve (a − u1)(u1 − 1)u1 = u1/b. When the slope of the
linear isocline is steep enough wrt the cubic isocline (e.g. a = 0.1 and b = 4),
there is a unique fixed point at (0, 0), and every solution finishes eventually at
(0, 0) (no cycle exists). Associated CA can be built (cf. Prop. 2) so as to comply
with these properties. When the integration time step δt is too short, spurious
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Fig. 6. A CA for the same Fitzhugh-Nagumo reaction as in Fig. 2, but built with a
too short integration time δt = 4: many spurious fixed points occur (gray rectangles).

fixed points mainly occur on the cubic nullcline (see Fig. 6). Tuning δt wrt Ydisc

has been important to obtain Fig. 5. Note that by continuity, some spurious
fixed points may occur in a neighborhood of a real fixed point without much
influence. One can also preserve fixed point types like being attractive, repulsive,
stable, unstable, etc. (see e.g. [10]). For instance, the unique fixed point of the
Fitzhugh-Nagumo equation can be shown to be attractive and stable.

This singularity analysis can be difficult to fulfill (and even more when cycles
are also considered – see e.g. the results about the Hilbert’s sixteenth problem).
No general method can be expected to be applicable to every situation. Never-
theless, there exist other techniques which help to build faithful CA sequences.
First, more classical features of qualitative phase portrait analysis can be used
like attraction basins, funnels, and anti-funnels (see e.g. [10]). One can also ap-
ply index theory (see in particular cell-to-cell mapping theory [9]) or singular
perturbation theory (see e.g. [22,14]). To ensure the preservation of some global
quantities, e.g. the energy of the system, one can consider conservative numerical
schemes (see e.g. [17]). Finally, cell-to-cell mapping theory includes extensions
based on Markov chains [9] from which probabilistic CA can be derived.

Summing up, we have seen that DE and CA can be formally related in many
respects. Thus, there are cases where DE can be thought of as abstract reference
objects to obtain faithful CA sequences, that is, descriptions that include qual-
itative as well as quantitative features. Qualitative descriptions can be adjusted
and compared to quantitative solutions, and DE are used to give insights and
tools to produce meaningful CA. As a result, CA can be tuned, DE-based simula-
tions can be optimized (by attempting to find minimal CA), and more generally
the qualitativeness of a global model can be studied. As further investigations,
other faithful CA sequences could be produced (for instance considering other
excitatory systems [18,9,15]). One could also establish connections with qualita-
tive physics and reasoning [12] – where quantitative and qualitative descriptions
are often mixed –, or with ultradiscretization methods [21] – able to transform DE
into integrable CA over integers. Coupling invariant regions of phase portraits
could lead to new interesting CA behaviors.

Acknowledgment. S. Grivet has been of great help in building the above
examples.
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Abstract. The neighborhood is a fundamental constituent of the cel-
lular automaton (CA) and has been investigated in its own right by
H.Nishio, M.Margenstern and F.von Haeseler(2004,2005). In this paper
we ask a new question how the neighborhood affects the global behav-
ior of CA and particularly gives some instances of CA where the global
behavior does not depend on the neighborhood. We also discuss the con-
jectures that the injectivity is generally preserved from changing the
neighborhood but the surjectivity is not.

1 Introduction

The cellular automaton (CA for short) is a uniformly structured information
processing system defined on a regular discrete space S, which is typically pre-
sented by the Cayley graph of a finitely generated group. The same finite au-
tomaton (cell) is placed at every point of the space. Every cell simultaneously
changes its state following the local function defined on the neighboring cells. The
neighborhoodN is also spatially uniform. Most studies on CA assume the histor-
ical and standard neighborhoods after John von Neumann and E. F. Moore. The
von Neumann neighborhood was used for designing the self-reproducing machine
[15], while the Moore neighborhood was defined by E. F. Moore [5] for proving
the Garden of Eden Theorem together J. Myhill [6], both neighborhoods being
defined in the 2-dimensional Euclidean grid Z2 = 〈a, b | ab = ba〉, see Fig.1-2.

The neighborhood is usually crucial for the global behavior of a CA. For ex-
ample, the Game of Life [1] has been formulated assuming binary states and
the Moore neighborhood in Z2. The local rule is cleverly determined and many
interesting behaviors like construction- and computation-universality have been
proved to emerge. It would not have been so successful, if it were defined assum-
ing the von Neumann neighborhood.

Changing the point of view, however, we posed an algebraic theory of neigh-
borhoods of CA for clarifying the significance of the neighborhood itself, where

� The precursors were presented at the workshops held in Gdansk, September 2005 [7]
and in Kyoto, January 2006 [8], respectively.

�� Ex. Kyoto University.
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Fig. 1. The von Neumann neighborhood Fig. 2. The Moore neighborhood

the neighborhood N is an arbitrary finite subset of S and recursively gener-
ates neighbors as a subsemigroup of S, see H.Nishio, M.Margenstern and F.von
Haeseler(2004, 2005) [11][10][12], where particularly the question if N generates
(fills) S has been discussed.

Based on such a setting, we ask here a new question how the neighborhood
affects the global behavior of a CA. Most properties of CA are strongly dependent
on the neighborhood, while there are several ones which are not. In this paper
we show two instances of CA, where the neighborhood does not affect the global
behavior; the parity of configurations and the surjectivity/injectivity of linear
CAs over Zm. In the last section we discuss the conjecture that the injectivity
of global maps is generally preserved from changing the neighborhood but the
surjectivity is not.

2 Preliminaries

2.1 Cellular Automaton CA

A CA is defined by a 4-tuple (S,N,Q, f).

• S : Cellular space is the Cayley graph Γ (S) of a finitely generated group
S = 〈G|R〉 with generators G and relators R. If G = {g1, g2, ..., gr}, every
element of S is presented by a word x ∈ (G∪G−1)∗, where G−1 = {g−1| g ·
g−1 = 1, g ∈ G}. The set R of relators is written as

R = {wi = w′
i | wi, w

′
i ∈ (G ∪G−1)∗, i = 1, ..., n}. (1)

For x, y ∈ Γ (S), if y = xg, where g ∈ G ∪ G−1, then an edge labelled by
g is drawn from vertex x to vertex y. Usually the cellular space is simply
denoted by S in stead of Γ (S).

• N : Neighborhood N = {n1, n2, ..., ns} is a finite subset of S. For any cell
x ∈ S, the information of cell xni reaches x in a unit of time. The set
of all neighborhoods is denoted by N . The cardinality #(N) is called the
neighborhood size of CA. The set of all neighborhoods of size s is denoted
by Ns.

• Q : Set of cell states is assumed to be a finite field Q = GF (q), where q = pn

with prime p and positive integer n, see [13]. The case of the ring Q = Z/mZ
is also considered.
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• f : Local function f is a map QN → Q, where an element of QN is called a
local configuration.

• Global map F is a map C → C, where an element of C = QS is called a
global configuration. F is uniquely defined by f and N as follows.

F (c)(x) = f(c(xn1), c(xn2), · · · , c(xns)), (2)

where c(x) is the state of cell x ∈ S for any c ∈ C. When starting with a
configuration c, the behavior (trajectory) of CA is given by

F t+1(c) = F (F t(c)) for any t ≥ 0, where F 0(c) = c. (3)

When S and Q are understood, the global behavior or the global property of a
CA depends on the local function f and the neighborhoodN . Furthermore, when
the local function f is fixed, we have various CAs or different F s by changing the
neighborhood. That is the definition of a CA depends only on a 2-tuple (f,N).
In this sense, this paper treats the dependency of the local function f on the
neighborhood N .

2.2 Neighborhood and Neighbors

Given a neighborhood N = {n1, n2, ..., ns} ⊂ S for a cellular space S = 〈G | R〉,
we recursively define the neighbors of CA. Let p ∈ S.

(1) The 1-neighbors of p, denoted as pN1, is the set

pN1 = {pn1, pn2, ..., pns}. (4)

(2) The m-neighbors of p, denoted as pNm, are given as

pNm = pNm−1 ·N, m ≥ 1, (5)

where pN0 = {p}. Note that the computation of pni has to comply with the re-
lations R which defines S = 〈G|R〉. We may say that the information contained
in the cells of pNm reaches the cell p after m time steps.

(3) ∞-neighbors of p, denoted as pN∞, is defined by

pN∞ =
∞⋃

m=0

pNm. (6)

Without loss of generality, we can concentrate on the m-neighbors of the identity
element 1 of S, which is simply called m-neighbors of CA and denoted by Nm.
(4) Finally, ∞-neighbors of 1, denoted as N∞ called the neighbors of CA, is
given by

N∞ =
∞⋃

m=0

Nm. (7)
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The intrinsic m-neighbors [Nm] = Nm \Nm−1 are the cells whose information
can reach the origin in exactly m steps. Obviously, N∞ =

⋃∞
m=0[N

m].

Now we have an algebraic result, which is proved by the fact that the procedure to
generate a subsemigroup is the same as the above mentioned recursive definition
of N∞.

Proposition 1
N∞ = 〈N | R〉sg, (8)

where 〈N | R〉sg means the semigroup obtained by concatenating the words from
N with constraints of R.

We also have the following easily proved proposition.

Proposition 2
〈N | R〉g = 〈N ∪N−1 | R 〉sg, (9)

where 〈N | R〉g is the smallest subgroup of S which contains N .

If N = G, then we have the following lemma as a corollary to Proposition 2.

Lemma 1

S = 〈g1, g2, ..., gr|R〉g = 〈g1, g2, ..., gr, g
−1
1 , g−1

2 , ..., g−1
r |R〉sg. (10)

Example: Z2 = 〈a, b| ab = ba〉g = 〈a, b, a−1, b−1| ab = ba〉sg.

3 CAs Where the Neighborhood Does Not Affect the
Global Behavior

In this section, we show two instances of CA where the neighborhood does not
affect the global behavior. We also discuss the dependency of the injectivity and
surjectivity on the neighborhood.

3.1 Parity function preserves the parity of configurations for any neighborhood.
3.2 As for linear CAs, the surjectivity and the injectivity are independent from
the neighborhood.
3.3 Discussions on the injectivity and surjectivity for general cases.

3.1 Parity Function

Let Q = {0, 1, ..., p− 1, ...} = GF (pn) with prime p and positive integer n. As
the local function, we consider an s-ary function fP : Qs → Q defined by

fP (x1, x2, ..., xs) =
s∑

i=1

xi mod p. (11)

fP will be called the (generalized) parity function. Note that if Q = {0, 1} then
fP is the ordinary (binary) parity function.
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For the s-ary parity function fP , choose an arbitrary neighborhood N ∈ Ns

of size s. Then we have the parity CA over Q in S; CA(fP , N). The global map
FP,N of CA(fP , N) is defined as usual by Equation (2).

Since fP (0, , , , 0) = 0, 0 ∈ Q is a quiescent state. A configuration c ∈ QS

is called finite if #{i | c(i) 	= 0, i ∈ S} < ∞. For a finite configuration c,
the finite subset {i | c(i) 	= 0, i ∈ S} of S is called a support of c. Since the
finiteness of configurations is preserved by FP,N , in the sequel we treat only finite
configurations.

The (generalized) parity P (c) of a configuration c is defined by

P (c) =
∑
x∈S

c(x) mod p. (12)

Then we have the following theorem.

Theorem 1. The parity CA preserves the parity of configurations, i.e.

P (FP,N (c)) = P (c), c ∈ QS , (13)

if and only if N ∈ Ns, where s = kp+ 1, k ≥ 0.

Proof

P (FP,N (c)) =
∑
x∈S

FP,N (c)(x) =
∑
x∈S

fP (xn1, ..., xns) (14)

=
∑
x∈S

s∑
i=1

c(xni) =
s∑

i=1

∑
x∈S

c(xni). (15)

We note here, since the neighborhood is spatially uniform,∑
x∈S

c(xni) =
∑
x∈S

c(x), for any 1 ≤ i ≤ s. (16)

Then, if s = kp+ 1, from (15) we have

P (FP,N (c)) =
s∑

i=1

∑
x∈S

c(xni) =
∑
x∈S

c(x) = P (c). (17)

For the necessity of condition s = kp + 1, we can consider a binary parity CA
(p = 2) having a neighborhood of size s = 2. Such a CA maps all configurations
into those of parity 0 and does not preserve the parity. �

Example 1. Consider the 3-ary binary parity CAs in Z = 〈a|∅〉 with neighbor-
hoods of size 3 such as N3 = {a−1, 1, a}, N ′

3 = {a−2, 1, a2} and N ′′
3 = {0, a, a2}.

They all preserve the parity, but the binary binary parity CA with neighbor-
hood N2 = {1, a} of size 2 does not. The theorem also holds for finite spaces like
Zm = 〈a|am = 1〉.

Note that the binary parity function is not number conserving.
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3.2 Linear CA over Zm

We consider the linear local function f of arity s over Zm = Z/mZ.

f(n1, n2, ..., ns) =
s∑

i=1

aini, ai ∈ Zm, mod m. (18)

Though the linear CA can be defined on an arbitrary cellular space S, we
assume here such a space where the Garden of Eden theorem holds, see the
remarks below. Then we have the following theorem.

Theorem 2. For a linear CA on S where the Garden of Eden theorem holds,
the surjectivity and the injectivity are independent from the neighborhood.

Proof: The proof is given owing to the following two lemmas or the theorems
established by M.Ito, N.Osato and M.Nasu (1983) [3]. Both lemmas characterize
the surjectivity and the injectivity of a linear CA over Zm, respectively, in terms
of the coefficients a1, a2, · · · , as and the prime factors of m. Obviously, the char-
acterization is independent from the neighborhood. Note that their proofs rely on
the result by Richardson(1972) [14], which relies in turn on the Garden of Eden
(GOE) theorem for S = Z2. �
Lemma 2 (Theorem 1 of [3]). A linear CA over Zm is surjective if and only
if any prime factor of m does not divide all of the coefficients a1, a2, · · · , as.

Lemma 3 (Theorem 2 of [3]). A linear CA over Zm is injective if and only if
for each prime factor p of m there exists a unique coefficient aj such that p � aj

and p | ai for i 	= j.

Remarks on the GOE theorem: The Garden of Eden theorem was first
established for S = Z2 by E.Moore (1962) [5] and J.Myhill (1963) [6] and later
generalized to groups of faster growth, see A. Machi and F. Mignosi (1993)[4]
and M. Gromov (1999) [2]. Inspired by those results, H.Nishio(2006) [9] gives a
brief study on the growth of neighborhoods of CA.

Theorem 3 (GOE theorem). F is surjective if and only if F is injective when
it is restricted to the finite configurations.

The growth function γS of a finitely generated group S = 〈G|R〉 is defined by
the cardinality of the ball of radius n;

γS(n) = #{w | |w| ≤ n, w ∈ S}. (19)

The growth function of the 2-dimensional Euclidean grid Z2 is 2n2 + 2n + 1,
while the free group S = {a, b | ∅} has an exponential growth function 2n.
Mathematicians have revealed that the GOE theorem holds for the cellular space
S of polynomial and subexponential growths 1 but it does not for S of exponential
growth. In this context, Theorem 2 would need a different type of the proof for
CAs where the GOE theorem does not hold, if it were still correct for them.
1 The subexponential growth is faster than polynomial but slower than exponential

growth.



128 H. Nishio

3.3 Injectivity and Surjectivity

We discuss here the dependency of the injectivity and surjectivity on the neigh-
borhood for CAs which are not necessarily linear. In this section we assume that
every neighborhood fills S, i.e. 〈N | R〉sg = S.

Let’s begin with an example of CA with a nonstandard neighborhood of size
3, say, a 3-horseN3H = {n1, n2, n3} = {a2b, a−2b, ab−2} in Z2. N3H was first dis-
cussed by H.Nishio and M.Margenstern(2004,5)[11][10] and particularly shown
to fill Z2 though it does not contain the identity element 1 of Z2.

Now fix an arbitrary function f : Q × Q × Q → Q, |Q| ≥ 2 of arity 3 and
consider a CA CAf,3H with the local function f and the neighborhood N3H in
the space Z2. Depending on f , the global map of CAf,3H can be injective or not
injective.

Fig. 3. 3-horse N3H and its variantN3H′

Next, consider another CA CAf,3H′ with the same f and a slightly different
neighborhood N ′

3H = {n1, n2, n
′
3} = {a2b, a−2b, a−1b−2}, which is obtained from

N3H by replacing the third element, see Fig. 3. Evidently N ′
3H is also seen to fill

S.
A CA is called injective (res. surjective) if its global map is injective (res.

surjective). Then we have the following

Proposition 3. If CAf,3H is injective, then CAf,3H′ is injective.

Proof: Assume the contrary. Then there are two different configurations c1, c2 ∈
C such that F ′(c1) = F ′(c2), where F ′ is the global map of CAf,3H′ . On the
other hand, c1 	= c2 implies that there is a point x ∈ S such that c1(x) 	=
c2(x). Since F ′(c1) = F ′(c2), the local state transition by CAf,3H′ applied to c1
and c2 should yield the same result at every point of S. Particularly at xn′

3
−1,

f(α1, α2, c1(x)) = f(α′
1, α

′
2, c2(x)), where αs are the states of the relevant 1-

neighbors. It implies that CAf,3H is not injective. A contradiction. �
By generalizing, we have

Conjecture 1. The injectivity of CA is preserved from changing the neighbor-
hood.

Conjecture 1 is described more specifically as follows: If a CA with a local func-
tion of arity s is injective on a neighborhood N ∈ Ns, then it is injective on any
other neighborhood N ′ ∈ Ns which fills S.
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In contrast, as for the surjectivity we have

Conjecture 2. The surjectivity of CA is not preserved from changing the neigh-
borhood.

By Thomas Worsch at the Faculty of Informatics, University of Karlsruhe, one
of his students is said to have found a 1-dimensional 3 states CA which supports
Conjecture 2 [16].

4 Concluding Remarks

In this paper we showed some examples of CAs where the global behavior or
the global property is not affected by the neighborhood. Theorem 1 holds no
matter when the GOE theorem does not hold, but Conjecture 1 seems to need
it for its validity. A problem for future research is to establish the general theory
for such global properties that are independent from the neighborhood. On the
other hand, it will be an interesting research topics to investigate CAs (local
functions) so that, by appropriately choosing the neighborhood, the global be-
havior may become useful from the application point of view.

Many thanks are due to Maurice Margenstern and Thomas Worsch for their
interest and discussions on this topics.
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Abstract. In this paper a fast and space efficient method for simulating
a d′-dimensional cellular automaton (CA) on a d-dimensional CA (d <
d′) is introduced. For d′ = 2 and d = 1 this method is optimal (under
certain assumptions) with respect to time as well as space complexity.
Let in this case t(n) be the time complexity and r(n) the side length
of the smallest square enclosing all used cells. Then the simulation does
not need more than O(r2) cells and has a running time of O(r · t). In
the general case d′ = d+1 a version with the time and space complexity
of O(t2) will be presented. Finally it will be shown, how it is possible
to simulate a 2d-dimensional CA on a d-dimensional CA in a similarly
efficient way.

1 Introduction

Recently the simulation of a CA of higher dimensionality on a CA of lower
dimensionality has received some renewed attention [2]. This problem has been
considered before [1]. The constructions in this paper are significantly more
efficient than those by Poupet [2] and it is much easier to get a reduction from
2d to d dimensions than with the construction by Achilles et al. [1]; furthermore
one does not need the constructibility condition required there.

Definition 1 (CA). A CA is a tuple A = (R, N, Q, �, δ), where

– R = Zd is the underlying grid,
– N ⊆ Zd is the finite neighborhood;

w.l.o.g. we assume von Neumann neighborhood
– Q is the finite set of states,
– � ∈ Q is the quiescent state,
– δ : QN → Q is the local transition function.

The global transition function is defined as usual1 as

Δ :

{
QR → QR

c �→ c′ where c′(z) = δ
(
n �→ c(z + n)

)
, n ∈ N

1 Because N is subset of Zd, the mapping + in the definition of the global transition
function is the same as in the group (Zd, +).

S. El Yacoubi, B. Chopard, and S. Bandini (Eds.): ACRI 2006, LNCS 4173, pp. 131–140, 2006.
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We will use the following notion of simulation for this paper:

Definition 2 (Simulation). A CA A = (Zd, NA, QA, �, δA) simulates a CA
B = (Zd′

, NB, QB, �, δB), if there are functions

e : QZ
d′

B → QZ
d

A f : Zd′ → Zd

g : QA → QB hb : N → N for each b ∈ Zd′

such that for each finite configuration cB, all cells b ∈ Zd′
and all t ∈ N holds:

Δt(cB)(b) = g
(
Δhb(t)(e(cB))(f(b))

)
We require e to always map finite configuration on Zd to finite configuration Zd′

.
Of course, all functions involved should be computable and in fact “simple”. We
are not going to formalize this aspect, but it will be clear that the constructions
described below are simple.

A simulates B synchronously, if hb = hb′ for all b, b′ ∈ Zd′
. A cell z ∈ Zd

represents the state q ∈ QB (at the point in time t), if g(Δt(cA)(z)) = q is
fulfilled.

The main problems are to find a useful mapping f from the d′D-space in the
dD-space as well as an algorithm for the transmission of states. If neighboring
cells a and b of B are mapped to distant cells f(a) and f(b) the simulation (at
least the obvious one) of one step of B requires informations to be exchanged
between f(a) and f(b) in several steps.

The paper is organized as follows: In Section 2 a simulation method will be
explained for the case of 2D → 1D simulation. In Section 3 it will be generalized
to (d + 1)D → dD and in Section 4 to the case d′D → dD. Throughout this
paper we consider the case d′ > d. (The opposite direction is considered in [1].)

2 Simulation of 2D on 1D CA

We start with the description of a function f mapping the cells of the 2D-CA
to the cells of the 1D-CA (Subsection 2.1). In Subsections 2.2 and 2.3 we will
explain, how the 1D-CA simulates one step of the 2D-CA. The computational
complexity of the construction will be discussed in Subsection 2.4.

2.1 The Spiral Mapping

Let f : Z2 → Z denote the “spiral mapping” as depicted in Fig. 1. Obviously f
is injective. It is easily seen that f(n, n) grows quadratically with the distance
n to the origin: f(n, n) = (2n + 1)2 − 1.

The set of cells of the 2D-CA, which have a distance k to the origin with
respect to the maximum norm, is denoted as the k-th sphere of the 2D-CA. The
images of these cells under f in the 1D-CA, will be called the k-th 1D-sphere.

The upper right corner of a 2D-sphere is called the sphere-exit-cell, its left
neighbor is called the sphere-entrance-cell. Sphere-exit-cells in Figure 1 are for
example the cells 8, 24, 48 and 80, sphere-entrance-cells are 1, 9, 25, and 49.
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Fig. 1. Mapping of (a, b) ∈ Z2 to Z according to the spiral around the origin

2.2 Shifting States in the 1D-CA

We now turn to the problem of transmission of the 2D-states in the 1D-CA.
A closer look at the mapping f reveals, that in any case two 2D-neighbors are

also neighbors in the 1D-CA. If the cells are marked unambiguously according to
their position (up, down, left, right) as in figure 2, a 1D-cell is able to identify the
2D-positions of its 1D-neighbors. Thus in the critical moment a cell can read the
2D-states of two of the 2D-neighbors off their 1D-neighbors (exception: sphere-
exit-cell and sphere-entrance-cell; see below). The other two 2D-neighbors are
located in one or two neighboring spheres. In case of corner-cells, the two 2D-
neighbors are located in the outer sphere. For the other cells one is located in
the outer and one is located in the inner sphere.

If one shifts for every 1D-sphere the 2D-states in the right way to the cells
of the next higher 1D-sphere and afterwards the states of the higher sphere
back to the lower one, than every cell knows the 2D-states of the neighbors of
their preimage-cell. Sphere-entrance- and sphere-exit-cells have to be treated in
a slightly different way.

Algorithm 1 (State shifting)

1. The 1D-image of the entrance-cell of a 2D-sphere starts and sends its 2D-
state including its position-marking towards the direction of the next higher
sphere. As soon as the signal passes the right neighbor, this one appends a
signal with its own 2D-state as well as position marking. All other cells of
the sphere behave analogously: They append their 2D-state as well as their
marking as soon as the last signal of the arising signal-chain passes.

2. As soon as the first signal reaches the first cell after the entrance-cell of the
next sphere, which is not a corner-cell, the signal ends in this cell and the cell
memorizes the transmitted 2D-state as well as the transmitted marking. All
other signals, not coming from a corner, proceed analogously: They ignore
the entrance-cell of the next sphere as well as all corner-cells and end, as
soon as they find a cell, which has not received a signal yet. Corner-cells
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Fig. 2. Mapping f(a, b) for |a|, |b| ≤ 2 with marked greatest cell. The cells are marked
accordingly to their position (up, down, left, right) related to the origin. The corners
have two markings and so they are unambiguously identifiable.

behave a bit different, because the state has to be transmitted to two cells.
They ignore the sphere-entrance-cell too, but they do not end at the first
cells, which has not received a signal yet. In stead they transmit their state
and marking to this cell and end at the second cell, which has not received
a signal yet (and is not a corner cell).

3. Exception handling: Simultaneously with step 1 the exit-cell of the sphere
transmits its 2D-state directly to the entrance-cell of the next sphere. Fur-
thermore the special treatment for corner-cells in step 2 is not applied to the
sphere-exit-cell.

Moreover, the cell at the origin acts in a different way. It behaves similar
to a corner-cell, but it transmits its state to the four neighbors positioned in
the next sphere. We assume that the cell at the origin knows, that it is the
origin.

In the same way, the states are shifted back. The only relevant difference is, that
every corner-cell collects two signals.

The algorithm also works, if the next sphere is not constructed yet, because
the cells of the next sphere can be marked in a correct way by the transmitted
markings. Once again some attention has to be paid to the corner-cells. These
have to mark a corner-cell after marking the first normal cell. In addition, the
marking of the largest cell has to be shifted.

In oder to prevent constructing too many cells later, the algorithm is
”aborted” for the last sphere, if the signal, which was sent at first, notices the
following two conditions. First that all cells of the sphere represent the quiescent
state of the 2D-CA and second that the sphere is the greatest one. The latter
can be recognized by the signal, because the last cell of the sphere is marked as
the greatest cell. ”Aborting” means that the states are moved indeed but that
the new cells will not be marked. This will be of importance in the next section,
because the chronological dependencies would be mixed up, if one would abort
the shifting directly after reaching the greatest cell.
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2.3 Simulation 2D → 1D

Up to now it was shown, how 2D-states can be shifted form one sphere into the
next one. Now it shall be explained, how the whole simulation works.

Let the cells of the k-th sphere of the 1D-CA be in the configuration c′i and
let the configuration c′i represent the i-th 2D-configuration. That means c′i(z

′)
represents ci(z) if z′ = f(z), z ∈ Sk. Here and in the following Sk denotes the
k-th sphere in the 2D-CA, and we also use the abbreviation Kk =

⋃i
i≤k Si for

the “filled” sphere. In addition, the cells of the k-th sphere shall be synchronized
and marked according to Figure 2.

Then the (i + 1)-th simulation step of the k-th sphere is performed in the
following way:

Algorithm 2 (Simulation 2D → 1D)

1. Shift and wait: The sphere-entrance-cell starts the algorithm for shifting
the 2D-states into the next sphere (sphere k+1) as described in the previous
subsection. After the states have arrived, they wait until the sphere k + 1
synchronizes and switches to the next 2D-state. Now the cells of the sphere
k + 1 are in the states corresponding to the i-th 2D-configuration.

2. Exchange: Sphere k + 1 performs two actions: First the cells of the sphere
exchange their states with the shifted states of the sphere k and second the
sphere starts with step 1 to prepare the next simulation step (for the sphere
k + 1) itself. The exchange of the states is executed in the following way
(compare Fig. 2):
(a) Upper horizontal cells accept the shifted state as the state of their lower

2D-neighbor.
(b) Lower horizontal cells accept the shifted state as the state of their upper

2D-neighbor.
(c) In the same way left and right vertical cells accept the shifted state as

the state of their right and left 2D-neighbor respectively.
(d) The shifted signals accept the states of the cells of the sphere k+1 the

other way round, i.e. signals of upper cells accept the state of the cor-
responding (k+1)-cell as the state of their upper 2D-neighbor and so
on.

(e) Corner-cells of the sphere k + 1 accept no state (that means that they
did not got states from the sphere k).

3. Shift back: After the states were exchanged, the cell of the last shifted state
(meaning the greatest cell of the sphere k + 1, which got a state) initiates
the shifting back as was described in Subsection 2.2. This cell can identify
itself as “last shifted cell”, because its right neighbor is marked as upper
right corner, which is the sphere-exit-cell.

4. Exception handling: Simultaneously to the state shifting in step 1 the
entrance-cell of the sphere k sends its current 2D-state to the exit-cells of the
same sphere. This one memorizes the state as the state of its left 2D-neighbor.
At the same time the sphere-exit-cell sends its 2D-state to the entrance-cell.
The sphere-entrance-cell again memorizes the transmitted state as the 2D-
state of its right 2D-neighbor.
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5. Synchronization: After the last state is shifted back (this one belongs to
the entrance-cell of the sphere k), the entrance-cell initiates a synchronization
of the cells of its sphere.

6. New states: If the cells are synchronized, they compute their new 2D-state.
This is possible, because the 2D-states either
(a) have been shifted up from the lower sphere,
(b) have been acquired from the upper sphere through the own shifting op-

eration,
(c) the 2D-states are kept ready from the own 1D-neighbors of the cell or
(d) were transmitted through step (4). This happens in the special case of

the entrance- and exit-cell of the sphere (in the 1D-CA).

There is still a special case to be examined: What happens, if the last sphere
(w.l.o.g. let this be the sphere i) constructs a new sphere i + 1? In this case the
cells of the sphere i+1 know the states of all 2D-neighbors immediately, because
all 2D-states, expect the one shifted up, correspond to the quiescent state. Thus
the sphere i + 1 could synchronize and switch to the next state immediately
– while simultaneously shifting back the states. But this should not happen,
because then the sphere i+1 would be approximately half of a simulation phase
ahead of sphere i. Therefore the first computation step of the sphere i+1 will be
delayed artificially until it is ensured, that the sphere i is a computation step in
advance of the sphere i+1. This can be achieved by initiating the synchronization
of the sphere i + 1 only after the sphere i shifts its states to the sphere i + 1
again. At this point it becomes clear that the spheres work asynchronously. But
the sphere k is maximal one computation step in advance of the the sphere k+1,
because the sphere k always waits for the sphere k + 1 at step 1. According to
the statement above, the sphere k is always exactly one step in advance of the
sphere k + 1.

2.4 Complexity of the 2D → 1D Simulation

We use the same definition for the Landau symbols O,Θ, Ω, o, ω like in [4]. Let
t be the time complexity of the 2D-CA and let r denote the side length of the
smallest square enclosing all cells which were non-quiescent (hence the space
complexity is O(r2)). The time and space complexity of the 1D-CA shall be
examined in terms of r and t.

The greatest sphere of the 1D-CA is also the slowest one. That means that
the t-th configuration was completely computed, when the greatest sphere – the
sphere r – switches to the t-th configuration. Because every step of the described
algorithm is bounded by O(|Sr|) and the origin executes O(r + t) computation
steps, the runtime of 1D-CA is bounded by O(|Sr | · (t + r)), and thus because
of |Sr| = 8r and r ≤ r0 + t by

O(|Sr | · (t + r)) = O(8r · (t + r)) = O(r · t + r2) = O(r · t) .

The space complexity is bounded by O(f(r, r)) = O((2r + 1)2 − 1) = O(r2)
(where f(a, b) is the spiral mapping). So in the 1D-CA most memory is wasted,
when the 2D-CA uses only the cells of one direction.
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Next, it will be shown, that the algorithm is optimal under certain assump-
tions with respect to memory as well as time complexity.

Let f : Z2 → Z be any mapping of the cells of a 2D-CA B on the cells of a 1D-
CA A such that for some constant m the number |f−1(a)| of B-cells simulated
by any A-cell a is bounded by m.

Lemma 1. Under the given assumption, the algorithm for the 2D → 1D simu-
lation is optimal with respect to the space complexity Θ(r2).

Proof. After assumption a cell of the 1D-CA is able to simulate only a finite
number of cells of the 2D-CA, thus the 1D-CA uses at least 1

c · r2 cells. But then
the space complexity of Θ(r2) is optimal.

Define the function k : N → N as

k(r) = max
{
|f(a) − f(b)| | a, b ∈ Kr and a and b are neighbors

}
where the distance is to be measured as the number of “steps from neighbor to
neighbor”.

Lemma 2. k(r) ∈ Ω(r).

Proof. In the 2D-CA the distance between two cells a, b ∈ Kr is at most 2r cells.
Let a′ = max{f(x) | x ∈ Kr} and b′ = min{f(x) | x ∈ Kr} the largest and the
smallest index respectively of a cell of the 1D-CA A simulating a cell from Kr.

Assume k(r) ∈ o(r). Then |a′ − b′| ≤ 2r · k(r) ∈ o(r2). But being able to
simulate all cells from Kr in o(r2) cells contradicts Lemma 1.

From this lemma immediately follows that at least all näıve simulation techniques
which rely on exchanging B-states between simulating A-cells have to spend k(r)
steps for the simulation of one step of a Kr-subcube of B. Hence a running time
in Θ(r · t) cannot be avoided.

To summarize this section we note:

1. The space complexity could be decreased only if one would find a simulation,
which does not simply assign a finite number of B-cells to each A-cell.

2. The time complexity could be decreased only if either one could decrease
the space complexity or if one would find a way, where the images don’t
have to exchange their states after a constant number of steps. The second
possibility cannot be excluded, but on the other hand one would not expect
intuitively, that the simulation could be done faster than in Θ(r · t).

3 Generalization (d + 1)D → dD

We will now show how the simulation method can be extended to d dimensions
in an easy way. In this case we define the mapping f as

f : Zd+1 → Zd : (a1, ..., ad+1) �→ (a1, ..., ad−1, fspiral(ad, ad+1)) .
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The (d + 1)D → dD simulation works similar to the 2D → 1D case, because in
A each cell can access 2(d − 1) B-neighboring states directly the A-neighbors.

The part of the simulation which involves the spiral only has to be changed
slightly with respect to the above description:

1. Two cycles after a computation step the 2D-states of a sphere are also trans-
mitted (synchronously) to the d−1 parallel neighbor spheres. If such a sphere
is not marked yet, then the markings are taken over and a computation step
is executed immediately.

2. A new 1D-sphere will be constructed at every step. This construction always
takes place and does not depend on whether the sphere will be needed or
not. This guarantees, that the parallel spheres always maintain an offset of
two cycles.

This way the constructed (d + 1)D → dD simulation has a runtime and a space
complexity of O(t2). It should be mentioned, that it is possible to construct
another synchronous (d + 1)D → dD simulation with a space complexity of
O(r2) and a time complexity of O(r2 · t) (see [3]; because of the page restriction
for the paper we leave this out).

4 Generalization d′D → dD

Considering the results from the previous subsection, a (simple-minded) gener-
alization to the case d′D → dD consists in the application of the demonstrated
method d′−d times. But such a simulation is very inefficient for large differences
d′ − d. For example the simulation of a 10D-CA on a 1D-CA would result in a
runtime of O(t2

10
) = O(t1024). This is not satisfactory.

The aim of this section is to reduce the running time at least for dimensions
d′ = 2x · d, x ∈ N to O(t2

x

). With this a 16D-CA as well as a 10D-CA could
be simulated on a 1D-CA with a runtime of O(t16). This even is optimal for
d′ = 2x · d, x ∈ N, if the d′D-CA has a space complexity of O(t).

Let f be defined as

f : Zd′
= Z2d → Zd : (a1, ..., a2d) �→ (fspiral (a1, a2), ..., fspiral (a2d−1, a2d)) .

This approach adds one possible source of complications:
The mappings are linked now (Fig. 3). Thus, after constructing a new sphere

on one of the axis of the dD-CA and after execution of the first computation step
one has to start a new 2D → 1D simulation in the remaining d−1 dimensions. At
this point it could happen, that a perpendicular started simulation in a domain
works faster than the simulation in one of the other directions (e.g. this is the
case in the domain (2, 1) in Fig. 3). But a cell is not able to switch to the next 2D-
state, until the states of all directions have been received. Thus, the 1D-spheres
are no longer synchronized one by one, but they are combined to domains. These
domains are synchronized as a whole as soon as the cell, which is the closest to
the origin, has received all states (Fig. 3). The domains are chosen in a way, that



Simulation of d′-Dimensional Cellular Automata 139

Fig. 3. Simulation 4D → 2D. The cells of the framed areas will be synchronized
altogether.

all cells, which are located in every direction in the same 1D-sphere, are merged
into one domain.

Also in this simulation, a new 1D-sphere will be constructed at every step.
Like above the sphere is always constructed independent of its further use. This
guarantees at every time, that the domains are marked completely in one step.

This 2dD → dD simulation has a time and space complexity of O(t2) (like
the (d + 1)D → dD simulation). For proving the optimality one considers, that
the ratio between the diameter of the d′D-CA and the diameter of the dD-CA is
quadratic, because it is l′d

′
= (2r+1)d′

= (2r+1)2d = ((2r+1)2)d = (l2)d. Now
one uses the same arguments as in Subsection 2.4. Through successive execution
one reaches the desired aim.

5 Conclusion

The most suitable method for comparison with the methods presented in this
paper, seems to be the 3D → 2D simulation method of Poupet [2]. Table 1
summarizes the resulting overheads of different methods for the 3D → 2D
simulation.

Table 1. Comparison of simulation methods for the 3D → 2D simulation

simulation Achilles [1] Poupet [2] present synchronous [3]
time O(t2) O(t4) O(t2) O(r2 · t)
space O(t3) O(t9) O(t2) O(r2)

The algorithm presented in this paper outmatch the one from [2]: Beside the
higher speed and the smaller space requirements it is possible to construct a
completely synchronous simulation. It also needs less space than the simulation
from [1].
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Poupet’s simulation could be generalized to the d + 1 → d case (with d ≥ 2)
without difficulties. Table 2 summarizes the resulting overheads for the (d +
1)D → dD simulation. The results of the comparison with [2] are the same as in
the 3D → 2D case. But in addition it shows, that the space efficiency is much
better than in [1] – especially for d � 1.

Table 2. Comparison of simulation methods for the (d + 1)D → dD simulation

simulation Achilles [1] Poupet [2] present synchronous [3]
time O(t2) O(t4) O(t2) O(r2 · t)
space O(td+1) O(t9) O(t2) O(r2)

Furthermore we are able to simulate a d′-dimensional CA on a d-dimensional
CA with a time and space complexity of at most O(t2

�ld(d′/d)�
). It is unclear,

whether a similar efficiency could be achieved using the simulations in [1] and
[2].

In the future we will investigate, whether the principle of the 2D → 1D
simulation can be generalized in such a way, that one gets an optimal algorithm
for the (d + 1)D → dD simulation, too. At least in the case of the 3D → 2D
simulation one could imagine something like that. In addition a direct 3D → 1D
simulation could be useful for improving the idea from Section 4 further.
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Abstract. This paper reports cellular automata (CA) based efficient
encoding technique for wavelet transformed data of still image. The en-
coding technique handles wavelet coefficients, in transformed domain,
and then simulates different classes of transforms with the introduction
of CA framework. It ideally suits for low cost implementation of the
compression technology for still images. Reported experimental results
establish the effectiveness of the proposed scheme.

1 Introduction

The standard methods of lossy compression for still images in frequency domain
employ Discrete Cosine Transform [2] and Karhunen-Loeve Transform. Other
notable schemes are the Wavelet Transform [3], Pyramid Decomposition and
Iterated Function System. Different classes of Cellular Automata (CA) trans-
forms have also been proposed. However, such transforms [6] are highly complex
in nature and are obtained through experimentations.

The above scenarios motivate us to design a CA based Vector Quantization
(VQ) [5] model for still image compression. The images are taken from the
specific domains such as human face, brain MRI, etc. The proposed scheme em-
ploys Wavelet Transform and subsequently generates codebook with the help of
a CA based clustering model. It ensures effective implementation and searching
of codebook. The scheme can also be effective for video telephony to facilitate
on-line applications. The basics of CA technology are introduced next.

2 Cellular Automata

An 1-dimensional Cellular Automaton (CA) consists of a number of cells [4]. In 3-
neighborhood, the next state of ith cell is assumed to be qi(t+1)= f(qi−1(t), qi(t),
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Fig. 1. State transition diagram of a 5-cell MACA < 102, 60, 204, 204, 170 >

qi+1(t)), where qi(t) represents the state of the ith cell at tth instant of time. ‘f ’
is the next state function - that is, the rule Ri of the automata [1]. An n-cell CA
is designated by the R =< R1,R2, · · · ,Ri, · · · ,Rn >. The proposed CA based
model for VQ employs Multiple Attractor Cellular Automata (MACA) [4].

The state transition graph of an MACA consists of cyclic and non-cyclic
states. The non-cyclic states form trees rooted at the cyclic states (attractors).
The 5-cell MACA of Fig.1 having four attractors {00000(0), 00011(3), 00100(4),
00111(7)}. The states rooted at α forms the α-basin (attractor basin).

Theorem 1. In an n-cell MACA with k = 2m attractors, there exists m-bit
positions at which the attractors generate pseudo-exhaustive 2m patterns [4].

The modulo-2 sum of two states is a predecessor of 0-state (pattern with all 0s) iff
the two states lie in the same attractor basin. Let consider the two states {01010,
01011} of 00011-basin (Fig.1). The module-2 sum of the two states is {00001}∈
0-basin. Hence, if P & P̃ belong to the same basin, the pattern P ′(= P⊕P̃) falls
in the 0-basin. P ′ is the hamming distance (HD) of P & P̃ . The distribution
of patterns shows that the 0-basin has a definite bias for patterns with lesser
weight (the presence of number of 1s in them) [8]. Fig.2 depicts the Expected
Occurrence (EO) of a pattern, with weight (w), in the 0-basin. It establishes
that (i) the value of EO decreases monotonically with the weight, (ii) a basin
contains patterns with low HD, and (iii) pattern pairs with low HD have the
high probability of getting covered by a few number of attractor basins. These
properties of MACA are exploited in the current design.

3 CA Based Model of Vector Quantization

A vector quantizer Q of dimension l and size M is a mapping from Rl into
a finite set C containing M reproduction points, called the code vectors. That
is, Q : Rl → C, where C = {c1, · · · , cM}, c1 · · · , cM ∈ Rl. The set C is called
the codebook. For the current application, a codebook is generated from the
transformed data obtained after Wavelet transformation. We employ the MACA
based clustering model for designing such a codebook. Each code vector can be
viewed as the centroid or representative of a cluster.
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Fig. 2. Expected distribution of patterns in 0-basin of an MACA with n =30

A VQ method consists of an encoder and a decoder [9]. The CA based model
[9] addresses the difficulties of generating the codebook from the training set and
the high processing overhead at encoding stage. Rather than developing general
compression scheme, we concentrate on developing codebook for a specific class
of data, that is, still image data on human face. To reduce processing overhead,
we introduce MACA based hierarchical clustering algorithm [5].

Design of training set: The bands (LL, LH, HL, HH) of Wavelet coefficients
[3] for the input image form the training set. The steps are:

Algorithm 1. Training Set Generation
Input: Set of n images
Output: The training set for different bands
Step 1: Transform input image with Wavelet transform at single level that gen-
erates four bands of coefficients LL, LH, HL, HH.
Step 2: Segment each band of Wavelet coefficients into 4 × 4 blocks.
Step 3: The set of segments, from each band, is the training set for that band.

Codebook design: Separate codebooks are generated for each band with the
training set resulted from Algorithm 1. The property of MACA is exploited to
identify the clusters among the training set with HD as the metric. An n-bit
MACA with k-attractors acts as a natural cluster (Section 2). The MACA of
Fig.1 can be employed to classify patterns into two clusters, (say [I]= {00011,
00100 and 00111} and [II] = {00000}). The pseudo-exhaustive field yields the ad-
dress of the memory that stores the cluster information (Theorem 1). Therefore,
Cluster I attractors yield the memory addresses {01, 10, 11}.
MACA based hierarchical clustering model for codebook: For each node
of the binary VQ tree, we genetically evolve an MACA to split the cluster
into two sub-clusters with an objective to maximize the self-similarity within
a sub-cluster. A leaf node of the MACA tree represents cluster of elements.
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Fig. 3. Structure of MACA based hierarchical clustering scheme

Fig.3 illustrates the design. Suppose, four clusters S0, S1, S2 and S3 are to be
generated from the training set C0 = {{S0}, {S1}, {S2}, {S3}}. The MACA,
at the first level (MACA0), generates two clusters C1 = {{S0}, {S1}} and
C2 = {{S2}, {S3}}. The similar process is repeated for C1 and C2 to generate
the four clusters {S0}, {S1} and {S2}, {S3}, employing MACA1 and MACA2.
A leaf node Si is represented by the centroid Pi ∈ Si of the elements in Si. Pi

can be viewed as a codeword in the codebook. Codebook searching: For a given
test vector Ṕi, we need to identify the codebook entry (the codeword) closest
to Ṕi. In reference to Fig.3, the MACA0 is loaded with Ṕi and allowed to run.
It returns the desired cluster C1 or C2. The MACA (MACA1 or MACA2) is
then loaded with Ṕi to output the desired cluster Si and its centroid. The path
traversed represents the compressed data (00 for S0) for the Ṕi.

4 Encoding and Decoding Schemes

When an input vector Ṕi is compressed (encoded), it can either be identified
as a cluster or non cluster element. A non cluster element is passed through an
error analysis process.

Definition 1. Let ci = <xi1,...,xil> be the ith code vector and V = <v1,...,vl>
be the input vector mapped to ci through hierarchical MACA tree, then the error
vector Ei(V) = | ci − V | = <ei1,...,eil>, where eij = | xij − vj | for j = 1, ...,
l. The mean square error is defined as msei(V) =

∑l
j=1 e2

ij.

Definition 2. Let λmse and λerror are the allowed threshold values for mean
square error (mse) and the error value for an input vector V respectively and V
maps to the code vector ci through the hierarchical MACA tree. V is said to be
a cluster vector iff msei(V)≤ λmse and eij ≤ λerror for j = 1, ..., l; otherwise,
V is said to be a stray (non cluster) vector.

Algorithm 2. Error Analysis
Step 1: Let V is mapped to the ith code vector ci. Compute msei(V) & Ei(V).
Step 2: Carry out Step 3 and 4 if V is a non-cluster vector.
Step 3: Perform DCT on Ei(V) and ci to obtain Ei’(V) and ci’ respectively.
Step 4: Encode Ei’(V) through entropy coding with respect to ci’.
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It is found that for a given ith code vector (Wavelet transformed vector) ci =
xi0, xi1, · · · , xil and error vector Ei = ei0, ei1, · · · , eil if the DCT of Ei and ci are
c′i = x′

i0, x′
i1, . . . , x′

il and E′
i = e′i0, e′i1, . . . , e′il respectively, then e′i0 = - x′

i0.

Algorithm 3. Encoder
Input: A 512 × 512 two dimensional Gray Image

Output: Compressed image as a bit stream
Step 1: Transform the input image by Wavelet filter into different bands
Step 2: Segment the transformed image of each band into 4 × 4 blocks
Step 3: For each block, through traversal of MACA tree, find code vector ci.
Step 4: If the input vector is not a stray vector, then store the index of ci with
flag bit set, to indicate that it is a cluster vector. Goto Step 7.
Step 5: Analyze the error vector (Algorithm 2).
Step 6: Store the encoded bit stream (Step 3) with flag bit reset.
Step 7: Store the index in a buffer.
Step 8: Repeat Step 3 to Step 7 until all the blocks are processed.

The encoded data has been stored in a bit stream. A decoder check the flag bit
and performs a reverse error analysis process on it while decompressing.

5 Experimental Results

The proposed compression technology is developed for human portrait. A large
number of test cases are considered. A few of them are reported in Table 1.
The results depict that the quality of decompressed image is comparable with

(a) The Original image

(b) The Decompressed image

Fig. 4. Result1: compression 91%

(a) The Original image

(b) The Decompressed image

Fig. 5. Result2: compression 91%
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that of JPEG 2000 [7] in terms of PSNR for a fixed compression ratio. However,
the main achievement of the scheme is it performs faster compression [9]. Fig.4
and Fig.5 display the original and reconstructed images from our CA based
compression/decompression scheme for comparison.

Table 1. Comparison of results at 91% cmpression ratio

Image PSNR PSNR
File of CA Scheme of Jpeg2000
face1 42.59 42.09
face2 42.54 42.00
face3 43.04 43.20
face4 42.28 42.97
face5 43.60 43.14
face6 42.46 42.44

6 Conclusion

This paper presents a Cellular Automata (CA) based still image compression
technology on transformed data. The CA based transforms have been employed
for low cost on-line compression to support efficient data transmission with de-
sired level of image quality.
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Abstract. This paper presents an analytical solution for Density Clas-
sification Task (DCT) with an n cell inhomogeneous Cellular Automata
represented by its Rule Vector (RV) <R0R1R2 · · · Ri · · · Rn−1>, where
rule Ri is employed on ith cell (i=0,1,2,· · ·(n-1)). It reports the Best Rule
Vector (BRV) for solution of DCT. The concept of Rule Vector Graph
(RVG) has provided the framwork for the solution. RVG derived from
the RV of a CA can be analyzed to derive the Best Rule Vector (BRV)
consisting of only rule 232 and 184 (or 226) for 3-neighborhood CA and
their equivalent rules for k-neighborhood CA (k>3). The error analysis
of the solution has been also reported.

Keywords: Rule Vector (RV), Rule Vector Graph (RVG), Best Rule
Vector (BRV), Rule Min Term (RMT).

1 Introduction

Researchers [4-9] have employed evolutionary computation schemes to arrive at
the desired CA for solution of DCT on sample data sets of 149 bit (or higher
size) patterns. The current paper reports an analytical formulation for CA based
solution of DCT for n bit patterns with k-neighborhood CA (k=3,5,7,· · ·). An
error analysis has been also presented for the solution derived. The solution has
been formulated from the analysis of the Rule Vector Graph (RVG) derived
from the Rule Vector (RV) <R0R1 · · ·Ri · · ·Rn−1> of an n cell inhomogeneous
CA, where Rule Ri is employed in the ith cell (i=0,1,· · ·(n-1)). Analysis of CA
behavior based on its RVG is next briefly introduced. Periodic boundary CA is
employed here for solution of DCT.

2 Derivation of Rule Vector Graph (RVG) from the Rule
Vector (RV) of a CA

The next state function of 3-neighborhood CA cell, as defined in Table 1, can be
represented as a rule [2]. It represents 23 = 8 possible present states of 3 neighbors

S. El Yacoubi, B. Chopard, and S. Bandini (Eds.): ACRI 2006, LNCS 4173, pp. 147–156, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



148 N.S. Maiti, S. Munshi, and P.P. Chaudhuri

Table 1. Rule Min Term (RMT) of a Three variable Boolean Function Representing
Truth Table of Sample Rule

Present states of 3-neighbours 111 110 101 100 011 010 001 000 Rule
(i − 1), i, and (i + 1) cells T(7) T(6) T(5) T(4) T(3) T(2) T(1) T(0) Number
(Minterms of a 3 variable (7) (6) (5) (4) (3) (2) (1) (0)

boolean function)
1 1 1 0 1 0 0 0 232

Next state of ith cell 1 0 1 1 1 0 0 0 184
1 1 1 0 0 0 1 0 226

of (i-1), i, and (i+1) cells. Each of the eight entries (3 bit binary string) repre-
sents a Minterm of a 3 variable boolean function for a 3-neighborhood CA cell.
In subsequent discussions, each of the 8 entries in Table 1 is referred to as a Rule
Min Term (RMT). The set of all the 8 minterms is noted as T={T(m)},(m=0
to 7); a single RMT is denoted as T(m), while in figures it is simply noted as
m for clarity of the diagram. Each of the next three rows of Table 1 shows the
next state (0 or 1) of ith cell. A few definitions are next introduced.

Definition 1: Attractor - A cycle in the STG is called an attractor.

Definition 2: Self-loop Attractor (SLA) - A Self Loop State (SLS) with a cycle
of length 1 is referred to as SLA. The states 0 and 7 are the SLAs in Fig 1.

Definition 3: Attractor Basin: The set of the states that converge to an attrac-
tor cycle form an Attractor Basin. For example in Fig 1, the states 1,2,4 and 0
form an attractor basin with 0 as the attractor while the remaining states form
another basin with 7 as the attractor. Both ’0’ and ’7’ are SLAs.

Definition 4: 0-RMT, 1-RMT - For a specific CA rule (Table 1), the next
state of ith cell is 0 for a subset of RMTs while for other subset it is 1. Thus
a CA rule divides the RMTs into two subsets. These two subsets of RMTs
is referred to as 0-RMT and 1-RMT of a CA Rule. For rule 184 (Table 1)
T(7),T(5),T(4),T(3) are the 1-RMTs while the remaining 4 are the 0-RMTs. The
symbol T(T={T(0) to T(7)}) represents all the 8 RMTs of a 3-neighborhood
CA cell. The {T i

bi
} ∈ T represents a subset of RMTs for which the next state

value of ith cell is bi ∈ {0, 1}. While T i refers to a single RMT, {T i} represents
a subset of RMTs corresponding to its ith cell.

2.1 A CA State Expressed as RMT String

A state of n cell CA represented by its binary string < b0b1 · · · bi · · · bn−1 > can
also be expressed as RMT string <T 0T 1 · · ·T i · · ·T n−1> where T i ∈ T and T i

=<bi−1bibi+1>; thus T i denotes the decimal value of the bit string <bi−1bibi+1>

where bi−1, bi, bi+1 represents the current state of (i − 1)th, ith, (i + 1)th cell
respectively. In a periodic boundary n cell CA, T 0 = bn−1b0b1 and T n−1=
bn−2bn−1b0.



An Analytical Formulation for CA Based Solution of DCT 149

Definition 5: Compatible RMT Pair - A pair of RMTs T i and T i+1 in a RMT
string < · · ·T i−1T iT i+1 · · · > (where T i ∈ T, T i = bi−1bibi+1, and T i+1 =
b́ib́i+1b́i+2) are compatible if bi = b́i and bi+1 = b́i+1. T(2) and T(5) in the string
< · · ·T (2)T (5) · · · > is a compatible pair since T(2) = 010 and T(5) =101.

Definition 6: Valid RMT string - A string of n RMTs <T 0T 1 · · ·T i · · ·T n−1>
is a valid string if each pair T i and T i+1 is a compatible RMT pair.

2.2 Rule Vector Graph (RVG)

The RVG of an n cell CA has n interconnected subgraphs. The ith(i=0 to (n-1))
subgraph corresponds to the one generated for the rule Ri employed on the ith

cell. It consists of a set of input nodes and output nodes connected by directed
edges (Fig 2) as defined below. The output nodes of ith subgraph serve as the
input nodes of (i + 1)th subgraph generated for rule Ri+1.

Definition 7: Input Node - Each of the ith subgraph input nodes V i
1 , V i

2 , · · ·
represent a subset of RMTs, {V i

xi
} ⊂ T=(T(0) to T(7)); xi=1,2,· · ·. The num-

ber of RMTs in the subset is assigned as node weight. The RMTs covered by
a specific node depends on (i − 1)th subgraph. Such a RMT corresponds to the
binary string <bi−1bibi+1>, where bi−1,bi, and bi+1 represents the current state
of (i − 1)th, ith, and (i + 1)th cells.

Definition 8: Edge of the ith subgraph - The directed 0-edge and 1-edge outgo-
ing from an input node of ith subgraph refer to 0-RMT {T i

0} and 1-RMT {T i
1}

respectively as per the rule Ri employed on the ith cell. The corresponding 0-
RMTs and 1-RMTs of input node are assigned as the weight on respective edges.

Definition 9: ith subgraph Output Node ((i + 1)th subgraph input node) - The
successor nodes at the end of the edges are referred to as output nodes rep-
resented by {V i+1

xi+1
} ⊂ T, xi+1 = 1, 2, · · ·. The output nodes are derived out of

RMTs assigned as the edge weight. For the binary pattern < bi−1bibi+1> of each
such RMT on the edge weight, the left bit bi−1 is deleted while appending 0 and
1 bits (as bi+2 bit) to the string to derive two RMTs on the output node. That
is, all possible 8 RMTs of (i + 1)th cell (represented by the string <bibi+1bi+2>)
are grouped as per the weight assigned on the edges of ith subgraph to constitute
output nodes which also serve as input nodes of level (i + 1)th subgraph. The
detailed explanation of the derivation for each of RMTs is reported in Table 2.

Definition 10: Root Node (RN) and Sink Node (SN) - The RN is the input node
of the 0th subgraph, while the SN is the output node of the (n − 1)th subgraph.
Both the RN and SN of a periodic boundary CA is the node {T(0) to T(7)}
containing all possible RMTs.

2.3 Forward Traversal

This section reports the scheme for identification of all the SLAs (Defn 2) of
a CA in linear time through forward traversal of its RVG. This generates the
successor state B of A. Algorithm is omitted due to space constraint.
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Table 2. Derivation of output nodes in a sub-graph from the RMTs noted as edge
weight (Fig 2)

A RMT in {T i
bi

} represented by the bit string <bi−1 bi bi+1> A RMT in the node {V
i+1
xi+1

},

(illustrated as edge weight w(eab) on the edge between represented by the bit string <bi bi+1 bi+2>

input node Va and output node Vb in Fig 2)
T(0)(000) and T(4)(100) T(0)=000(0) and T(1)=001(1)
T(1)(001) and T(5)(101) T(2)=010(2) and T(3)=011(3)
T(2)(010) and T(6)(110) T(4)=100(4) and T(5)=101(5)
T(3)(011) and T(7)(111) T(6)=110(6) and T(7)=111(7)

011

101

6

5

3

7111

110

000

001

010

100

0

1

2

4

Note : 0(000) and 7(111) are two SLAs

Fig. 1. State transition behaviour of a 3 cell periodic boundary CA <232 232 232>

Each state transition in the STG of Fig 3(a) is representd by a path from
Root Node to Sink Node of its RVG (Fig 3(b)). The backward traversal with
state B as input generates its previous state A.

Identification of Self-Loop Attractors (SLAs) The following lemma char-
acterizes the path of an SLA (Defn. 1) in the RVG of a CA during its forward
traversal.

Lemma 1. If for each ith (i=0 to (n-1)) level of RVG of a CA, an edge with
weight {{T i

bi
}/bi} exists where (a) for T i

biq́i
∈ {T i}, T i

biq́i
= < ai−1aiai+1 >

and ai = bi · · · · · ·(1) and (b) T i is compatible with T i−1 then the state B =
<b0b1 · · · bn−1> is a SLA.

The proof is simple & hence omitted.

3 Solution of DCT with Single CA

DCT accepts a binary string of n-bits and generates all 0’s or all 1’s state as
output. If density of 0’s is more than that of 1’s, it outputs all 0’s state, else
all 1’s state. For the CA based solution of DCT, we need a CA that has two
attractor basins (Defn. 2) - one basin (referred to as 0-basin) with all 0’s state as
the SLA while the other one (1-basin) with all 1’s state as the SLA. The states
in 0-basin (1-basin) should have more number of 0’s (1’s).

Definition 11: Best Rule Vector (BRV) - The CA Rule vector (RV) which
performs DCT with minimum error. The STG for the BRV should have (i) only



An Analytical Formulation for CA Based Solution of DCT 151

i+1
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W(e    )={4,6}/1db

W(e    )={1,3}/1ac

VdVa

Vb
Vc

VaNote: RVG for Rule 90 for two input nodes V
i
1{ } = Vdand= = Vi

2
{ }= {4,5,6,7}{0,1,2,3}

V
i+1

1Vbgenerating two output nodes = Vc V2
i+1{ }={0,1,4,5},and = = {2,3,6,7}

Rule 90 (01011010)

i   level input nodes
th

i   level input nodes
th i

{V   }={0,1,2,3}1

W(e    )={0,2}/0ab

i+1   level input nodes
  th

i   level output nodes
th

i
{V   }={4,5,6,7}2

W(e    )={5,7}/0dc

i+1
{V     }={2,3,6,7}2

Fig. 2. The subgraph for rule Ri = 90

two SLAs with all 0’s (0· · ·0) and all 1’s (1· · ·1) states; (ii) no attractor cycle of
length greater than 1; and (iii) coverage of patterns with more than 50 % of 1’s
(0’s) by 0-basin (1-basin) should be minimum.

For 3-bit patterns, the BRV for 3-neighborhood CA (Fig 1) is the homoge-
neous RV <232 232 232> with Majority Rule 232 (Table 1) applied on each
cell. However DCT on 5 bit patterns with homogeneous RV<232 232 232 232
232> is not the BRV for 5 bit CA. The STG for the CA, as shown in the
STG of Fig 3(a), has the states 0(00000) and 31(11111) as the SLAs. In addi-
tion, 3(00011), 6(00110), 7(00111), 12(01100), 14(01110), 17(10001), 19(10011),
24(11000), 25(11001), 28(11100) are also SLAs which never reach the attractor
0 or 31 and hence lead to error so far as DCT is concerned. All the SLAs can
be identified by forward traversal of the RVG of Fig 3(b). From the analysis of
the non all 0’s/1’s SLAs, it can be observed that the states having minimum of
two consecutive 0’s (1’s) with majority 1’s (0’s) are SLAs because two consec-
utive cells having 0’s (1’s) are locally 0-major (1-major) for the majority rule
232. Consequently, all such states are SLAs for the homogeneous CA <232 232
232 232 232>. In order to remove such error instances we proceed to design
inhomogeneous CA for DCT with alternative rules in addition to the majority
rule 232. For the first alternative rule (Rule 184) (Table 1), the next state values
for RMT 6(110) with two consecutive 1’s and RMT 4(100) with consecutive 0’s
are the inverted values of the corresponding entries (Table 1) for rule 232. In an
identical manner rule 226 can be derived by inverting the next state for RMT 3
(011 with two consecutives 1’s ) and 1 (001 with two consecutive 0’s). Introduc-
tion of rule 184 (or 226) in place of rule 232 for one cell reduces the number of
errors from 10 to 6 for the inhomogeneous CA <232 232 232 232 184> - 4 errors
due to wrong SLAs 17(10001), 19(10011), 24(11000), and 25(11001), while two
other errors due to wrong coverage of states - 7(00111) covered by 0-basin and
12(01100) covered by the 1-basin. Identical results can be derived by replacing
rule 184 by rule 226. The rest of the paper shows the result with rule 184 only.
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Fig. 3. State Transition Graph of 5 cells 3-neighborhood Periodic Boundary CA with
rule Vector<232 232 232 232 232>

3.1 Analysis of Inhomogeneous CA Employing Rules 232 and 184

In the context of earlier discussions, the analysis of this sub-section conforms
that there should be just one cell with rule 232 and the remaining cells with rule
184 in the inhomogeneous periodic boundary CAs to arrive at the BRV (Best
Rule Vector). It has been shown that the CAs with rule 232 applied on more
than one cell results in error due to non-all 0’s/1’s SLAs or attractor cycle of
length greater than 1. The patterns corresponding to each such state is in error
so far as DCT is concerned. The properties of Rule Vector Graph (RVG), used
for this analysis are formalized in next three lemmas. The formal proof of these
results can be derived from the analysis of the RVG and not presented for space
constraint. An outline of the proof of such results is noted here. The STG and
RVG for the 5 cell CA <232 184 184 184 184> is shown in Fig 4. The RVG
has two lanes Lane-0 with edges having weight {T i

0}/0 while Lane-1 has edges
{T i

1}/1. The edges between Lane-0 and Lane-1 are referred to as cross-edges.
In general there are two sections - one with cells having rule 184 and other one
employing rule 232. The conditions of Lemma 1 get satisfied for each edges of
Lane-0 and Lane-1 and thereby generating all 0’s and all 1’s SLAs. RMT T(0),
T(1), T(3), T(7) of rule 184 satisfy condition (a) of Lemma 1, while RMT T(0),
T(1), T(3), T(4), T(6), T(7) of rule 232 satisfy the condition. Further, RMT
pairs <T(6), T(4)>, <T(7), T(6)>, and <T(4), T(0)> are valid RMT pairs in
the path of RVG involving cross-edges. The path for any non all 0’s/1’s if it
exists, utilizes cross-edge.
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Lemma 2. An n cell CA having rule vector <184 · · ·184 232 232 184 · · ·184>
with two consecutive cells configured with rule 232 and remaining cells employing
rule 184 has SLAs in addition to all 0’s/1’s states.

Lemma 3. Number of SLAs in a CA varies directly with the number of consec-
utive cells employing rule 232 in the RV of the CA.

Hence the CA Rule Vector with consecutive Rule 232 (in any arbitrary position)
will generate extra SLAs in addition to all 0’s/1’s state, thereby violating the
basic criteria (Definition 11(i)) of Best Rule Vector (BRV) for solution of DCT
problem.

Lemma 4. An n cell CA with rule 232 employed on two non-consecutive cells
and rule 184 on remaining cells has a cycle of length greater than 1 in its State
Transition Graph.

3.2 Best Rule Vector (BRV)

This subsection establishes the fact that the best rule vector for 3 neighborhood
CA is the one that employs rule 232 only in one cell and rule 184 in remaining
cells. The next theorem utilizes the earlier results to establish the BRV. Only an
outline of the proof is noted for shortage of space.
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Fig. 4. State Transition Graph (STG) and RVG of 5 cells 3-neighborhood Periodic
boundary CA with Rule Vector <232 184 184 184 184>
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Theorem 5. An n cell 3-neighborhood periodic boundary CA with rule vector
<232 184 · · ·184> is the best rule vector for DCT on n bit patterns.

Proof. In order to prove that the RV is the BRV we need to ensure that (a) there
are no SLAs other than all 0’s/1’s state; (b) there is no cycle of length greater
than 1; and (c) number of errors due to coverage of a state by a wrong basin is
minimum. Each of these issues are treated separately. (a) In order to generate
SLAs other all 0’s/1’s states, it can be shown that SLA other than all 0’s/1’s
states can be generated if cross edge can be inserted between lane-1 to lane-0
with RMT 6 followed by RMT 4 with rule 232 employed on both the cells. But in
this rule vector rule 232 is employed only on one cell. So no SLAs other than all
0’s/1’s with RMT <0· · ·0> and <7· · ·7> get generated. (b) Generation of a cycle
of length 2 demands that there exists a section of cells with rule 184 and rule
232 on either end of this section. Since there exists only one cell with rule 232,
no cycle of length 2 can be generated with the RV. Further, from the analysis
of the RVG of Fig 4(b) with RV < 232 184 184 184 184 > and by induction it
can be shown that there is no cycle of length greater than 1. (c) Error occurs
due to coverage of pattern by the wrong basin. Due to presence of 184 which
is not the local Best Rule (BR) for DCT in the rule vector, such errors occur.
We made changes of the next state value in minimum number of RMTs (RMT
6 and RMT 4) of the majority rule 232 (BR) to generate rule 184. Minimum
changes in BR 232 to derive 184 result in minimum error. So Best Rule Vector
(BRV) is <184 · · ·184 232 184 · · ·184> for 3-neighborhood CA.

4 Error Analysis of 3-Neighborhood BRV CA

In this section we will derive an expression to calculate the number of errors for
3-neighborhood n-cell CA <232 184 · · ·184>. There are two categories of error:
Primary Error (PE) and Secondary Error( SE).

For an n cell CA total number of PEs is given by,

NPE = 2 ∗
n/2−2∑

i=0

Cn−3
i (2)

(II) Secondary Error (SE)
There are states which have more no of 0’s (1’s) and not have RMT 6(4) in 0th

cell configured with rule 232. However in intermediate time step, such a state
generates a RMT sequence where RMT 6(4) occurs in 0th position and so results
in error referred to as secondary error(SE).

NSE = 2 ∗ {
n−3∑
n/2

Cn−3
i −

n−5∑
i=n/2−2

Cn−5
i } (3)

The result for extended neighborhood CA is reported in next section.
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5 Extension for k-Neighborhood CA

We need to address following sub-task:
(1) Find majority rule for k-neighborhood CA (equivalent of rule 232 in 3-
neighborhood CA) - this is referred to as rule E232. Its derivation is simple.
(2) Find the rule E184 - equivalent of 184 in 3-neighborhood CA. Following the
basic principle of derivation of rule 184 for 3-neighborhood CA, E184 for 5 and
7 neighborhood CA have been derived and displayed in Table 3.
(3) Error analysis - implemented following the same principle of Primary Error
and Secondary Error as done for 3-neighborhood CA. The Table 4 displays the

Table 3. Rule E184 for 5 and 7 neighborhood

E184 ( 5 neighbourhood ) 00000001 00010100 11111101 11010111
32 entries

00000000 00000001 00000001 00010101
E184 ( 7 neighbourhood ) 00000001 00010101 00010101 01010100

128 entries 11111111 11111101 11111101 11010101
11111101 11010101 11010101 01010111

Table 4. Results of DCT On n Bit Patterns ( n= 15, 19, 21, 23, 25) With the BRV of
k-neighborhood CA ( k=3, 5, 7)

No. of bits 3-neighborhood 5-neighborhood 7-neighborhood
% of correct result % of correct result % of correct result

15 77.41 78.43 82.64
19 74.21 74.87 78.87
21 72.96 73.56 77.03
23 71.88 72.33 75.73
25 70.93 71.34 74.62

Table 5. Sample Results On n Bit (n=49, 99, 149, 199) Randomly Generated patterns
with 40% to 60% 1’s with 7-neighborhood BRV

No. of bits % of 1’s in n bit patterns, % of patterns displaying correct result
49 (40%, 92.25) (45%, 86.75) (50%, 70.50) (55%, 84.50) (60%, 90.75)
99 (40%, 90.75) (45%, 86.25) (50%, 68.25) (55%, 85.25) (60%, 89.75)
149 (40%, 88.25) (45%, 82.50) (50%, 62.50) (55%, 83.75) (60%, 89.75)
199 (40%, 88.00) (45%, 85.50) (50%, 63.00) (55%, 85.50) (60%, 87.75)

results on n bit k-neighborhood CAs (k=3,5,7). The results have been derived
by running BRV (E232 E232 · · ·(k/2 times) E184 E184 · · · E184 (for rest of the
cells)) on 2n patterns exhaustively. The number of patterns for which the BRV
shows the correct results and its percentage are tabulated. The Table 5 shows
the sample results of running BRV with 7-neighborhood CA on n bit patterns
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(n = 49, 99,149,199). The population of 1’s in the sample experimental patterns
is kept within 40 to 60 %. Percentage of 1’s in the sample patterns, and percent-
age of correct result have been tabulated. We conform that the percentage of
correct DCT depends on percentage of 1’s and also location of 1’s in the exper-
imental patterns. Percentage of correct results, as expected, is minimum with
50% of 1’s in the patterns.

6 Conclusion

This paper reports an analytical formulation for solution of DCT problem with a
single non-homogeneous CA. Rule Vector Graph (RVG) introduced in this paper
has provided the framework for the solution of DCT and it reveals indication of
its enormous utility in solving some well known critical problems.
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Abstract. In 1994, Yunès [19] began to explore 3n-step firing squad syn-
chronization algorithms and developed two seven-state synchronization
algorithms for one-dimensional cellular arrays. His algorithms were so in-
teresting in that he progressively decreased the number of internal states
of each cellular automaton. In this paper, we propose a new symmetri-
cal six-state 3n-step firing squad synchronization algorithm. Our result
improves the seven-state 3n-step synchronization algorithms developed
by Yunès [19]. The number six is the smallest one known at present in
the class of 3n−step synchronization algorithms. A non-trivial and new
symmetrical six-state 3n-step generalized firing squad synchronization
algorithm is also given. In addition, we study a state-change complexity
in 3n-step firing squad synchronization algorithms. We show that our
algorithms have O(n2) state-change complexity, on the other hand, the
thread-like 3n-step algorithms developed so far have O(n log n) state-
change complexity.

1 Introduction

We study a synchronization problem that gives a finite-state protocol for syn-
chronizing a large scale of cellular automata. The synchronization in cellular
automata has been known as a firing squad synchronization problem since its
development, in which it was originally proposed by J. Myhill to synchronize all
parts of self-reproducing cellular automata [9]. The firing squad synchronization
problem has been studied extensively for more than 40 years [1-5, 7-12, 14-19].

The first synchronization algorithm is a 3n-step algorithm developed by Min-
sky and MacCarthy [8]. The optimum-time synchronization algorithm was de-
vised first by Goto [5]. Afterwards, Waksman [18], Balzer [1], Gerken [4] and
Mazoyer [7] also developed an optimum-time algorithm and reduced the number
of states realizing the algorithm, each with 16, 8, 7 and 6 states.

On the other hand, the 3n-step algorithm is a simple and straightforward
one that exploits a parallel divide-and-conquer strategy based on an efficient
use of 1/1- and 1/3-speed of signals. After Minsky and MacCarthy [8] gave
an idea for designing the 3n-step synchronization algorithm, Fischer [3] imple-
mented the 3n-step algorithm, yielding a 15-state implementation, respectively.

S. El Yacoubi, B. Chopard, and S. Bandini (Eds.): ACRI 2006, LNCS 4173, pp. 157–168, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. A one-dimensional cellular automaton
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Fig. 2. A time-space diagram for finite-
width thread-like 3n-step firing squad
synchronization algorithm

In 1994, Yunès [19] began to ex-
plore the 3n-step firing squad syn-
chronization algorithms and developed
two seven-state synchronization algo-
rithms. His algorithms were so in-
teresting in that he progressively de-
creased the number of internal states
of each cellular automaton.

In this paper, we propose several
new symmetrical six-state 3n-step fir-
ing squad synchronization algorithms
for one-dimensional cellular arrays.
Our result improves the seven-state
3n-step synchronization algorithms
developed by Yunès [19]. The num-
ber six is the smallest one known
at present in the class of 3n−step
synchronization algorithms. An impor-
tant key idea is to increase the num-
ber of cells being active during their
computation. A non-trivial and new
symmetrical six-state 3n-step general-
ized firing squad synchronization algo-
rithm is also developed. In addition,
we study a state-change complexity in
3n-step firing squad synchronization
algorithms. We show that our algo-
rithms have O(n2) state-change com-
plexity, on the other hand, the thread-
like 3n-step algorithms developed so
far have O(n logn) state-change com-
plexity.

2 A Symmetrical Six-State Synchronization Algorithm

2.1 Firing Squad Synchronization Problem

Figure 1 shows a finite one-dimensional cellular array consisting of n cells. Each
cell is an identical (except the border cells) finite-state automaton. The array
operates in lock-step mode in such a way that the next state of each cell (except
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border cells) is determined by both its own present state and the present states of
its left and right neighbors. All cells (soldiers), except the left end cell (general),
are initially in the quiescent state at time t = 0 with the property that the next
state of a quiescent cell with quiescent neighbors is the quiescent state again.
At time t = 0, the left end cell C1 is in the fire-when-ready state, which is the
initiation signal for the array. The firing squad synchronization problem is to
determine a description (state set and next-state function) for cells that ensures
all cells enter the fire state at exactly the same time and for the first time. The
set of states and the next-state function must be independent of n.

2.2 A Class of 3n-Step Synchronization Algorithms

The 3n-step algorithm is an interesting class of synchronization algorithms due
to its simplicity and straightforwardness and it is important in its own right in
the design of cellular algorithms. Figure 2 shows a time-space diagram for the
well-known 3n-step firing squad synchronization algorithm. The synchronization
process can be viewed as a typical divide-and-conquer strategy that operates in
parallel in the cellular space. An initial ”General” G, located at left end of the
array of size n, generates two special signals, referred to as a-signal and b-signal,
which propagate in the right direction at a speed of 1/1 and 1/3, respectively. The
a-signal arrives at the right end at time t = n−1, reflects there immediately, then
continues to move at the same speed in the left direction. The reflected signal is
referred to as r-signal. The b- and the r-signals meet at a center cell(s), depending
on the parity of n. In the case that n is odd, the cell C�n/2 becomes a General
at time t = 3 n/2! − 2. The General is responsible for synchronizing both its
left and right halves of the cellular space. Note that the General is shared by the
two halves. In the case that n is even, two cells C�n/2 and C�n/2+1 become the
next General at time t = 3 n/2!. Each General is responsible for synchronizing
its left and right halves of the cellular space, respectively.

Thus at time

t =

{
3 n/2! − 2 n: odd
3 n/2! n: even,

(1)

the array knows its center point and generates one or two new General(s) G1.
The new General(s) G1 generates the same 1/1- and 1/3-speed signals in both
left and right directions and repeat the same procedures as above. Thus, the
original synchronization problem of size n is divided into two sub-problems of
size  n/2!. In this way, the original array is split into equal two, four, eight, ...,
subspaces synchronously. In the last, the original problem of size n can be split
into small sub-problems of size 2. Most of the 3n-step synchronization algorithms
developed so far [3, 8, 19] are based on similar schemes.

2.3 Six-State Implementation: A1

In the design of 3n-step synchronization algorithms, what is important is to
find a center cell(s) of the cellular space to be synchronized. How can we imple-
ment those a-, b- and r-signals as a six-state transition table? In the 15-state
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*
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Q R P Z
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R R M M

Z P R R

M Z M M R M

*
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Fig. 3. A five-state
transition table R0

for finding a center
cell(s) of cellular ar-
rays

1 2 3 4 5 6 7 8
0 Q Q Q P P Q Q Q
1 Q Q P Z Z P Q Q
2 Q P R Z Z R P Q
3 P R R Q Q R R P
4 Z M R Q Q R M Z
5 Q Z Z Q Q Z Z Q
6 Q P P Q Q P P Q

1 2 3 4 5 6 7 8 9 10
0 Q Q Q Q P P Q Q Q Q
1 Q Q Q P Z Z P Q Q Q
2 Q Q P R Z Z R P Q Q
3 Q P R R Q Q R R P Q
4 P R M R Q Q R M R P
5 Z M R Z Q Q Z R M Z
6 Q Z R Q Q Q Q R Z Q
7 Q Q P Q Q Q Q P Q Q

1 2 3 4 5 6 7 8 9 10 11
0 Q Q Q Q Q P Q Q Q Q Q
1 Q Q Q Q P Z P Q Q Q Q
2 Q Q Q P R Z R P Q Q Q
3 Q Q P R R Q R R P Q Q
4 Q P R M R Q R M R P Q
5 P R M R Z Q Z R M R P
6 Z M R R Q Q Q R R M Z
7 Q Z M R Q Q Q R M Z Q
8 Q Q Z Z Q Q Q Z Z Q Q
9 Q Q P P Q Q Q P P Q Q

1 2 3 4 5 6 7 8 9
0 Q Q Q Q P Q Q Q Q
1 Q Q Q P Z P Q Q Q
2 Q Q P R Z R P Q Q
3 Q P R R Q R R P Q
4 P R M R Q R M R P
5 Z M R Z Q Z R M Z
6 Q Z R Q Q Q R Z Q
7 Q Q P Q Q Q P Q Q

1 2 3 4 5 6 7 8 9 10 11
0 P Q Q Q Q Q Q Q Q Q Q
1 Z P Q Q Q Q Q Q Q Q Q
2 Z R P Q Q Q Q Q Q Q Q
3 Q R R P Q Q Q Q Q Q Q
4 Q R M R P Q Q Q Q Q Q
5 Q Z R M R P Q Q Q Q Q
6 Q Q R R M R P Q Q Q Q
7 Q Q R M R M R P Q Q Q
8 Q Q Z R M R M R P Q Q
9 Q Q Q R R M R M R P Q

10 Q Q Q R M R M R M R P
11 Q Q Q Z R M R M R M Z
12 Q Q Q Q R R M R M Z Q
13 Q Q Q Q R M R M Z Q Q
14 Q Q Q Q Z R M Z Q Q Q
15 Q Q Q Q Q R Z Q Q Q Q
16 Q Q Q Q Q P Q Q Q Q Q

1 2 3 4 5 6 7 8 9 10 11 12
0 P Q Q Q Q Q Q Q Q Q Q Q
1 Z P Q Q Q Q Q Q Q Q Q Q
2 Z R P Q Q Q Q Q Q Q Q Q
3 Q R R P Q Q Q Q Q Q Q Q
4 Q R M R P Q Q Q Q Q Q Q
5 Q Z R M R P Q Q Q Q Q Q
6 Q Q R R M R P Q Q Q Q Q
7 Q Q R M R M R P Q Q Q Q
8 Q Q Z R M R M R P Q Q Q
9 Q Q Q R R M R M R P Q Q

10 Q Q Q R M R M R M R P Q
11 Q Q Q Z R M R M R M R P
12 Q Q Q Q R R M R M R M Z
13 Q Q Q Q R M R M R M Z Q
14 Q Q Q Q Z R M R M Z Q Q
15 Q Q Q Q Q R R M Z Q Q Q
16 Q Q Q Q Q R M Z Q Q Q Q
17 Q Q Q Q Q Z Z Q Q Q Q Q
18 Q Q Q Q Q P P Q Q Q Q Q

Fig. 4. Snapshots for searching for a center cell(s)

implementation given in Fischer [3], those signals are represented as thread-like
signals of width 1. Yunès [19] represented them as thread-like signals of width
2 or 3, thus decreasing the number of states to seven. In addition, a triangle
area circled by a-, b-, and r-signals in the time-space diagram in Figure 2 plays
an important role in finding the center cell(s). We call the area zone T . In the
implementations of Fischer [3] and Yunès [19], all cells in zone T keep quiescent
state and are always inactive during the computations.

Now we are going to describe our six-state implementation. A key idea for
our six-state implementation is to make all cells inside the zone T active. It will
be shown that five-state cellular automaton can find the center cell(s).
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Fig. 5. Snapshots for synchronizing an array of size 2

Z

Q P R Z M *

Q Q P Q

P Z Z

R Q Q Q Q

Z P Z Q F Q F

M Q Q Q Q

* Z Q F Q

L    R

State P

Q P R Z M *

Q Z Z R R

P Z Z Z

R R Z Z Z

Z R Z Z Z

M

* Z Z Z

L R

StateQ

Q P R Z M *

Q Q P Q Q Q

P P P P

R Q Q

Z Q Q Q

M

* Q P Q Q

L R

State

M

Q P R Z M *

Q

P

R R Z

Z Z

M

*

L R

State R

L R Q P R Z M *

Q R P Z

P M R M

R R M M

Z P R R

M Z M M R M

*

State

Fig. 6. A state transition table R1 for the six-state 3n-step firing squad synchronization
algorithm

First, we consider a special five-state cellular automaton M0 that can find a
center cell(s) of the given array, initially staring from a configuration such that:
all of the cells, excluding a center cell(s), are in quiescent state and one or two
(depending on the parity of the array) cells located at the center of the array
are in special state P. Precisely the center cell(s) is on C�n/2, when n is odd,
and on C�n/2 and C�n/2+1, when n is even, respectively. The state P acts as a
General, which will be described later.

The next state transition function R0 of M0, shown in Fig. 3, consists of five
sub-tables for each state in {Q, P, R, Z, M}. Each state on the first row (column)
indicates a state of right (left) neighbor cell, respectively. The state ”*” acts as
a border state for the left and right end cells. Each entry of the sub-tables shows
a state at the next step. In general the border state ”*” is not counted as a
number of states.

Let St
i denote the state of Ci at time t. We have the following [Lemma 1] on

finding a center of the given array.

[Lemma 1] Let M0 be a five-state cellular automaton of lengh n with the
transition tabel R0. We assume that M0 has an initial configuration such that:

1. In the case that n is odd: S0
�n/2 = P, S0

i = Q, for any i such that1 ≤ i ≤
n, i 	=  n/2!.

2. In the case that n is even: S0
�n/2 = S0

�n/2+1 = P, S0
i = Q, for any i such that

1 ≤ i ≤ n, i 	=  n/2!, i 	=  n/2! + 1.
Then, M0 takes the following configuration.
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3. In the case that  n/2! is odd: At time t = 3 n/4!− 2, St
�n/4 = St

�3n/4 = P,
St

i = Q, for any i such that 1 ≤ i ≤ n, i 	=  n/4!, i 	=  3n/4!.
4. In the case that  n/2! is even: At time t = 3 n/4!, St

�n/4 = St
�n/4+1 =

St
�3n/4 = St

�3n/4+1 = P, S0
i = Q, for any i such that 1 ≤ i ≤ n, i 	=  n/4!, i 	=

 n/4! + 1, i 	=  3n/4!, i 	=  3n/4! + 1.

The a-signal in Fig. 2 is represented by a propagation of P state at 1/1 speed.
Any cell where the P state goes away in the right direction takes a state R and
M alternatively at each step until either the b-signal or the r-signal arrives at
the cell itself. The b-signal is represented by a propagation of 1/3 speed sig-
nal, where each cell takes a state R, R and Z for each three steps. Only during
the first three steps, i.e., for example, from time t = 0 to 2, only the Gen-
eral cell takes a state P, Z and Z at each step. The r-signal is represented as
a 1/1-speed propagation of the Z state. Figure 4 shows how the cellular au-
tomaton M0 can find the center cell(s) of the cellular space using only five
states.

Let M be cellular automaton M = {S, δ}. A local transition function δ : S3 →
S is said to be symmetric, iff for all a, b, c ∈ S, δ(a, b, c) = δ(c, b, a), where S is
the set of internal states. See [6, 13] for details. Note that the rule set R0, shown
in Fig. 3, has a principal-diagonal line-symmetry. Thus M0 is symmetric.

A General is initially located on the left end of the array in the synchronization
problem. The next [Lemma 2] is to ensure the centering of the cellular space,
staring from an initial configuration of the problem. To do so, we have to add
the following three rules:

∗ Q R → Q; ∗ Z P → Z; ∗ P Q → Z.

Those rules are used only in the first zone T . By adding those rule the set
becomes asymmetric.

[Lemma 2] Let M0 be a five-state cellular automaton of length n with the
transition table R0. We assume that M0 has an initial configuration such that:

1. S0
1 = P, S0

i = Q, 2 ≤ i ≤ n,
Then, M0 takes the following configuration:

2. In the case that n is odd: At time t = 3 n/2! − 2,
St
�n/2 = P, St

i = Q, for any i such that 1 ≤ i ≤ n, i 	=  n/2!.
3. In the case that n is even: At time t = 3 n/2!,

St
�n/2 = St

�n/2+1 = P, St
i = Q, for any i such that 1 ≤ i ≤ n, i 	=  n/2!, i 	=

 n/2! + 1.

A six-state cellular automaton M is defined as follows: The set of internal states
of M is {Q, P, R, Z, M, F}, where Q is the quiescent state, P is the General state
and F is the firing state, respectively.

By using the halving [Lemma 1, 2] recursively, the original problem is re-
duced to many small synchronization problems of size 2. In Fig. 5, we illustrate
snapshots for synchronizing an array of size 2. The left figure (in Fig. 5) shows
a General shared by two sub-arrays of size 2. The General is responsible for
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1 2 3 4 5 6 7 8 9 10 11 12 13

0 P Q Q Q Q Q Q Q Q Q Q Q Q

1 Z P Q Q Q Q Q Q Q Q Q Q Q

2 Z R P Q Q Q Q Q Q Q Q Q Q

3 Q R R P Q Q Q Q Q Q Q Q Q

4 Q R M R P Q Q Q Q Q Q Q Q

5 Q Z R M R P Q Q Q Q Q Q Q

6 Q Q R R M R P Q Q Q Q Q Q

7 Q Q R M R M R P Q Q Q Q Q

8 Q Q Z R M R M R P Q Q Q Q

9 Q Q Q R R M R M R P Q Q Q

10 Q Q Q R M R M R M R P Q Q

11 Q Q Q Z R M R M R M R P Q

12 Q Q Q Q R R M R M R M R P

13 Q Q Q Q R M R M R M R M Z

14 Q Q Q Q Z R M R M R M Z Q

15 Q Q Q Q Q R R M R M Z Q Q

16 Q Q Q Q Q R M R M Z Q Q Q

17 Q Q Q Q Q Z R M Z Q Q Q Q

18 Q Q Q Q Q Q R Z Q Q Q Q Q

19 Q Q Q Q Q Q P Q Q Q Q Q Q

20 Q Q Q Q Q P Z P Q Q Q Q Q

21 Q Q Q Q P R Z R P Q Q Q Q

22 Q Q Q P R R Q R R P Q Q Q

23 Q Q P R M R Q R M R P Q Q

24 Q P R M R Z Q Z R M R P Q

25 P R M R R Q Q Q R R M R P

26 Z M R M R Q Q Q R M R M Z

27 Q Z M R Z Q Q Q Z R M Z Q

28 Q Q Z R Q Q Q Q Q R Z Q Q

29 Q Q Q P Q Q Q Q Q P Q Q Q

30 Q Q P Z P Q Q Q P Z P Q Q

31 Q P R Z R P Q P R Z R P Q

32 P R R Q R R P R R Q R R P

33 Z M R Q R M Z M R Q R M Z

34 Q Z Z Q Z Z Q Z Z Q Z Z Q

35 Q P P Q P P Q P P Q P P Q

36 P Z Z P Z Z P Z Z P Z Z P

37 Z Z Z Z Z Z Z Z Z Z Z Z Z

38 F F F F F F F F F F F F F

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 P Q Q Q Q Q Q Q Q Q Q Q Q Q

1 Z P Q Q Q Q Q Q Q Q Q Q Q Q

2 Z R P Q Q Q Q Q Q Q Q Q Q Q

3 Q R R P Q Q Q Q Q Q Q Q Q Q

4 Q R M R P Q Q Q Q Q Q Q Q Q

5 Q Z R M R P Q Q Q Q Q Q Q Q

6 Q Q R R M R P Q Q Q Q Q Q Q

7 Q Q R M R M R P Q Q Q Q Q Q

8 Q Q Z R M R M R P Q Q Q Q Q

9 Q Q Q R R M R M R P Q Q Q Q

10 Q Q Q R M R M R M R P Q Q Q

11 Q Q Q Z R M R M R M R P Q Q

12 Q Q Q Q R R M R M R M R P Q

13 Q Q Q Q R M R M R M R M R P

14 Q Q Q Q Z R M R M R M R M Z

15 Q Q Q Q Q R R M R M R M Z Q

16 Q Q Q Q Q R M R M R M Z Q Q

17 Q Q Q Q Q Z R M R M Z Q Q Q

18 Q Q Q Q Q Q R R M Z Q Q Q Q

19 Q Q Q Q Q Q R M Z Q Q Q Q Q

20 Q Q Q Q Q Q Z Z Q Q Q Q Q Q

21 Q Q Q Q Q Q P P Q Q Q Q Q Q

22 Q Q Q Q Q P Z Z P Q Q Q Q Q

23 Q Q Q Q P R Z Z R P Q Q Q Q

24 Q Q Q P R R Q Q R R P Q Q Q

25 Q Q P R M R Q Q R M R P Q Q

26 Q P R M R Z Q Q Z R M R P Q

27 P R M R R Q Q Q Q R R M R P

28 Z M R M R Q Q Q Q R M R M Z

29 Q Z M R Z Q Q Q Q Z R M Z Q

30 Q Q Z R Q Q Q Q Q Q R Z Q Q

31 Q Q Q P Q Q Q Q Q Q P Q Q Q

32 Q Q P Z P Q Q Q Q P Z P Q Q

33 Q P R Z R P Q Q P R Z R P Q

34 P R R Q R R P P R R Q R R P

35 Z M R Q R M Z Z M R Q R M Z

36 Q Z Z Q Z Z Q Q Z Z Q Z Z Q

37 Q P P Q P P Q Q P P Q P P Q

38 P Z Z P Z Z P P Z Z P Z Z P

39 Z Z Z Z Z Z Z Z Z Z Z Z Z Z

40 F F F F F F F F F F F F F F

Fig. 7. Snapshots for the 6-state symmetrical firing squad synchronization algorithm
on 13 and 14 cells

synchronizing both two subarrays. On the other hand, each General in the right
figure (in Fig. 5) is responsible for synchronizing each left and right sub-arrays
independently. Both of them can be synchronized at exactly three steps. To
synchronize them for three steps, we add the following three rules:

∗ Z Z → F; Z Z Z → F; Z Z ∗ → F.

In Fig. 6 we give our final transition rule set for synchronizing cellular arrays
in 3n-steps. Three rules within shaded squares in the table are asymmetric due
to asymmetry of the original synchronization problem being with the general at
one left end. Figure 7 shows snapshots for the 6-state symmetrical firing squad
synchronization algorithm on 13 and 14 cells. Let T (n) be time complexity for
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synchronizing an array of size n. Then we have:

T (n) =

{
T ( n/2!) + 3 n/2! − 2 n: odd
T ( n/2!) + 3 n/2! n: even,

(2)

The recurrence equation can be expressed as T (n) = 3n+O(1) + η(n), where
η(n) is the number of odds appearing {n,  n/2!,  n/4!,  n/8!, ..., 2}. Since η(n)
is of O(logn), T (n) = 3n+O(logn). Thus we have:

[Theorem 3] There exists a 6-state symmetrical cellular automaton that can
synchronize any n cells in 3n + O(logn) steps.

3 A Symmetrical Six-State Generalized Synchronization
Algorithm

In this section, we consider a generalized firing squad synchronization problem,
in which the general can be initially located at any position on the array. The
generalized firing squad synchronization problem has been studied by several
researchers [10, 11, 12, 14, 16]. Moore and Langdon[10], Szwerinski[12] and Var-
shavsky, Marakhovsky and Peschansky [16] developed an optimum-time firing
algorithm with 17, 10 and 10 internal states, respectively, that fires n cells in
n − 2+max(k, n − k + 1) steps, where the general is located on Ck. Recently,
Umeo, Hisaoka, Michisaka, Nishioka and Maeda [14], and Settle and Simon [11]
developed an optimum-time firing algorithm with 9 states. Settle and Simon [11]
also studied a 3n-step generalized synchronization algorithm and gave a seven-
state implementation based on Mazoyer’s six-state algorithm. The algorithm was
a trivial one in a sense that an arbitrary-positioned General emits a 1/1-speed
signal to the left end to initiate the Mazoyer’s six-state optimum-time synchro-
nization algorithm. An additional new state is used for the propagation of the
signal in the construction [11].

Now we are going to design a symmetrical six-state generalized firing squad
synchronization algorithm A2 with the transition rule set R2. The rule set R2
can be obtained from R1 with the following modifications.

– The initial General ’s state P is changed by M.
– The next two rules: ∗ P Q → Z; ∗ Z P → Z are deleted from R1.
– The following rule set rg, given in Table 1, is added to R1.

A six-state cellular automaton M2 is defined as follows: The set of internal
states ofM2 is completely same as ofM such that {Q, P, R, Z, M, F}, where Q is the
quiescent state, M is the General state and F is the firing state, respectively. The
next-state transition function R2 is given in Fig. 8. Note that M2 is symmetric.

Figure 9 illustrates a time-space diagram for searching a center cell(s) of the
initial cellular space and snapshots for its 6-state implementation. Note that ,
after finishing the first halving, synchronization processes in the generalized firing
squad synchronization are completely same as of the processes of the previous
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Table 1. The rule set rg to be added to R1

Rule set rg:� �
R , Q , ∗ → Q
Q , Q , M → M
M , Q , Q → M
M , Q , ∗ → M
∗ , Q , M → M
M , P , M → P
M , P , Z → R
Z , P , M → R
M , R , ∗ → Z
∗ , R , M → Z
Q , M , Q → P
Q , M , P → M
Q , M , R → R

Q , M , M → M
Q , M , ∗ → R
P , M , Q → M
P , M , M → M
P , M , Z → Z
P , M , ∗ → Z
R , M , Q → R
R , M , M → R
R , M , ∗ → Z
M , M , Q → M
M , M , P → M
M , M , R → R
M , M , M → M

M , M , Z → Z
M , M , ∗ → Z
Z , M , P → Z
Z , M , M → Z
∗ , M , Q → R
∗ , M , P → Z
∗ , M , R → Z
∗ , M , M → Z
Q , Z , Q → P
Q , Z , P → Q
* , Z , P → Q
P , Z , Q → Q
P , Z , ∗ → Q

� �

Q

L R Q P R M Z *

Q Q P Q M Q Q

P P P P

R Q Q Q

M M M

Z Q Q Q

* Q P Q M Q

State Z

Q P R M Z *

Q P Q Q Q P

P Q Z Z Q

R Q Q Q Q

M Q Q Q Q

Z P Z Q Q F F

* Q Q Q F

State

L R

P

Q P R M Z *

Q Z Z R R

P Z Z Z

R R Z Z Z

M P R

Z R Z R Z Z

* Z Z

State

L R

M

Q P R M Z *

Q P M R M R

P M M Z Z

R R R R Z Z

M M M R M Z Z

Z Z Z Z

* R Z Z Z

State

L R

R

Q P R M Z *

Q R Z P

P M M R

R R M M

M Z M M M R Z

Z P R R

* Z

State

L R

Fig. 8. A state transition table R2 for the six-state 3n-step generalized firing squad
synchronization algorithm

synchronization problem with a General at left end. At time t = max(k, n −
k + 1) + 1 +  n/2!, a center cell(s) can be found, where n is array size and k
is the General ’s position from left end. In Fig. 10 we give some snapshots for
the 6-state generalized firing squad synchronization algorithm on 15 cells with a
General on C5.
[Theorem 4] There exists a symmetrical 6-state cellular automaton that can
solve generalized firing squad synchronization problem in max(k, n−k+1)+2n
+ O(logn) steps.

4 State-Change Complexity in 3n-Step Synchronization
Algorithms

Vollmar [17] introduced a state-change complexity in order to measure the ef-
ficiency of cellular algorithms and showed that Ω(n logn) state changes are re-
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Q Q Q Q M Q Q Q Q Q Q Q Q Q Q

Q Q Q M P M Q Q Q Q Q Q Q Q Q

Q Q M M P M M Q Q Q Q Q Q Q Q

Q M M M P M M M Q Q Q Q Q Q Q

M M M M P M M M M Q Q Q Q Q Q

Z M M M P M M M M M Q Q Q Q Q

Q Z M M P M M M M M M Q Q Q Q

Q Q Z M P M M M M M M M Q Q Q

Q Q Q Z P M M M M M M M M Q Q
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Q Q Q Q Q Q Q P Q Q Q Q Q Q Q
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t=0
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Q Q Q Q Q Q Q Q Q Q Q M Q Q Q

Q Q Q Q Q Q Q Q Q Q M P M Q Q

Q Q Q Q Q Q Q Q Q M M P M M Q

Q Q Q Q Q Q Q Q M M M P M M M

Q Q Q Q Q Q Q M M M M P M M Z

Q Q Q Q Q Q M M M M M P M Z Q

Q Q Q Q Q M M M M M M P Z Q Q

Q Q Q Q M M M M M M M R Q Q Q

Q Q Q M M M M M M M R Z Q Q Q

Q Q M M M M M M M R R Q Q Q Q

Q M M M M M M M R M R Q Q Q Q

M M M M M M M R M R Z Q Q Q Q

Z M M M M M R M R R Q Q Q Q Q

Q Z M M M R M R M R Q Q Q Q Q

Q Q Z M R M R M R Z Q Q Q Q Q

Q Q Q Z M R M R R Q Q Q Q Q Q

Q Q Q Q Z M R M R Q Q Q Q Q Q

Q Q Q Q Q Z M R Z Q Q Q Q Q Q
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Fig. 9. A time-space diagram for
searching a center of the cellular
space and snapshots for its 6-state
implementation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 Q Q Q Q M Q Q Q Q Q Q Q Q Q Q
1 Q Q Q M P M Q Q Q Q Q Q Q Q Q
2 Q Q M M P M M Q Q Q Q Q Q Q Q
3 Q M M M P M M M Q Q Q Q Q Q Q
4 M M M M P M M M M Q Q Q Q Q Q
5 Z M M M P M M M M M Q Q Q Q Q
6 Q Z M M P M M M M M M Q Q Q Q
7 Q Q Z M P M M M M M M M Q Q Q
8 Q Q Q Z P M M M M M M M M Q Q
9 Q Q Q Q R M M M M M M M M M Q

10 Q Q Q Q Z R M M M M M M M M M
11 Q Q Q Q Q R R M M M M M M M Z
12 Q Q Q Q Q R M R M M M M M Z Q
13 Q Q Q Q Q Z R M R M M M Z Q Q
14 Q Q Q Q Q Q R R M R M Z Q Q Q
15 Q Q Q Q Q Q R M R M Z Q Q Q Q
16 Q Q Q Q Q Q Z R M Z Q Q Q Q Q
17 Q Q Q Q Q Q Q R Z Q Q Q Q Q Q
18 Q Q Q Q Q Q Q P Q Q Q Q Q Q Q
19 Q Q Q Q Q Q P Z P Q Q Q Q Q Q
20 Q Q Q Q Q P R Z R P Q Q Q Q Q
21 Q Q Q Q P R R Q R R P Q Q Q Q
22 Q Q Q P R M R Q R M R P Q Q Q
23 Q Q P R M R Z Q Z R M R P Q Q
24 Q P R M R R Q Q Q R R M R P Q
25 P R M R M R Q Q Q R M R M R P
26 Z M R M R Z Q Q Q Z R M R M Z
27 Q Z M R R Q Q Q Q Q R R M Z Q
28 Q Q Z M R Q Q Q Q Q R M Z Q Q
29 Q Q Q Z Z Q Q Q Q Q Z Z Q Q Q
30 Q Q Q P P Q Q Q Q Q P P Q Q Q
31 Q Q P Z Z P Q Q Q P Z Z P Q Q
32 Q P R Z Z R P Q P R Z Z R P Q
33 P R R Q Q R R P R R Q Q R R P
34 Z M R Q Q R M Z M R Q Q R M Z
35 Q Z Z Q Q Z Z Q Z Z Q Q Z Z Q
36 Q P P Q Q P P Q P P Q Q P P Q
37 P Z Z P P Z Z P Z Z P P Z Z P
38 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
39 F F F F F F F F F F F F F F F

Fig. 10. Snapshots for the 6-state
generalized firing squad synchro-
nization algorithm on 15 cells with
a General on C5

quired for the synchronization of n cells in (2n− 2) steps.

[Theorem 5][17] Ω(n logn) state-change is necessary for synchronizing n cells.

Let S(n) be total number of state changes for synchronization algorithms on n
cells. In the case of 3n-step finite-width thread-like algorithms with time-space
diagram is shown in Fig. 2, we see that S(n) = αn+2S(n/2) = O(n logn). Thus
we have:
[Theorem 6] Any 3n-step finite-width thread-like algorithm with the time-space
diagram shown in Fig. 2 has an O(n logn) state-change complexity.
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[Theorem 7] Each linear-time 3n-step synchronization algorithm developed by
Fischer [3], Minsky and MacCarthy [8], and Yunés [19] has an θ(n logn) state-
change complexity, respectively.
As for the synchronization algorithms A1 and A2, we have S(n) = αn2 +
2S(n/2) = O(n2). Thus we have:
[Theorem 8] The six-state synchronization algorithm A1 and A2 have O(n2)
state-change complexity, respectively.

5 Conclusions

We have proposed a new symmetrical six-state 3n+O(n logn)-step firing squad
synchronization algorithm for one-dimensional cellular arrays. Our result pre-
sented is an improvement over the seven-state 3n-step synchronization algo-
rithms developed by Yunès [19]. The number six is the smallest one known at
present in the class of non-trivial 3n-step synchronization algorithms. A non-
trivial and new symmetrical six-state 3n-step generalized firing squad synchro-
nization algorithm is also given. By increasing the number of working cells from
O(n logn) to O(n2), state-efficient synchronization algorithms have been ob-
tained. In addition, a state-change complexity in 3n-step firing squad synchro-
nization algorithms is also studied. It is shown that our algorithms have O(n2)
state-change complexity, on the other hand, the finite-width thread-like 3n-step
algorithms developed so far have O(n logn) state-change complexity. Here, in the
last, we present Table 2 based on a quantitative comparison of 3n-step synchro-
nization protocols with respect to the number of internal states of each finite
state automaton, the number of transition rules realizing the synchronization
and state-change complexity.

Table 2. A comparison of 3n-step firing squad synchronization algorithms

Algorithm # States # Rules Time State- Generals’s Type Notes Ref.
complexity change position

complexity
Minsky and 13 – 3n + θn log n + c O(n log n) left thread 0 ≤ θn < 1 [8]
MacCarthy

[1967]
Fischer [1965] 15 – 3n − 4 O(n log n) left thread – [3]
Yunès I [1994] 7 105 3n ± 2θn log n + c O(n log n) left thread 0 ≤ θn < 1 [19]
Yunès II [1994] 7 107 3n ± 2θn log n + c O(n log n) left thread 0 ≤ θn < 1 [19]

Settle and 6 134 3n + 1 O(n2) right plane – [11]
Simon I [2002]

Settle and 7 127 2n − 2 + k O(n2) arbitrary plane – [11]
Simon II [2002]
this paper A1 6 78 3n + O(log n) O(n2) left plane – –
this paper A2 6 115 max(k, n − k + 1) O(n2) arbitrary plane – –

+ 2n+ O(log n)
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Abstract. In this paper, we study a trade-off between internal states
and communication bits in firing squad synchronization protocols for k-
bit communication-restricted cellular automata (CAk−bit) and propose
several time-optimum state-efficient bit-transfer-based synchronization
protocols. It is shown that there exists a 1-state CA5−bit that can syn-
chronize any n cells in 2n − 2 optimum-step. The result is interesting,
since we know that there exists no 4-state synchronization algorithm on
conventional O(1)-bit communication cellular automata. A bit-transfer
complexity is also introduced to measure the efficiency of synchronization
protocols. We show that Ω(n log n) bit-transfer is a lower-bound for syn-
chronizing n cells in (2n−2) steps. In addition, each optimum-time/non-
optimum-time synchronization protocols, presented in this paper, has an
O(n2) bit-transfer complexity, respectively.

1 Introduction

Cellular automata (CA) are considered to be a good model of complex systems in
which an infinite one-dimensional array of finite state machines (cells) updates
itself in a synchronous manner according to a uniform local rule. In the long
history of the study of CA, generally speaking, the number of internal states of
each cell is finite and the local state transition rule is defined in a such way that
the state of each cell depends on the previous states of itself and its neighboring
cells. Thus, in the finite state description of the CA, the number of communica-
tion bits exchanged in one step between neighboring cells is assumed to be O(1)
bits. However, such inter-cell bit-information is hidden under the definition of
the conventional automata-theoretic finite state description.

In the present paper, we study a firing squad synchronization problem on a
very restricted model of cellular automata, CAk−bit, for which inter-cell com-
munication at one step is restricted to k-bit, where k is any positive integer
such that k ≥ 1. We hereinafter refer to the model as k-bit CA (CAk−bit). The
number of internal states of CAk−bit is assumed to be finite in the usual sense.
The next state of each cell is determined by the present state of the cell and two
binary k-bit inputs from its left- and right-neighbor cells. A 1-bit CA model,

S. El Yacoubi, B. Chopard, and S. Bandini (Eds.): ACRI 2006, LNCS 4173, pp. 169–181, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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where k = 1, can be thought of as being one of the simplest CAs to have a low
computational complexity. On the k-bit CA we consider the firing squad syn-
chronization problem that has been studied extensively on the conventional CA
model and propose several optimum-time firing squad synchronization protocols
together with its implementation on a computer. Although many researchers
have examined various aspects of the conventional cellular automata [1-5, 7, 8,
11-14, 21-23], studies focusing on the amount of bit-information exchanged in
inter-cell communications are few. Mazoyer [6] first studied this model under
the name of CAs with channels and proposed a time-optimum firing squad syn-
chronization algorithm in which only one-bit information is exchanged. Umeo
[15] and Umeo et al. [17, 19] have studied algorithmic design techniques for
sequence generation and connectivity recognition problems on CA1−bit. In ad-
dition, Umeo and Kamikawa [16, 18] showed that infinite non-regular sequences
such as {2n|n = 1, 2, 3, ..}, {n2|n = 1, 2, 3, ..} and Fibonacci sequences can be
generated in real-time and the prime sequence in twice real-time by CA1−bit.
Worsch [24] established a computational hierarchy between one-way 1-bit CAs.

First, in Section 2, we introduce a class of bit-communication-restricted cellu-
lar automaton having k-bit inter-cell communication and define the firing squad
synchronization problem on CAk−bit. In Section 3, we propose several state-
efficient bit-transfer-based synchronization protocols for CAk−bit. It is shown
that there exists a 1-state CA5−bit that can synchronize any n cells in 2n − 2
optimum-step. A bit-transfer complexity is also introduced to measure the ef-
ficiency of synchronization protocols. We show that Ω(n log n) bit-transfer is
a lower-bound for synchronizing n cells in (2n − 2) steps. In addition, each
optimum-time/non-optimum-time synchronization protocols, presented in this
paper, has an O(n2) bit-transfer complexity, respectively. Due to space con-
straints, we do not present the detailed proofs of the theorems presented herein.

2 Cellular Automaton Having k-Bit Inter-cell
Communication

2.1 Bit-Communication-Restricted Cellular Automaton

A one-dimensional k-bit inter-cell communication cellular automaton consists of
an infinite array of identical finite state automata, each located at a positive
integer point (See Fig. 1). Each automaton is referred to as a cell. A cell at
point i is denoted by Ci, where i ≥ 1. Each Ci, except for C1, is connected to
its left- and right-neighbor cells via a left or right one-way communication link.
These communication links are indicated by right- and left-pointing arrows in

C1 C2 C3 C4 Cn

Fig. 1. One-dimensional cellular automaton having k-bit inter-cell communication links
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Fig. 1, respectively. Each one-way communication link can transmit k bits at each
step in each direction. A cellular automaton with k-bit inter-cell communication
(abbreviated by CAk−bit) consists of an infinite array of finite state automata
A = (Q, δ), where

1. Q is a finite set of internal states.
2. δ is a function, defining the next state of any cell and its binary outputs to its

left- and right-neighbor cells, such that δ: Q×{0, 1}k×{0, 1}k → Q×{0, 1}k×
{0, 1}k, where δ(p, x1, x2, ..., xk, y1, y2, ..., yk)=(q, x′

1, x
′
2, ..., x

′
k, y′

1, y
′
2, ..., y

′
k),

p, q ∈ Q, xi, x
′
i, yi, y

′
i ∈ {0, 1}, 1 ≤ i ≤ k, has the following meaning. We

assume that at step t the cell Ci is in state p and is receiving k binary
inputs xi and yi, 1 ≤ i ≤ k, from its left and right communication links,
respectively. Then, at the next step, t+1, Ci assumes state q and outputs x′

i

and y′
i, 1 ≤ i ≤ k, to its left and right communication links, respectively. Note

that k binary inputs to Ci at step t are also outputs of Ci−1 and Ci+1 at step

t. A quiescent state q ∈ Q has a property such that δ(q,

k︷ ︸︸ ︷
0, 0, ..., 0,

k︷ ︸︸ ︷
0, 0, ..., 0) =

(q,

k︷ ︸︸ ︷
0, 0, ..., 0,

k︷ ︸︸ ︷
0, 0, ..., 0).

Thus, the CAk−bit is a special subclass of normal (i.e., conventional) cellular
automata. Let N be any normal cellular automaton having a set of states Q eand
a transition function δ : Q3 → Q. The state of each cell on N depends on the
previous states of the cell and its nearest neighbor cells. This means that the total
information exchanged per one step between neighboring cells consists of O(1)
bits. By encoding each state in Q with a binary sequence of length  log2 |Q|!,
sending the sequences sequentially bit by bit in each direction via each one-way
communication link, receiving the sequences bit-by-bit again, and then decoding
the sequences into their corresponding states in Q, the CA1−bit can simulate one
step of N in  log2 |Q|! steps. This observation yields the following computational
relation between the normal CA and CA1−bit.

[Lemma 1] Let N be any normal cellular automaton having time complexity
T (n). Then, there exists a CA1−bit which can simulate N in kT (n) steps, where
k is a positive constant integer such that k =  log2 |Q|! and Q is the set of
internal states of N .

In addition, the next lemma can be stated in the case where each cell can transfer
k-bits at each step.

[Lemma 2] Let N be any s-state normal cellular automaton. Then, there exists
an s-state CAk−bit which can simulate N in real time, where k is a positive integer
such that k =  log2 s!.

2.2 Firing Squad Synchronization Problem on CAk−Bit

In this section, we study a famous firing squad synchronization problem on the
newly introduced CAk−bit model for which solution gives a finite-state protocol
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for synchronizing a large scale of cellular automata. The problem was origi-
nally proposed by J. Myhill to synchronize all parts of self-reproducing cellular
automata [8]. The firing squad synchronization problem has been studied exten-
sively in more than 40 years [1-20, 22-24].

1/1

1/2

2/7

S1

S2

Si

G

G1

G2

Gi

t = 0

t = n-1

t = 2n-2

n1 2 3 ...

w2

wi

initial

   wave

slow wave

wk

Gk

S

w1

w0

0

Fig. 2. A time-space diagram for Ma-
zoyer’s optimum-time synchronization
scheme

The firing squad synchronization
problem is formalized in terms of
the model of cellular automata. All
cells (soldiers), except the left end
cell, are initially in the quiescent
state at time t = 0 and have the
property whereby the next state of
a quiescent cell having quiescent
neighbors is the quiescent state.
At time t = 0 the left end cell
(general) is in the fire-when-ready
state, which is an initiation signal
to the array. The firing squad syn-
chronization problem is stated as
follows. Given an array of n iden-
tical cellular automata, including a
general on the left end which is acti-
vated at time t = 0, we want to give
the description (state set and next-
state function) of the automata so
that, at some future time, all of the
cells will simultaneously and, for
the first time, enter a special fir-
ing state. The set of states must be
independent of n. Without loss of
generality, we assume n ≥ 2. The
difficult part of the problem is that the same types of soldier having a fixed
number of states must be synchronized, regardless of the length n of the array.

2.3 A Brief History of the Developments of Optimum-Time Firing
Squad Synchronization Algorithms

The problem known as the firing squad synchronization problem was devised in
1957 by J. Myhill, and first appeared in print in a paper by E. F. Moore [8].
This problem has been widely circulated, and has attracted much attention. The
firing squad synchronization problem first arose in connection with the need to
simultaneously turn on all parts of a self-reproducing machine. The problem was
first solved by J. McCarthy and M. Minsky who presented a 3n-step algorithm.
In 1962, the first optimum-time, i.e. (2n − 2)-step, synchronization algorithm
was presented by Goto [4], with each cell having several thousands of states.
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Waksman [23] presented a 16-state optimum-time synchronization algorithm.
Afterward, Balzer [1] and Gerken [3] developed an eight-state algorithm and a
seven-state synchronization algorithm, respectively, thus decreasing the number
of states required for the synchronization. In 1987, Mazoyer [5] developed a six-
state synchronization algorithm which, at present, is the algorithm having the
fewest states on the conventional model of CA.

2.4 An Overview of Mazoyer’s Synchronization Algorithm

Figure 2 is a time-space diagram for Mazoyer’s optimum-time synchronization
scheme. The General G0 generates an infinite number of signals w0, w1, w2, ..,
to generate new Generals G1, G2, .., by dividing the array recursively with the
ratio 1/2. Propagation speed of the i-th signal wi, i ≥ 1 is as follows:

1/3i(1 +
i∑

l=1

2l−1/3l).

When the first signal w0 hits the right end of the array, a return r-signal is
generated that propagates at speed 1/1 in the left direction. The w1- and r-
signals meets on cell Cm, m =  n/3!, and a special mark is printed as a new
General G1. The G1 does the same procedures as G0 to the subspace between
Cm and Cn. The ith collision of the wi- and r-signals yields the ith new General
Gi. The i-th General Gi(i ≥ 2) does the same operations as G1 does. Mazoyer
[5] successfully implemented the scheme on a conventional cellular automaton
with only six states.

[Theorem 1][5] There exists a 6-state normal cellular automaton that can syn-
chronize any n cells in 2n − 2 optimum steps.

3 A Trade-Off in Firing Squad Synchronization Protocols
for CAk−bit

In this section, we present four synchronization protocols on CAk−bit where
k = 1, 2, 3 and 4. All of the protocols presented are designed on the basis of
Mazoyer’s synchronization scheme.

3.1 P1: A Non-optimum-Time Synchronization Protocol on CA1−bit

The next theorem is our first implementation of the Mazoyer’s synchronization
scheme on CA1−bit. An optimum-time implementation seems to be difficult, since
the original O(1)-bit wi-signal carries ni mod 3 with traveling at a unit-speed,
where ni is the size of the subspace for which the i-th General is responsible. To
carry two bits information: ni mod 3 on a 1-bit signal in real-time, we delay the
whole synchronization processes by one step.
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[Theorem 2] There exists a 54-state CA1−bit that can synchronize any n cells
in 2n − 1 steps.

Figure 3 (right) illustrates the snapshots of our 54-state (2n − 1)-step synchro-
nization protocol on CA1−bit. The small black triangles � and � indicate a 1-bit
signal transfer in the right or left direction, respectively, between neighboring
cells. A symbol in a cell shows internal state of the cell. For ease of understand-
ing of the synchronization processes and for the reference, we usually (below)
provide snapshots of the Mazoyer’s 6-state synchronization processes of the same
size on conventional cellular automata. See Fig. 3 (left).

3.2 P2: An Optimum-Time Six-State Synchronization Protocol on
CA2−bit

By combining [Lemma 2] and [Theorem 1], it is easily seen that there exists a
6-state CA3−bit that can synchronize n cells in 2n − 2 optimum-step. The next
theorem shows an improvement over the communication bits. Figure 4 (right)
illustrates the snapshots of our 6-state (2n−2)-step synchronization protocol on
CA2−bit.

[Theorem 3] There exists a 6-state CA2−bit that can synchronize any n cells
in 2n − 2 optimum-step.

3.3 P3: An Optimum-Time Four-State Synchronization Protocol on
CA3−bit

As for the number of internal states in firing squad synchronization protocol on
conventional cellular automata, the following three distinct states:

– quiescent state Q such that Q Q Q → Q
– general state: G, and
– firing state: F

are required in order to define the firing squad synchronization problem on con-
ventional cellular automaton. In addition, the following theorem has been estab-
lished by Balzer [1], Berthiaume [2] and Sanders [11].

[Theorem 4] [1,2,11] There is no four-state conventional cellular automata that
can synchronize any n cells in optimum-step.

The question that remains is: “What is the minimum number of states for an
optimum-time solution of the problem?”. At present, that number is five or six
on the conventional cellular automata. On the CA3−bit model, we can establish
the following theorem.

[Theorem 5] There exists a 4-state CA3−bit that can synchronize any n cells
in 2n − 2 optimum-step.

Figure 5 illustrates the snapshots of our 4-state (2n − 2)-step synchronization
protocol on CA3−bit.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 Gf Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q QWL

1 Gf Bn Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q QWL

2 Gf b0 Bn Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q QWL

3 G c0 An Bn Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q QWL

4 G b0 a1 An Bn Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q QWL

5 G c0 a2 Bf An Bn Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q QWL

6 G b0 As b0 Bf An Bn Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q QWL

7 G c0 a0 b1 Cl Bf An Bn Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q QWL

8 G b0 As b2 c1 Cl Bf An Bn Q Q Q Q Q Q Q Q Q Q Q Q Q Q QWL

9 G c0 a0 Bb1 c2 Af Cl Bf An Bn Q Q Q Q Q Q Q Q Q Q Q Q Q QWL

10 G b0 As Bb2 Cc1 a0 Af Cl Bf An Bn Q Q Q Q Q Q Q Q Q Q Q Q QWL

11 G c0 a0 b1 Cc2 a1 Bl Af Cl Bf An Bn Q Q Q Q Q Q Q Q Q Q Q QWL

12 G b0 As b2 Cc1 a2 b1 Bl Af Cl Bf An Bn Q Q Q Q Q Q Q Q Q Q QWL

13 G c0 a0 b1 Cc2 Aa1 b2 Cf Bl Af Cl Bf An Bn Q Q Q Q Q Q Q Q Q QWL

14 G b0 As b2 Ac1 Aa2 Bb1 c0 Cf Bl Af Cl Bf An Bn Q Q Q Q Q Q Q Q QWL

15 G c0 a0 b1 Ac2 Ba1 Bb2 c1 Al Cf Bl Af Cl Bf An Bn Q Q Q Q Q Q Q QWL

16 G b0 As b2 c1 Ba2 Bb1 c2 a1 Al Cf Bl Af Cl Bf An Bn Q Q Q Q Q Q QWL

17 G c0 a0 Bb1 c2 Ba1 Bb2 Cc1 a2 Bf Al Cf Bl Af Cl Bf An Bn Q Q Q Q Q QWL

18 G b0 As Bb2 c1 Ba2 Cb1 Cc2 Aa1 b0 Bf Al Cf Bl Af Cl Bf An Bn Q Q Q Q QWL

19 G c0 a0 Bb1 c2 a1 Cb2 Ac1 Aa2 b1 Cl Bf Al Cf Bl Af Cl Bf An Bn Q Q Q QWL

20 G b0 As Bb2 Cc1 a2 Ab1 Ac2 Aa1 b2 c1 Cl Bf Al Cf Bl Af Cl Bf An Bn Q Q QWL

21 G c0 a0 b1 Cc2 a1 Ab2 Ac1 Aa2 Bb1 c2 Af Cl Bf Al Cf Bl Af Cl Bf An Bn Q QWL

22 G b0 As b2 Cc1 a2 Ab1 Ac2 Ba1 Bb2 Cc1 a0 Af Cl Bf Al Cf Bl Af Cl Bf An Bn QWL

23 G c0 a0 b1 Cc2 a1 Ab2 Bc 1 Ba2 Cb1 Cc2 a1 Bl Af Cl Bf Al Cf Bl Af Cl Bf An BWL

24 G b0 As b2 Cc1 a2 b1 Bc 2 Ca1 Cb2 Cc1 a2 b1 Bl Af Cl Bf Al Cf Bl Af Cl B AWL

25 G c0 a0 b1 Cc2 Aa1 b2 c1 Ca2 Cb1 Cc2 Aa1 b2 Cf Bl Af Cl Bf Al Cf Bl B A CWL

26 G b0 As b2 Ac1 Aa2 Bb1 c2 Ca1 Cb2 Ac1 Aa2 Bb1 c0 Cf Bl Af Cl Bf Al B A C DWL

27 G c0 a0 b1 Ac2 Ba1 Bb2 c1 Ca2 Ab1 Ac2 Ba1 Bb2 c1 Al Cf Bl Af Cl B A C D QWL

28 G b0 As b2 c1 Ba2 Bb1 c2 Aa1 Ab2 Bc 1 Ba2 Bb1 c2 a1 Al Cf Bl B A C D Q QWL

29 G c0 a0 Bb1 c2 Ba1 Bb2 c1 Aa2 Bb1 Bc 2 Ba1 Bb2 Cc1 a2 Bf Al B A C D Q Q QWL

30 G b0 As Bb2 c1 Ba2 Bb1 c2 a1 Bb2 Bc 1 Ba2 Cb1 Cc2 Aa1 b0 B A C D Q Q Q QWL

31 G c0 a0 Bb1 c2 Ba1 Bb2 Cc1 a2 Bb1 Bc 2 Ca1 Cb2 Ac1 Aa2 b1 A C D Q Q Q Q QWL

32 G b0 As Bb2 c1 Ba2 Cb1 Cc2 a1 Bb2 Cc1 Ca2 Ab1 Ac2 Aa1 CWL Bn D Q Q Q Q Q QWL

33 G c0 a0 Bb1 c2 a1 Cb2 Cc1 a2 b1 Cc2 Aa1 Ab2 Ac1 Cf DWL Gg Bn Q Q Q Q Q QWL

34 G b0 As Bb2 Cc1 a2 Cb1 Cc2 Aa1 b2 Ac1 Aa2 Ab1 Cf Dw QWL Gg b0 Bn Q Q Q Q QWL

35 G c0 a0 b1 Cc2 a1 Cb2 Ac1 Aa2 b1 Ac2 Aa1 Cf Dw n2 Q Gg c0 An Bn Q Q Q QWL

36 G b0 As b2 Cc1 a2 Ab1 Ac2 Aa1 b2 Ac1 Cf Dw n2 n0 n1 G b0 a1 An Bn Q Q QWL

37 G c0 a0 b1 Cc2 a1 Ab2 Ac1 Aa2 b1 Gg Dw n2 n0 n1 n2 G c0 a2 Bf An Bn Q QWL

38 G b0 As b2 Cc1 a2 Ab1 Ac2 Aa1 CWL Gg b0 n0 n1 n2 n0 G b0 As b0 Bf An Bn QWL

39 G c0 a0 b1 Cc2 a1 Ab2 Ac1 Cf DWL G c0 A n2 n0 n1 G c0 a0 b1 Cl Bf An BWL

40 G b0 As b2 Cc1 a2 Ab1 Cf Dw QWL G b0 As B n1 n2 G b0 As b2 c1 Cl B AWL

41 G c0 a0 b1 Cc2 a1 Gg Dw n2 Q G c0 a0 Bb1 C n0 G c0 a0 Bb1 c2 B A CWL

42 G b0 As b2 Cc1 BWL Gg b0 n0 n1 G b0 As Bb2 Cc1 BWL G b0 As Bb2 c1 D C DWL

43 G c0 a0 b1 Gg AWL G c0 A n2 G c0 a0 b1 Bf AWL G c0 a0 Bb1 AWL Gg Bn QWL

44 G b0 As CWL Gg CWL G b0 As CWL G b0 As CWL Gg CWL G b0 As Af CWL Gg b0 BWL

45 G c0 Gg DWL Gg DWL G c0 Gg DWL G c0 Gg DWL Gg DWL G c0 Gg Gf DWL Gg c0 AWL

46 G G Gg G Gg G G G Gg G G G Gg G Gg G G G Gg G G G G G

47 T T T T T T T T T T T T T T T T T T T T T T T T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 G Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

1 A C Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

2 G B A Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

3 G C G G Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

4 G B A B C Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

5 G C G Q C A Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

6 G B A Q A A G Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

7 G C G Q A B B C Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

8 G B A Q Q B C C A Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

9 G C G G Q Q C A A G Q Q Q Q Q Q Q Q Q Q Q Q Q Q

10 G B A B C Q A A B B C Q Q Q Q Q Q Q Q Q Q Q Q Q

11 G C G Q C Q A B B C C A Q Q Q Q Q Q Q Q Q Q Q Q

12 G B A Q C Q Q B C C A A G Q Q Q Q Q Q Q Q Q Q Q

13 G C G Q C A Q Q C A A B B C Q Q Q Q Q Q Q Q Q Q

14 G B A Q A A G Q A A B B C C A Q Q Q Q Q Q Q Q Q

15 G C G Q A B B Q A B B C C A A G Q Q Q Q Q Q Q Q

16 G B A Q Q B G Q Q B C C A A B B C Q Q Q Q Q Q Q

17 G C G G Q B B C Q Q C A A B B C C A Q Q Q Q Q Q

18 G B A B Q B C C A Q A A B B C C A A G Q Q Q Q Q

19 G C G G Q Q C A A Q A B B C C A A B B C Q Q Q Q

20 G B A B C Q A A A Q Q B C C A A B B C C A Q Q Q

21 G C G Q C Q A A A G Q Q C A A B B C C A A G Q Q

22 G B A Q C Q A A B B C Q A A B B C C A A B B C Q

23 G C G Q C Q A B B C C Q A B B C C A A B B C C G

24 G B A Q C Q Q B C C C Q Q B C C A A B B C C B A

25 G C G Q C A Q Q C C C A Q Q C A A B B C C B A C

26 G B A Q A A G Q C C A A G Q A A B B C C B A C B

27 G C G Q A B B Q C A A B B Q A B B C C B A C B Q

28 G B A Q Q B G Q A A B B G Q Q B C C B A C B Q Q

29 G C G G Q B B Q A B B B B C Q Q C B A C B Q Q Q

30 G B A B Q B G Q Q B B B C C A Q G A C B Q Q Q Q

31 G C G G Q B B C Q B B C C A A C G C B Q Q Q Q Q

32 G B A B Q B C C Q B C C A A C B G B Q Q Q Q Q Q

33 G C G G Q Q C C Q Q C A A C B Q G C Q Q Q Q Q Q

34 G B A B C Q C C A Q A A C B Q Q G B A Q Q Q Q Q

35 G C G Q C Q C A A Q A C B Q Q Q G C G G Q Q Q Q

36 G B A Q C Q A A A Q G B Q Q Q Q G B A B C Q Q Q

37 G C G Q C Q A A A C G C Q Q Q Q G C G Q C A Q Q

38 G B A Q C Q A A C B G B A Q Q Q G B A Q A A G Q

39 G C G Q C Q A C B Q G C G G Q Q G C G Q A B B A

40 G B A Q C Q G B Q Q G B A B C Q G B A Q Q B A C

41 G C G Q C G G C Q Q G C G Q C G G C G G Q G C B

42 G B A Q G A G B A Q G B A Q G A G B A B A G B Q

43 G C G C G C G C G C G C G C G C G C G B C G C Q

44 G B G B G B G B G B G B G B G B G B G B G G B G

45 G G G G G G G G G G G G G G G G G G G G G G G G

46 T T T T T T T T T T T T T T T T T T T T T T T T

Fig. 3. Snapshots for Mazoyer’s synchronization processes (left) and those for the 54-
state (2n − 1)-step protocol (right) on 24 cells

3.4 P4: An Optimum-Time Three-State Synchronization Protocol
on CA4−bit

An additional 1-bit yields the following 3-state synchronization protocol. Figure
6 illustrates the snapshots of our 3-state (2n − 2)-step synchronization protocol
on CA4−bit.

[Theorem 6] There exists a 3-state CA4−bit that can synchronize any n cells
in 2n − 2 optimum-step.

3.5 P∗
4 : An Optimum-Time Two-State Synchronization Protocol on

CA4−bit

In our previous design the firing state is defined as a unique internal state that
appears simultaneously and for the first time on each cell. We can observe that
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 G Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

1 A C Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

2 G B A Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

3 G C G G Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

4 G B A B C Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

5 G C G Q C A Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

6 G B A Q A A G Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

7 G C G Q A B B C Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

8 G B A Q Q B C C A Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

9 G C G G Q Q C A A G Q Q Q Q Q Q Q Q Q Q Q Q Q Q

10 G B A B C Q A A B B C Q Q Q Q Q Q Q Q Q Q Q Q Q

11 G C G Q C Q A B B C C A Q Q Q Q Q Q Q Q Q Q Q Q

12 G B A Q C Q Q B C C A A G Q Q Q Q Q Q Q Q Q Q Q

13 G C G Q C A Q Q C A A B B C Q Q Q Q Q Q Q Q Q Q

14 G B A Q A A G Q A A B B C C A Q Q Q Q Q Q Q Q Q

15 G C G Q A B B Q A B B C C A A G Q Q Q Q Q Q Q Q

16 G B A Q Q B G Q Q B C C A A B B C Q Q Q Q Q Q Q

17 G C G G Q B B C Q Q C A A B B C C A Q Q Q Q Q Q

18 G B A B Q B C C A Q A A B B C C A A G Q Q Q Q Q

19 G C G G Q Q C A A Q A B B C C A A B B C Q Q Q Q

20 G B A B C Q A A A Q Q B C C A A B B C C A Q Q Q

21 G C G Q C Q A A A G Q Q C A A B B C C A A G Q Q

22 G B A Q C Q A A B B C Q A A B B C C A A B B C Q

23 G C G Q C Q A B B C C Q A B B C C A A B B C C G

24 G B A Q C Q Q B C C C Q Q B C C A A B B C C B A

25 G C G Q C A Q Q C C C A Q Q C A A B B C C B A C

26 G B A Q A A G Q C C A A G Q A A B B C C B A C B

27 G C G Q A B B Q C A A B B Q A B B C C B A C B Q

28 G B A Q Q B G Q A A B B G Q Q B C C B A C B Q Q

29 G C G G Q B B Q A B B B B C Q Q C B A C B Q Q Q

30 G B A B Q B G Q Q B B B C C A Q G A C B Q Q Q Q

31 G C G G Q B B C Q B B C C A A C G C B Q Q Q Q Q

32 G B A B Q B C C Q B C C A A C B G B Q Q Q Q Q Q

33 G C G G Q Q C C Q Q C A A C B Q G C Q Q Q Q Q Q

34 G B A B C Q C C A Q A A C B Q Q G B A Q Q Q Q Q

35 G C G Q C Q C A A Q A C B Q Q Q G C G G Q Q Q Q

36 G B A Q C Q A A A Q G B Q Q Q Q G B A B C Q Q Q

37 G C G Q C Q A A A C G C Q Q Q Q G C G Q C A Q Q

38 G B A Q C Q A A C B G B A Q Q Q G B A Q A A G Q

39 G C G Q C Q A C B Q G C G G Q Q G C G Q A B B A

40 G B A Q C Q G B Q Q G B A B C Q G B A Q Q B A C

41 G C G Q C G G C Q Q G C G Q C G G C G G Q G C B

42 G B A Q G A G B A Q G B A Q G A G B A B A G B Q

43 G C G C G C G C G C G C G C G C G C G B C G C Q

44 G B G B G B G B G B G B G B G B G B G B G G B G

45 G G G G G G G G G G G G G G G G G G G G G G G G

46 T T T T T T T T T T T T T T T T T T T T T T T T

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 G Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

1 G C Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

2 G B A Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

3 G C G B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

4 G B A B C Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

5 G C G Q C A Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

6 G B A Q A A B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

7 G C G Q A B B C Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

8 G B A Q Q B C C A Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

9 G C G B Q Q C A A B Q Q Q Q Q Q Q Q Q Q Q Q Q Q

10 G B A B C Q A A B B C Q Q Q Q Q Q Q Q Q Q Q Q Q

11 G C G Q C Q A B B C C A Q Q Q Q Q Q Q Q Q Q Q Q

12 G B A Q C Q Q B C C A A B Q Q Q Q Q Q Q Q Q Q Q

13 G C G Q C A Q Q C A A B B C Q Q Q Q Q Q Q Q Q Q

14 G B A Q A A B Q A A B B C C A Q Q Q Q Q Q Q Q Q

15 G C G Q A B B Q A B B C C A A B Q Q Q Q Q Q Q Q

16 G B A Q Q B B Q Q B C C A A B B C Q Q Q Q Q Q Q

17 G C G B Q B B C Q Q C A A B B C C A Q Q Q Q Q Q

18 G B A B Q B C C A Q A A B B C C A A B Q Q Q Q Q

19 G C G B Q Q C A A Q A B B C C A A B B C Q Q Q Q

20 G B A B C Q A A A Q Q B C C A A B B C C A Q Q Q

21 G C G Q C Q A A A B Q Q C A A B B C C A A B Q Q

22 G B A Q C Q A A B B C Q A A B B C C A A B B C Q

23 G C G Q C Q A B B C C Q A B B C C A A B B C C B

24 G B A Q C Q Q B C C C Q Q B C C A A B B C C B A

25 G C G Q C A Q Q C C C A Q Q C A A B B C C B A C

26 G B A Q A A B Q C C A A B Q A A B B C C B A C B

27 G C G Q A B B Q C A A B B Q A B B C C B A C B Q

28 G B A Q Q B B Q A A B B B Q Q B C C B A C B Q Q

29 G C G B Q B B Q A B B B B C Q Q C B A C B Q Q Q

30 G B A B Q B B Q Q B B B C C A Q G A C B Q Q Q Q

31 G C G B Q B B C Q B B C C A A C G C B Q Q Q Q Q

32 G B A B Q B C C Q B C C A A C B G B Q Q Q Q Q Q

33 G C G B Q Q C C Q Q C A A C B Q G C Q Q Q Q Q Q

34 G B A B C Q C C A Q A A C B Q Q G B A Q Q Q Q Q

35 G C G Q C Q C A A Q A C B Q Q Q G C G B Q Q Q Q

36 G B A Q C Q A A A Q G B Q Q Q Q G B A B C Q Q Q

37 G C G Q C Q A A A C G C Q Q Q Q G C G Q C A Q Q

38 G B A Q C Q A A C B G B A Q Q Q G B A Q A A B Q

39 G C G Q C Q A C B Q G C G B Q Q G C G Q A B B A

40 G B A Q C Q G B Q Q G B A B C Q G B A Q Q B A C

41 G C G Q C B G C Q Q G C G Q C B G C G B Q G C B

42 G B A Q G A G B A Q G B A Q G A G B A B A G B Q

43 G C G C G C G C G C G C G C G C G C G G C G C Q

44 G B G B G B G B G B G B G B G B G B G G B G B B

45 G G G G G G G G G G G G G G G G G G G G G G G G

46 T T T T T T T T T T T T T T T T T T T T T T T T

1

Fig. 4. Snapshots for the 6-state (2n − 2)-step firing squad synchronization algorithm
operating on CA2−bit with 24 cells (right)

the quiescent state with two 3-bit binary outputs 0, 0, 1 can act as the firing state
in the Protocol P4. By regarding the firing state as a product of the quiescent
state and two 3-bit binary outputs 0, 0, 1 to each neighbor at the final step we
can reduce the internal states by one. Figure 7 illustrates the snapshots of our
2-state (2n − 2)-step synchronization protocol on CA4−bit.

[Theorem 7] There exists a 2-state CA4−bit that can synchronize any n cells
in 2n − 2 optimum-step.

3.6 P5: An Optimum-Time Single-State (State-Less)
Synchronization Protocol on CA5−Bit

A single state can be removed by a similar method used in the previous section.
In tha last we can establish the following theorem. In some sense we need no
state to synchnize the whole array.

[Theorem 8] There exists a 1-state CA5−bit that can synchronize any n cells
in 2n − 2 optimum-step.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 G Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

1 G P Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

2 G G Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

3 G P G G Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

4 G G Q G P Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

5 G P G Q P Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

6 G G Q Q Q Q G Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

7 G P G Q Q G G P Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

8 G G Q Q Q G P P Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

9 G P G G Q Q P Q Q G Q Q Q Q Q Q Q Q Q Q Q Q Q Q

10 G G Q G P Q Q Q G G P Q Q Q Q Q Q Q Q Q Q Q Q Q

11 G P G Q P Q Q G G P P Q Q Q Q Q Q Q Q Q Q Q Q Q

12 G G Q Q P Q Q G P P Q Q G Q Q Q Q Q Q Q Q Q Q Q

13 G P G Q P Q Q Q P Q Q G G P Q Q Q Q Q Q Q Q Q Q

14 G G Q Q Q Q G Q Q Q G G P P Q Q Q Q Q Q Q Q Q Q

15 G P G Q Q G G Q Q G G P P Q Q G Q Q Q Q Q Q Q Q

16 G G Q Q Q G G Q Q G P P Q Q G G P Q Q Q Q Q Q Q

17 G P G G Q G G P Q Q P Q Q G G P P Q Q Q Q Q Q Q

18 G G Q G Q G P P Q Q Q Q G G P P Q Q G Q Q Q Q Q

19 G P G G Q Q P Q Q Q Q G G P P Q Q G G P Q Q Q Q

20 G G Q G P Q Q Q Q Q Q G P P Q Q G G P P Q Q Q Q

21 G P G Q P Q Q Q Q G Q Q P Q Q G G P P Q Q G Q Q

22 G G Q Q P Q Q Q G G P Q Q Q G G P P Q Q G G P Q

23 G P G Q P Q Q G G P P Q Q G G P P Q Q G G P P G

24 G G Q Q P Q Q G P P P Q Q G P P Q Q G G P P G Q

25 G P G Q P Q Q Q P P P Q Q Q P Q Q G G P P G Q Q

26 G G Q Q Q Q G Q P P Q Q G Q Q Q G G P P G Q Q Q

27 G P G Q Q G G Q P Q Q G G Q Q G G P P G Q Q Q Q

28 G G Q Q Q G G Q Q Q G G G Q Q G P P G Q Q Q Q Q

29 G P G G Q G G Q Q G G G G P Q Q P G Q Q Q Q Q Q

30 G G Q G Q G G Q Q G G G P P Q Q P Q Q Q Q Q Q Q

31 G P G G Q G G P Q G G P P Q Q G Q Q Q Q Q Q Q Q

32 G G Q G Q G P P Q G P P Q Q G Q G Q Q Q Q Q Q Q

33 G P G G Q Q P P Q Q P Q Q G Q Q G P Q Q Q Q Q Q

34 G G Q G P Q P P Q Q Q Q G Q Q Q G G Q Q Q Q Q Q

35 G P G Q P Q P Q Q Q Q G Q Q Q Q G P G G Q Q Q Q

36 G G Q Q P Q Q Q Q Q Q Q Q Q Q Q G G Q G P Q Q Q

37 G P G Q P Q Q Q Q G G P Q Q Q Q G P G Q P Q Q Q

38 G G Q Q P Q Q Q G Q G G Q Q Q Q G G Q Q Q Q G Q

39 G P G Q P Q Q G Q Q G P G G Q Q G P G Q Q G G P

40 G G Q Q P Q Q Q Q Q G G Q G P Q G G Q Q Q G P G

41 G P G Q P G G P Q Q G P G Q P G G P G G Q Q G Q

42 G G Q Q P Q G G Q Q G G Q Q P Q G G Q G P G Q Q

43 G P G G Q Q G P G G G P G G Q Q G P G Q G G P Q

44 G G G Q G Q G G G Q G G G Q G Q G G G G Q G G G

45 G G G G G P G G G G G G G G G P G G G G P G G G

46 T T T T T T T T T T T T T T T T T T T T T T T T

Fig. 5. Snapshots for 4-state (2n − 2)-
step firing squad synchronization algo-
rithm operating on CA3−bit with 24 cells

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 G Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

1 G G Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

2 G G Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

3 G G G G Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

4 G G Q G G Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

5 G G G Q G Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

6 G G Q Q Q Q G Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

7 G G G Q Q G G G Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

8 G G Q Q Q G G G Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

9 G G G G Q Q G Q Q G Q Q Q Q Q Q Q Q Q Q Q Q Q Q

10 G G Q G G Q Q Q G G G Q Q Q Q Q Q Q Q Q Q Q Q Q

11 G G G Q G Q Q G G G G Q Q Q Q Q Q Q Q Q Q Q Q Q

12 G G Q Q G Q Q G G G Q Q G Q Q Q Q Q Q Q Q Q Q Q

13 G G G Q G Q Q Q G Q Q G G G Q Q Q Q Q Q Q Q Q Q

14 G G Q Q Q Q G Q Q Q G G G G Q Q Q Q Q Q Q Q Q Q

15 G G G Q Q G G Q Q G G G G Q Q G Q Q Q Q Q Q Q Q

16 G G Q Q Q G G Q Q G G G Q Q G G G Q Q Q Q Q Q Q

17 G G G G Q G G G Q Q G Q Q G G G G Q Q Q Q Q Q Q

18 G G Q G Q G G G Q Q Q Q G G G G Q Q G Q Q Q Q Q

19 G G G G Q Q G Q Q Q Q G G G G Q Q G G G Q Q Q Q

20 G G Q G G Q Q Q Q Q Q G G G Q Q G G G G Q Q Q Q

21 G G G Q G Q Q Q Q G Q Q G Q Q G G G G Q Q G Q Q

22 G G Q Q G Q Q Q G G G Q Q Q G G G G Q Q G G G Q

23 G G G Q G Q Q G G G G Q Q G G G G Q Q G G G G Q

24 G G Q Q G Q Q G G G G Q Q G G G Q Q G G G G Q Q

25 G G G Q G Q Q Q G G G Q Q Q G Q Q G G G G Q Q Q

26 G G Q Q Q Q G Q G G Q Q G Q Q Q G G G G Q Q Q Q

27 G G G Q Q G G Q G Q Q G G Q Q G G G G Q Q Q Q Q

28 G G Q Q Q G G Q Q Q G G G Q Q G G G Q Q Q Q Q Q

29 G G G G Q G G Q Q G G G G G Q Q G Q Q Q Q Q Q Q

30 G G Q G Q G G Q Q G G G G G Q Q G Q Q Q Q Q Q Q

31 G G G G Q G G G Q G G G G Q Q G Q Q Q Q Q Q Q Q

32 G G Q G Q G G G Q G G G Q Q G Q G Q Q Q Q Q Q Q

33 G G G G Q Q G G Q Q G Q Q G Q Q G G Q Q Q Q Q Q

34 G G Q G G Q G G Q Q Q Q G Q Q Q G G Q Q Q Q Q Q

35 G G G Q G Q G Q Q Q Q G Q Q Q Q G G G G Q Q Q Q

36 G G Q Q G Q Q Q Q Q Q Q Q Q Q Q G G Q G G Q Q Q

37 G G G Q G Q Q Q Q G G G Q Q Q Q G G G Q G Q Q Q

38 G G Q Q G Q Q Q G Q G G Q Q Q Q G G Q Q Q Q G Q

39 G G G Q G Q Q G Q Q G G G G Q Q G G G Q Q G G G

40 G G Q Q G Q Q Q Q Q G G Q G G Q G G Q Q Q G Q Q

41 G G G Q G Q G G Q Q G G G Q G Q G G G G Q Q Q Q

42 G G Q Q G Q G G Q Q G G Q Q G Q G G Q G G G Q Q

43 G G G G Q Q G G G G G G G G Q Q G G G Q Q G G Q

44 G G G Q G Q G G G Q G G G Q G Q G G G G Q G G Q

45 G G G G G G G G G G G G G G G G G G G G G G G G

46 T T T T T T T T T T T T T T T T T T T T T T T T

Fig. 6. Snapshots for 3-state (2n − 2)-
step firing squad synchronization algo-
rithm operating on CA4−bit with 24 cells

Figure 8 illustrates the snapshots of the 1-state (2n − 2)-step synchronization
protocol on CA5−bit.

3.7 Bit-Transfer Complexity on CAk−bit

Vollmar [21, 22] introduced a state-change complexity in order to measure the
efficiency of cellular algorithms for the conventional cellular automata model
and showed that Ω(n log n) state changes are required for the synchronization
of n cells in (2n− 2) steps. Gerken [3] and Umeo, Hisaoka and Sogabe [20] have
studied the state-change complexity for optimum-time synchronization protocols
proposed so far.

[Theorem 9] [21,22] Ω(n log n) state-change is necessary for synchronizing n cells
in (2n − 2) steps.

[Theorem 10] [3,20] Each optimum-time synchronization algorithm developed
by Balzer [1], Gerken [3], Mazoyer [5] and Waksman [23] has an O(n2) state-
change complexity, respectively.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 G Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

1 G G Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

2 G G Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

3 G G G G Q Q Q Q Q Q Q Q Q Q Q Q Q

4 G G Q G G Q Q Q Q Q Q Q Q Q Q Q Q

5 G G G Q G Q Q Q Q Q Q Q Q Q Q Q Q

6 G G Q Q Q Q G Q Q Q Q Q Q Q Q Q Q

7 G G G Q Q G G G Q Q Q Q Q Q Q Q Q

8 G G Q Q Q G G G Q Q Q Q Q Q Q Q Q

9 G G G G Q Q G Q Q G Q Q Q Q Q Q Q

10 G G Q G G Q Q Q G G G Q Q Q Q Q Q

11 G G G Q G Q Q G G G G Q Q Q Q Q Q

12 G G Q Q G Q Q G G G Q Q G Q Q Q Q

13 G G G Q G Q Q Q G Q Q G G G Q Q Q

14 G G Q Q Q Q G Q Q Q G G G G Q Q Q

15 G G G Q Q G G Q Q G G G G Q Q G Q

16 G G Q Q Q G G Q Q G G G Q Q G G G

17 G G G G Q G G G Q Q G Q Q G G Q Q

18 G G Q G Q G G G Q Q Q Q G G Q Q Q

19 G G G G Q Q G Q Q Q Q G G Q Q Q Q

20 G G Q G G Q Q Q Q Q Q G Q Q Q Q Q

21 G G G Q G Q Q Q Q G Q Q Q Q Q Q Q

22 G G Q Q G Q Q Q G G G G Q Q Q Q Q

23 G G G Q G Q Q G G Q Q G G Q Q Q Q

24 G G Q Q G Q Q G Q Q Q G G Q Q Q Q

25 G G G Q G Q Q Q Q Q Q G G G G Q Q

26 G G Q Q Q Q G G Q Q Q G G Q G G Q

27 G G G Q Q G Q G G Q Q G G G Q G Q

28 G G Q Q Q Q Q G G Q Q G G Q Q G Q

29 G G G G G G Q G G G G G G G G Q Q

30 G G G Q G G Q G G G Q G G G Q G Q

31 G G G G G G G G G G G G G G G G G

32 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

Fig. 7. Snapshots for 2-state (2n − 2)-
step firing squad synchronization algo-
rithm operating on CA4−bit with 17 cells

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

1 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

2 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

3 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

4 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

5 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

6 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

7 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

8 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

9 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

10 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

11 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

12 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

13 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

14 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

15 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

16 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

17 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

18 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

19 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

20 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

21 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

22 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

23 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

24 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

25 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

26 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

27 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

28 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

29 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

30 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

31 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

32 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

33 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

34 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

Fig. 8. Snapshots for 1-state (2n − 2)-
step firing squad synchronization algo-
rithm operating on CA5−bit with 18 cells.

Let BT (n) be total number of bits transferred needed for synchronizing n cells
on CAk−bit. By using the similar technique developed by Vollmar [21, 22], we
can establish a lower-bound on bit-transfer complexity for synchronizing n cells
on CAk−bit in a way such that BT (n) = Ω(n log n). In addition, it is shown
that each synchronization protocol Pi, 1 ≤ i ≤ 5, presented above has an O(n2)
bit-transfer complexity, respectively.

[Theorem 11] Ω(n log n) bit-transfer is a lower bound for synchronizing n cells
on CAk−bit in (2n − 2) steps.

[Theorem 12] Each optimum-time/non-optimum-time synchronization proto-
cols Pi, 1 ≤ i ≤ 5, presented in this paper, has an O(n2) bit-transfer complexity,
respectively.

3.8 A Comparison of Quantitative Aspects of Optimum-Time
Synchronization Algorithms

Here, we present Table 1 based on a quantitative comparison of optimum-time
synchronization protocols with respect to the number of internal states of each
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finite state automaton, the number of transition rules realizing the synchroniza-
tion, and the number of communication bits transferred on the array. Firing
squad synchronization algorithms have been designed on the basis of parallel
divide-and-conquer strategy that calls itself recursively in parallel. Those recur-
sive calls are implemented by generating many Generals that are responsible for
synchronizing divided small areas in the cellular space.

Table 1. Quantitative and qualitative comparison of optimum-time/non-optimum-
time firing squad synchronization protocols

Synchronization Communication # of # of Transition Time One-/Two-sided
Protocol Bits Transferred States Rules Complexity Recursiveness

P1 1 54 207 2n − 1 One-Sided
P2 2 6 60 2n − 2 One-Sided
P3 3 4 76 2n − 2 One-Sided
P4 4 3 87 2n − 2 One-Sided
P∗

4 4 2 88 2n − 2 One-Sided
P5 5 1 114 2n − 2 One-Sided

Mazoyer [1996] 1 58 - 2n − 2 Two-Sided
Mazoyer [1996] 12 3 - 2n − 2 -

Nishimura et al. [2000] 1 78 208 2n − 2 Two-Sided

If all of the recursive calls for the synchronization are issued by Generals
located at one (both two) end(s) of partitioned cellular spaces for which the
General is responsible, the synchronization algorithm is said to have one-sided
(two-sided) recursive property. We call the synchronization algorithm with one-
sided (two-sided) recursive property as one-sided (two-sided) recursive synchro-
nization algorithm. It is noted that optimum-time synchronization algorithms
developed by Balzer [1], Gerken [3] and Waksman [23] are two-sided ones and an
algorithm proposed by Mazoyer [5] is only one synchronization algorithm with
the one-sided recursive property. Each synchronization protocol Pi, 1 ≤ i ≤ 5,
presented in this paper, has one-sided property, since they are basd on Mazoyer’s
algorithm. A detailed definition of the one- and two-sided recursiveness can be
found in Umeo, Hisaoka and Sogabe [20].

4 Conclusions

We have made an investigation into a trade-off between internal states and com-
munication bits in firing squad synchronization protocols for communication-
restricted cellular automata and proposed several time-optimum state-efficient
bit-transfer-based synchronization protocols. It has been shown that there exists
a 1-state CA5−bit that can synchronize any n cells in 2n− 2 optimum-step. The
result is interesting, since we know that there exists no 4-state synchronization
algorithm on conventional O(1)-bit communication cellular automata. A bit-
trasnfer complexity has been also introduced. We have shown that Ω(n log n)
bit-transfer is a lower-bound for synchronizing n cells in (2n − 2) steps. In ad-
dition, it has been shown that each optimum-time/non-optimum-time synchro-
nization protocols, presented in this paper, has an O(n2) bit-transfer complexity,
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respectively. As for the protocols with Ω(n log n) bit-transfer, it might be possi-
ble to design those protocols based on Gerken’s or Goto’s algorithm developed
on conventional model, each of them has Ω(n log n) state-change complexity.
The CAk−bit is confirmed to be an interesting computational subclass of CAs
that merits further study. We conclude with the following questions for further
investigations.

– What is the minimum number of states for protocols on each CAk−bit, k =
1, 2, 3, 4 and 5?
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Abstract. Recently, the discrete baker transformation has been defined for lin-
ear cellular automata acting on multi-dimensional tori with alphabet of prime 
cardinality.  Here we specialize to binary valued cylindrical cellular automata 
and generalizing the discrete baker transformation to non-linear rules.  We 
show that for a cellular automaton, defined on a cylinder of size n = 2km with m 
odd, the equivalence classes of rules that map to the same rule under the dis-
crete baker transformation fall into equivalence classes labeled by the set of 2m 
cellular automata defined on a cylinder of size m.  We also derive the relation 
between the state transition diagram of a cellular automata rule and that of its 
baker transformation and discuss cycle periods of the baker transformation for 
odd n.  

1   Baker Transformation of Additive Rules 

In [1] the discrete baker transformation for linear cellular automata (LCA) acting on 
multidimensional tori was defined and shown to produce exponential speed-up of rule 
evolution.  This provided a number of significant results on rule behavior, including 
sharp estimates of parameters such as maximal tree heights and cycle periods.  Here 
attention is restricted to binary valued one-dimensional cylindrical cellular automata 
[2].  For these CA the discrete baker transformation is generalized to non-linear rules.  
This is a first step in a study of general index permutations of CA rules. 

Let C(n) be the set of n-site binary valued CA rules defined on cylinders of size n 
and AD(n) ⊂ C(n) the subset of additive rules.  If a rule X ∈AD(n), it can be ex-
pressed in terms of the left shift operator σ as: 

X = asσ
s

s=0

n−1

 (1) 

where σ is defined by its action on strings μ: 

[σ (μ)]i = μi+1 mod(n)  (2) 

The rule table for a CA is given by its neighborhood components: xi = X(i0…ik-1) 
for neighborhoods of size k [3].  In what follows, maximal neighborhoods (k = n) are 
assumed. Components of rules in AD(n) satisfy an additivity condition [3]  
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xi = in−s−1x
2s mod(2)

s=0

n−1

 (3) 

The component index i is just the denary form of the binary number i0…in-1.  The co-
efficients as in equation (1) are related to the rule components by   

as =
1 x

2n−s−1 = 1 0 ≤ s ≤ n − 1

0 otherwise
 (4) 

Example: Rule 90, n = 5 
In this case, with maximal neighborhoods, there are 32 rule components given by the 
rule table 

x0–x3  x4–x7     x8–x11    x12–x15    x16–x19    x20–x23    x24–x27    x28–x31  
   0             1       0      1       1       0        1        0 

This yields the coefficients for equation (1) as 
s 0 1 2 3 4 

x
2n−s−1  x16 = 1 x8 = 0 x4 = 1 x2 = 0 x1 = 0 

as 1 0 1 0 0 
Thus, rule 90 has the form X = I + σ2.   
For additive binary valued rules, the baker transformation X BX is defined by  

as → ar
r: s=2r mod(n )

mod(2)  (5) 

and in [1] it was shown that in this case BX = X2 and more generally, Bk X = X 2k

. 
The transformation of equation (5) can be expressed in terms of the n-dimensional 

vector a  = (a0,a1,…,an-1) and the 2n-dimensional vector x = (x0 , x1, ..., x
2n−1 ) :  

a → b ⋅ a

x → B ⋅ x xi → xi⋅b

 (6) 

Where 

brs =
1 2s = r mod(n)

0 otherwise

Bij =
1 j = i ⋅b
0 otherwise

 (7) 

2   Baker Transformation for Arbitrary Rules 

The second form of the baker transformation in equation (6) is independent of the co-
efficients as.  This indicates that the transformation can be applied to all CA rules.  
That is, for an arbitrary rule, the transformation acts on the indices of rule components 
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defined with respect to maximal neighborhoods and this action is defined in terms of 
the way that the baker transformation of additive rules acts on component indices of 
these rules. 

Example: Rule 18, n = 6 

i        X       BX i         X      BX i        X       BX i        X       BX 

0       0          0 16      0          0 32      1          1 48      0          1 
1       0          0 17      0          0 33      1          1 49      0          1 
2       0          1 18      0          1 34      1          0 50      0          0 
3       0          1 19      0          1 35      1          0 51      0          0 

4       0          0 20      0          0 36      1          1 52      0          1 
5       0          0 21      0          0 37      1          1 53      0          1 
6       0          1 22      0          1 38      1          0 54      0          0 
7       0          1    23      0          1 39      1          0 55      0          0 

8       1          0 24      0          0 40      0          0 56      0          0 
9       1          0 25      0          0 41      0          0 57      0          0 
10     1          0 26      0          0 42      0          0 58      0          0 

11     1          0 27      0          0 43      0          0 59      0          0 
12     1          0 28      0          0 44      0          0 60      0          0 
13     1          0 29      0          0 45      0          0 61      0          0 
14     1          0  30      0          0 46      0          0 62      0          0 

15     1          0 31      0          0 47      0          0 63      0          0 

If X is additive BX = X2 but this is not the case when X is non-linear.  The example of 
rule 18 for n = 5 demonstrates this: the string 00100, for example, becomes 00110 un-
der X2 but 00101 under BX.   

Proof of the next theorem follows directly from equation (7). 

Theorem 1   
1. If n is odd the matrices b and B are permutations.  
2. If n = 2km with m odd and k > 0 then, labeling the rows of the matrix br from 0 to 

n-1 (starting at the top), if s  2rh (0 h 2k-rm-1) the s-th row of br consists entirely 
of 0s.  For s = 2rh the s-th row of br consists of identical blocks of length 2k-rm, 
each block containing a single 1 in the h-th position.  

Thus, BsX (0 s k) is determined by 22k −s m  of the 2n components of X.   

Corollary  
If X is in C(n) and n = 2km (0 k) then BkX is completely determined by the set of 

components xi(c) 0 ≤ c ≤ 2m − 1{ } where  

i(c) = c 2(2k −s−1)m

s=0

2k −1

 (8) 
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Example: n = 5.  
If n = 5 the matrices b and B are permutations.  The matrix b is given by  

b =

1 0 0 0 0

0 0 0 1 0

0 1 0 0 0

0 0 0 0 1

0 0 1 0 0

 (9) 

and B is determined by entries in Table 1. 

Table 1.  Index transformation for n = 5  

i i ⋅b  i i ⋅b  i i ⋅b  i i ⋅b  

0           0 8           2 16         16 24         18 
1           4 9           6 17         20 25         22 
2           1 10         3 18         17 26         19 
3           5 11         7 19         21 27         23 
4           8 12         10 20         24 28         26 
5           12 13         14 21         28 29         30 
6           9 14         11 22         25 30         27 
7           13 15         15 23         29 31         31 

Examination of this table shows that there are four fixed points (1,15,16,31), two 
period 2 cycles (6,9) and (22,25) with the remaining indices showing period 4 cycles.  
Orbits of the baker transformation on CA rule space for n = 5 consists of cycles hav-
ing these periods. For example, I + σ → I + σ 2 → I + σ 4 → I + σ 3 → I + σ . 

Example: n = 6.      
For n = 6 the matrix b is not a permutation matrix, but has all odd numbered rows 
consisting entirely of zeros.  Thus, the 64 components of a 6-site rule reduce to only 
eight components under the baker transformation.  The index transformation matrix b 
is  

b =

1 0 0 1 0 0

0 0 0 0 0 0

0 1 0 0 1 0

0 0 0 0 0 0

0 0 1 0 0 1

0 0 0 0 0 0

h = 0

h = 1

h = 2

 (10) 

 

Giving the transformation of the B matrix as indicated in Table 2. 
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Table 2.  Index transformations for n = 6 

i i ⋅b  i i ⋅b  i i ⋅b  i i ⋅b  

0            0 16          0 32         36 48         36 
1            0 17          0 33         36 49         36 
2            9 18          9 34         45 50         45 
3            9 19          9 35         45 51         45 
4            0 20          0 36         36 52         36 
5            0 21          0 37         36 53         36 
6            9 22          9 38         45 54         45 
7            9 23          9 39         45 55         45 
8            18 24          18   40         54 56         54 
9            18 25          18 41         54      57         54 
10          27 26          27 42         63 58         63 
11          27 27          27 43         63 59         63 
12          18    28          18 44         54 60         54 
13          18 29          18 45         54 61         54 
14          27 30          27 46         63 62         63 
15          27 31          27 47         63 63         63 

Thus, for n = 6, BX is determined by eight components of X: x0, x9, x18, x27, x36, 
x45, x54, and x63. Further, examination of this table shows that B3X = BX indicating 
that the baker transformation on cylinders of size 6 has maximum period 2.   

Example: n = 12.      
For n = 12 the matrices b and b2 are given by 

 

b =

1 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0

h = 0

h = 1

h = 2

h = 3

h = 4

h = 5

 (11) 
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b2 =

1 0 0 1 0 0 1 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 1 0 0 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

h = 0

h = 1

h = 2

 (12) 

From these the determining components of BX and B2X are given by Table 3. 

Table 3.  Index transformations for n = 6 for b and b2 

i ⋅ b i ⋅b2  i ⋅ b i ⋅b2  i ⋅ b i ⋅b2  i ⋅ b i ⋅b2  

0            0 1040       0 2080    2340 3120    2340 
65          0 1105       0 2145    2340 3185    2340 
130      585 1170     585 2210    2925 3250    2925 
195      585 1235     585 2275    2925 3315    2925 
260        0 1300       0 2340    2340 3380    2340 
325        0 1365       0 2405    2340 3445    2340  
390      585 1430     585 2470    2925 3510    2925 
455      585 1495     585 2535    2925 3575    2925 
520     1170 1560    1170 2600    3510 3640    3510 
585     1170 1625    1170 2665    3510 3705    3510 
650     1755 1690    1755 2730    4095 3770    4095 
715     1755 1755    1755 2795    4095 3835    4095 
780     1170 1820    1170 2860    3510 3900    3510 
845     1170 1885    1170 2925    3510 3965    3510 
910     1755 1950    1755 2990    4095 4030    4095 
975     1755 2015    1755 3055    4095 4095    4095 

The 64 components listed first in each column determine BX, and the 8 compo-
nents listed second in each column determine B2X.   

Returning to the n = 6 example, BX is determined by the eight digit binary string 
(x0, x9, x18, x27, x36, x45, x54, x63) which also defines a 3-site rule.  Thus, the set of 256 
3-site rules acts as a classifying set for these equivalence classes of 6-site rules. All n 
= 6 rules having the same values for the eight determining components map to the 
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same rule under the baker transformation. There are 264 rules for n = 6, thus specifica-
tion of the values for these eight components characterizes a class of 256 rules. 

Restricting attention to additive rules, the 64 6-site additive rules partition into 
equivalence classes of eight rules each with rules X and Y equivalent if BX = BY:  

Table 4.  Equivalence classes of 64 6-site additive rules 

0 Ι σ2+σ4 Ι+σ2+σ4 
σ+σ4 Ι+σ2+σ5 σ+σ5 σ2+σ3+σ4 
σ2+σ5 σ3 σ4+σ5 σ3+σ4+σ5 
Ι+σ3 Ι+σ+σ4 Ι+σ3+σ4+σ5 Ι+σ4+σ5 

Ι+σ+σ2+σ3+σ4+σ5 σ+σ2+σ3+σ4+σ5 Ι+σ2+σ3+σ4 σ+σ3+σ5 
Ι+σ2+σ3+σ5 σ+σ3+σ4 Ι+σ+σ3+σ5 Ι+σ+σ5 
Ι+σ+σ3+σ4 Ι+σ+σ2+σ4+σ5 Ι+σ+σ2+σ3 Ι+σ+σ2 
σ+σ2+σ4+σ5 σ2+σ3+σ5 σ+σ2 σ+σ2+σ3 

 
Ι+σ4 Ι+σ2 σ4 σ2 
σ+σ3 σ2+σ3 σ2+σ4+σ5 σ+σ4+σ5 
Ι+σ+σ2+σ5 σ+σ2+σ3+σ4 σ+σ2+σ5 σ5 
σ2+σ3+σ4+σ5 σ3+σ5 σ σ+σ2+σ4 
σ+σ2+σ3+σ5 σ+σ3+σ4+σ5 Ι+σ+σ2+σ3+σ5 Ι+σ+σ3+σ4+σ5 
Ι+σ Ι+σ+σ2+σ4 Ι+σ2+σ3+σ4+σ5 Ι+σ3+σ5 
σ3+σ4 Ι+σ5 Ι+σ3+σ4 Ι+σ+σ2+σ3+σ4 
Ι+σ2+σ4+σ5 Ι+σ+σ4+σ5 Ι+σ+σ3 Ι+σ2+σ3 

Note that under the baker transformation Ι+σ2 Ι+σ4 and σ2 σ4.  Thus, in 
the lower half of Table 4 the first and third columns map under the baker transforma-
tion to Ι+σ2 and σ2 respectively while the second and fourth columns map respec-
tively to Ι+σ4 and σ4.  In the first part of the table, all rules in a column map under the 
baker transformation to the rule at the top of the column.   

3   Transformations of the State Transition Diagram 

For any given rule X, basic information such as cycle periods and tree heights is ex-
hibited in the structure of the state transition diagram STD(X).  This information is 
given by the adjacency matrix A(X) of this diagram: 

Aij (X) =
1 X(i0 in−1 ) = j0 jn−1

0 otherwise
 (13) 

The natural question is how the state transition diagram of the baker transforma-
tions of a rule relates to the state transition diagram of the rule itself.  For odd values 
 

… …
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of n the relation is straight forward.  When n is even, however, a more complicated 
construction is required. 

Theorem 2 
Let n = 2km with m odd and let A(X) be the adjacency matrix for STD(X).   

1. If k = 0 then 

A(BX) = BA(X)B−1  (14) 

2. If k  0 let A(X) be written in the form 

A(X) =
A *(X) C

0 Am (X)
 (15) 

Where Am(X) is indexed by all sequences with spatial period a divisor of m.  Then 

Am (BX) = Bm Am (X)Bm
−1  (16) 

with Bm the baker matrix for strings of length m.   
Given the importance of the state transition diagram, it is useful to find a means of 

constructing A(BX) when n is even.  The procedure for doing so utilizes the 2n-1×2n-1 
de Bruijn fragment matrix d1(X) [3,4] defined in terms of the components of X by  

d1(X)[ ]αβ =
x j j = α * β, β = 2α or 2α + 1

0 otherwise
 (17) 

0  α,β  2n-1 – 1. Here the binary forms of α and β are n-1 length strings and the 
concatenation of these, α∗ β = α0α1…αn-2βν-2 when β = 2α or 2α+1, is just the n-site 
neighborhood that maps to the rule component xj.   

Theorem 3: Generation of A(X) From d1(X) 
For i = i0…in-1 define the numbers ′i (s) = isis+1 mod(n ) is+n−2 mod(n)  0  s  n – 1 as the 

denary form of the indicated binary strings.  Then, for j = j0…jn-1  

A(X)[ ]ij
=

1 js = d1(X)[ ]′i (s ) ′i (s+1 mod(n))
0 ≤ s ≤ n − 1

0 otherwise
 (18) 

Example: Let X be rule 18 with n = 3.  The matrix d1(X) for n = 3 is 

d1(X) =

x0 x1 0 0

0 0 x2 x3

x4 x5 0 0

0 0 x6 x7

d1(18) =

0 1 0 0

0 0 0 0

1 0 0 0

0 0 0 0

 (19) 

With i = i0i1i2, ′i (0) = i0i1, ′i (1) = i1i2 , ′i (2) = i2i0 so that  

j0 = d1(18)[ ]i0i1 ,i1i2
, j1 = d1(18)[ ]i1i2 ,i2i0

, j2 = d1(18)[ ]i2i0 ,i0i1
 

From equation (12) this yields  

…
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i0i1i2 000 001 010 011 100 101 110 111 

j0 x0 x1 x2 x3 x4 x5 x6 x7 

j1 x0 x2 x4 x6 x1 x3 x5 x7 

j2 x0 x4 x1 x5 x2 x6 x3 x7 

From equation (18) and the rule table for rule 18 

A(X) =

1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

 (20) 

Theorem 4  
Let X be in C(n).  Then  

d1(BX)[ ]ij
= Γ ij

rs d1(X)[ ]rs
r ,s=0

2n−1−1

 (21) 

where the object Γ is generated from the matrix B as follows: 

1. Label rows and columns of B from 0 to 2n-1-1 in the pattern 0,1,…, 2n-1-1, 
0,1,…, 2n-1-1.   

2. In front of each row and column label write the numbers from 0 to 2n-1-1 in the 
pattern 0,0,1,1,,…, 2n-1-1, 2n-1-1.   

The i,j,r,s element Γ ij
rs  is the entry of B having row label i,j and column label r,s.  

All other elements of Γ  are 0. 

Example: n = 3.  The matrix B, with rows appropriately labeled, is 

0, 0 0,1 1, 2 1, 3 2, 0 2,1 3, 2 3, 3

B =

1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0, 0

0,1

1, 2

1, 3

2, 0

2,1

3, 2

3, 3

 (22) 
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Thus Γ00
00 = Γ01

12 = Γ12
01 = Γ13

13 = Γ20
20 = Γ21

32 = Γ32
21 = Γ33

33 = 1  and all other elements are 0.  

From equation (21) this yields  

d1(BX) =

x0 x2 0 0

0 0 x1 x3

x4 x6 0 0

0 0 x5 x7

 (23) 

For fixed n, the baker transformation is a mapping of CA rule space for rules with 
neighborhoods of size k  n.  Since this space is finite, there must be cycles.  The ma-
trix b used here is a form of the index projection defined in [6].  There it is proved that 
for odd n the lengths of all cycles of this projection (and hence, of b) have periods that 
divide ordn2.  The actual cycle structure for b with n odd is determined by the solu-
tions of the homogeneous equation (I − b) ⋅ = 0 .  For example, for n = 7 this yields 
the conditions (a1 = a4 = a2) and (a3 = a5 = a6) with a0 free.  Taking the possible values 
for these conditions yields eight fixed points: 0000000, 0110100, 0001011, 0111111, 
1000000, 1110100, 1001011, and 1111111.  In addition, ord72 = 3 and the two period 
three cycles are (a1  a4  a2 a1) and (a3  a5  a6 a3).  Since for additive rules 
BX = X2 the corresponding well-known result [1,7] is that the cycle periods of an ad-
ditive rule on a cylinder of size n must divide 2ordn 2 − 1 .   
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Abstract. We develop two models for Myxobacteria swarming, a modified 
Lattice Gas Cellular Automata (LGCA) model and an off-lattice CA model. In 
the LGCA model each cell is represented by one node for the center of mass 
and an extended rod-shaped cell profile. Cells check the surrounding area and 
choose in which direction to move based on the local interactions. Using this 
model, we obtained a density vs. expansion rate curve with the shape similar to 
the experimental curve for the wild type Myxobacteria. In the off-lattice model, 
each cell is represented by a string of nodes. Cells can bend and move freely in 
the two-dimensional space. We use a phenomenological algorithm to determine 
the moving direction of cells guided by slime trail; the model allows for cell 
bending and alignment during collisions. In the swarming simulations for A+S- 
Myxobacteria, we demonstrate the formation of peninsula structures, in 
agreement with experiments. 

Keywords: probabilistic cellular automata, lattice and off-lattice models, 
bacteria swarming, slime guidance, pattern formation.  

1   Introduction  

Myxobacteria (Myxococcus xanthus) are social bacteria that live in the soil; they 
exhibit complex multi-cellular behavior and provide many useful insights to 
multicellular morphogenesis. They are rod shaped with an aspect ratio of roughly 
10:1. When growing on a solid medium with sufficient nutrient, Myxobacterial cells 
grow as a swarm that spreads outwards from the origin, forming rafts and group of 
cells that project from the edge of the swarm (peninsula structures) [1] (see Figure 1). 
When nutrient is depleted, the starved Myxobacteria stop growing and build fruiting 
bodies [2, 3].  

Myxobacteria moves by gliding on surfaces, it cannot swim in liquid [4]. It has two 
types of motility, S(social)-motility and A(adventurous)-motility that are driven by 
different engines. S-motility is due to pilus extension from the front end of the cell, 
attachment of the pilus tip to a group of cells ahead, and pilus retraction, drawing the 
cell up to the leading group [4]. A-motility is due to secretion of polysaccharide slime 
from the rear of the cell. The hydration-driven swelling of the slime gel is suggested 
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to generate the propulsive force for A-motility [5]. A+S- mutants of  Myxobacteria 
have only A-motility but no S-motility , while those with S-motility but no A-motility 
are called A-S+ mutants [1]. Individual Myxobacteria cells reverse their gliding 
direction roughly once every 10 min, and the mglA mutants which are unable to 
reverse normally are unable to swarm [2, 4, 12].  

 

Fig. 1. The swarming patterns of wild-type A+S+ Myxobacteria (Picture taken from [1], by 
Kaiser, D. and C. Crosby (1983)). On the upper-left part of the END picture, a large peninsula 
projected outwards from the colony edge. There were also smaller peninsulas and rafts of cells. 

Isolated cells move along their long axis and may bend slightly [1, 2]. When a cell is 
less than a pilus length from other cells, S-motility can be active because the pili can 
reach groups of other cells that are ahead [2]. As the cells move, they leave a slime trail 
behind which pushes the cells forward (A-motility). Experimental observations showed 
that when cells meet a slime trail, they tend to turn at the acute angles to follow the 
trail [8].  

Swarming of Myxobacteria has been modeled using a continuous model with partial 
differential equations (PDE) [9], which treats the radial swarming pattern expansion as 
a one-dimensional problem and assumes a rate at which peninsulas merge.  

In this paper, we first present a modified two-dimensional LGCA model, and 
investigate the expansion rate as well as the peninsula formation in wild type 
Myxobacteria during swarming. We then present an off-lattice model, which is the first 
computational model based on slime guidance for cells and motility engine reversal. 
We describe preliminary simulations for the swarming of A+S- Myxobacteria, which 
successfully reproduce the peninsula pattern. 

2   Lattice Gas Cellular Automata (LGCA) Model 

2.1   Description 

Unlike classical LGCA [10], in our model each cell is not simply a point particle, it 
has an extended domain (profile) that encompasses several lattice sites.  (Notice that  
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the extended profiles have been used previously, amongst others, for modeling 
collective cell movement in Dictyostelium discoideum [11].) Each cell is defined by 
the position of its center of mass on the two dimensional hexagonal lattice, direction 
of movement (when it is moving), its length and the extent of its bending.  From these 
five state variables we determine the extended domain (profile) of the cell. Cell 
direction is updated using a Monte Carlo algorithm. 

Three representative cells and the surrounding search area of one of the cells are 
displayed in Figure 2. Each cell has a length of 7 sites and a width of 1 site. The sites 
of the cell are indexed from the back of the cell to the front of the cell.  The center of 
mass of the cell is always at half of the cell length. The dark grey spot is the center of 
mass, and the black ones are the rest of the body of the cell.  The shaded spots are to 
show the search area for S-motility.  The length of the cell changes as the cell absorbs 
a diffusing nutrient until it reaches a maximum value. Then the cell divides into two 
equal halfs. 

 

Fig. 2. Three representative cells and the surrounding search area of one of the cells.  The three 
cells are represented by the groups of black circles with the center of mass node in light gray.  
The three areas below the cell on the right represent the search areas for the S-motility algorithm.  
The four sites that are shaded dark between two searching areas belong to both areas. 

Cells choose which direction to turn at each time step based on three components, 
slime, S-motility, and physical contact with other cells.  Cells tend to align with the 
direction of previous cells that have passed and deposited slime.  S-motility is pili 
driven, and we model it by favoring cells to be pulled towards areas of higher local 
cell density.  Physical contact accounts for side-to-side alignment due to adhesion, 
deflections by collisions with other cells, and physical obstacles to turning caused by 
nearby cells. 

We assign a weight, iα  to each effect listed above. For each cell we collect data 

pertaining each of them, )(xf j
i , where x is the current system state and j

if is the 

function describing the strength of  an effect in the jth direction.  The detailed 

explanations for j
if are listed in Table 1.  
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Table 1. The local information collected to model each effect for determining cell turning and 
bending 

 Effect 
modeled 

Data collected 

f1 A- motility The amount of slime deposited on the three lines passing through the 
center of mass of the cell. 

f2 S- motility The number of occupied sites in each of the three regions of Illustration 1. 

f3 Cell-Cell 
alignment 

The number of sites that will contain a parallel cell beside this cell if it 
turns in this direction. 

f4 Collisions The number of cells one lattice site in front of the current cell that are not 
aligned with this cell 

f5 Crowding The negative of the number of occupied lattice sites that are in the triangle 
formed between the current cell and the cell if it turns this direction. 

The cell is only allowed to bend 60° to the left or right.  After these function values 
are collected we assign each of the possible outcomes a probability )( jP  calculated 

as follows: 
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This choice of probability function provides a good separation of similar states, with  
corresponding to the amount of separation. The new direction for the cell is 
determined by this probability. To model motility mutants, A+S- and A-S+, we 

set 2 0α = and 1 0α =  respectively. 

A cell moves one step forward and straightens as long as this does not cause it to 
overrun another cell, otherwise it stalls, and stays bent.  All cells turn or bend 
simultaneously, so collisions that involve two cells moving into an unoccupied space 
are not prevented. After that all cells move simultaneously.  After movement, cells 
can grow, deposit slime, or reverse with a preset period.  The time step and lattice 
spacing are matched to produce the appropriate velocity for the motilities of the cells. 

2.2   Simulation Results 

We simulated circular colonies of A+S+ wild type Myxobacteria of initial radius 60 
m and varying initial densities. We first calculate the radial distribution function of 

cell density for the entire colony. Then define the edge of the colony by a cell density 
threshold of the distribution. The rate of expansion was then calculated from the 
linear fit for the distance to the colony edge versus time. 

The expansion rates from simulations were plotted against the initial density of the 
colony, the plot was fit by this function:  
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where x is the initial density, as in [1].  From simulation data, a fit of A=-0.1±0, 
B=0.5±0.2, C=50±20 was found for wild-type cells.  In the experiment with an initial 
radius of 1.5 mm [1], the fit of the same form for wild type cells was A=0.1, B=1.48, 
C=48±6, with A+B=1.58±0.06.  While the length scale between the simulation and 
experiment differ by 3 orders of magnitude, the expansion rate was constant over two 
orders of magnitude for the simulation. 

 

Fig. 3. Density (X-axis,) vs. Growth Rate (Y-axis,) curves for experiment (upper) and 
simulation (lower). The density is in Klett-Summerson unit [1], and the growth rate is in unit of 
microns per minute. The exes are simulation results.  

Figure 4 shows the peninsulas that formed from an initial smooth colony edge.  
The peninsulas appear mostly in the areas of the initial circle of cells where the radius 
aligned with a direction of the lattice. This agrees with experimental observation that 
cells are initially aligned perpendicularly to the colony boundary.               

 

Fig. 4. The initial condition and a representative snapshot of a myxobacteria colony after 300 
time steps. The snapshot demonstrates peninsulas that curve and merge, as well as rafts of cells.  
Five peninsulas exist in this snapshot. 
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From our simulations, we find that the exponent, C, in the expansion function 
agrees with experimental measurements within error; we also observe the peninsulas 
forming.  But the overall expansion rate is much lower than the experimental 
measurements. This is due to several artifacts in our model.  The first is that 
peninsulas form mostly at the corners of a hexagon centered at the center of the 
colony, since this is the only point on the boundary where a direction normal to the 
boundary is allowed. If a cell attempts to leave the colony at another point, the local 
rules for S-motility turn it back into the colony, since pili are modeled to prefer areas 
of higher cell density.  This S-motility effect also causes a negative expansion rate at 
low densities. Secondly, due to the rigidity of the cells, cells collide with each other 
and cannot easily free themselves from the current configurations.  Therefore in the 
high density area in the initial colony, cells become entrapped and can not move. We 
overcome these difficulties by introducing an off-lattice model, which is described in 
the next section. 

3   Off-Lattice Model 

3.1   Modeling Individual Cell 

To incorporate into the model the elastic properties of the Myxobacteria cell body as 
described in [12], we adopt an off-lattice cell representation to allow for more flexible 
cell shape and mechanical properties [13]. An individual cell’s configuration is 
represented by a string of N nodes (Figure 5) which can occupy any positions in two-
dimensional space. The first node is called the head-node, and the N-th node is called 
the end node. The vector pointing in the direction from the end-node to the head-node 
determines the cell’s orientation. There are (N-1) segments of length r each between 
every two neighboring nodes. There are also (N-2) angles  between every two 
neighboring segments. We define the Hamiltonian for an individual cell (see Figure 5) 
as follows: 

 
 

Stretching and bending energies are defined as a quadratic function of segment 
length r between nodes and the angles  between two segments respectively, i.e. we 
approximate the cell body as having simple elastic stretching and bending energies: 
 

 
 
 

Here bK  and Kθ  are parameters analogous to the spring constants in Hooke’s Law; 

they determine the extent to which the segment lengths and angles can change in the 
presence of external forces, respectively. They are the same for all segments and 

angles. 0r  is the target length of the segment. 
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Fig. 5. A cell body of Myxobacteria is represented by N=4 nodes. The black solid dot is the 
head-node. The length to width ratio of the cell is 10:1. 

The relative positions of nodes can change during the configuration updates in our 
algorithm, so the cell body is flexible.  

The Monte Carlo approach is used for configuring the position of the nodes at 
every time step. We first move the head-node to a new position, denoting the 
magnitude of the displacement as x, and then repeat the following steps for a 
sufficient number of times (we choose this number as 2.5N): 1. Randomly choose a 
node within the same cell, for instance, node i, and move it in the direction from node 
i to node (i-1) for a distance of x, with a small random fluctuation; 2. Calculate the 
energy change E due to the relative position change of the nodes; 3. Use the 
Metropolis algorithm [14] to determine the acceptance probability for the positional 
change of a node:  
 
 
 

Here k is a Boltzmann constant; T is a parameter that characterizes the system’s 
tendency to statistically fluctuate from the equilibrium.  The cells in the model can 
bend elastically due to the random fluctuation during the updating of nodes 
configurations while keeping their lengths within certain range.  

3.2   Modeling Cell Motion 

In our off-lattice model, cells are allowed to move freely in any direction in the two-
dimensional space.  This is a significant improvement compared to the lattice models 
where cells move on a fixed lattice.    

Biologically, wild type A+S+ Myxobacteria cells move by using pulling force 
from pili retraction at the head and pushing force from slime secretion at the end.  We 
focus on the global motion of a large number of cells during swarming instead of 
studying details of motility mechanisms of an individual cell. Therefore, we model 
the cell’s effective motion by using simplified assumption about the motion of a cell 
being led by the head. That is, the head of a cell pulls the whole cell body to move 
forward. We distinguish cells with different types of motility through a variable 
magnitude of the head velocity. In this preliminary model, we only include the A-
motility and fix the magnitude of the head velocity at about 4 microns per minute.  

In experiment, an isolated cell moves along the direction of its long axis and keeps 
roughly straight. When meeting a slime trail, cells tend to turn at the acute angles to 
follow the trail [8]. When cell density is high, as they are at the colony’s edge at early  
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stage of Myxobacteria swarming, cells are packed layer by layer, and they can move 
on top of other cells. In this case, there will be a lot of intersecting slime trails and 
cells may not follow a particular slime trail. On the other hand, collisions between 
cells are more important than cell-slime interactions at high cell densities. For these 
reasons, we define a searching circle centered at the head node of each cell (Figure 6), 
and define a local slime field density D(s) for each cell as the total area covered by 
slime within the divided by the area of searching circle (Figure 6): 

 
 
 
 
We then let the cell follow a particular slime trail only if the slime field density is 

below a certain threshold. Because the width of a slime trail is close to cell-width, 
while the radius of searching circle is defined to be about half of a cell-length, then 
the slime field density for a searching circle with single slime trail will be: 

 
 

 
 
A typical cell’s width-to-length ratio is 1:10, so we choose the threshold of slime field 
density to be 0.2, which corresponds to only a few slime trails in the simulation 
domain. 

Based on experimental observations of cell motion, we develop a phenomenological 
algorithm to determine the direction of head node velocity, which we call the head-
sensing slime guidance algorithm (see Figure 6): 

(1) Search the circlar area ahead of the cell for slime trail and calculate the local 
slime field density D(s); 

(2) If no slime trail is found, or if D(s)>0.2, choose the cell orientation as head 
velocity direction and go to step (6) (The cell’s orientation is defined by the 
vector pointing in the direction from end to head).  If D(s 0.2, go to next 
step; 

(3) Approximate the direction of the slime trail as a line segment (from point A to 
B); 

(4) Transform the coordinate of point A and B from XOY to the cell’s local 
coordinate system (X’O’Y’); 

(5) If Y’ of one point is less than that of the other one, for instance, Y’(A) < 
Y’(B), then choose the new direction as O’ B because cells tend to turn at 
the acute angles to follow slime trails; if the new direction opposes the cell 
direction and thus may reduce the cell length, choose the new direction as 
A B. In the case of Y’(B) < Y’(A), simply change O’ B (or A B) to be 
O’ A (or B A). 

(6) Tentatively advance the cell using the head velocity obtained through the 
above procedures. If it collides with another cell, choose the collided cell’s 
orientation as the new head-velocity direction, so that cells can align with 
each other when collision happens. 

(area covered by slime)
( )

(area of searching circle)
D s =

2

2 (radius of searching circle) (width of slime trail ) 4 (cell-width)

(radius of searching circle) (cell-length)π π
⋅ ⋅ ⋅

⋅ ⋅
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Fig. 6. A schematic description of head-sensing slime guidance for Myxobacteria cells. The 
orange lines represent a part of cell body, which meets with a slime trail. The head of the cell is 
defined as O’ point, the origin of the cell’s local coordinate system X’O’Y’. The cell 
orientation is along the direction of O’Y’. The cell will turn to a new direction at an angle  
with O’X’ axis when it meets the slime trail. 

In our simulation, cells move at most 0.8 micron every time step, so 5 simulation 
time steps correspond to one minute of real time. At each time step, we do the 
following for each cell in the order of numbering of cells: First, find out the moving 
direction for its head node by the head-sensing slime guidance algorithm. If no 
collision happens in the direction, move the head node for a distance of 0.8 microns; 
otherwise the cell stalls and waits until next time step for a new moving direction. 
Next, apply the Monte Carlo algorithm described in section 3.1 to re-configure the 
positions of the rest nodes. Besides, cells reverse polarity every 50 time steps. We also 
include cell divisions. Typically cells divide after more than 10 times reversals [6]. The 
division rate is set in such a way that the total number of cells approximately doubles 
after about 3 hours, which is the typical duoubling time of the swarming stage. 

3.3   Simulation Results 

We first run simulations to demonstrate the head-sensing slime guidance algorithm 
for cells. As shown in Figure 7(a-d), the cells could efficiently orient along slime 
trails. Initially 10 cells were randomly distributed in space. The black dots and lines 
represent slime (cells are not shown in the figure).  

In swarming experiments, tens of thousands of cells form a solid wall at the edge 
of a circle with a radius of about 1.5 mm [1]. Due to the computation limit, we first 
look at a small curved section which is 167 microns in length and 17 microns in 
width. The length is about 1/60 of the perimeter of circle. Because the length of the 
section is much smaller than the radius of circle, the small section can be 
approximated as a rectangular area. We use a 100 ×1000 square as the simulation 
domain as shown in Figure 8, and the rectangular area is indicated as “Initial Area of 
Cells”. 1000 units of length are equivalent to 167 microns, so 6 units of length are 
equivalent to 1 micron. We distribute 1111 cells randomly in the rectangular area,  
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Fig. 7. (a) At 10 time steps, cells have not yet interacted with the slime trails deposited by other 
cells. The red arrows indicate directions of moving cells (cells are not shown in the figure).  
(b) At 25 time steps, some cells begin to follow the existing slime trails in the arrow-indicated 
areas. (c, d) At 40 and 55 time steps, more cells have been following and gliding on slime trails. 
The cell on the left does not meet any slime trail deposited by other cells, so it keeps gliding 
and reversing on its own slime trail. 

which corresponds to the case of close-packing of cells, because the average area 
occupied by one cell is 2.5 square-microns, the same as the area of one cell body. The 
sides a and c in Figure 8 are set to be periodic boundaries, and the upper side of 
“Initial Area of Cells” acts as a reflecting boundary, that is, when a cell crosses the 
boundary upwards, it will disappear, while another cell will emerge and cross the 
boundary downwards. The reason of doing this is that we only simulate a small 
section of the edge of cell colony, and the cell population in simulation region should 
keep roughly the same if not considering cell division.  

 

Fig. 8. The simulation region is a 1000×1000 square. Cells are initially distributed in the 
“Initial Area of Cells” as indicated. Sides a and c are periodic boundaries, while side d acts as a 
reflecting boundary. 
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Figure 9 shows the simulation results. We find that the edge solid with cells is 
broken in some positions, which leads to small gaps. Meanwhile raft and peninsula 
structures emerge, and the peninsulas are roughly radial if looking at the whole colony 
circle. These behaviors agree with the experimental observations in Reference [1]. 

 

Fig. 9. (a). Initially 1111 cells are randomly distributed in a rectangle area 167 microns in length 
and 17 microns in width. (b) At 20 minutes, some cells start to move outwards the edge and some 
small peninsulas form. (c) At 60 minutes and 80 minutes, gaps appear on the initial edge and 
larger peninsula structures form by merging of smaller ones. The peninsulas point downwards, 
corresponding to pointing outwards in radial direction if looking at the whole colony circle. The 
peninsulas are similar to the structures shown in the experimental Figure 1 (END picture). 

4   Discussion 

Both the modified LGCA model and the off-lattice model presented in this paper can 
simulate the peninsula formation during Myxobacteria swarming.  We have also used 
modified LGCA model to obtain a quantitative result of the relationship between 
expansion rate and initial density with the exponential coefficient being within 
experimental error.  However, several artifacts in the LGCA model became apparent 
while running simulations. The primary one is that a perpendicular direction for 
peninsula formation only occurred in a few points on the perimeter of the colony.  
The advantage of this model is that it can model up to tens of thousands of cells, and 
does produce initial patterns similar to that of experiment. 

The off-lattice representation for cells does not have geometric constraints. It 
allows for bending at small angles and stretching, and incorporates easily a detailed 
mechanism for slime guidance.  Therefore, we expect that the off-lattice model can 
provide more accurate results for swarming stage. With the off-lattice approach, we  
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plan to model in detail the quantitative properties of the swarming process, such as the 
expansion rate and the peninsula dynamics. We are also currently developing parallel 
algorithms to overcome the computational limitations of this approach.  
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Abstract. Generation of large primitive polynomial over a Galois field
has been a topic of intense research over the years. The problem of finding
a primitive polynomial over a Galois field of a large degree is computa-
tionaly expensive and there is no deterministic algorithm for the same.
In this paper we present an new recursive algorithm based on cellular
automata for generation of very large primitive polynomial over finite
fields. The motivation for cellular automata based construction comes
into play as it has an excellent regular structure and efficient hardware
representation. At the end we give an application of this new construc-
tion in a RS-encoded MPSK Modulation in Rayleigh fading channel.
But the general construction given here can be extended to any area like
cryptography, coding theory etc. having application of sufficiently large
Galois field.

Keywords: Cellular Automata, Galois field, Primitive polynomial,
MPSK Modulation, RS-encoding.

1 Introduction

Over the years Galois field has found its application in many areas such as num-
ber theory, algebraic geometry, coding theory, cryptography, polynomial equa-
tions, computational biology etc [1,2]. A Galois field is completely characterized
by its primitive polynomial. A polynomial p(x) of degree m over the finite field
GF (q) is primitive if it is irreducible (having no non-trivial factor) and the
smallest positive integer n for which p(x) divides xn − 1 is n = qm − 1. One can
generate every field GF (qm) using a primitive polynomial over GF (q), and the
arithmetic performed in the GF (qm) field is modulo this primitive polynomial
[1]. However, for several years it has been a problem to generate large primitive
polynomial of a given degree over a Galois field. In the present work we have
explored construction of primitive polynomial over large Galois field of the form
GF (2m). A novel Cellular Automata (CA) based construction methodology has

S. El Yacoubi, B. Chopard, and S. Bandini (Eds.): ACRI 2006, LNCS 4173, pp. 204–214, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



A CA Based Approach for Generation of Large Primitive Polynomial 205

been presented which generates primitive polynomials over fields like GF (2m),
where m is in the form of m = 2pn. The motivation behind using CA is its excel-
lent correspondence with Galois field [3]. We have used 3-neighbourhood linear
CA, which also reduces the interconnects of our design. This linear CA repre-
sents a linear finite state machine [4] which is characterized by the characteristics
polynomial of its state transition matrix. The characteristics polynomial of an
n-cell maximum length CA is a primitive polynomial of degree n over GF (2).
Hence a maximum length cellular automata structure can be employed to rep-
resent primitive polynomial over a given Galois field. In this work we show how
maximum length CA of a base field GF (2n) can be combined to generate a
maximum length CA of a higher field GF ((2n)2) and so on. The characteristics
polynomial of the composed CA is the primitive polynomial of the higher field
and the CA structure can generate all the elements in the field. This algorithm
can find applications in several areas where Galois field of very high order is
needed. We present such an example application of the above construction in
Reed-Solomon coded MPSK modulation scheme in Rayleigh fading channel.

The rest of the paper is organized as follows. In section 2: we give a brief de-
scription of basic cellular automata theory, section 3 explores novel and generic
CA based primitive polynomial generation algorithm of large Galois field. Sec-
tion 4 describes basic of RS-coded MPSK modulation scheme in rayleigh fading
channel. Section 5 discusses the application of our proposed hardware and a brief
comparative analysis. Section 6 concludes our paper.

2 Cellular Automata Theory and Galois Field

A Cellular Automata (CA) consists of a number of cells arranged in a regular
manner, where the state transition of each cell depends on the states its neigh-
bors. For a three neighborhood CA the state q of the ith cell at time (t + 1) is
given as qt+1

i = g(qt
i−1, q

t
i , q

t
i+1) where g is the rule of the automata [5]. As g is

a three variant function, it can have 28 or 256 outputs. The decimal equivalent
of the output column in the truth table of g denotes the rule number. The next
state function of Rule 90 and Rule 150 are given below :

Rule 90 : qt+1
i = qt

i−1 ⊕ qt
i+1 and Rule 150 : qt+1

i = qt
i−1 ⊕ qt

i ⊕ qt
i+1

The CA preliminaries where the CA is in GF (2) are noted in [6]. For an n-cell one
dimensional CA, the linear operator can be shown to be an n×nmatrix [6], whose
i-th row corresponds to the neighborhood relation of the i-th cell. The next state
of the CA is generated by applying the linear operator on the present state. The
operation is simple matrix multiplication, but the addition involved is modulo-2
sum. The matrix is termed as the characteristics matrix of the CA and is denoted
by T . If ft represents the state of the automata at tth instant of time, then the next
state, i.e., the state at (t+ 1)th instant of time, is given by ft+1 = T ∗ ft. If for a
CA all states in a state transition graph lies in some cycle, it is called a group CA;
otherwise it is a non-group CA. It has been shown in [6] that for a group CA its
T matrix is non-singular, i.e., det[T ] = 1 (det[T ] = determinant of T). An n-cell
CA can be characterized by a n× n characteristics matrix T as follows :
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T [i, j] = 1(if next state of i-th cell
depends on the present state of j-th cell)

= 0(otherwise)

The associated characteristics polynomial (p(x)) can be obtained as determinant
det([T ]+x[I]). If the characteristics polynomial of an n-cell group CA (for which
detT = 1) is primitive, then a repetitive application of the linear operator T
generates a cycle of length (2n−1) with all non-zero states [6]. This CA is called
maximum length group CA. It has been noted that a spatial combination of
rule 90 and rule 150 generates a maximum length group CA which ensures that
some combination of these two rules can generate all the non-zero elements of
a Galois field of order n. For an n-cell maximum length group CA, if T is its
characteristics matrix, T 2n−1 = I(identity matrix).

A 2-cell null boundary hybrid CA over GF (2) with rule vector < 150, 90 > is
given in (Fig 1 ) [6]. This CA can also be regarded as a 1-cell CA over GF (22).
This 2-cell CA can be characterized by the following characteristics matrix :

{  X

o/p

Cell−1

o/p

Cell−2

x0 x1

Fig. 1. 2-cell CA with rule vector 〈150, 90〉

T =
(

1 1
1 0

)
Characteristics polynomial of the matrix is m(x) = x2+x+1 which is a primitive
polynomial over GF(22). The element X = (X0, X1) ∈ GF (22). If the character-
istics polynomial of a CA is primitive over GF(2n), then repeated application of
the transformation matrix T generates all the non-zero states of that field [6]. T
can be termed as primitive matrix as repeated application of this matrix gener-
ates all states repesenting the field. The corresponding CA rule can be termed
as primitive rule.

3 CA Based Approach to Generate Primitive Polynomial
for Large Galois Field

The current section focusses on a hierarchical construction of composite Galois
field using the theory of cellular automata. An n-bit maximum length CA is
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characterised by a primitive polynomial of degree n over GF (2). This is an n-cell
CA over GF (2), where each cell is of 1-bit. This can be visualised as a 1-cell CA
over GF (2n) where the characteristics polynomial is a primitive polynomial over
GF (2n). In our construction we will use this 1-cell CA as basic building block.
Primitive rules can be applied on this basic cell to generate primitive polynomial
of higher order Galois field. Combining two basic cells one can generate primitive
polynomial over GF ((2n)2) (isomorphic to GF (22n)), which will serve as the
basic cell for the next stage. Combining two basic cells of order 2n one can
generate primitive polynomial for Galois field of order 4n and so on. We have
applied this construction recursively to generate primitive polynomial of large
Galois field. The field generated will be of the form of GF ((((2n)2)...)2), which
is isomorphic to GF (2m), where m = 2pn.

To explain the theory behind this hierarchical construction we first develop
some background results.

Definition 1. [7] Given a binary primitive polynomial g(x) of degree b, the
companion matrix A corresponding to g(x) is defined as the following b× b non-
singular matrix.

A =

⎡
⎢⎢⎢⎣

0 . . . 0 g0
. . . g1

... Ib−1
...

...
. . . gb−1

⎤
⎥⎥⎥⎦ (1)

g(x) =
b∑

i=0

gi · xi,g0 = g1 = 1, Ib−1 : (b − 1) × (b− 1) identity matrix.

The set of powered elements of A including zero element, i.e., 0, A,A2, A3, . . . ,
Aq−1 = I, where I is an identity element, makes Galois field of q = 2b elements,
i.e., GF (q = 2b). As all the elements can be represented as different powers of
A, matrix A can be thought of as a primitive element of the field.

Theorem 1. If T represents a primitive element of GF(2n) then any power of
T , e.g. T q = T1 represents another primitive element of that field if gcd(q, 2n −
1) = 1.

Proof. Since, T is a primitive element T 2n−1 = I and T q = T1 (as given).
Now T1, T

2
1 , T

3
1 , . . . T

2n−1
1 represents T q, T 2q, T 3q, . . . , T (2n−1)q respectively. As

gcd(q, 2n − 1) = 1, T q, T 2q, T 3q, . . . , T (2n−1)q all are distinct elements.
∴ T q = T1 has order 2n − 1, which implies T q is another primitive elements.

Theorem 2. [8] Two matrices A and B represent the same linear operator T
if, and only if, they are similiar to each other .

Theorem 3. [8] Similiar matrices have the same characteristics polynomial .

Theorem 4. [9] If two matrices A and A′ are similiar nonsingular state-
transition matrices, then their state graphs have identical cycle structures and
differ only in the labeling of the states .
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Theorem 5. If T be the state transition matrix of a maximum length n-cell CA,
then the set of powered elements of T including zero element, i.e., 0, T, . . . , T 2n−1

= I, where I is an identity element, makes Galois field of 2n elements, i.e.,
GF (2n).

Proof. Let A denotes the companion matrix of a binary primitive polynomial
g(x) over GF (2n) and T denotes the state transition matrix of a maximum
length n-cell CA, whose characteristics poynomial is g(x). As per theorem 2 and
3, A and T are similiar matrices and represent the same linear operator. A and T
have identical cyclic structures and differ only in the labeling of the states as per
theorem 4. Therefore set of powers of T and A has one-to-one correspondence.
Now the set of powers of matrix A including zero element makes Galois field of
2n elements (theorem 1) which implies that the set of powers of T also makes
Galois field of 2n elements. Matrix T can be thought of as the primitive element
of this field.

3.1 Proposed CA Based Approach for Composite Galois Field of
the Form GF ((2n)2)

Primitive polynomial of composite Galois field of the form GF ((2n)2) can be
generated using 2-cell CA, where each cell is an n-bit maximum length CA. We
state an theorem below for that construction.

Theorem 6. Composite Galois field of the form GF((2n)2) can be formed by
applying primitive rule to a 2-cell CA where each basic cell is itself an n-cell
CA. Each n-cell CA is configured with a primitive rule. One n-cell CA is being
operated for 2n−1 cycles and the other n-cell is being operated for q cycles where
gcd(q, 2n − 1) = 1.

O/P

 Cell

O/P

 Cell

O/P

 Cell

21 n

O/P

 Cell

O/P

 Cell

O/P

 Cell

21 n

X0 X1

W0n−bits n−bits W1

0Y Y1{Y

{{

Fig. 2. CA construction for composite galois field of the form GF((2n)2)
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Proof. Let the same rule vector be applied on X0 and X1 where both are n-cell
CA (Fig 2). The rule is primitive rule such that the characteristics polynomial of
the CA state-transition matrix is primitive over GF(2n). Let the characteristics
matrix be T . Hence, T is a primitive matrix and a primitive element of GF(2n).
Therefore, T 2n−1 = I. Let p cycles are applied to X0 and q cycles are applied
to X1. Therefore W0 and W1 can be written as W0 = T pX0 and W1 = T qX1.
Now X0 and X1 can be considered as two cells. A rule vector R =< 150, 90 >
be applied. The characteristics matrix is :

T =
(

1 1
1 0

)
(2)

Therefore, (
Y0
Y1

)
=
(

1 1
1 0

)(
T pX0
T qX1

)
(3)

This can be written as Y = MX ,where

M =
(
T p T q

T p 0

)
(4)

Characteristics polynomial of M is

m(x) =
∣∣M + Ix

∣∣ = x2 + T px+ T pT q (5)

p can be chosen as p = 2n − 1. Therefore, m(x) = x2 + x + T q = x2 + x + p0
((p0 ∈ GF (2n))). There always exists a primitive polynomial of this form over
composite field GF ((2n)2), where p0 is a primitive element of the base field
[10]. According to Theorem 1 this is true for all q for which gcd(q, 2n − 1) = 1.
Hence the element Y = (Y0,Y1) ∈ GF ((2n)2). Repeated application of matrix
M generates all the non-zero elements of ((2n)2). Moreover the polynomial m(x)
is not unique, as it depends on the choice of q., i.e., on the choice of element p0.

Extension of the proposed construction to generate higher order fields
The construction given above can be used recursively to generate primitive poly-
nomials of higher order fields by using the shown hierarchical CA structure as
basic cell and applying the construction in the same way. The CA based con-
struction for generation of GF (((2n)2)2) is shown below (Fig 3) and the proof
is given along with it. For higher order extensions, circuit of the subfield is taken
as 1 basic cell and 2-cells of the subfield are joined using the same rule vector
R = (150, 90). Cycles applied to each cells are p and q,where q is chosen suitably
and p = 2n − 1 at sub-cell and p = 22n − 1 at outermost cell. Using the result of
the previous section Y0,Y1,Y2,Y3 can be written as,(

Y0
Y1

)
=
(

1 1
1 0

)(
T 2n−1X0
T qX1

)
=
(
T 2n−1 T q

T 2n−1 0

)(
X0
X1

)
(6)
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(
Y2
Y3

)
=
(

1 1
1 0

)(
T 2n−1X2
T qX3

)
=
(
T 2n−1 T q

T 2n−1 0

)(
X2
X3

)
(7)

Z0 = (Y0,Y1), Z1 = (Y2,Y3) ∈ GF ((2n)2) (proved). From Fig. 3, L can be
written as (

L0
L1

)
=
(

1 1
1 0

)(
M22n−1Z0
M qZ1

)
=

(
M22n−1 M q

M22n−1 0

)(
Z0
Z1

)
(8)

or, L = AZ where,
A =

(
M22n−1 M q

M22n−1 0

)
(9)

1 2 3

RULE

1 2 3

RULE

n−bits n−bits

1 2 3

RULE

1 2 3

RULE

n−bits n−bits
{ {{{

X0 X1 X2 X3

Y Y Y Y0 1 2 3

X’ X’’

L0 L1

{ {Z0 Z1

{L

Fig. 3. CA construction for generation of GF (((2n)2)2)

Characteristics polynomial of matrix A is given by a(x) =
∣∣A+ Ix

∣∣ = x2 +
M22n−1x + M22n−1M q. Similiar to the previous construction q is chosen such
that gcd(q, 22n − 1) = 1. As M22n−1 = I, a(x) is primitive polynomial over
GF (((2n)2)2) which can generate the whole field. This concept can be extended
infinitely in powers of 2 to generate higher order fields taking the previous sub-
fields as basic cell and applying the CA rule and cycles in the same way.

Complexity Analysis : Cell and time complexities of the above construction
are given below. We consider a field GF (2m), where m = 2pn for some p and n
and n is the order of the base block.

Cell complexity
Field Xor-gates cells
GF (2n) n n
GF ((2n)2) 2n+ 2 2n
GF (((2n)2)2) 22n+ 22 + 2 22n
GF (((2n)...)2 = (2n)2

p

) 2pn+ 2p + . . .+ 2 = 2pn+ 2p+1 − 2 2pn
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Time complexity. In the proposed construction GF (2m) is based on GF (2m/2),
as it acts as the basic cell for next stage. The basic cell must go through all the
non-zero states, i.e. through 2m/2 cycles. Hence the time complexity is of the
order of O(2m/2).

The above CA based algorithm gives an easy and efficient way of generating
primitive polynomial of large galois field. This CA based construction can easily
be implemented in VLSI circuits as it has a very regular and structural construc-
tion which is very suitable for VLSI circuits.The limitation of our methodology
is that it can be used for only even ordered field. The method can be used in
application areas where large primitive polynomials over even ordered Galois
fields are nedded. The following section reports such an application area where
the CA based construction of generating large primitive polynomial can be very
well suited.

4 RS Coded MPSK Modulation Scheme

In recent years RS-MPSK has been proved to be an attractive scheme for wireless
mobile communication systems [11]. Here we put forward a design for the same
using our novel cellular automata based field generator.

4.1 RS Coding Scheme

Reed Solomon codes are an important subclass of BCH codes defined overGF (q).
It is based on groups of bits, such as bytes, rather than individual 0s and 1s,
making it particularly good at dealing with bursts of errors. Thus, even a double-
error-correction version of a Reed-Solomon code can provide a comfortable safety
factor. A Reed-Solomon code is specified as RS (n, k) with s-bit symbols. This
means that the encoder takes k data symbols of s bits each and adds parity
symbols to make an n symbol codeword. There are n−k parity symbols of s bits
each. A Reed-Solomon decoder can correct up to t symbols that contain errors
in a codeword, where 2t = n−k. More importantly a message for an [n, k] Reed-
Solomon code must be a k-column Galois array in the field GF (2n) [12]. Each
array entry must be an integer between 0 and 2n − 1. The code corresponding
to that message is an n-column Galois array in GF (2n). The codeword length
must be between 3 and 2n − 1. A Reed-Solomon codeword is generated using a
special generator polynomial. All valid code words are exactly divisible by the
generator. The codeword is constructed using c(x) = g(x).i(x), where g(x) is the
generator polynomial, i(x) is the information block, c(x) is a valid codeword.

RS-MPSK scheme primarily employs a RS code with large code-length. It
couples the RS code defined over GF (2lm) with 2m PSK modulation scheme,
where each code symbol is represented by the concatenation of l channel symbols
[13]. At high signal to noise ratio (Eb/No), the symbol error rate of MPSK signal
in Rayleigh fading channel can be written approximately as [14]

Ps = 1 −
√

1/(1/x+ 1), (10)
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where x = mRcsin
2(π/2m)EbNo, m = channel bits, Rc= coding rate

Eb = energy per information bit, N0 = PSD of noise
From Eq. 10 it is observed that Ps decreases with increasing x. Now, the only

varying term in x is msin2(π/(M = 2m)), which increases with m. Hence with
the increase in bit-width(m) channel reliability increases. Large sized Galois field
is needed in this context.

5 The Proposed Encoder Architecture

In a high gain, low error probability providing RS-MPSK based scheme the code
length has to be on the higher side [15]. In our paper we have proposed a cel-
lular automata based novel scheme, which, for any given value n generates all
the elements in 2n Galois field. The proposed architecture consists of a gener-
ator polynomial block, a field generator block, an n-bit Xor gate block and a
decision control block. The connections are as shown in Fig. 4. The generator
polynomial block (a conventional one) generates the codewords. The field gener-
ator generates the whole field in composite field form, instead of generating the
parity words only. Each codeword from the generator polynomial are compared
with the word coming from the field generator block. If the word from generator
polynomial block does not match with the word from field generator block then
the word from the field generator is a parity word and it is passed to generated
code block. The Xor gate and the decision control block is used for this checking
purpose. The decision control block is basically a tristate buffer which is con-
trolled by the the output of the Xor gate. It passes the input if the output from
Xor gate is 0.

     Input
 (n, k)

Generator  Polynomial Our proposed
field
generator

  Codeword
Parity word

Decision Control

Generated  Code

Fig. 4. Proposed architecture

6 Comparison of Complexity

The following diagram shows an architecture for a systematic RS(255, 249) en-
coder [16]. Each of the six registers carry 8-bits. And the arithmatic operators
carry out addition and multiplication operations. In case of a normal Reed-
Solomon coding scheme the codeword is generated using the following scheme
C(x) = i(x) ∗ g(x) Where i(x) is the input message stream, g(x) is the gen-
erator polynomial. The fact that the codeword is generated with the help of a
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g0 g g g g g1 2 3 4 5

i(x)

Fig. 5. A RS (255, 249) Encoder

uni-variate multiplier circuit makes the conventional circuit cited in Fig. 5 a com-
plex one. The proposed design is devoid of any conventional multiplier circuit.
The CA based core of the architecture directly generates the extensive Galois
field elements and the decision maker circuit, generates the parity words using a
nominal set of hardware. The 2t parity symbols in a systematic Reed-Solomon
codeword are given by

p(x) = i(x)xn−kmodg(x) (11)

Now, for each of power operation and modulo multiplication, we need 2 mul-
tipliers and 1 conditional block comprised of a shifter and Xor gate. Thus, for

RS(255, 249) with generator polynomial g(x) =
6∑

m=1

xmgm we need 8 multipliers,

1 shifter and 8 Xor gates. In general, for 2t parity symbols we need, 2(t+1) mul-
tipliers, 1 shifter and 2(t+ 1) Xor gates, which increases hardware complexity.
Our scheme employs cellular automata which is devoid of any sort of multiplier
and comprises of only Xor gates and flipflops. Thereby it reduces the hardware
complexity drastically.

7 Conclusion

Generation of large primitive polynomial over Galois field is considered to be a
hard problem, as there is no deterministic algorithm for this. The paper proposes
a hierarchical methodology to generate primitive polynomials of higher order
Galois fields of the form GF (2n), where n is even. The proposed construction
may find several applications in fields like cryptography and communication. We
have shown an application of our construction in RS-coded MPSK modulation
scheme over Rayleigh fading channel.
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Abstract. Reversibility is a concept widely studied in physics as well as
in computer science. Reversible computation is characterized by means
of invertible properties [1]. Quantum systems evolution is described by
the time evolution operator U , which is unitary and invertible; therefore
such systems can implement reversibility. Reversible/invertible Cellular
Automata (CA) [1] are one of the most relevant reversible computational
models. Here we introduce a model for a Josephson junction ladder (JJL)
device addressing reversibility: it is based on a hybrid Cellular Automata
Network (CAN), the CAN2 one [2][3][4].

1 Introduction

Reversibility is a concept widely studied in physics as well as in computer sci-
ence. In particular, reversible computation is characterized by means of invertible
properties. In the past Bennett [5] theoretically showed how it were possible to
design machines based on reversible logic. In order to make computation logically
reversible, each state of the machine must have only one possible predecessor
state that could be reached during the computation. In the past several stud-
ies were performed on the connection between reversible classical functions and
computation without loss of energy as a solution to the Maxwell demon paradox
[5]. In particular it was shown that any classical function can be represented
as a reversible function which can be computed by many elementary reversible
steps; in fact the corresponding unitary matrix is decomposable into a sequence
of many elementary unitary operations. The evolution of a quantum system is
described by the time evolution operator U , which is unitary and then invertible;
therefore such systems can implement reversibility. Reversible/invertible cellular
automata [1] have been growing as one of the most relevant reversible computa-
tional models in the last thirty years. In particular, it has been shown that it is
always possible to transform an arbitrary cellular automaton in a reversible one
[6] as well as to simulate any irreversible one dimensional cellular automaton, en-
dowed with a finite number of configurations, with a one dimensional reversible
one. Recently, also the concept of a CA with memory has been introduced [7].
In the following we introduce a new model of JJL device which incorporates
reversibility: a model based on a reversible hybrid CA with memory. The paper

S. El Yacoubi, B. Chopard, and S. Bandini (Eds.): ACRI 2006, LNCS 4173, pp. 215–221, 2006.
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is organized as follows. In Section 2 we briefly describe a fully frustrated JJL.
Section 3 introduces a particular CA hybrid model, i.e. the CAN2 one, and then
gives the description of the implemented model in terms of such a formalism
while in Section 4 reversibility is introduced. Finally in Section 5 some closing
remarks and future perspectives of our work are presented.

2 Josephson Junction Ladders
The subject of our study is a Josephson junction ladder [8] built of N plaquettes
closed in a ring with a half flux quantum (1

2Φ0 = 1
2

hc
2e ) threading each plaquette.

The number of plaquettes must correspond to the number of junctions on the
vertical links of the ladder, so that each plaquette contains two junctions on the
left and right link respectively. Such a condition is fulfilled when each plaquette
of the ring contains an odd number of the so called π-junctions [9] (a π-junction
is characterized by a current-phase relation of the kind I = Ic sin(φ + π)), one
in our case, or putting the array in a transverse magnetic field. The first choice
is the best in view of a feasibility study of a ”protected” qubit because it avoids
the switching of an external uniform magnetic field at least at the earliest stage
of the definition of the ground states. With each site i we associate a phase ϕi

and a charge 2eni, representing a superconducting grain coupled to its neighbors
by Josephson couplings; ni and ϕi are conjugate variables satisfying the usual
phase-number commutation relation. The system is described by the quantum
phase model Hamiltonian [10]:

H = −EC

2
Σi

(
∂

∂ϕi

)2

−Σ〈ij〉Eij cos (ϕi − ϕj −Aij) , (1)

where EC is the charging energy at site i, while the second term is the Joseph-
son coupling energy between sites i and j and Aij = 2π

Φ0

∫ j

i
A·dl, with Φ0 the

superconducting flux quantum. The gauge invariant sum around a plaquette is
ΣpAij = 2πf with f = Φ

Φ0
, where Φ is the flux of the external magnetic field

threading each plaquette. When f = 1
2 and EC = 0 the ground state of the 1D

frustrated quantum XY model displays – in addition to the continuous U(1) sym-
metry of the phase variables – a discrete Z2 symmetry associated with an antifer-
romagnetic pattern of plaquette chiralities χp = ±1, measuring the two opposite
directions of the supercurrent circulating in each plaquette. For small EC there is
a gap for creation of kinks in the antiferromagnetic pattern of χp and the ground
state has quasi long range chiral order. Our ladder has a ground state twofold de-
generate with antiferromagnetic ordering, hence it can be mapped into a linear
antiferromagnetic chain of half–integer spins. Furthermore it can acquire, in ad-
dition to superconducting quasi long range order, a topological order parameter
due to its peculiar geometry, as it has been shown recently [11]. It is now possible
to construct symmetric and antisymmetric linear combinations of such degenerate
ground states and then to control their amplitude and relative phase: such oper-
ations are needed in order to prepare the qubit in a definite state [12]. In fact it
can be shown that the tunnelling between the two ground states corresponds to
the physical process of creation and annihilation of kink–antikink pairs [13].
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3 The Cellular Automata Network v.2 (CAN2) Model
and a Qualitative JJL Qubit Description

The CAN2 model [2,3,4] extends the standard CA model introducing the possi-
bility to have a hybrid network of standard cellular automata components and
global operators. It provides the possibility to simulate a two-level evolution-
ary process in which the local cellular interaction rules evolve together with
some global functions according to network connections. Each automaton of the
network represents, for instance, a component of the physical system to be simu-
lated, the global operator represents global behavior and/or control capabilities
and the network connections represent an evolving law which characterizes the
physical system evolution. A more formal definition of a CAN2 network is given
in [2,3,4]. Briefly we define a CAN2 network as the tuple

〈L, X, S,G, P, Pvar , f, g, F 〉 (2)

where:

– L is the the finite region where the system evolves;
– X is the neighborhood set as union of the neighborhoods of all components;
– S is a finite set of states;
– G is a finite set of global variables;
– P is a finite set of parameters, P = {p : p ∈ R};
– Pvar is the set of global parameters;
– f is the set of the cellular automata transition functions;
– g is the set of global operator functions;
– F : S#Ntot → S is the transition for all the cells in L.

In order to define the total transition function for the whole system it could be
useful to separately define the CA component and the global operator compo-
nents. Precedence relations occur if one cellular automaton needs to know the
value/s of a global variable (or inverse) at the same step in order to evolve, and
the execution of the g functions must precede (succeed) the execution of the
transition functions f . We obtain the following definition

F : ◦M,K
i,j=1[gj ] ◦ [fi] (3)

and the [gj] ([fi]) symbol implies that its presence could be optional and the
corresponding precedence relations must be expressed according to it. Now, ac-
cording to our CAN2 based qualitative model introduced in [4], we have the
following formal definition of the JJL system [2]:

〈L, X, S,G, P, Pvar, f, g〉 (4)

– L = x|x ∈ N is the lattice grid, that is a finite linear array where each point
identifies a cell.

– X includes x− 2, x+ 2 for each cell x.
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– S = S1×S2×S3×S4 is the set of state values. The substates are respectively:
Pseudo S (assuming (−1, 1) values), the fixed magnetic pulse Mp, LABEL
to identify the cell, and FLIP to register if the pseudospin flips.

– G is the set of global variables, where Btot is the total applied magnetic pulse
and StartC is the number of the corresponding starting cell.

– P is the set of global constant parameters: I (current) and C (capacitance).
– Pvar includes STEP, the step iterator to trigger the evolution.
– f : S → S is the deterministic state transition to determine the pseudospin

state and values.
– g : S2 → G expresses the global operator which controls the total magnetic

pulse applied on the system.
– gs : G → G is the global operator which chooses randomly the driving cell.

In order to implement a protected qubit (see Section 2) the boundary condi-
tion topology is annular. In order to get a transition between the two ground
states the magnetic pulse period is equal to the pulse period. The flipping pro-
cedure between the input and output states implements a tunnelling between
the two ground states which corresponds to the physical processes of creation
and annihilation of kink-antikink pairs [13]. In general, for N cells, (N/2) dou-
ble flips are needed to switch from |0 > to |1 >. We choose to use a double
step for the CA transition component, with each time step equal to the half of
the single sawtooth magnetic pulse period. The CA component has, as initial
condition, the pseudospin configuration obtained in the precedent stage since it
must obey to an antiferromagnetic arrangement and the flipping state is zero.
At the initial time, our device is in a steady state, in one of the two possi-
ble ground states. Each parameter is fixed and the LABEL values are fixed
for all transition steps, but the variable STEP is initialized to each macro-
step T. The general transition function takes into account the coupling fac-
tor, adding an external frustration, as a single sawtooth magnetic pulse act-
ing on each lattice cell. The system transition is assumed to be given by the
possible simultaneous application of the two global operators followed by the
transition function. The evolution of the model obeys to the following function
F : S f × G × P × Pvar → S f × G × Pvar. The transition function scheme
shows two global operators, the pulse application and the random starting cell
chooser, in the first formulation of the model [2]. The transition function ap-
plies repeatedly the cellular automata component according to the multiplicity
related to the double flips.

4 Introducing Reversibility in the JJL Qualitative Model

In 1961 Landauer [14] discussed the limitation of the efficiency of a computer
imposed by physical laws. He argued that, according to the second law of ther-
modynamics, the erasure of one bit of information requires a minimal heat gen-
eration kBT ln 2, where kB is Boltzmann’s constant and T is the temperature at
which one erases. Inspired by such studies, a considerable amount of work has
been made on the thermodynamics of information processing [5][15]. Bit erasure
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is the simplest logically irreversible process because it requires a one bit input
and always returns the null state as the output, so making impossible to recover
the input value from just the output value. Landauer provided a method [14]
for building up a logically reversible erasure in a bistable potential by taking
into account the value of the bit being erased. In the context of cellular au-
tomata, such a process involving a ”demon” cell can be used to copy the bit
stored in a cell and then perform a logically reversible erasure process according
to the value of the stored bit. So, it is clear that a logically reversible erasure
process corresponds to the sequence copy bit to the demon, then erase bit. Now,
in order to build up a reversible computer new logic gates must be used which
are reversible. Reversible gates are such that the input of the gate can be re-
constructed starting from its output. Toffoli and Fredkin [15] introduced such
devices for the first time. They showed how to implement in a reversible way the
AND and XOR gates through only one gate, a three-bit one. In particular, the
Fredkin Gate is a device which operates following a conservative logic: signals
are unalterable objects which can be moved during the course of computation
but never created or destroyed. Now the idea is to implement a copy, than erase
sequence in order to obtain a reversible qualitative qubit. In order to build up
such a device, literature tells us that reversibility could be addressed avoiding the
bit erasure and considering its addition to the actual values state. The evolution
of the Toffoli and Fredkin gate may be viewed as the foundations of the actual
reversible logic and computation. Deutsch [16] showed how to obtain a universal
quantum computation, defined as an arbitrary unitary transformation on a dis-
crete Hilbert space spanned by the set of all the states of a collection of bits, by
means of a simple generalization of the scheme for building a reversible classical
network. There exists a close connection between classical reversible computa-
tion and quantum computation because all unitary quantum operations need to
be reversible: so, classical gates can be implemented quantumly by making the
computation reversible and reversible computing can be conceived as a subset of
quantum computing. All the above considerations are our starting point for the
introduction of reversibility in our device. According to the classical definition
CA are memoryless: no knowledge about the value of the previous states (sub-
states) is required but only about the neighborhood states (sub-states) values.
The memory concept introduced in Ref. [7] can be viewed as a historic one, i.e.
the CA state is updated, being regularly augmented with the cell state at the
previous time step: this means that CA need to be defined just by featuring
every cell by its most frequent (mode) state. The most frequent mode implies
that we have to consider a weight by applying a geometric discounting process,
which is obtained from the rounded weighted average of all the time steps before
[7]. According to [7], in order to reverse the state of a Fredkin gate the memory
concept should be introduced; this implies that we need to consider the system
at the t − 1 and t + 1 evolution time steps. Following the approach sketched
above it could be feasible to use a double address space in order to store the
state value at the previous time step and at the actual one. On the other side it
could be useful to store the values of the global variable representing the driving
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Fig. 1. The JJL system components according to a CAN2 vision: the shaded box is
the modified operator

cell at the actual as well as at the previous time step in order to be able to fulfill
the reversibility requests. This is enough to mimick the unitary transformation
effect between two subsequent system transitions requested by the reversibility
constraint but it leads to the doubling of the requested memory space. In order
to simplify the memory space requests we specify a condition without consid-
ering any state addition. The solution consists in storing the sequence of the
driving flipping cells in order to capture the computing properties of the model
at each time step. Let us now explain in more detail our approach. In our case
the Chooser Operator has a crucial role and it must be modified in the following
way in order to achieve our reversibility goal: a further global variable must be
considered in order to store the sequence of chosen cells at each time step for
the whole system evolution. This is enough for our model in order to recover
all the states since the starting point and not only the previous one. The new
procedure is depicted in Fig. 1, included in the lower small box called Chooser
Operator. This operator is equipped with a global vector (a global variable which
is able to store more values) which stores at each time step the starting cell for
the evolution, so it is much more simple to recover the previous values. In fact
for each time step directly accessible, the first evolution cell can be recovered.
This approach has two main advantages: 1) we recover all the previous states as
each starting cell is stored and, in this case, the previous system state is exactly
the negation; 2) we avoid to store all the cells values, what could be very cum-
bersome in the case of a device with a high number of cells; instead we restrict
to the storage of one value for each time step evolution. The simulation of the
reversible CA component is now trivially accomplished by reducing the step of
the variable as well as by changing the direction of the cyclic function. The new
operator does not modify the precedence relations and the components within
the CAN network.
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5 Conclusions and Outlooks

In this contribution we addressed the reversibility issue in the context of a gen-
eralized JJL qubit device. It was shown how it is possible to view reversibility,
in whole generality, by considering a quasi-probabilistic model behavior. The
advantage in considering such a scheme relies strongly in avoiding the memory
waste and the consequent energy dissipation. We need to store only one variable
per step instead of a set of values (which depends strongly on the number of the
array cells). Further reversibility issues will be addressed in the future, such as
the consideration of no erasing operations but only of the state selection while
performing the memory doubling.
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Abstract. In this paper, we analyze a Linear Hybrid Group Cellular
Automata(LHGCA) C and the complemented group CA derived from
C with rules 60, 102 and 204. And we give the conditions for the comple-
ment vectors which determine the state transition of the CA dividing the
entire state space into smaller spaces of equal maximum cycle lengths.
And we show the relationship between cycles of complemented group
CA. Our results extend and generalize Mukhopadhyay’s results.

1 Introduction

Biological self-reproduction was first investigated in terms of Von Neumann’s cel-
lular automaton capable of universal computation and construction([1]).
Wolfram([2]) suggested the use of a simple two-state, 3-neighborhood one-
dimensional cellular automata(CA) with cells arranged linearly in one dimen-
sion. Each cell is essentially comprised of a memory element and a combinatorial
logic that generates the next-state of the cell from the present-state of its neigh-
boring cells(left, right and self). Various researchers([3] ∼ [5]) have carried out
extensive study in the modeling of CA and finding out better applications of
the automata. Later Das et al.([6]) proposed a versatile matrix algebraic tool
for the analysis of state transition of CA with linear next state functions. CA
have been employed in several applications([7] ∼ [11]). Especially, Cho et al.([12]
∼ [14]) and many researchers([15] ∼ [17]) analyzed CA to study hash function,
data storage, cryptography and so on.

A group CA has nonsingular state transition matrix. The state transition
diagram of such a CA consists of a set of cycles. Furthermore group CA can
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be divided into two classes: maximum-length CA and non maximum-length CA.
All (2n − 1) nonzero states of a linear n-cell maximum-length group CA form a
single cycle. Such a group CA has been projected as a generator of pseudorandom
patterns of high quality. The states of a non maximum-length group CA form
multiple cycles. Recently many researchers have identified the CA as the core of
security algorithms([16], [17]). Mukhopadhyay et al.([9]) investigated the state
spaces of the fundamental transformations of a group CA and proved properties
which relate the state spaces of the CA for the development of new encryption
and key distribution protocols. And they asserted that an essential requirement
for identifying the CA as the core of security algorithms is that the cycle length
of a group CA has to be small, so that ciphering (or deciphering) is performed at
the expense of few clock cycles. Moreover the length of the machines has to be
equal so that the number of cycles required to encrypt or decrypt is predecided.
So we need the analysis of group CA with special rules. In 2005 Cho et al.([15])
analyzed the complemented group CA derived from a uniform group CA with
rule 60 or 102.

In this paper, by using the results in [15] we analyze a LHGCA C and the
complemented group CA derived from C with rules 60, 102 and 204. And we give
the conditions for the complement vectors which determine the state transition
of the CA dividing the entire state space into smaller spaces of equal maximum
cycle lengths. And we show the relationship between cycles of complemented
group CA. Our results extend and generalize Mukhopadhyay’s results([9]).

2 CA Preliminaries

A CA consists of a number of cells. In a 3-neighborhood dependency, the next
state qi(t+ 1) of a cell is assumed to be dependent only on itself and on its two
neighbors (left and right), and is denoted as

qi(t+ 1) = f(qi−1(t), qi(t), qi+1(t))

where qi(t) represents the state of the i-th cell at the t-th instant of time. f is
the next state function and referred to as the rule of the automata. The cells
evolve in discrete time steps according to some deterministic rule that depends
only on logical neighborhood.

rule 60 : qi(t+ 1) = qi−1(t) ⊕ qi(t) rule 195 : qi(t+ 1) = qi−1(t) ⊕ qi(t)
rule 102 : qi(t+ 1) = qi(t) ⊕ qi+1(t) rule 153 : qi(t+ 1) = qi(t) ⊕ qi+1(t)
rule 204 : qi(t+ 1) = qi(t) rule 51 : qi(t+ 1) = qi(t)

The following results are necessary for proving some results in the following
sections.

Lemma 2.1([15]). Let C be an n-cell linear uniform group CA with rule 60
(resp. 102), where 2k−1 < n ≤ 2k. Let T (resp. S) be the state transition matrix
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of C. Then T 2k

= S2k

= I, T 2k−1
= (tij) and S2k−1

= (sij), where

tij = sji =
{

1, if i = j or i = j + 2k−1

0, otherwise

Lemma 2.2([15]). Let C be an n-cell linear uniform group CA with rule 60
or 102 and R be a rule vector. Let T be the state transition matrix of C. Let
X = (x1, · · · , xn)t be a state in C. Then

(T ⊕ I)m−1X =
{

(0, 0, · · · ,mx1, x2, · · · , xn−m+1)t, if R =< 60, 60, · · · >
(xm, · · · , xn−1, xn, 0, · · · , 0)t, if R =< 102, 102, · · · >

3 Analysis of LHGCA and Complemented Group CA
Derived from LHGCA

In this section we analyze LHGCA C and the complemented group CA derived
from C with rules 60, 102 and 204.

Theorem 3.1. Let C be a linear hybrid n-cell CA with rule vector R and state
transition matrix T, where R is a combination of rules 60, 102 and 204. Then C
is a LHGCA if and only if rule 60 is not followed immediately by rule 102.

By Theorem 3.1 C having the rule vector which is the only combination of the
rule vectors RVi(i = 1, · · · , 5) in Theorem 3.3 is a LHGCA.

Theorem 3.2. Let C be an n-cell LHGCA with rule vector R and state tran-
sition matrix T, where R is a combination of rules 60, 102 and 204. Then the
characteristic polynomial of T is (x+ 1)n.

The following theorem characterizes the order and the minimal polynomial of
the state transition matrix T of an n-cell LHGCA.

Theorem 3.3. Let C be an n-cell LHGCA and let m(x) be the minimal polyno-
mial of the state transition matrix T of C. Then m(x) = (x+1)p in the following
cases:

(1) RV1 =<
a

60, · · · , 60,
b

102, · · · , 102>, p = max{a, b}

(2) RV2 =<
a

60, · · · , 60, 204,
b

60, · · · , 60>, p = max{a, b+ 1}

(3) RV3 =<
a

60, · · · , 60, 204,
b

102, · · · , 102>, p = max{a, b}

(4) RV4 =<
a

102, · · · , 102, 204,
b

60, · · · , 60>, p = max{a+ 1, b+ 1}

(5) RV5 =<
a

102, · · · , 102, 204,
b

102, · · · , 102>, p = max{a+ 1, b}

Proof. We only prove for the case (4). Let a + 1 ≥ b + 1. Partition T ⊕ I into
2 × 2 block matrices of the form

T ⊕ I =
(
T1 O
A T2

)
= (aij),
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where T1 is a (a+ 1) × (a+ 1) matrix and

aij =
{

1, if (i = j − 1, i < a+ 1) or (i = j + 1, i > a+ 1),
0, otherwise

Then

(T ⊕ I)q =
(

T q
1 O

T q−1
2 A T q

2

)

Here T a+1
1 = O, T j

1 	= O (j < a+ 1) and T b
2 = O. Since T q−1

2 A = (bij), where

bij =
{

1, if i = q, j = a+ 1
0, otherwise

for 1 ≤ q ≤ b, T b
2A = O. Therefore

(T ⊕ I)a+1 = O, (T ⊕ I)j 	= O (j < a+ 1) · · · (1)

Let a+ 1 < b+ 1. Partition T ⊕ I into 2 × 2 block matrices of the form

T ⊕ I =
(
S1 B
O S2

)
= (aij),

where S1 is a a× a matrix and

aij =
{

1, if (j = i+ 1, j < a+ 2) or (j = i− 1, j > a),
0, otherwise

Then

(T ⊕ I)q =
(
Sq

1 Sq−1
1 B

O Sq
2

)

Here Sa
1 = O and Sb+1

2 = O but Sj
2 	= O (j < b + 1). Since Sq−1

1 B = (cij) for
1 ≤ q ≤ a, where

cij =
{

1, if i = a+ 1 − q, j = 1
0, otherwise

and Sa
1B = O,

(T ⊕ I)b+1 = O, (T ⊕ I)j 	= O (j < b+ 1) · · · (2)

By (1) and (2), m(x) = (x+ 1)p.

Remark. From Theorem 3.3 and Lemma in [18], we obtain ord(T ) = 2r, where
2r−1 < p ≤ 2r.

Theorem 3.4. Let C be an n-cell LHGCA with rule vector RVi(i = 1, · · · , 5) in
Theorem 3.3 and state transition matrix T. Let C′ be the complemented group
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CA derived from C with complement vectors Fi(i = 1, · · · , 5) which are in below
and state transition operator T .

(1) RV1 : F1 =
{

(1, f2, f3, · · ·)t, if a ≥ b
(f1, · · · , 1)t, if a < b

(2) RV2 : F2 =
{

(1, f2, · · · , fn)t, if a ≥ b+ 1
(f1, · · · , fa, 1, fa+2, · · · , fn)t, if a < b+ 1

(3) RV3 : F3 =
{

(1, f2, · · · , fn)t, if a ≥ b
(f1, · · · , fn−1, 1)t, if a < b

(4) RV4 : F4 =
{

(f1, · · · , fa, 1, fa+2, · · · , fn)t, if a+ 1 ≥ b+ 1
(f1, · · · , fa, 1, fa+2, · · · , fn)t, if a+ 1 < b+ 1

(5) RV5 : F5 =
{

(f1, · · · , fa, 1, fa+2, · · · , fn)t, if a+ 1 ≥ b
(f1, · · · , fn−1, 1)t, if a+ 1 < b

where f1, · · · , fn ∈ {0, 1}.

Let the minimal polynomial m(x) of T be (x + 1)p. If ord(T ) = 2r, then the
following hold:

(a) All the lengths of cycles in C′ are the same.

(b) ord(T ) =
{

2r, if 2r−1 < p < 2r,
2r+1, if p = 2r

Proof. We only prove for the case (2) with a ≥ b + 1. Let X = (x1, · · · , xn)t be
a state in C′. Then

T
2r+1

X = T 2r+1
X ⊕ (T 2r+1−1 ⊕ · · · ⊕ T ⊕ I)F

= X ⊕ {T 2r

(T 2r−1 ⊕ · · · ⊕ T ⊕ I) ⊕ (T 2r−1 ⊕ · · · ⊕ T ⊕ I)}F = X.

Therefore ord(T )(:= l) divides 2r+1. Since X = T
l
X = T lX ⊕ (T l−1 ⊕ · · · ⊕

T ⊕ I)F for all X, T lX = X and (T l−1 ⊕ · · · ⊕ T ⊕ I)F = 0. Therefore ord(T )
divides l. Thus l = 2r or 2r+1.
Case I. Let p = 2r. Then (T ⊕ I)2

r−1 = (aij), where

aij =
{

1, if i = a, j = 1
0, otherwise

Thus

T
2r

X = T 2r

X ⊕ (T ⊕ I)2
r−1F = X ⊕ (0, · · · , 0,

a
1, 0, · · · , 0)t 	= X

for all X. Therefore ord(T ) = 2r+1 and thus all the lengths of cycles in C′ are
the same.
Case II. Let 2r−1 < p < 2r. Then (T ⊕ I)2

r−1 = O. Thus

T
2r

X = T 2r

X ⊕ (T ⊕ I)2
r−1F = X



Analysis of Hybrid Group Cellular Automata 227

Therefore ord(T ) = 2r. To show that all the lengths of cycles in C′ are the same,
suppose that X = (x1, · · · , xn)t is a state lying on a cycle in C′ whose length is
2c (c < r). Then

T
2c

X = T
2c+1

X = · · · = T
2r−1

X = T
2r

X = X

and

(T ⊕ I)2
r−1−1F = (0, · · · , 0,

2r−1

1 , · · ·)t

First, let X be a state lying on a cycle in C whose cycle length is less than
2r. Then

T
2r−1

X = T 2r−1
X ⊕ (T 2r−1−1 ⊕ · · · ⊕ T ⊕ I)F

= X ⊕ (T ⊕ I)2
r−1−1F 	= X

This is a contradiction.
Second, let X be a state lying on a cycle in C whose cycle length is 2r.

Partition T into 2 × 2 block matrices of the form

T =
(
T1 O
O T2

)
,

where T1 and T2 are the state transition matrices of uniform group CA with rule
60. Therefore by Lemmas 2.1 and 2.2

T
2r−1

X = T 2r−1
X ⊕ (T 2r−1−1 ⊕ · · · ⊕ T ⊕ I)F

= T 2r−1
X ⊕ (T ⊕ I)2

r−1−1F

=
(
T1

2r−1
O

O T2
2r−1

)
X ⊕

(
(T1 ⊕ I)2

r−1−1 O

O (T2 ⊕ I)2
r−1−1

)
F

= (· · · , 2r−1

x2r−1 , · · ·)t ⊕ (· · · ,
2r−1

1 , · · ·)t 	= X

This is a contradiction. Therefore all the lengths of cycles in C′ are the same.
By the similar method we can prove for the case (2) with a < b+ 1.

Let C be an n-cell LHGCA with rule vector RVi(i = 1, · · · , 5) in Theorem 3.3
and state transition matrix T. Let C′ be the complemented CA derived from
C with complement vector Fi in Theorem 3.4 and state transition operator T .
Let m(x) = (x + 1)p, (p = 2r) and ord(T ) = 2r. Then there exists F such that
ord(T ) = 2r (not 2r+1). For example, let C be an n-cell LHGCA with rule vector
RV2(a ≥ b + 1), F = (0, f2, · · · , fn)t and p = 2r. Then all the lengths of cycles
in C′ are the same and ord(T ) = 2r because T

2r

X = X ⊕O = X.

4 Relationship Between Cycles of Complemented Group
CA

In this section we construct several operators which are different from R1 and
R2 and analyze the properties of these operators.
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Theorem 4.1. Let C be an n-cell LHGCA with rule vector RVi(i = 1, · · · , 5) in
Theorem 3.3 and state transition matrix T. Let C′ be the complemented group
CA derived from C with complement vector Fi which is in Theorem 3.4 and
state transition operator T . Then the following hold:

(1) X and X ⊕ TX ⊕ T
2
X lie on different cycles.

(2) X and X ⊕ TX ⊕ T
3
X lie on different cycles.

(3) X and X ⊕ T
2
X ⊕ T

3
X lie on different cycles.

Proof. We only prove for the case (1) and RV4(a+ 1 ≥ b + 1).
Let T be the 2 × 2 block matrix of the form

T =
(
T1 O
Q T2

)
,

where T1 is a (a + 1) × (a + 1) matrix. Then T1 is the state transition matrix
of (a+ 1)-cell uniform CA with rule 102 and T2 is the state transition matrix of
b-cell uniform CA with rule 60, and

Q =

⎛
⎜⎜⎝

0 0 0 · · · 0 0 1
0 0 0 · · · 0 0 0

· · · · · · · · ·
0 0 0 · · · 0 0 0

⎞
⎟⎟⎠

b×(a+1)

Let B = X ⊕ TX ⊕ T
2
X and X = (x1, x2, · · · , xn)t. Then

B = (I ⊕ T ⊕ T 2)X ⊕ TF =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

...
xa ⊕ xa+1
xa+1

xa+1 ⊕ xa+2
xa+1 ⊕ xa+2 ⊕ xa+3

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
a+ 1

and

T
v
X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

...
vC0xa ⊕ vC1xa+1 ⊕ vC2

vC0xa+1 ⊕ vC1

vC1xa+1 ⊕ vC0xa+2 ⊕ vC2

vC2xa+1 ⊕ vC1xa+2 ⊕ vC0xa+3 ⊕ vC3
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
a+ 1

for a positive integer v. Suppose that there exists an integer v such that T
v
X =

B.
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Case I. v is even:
Since B = (· · · ,

a+1
xa+1, · · ·)t and T

v
X = (· · · , a+1

xa+1, · · ·)t, T
v
X 	= B.

Case II. v is odd: (i) v = 4m+ 1.

Since B = (· · · ,
a+2

xa+1 ⊕ xa+2, · · ·)t and T
v
X = (· · · ,

a+2
xa+1 ⊕ xa+2, · · ·)t, T

v
X 	=

B.
(ii) v = 4m+ 3.

Since B = (· · · ,
a+3

xa+1 ⊕ xa+2 ⊕ xa+3, · · ·)t and T
v
X = (· · · ,

a+3
xa+1 ⊕ xa+2 ⊕ xa+3

, · · ·)t, T
v
X 	= B.

This is a contradiction. By the similar method we can prove for the case (1)
and RV4(a+ 1 < b+ 1). This completes the proof.

Define the operators Ri as follows:

R1(X) = X ⊕ TX ⊕ T
2
X, R2(X) = X ⊕ TX ⊕ T

3
X,

R3(X) = X ⊕ T
2
X ⊕ T

3
X.

Since

T (X1 ⊕X2 ⊕ · · · ⊕X2n−1) = T (X1 ⊕X2 ⊕ · · · ⊕X2n−1) ⊕ F

= (TX1 ⊕ F ) ⊕ (TX2 ⊕ F ) ⊕ · · · ⊕ (TX2n−1 ⊕ F )
= TX1 ⊕ TX2 ⊕ · · · ⊕ TX2n−1,

T acts as a linear operator on any sum of odd states. Also T
v
(X1 ⊕X2 ⊕ · · · ⊕

X2n−1) = T
v
X1 ⊕ T

v
X2 ⊕ · · · ⊕ T

v
X2n−1, where v is a positive integer.

Lemma 4.2. Let C be an n-cell LHGCA with rule vector RVi(i = 1, · · · , 5) in
Theorem 3.3 and state transition matrix T. Let C′ be the complemented group
CA derived from C with complement vector Fi which is in Theorem 3.4 and
state transition operator T .

Then the following hold:

(1) T
v
(RαRβ(T

u
(X))) = T

u
(RβRα(T

v
(X)))

for all integers α and β (1 ≤ α, β ≤ 3), where v and u are positive integers.

(2) Rα(X1 ⊕ · · · ⊕X2n−1) = Rα(X1) ⊕ · · · ⊕Rα(X2n−1)

for each integer α (1 ≤ α ≤ 3).

Lemma 4.3. Let C be an n-cell LHGCA with rule vector RVi(i = 1, · · · , 5) in
Theorem 3.3 and state transition matrix T. Let C′ be the complemented group
CA derived from C with complement vector Fi which is in Theorem 3.4 and
state transition operator T . Then for each nonnegative integer v,

T
α·2v

R2v

α (X) = {(T ⊕I)3·2v

(Tα⊕T ⊕I)2v ⊕I}X⊕(T ⊕I)3·2v−1(Tα⊕T ⊕I)2v

F,

where 1 ≤ α ≤ 3.
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The following theorem can be proved by Lemmas 4.2 and 4.3.

Theorem 4.4. Let C be an n-cell LHGCA with rule vector RVi(i = 1, · · · , 5) in
Theorem 3.3 and state transition matrix T. Let C′ be the complemented group
CA derived from C with complement vector Fi which is in Theorem 3.4 and
state transition operator T . Then the following hold:

(1) T
α·2v

R2v

α (X) = X

(2) T
(α+β)·2v

(RαRβ)2
v

(X) = X for α 	= β

(3) T
6·2v

(R1R2R3)2
v

(X) = X
for α, β = 1, 2, 3, where v is a nonnegative integer satisfying 3 · 2v−1 ≤ p < 3 · 2v

and p is in Theorem 3.3.

5 Conclusion

In this paper we analyzed LHGCA C and the complemented group CA derived
from C with rules 60, 102 and 204 by using the results in [15]. And we gave the
conditions for the complement vectors which determine the state transition of
the CA dividing the entire state space into smaller spaces of equal maximum
cycle lengths. And we showed the relationship between cycles of complemented
group CA. Our results extended and generalized Mukhopadhyay’s results([9]).
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Abstract. In this paper, we analyze behaviors of state transitions of
a linear Single Attractor Cellular Automata(SACA) C and the comple-
mented SACA C′ derived from C over Galois Field GF (2p). And we
propose the algorithm for the construction of the state transition dia-
gram of C and C′ over GF (2p) by using the new concept of basic path.
These results extend the results over GF (2) of Cho et al. for SACA.

1 Introduction

Cellular Automata(CA) introduced by Von Neumann([1]) have been used for
diverse applications such as modelling biological self-reproduction, modelling
problems of number theory, parallel processing computation etc. Wolfram([2])
pioneered the investigation of CA as mathematical models for self-organizing sta-
tistical systems and suggested the use of a simple two-state, three-neighborhood
CA with cells arranged linearly in one dimension.

Das et al.([3], [4]) developed a matrix algebraic tool capable of characterizing
CA. CA have been employed in several applications([5] ∼ [9]). Cho et al.([10]
∼ [12]) analyzed CA to study hash function, data storage, cryptography and so
on. In particular, they proposed an algorithm for the construction of the state
transition diagram of two predecessor multiple attractor CA over GF (2). Also
� This work was supported by grant No.(R01-2003-000-10663-0) from the Basic Re-

search Program of the Korea Science and Engineering Foundation.
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they analyzed behaviors of the state transition of the complemented nongroup
GF (2) CA corresponding to two predecessor nongroup CA.

Sikdar et al.([13]) used group CA overGF (2p) with hierarchical structure([14])
for a test pattern generation. Also they used GF (2p) multiple attractor CA for
the diagnosis of the defect of VLSI circuits.

In this paper, we characterize a linear Single Attractor CA(SACA) C and the
complemented SACA C′ derived from C over GF (2p) and propose the algorithm
for the effective construction of the state transition diagram of C and C′. These
results extend the results over GF (2) of Cho et al.([11], [12]) for SACA. This
algorithm reduces the time-complexity by changing multiplications of matrices
into additions of vectors. Also these results will be helpful to study data storage,
hashing by GF (2p) SACA and so on.

2 GF (2p) CA Preliminaries

GF (2p) CA can be viewed as an extension of GF (2) CA. It consists of an ar-
ray of cells, spatially interconnected in a regular manner, each cell being ca-
pable of storing an element of GF (2p) (Figure 1). In effect, each GF (2p) CA
cell has p number of memory elements. Figure 1 shows a general GF (2p) CA
structure.

Fig. 1. General structure of a GF (2p) CA

Under three neighborhood restriction, the next state of the i-th cell is a func-
tion of the weighted combination of the present states of the (i− 1)-th, the i-th
and the (i+ 1)-th cells (Figure 1), the weights being elements of GF (2p). Thus
if qi(t) represents the state of the i-th cell at the t-th instant, then

qi(t+ 1) = φ(wi−1qi−1(t), wiqi(t), wi+1qi+1(t)),

where φ denotes the local transition function of the i-th cell and wi−1, wi and
wi+1 ∈ GF (2p) specify the weights of interconnections; the addition and mul-
tiplication operations follow the addition and multiplication over GF (2p).
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3 Behaviors of Linear GF (2p) SACA

Let C be a linear n-cell GF (2p) SACA. Then C is a nongroup GF (2p) CA and
the state transition matrix T of C is singular. In this case the attractor is the
only zero state and the depth of state transition diagram of C is n. The number
of all states of C is 2np and the number of the immediate predecessors of any
reachable state is 2p.

The following theorem shows the property of the state transition matrix of a
linear n-cell GF (2p) SACA.

Theorem 3.1. Let T be the state transition matrix of a linear n-cell GF (2p)
SACA. Then T satisfies the following properties.

(1) rank(T ) = n− 1.
(2) rank(T + I) = n.
(3) The characteristic polynomial and the minimal polynomial of T are xn.

Theorem 3.2. Let C be a linear n-cell GF (2p) SACA. Then the sum of distinct
two immediate predecessors of any reachable state in C is a nonzero immediate
predecessor of the zero state.

Definition 3.3. Let C be a linear GF (2p) SACA with depth d and let T be
the state transition matrix of C. Then we call

x → Tx→ · · · → T dx(= α)

an α-basic path of the α-tree in C, where x is a nonreachable state of the α-tree
in C.

Theorem 3.4. Let C be a linear n-cell GF (2p) SACA. Given a 0-basic path
of the 0-tree in C, we can construct the state transition diagram of the 0-tree of
C as the following. If the states of the state transition diagram of C are labeled
such that Sl,k is the (k + 1)-th state in the l-th level, then

Sl,k = (bl + 1)Sl,0 +
l−1∑
i=1

biSi,0,

where k = blbl−1 · · · b1(2p)( 0 ≤ k ≤ (2p)l−1(2p)−1) is the base 2p expansion of k.

4 Complemented GF (2p) SACA

The next state function of the complemented CA is given by y = Tx = Tx+ F.
Here we call F inversion vector. For example, consider the 4-cell GF (22) CA C
with the following state transition matrix T :

T =

⎛
⎜⎜⎝

1 2 0 0
0 1 3 0
0 0 1 2
0 0 0 1

⎞
⎟⎟⎠

Let F = (3201)t and x = (3123)t. Then y = (2232)t.
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Fig. 2. Structure of 4-cell complemented GF (22) CA of C

Figure 2 shows the structure of the complemented CA of C.

Theorem 4.1. Let C be a linear n-cell GF (2p) SACA and let C′ be the
complemented GF (2p) SACA derived from C with the inversion vector F whose
level is l(1 ≤ l ≤ n). Then, in the state transition diagram of C′,

(a) all states at levels higher than l in the state transition diagram of C remain
unaltered,

(b) all states at levels up to (l − 1) in the state transition diagram of C are
located in level l,

(c) some states at level l of C are rearranged in levels lower than l and the
other states at level l are located in the remaining part of level l,

(d) F lies at the level (l − 1).

The following Table 1 shows alteration of states of a linear SACA overGF (2p).

Table 1. Alteration of the states of a linear SACA over GF (2p)

Linear SACA over GF (2p) Complemented SACA over GF (2p)
States at levels higher than level l The level is unchanged
States at levels lower than level l Rearranged at level l

Complement vector F F lies at level (l − 1)
States at level l Rearranged at levels lower than or equal to l

Theorem 4.2. Let C be a linear n-cell GF (2p) SACA and let C′ be the
complemented GF (2p) SACA derived from C. Given a 0-basic path of the 0-
tree in C, we can construct the state transition diagram of the 0-tree of C′ as
the following. If the states of the state transition diagram of C′ are labeled such
that Sl,k is the (k + 1)-th state in the l-th level, then

Sl,k = Sl−1,0 + (bl + 1)Sl,0 +
l−1∑
i=1

biSi,0,

where k = blbl−1 · · · b1(2p)( 0 ≤ k ≤ (2p)l−1(2p) − 1) is the base 2p expansion
of k.
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5 Algorithm for the Tree Construction of GF (2p) SACA

From Theorems 3.4 and 4.2, we propose the following algorithm for the con-
struction of state transition diagrams of n-cell SACA C and C′ over GF (2p).

Tree Construction Algorithm

/* Tree construction of a linear n-cell SACA C */

Step 1. For the state transition matrix T of C find a nonreachable state x
in the 0-tree satisfying T nx = 0 and T n−1x 	= 0.

Step 2. Find the following basic path of the 0-tree by using x.

x(= Sn,0) → Tx(= Sn−1,0) → · · · → 0

Step 3. Construct the 0-tree by the equation

Sl,k = (bl + 1)Sl,0 +
l−1∑
i=1

biSi,0

/* Tree construction of the complemented SACA C′ derived from C */
Step 4. Find the attractor S0,0 of C′.

S0,0 = T
l−1

F , where l is the level of the inversion vector F in C.
Step 5. We construct the tree of C′ by using the equation

Sl,k = Sl−1,0 + (bl + 1)Sl,0 +
l−1∑
i=1

biSi,0

6 Conclusion

In this paper we investigated properties of a linear n-cell GF (2p) SACA C and
analyzed behaviors of the state transition of the complementedGF (2p) SACA C′

derived from C. And we proposed the algorithm for the construction of the state
transition diagram of C over GF (2p) by using the basic path of C and C′. Using
this algorithm the time-complexity is diminished by 1

n2 by changing multiplica-
tions of matrices into additions of vectors. These results extended the results over
GF (2) of Cho et al. for SACA. In the generation of CA-based hashing functions
the behavior of state transition is very important. So this work will be helpful
for the generation of CA-based hashing functions by using GF (2p) SACA.
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Abstract. The Abelian Sandpile-Model (ASM) is a well-studied model
for Self-Organized Criticality (SOC), for which many interesting alge-
braic properties have been proved. This paper deals with the process of
starting with the empty configuration and adding grains of sand, until a
recurrent configuration is reached.

The notion studied in this paper is that the configurations at the be-
ginning of the process are in a sense very far from being recurrent, while
the configurations near the end of the process are quite close to being
recurrent; this leads to the idea of ordering the transient configurations,
such that configurations closer to being recurrent generally are greater
than configurations far from recurrent. Then measures are defined which
increase monotonically with respect to these orderings and can be in-
terpreted as “degrees of recurrence”. Diagrams for these measures are
shown and briefly discussed.

1 Introduction

The concept of Self-Organized Criticality (SOC) was suggested by Bak, Tang and
Wiesenfeld in [1], introducing the Sandpile-Model (or the Abelian Sandpile-
Model (ASM)): Considering a lattice with a boundary on whose vertices are
placed grains of sand, a vertex shall topple if it contains more than three grains,
i.e. the vertex loses four grains of sand and to each of the four adjoining vertices
a grain is added; if a vertex lies next to the boundary, grains are lost. Now,
starting with the empty configuration and adding grain after grain, at first there
are very little vertices that topple per added grain, but after some time, a critical
state is reached where there are avalanches of topplings of every possible size,
distributed according to a power law, and the system will stay in this critical
state as the process goes on.

Much research has been done on the configurations of the critical state, called
recurrent configurations, for which Dhar proved in [2] that these configurations
together with the addition of configurations form a group. There has also been
established a connection between the set of recurrent configurations and the set
of spanning forests of the lattice rooted in the boundary (e.g. in [3]), which
leads to a formula for the number of recurrent configurations on a given lattice
(cf. [4]).
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There also have been suggested several approaches towards explaining the
power law distribution of the sizes of avalanches, as well as methods to ana-
lyze and measure avalanches; one key concept is the concept of decomposing
avalanches into several waves of activity (cf. [5]).

Recently, the structure of the neutral element in the group of recurrent con-
figurations has been studied in [6].

So far, the structure of the set of transient, i.e. non-recurrent, configurations
has hardly been investigated. In this paper, partial orderings are considered, such
that every transient configuration is smaller than another recurrent configura-
tion. We find measures for transient configurations that increase monotonically
in respect to these orderings, and observe an influence of the boundary of the
lattice on the way these measures behave near the critical state when grains are
added randomly to the actual configuration.

2 Definitions

Let Z ⊂ Zn×Zm be a proper non-empty subset of the torus of dimension n×m,
S = Zn × Zm \ Z be the boundary.

A function c ∈ NZ
0 is called a configuration; for each vertex z ∈ Z, c(z) denotes

the number of grains z contains.
A configuration is called stable, if each vertex contains at most three grains

of sand; else c is critical. Let C be the set of all stable configurations.
If a configuration is critical, then there is at least one vertex in Z which can

topple, losing four grains to the adjoining vertices; in a stable configuration, there
exists no such vertex. If, starting with a critical configuration c, in each time step
a vertex containing at least four grains topples, eventually a stable configuration
is reached; this configuration does not depend on the order of the vertices that
toppled and is denoted by crel; the process of iterated topplings until a stable
configuration is reached is called relaxation, and Rel(c) is an abbreviation for
the relaxation of c.

For two configurations c and d, let c⊕d = (c+d)rel; then a stable configuration
c is called recurrent, if there exists a non-empty configuration e, such that the
equation c ⊕ e = c holds; a stable configuration is called transient, if it is not
recurrent. Let R be the set of all recurrent configurations.

3 Recurrent Configurations

Let b denote the configuration such that each vertex z ∈ Z contains as many
grains as z has neighbors that belong to the boundary S; b is called the burning
configuration.

For a (possibly critical) configuration c, let Ac ⊆ Z be the set of all vertices
that toppled at least once during Rel(c+ b). Then crel|Ac

is a recurrent config-
uration (possibly for another lattice); this implies that crel is recurrent if each
vertex topples at least once during Rel(c+ b), and it is a well known fact that
the opposite also is true, i.e. crel is transient if there is at least one vertex z ∈ Z
which does not topple during Rel(c+ b).
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If c is a stable recurrent configuration, then each vertex topples exactly once
during Rel(c+ b) and (c+ b)rel = c holds (cf. [7]).

It is a well known fact that (R,⊕) is an Abelian group (cf. [2]); let id denote
the neutral element of this group.

4 Orderings

4.1 The Ordering ≤
Let c, d ∈ C; a natural idea for ordering the configurations is to say that c ≤ d iff
d can be reached from c by adding sand to c, which is the same as saying that
there exists a configuration e such that c⊕e = d. It can be shown straightforward
that, if restricted to the transient configurations, ≤ is reflexive, transitive and
anti-symmetric; ≤ is also compatible with ⊕, i.e. if c ≤ d holds, then for every
e ∈ C c⊕ e ≤ d⊕ e holds, too.

Note that for every recurrent configuration c and every stable configuration
d, there exists a configuration e such that d ⊕ e = c holds and thus d ≤ c
holds for every configuration d ∈ C. In particular, for two different recurrent
configurations c and d, c ≤ d holds as well as d ≤ c, which contradicts ≤ being
an ordering on the whole of C.

Let 3 be the configuration which assigns to each vertex three grains of sand.
To check for two transient configurations c and d whether or not c ≤ d holds,
the configuration

diff (c, d) = 3 − (c⊕ (3 − d)) (1)

called the difference from c to d is defined. The following equivalence is shown
in [8]:

c ≤ d ⇐⇒ c⊕ diff (c, d) = d. (2)

4.2 The Ordering �
Consider the equivalence ∼id, defined by

c ∼id d ⇐⇒ c⊕ id = d⊕ id. (3)

This equivalence is compatible with ⊕, i.e. if c ∼id d, then c ⊕ e ∼id d ⊕ e for
every configuration e. Also, if c is recurrent, then the configurations d1 and d2
are equivalent iff c⊕ d1 = c⊕ d2.

Another ordering is the relation #, defined by

c # d ⇐⇒ diff (d, c) = 0, (4)

where 0 denotes the empty configuration. It is shown in [8] that # is an ordering
on every equivalence class [c]∼id

compatible with ⊕, and the following statements
hold:
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a) If c # d, then c ∼id d holds.
b) If c ∼id d and c ≤ d, then c # d holds.
c) If c # d, then the total number of grains on the vertices given by c is less

than or equal to the total number of grains on the vertices given by d; these
numbers are denoted by s(c) respectively s(d).

d) For every stable configuration c the relation c # c ⊕ id holds; thus in every
equivalence class [c]∼id

, the greatest element is the only recurrent element in
this class, namely c⊕ id.

4.3 Calculation Rules

Further, there are some “calculation rules” regarding the operations ⊕ and diff
as well as the relation #:

∀c, d, e ∈ C:

a) diff (c, diff (d, e)) = diff (c⊕ d, e);
b) d # c⊕ diff (c, d);
c) diff (c⊕ e, d⊕ e) # diff (c, d);
d) diff (diff (d, e), diff (c, e)) # diff (c, d);
e) diff (diff (e, c), diff (e, d)) # diff (c, d).

5 Measures for Transient Configurations

In the previous section two orderings of the transient configurations were intro-
duced; this section deals with values assigned to transient configurations in such
a way that, for a configuration c that is greater than configuration d with respect
to ≤ or #, the value assigned to c is greater than the value assigned to d. This
value can roughly be interpreted as a “degree of recurrence”.

A function m : C −→ R+
0 is called a compatible measure with respect to

≤ respectively a compatible measure with respect to #, iff m(c) ≤ m(d) holds
whenever c ≤ d respectively c # d holds. A function m is called a fully compatible
measure, iff m is compatible as well with respect to ≤ as with respect to #.

Let m be a compatible measure with respect to ≤; since for all recurrent
configurations c and d, the relation c ≤ d holds as well as the relation d ≤ c, it
follows that m(c) ≤ m(d) and m(d) ≤ m(c), i.e. m(c) = m(d). Since for each
configuration c ∈ C and each recurrent configuration d the relation c ≤ d holds,
each compatible measure with respect to ≤ takes its maximum at each recurrent
configuration.

5.1 Examples for Compatible Measures

a) For each stable configuration c let D(c) be the minimal number of grains
that have to be added to c in order to get a recurrent configuration; formally
expressed:

D(c) = min{n ∈ N : ∃e ∈ C : s(e) = n ∧ c⊕ e ∈ R}; (5)
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then the function m1 : C −→ N with

m1(c) = 3|Z| −D(c) (6)

is a fully compatible measure.
b) The function m2 : C −→ N with

m2(c) = s(id) − s(diff (c, c⊕ id)) (7)

is a fully compatible measure.
c) The function m3 : C −→ N which assigns to each configuration c the largest

possible size of a subset A ⊆ Z such that c|A is recurrent, is compatible with
respect to ≤.

d) The function m4 : C −→ N which assigns to each configuration c the largest
possible size of a connected subset A ⊆ Z such that c|A is recurrent, is
compatible with respect to ≤.

Proof

a) Let c ≤ d and let e be a configuration such that c ⊕ e is a recurrent con-
figuration and e contains D(e) grains, i.e. every configuration e′ satisfying
c⊕ e′ ∈ R contains at least as many grains as e.

Since ≤ is compatible with respect to ⊕, the relation c⊕e ≤ d⊕e holds. c⊕e
is a recurrent configuration, and so d⊕ e has to be a recurrent configuration
too; so s(e) = D(c) is obviously an upper bound for D(d), and it follows that
D(d) ≤ s(e) = D(c) holds, from which relation we get m1(c) ≤ m1(d).

So m1 is compatible with respect to ≤.
Now consider the configurations c and d with c # d; let e be again a

configuration satisfying s(e) = D(c) and c⊕e ∈ R. Since # also is compatible
with respect to ⊕, we get c⊕e # d⊕e; there is only one recurrent configuration
in every equivalence class [c]∼id

, and since c⊕ e is recurrent, we get c⊕ e =
d⊕ e ∈ R. This leads again to the relation D(c) ≥ D(d), and again m1(c) ≤
m1(d) holds.

So m1 is compatible with respect to # and thus fully compatible.
b) Let c be a stable configuration, e be a configuration such that e ⊕ c = id

holds. We get the chain of equations

id⊕ diff (c, c⊕ id) = e⊕ c⊕ diff (c, c⊕ id) = e⊕ c⊕ id = id⊕ id. (8)

From this we get diff (c, c ⊕ id) ∼id id ; since id is recurrent, the equations
diff (c, c⊕ id) # id as well as s(diff (c, c⊕ id)) ≤ s(id) hold. So m2(c) ≥ 0 for
each stable configuration c.

Let c ≤ d; then there exists a configuration e, such that c ⊕ e = d. Then
the calculation rule c) from 4.3 yields

diff (c⊕ e, c⊕ e⊕ id) = diff (c⊕ e, c⊕ id⊕ e) # diff (c, c⊕ id), (9)

which leads to s(diff (d, d⊕id)) ≤ s(diff (c, c⊕id)); thus, we get the inequality
m2(c) ≤ m2(d).
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If c # d, we know that c ∼id d holds and thus we get c ⊕ id = d ⊕ id;
this configuration shall be denoted by e. According to the definition of # the
equation diff (d, c) = 0 holds.
The calculation rule d) from 4.3 yields

diff (diff (c, e), diff (d, e)) # diff (d, c) = 0, (10)

from which we get

diff (d, d⊕ id) = diff (d, e) # diff (c, e) = diff (c, c⊕ id), (11)

and as above the relation m2(c) ≤ m2(d) can be shown.
It follows that m2 is fully compatible.

c) Let c and d be stable configurations, such that c ≤ d holds. It is shown in
[8] that in this case for every subset A of Z, c|A ≤ d|A holds. So, if there is a
subset A of Z such that c|A is a recurrent configuration, then d|A is recurrent
too, since c|A ≤ d|A. The size of the largest subset A of Z such that c|A is
recurrent is therefore a lower bound for size of the largest subset A′ of Z,
such that d|A is recurrent, and m3(c) ≤ m3(d) follows.
Thus, we get m3(c) ≤ m3(d).

d) The proof that m4(c) ≤ m4(d) whenever c ≤ d is just analogous to the proof
of c).

Only m2 is defined by an explicit formula. Considering m1, it is shown in [8]
that the problem of computing D(c) for a given stable configuration c is NP-
complete in case of a three-dimensional Sandpile-Model, and there is no efficient
way known to the author of computing D(c) for a configuration c in a two-
dimensional Sandpile-Model. As similar problems arise for the computation of
m3 and m4, approximations m′

1, m
′
3 and m′

4 are considered.

5.2 Approximations for m1, m3 and m4

Approximation for m1. Let c be a stable configuration, b be the burning
configuration. Consider the configuration c0 = c+ b:

If there are vertices that do not topple during Rel(c+ b), let z1 be a vertex
such that z1 has not toppled yet, at least one grain of sand has been added to
z1 and there is no vertex z′ satisfying these two conditions and containing more
grains than z1. We add to z the necessary amount of grains such that z1 becomes
critical to get the configuration c1.

Again, if there are vertices that neither toppled during Rel(c0) nor during
Rel(c1), we choose a vertex z2 satisfying the analogous conditions z1 satisfied, i.e.
z2 has neither toppled during Rel(c0) nor during Rel(c1), there has been added
at least one grain to z2 and each z′ satisfying these two conditions contains at
most as many grains as z2. We add grains to z2, such that z2 becomes critical,
and get accordingly the configuration c2.

This step is repeated until all vertices have toppled during one of the relax-
ations Rel(c0), . . . , Rel(ck); the stable configuration (ck)rel is recurrent, and the
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total number of grains added to the vertices after Rel(c+ b) is an upper bound
fr D(c). Let D′(c) denote this number; then 3|Z| −D′(c) is a lower bound for
m1(c).

Note that this approximation depends on the choices for the vertices grains of
sand are added to; while different choices can lead to different results for D′(c),
the results are qualitatively the same.

Approximations for m3 and m4. Starting from a (possibly critical) con-
figuration c, the subset A ⊆ Z is defined as the set of all vertices that toppled
duringRel(c+b). Then (crel)|A is recurrent, and |A| is a lower bound form3(crel);
finding the largest connected subset of A yields a lower bound for m4(crel).

6 Diagrams for Measurements

Starting with the configuration c0 = 0, in each time step t a grain of sand
is added to a uniformly distributed randomly chosen vertex zt, thus getting
the configuration c′t+1 and the configuration ct+1 = (c′t+1)rel. We stop once a
recurrent configuration is reached.

This process was simulated for a lattice of size 501 × 501 with the boundary
being all vertices (x, y) with xy = 0; thus, the lattice is a square of side length
500, on whose boundary grains of sand get lost.

Another lattice studied is a torus of size 500 × 500 with one single vertex
belonging to the boundary.

For the approximation of m3(ct) and m4(ct), the vertices that toppled during
the relaxation of (b +

∑t−1
i=0 ezt) are used as described above. (ez denotes the

configuration, which assigns one grain to the vertex z and no grains to every
other vertex).

In figure 1 diagrams are shown, where the values of mi(cz) are plotted versus
t, both for the square lattice as well as the torus lattice; because of the greater
time complexity for computing m2, for m2 the process was simulated on a square
of side length 200 and a torus of side length 200.

6.1 Discussion

Except for the rightmost part, the corresponding diagrams for the square and the
torus are very similar; however, for the torus a recurrent configuration is reached
quite some time before a recurrent configuration is reached for the square, so
that there is a delay in the diagrams for the square, when the maximum of
the measure is almost reached, although the observed configuration is not yet
recurrent.

A closer look at the vertices that do not topple during Rel(ct + b) for large t
shows them to lie near a corner of the square; for these vertices, the probability
of change when a grain of sand is added to the lattice is very low, since they are
protected from two sides against any avalanches of topplings. So, there is little
change for the number of grains on these vertices, and since on these vertices
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Fig. 1. Diagrams for m1 (first row) to m4 (last row) for the process of adding sand to
an initial empty configuration, run on a 500 × 500 square (left diagram) respectively
torus (right diagram), except for m2, for which the process is run on a 200×200 square
respectively torus. All axes are scaled down by the factor 1000.

the initial configuration is transient, it takes a longer time to reach a recurrent
configuration on these vertices than on other subsets of Z. This explains the
observed delay compared to the case of the lattice being a torus, where there are
no such “protected” vertices.
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Except for the delay in case of the lattice being a square, m′
1 and m2 increase

nearly linearly, while m′
3 increases nearly exponentially in the interval from t =

3 · 105 to t = 5 · 105.
One can see a phase transition in the diagram for m′

4: For t < 450000 the
values of m′

4(ct) are very small, near t = 480000 the value of m′
4(ct) increases

drastically, and afterwards the values increase nearly linearly. This behavior can
be explained as follows:

At first, there are very few vertices that have toppled, and they are isolated.
Around t = 480000, these isolated vertices get connected to a large cluster; once
nearly all vertices that toppled during the process are in one cluster contained,
the size of the cluster increases nearly linearly until it contains the whole of Z.

In Figure 2 the gradient of m′
4(ct) is plotted against t for the lattice being a

square; there is a clear peak near t = 480000.

0 100 200 300 400 500
0
6
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30
36
42
48
54

Fig. 2. The gradient of m′
4 vs. t; there is a strong peak near t = 480000, indicating a

phase transition. The x-axis is scaled down by the factor 1000.

7 Conclusion

The concept of compatible measures for transient measures has been introduced,
thus allowing to specify a notion of “ more recurrent ” and “ less recurrent ”
configurations.

Four such measures have been discussed. One important observation is that
the choice of the boundary has an influence on the behavior of the measures, as
there is an interval during which each measure is near its maximum but stays
nearly constant if the lattice is a square, while there is no such delay in case of
the lattice being a torus. Here it would be of interest to explore more deeply the



Measures for Transient Configurations of the Sandpile-Model 247

relation between the choice of the lattice and the behavior of the measures near
the time a recurrent configuration is reached.

Another important observation is the fact that there are measures compatible
with respect to ≤ which clearly show a phase transition, which is in accordance
with observations of other global observables, especially the average size of an
avalanche when a grain of sand is added to a vertex. However, the phase tran-
sition happens some time before these other observables change their behavior,
so that other measures should be considered and studied.
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Abstract. This paper presents the Anisotropic selection scheme for cellular Gen-
etic Algorithms (cGA). This new scheme allows to enhance diversity and to
control the selective pressure which are two important issues in Genetic Algori-
thms, especially when trying to solve difficult optimization problems. Varying
the anisotropic degree of selection allows swapping from a cellular to an island
model of parallel genetic algorithm. Measures of performances and diversity have
been performed on one well-known problem: the Quadratic Assignment Problem
which is known to be difficult to optimize. Experiences show that, tuning the
anisotropic degree, we can find the accurate trade-off between cGA and island
models to optimize performances of parallel evolutionary algorithms. This trade-
off can be interpreted as the suitable degree of migration among subpopulations
in a parallel Genetic Algorithm.

Introduction

In the context of cellular genetic algorithm (cGA), this paper proposes the Anisotropic
selection as a new selection scheme which accurately allows to adjust the selective pres-
sure and to control the exploration/exploitation ratio. This new class of evolutionary al-
gorithms is supervised in a continuous way by an unique real parameter α in the range
[-1..1]. The work described in this paper is an attempt to provide a unified model of par-
allel genetic algorithms (pGA) from fine grain massively parallel GA (cGA) to coarse
grain parallel model (island GA). As extreme cases, there are the cGA that assumes one
individual resides at each cell, and at the opposite, a pGA where distinct subpopulations
execute a standard GA; between them we find models of pGA where migration allows to
exchange to some extend genetic information between subpopulations. Thus the search
dynamics of our family of pGA can vary from a diffusion to a migration process. To
illustrate our approach we used one well-known problem: the Quadratic Assignment
Problem (QAP). We study the performances of our class of parallel evolutionary algo-
rithms on this problem and we show that there is a threshold for parameter α according
to the average performances. Section 1 gives a description of the cGA and the island
models. Section 2 introduces the anisotropic parallel Genetic Algorithms (apGA) and
the anisotropic selection scheme. Section 3 is a presentation of the test problem: the
QAP, and gives the performances of the apGA on the QAP. Finally, a study on popula-
tion genotypic diversity is made in section 4.
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1 Background

This section introduces the concepts of Cellular and Island Models of parallel genetic
algorithms.

1.1 Cellular Genetic Algorithms

The Cellular Genetic Algorithms are a subclass of Evolutionnary Algorithms in which
the population is generally embedded on a two dimensional toroidal grid. In this kind of
algorithms, exploration and population diversity are enhanced thanks to the existence
of small overlapped neighborhoods [9]. An individual of the population is placed on
each cell of the grid and represents a solution of the problem to solve. An evolution-
nary process runs simultaneously on each cell of the grid, selecting parents from the
neighborhood of the cells and applying operators for recombination, mutations and re-
placement for further generations. Such a kind of algorithms is especially well suited
for complex problems [5]. One of the interests of cGA is to slow down the convergence
of the population among a single individual. Complex problems often have many local
optima, so if the best individual spreads too fast in the population it will improve the
chances to reach a local optimum of the search space. Slowing down the convergence
speed can be done by slowing down the selective pressure on the population.

1.2 Island Model of pGA

Cellular genetic algorithms and Island Model genetic algorithms are two kinds of Par-
allel genetic algorithms. The first one is a fine grain massively parallel implementation
that assumes one individual resides at each cell. The second one, using distinct subpop-
ulations, is a coarse grain parallel model; Each subpopulation executes as a standard
genetic algorithm, and occasionally the subpopulations would exchange a few strings:
migration allows subpopulations to share genetical material [4]. Many topologies can
be defined to connect the islands. In the basic island model, migration can occur be-
tween any subpopulations, whereas in the stepping stone model islands are disposed on
a ring and migration is restricted to neighboring islands.

2 Anisotropic Parallel Genetic Algorithms

This section presents the anisotropic parallel Genetic Algorithms, which is a family of
parallel genetic algorithms based on cellular GA in which anisotropic selection is used.

2.1 Definition

The Anisotropic selection is a selection method in which the neighbors of a cell may
have different probabilities to be selected. The Von Neumann neighborhood of a cell C
is defined as the sphere of radius 1 centered atC in manhattan distance. The Anisotropic
selection assigns different probabilities to be selected to the cells of the Von Neumann
neighborhood according to their position. The probability to choose the center cell C
remains fixed at 1

5 . Let us call pns the probability of choosing the cells North (N ) or
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South (S) and pew the probability of choosing the cells East (E) or West (W ). Let
α ∈ [−1; 1] be the control parameter that will determine the probabilities pns and pew.
This parameter will be called the anisotropic degree. The probabilities pns and pew can
be described as:

pns =
(1 − pc)

2
(1 + α)

pew =
(1 − pc)

2
(1 − α)

Thus, when α = −1 we have pew = 1 − pc and pns = 0. When α = 0, we have
pns = pew and when α = 1, we have pns = 1 − pc and pew = 0.

C

N

EW

S

0.2(1+α)

0.2(1+α)

0.20.2(1−α) 0.2(1−α)

Fig. 1. Von Neumann neighborhood with probabilities to choose each neighbor

Figure 1 shows a Von Neumann Neighborhood with the probabilities to select each
cell as a function of α.

The Anisotropic Selection operator works as follows. For each cell it selects k indi-
viduals in its neighborhood (k ∈ [1; 5]). The k individuals participate to a tournament
and the winner replaces the old individual if it has a better fitness or with probability 0.5
if the fitnesses are equal. When α = 0, the anisotropic selection is equivalent to a stan-
dard tournament selection and when α = 1 or α = −1 the anisotropy is maximal and
we have an uni-dimensional neighborhood with three neighbors only. In the following,
considering the grid symmetry we will consider α ∈ [0; 1] only: when α is in the range
[-1;0] making a rotation of 90◦ of the grid is equivalent to considering α in the range
[0;1]. When the anisotropic degree is null, there is no anisotropy in selection method,
the apGA corresponds to the standard cellular GA. When the anisotropic degree is max-
imal, selection is computed between individuals in the same column only, the apGA is
then an island model where each subpopulation is a column of the grid structured as a
ring of cells with no interactions between subpopulations. When the anisotropic degree
is set between low and maximum value, according to selection, a number of individuals
can be copied from one subpopulation (i.e. column) to the adjacent columns. Thus the
anisotropic degree allows to define a family of parallel GA from a cellular model to an
island model.

In standard island model, the migration rate is defined as the number of individuals
which are swap between subpopulations and migration intervals is the frequency of mi-
gration. In apGA, the migration process is structured by the grid. Only one parameter
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(the anisotropic degree) is needed to tune the migration policy. There is a difference
between migration in a standard island model and migration in an apGA. In an apGA it
can only happen (when the anisotropic degree allows it) between nearest neighbors in
adjacent columns. Migration in that latter case is diffusion as it happens in the standard
cGA model, except that the direction is controllable. In the following sections, we study
the influence of this parameter on selection pressure, performances and population di-
versity.

2.2 Takeover Times and apGAs

The selective pressure is related to the population diversity in cellular genetic algo-
rithms. One would like to slow down the selective pressure when trying to solve multi-
modal problems in order to prevent the algorithm from converging too fast upon a local
optimum. On the opposite side, when there is no danger of converging upon a local opti-
mum, one would like to increase the selective pressure in order to obtain a good solution
as fast as possible. A common analytical approach to measure the selective pressure is
the computation of the takeover time [8] [10]. It is the number of generations needed
for the best individual to conquer the whole grid when the only active operator is the se-
lection [3]. Figure 2 shows the influence of the anisotropic degree on the takeover time.
This figure represents the average takeover times observed on 1000 runs on a 32 × 32
grid for different anisotropic degrees. It shows that the selective pressure is decreasing
while increasing anisotropy. These results confirm that the anisotropic selection gives
to the algorithm the ability to control accurately the selective pressure. They are fairly
consistent with our expectation that selection intensity decreases when the anisotropic
degree increases. However, the correlation between takeover and anisotropy is not lin-
ear; it fast increases after the value α = 0.9.

3 Test Problem

This section presents tests on one well-known instance of the Quadratic Assignment
Problem which is known to be difficult to optimize. Our aim is to study the dynamics
of the apGA for different tunings, and not to obtain better performances than other
optimization techniques. Still, the apGA is implicitely compared to a cellular genetic
algorithm when the anisotropic degree is null (α = 0).

3.1 The Quadratic Assignment Problem

We experimented the family of apGAs on a Quadratic Assignment Problem (QAP):
Nug30. Our purpose here is not to obtain better results with respect to other optimization
methods, but rather to observe the behavior of apGAs. Especially we go in the search
of a threshold for the anisotropic degree.

The QAP is an important problem in theory and practice as well. It was introduced
by Koopmans and Beckmann in 1957 and is a model for many practical problems [6].
The QAP can be described as the problem of assigning a set of facilities to a set of loca-
tions with given distances between the locations and given flows between the facilities.
The goal is to place the facilities on locations in such a way that the sum of the products
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Fig. 2. Average of the takeover time as a function of the anisotropic degree α

between flows and distances is minimal. Given n facilities and n locations, two n × n
matrices D = [dij ] and F = [fkl] where dij is the distance between locations i and j
and fkl the flow between facilities k and l, the objective function is:

Φ =
∑

i

∑
j

dp(i)p(j)fij

where p(i) gives the location of facility i in the current permutation p.
Nugent, Vollman and Ruml proposed a set of problem instances of different sizes noted
for their difficulty [2]. The instances they proposed are known to have multiple local
optima, so they are difficult for a genetic algorithm. We experiment our algorithm on
the 30 variables instance called Nug30.

3.2 Setup

We use a population of 400 individuals placed on a square grid (20×20). Each individ-
ual represents a permutation of {1, 2, ..., 30}. We need a special crossover that preserves
the permutations:

– Select two individuals p1 and p2 as genitors.
– Choose a random position i.
– Find j and k so that p1(i) = p2(j) and p2(i) = p1(k).
– exchange positions i and j from p1 and positions i and k from p2.
– repeat n/3 times this procedure where n is the length of an individual.

This crossover is an extended version of the UPMX crossover proposed in [7]. The
mutation operator consist in randomly selecting two positions from the individual and
exchanging those positions. The crossover rate is 1 and we do a mutation per individual.
We perform 500 runs for each anisotropic degree. Each run stops after 1500 generations.
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3.3 Experimental Results

Figure 3 shows the average performance of the algorithm towards α on the QAP: for
each value of α we average the best solution of each run. The purpose here is to min-
imize the fitness function values. The performances are growing with α and then fall
down as α is getting closer to its limit value. The best average performance is achieved
for α = 0.86. This threshold probably corresponds to a good exploration/exploitation
trade-off: the algorithm favors propagation of good solutions in the vertical direction
with few interactions on the left or the right sides. This kind of dynamics is well adapted
to this multi-modal problem as we can reach local optima on each columns of the grid
and then migrate them horizontally to find new solutions. The worst average perfor-
mance is observed for α = 0 when the apGA is a cellular GA. α = 0.86 corresponds
to the optimal trade-off between cellular and island models for this problem, with the
best migration rate between subpopulations. In our model, the migration rate is not the
number of individuals which are swap between subpopulations, but the probability for
the selection operator to choose two individuals from separate columns: two individuals
from separate subpopulations would then share information. We can tell that there is an
optimal migration rate that is induced by the value of the anisotropic degree α. Per-
formances would probably improve if the migration rate did not stay static during the
search process. As in [1], we can define some criteria to self-adjust the anisotropic de-
gree along generations.
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Fig. 3. Average costs as a function of α for the QAP

4 Diversity in apGAs

To understand better why we observe influence of the anisotropic parameter on perform-
ances, we felt it is important to measure genetic diversity during runs. We studied
changes in diversity during runs according to the whole grid, the rows and the columns.
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Fig. 4. Global population diversity against generation, with increasing α from bottom to top (a)
and vertical diversity against horizontal diversity, with increasing α from left to right (b)

This section presents measures on population diversity in an apGA for the QAP. We
conducted experiences on the average population diversity observed along generations
on 100 independent runs for each anisotropic degree. We made three measures on the
population diversity. First, we computed the global population diversity gD:

gD = (
1
!r!c

)2
∑
r1,r2

∑
c1,c2

d(xr1c1 , xr2c2)

where d(x1, x2) is the distance between individuals x1 and x2. The distance used is
inspired from the Hamming distance: It is the number of locations that differs between
two individuals divided by their length n.

Then, we made measures on diversity inside subpopulations (vertical diversity) and
diversity between subpopulations (horizontal diversity). The vertical (resp. horizontal)
diversity is the sum of the average distance between all individuals in the same column
(resp. row) divided by the number of columns (resp. rows):

vD =
1
!r

1
!c2

∑
r

∑
c1,c2

d(xrc1 , xrc2)

hD =
1
!c

1
!r2

∑
c

∑
r1,r2

d(xr1c, xr2c)

where !r and !c are the number of rows and columns in the grid.
Figure 4(a) shows the average global diversity observed on the 1000 first generations

during 100 runs on the QAP. The curves from bottom to top correspond to increasing
values of α from zero to nearly one. Experiments measuring genetic diversity show
that small migration rate (α close to one) causes islands to dominate others and retain
global diversity without being able to exchange solutions to produce better results. At
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the opposite, for the cellular model, as α is closed to zero, global diversity falls near to
zero after 800 generations causing premature convergence and negatively affects perfor-
mances (see figure 3). Analysis on the QAP show the necessity of maintaining diversity
to produce new results and the necessity to have enough information exchanges between
columns.

Figure 4(b) represents the vertical diversity against the horizontal diversity. The con-
tour lines plotted every 100 generations give some information on the speed of decrease
of diversity. The more the migration rate decreases (i.e. α increases), the more the di-
versity is maintained on each row and subpopulations converge in each column. The
vertical and horizontal diversities are decreasing with the same speed for the cellular
model (α = 0) and lower number of interactions between subpopulations helps the
algorithm to maintain diversity on the rows when α is high.

Figure 5 shows snapshots of the population diversity during one single run at diffe-
rent generations. The snapshots are taken from left to right at generations 1, 200, 500,
1000 and 2000. The parameter α takes values in {0, 0.5, 0.7, 0.86, 0.98} from top to
bottom. Each snapshot shows the genotypic diversity in the neighborhoods of all cells
on the grid. Color black means maximum diversity and color white means that there
is no more diversity in the cell’s neighborhood. Those snapshots help to understand
the influence of the anisotropic selection on the genotypic diversity. First, we can see
that the anisotropic degree influences the dynamic of propagation of good individuals
on the grid. This propagation is the cause of the loss of diversity in the population. In
the standard cellular model (α = 0), good individuals propagate roughly circularly. If
we slightly privilege the vertical direction (α = 0.5) the circles become elliptical. As
α increases, the dynamic changes and good individuals propagate column by column.
For extreme values of the anisotropic degree (α close to 1) the migration rate is so low
that good individuals are stuck in the subpopulations and the sharing of genetic infor-
mation with other subpopulations is seldom observed. In that case, the selective pres-
sure is too low and it negatively affects performances. The crossover operator doesn’t
have any effect in the white zones, since they represent cells with no more diversity in
their neighborhoods. For the standard cellular case, interactions between cells may have
some effects on performances only at the frontier between the circles. It represents a lit-
tle proportion of cells on the grid after a thousand generations. For α = 0.86, we can
see vertical lines of diversity, which means that good individuals appear in each subpop-
ulations. For example, when we see two adjacent columns colored in grey it means that
those columns have been colonized by two different individuals. At generation 2000, a
good individual has colonized the left of the grid but he still can share information with
individuals in the grey zones. This means that the migration rate between subpopula-
tions is strong enough to guarantee the propagation of the genetic information through
the whole grid. This study showed that the dynamic of the propagation of individuals on
the grid is strongly related to the anisotropic degree. Once again, it would be interesting
to see what kind of dynamic appears if we define a local criteria to auto-adapt α during
a run. This parallel model of GA allows to tune separately the anisotropic degree for
each cell on the grid and measures during the search process can help to adjust locally
the selective pressure.
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Fig. 5. Local diversity in the population along generations (left to right) for increasing α (top to
bottom)

5 Conclusion and Perspectives

This paper presents a unified model of parallel Genetic Algorithms where granularity
can be continuously tuned from fine grain to coarse grain parallel model. This family
is based on the new concept of anisotropic selection. We analysed the dynamics of this
class of pGAs on the well-known QAP problem. We have shown that the anisotropic
degree plays a major role with regard to the average fitness found. Performances of the
apGA increases with α until a threshold value (α = 0.86). After this threshold, the
migration rate between subpopulations in columns may be too small to generate good
solutions. A study on local diversity shows the interactions between cells for different
tunings of the apGA. The dynamic of propagation of individuals, which is strongly
related to the genotypic diversity in the population, is dependent from the anisotropic
degree of the apGA. Propagation of good individuals is done in circles for low values
of α and turns to vertical lines for high values of α. Diversity is maintained in the
population when the anisotropic degree is high, but when it reaches values close to
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the extreme case the few interactions between columns penalize the performances of
the algorithm. These experimental results lead us to suggest to adjust dynamically the
migration ratio during a run: by tuning the control parameter α, it would be possible
to make the algorithm to self-adjust the migration level, depending on global or local
measures. While theorical and experimental studies on island models are difficult due to
their complexity, the apGA model could be used as a simple framework for calculations
on parallel GA. Naturally it would be worth seeing how properties described in this
paper extend for even more complex problems.
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Abstract. We study in detail the fitness landscape of a difficult cellular
automata computational task: the majority problem. Our results show
why this problem landscape is so hard to search, and we quantify the
large degree of neutrality found in various ways. We show that a partic-
ular subspace of the solution space, called the ”Olympus”, is where good
solutions concentrate, and give measures to quantitatively characterize
this subspace.

1 Introduction

Cellular automata (CAs) are discrete dynamical systems that have been studied
for years due to their architectural simplicity and the wide spectrum of behaviors
they are capable of [1]. Here we study CAs that can be said to perform a simple
“computational” task. One such task is the so-called majority or density task
in which a two-state CA is to decide whether the initial state contains more
zeros than ones or vice versa. In spite of its apparent simplicity, it is a difficult
problem for a CA as it requires a coordination among the automata. As such,
it is a perfect paradigm of the phenomenon of emergence in complex systems.
That is, the task solution is an emergent global property of a system of locally
interacting agents. Indeed, it has been proved that no CA can perform the task
perfectly i.e., for any possible initial binary configuration of states [2]. However,
several efficient CAs for the density task have been found either by hand or
by using heuristic methods, especially evolutionary computation [3,4,5]. For a
recent review see [6].

All previous investigations have empirically shown that finding good CAs for
the majority task is very hard. However, there have been no investigations, to our
knowledge, of the reasons that make this particular fitness landscape a difficult
one. In this paper we statistically quantify in various ways the degree of difficulty
of searching the majority CA landscape.

The paper proceeds as follows. The next section summarizes some known facts
about CAs for the density task. A description of its fitness landscape follows,
focusing on the hardness and neutrality aspects. Next we identify and analyze
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a particular subspace of the problem search space called the Olympus. Finally,
we present our conclusions and hints to further works and open questions.

2 The Majority Problem

The density task is a prototypical distributed computational problem for CAs. For
a finite CA of sizeN it is defined as follows. Let ρ0 be the fraction of 1s in the initial
configuration (IC) s0. The task is to determine whether ρ0 is greater than or less
than 1/2. In this version, the problem is also known as the majority problem. If
ρ0 > 1/2 then the CA must relax to a fixed-point configuration of all 1’s that we
indicate as (1)N ; otherwise it must relax to a fixed-point configuration of all 0’s,
noted (0)N , after a number of time steps of the order of the grid sizeN . Here N is
set to 149, the value that has been customarily used in research on the density task
(if N is odd one avoids the case ρ0 = 0.5 for which the problem is undefined).

This computation is trivial for a computer having a central control. Indeed,
just scanning the array and adding up the number of, say, 1 bits will provide the
answer in O(N) time. However, it is nontrivial for a small radius one-dimensional
CA since such a CA can only transfer information at finite speed relying on local
information exclusively, while density is a global property of the configuration
of states. It has been shown that the density task cannot be solved perfectly by
a uniform, two-state CA with finite radius [2].

The lack of a perfect solution does not prevent one from searching for imper-
fect solutions of as good a quality as possible. In general, given a desired global
behavior for a CA (e.g., the density task), it is extremely difficult to infer the
local CA rule that will give rise to the emergence of the computation sought.
This is because of the possible nonlinearities and large-scale collective effects
that cannot in general be predicted from the sole local CA updating rule, even if
it is deterministic. Since exhaustive evaluation of all possible rules is out of the
question except for elementary (d = 1, r = 1) and perhaps radius-two automata,
one possible solution consists in using evolutionary algorithms, as first proposed
by Packard in [7] and further developed by Mitchell et al. [3,6].

The standard performance of the best rules (with r = 3) found at the end
of the evolution is defined as the fraction of correct classifications over n = 104

randomly chosen ICs. The ICs are sampled according to a binomial distribution
(i.e., each bit is independently drawn with probability 1/2 of being 0).

Mitchell and coworkers performed a number of studies on the emergence of
synchronous CA strategies for the density task (with N = 149) during evolution
[6,3]. Their results are significant since they represent one of the few instances
where the dynamics of emergent computation in complex, spatially extended
systems can be understood. As for the evolved CAs, it was noted that, in most
runs, the GA found unsophisticated strategies that consisted in expanding suf-
ficiently large blocks of adjacent 1s or 0s. This “block-expanding” strategy is
unsophisticated in that it mainly uses local information to reach a conclusion.
As a consequence, only those IC that have low or high density are classified
correctly since they are more likely to have extended blocks of 1s or 0s. These
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CAs have a performance around 0.6. A few runs yielded more sophisticated
CAs with performance (around 0.77) on a wide distribution of ICs. However,
high-performance automata have evolved only nine times out of 300 runs of the
genetic algorithm. This clearly shows that the search space is a very difficult
one, even there exists some recent works on coevolutionary algorithm [8] which
able to find a number of “block expanding” strategies.

These sophisticated strategies rely on traveling signals (“particles”) that
transfer spatial and temporal information about the density in local regions
through the lattice, and have been quantitatively described with a framework
known as “computational mechanics” [9,10]. The GKL rule [11] is hand-coded
but its behavior is similar to that of the best solutions found by evolution. Das
and Davis solutions are two other good solutions that have been found by hand
[6]. Other researchers have been able to artificially evolve a better CA (ABK)
by using genetic programming[4]. Finally, Juillé et al [5] obtained still better
CAs (Coe1 and Coe2) by using a coevolutionary algorithm. Their coevolved CA
has performance about 0.86, which is the best result known to date. We call the
six best local optima known, with a standard performance over 0.81, the blok
(tab. 1).

In the next section we present a study of the overall fitness landscape, while
section 4.2 concentrates on the structure of the landscape around the blok.

Table 1. Description in hexadecimal and standard performance of the 6 previously
known best rules (blok) computed on sample size of 104

GKL 0.815 Das 0.823
005F005F005F005F005FFF5F005FFF5F 009F038F001FBF1F002FFB5F001FFF1F

Davis 0.818 ABK 0.824
070007FF0F000FFF0F0007FF0F310FFF 050055050500550555FF55FF55FF55FF

Coe1 0.851 Coe2 0.860
011430D7110F395705B4FF17F13DF957 1451305C0050CE5F1711FF5F0F53CF5F

3 Fitness Landscape and Neutrality of the Majority Task

First we recall a few fundamental concepts about fitness landscapes [12]. A fitness
landscape is a triplet (S,V , f) such that : S is the set of potential solutions,
V : S → 2S is the neighborhood function which associates to each solution s ∈ S
a set of neighbor solutions V(s) ⊂ S, f : S → IR is the fitness function which
associates a real number to each solution.

Within the framework of metaheuristic by local search, the local operators
allow to define the neighborhood V . If the metaheuristic only uses one operator
op, the neighborhood of a solution s is often defined as V(s) = {s′ ∈ S | s′

=
op(s)}. If more than one operator are used, it is possible to associate one fitness
landscape to each operator or to define the set of neighbors as the set of solutions
obtained by one of the operators. A neighborhood could be associated to a
distance; for example, in the field of genetic algorithms, when the search space is
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the set of bit strings of fixed size, the operator which change the value of one bit
defines the neighborhood. Thus, two solutions are neighbors if their Hamming
distance is equal to 1.

The notion of neutrality has been suggested by Kimura [13] in his study of
the evolution of molecular species. According to this view, most mutations are
either neutral (their effect on fitness is small) or lethal. In the analysis of fitness
landscapes, the notion of neutral mutation appears to be useful [12]. Let us thus
define more precisely the notion of neutrality for fitness landscapes.

A test of neutrality is a predicate isNeutral : S × S → {true, false} that
assigns to every (s1, s2) ∈ S2 the value true if there is a small difference between
f(s1) and f(s2).

For example, usually isNeutral(s1, s2) is true if f(s1) = f(s2). In that case,
isNeutral is an equivalence relation. Other useful cases are isNeutral(s1, s2) is
true if |f(s1)−f(s2)| ≤ 1/M with M is the population size. When f is stocastic,
isNeutral(s1, s2) is true if |f(s1) − f(s2)| is under the evaluation error.

For every s ∈ S, the neutral neighborhood of s is the set Vneut(s) = {s′ ∈
V(s) | isNeutral(s, s′

)} and the neutral degree of s, noted nDeg(s) is the number
of neutral neighbors of s, nDeg(s) = !(Vneut(s) − {s}).

A fitness landscape is neutral if there are many solutions with high neutral
degree. In this case, we can imagine fitness landscapes with some plateaus called
neutral networks. There is no significant difference of fitness between solutions
on neutral networks and the population drifts around on them.

A neutral walk Wneut = (s0, s1, . . . , sm) is a walk where for all i ∈ [0,m− 1],
si+1 ∈ V(si) and for all (i, j) ∈ [0,m]2 , isNeutral(si, sj) is true.

A Neutral Network, denoted NN , is a graph G = (V,E) where the set V of
vertices is the set of solutions belonging to S such that for all s and s

′
from V

there is a neutral walk Wneut belonging to V from s to s
′
, and two vertices are

connected by an edge of E if they are neutral neighbors.

3.1 Statistical Measures of Neutrality

H. Rosé et al. [14] develop the density of states approach (DOS) by plotting the
number of sampled solutions in the search space with the same fitness value.
Knowledge of this density allows to evaluate the performance of random search
or random initialization of metaheuristics. DOS gives the probability of having
a given fitness value when a solution is randomly chosen. The tail of the distrib-
ution at optimal fitness value gives a measure of the difficulty of an optimization
problem: the faster the decay, the harder the problem.

To study the neutrality of fitness landscapes, we should be able to measure and
describe a few properties of NN . The following quantities are useful. The size
!NN i.e., the number of vertices in a NN , the diameter, which is the maximum
distance between two solutions belonging to NN . The neutral degree distribution
of solutions is the degree distribution of the vertices in a NN . Together with the
size and the diameter, it gives information which plays a role in the dynamics
of metaheuristic [15]. Another way to describe NN is given by the autocorre-
lation of neutral degree along a neutral random walk [16]. At each step si of
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the walk, one neutral solution si+1 ∈ V(si) is randomly chosen such as ∀j ≤ i,
isNeutral(sj, sj) is true. From neutral degree collected along this neutral walk,
we computed its autocorrelation. The autocorrelation measures the correlation
structure of a NN . If the correlation is low, the variation of neutral degree is
low ; and so, there is some areas in NN of solutions which have nearby neutral
degrees.

4 Neutrality in the Majority Problem Landscape

In this work we use a performance measure, the standard performance defined
in section 2, which is based on the fraction of n initial configurations that are
correctly classified from one sample. Standard performance is a hard measure
because of the predominance in the sample of ICs close to 0.5 and it has been
typically employed to measure a CA’s capability on the density task.

The error of evaluation leads us to define the neutrality of the landscape.
The standard performance cannot be known perfectly due to random variation
of samples of ICs. The ICs are chosen independently, so the fitness value f of
a solution follows a normal law N (f, σ(f)√

n
), where σ is the standard deviation

of sample of fitness f , and n is the sample size. For binomial sample, σ2(f) =
f(1−f), the variance of Bernouilli trial. Thus two neighbors s and s

′
are neutral

neighbors (isNeutral(s, s
′
) is true) if a t-test accepts the hypothesis of equality

of f(s) and f(s
′
) with 95 percent of confidence. The maximum number of fitness

values statistically different for standard performance is 113 for n = 104, 36 for
n = 103 and 12 for n = 102.

4.1 Analysis of the Full Landscape

Density Of States. It has proved difficult to obtain information on the Majority
Problem landscape by random sampling due to the large number of solutions
with zero fitness. From 4.103 solutions using the uniform random sampling tech-
nique, 3979 solutions have a fitness value equal to 0. Clearly, the space appears
to be a difficult one to search since the tail of the distribution to the right is
non-existent. Figure 3-a shows the DOS obtained using the Metropolis-Hastings
technique for importance sampling. For the details of the techniques used to sam-
ple high fitness values of the space, see [17]. This time, over the 4.103 solutions
sampled, only 176 have a fitness equal to zero, and the DOS clearly shows a more
uniform distribution of rules over many different fitness values. It is important to
remark a considerable number of solutions sampled with a fitness approximately
equal to 0.5. Furthermore, no solution with a fitness value superior to 0.55 has
been sampled.

Computational costs do not allow us to analyse many neutral networks. In
this section we analyse two important large neutral networks (NN). A large
number of CAs solve the majority density problem on only half of ICs because
they converge nearly always on the final configuration (O)N or (1)N and thus
have performance about 0.5. Mitchell et al. [3] call these “default strategies”
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and notice that they are the first stage in the evolution of the population before
jumping to higher performance values associated to “block-expanding” strategies
(see section 2). We will study this large NN , denoted NN0.5 around standard
performance 0.5 to understand the link between NN properties and GA evolu-
tion. The other NN , denoted NN0.76, is the NN around fitness 0.7645 which
contains one neighbor of a CA found by Mitchell et al. The description of this
“high” NN could give clues as how to “escape” from NN toward even higher
fitness values.

Diameter. In our experiments, we perform 5 neutral walks on NN0.5 and 19
on NN0.76. Each neutral walk has the same starting point on each NN . We
try to explore the NN by strictly increasing the Hamming distance from the
starting solution at each step of the walk. The neutral walk stops when there is
no neutral step that increases distance. The maximum length of walk is thus 128.
On average, the length of neutral walks on NN0.5 is 108.2 and 33.1 on NN0.76.
The diameter of NN0.5 is thus larger than the one of NN0.76.
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Fig. 1. Distribution of Neutral Degree along all neutral walks on NN0.5 in (a) and
NN0.76 in (b)

Neutral Degree Distribution. Figure 1 shows the distribution of neutral degree
collected along all neutral walks. The distribution is close to normal for NN0.76.
For NN0.5 the distribution is skewed and approximately bimodal with a strong
peak around 100 and a small peak around 32. The average of neutral degree on
NN0.5 is 91.6 and standard deviation is 16.6; on NN0.76, the average is 32.7
and the standard deviation is 9.2. The neutral degree for NN0.5 is very high :
71.6 % of neighbors are neutral neighbors. For NN0.76, there is 25.5 % of neutral
neighbors. It can be compared to the average neutral degree of the neutral NKq-
landscape with N = 64, K = 2 and q = 2 which is 33.3 % .
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Fig. 2. Estimation of the autocorrelation function of neutral degrees along neutral
random walks for NN0.5 (a) and for NN0.76 (b)

Autocorrelation of Neutral Degree. Figure 2 gives an estimation of the autocor-
relation function ρ(k) of neutral degree of the neutral networks. The autocor-
relation function is computed for each neutral walk and the estimation r(k) of
ρ(k) is given by the average of ri(k) over all autocorrelation functions. For both
NN , there is correlation. The correlation is higher for NN0.5 (r(1) = 0.85) than
for NN0.76 (r(1) = 0.49). From the autocorrelation of the neutral degree, one
can conclude that the neutral network topology is not completely random, since
otherwise correlation should have been nearly equal to zero. Moreover, the vari-
ation of neutral degree is smooth on NN ; in other words, the neighbors in NN
have nearby neutral degrees. So, there is some area where the neutral degree is
homogeneous.

This study give us a better description of Majority fitness landscape neutrality
which have important consequence on metaheuristic design. The neutral degree
is high. Therefore, the selection operator should take into account the case of
equality of fitness values. Likewise the mutation rate and population size should
fit to this neutral degree in order to find rare good solutions outside NN [18].
For two potential solutions x and y on NN , the probability p that at least one
solution escaped from NN is P (x 	∈ NN ∪ y 	∈ NN) = P (x 	∈ NN) + P (y 	∈
NN) − P (x 	∈ NN ∩ y 	∈ NN). This probability is higher when solutions x and
y are far due to the correlation of neutral degree in NN . To maximize the prob-
ability of escaping NN the distance between potential solutions of population
should be as far as possible on NN . The population of an evolutionary algorithm
should spread over NN .

4.2 Study on the Olympus Landscape

In this section we show that there are many similarities inside the blok (see
section 2), and we use this feature to define what we have named the Olympus
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Landscape, a subspace of the full landscape in which good solutions are found.
Next, we study the relevant properties of this subspace. Before defining the
Olympus we study the two natural symmetries of the majority problem.

The states 0 and 1 play the same role in the computational task; so flipping
bits in the entry of a rule and in the result have no effect on performance. In
the same way, CAs can compute the majority problem according to right or left
direction without changing performance. We denote S01 and Srl respectively
the corresponding operator of 0/1 symmetry and right/left symmetry. Let x =
(x0, . . . , xλ−1) ∈ {0, 1}λ be a solution with λ = 22r+1. The 0/1 symmetric of x
is S01(x) = y where for all i, yi = 1 − xλ−i. The right/left symmetric of x is
Srl(x) = y where for all i, yi = xσ(i) with σ(

∑λ−1
j=0 2nj ) =

∑λ−1
j=0 2λ−1−nj . The

operators are commutative: SrlS01 = S01Srl. From the 128 bits, 16 are invariant
by Srl and none by S01.

Two optima from the blok could be distant whereas some of theirs symmetrics
are closer. Here the idea is to choose for each blok one symmetric in order to
broadly maximize the number of joint bits.

The optima GKL, Das, Davis and ABK have 2 symmetrics only because sym-
metrics by S01 and Srl are equal. The optima Coe1 and Coe2 have 4 symmetrics.
So, there are 24.42 = 256 possible sets of symmetrics. Among these sets, we es-
tablish the maximum number of joint bits which is possible to obtain is 51. This
“optimal” set contains the six Symmetrics of Best Local Optima Known (blok

′
)

which are GKL
′
= GKL, Das

′
= Das, Davis

′
= S01(Davis), ABK

′
= S01(ABK),

Coe1
′
= Coe1 and Coe2

′
= Srl(Coe2).

The Olympus Landscape is defined from the blok
′
as the subspace of dimension

77 defined by the string S
′
:

000*0*0* 0****1** 0***00** **0**1** 000***** 0*0**1** ******** 0*0**1*1

0*0***** *****1** 111111** **0**111 ******** 0**1*1*1 11111**1 0*01*111

Density Of States. The DOS is more favorable in the Olympus with respect to
the whole search space by sampling the space uniformly at random, only 28.6%
solutions have null fitness in the random sample. Figure 3-a shows the DOS on
the Olympus which has been obtained by sampling with the Metropolis-Hastings
method. Only 0.3% solutions have null fitness value in this sample, although
the tail of the distribution is fast-decaying beyond fitness value 0.5 the highest
solution for M-H is 0.68. The DOS thus justifies the favours to concentrate the
search in the Olympus landscape.

Neutral Degree. The figure 3-b gives the neutral degree of solutions from Olym-
pus as a function of their performance. The solutions below performance 0.5 are
randomly chosen in Olympus. The solutions over performance 0.5 are sampled
with 2 runs of a GA during 103 generations. This GA is based on GA defined
by Mitchell [3] where the operators are restricted to Olympus subspace and the
selection is a tournament selection of size 2 taking into account the neutrality.
This GA allows to discover a lot of solutions between 0.80 and 0.835 and justified
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Fig. 3. (a) DOS using Metropolis-Hasting technique to sample the whole space (im-
pulse) and the Olympus Landscape (line). (b) Neutral degree on Olympus as a function
of the performance.

the useful of Olympus1. Two important NN are located around fitnesses 0 and
0.5 where the neutral degree is over 70. For solutions over 0.5, the average of
neutral degree is 37.6 which is a high neutral degree.

5 Discussion and Conclusion

The landscape has a considerable number of points with performance 0 or 0.5
which means that investigations based on sampling techniques on the whole
landscape are unlikely to give good results. The neutrality of the landscape is
high, and the neutral network topology is not completely random. Exploiting
similarities between the six best rules and symmetries in the landscape, we have
defined the Olympus landscape as a subspace of the Majority problem landscape.
This subspace have less solutions with performance 0 and it is easy to find
solutions over 0.80 with a simple GA. We have shown that the neutrality of
landscape is high even for solution over 0.5.
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Abstract. The stability properties of different harvesting strategies are an im-
portant aspect of predator-prey system. Most of the previous studies applied a 
non-spatial approach such as Lotka-Volterra model. In this paper, a stochastic 
cellular automata based predator-prey model (EcoCA) was developed and  
verified by the classical Lotka-Volterra model. The EcoCA was then used to in-
vestigate the statistical stabilities of different harvesting strategies of the preda-
tor-prey complex. Four groups of numerical experiments have been conducted: 
(1) no harvesting, (2) harvesting prey only, (3) harvesting predator only and (4) 
harvesting prey and predator jointly. Two harvesting methods, constant quota 
versus constant effort, are examined for each group. The effects of harvesting 
criterion are studied as well, which imposes a limit of population density when 
execute a harvest. The simulation results showed that constant effort leads to 
statistically more stable behaviors than constant quota. The joint harvesting of 
prey and predator with a reasonable constant effort can improve system stability 
and increase the total yields. In addition, it once again confirmed that space 
places a significant role in the stability properties of the predation and harvest-
ing system, which indicates the importance to use spatially explicit model in 
conservation ecology.  

1   Introduction 

Qualitative and quantitative understanding of interactions between different species is 
crucial for population management where predation, competition and harvesting are 
the most influential factors [1, 2]. The competition and predation effects reflected by 
functional response have been substantially studied [3]. Much research effort has also 
been put into investigating the yields of different harvesting strategies [2, 4-5]. One of 
the basic concepts in the analysis of harvesting populations is maximum sustainable 
yield [1]. The usefulness of this measure is reduced when there are several intercon-
nected species that are harvested, and this limitation was well discussed by May et al 
[6] on the management of multispecies fisheries. Beddington and Cooke [7] further 
studied the stability properties of various management regimes including constant 
quota versus constant effort, especially the joint harvesting of predators and prey. 
They found that constant quota cannot be achieved for small population size in order 
to prevent extinction. They also showed that the maximum stable sustainable yield 
cannot be fully exploited because any disturbance in that case could lead to system 
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collapse. Costa Duarte [8] claimed on the basis of numerical simulations that constant 
quota is more stable than constant effort, which was contrary to what is often believed 
and was argued by Azar et al [5].  

These studies usually applied a non-spatial model such as the Lotka-Volterra 
model. Some semi-spatial predation models were developed based on coupled map 
and coupled ordinary differential equations, where the coupled terms represents the 
migration of individuals between different patches [9]. These researches indicated that 
space plays an important role in stability properties of predation system. Another 
important property of the semi-spatial models is synchrony which will increase the 
probability of regional extinction and reduce metapopulation persistence. Spatially 
explicit models using cellular automata [10] and individual based paradigms [11] 
further proved the importance of space in stability properties of population dynamics. 

This paper concentrates on investigation of statistical stabilities of different harvest-
ing strategies of the predator-prey complex through a spatially explicit model. The  
stochastic cellular automata based model EcoCA [10] was updated to incorporate the 
capability of simulating harvesting processes. Four groups of experiments have been 
studied: (1) no harvesting, (2) harvesting prey only, (3) harvesting predator only and (4) 
harvesting prey and predator jointly. Two harvesting methods constant quota and con-
stant effort are tested. The updated EcoCA is also compared with spatially lumped 
model to investigate space effects. The simulation results showed that constant effort 
leads to more statistically stable behaviours than constant quota. The joint harvesting of 
prey and predator with reasonable constant effort can improve system stability and 
increase the total yield, while harvesting predator only usually results in predator extinc-
tion. Space places a significant role in the stability of predation system, so that spatially 
explicit model is more advantageous in understanding ecosystem conservation. 

2   Model Development 

EcoCA is a two dimensional cellular automata model which has been developed for 
simulation of predator-prey system [10, 12]. The model has up to three possible cell 
states: empty, prey and predator; and the state of each cell is exclusive, namely that at 
each time step only one of the three states can exist in one cell. The boundary condi-
tions are fixed in such a way that the neighbourhoods are completed with cells taking 
the state of empty [13]. The initial conditions are randomly defined, but as uniform as 
possible, by specifying the densities of prey and predator. The cell size can be subdi-
vided or aggregated for investigating the effects of spatial scale. The neighbourhood 
configuration can be Von Neumann or Moore or extended Moore. The evolutions for 
each cell (i, j) applies stochastic rules that are dependent on the current state of the 
cell, the number of the neighbouring cells that are occupied by predator, Npd, and the 
number of cells occupied by prey, Npy. These rules define a probability that a cell will 
become prey, Ppy or predator, Ppd or empty 0 at next time step (Eq. 1).  

,( , , )        ( ,  )t t t
k i j py pdP f S N N k py pd= ∈  (1) 

where f are evolution rules. These rules take into account reproduction, food availabil-
ity, overcrowded and loneliness (Appendix). After the probability is calculated, a 
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random selection process is used to determine the transition of the cell sate. Several 
runs of this system with various initial conditions all led to a very similar pattern of 
results as exemplified by the plots of Fig 1. These plots show respectively the popula-
tion dynamics and phase dynamics of a 40×40 CA system with the initial conditions 
of prey = 400 and predator = 120. Although the dynamics of EcoCA model is not as 
strictly periodic as Lotka-Voterra model, the cyclic behaviours are well captured. The 
verification of EcoCA and comparison of statistical descriptors with Lotka-Voterra 
model were provided in Chen [12]. 

 

Fig. 1. Population dynamics (left) and phase dynamics (right) of EcoCA simulation; the square 
grids is 40×40; initial condition is prey = 400 and predator = 120; neighbourhood is Moore 
scheme 

 

Fig. 2. Snapshot of population dynamics at t=1050 (left); predator population dynamics and 
harvest (right). Simulation results of the updated EcoCA model; the square grids is 20×20; 
initial condition is prey = 100 and predator = 100; neighbourhood is Moore scheme; jointly 
harvesting of prey and predator at the same constant effort 15%; harvesting criterion is 10%. 

To investigate the stability properties of different harvesting strategies of a spa-
tially explicit predation system, the EcoCA model is updated to be capable of simulat-
ing harvesting processes. The extended function consists of various options such as 
constant quota and constant effort, regional harvest and random harvest. In addition, a 
criterion can be specified so that a pre-scheduled harvesting is suspended when the 
population density is lower than the threshold.  
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The results of an exemplified simulation of the updated EcoCA model are pre-
sented in Fig 2. In the simulation, a square grid of 20×20 is used. The initial condition 
is prey = 100 and predator = 100, and the neighbourhood is Moore scheme. The har-
vesting strategy is to jointly take prey and predator at a same constant effort of 15% in 
a random way, and the harvesting criterion is defined as 0.1. It is seen from the results 
that the updated EcoCA is able to model the harvesting processes.  

3   Design of Experiments 

The updated EcoCA model is then used as an instrument to study the stability proper-
ties of a predation system with respects to harvesting strategies and spatial effects. To 
achieve the objective, a series of simulation experiments are systematically designed 
and implemented.  

The first aspect is to test harvesting on different species that include no harvesting, 
harvesting of prey only, harvesting of predator only and joint harvesting of prey and 
predator. For each experiment, constant effort and constant quota are both examined. 
The second aspect is to investigate the space effects on system stability with different 
harvesting strategies. The EcoCA is a spatially explicit model; therefore comparisons 
with spatially lumped model should be conducted. In this study, the modified Lotka-
Volterra (MLV) model is applied (Eq. 2).  

2
1

dN
aN bN NP H

dt
α= − − −  (2.1) 

2

dP
cP NP H

dt
β= − + −  (2.2) 

where N: population of prey, P: population of predator;  a: growth rate of prey; b: 
loading capacity limits (loading capacity K = a/b); c: mortality rate of predator; α: 
functional response of prey on predator; β: functional response of predator on prey; Hi 
is the harvesting that is defined as:  

for constant quota

for constant effort

                             

 or                  
i

i
i i

C
H

r N r P
=            i =1, 2 (3) 

in which ri is constant effort. The MLV model is numerically resolved through a 4th-
order Runge-Kutta method. The MLV model evolves in rich behaviours that include 
periodic, chaotic and centre point (b 0) depending on initial conditions and the pa-
rameters. However, in this paper the cyclic behaviour is of interests.  

The third aspect is to study the difference between constant effort and constant 
quota. To keep them comparable, the mean harvests of constant effort is used as the 
constant quota. In addition to harvesting strategies and space, the effect of harvesting 
criterion is studied as well. In the present experiments, a threshold population density 
of 0.15 is selected and then compared with no criterion. However, comparison be-
tween regional harvesting and random harvesting is not conducted in the present 
study although the updated EcoCA model has the capability for such investigation.  
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In principal, there are totally 32 (2×4×2×2) cases to be investigated. But to focus 
on the key features, only 7 scenarios are selected that are given in the Table 1. The 
scenarios 1 to 4 are to test species effect, and the scenarios 4 and 5 are to test space 
effect, and the scenarios 4 and 6 are to test constant effort versus constant quota and 
the scenarios 4 and 7 are to test criterion effect. The EcoCA used exactly the same 
initial condition, which is defined by randomly distribute 100 preys and 100 predators 
in the domain, i.e. a population density of 0.25. The simulation period is 2000 time-
steps. The parameters used in MLV model are N0 =202, P0 = 41, dt = 0.2, a = 0.95 d-1, 
b = 0, c = 0.7 d-1, α = 0.0085, β= 0.0018.  

Table 1.  Simulation scenarios of the experiments 

 

Table 2.  Simulation scenarios of the experiments 

 

The experiment results are analysed by using the similar methods that are applied 
in the previous researches [10]. The overall behaviours such as single species ex-
tinction, both species extinction and coexistence are first examined. Following 
that,stationarity [2] and chaotic dynamics [14] are analysed by using the procedure 
for screening time series data. For stationary dynamics, the stability properties will 
be further quantified in terms of statistical descriptors [15] since the EcoCA is a  
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stochastic model. The square variance of population densities is chosen to be the 
major indicator of stability in the study.  

The dynamics at the beginning are dominated by the effects of random initialisa-
tion. However, after sufficient time steps, it is then governed by evolution rules. 
Therefore, the results of the first 500 steps are excluded in the time series analyses.  

4   Experiment Results 

Several repeated runs of each scenario with the same initial condition lead to a very 
similar statistical behaviour that is summarized in Table 2. 

  

Fig. 3. Populations of scenarios 1 (top left), 4 (top right), 5 (bottom left) and 7 (bottom right) 

 

Fig. 4. Phase trajectories of scenarios 1 (top left), 4 (top right), 5 (bottom left) and 7 (bottom right) 
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Fig. 5. Harvest of scenarios 3 (top left), 4 (top right), 5 (bottom left) and 7 (bottom right) 

The population dynamics and phase trajectory of scenarios 1, 4, 5 and 7 are plot-
ted in the Fig 3 and Fig 4. In addition, the harvesting results of scenario 3, 4 and 7 
are presented in Fig 5. Since scenario 6 is unstable, a further statistical analysis is 
unnecessary. 

5   Discussions 

It is seen from the phase trajectories and statistical analyses (Table 2) that joint har-
vesting leads to the most stationary behaviour, while harvesting on prey alone has the 
least stationary dynamics. By comparing scenario 4 with 1, an interesting point is that 
a reasonable joint harvesting makes the system more stationary than no harvesting.  

With respect to constant quota and constant effort, the simulations indicate that 
constant quota easily leads to system collapse, while constant effort usually evolves 
stationary. This result is consistent with the previous findings. 

Comparing scenario 7 and 4, it is found that a jointly harvesting without restriction 
can lead to the system more stationary and productive. However, it is valid only when 
the constant efforts are reasonably small, which is 0.22 for predator in the presented 
experiment. Otherwise, the system will collapse. Due to the setting of harvesting 
criterion, the predator yields in scenario 3 and 4 are sporadic (Fig 4). 

The study once again demonstrates that the spatially explicit EcoCA model has 
more stable dynamics than spatially lumped MLV model. The reason is that in 
lumped model, predators can pursuit preys globally, which results in large oscillations 
and sometimes chaotic behaviours or even extinction. In the EcoCA model, predation 
is limited to local area so that patches are emerged (Fig 2). This not only reduces the 
oscillation, but also increase the probability for the system to recover from one/more 
patches and thus improve the stability. This kind of feature of structural stability indi-
cates the importance of spatially explicit methods.  
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It is concluded from the study that (1) joint harvesting on prey and predator with a 
rational effort can improve the stability and productivity of a predation system; (2) 
constant effort usually leads to more stable behaviours than constant quota; (3) space 
places an important role in the stability of a predation and harvesting system that need 
to be taken into account in the ecosystem conservation. 
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Appendix: Rules of the EcoCA 

if cell is empty if cell is prey 
if Npy = 0, 1 and Npd = 0, 1 then 
   # not enough to reproduce 
   Ppy = 0 
   Ppd = 0 
if Npd = 0, 1 and Npy ≥ 2 then 
   # prey will reproduce 
   Ppd = 0  
   Ppy = k1 * Npy / (Npy + Npd) 
else 
   # predator will reproduce 
   Ppy = 0 
   Ppd = k2 * Npy / (Npd+1) 

if Npy = 0 and Npd = 0 then 
   # prey may die (loneliness) 
   Ppy = p1 = 0.9 
if Npy = 0 and Npd • 0 then 
   # prey will probably be eaten 
   Ppy = p2 = 0.1 
elseif Npd > Npy+1 then 
   # prey will be eaten 
   Ppy = 0 
else 
   # survival depends on Npy and Npd 
   Ppy = 1 – k3 * Npd / (Npy+1) 

if cell is predator Harvest 
if Npy = 0 and Npd = 0 then 
    # no food & loneliness 
   Ppd = p3 = 0.2 
elseif Npy = 0 and Npd ≠ 0 then 
   # no food & competition 
   Ppd = p4 = 0.1 
elseif Npy ≠ 0 and Npd = 0 then 
   # predator may die (loneliness) 
   Ppd = p5 = 0.8 
elseif Npy > Npd + 1 then 
   # predator will survive 
   Ppd = 1 
else 
   # survival depends on Npy and Npd 
   Ppd = k4 * Npy / (Npd + 1) 

1. compute Npy and Npd at t+1 
2. compute Hpy and Hpd 
3. random harvest Hpy and Hpd 
4. compute final Npy and Npd at t+1 
 

Several probability constants and ‘adjustment’ parameters are included in the 
above rules that affect the evolutionary process: 

p1 the probability that a prey will survive in the absence of any neighbours 
p2 the probability that a single prey will survive in the presence of predators 
p3 the probability that a predator will survive on its own with no food 
p4 the probability that a predator will survive in a group with no food 
p5 the probability that a single predator will survive in the presence of prey. 
k1 adjustment factor for reproduction rate of prey 
k2 adjustment factor for reproduction rate of predator 
k3 adjustment factor for effect of predators upon prey survival 
k4 adjustment factor for effect of prey upon predator survival 
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Abstract. We propose a inhomogeneous cellular automata (CA) model
in which several species compete for their territory and can co-evolved in
regions where several of them coexist. Our model has as few parameters
as possible. Each cell represent an individual and the associated CA rule
represents its genome. The state evolution of each cell is interpreted as a
phenotype. The fitness is defined as the cell activity, i.e. the variability
of the state over time. Individuals of low fitness evolves by copying part
of the genomes of neighboring high fitness individuals. We then consider
a computer experiment implementing the competition-evolution of two
species (two rules) each populating initially half of cellular space.

1 Introduction

Cellular Automata (CA) offer a powerful interaction paradigm to model many
complex, spatially extented dynamical systems [3]. Artificial life and computer
simulations of idealized ecosystems is a domain which has attracted a lot of
research activities and, among them, the simulation of species evolutions, speci-
ation and extinction [4,1,7,5,8] is of importance.

A difficulty which arises when modeling an ecosystem in which several species
are competing and evolving is how to compute the fitness of each individual
as a function of its genome. Ideally we would like that the fitness takes into
account the performance of the genome in the actual environment. This is com-
plex because the environment is affected by the presence of other individuals and
other species. Thus, computing the fitness as the distance to a fixed “master”
sequence in the genome space [4,2] amounts to assuming that the environment
is completely static.

Here we propose a model in which most evolution parameters are naturally
embeded in the basic model components and has a natural way to link the
fitness value to the adaptability of the individuals to their dynamically changing
environment.

Our model represents a geographical area divided in many cells, each of them
being populated by an individual identified by its genome. As will be discussed in
section 2, this genome corresponds to a CA rule. In addition, each individual has
a state (the sate of each CA cell) representing its current response to the envi-
ronment and its interaction with neighboring individuals. The way this response
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evolves over time determines the phenotype and the fitness of each individual.
During time evolution, individuals are allowed to mate with their neighbors.
During this crossover phase, low fitness individuals will tend to borrow genetic
code from high fitness individuals.

The problem we want to investigate is how a system, initially populated with
only two different species, will evolve. As an illustration, fig. 1 shows the initial
stage where two species are separated in space and the stable situation obtained
after many iterations of our evolution-competition process. We can observe that
new species have emerged and that homogeneous regions coexist with regions
where no single species can dominate. This rich behavior is not due to a specific

Fig. 1. Left: the initial configuration with two species occupying adjacent spatial re-
gions. Right: after many rounds of interaction and hybridization, a new spatial distrib-
ution is observed, with many new species coexisting in some form of equilibrium. Here,
the rule originally on the left is the so-called Parity rule (see below). On the right, the
initial rule is built as a random lookup table.

choice of parameters but to the complexity of the spatial interactions and the
large variety of species that can exist in our model. On the other hand, in spite of
this huge evolution space, some structures emerge as the result of the competition
and co-evolution process, indicating that collective organization counteracts the
expected increase of entropy.

2 A CA Evolution-Competition Model

2.1 Environment Dynamics

Our model is based on a rather simple and intuitive CA dynamics. We consider
a spatial region represented as nx × ny cells organized as a square lattice. In
what follows we choose nx = ny = 128. In our model we assume that each of
these cell host an individual.

Each cell cij , 1 ≤ i ≤ nx and 1 ≤ j ≤ ny, is characterized by a lookup table
Tij and a state sij . Tij is at the same time the CA rule of the cell and the genome
of the corresponding individual. The state sij is the state of the cell and its time
evolution is interpreted as the phenotype of the individual.



A Cellular Automata Model for Species Competition and Evolution 279

According to the standard definition of a CA, the time evolution of the states
sij is given by

sij(t+ 1) = Tij(Nij(t)) (1)

for 1 ≤ i ≤ nx and 1 ≤ j ≤ ny. Here Nij denotes an index to access the lookup
table Tij . It is built from the values the cell states in the neighborhood of cij .
Note that here we allow for a inhomogeneous CA as the rule Tij can be different
on each cell.

In a general implementation, we may have z-bit states, i.e. sij ∈{0, 1, . . . , 2z−1}
and a neighborhood containingN cells. Therefore all possible CA rules Tij can be
coded by a lookup table with 2zN entries. The return values are z-bit numbers.
Since we consider a inhomogeneous CA, each cell must store its own lookup table
Tij . This may cause memory overflow for large nx and ny values, or for large neigh-
borhood size N and large z. For this reason, we shall restrict to z = 2 and a von
Neumann neighborhood with N = 5. Thus 32-entry lookup table are sufficient on
each cell.

The boundary condition of our inhomogeneous CA can be chosen as desired.
Here, for the sake of simplicity, we have considered periodic boundary conditions
along the direction of the initial interface between species (vertical direction in
fig. 1). In the perpendicular direction, we assume a reflexive boundary condition:
si−1,j = si+1,j on the left side and si+1,j = si−1,j on the right.

2.2 Fitness Definition

Equation 1 together with the chosen boundary conditions define the behavior
of each cell within the current environment. The time evolution of each cell
depends on its local rule and of the states of the neighboring cells. Therefore,
a cell will respond differently as a function of the type of the other individuals
(cells) sharing the same neighborhood.

In order to describe the time evolution of each state or, in other words, to
quantify the interaction between each individual and its environment, we define
a fitness value Fij at each CA cell. In our ecological interpretation, Fij should
reflect the level of adaptation of an individual to its environment. There is no
obvious way to define this fitness value. Here we consider an arbitrary choice
without any claim that it is biologically meaningful.

We assume that the phenotype of each individual is related to its behavior
in the environment. A natural way to quantify this behavior is to measure the
activity of each individual in a time window. We will arbitrarily decide that cells
whose state sij often changes from one iteration to the next are more adapted
(more alive) than those which are constant over long time intervals and appear
to be “dead”. Therefore, in our interpretation, active cells are more fit than
inactive ones. Again, this is biologically questionable but beyond the scope of
this paper.

Consequently, we define our time-dependent fitness function as the amount of
change of the cell state over a given time T . In our case we will choose T = 200
iterations of the CA:
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Fij(t) =
t−1∑

τ=T−t

|sij(τ + 1) − sij(τ)| (2)

With this definition some neighboring CA rules may coexist in a symbiotic way
if the output of the first feeds the second one so as to increase its activity. On
the other hand, some rules may have a negative interaction when their mutual
activity is decreased when sharing a common neighborhood. Note that, in gen-
eral, the interaction may be asymmetrical: one rule may gain in activity while
the other decreases.

Using definition 2 we can easily exhibit an individual (or rule) of maximum
fitness

s(t+ 1) =
{
smax if s(t) = smin

smin if s(t) = smax

where smin and smin are the min and max possible values of the set of state.
With 2-bit states, we have smin = 0 and smax = 1.

2.3 Crossover

Once a fitness is defined, we can use it to drive an evolution process. We can
for instance decide that low fitness cells will modify their genome in the hope
to be better adapted to the current environment. Every T = 200 CA iterations,
we shall perform such an evolution step by which individuals may change their
lookup table. This approach is probably more inspired from an evolutionary com-
putation framework such as Genetic Algorithms than biology. But, this choice
can be easily modified in order to consider a specific biological case.

In order to select the individuals which will be subject to genetic evolution,
we compare the fitness of each cell to that of the rest of the system. The average
fitness F̄ = 1/(nxny)

∑
ij Fij is first computed and if Fij(t) < F̄ (t), cell cij will

hybridize with its highest fitness neighbor ckl. We assume a uniform crossover
of probability pij computed as

pij =
Fij

Fij + Fkl

This means that entry � of the genetically modified lookup table Tij will be
constructed as

Tij(�) ← μij(�)Tij(�) + μkl(�)Tkl(�)

where μij(�) = 1−μkl(�) are Boolean quantities. For each values of �, μij(�) will
be 1 with probability pij and 0 with probability 1 − pij . In this way, the best
rule Tlk will be more represented than Tij in the new individual cij . Figure 2
illustrates this genetic transformation. The above crossover process is applied
synchronously to all cells after the T iterations. From an implementation point
of view, this requires that every cell has actually two lookup tables: the current
one which can be used in the crossover phase by a neighbor and the new one.

Note also that a cell surrounded by identical rules cannot be modified. Our
crossover rule will only create new genomes when several different species are
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Fig. 2. Genetic transformation of a CA lookup table by a uniform crossover biased
toward the fittest lookup table

neighbors. In our simulations, we shall assume that the left and right boundaries
of the CA space are not subject to genetic evolution. The individuals on these
two lines will keep their initial lookup table all along the simulation.

3 Simulation Results

We consider several simulations of our competition-evolution model with differ-
ent initial pairs of rules. The typical initial condition is displayed in fig. 3 (left).
A rules R1 is chosen for the cells on the left part of the system and a rule R2 for
the cells on the right. We also have to specify the initial values of the state sij .

Fig. 3. Initial setup of the simulations
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Here we assume, somehow arbitrarily, a central square of 1’s surrounded by a
sea of 0’s. The possible rule candidates we shall consider here as the initial pair
of left and right rules are

– Parity: The state at time t+1 is the sum modulo 2 of the north, east, west
and south neighbors at time t.

– East: The state at time t + 1 is the value of the cell on the left at time t:
si,j(t+ 1) = si−1,j(t). Thus, this rule translate any configuration eastwards,

– Sup: The state at time t + 1 is obtained by adding 1 modulo 2 to itself:
s(t+ 1) = s(t) ⊕ 1.

The last rule is called Sup because it maximizes fitness given in eq. 2 by producing
the sequence of states 0 → 1 → 0 → 1 . . ., independently of the neighbors.

In fig. 4 we show the result of a run in which rules Parity and East are chosen
as the initial pair. Our goal is to measure which new rules (or individuals) are
generated during the iterations of the CA and how they populate the cellular
space. For this purpose we need to associate an identifier with each individual.

Fig. 4. Result of the evolution and competition ofParity versus East. Upper left: pop-
ulation after 1 × 105 steps; the color represent the lookup table at each cell. Upper
right: the state of each cell after 1 × 105. Lower left: Number of individuals with the
original rules. Lower right: Dominant emerging rules: each curve shows the number of
individuals with a given new rules.
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Fig. 5. Average fitness (or activity) as a function of time for the Parity versus East
co-evolution

A way is to take the z × 2zN bits of the lookup tables Tij . This is by far too
much information if we want to display a population dynamics, even with small
values of z and N . This problem can be solved by applying a hash function to
the content of the lookup tables. We chose Pearson function [6] which maps a
string of symbols of arbitrary length onto an integer value between 0 and 255.
The pseudo-code is

value := 0;
For i=0 to table_size

value := table[value XOR LUT[i]];
return value;

where LUT contains the lookup table and table is an array containing an arbi-
trary permutation of {0, . . . , 255}. An interesting property of this hash function
is that table can be chosen so that our three basic rules have a different color
when value is used as an index to a color map.

Fig. 6. The behavior of East versus Parity. Left: Situation after 20 000 generations.
Parity has almost completely replaced East and then new rules start to appear from the
left boundary. Right: Histogram of the rule distribution until the stationary regime is
reached. We observe the growth of Parity at the expense of East and then the creation
of new rules. Again, only the dominant rules are shown here. the situation changes.
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Fig. 7. Left: Result of the evolution and competition of Sup versus East after 200 000
iterations. The two rules coexist. Right: Result of the evolution and competition of Sup
versus Parity, after 200 000 iterations. Parity is destroyed but other emerging rules
develop on a smaller scale.

In the numerical experiments we show the CA configuration after 1×105 steps
and give, for each cell, a color level corresponding to the quantity value obtained
as explained above. In addition, we show, as a function time, the number of
individuals using some of the emerging new rules. The new rules which are
shown are those covering at least 10% of the total area (i.e. at least 1282/10
individuals belong to this species). As shown in fig. 5 the evolution corresponds
to an increase of the average fitness of the whole system.

If the initial rules are swapped, i.e. East is on the left and Parity on the
right, the behavior is quite different. This is due to the fact that East moves
information from left to right and thus works differently if placed on the left
or on the right of its competitor. When East is on the left of Parity, with the
initial condition given in fig. 3, it does not generate activity and will disap-
pear at the expense of Parity which quickly progresses in the left part of the

Fig. 8. Another run of the evolution and competition of Sup versus Parity. Left: Pop-
ulation distribution after 1 × 105 steps. Right: Corresponding states of the cells.
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system. When the left boundary is reached, East activity resumes because of the
chosen reflexive boundary conditions. New species are created, as illustrated in
fig. 6.

On the other hand, rule East is very robust if, on its left side, a random
sequence of 0 and 1 are produced. This is likely to occur when a mix of different
rules are created beyond the interface. This situation also occurs in fig. 7 (left)
where the Sup rule is on the left of East. We see that such a pair of rules is in
an equilibrium situation or collaboration state. On the other hand, fig. 7 (right)
shows that Parity does not coexist with Sup. To illustrate the reproducibility of
the evolution process, fig 8 shows another run of the Sup and Parity interaction.
The pattern is qualitatively similar to that of fig. 7 (right) but the details are of
course different.

4 Conclusion

Our model proposes a simple abstraction of a ecosystem in which several species
compete and interact with an environment which is dynamically shaped by the
spatial distribution of the species. By associating local CA rules with the genome
of an individual, we have a natural way to define the phenotype and the fitness
of each individual from the dynamics of the cell states.

We considered the evolution of a population initially made of only two species
occupying adjacent spatial regions. We show that, depending on the initial pair
of rules representing each of the two species, different behaviors can be observed.
The most interesting one is the emergence of new rules which populate signifi-
cantly large contiguous area of cells and can coexist over time, even though some
other regions are populated by a fast changing and uncorrelated individuals. Fi-
nally we also exhibit patterns of collaboration between rules or, on the contrary,
situations where one rule overcome the other one.

From a biological point of view, we may argue that the choices we have made
are not representing a realistic species evolution. At this stage we have mostly
exploited the ecosystem metaphor to propose and discuss the behavior of a
complex dynamical system. We do hope, however, that in a near future, the ideas
proposed in this paper will indeed be applicable to describe the interactions and
evolutions of living organisms.
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Abstract. The emergence of new species is one of the trickiest issues
of evolutionary biology. We propose a cellular automata model to inves-
tigate the possibility that speciation proceeds in sympatry, focusing on
the importance of the structure of the landscape on the likelihood of spe-
ciation. The conditions for speciation are shown to be limited whatever
the landscape being considered, although habitat structure best favours
the emergence of new species.

1 Introduction

Understanding the origin and maintenance of diversity is a fundamental problem
in biology. Ecology and genetics usually focus on the maintenance of diversity
addressing essential theoretical issues and trying to answer major questions of
applied biology related to the harmful impact of human activities on the current
biodiversity. More romantically, evolution is also concerned by the appearance
of new forms of life on earth.

The emergence of new species is among the most controversial topics in evo-
lution, whose origin is usually tracked back to Darwins seminal The Origin of
species (1859). Several definitions of species have been provided (see [3], Ch. 1 for
review), all fitting parts of the complexity of the process. Surely, the most used
definition of species is related to the biological species concept; species are groups
of interbreeding natural populations that are reproductively isolated from other
such groups [18]. Starting from this definition, theoreticians investigate specia-
tion as the emergence of two sets of individuals from one and the evolution of
reproductive isolation between them.

Different scenarii have been proposed to account for such a diversification
process. The most approved one is allopatric speciation, in which pools of indi-
viduals of a single initial population get geographically isolated because of an
external event (like mountains formation). Sub-populations then differentiate,
simply because they evolve separately. Sympatric speciation, the emergence of
two species within a set of individuals living and reproducing in the same place,
is much more tricky and has long been seen as a purely and unlikely theoretical
hypothesis. The difficulty with sympatric speciation is that the continual mixing
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due to reproduction between individuals of the two incipient species (referred to
as gene flow by evolutionary biologists) opposites the differentiation process.

Adaptive sympatric speciation provides an appealing answer to this issue. The
basic idea is that, if splitting of the population is due to adaptation of the two
pools of individuals to different ecological resources, then every single individual
(whatever the pool it belongs to) has an advantage to mate with a partner
using the same resource as it. This is simply because mating with an individual
exploiting another resource eventually leads to produce unfit offsprings, which
are unable to live on either resource. Also intuitive, this verbal argument calls
for quantitative investigations under the many different ecological and genetic
situations observable in the diversity of biological organisms.

In this contribution, we use cellular automata as a simple formalism to in-
vestigate adaptive sympatric speciation. Some work on sympatric speciation has
been done in the past in the framework of CA’s [1]. We focus in this paper on
the importance of habitat structure on the probability of speciation by habitat
specialization and evolution of assortative mating through a one-locus two-allele
model (see [3], Ch. 4).

2 The Proposed Cellular Automata Model

2.1 Cellular Automata Approach

Cellular automata (CA) are a class of spatially and temporally discrete mathemat-
ical systems characterized by local interaction and an inherently parallel form of
evolution. First introduced by von Neumann in the early 1950s to act as simple
models of self-reproduction in biological systems, CA are considered as models for
complex systems in computability theory, mathematics, and theoretical biology
[4,15,16,22,24,25]. In addition to these theoretical aspects of CA, there have been
numerous applications to physics, biology, chemistry, biochemistry among other
disciplines. The studied phenomena include fluid and chemical turbulence, plant
growth, ecological theory, DNA evolution, propagation of infectious diseases, ur-
ban social dynamics and forest fires. CA have also been used as discrete versions
of partial differential equations in one or more spatial variables [2,8,9,12,23].

A cellular automaton consists generally of a regular array of identically pro-
grammed units called ”cells” which interact with their neighbours subject to a
finite set of prescribed rules for local transitions. Each cell is characterized by
a particular state taken in a discrete set of values. Time progresses in discrete
steps. The state of a cell at time t+ 1 is a function only of its own state and of
the states of its neighbours at time t.

In a mathematical formalism, a cellular automaton is defined as the quadruple
A = (L,S, N, f), where L is a regular lattice which consists of a periodic paving
of a d-dimensional space domain, S is a discrete state set,N is the neighbourhood
of size n defined by the mapping

N : L −→ Ln

c −→ N(c) = {c1, c2, . . . , cn}
(1)
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and f is a function which specifies the transition rule defined by

f : Sn −→ S
st(N(c)) −→ st+1(c)

(2)

where st+1(c) is the state of the cell c at time t+ 1.
The dynamics definition is augmented with initial and boundary conditions

which depend on the considered application.

2.2 Biological Background

We considered a haploid population with discrete and non-overlapping genera-
tions living in a landscape including two types of habitat. Life-cycle involves a
viability selection stage followed by reproduction. During the viability selection
stage, each individual survives according to its adaptation to the habitat it is
living in. All the surviving individuals are allowed to reproduce. Individuals first
enter a mating pool according to some preferences they have and then mate
randomly within the pool. Offsprings are laid close to the place occupied by
their mother before mating. The genetic underlying ecological adaptation and
mating pool preferences are as simple as possible. One ecological locus with two
alleles, A and a, provides adaptation to the first and second type of habitat,
respectively. One mating locus with two alleles, B and b, provides preferences
for a first and a second mating pool, respectively.

In this background, we are interested in the joint evolution of habitat special-
ization and reproductive isolation. Speciation will be achieved if the two groups
of individual adapted to each of the habitat get reproductively isolated by choos-
ing different pools of mating. That is if the genetic structure of the population
evolves towards one of the two following sets of genotypes {AB, ab} or {Ab, aB}.
This scenario, where individuals tend to mate assortatively with respect to genes
non-involved in ecological adaptation, has been called Assortative mating genes
by Maynard-Smith [17], who recognized it as the most plausible scenario for
species to emerge in sympatry. It has received much attention leading to several
modelling attempts (see [3,6,11] for reviews), none of them considering space
explicitly as will be done using our cellular automata model.

2.3 Model Description

To model the spatiotemporal changes in the population, we propose a model
based on a two-dimensional cellular automaton. It is defined on a square lat-
tice where a cell can be either empty or occupied by a single individual which
is assumed to carry one of the two ecological alleles (A or a) and one of the
two mating alleles (B or b). We then consider four categories of individuals :
AB,Ab, aB, ab which will be associated with the state values represented by a
couple (x, y) where x ∈ {A, a} and y ∈ {B, b}. A cell is given by its coordinates
(i, j) in the square lattice L and its state at time t is denoted by st(i, j) which
takes values in the discrete state set S = {A, a} × {B, b} ∪ {∗}, where ∗ repre-
sents an empty cell. The cell (i, j) also has a characteristic of habitat denoted
by ci,j ∈ {H1, H2} corresponding to the two types of habitat.
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Each transition step is divided on three processes : survival which depends on
the ecological allele A or a and the site occupation H1 or H2, mating depending
on the second allele B or b and a local dispersal process of offsprings.

Survival is based on the following transition rules. An individual (A, .) survives
with probability s1A if it lives in habitat H1 and with probability s2A if it lives in
H2. An individual (a, .) survives with probability s1a if it lives in H1 and with
probability s2a if it lives in H2, with s1A > s2A and s1a < s2a.

For simplicity, we restrict ourselves throughout this paper to the case :

s1A = s2a = s and s2A = s1a = 1 − s with s ≥ 0.5.

Let us denote by s̃t(i, j) the intermediate state of cell (i, j) after the sur-
vival phase which is applied only to occupied cells. For each cell (i, j) such that
st(i, j) 	= ∗, the survival step is expressed by :

s̃t(i, j) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
st(i, j) with probability

s1A if ci,j = H1 and st(i, j) = (A, .)
s2A if ci,j = H2 and st(i, j) = (A, .)
s1a if ci,j = H1 and st(i, j) = (a, .)
s2a if ci,j = H2 and st(i, j) = (a, .)

∗ otherwise

(3)

Mating. We assume that individuals mate randomly within two pools they join
with some preferences defined by the mating allele, B or b, they carry. It is
important to note that mating process is independent on the spatial localization
of individuals, which conforms to Gavrilets definition of sympatric speciation
[11]. Let S1 and S2 be the mating pools, we denote by p (p ≥ 0.5) the preference
probability of (., b) to be in S1 and (., B) in S2.

Let S(x,y)
i be the set of individuals xy belonging to Si, i = 1, 2. We have then

Si = S
(a,b)
i ∪ S

(a,B)
i ∪ S

(A,b)
i ∪ S

(A,B)
i and we can calculate the different mating

probabilities as :

p1(a, b) =
p

|S1|
(|Sa,b

1 | + 1
2
|Sa,B

1 | + 1
2
|SA,b

1 | + 1
4
|SA,B

1 |)+
1 − p

|S2|
(|Sa,b

2 | + 1
2
|Sa,B

2 | + 1
2
|SA,b

2 | + 1
4
|SA,B

2 |)

p2(a, b) =
p

2|S1|
(|SA,b

1 | + 1
2
|SA,B

1 |) +
1 − p

2|S2|
(|SA,b

2 | + 1
2
|SA,B

2 |)

p3(a, b) =
p

2|S1|
(|Sa,B

1 | + 1
2
|SA,B

1 |) +
1 − p

2|S2|
(|Sa,B

2 | + 1
2
|SA,B

2 |)

p4(a, b) =
p

4|S1|
|SA,B

1 | + 1 − p

4|S1|
|SA,B

2 |

(4)

In the same way, we obtain the probabilities pi(a,B), pi(A,B) and pi(A, b),
for i = 1..4. They represent all the mating probabilities in a set Si, i = 1, 2,
with a given category of individuals ab, aB, AB or Ab. Each individual xy has
a probability p1(x, y) + p2(x, y) + p3(x, y) + p4(x, y) of mating and can produce
one of the fourth categories :
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(a, b) −→

⎧⎪⎪⎨
⎪⎪⎩

(a, b) with p1(a, b)
(A, b) with p2(a, b)
(a,B) with p3(a, b)
(A,B) with p4(a, b)

(A, b) −→

⎧⎪⎪⎨
⎪⎪⎩

(A, b) with p1(A, b)
(a, b) with p2(A, b)
(A,B) with p3(A, b)
(a,B) with p4(A, b)

(a,B) −→

⎧⎪⎪⎨
⎪⎪⎩

(a,B) with p1(a,B)
(A,B) with p2(a,B)
(a, b) with p3(a,B)
(A, b) with p4(a,B)

(A,B) −→

⎧⎪⎪⎨
⎪⎪⎩

(A,B) with p1(A,B)
(a,B) with p2(A,B)
(A, b) with p3(A,B)
(a, b) with p4(A,B)

(5)

Dispersal. To describe offsprings dispersal, we will be interested in empty cells
after the survival process. We construct an offsprings matrix produced after the
mating step and denoted by (r(i, j))i,j . The considered rule consists for each
cell (i, j) whose state is given by s̃t(i, j) = ∗ in selecting randomly one of its
neighbouring mated individuals and taking its offspring. Let N : L −→ Ln

define the neighbourhood type in the considered CA model and n = |N(i, j)| its
size defined by its cardinality. Consider for each cell (i, j) the number mt(i, j) ≤
(n − 1), of neighbouring cells occupied by a mated organism at time t. Each

offspring produced in the neighbourhood has a probability
1

mt(i, j)
to colonize

the empty cell (i, j). It will die if it is surrounded only by occupied cells. The
rule summarizing this step is expressed by :

st+1(i, j) =

⎧⎪⎨
⎪⎩
s̃t(i, j) if s̃t(i, j) 	= ∗
r(i′, j′) with probability

1
mt(i, j)

if mt(i, j) 	= 0

∗ otherwise

(6)

where st+1 denotes the final state after a complete transition, (i′, j′) ∈ N(i, j)
and r(i′, j′) 	= ∗.

3 Simulation Results

The landscape is represented by a square grid of 50 × 50 cells. Accordingly,
the maximal population size is 2 500 individuals. Three matrixes are then con-
structed : habitat matrix which is given or randomly generated and is unchanged
during the simulation. Individuals occupation matrix representing the ecological
and mating characters which are initially randomly generated. The individuals
ab, aB, Ab and AB are represented by 0, 1, 2 and 3 respectively. An empty cell
is represented by 4. An offsprings matrix which is initialized at each iteration
after the mating process.

We used two types of landscape either a highly or a non-spatially structured
habitat as shown in Fig. 1. In both cases, we varied the strength of disruptive
selection s and the strength of assortative mating p between 0.5 and 1. We
followed the evolution of the genetic structure in space and time.

To make the understanding of our theoretical results easier, we first observe
the different types of outcome while varying the model parameters : Extinction,
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(a) Structured landscape (b) Non-structured landscape

Fig. 1. Highly and non- spatially structured considered landscapes

Fixation, Genetic Polymorphism and Speciation. We then present the set of
parameter values allowing for these possible outcomes.

The first pattern we obtain is called Extinction. The numbers of individuals
of the different genotypes go down to 0.

The second obtained pattern is what we call Fixation. In this case, after a few
generations, all the individuals tend to have the same genotype.

The more interesting cases are the ones where individuals of different geno-
types persist. In these cases, simulations end up with either genetic polymor-
phism or speciation. To make the difference between these two potential out-
comes, we used a common quantity called linkage disequilibrium (LD), and
defined as :

LD(t) =
N0(t) ∗N3(t) −N1(t) ∗N2(t)

(|L| −N4(t))2
(7)

where Ni(t) is the number of cells in state i at time t and |L| designates the
total number of lattice cells.

Since genetic polymorphism corresponds to one of the two following struc-
tures {AB, aB} or {Ab, ab}, we expect LD to tend towards 0. On the contrary,
when speciation proceeds, LD is expected to converge to 0.25. More specifically,
the simulation stop criterion for speciation corresponds to the following fulfilled
condition :

|LD(t) − 0.25| < ε , for t > T (8)

when ε is a given tolerance and T is chosen to be big enough.
The first two patterns observed in Fig. 2 are called Genetic Polymorphism and

were obtained with the two types of landscape of Fig. 1. In this case, two pools of
individuals persist, each limited to the part of the landscape it is adapted to. As
exemplified in Fig. 2a,b, individuals bearing allele a and A leave in habitat H1
and H2, respectively. But, these two pools of individuals do not correspond to
two species since they are still reproducing one with another. This can be seen
looking at the locus encoding for reproductive isolation. At this locus either
allele b or allele B is fixed, so that all the individuals (whatever their ecologi-
cal phenotype) enter the same mating pools. Which of allele b or allele B get
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fixed depend on initial conditions. Both cases correspond to genetic polymor-
phism as indicated by the null value of LD.

The two following pattern we observed in Fig. 2c,d, correspond to speciation.
In this case the two pools of individuals are fixed for alternative alleles at both
the ecological and the mating loci. For instance, the upper part of the landscape
is occupied by ab individuals while the lower part is occupied by AB individuals.
We also observed a spatial splitting between aB and Ab individuals, which also
is identified as an instance of speciation.

(a) s = 0.8, p = 0.85 (b) s = 0.7, p = 0.5 (c) s = 0.8, p = 1 (c) s = 0.8, p = 0.85
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Fig. 2. Final patterns for different probabilities s and p and the corresponding linkage
disequilibrium graphes

Interestingly, speciation is much faster in a highly structured landscape. Fur-
thermore, in a random landscape the LD goes on varying in a large range of
values while it does not when the habitat is structured. This is because in the
former case the border between the areas occupied by the two species are much
bigger. This gives opportunities for the frequency of the two genotypes to vary
and, consequently, for the LD to fluctuate.

One important biological implication of these results is that completion of
speciation (when it happens) depends on the structure of the landscape.

These phenomena are illustrated by implementing the CA rule given by eq
(6) starting from an arbitrary initial condition and considering a von Neumann
neigbourhood of radius r = 1. The tolerance ε is equal to 0.05. The codes are
written in Matlab using its graphical interface for visualization. In Table 1 and
2, we give the probabilities values for which the speciation hold in the two types
of landscape.

Clearly, selectivity for the mating pool has to be very high for speciation
to happen, while requirements on the strength of disruptive selection are much
lower. We proceed to the same sensitivity analysis considering a non-structured
landscape where habitat H1 and habitat H2 are randomly attributed to each
cell of the grid.



294 S. El Yacoubi and S. Gourbière

Table 1. Survival and mating probabilities for speciation with highly structured land-
scape

Mating probability p Survival probability s Speciation time

0.95 0.65 2243
0.95 0.7 1043
0.95 0.75 624
0.95 0.8 535
0.95 0.85 466
0.95 0.9 578
0.95 0.95 995
1 0.55 299
1 0.6 246
1 0.65 263
1 0.7 274
1 0.75 277
1 0.8 307
1 0.9 549
1 0.95 676

Table 2. Survival and mating probabilities for speciation with non-spatially structured
landscape

Mating probability p Survival probability s Speciation time

1 0.5 1345
1 0.55 1881
1 0.6 5175

When the landscape is non spatially structured, the set of parameters allowing
for speciation is even lower. Especially, speciation requires a perfect choice for
each of the mating pools.

It should be noted that the obtained results in Table 1 and 2 for specia-
tion time which corresponds to the first time the condition 8 has met, are very
sensitive to the initial condition which is random for soil occupation and pop-
ulation distribution. Nevertheless, the values of s and p allowing speciation did
not change between several simulations.

4 Discussion

In the Assortative mating genes scenario we investigated, individuals tend to
mate assortatively with respect to genes non-involved in ecological adaptation.
Different models have been set up to investigate the joint evolution of ecological
specialization and reproductive isolation, all including different refinements in
the description of the survival and mating processes (see [3,6,11] for reviews).
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Our cellular automata model confirms that speciation is hard under the As-
sortative mating gene scenario since it requires (when the landscape is highly
structured) a very high level of mating pool preferences (p > 0.9). Nevertheless,
in those conditions, the required level of disruptive selection (that is the level
s of adaptation of the two morphs to each type of habitat) is not as high as
previously reported.

An important feature of our modelling is that the spatial distributions of two
types of habitat are modelled explicitly and that individuals do not choose the
habitat where their offspring will grow up. This differs from previous models
where females are assumed to preferentially lay their eggs in the habitat where
they were raised (e.g., Maynard-Smith [17]) or where other types of niche prefer-
ences are allowed to evolve [7,10,13,14]. Evolution of such preferences is shown to
be an important requirement for speciation to proceed. In our model, offspring
are more likely to live in the same habitat as their parents, although we did not
model it explicitly. This can happen because we assumed offspring to occupy one
of the neighbouring cells around the spatial location occupied by female before
mating. A typical example of such process is reproduction of plants where seeds
are passively dispersed around the trees where they come from. Whether an
offspring is likely to live in the same habitat as its mother then depends of the
structure of the landscape. A highly structured landscape is expected to produce
an involuntary habitat preference while a random habitat is expected to result
in no such by product of limited dispersal.

Indeed, speciation occurs more easily and faster when a strong spatial struc-
ture is included in the model, but it still occurs even in landscape when both
types of habitat are randomly distributed. In this case, unexpectedly, there are
strong spatial genetic structures which do not match with the random distrib-
ution of the two type of environment each species is adapted to. These results
provide us with interesting perspectives to explain sympatric speciation in plants
by adaptive processes as recently demonstrated for palm trees [21].
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Abstract. The advantage of Cellular Potts Model (CPM) is due to its ability for 
introducing cell-cell interaction based on the well known statistical model i.e. 
the Potts model. On the other hand, Lattice gas Cellular Automata (LGCA) can 
simulate movement of cell in a simple and correct physical way. These 
characters of CPM and LGCA have been combined in a reaction-diffusion 
frame to simulate the dynamic of avascular cancer growth on a more physical 
basis.The cellular automaton is evolved on a square lattice on which in the 
diffusion step tumor cells (C) and necrotic cells (N) propagate in two 
dimensions and in the reaction step every cell can proliferate, be quiescent or 
die due to the apoptosis and the necrosis depending on its environment. The 
transition probabilities in the reaction step have been calculated by the Glauber 
algorithm and depend on the KCC, KNC, and KNN (cancer-cancer, necrotic-
cancer, and necrotic-necrotic couplings respectively). It is shown the main 
feature of the cancer growth depends on the choice of magnitude of couplings 
and the advantage of this method compared to other methods is due to the fact 
that it needs only three parameters KCC,  KNC  and KNN which are based on the 
well known physical ground i.e. the Potts model. 

1   Introduction 

Perhaps the most destructive phenomenon in natural science is the growth of cancer 
cells. The qualitative and quantitative comparison of simulated growth patterns with 
histological patterns of primary tumors may provide additional information about the 
morphology and the functional properties of cancer. Understanding the dynamics of 
cancer growth is one of the great challenges of modern science. The interest of the 
problem has led to the formulation of numerous growth models. Mathematical cancer 
modeling has been going on for many years. These models all included cancer cells 
and healthy cells to compete for space and nutrients, or drug. These progressed to 
Partial Differential Equation (PDE) models that generally modeled the tumor using 
diffusion of the cells [1]. Previous modeling techniques for the invasion process have 
included using sets of coupled reaction–diffusion equations for the cells and important 
groups of extracellular proteins and nutrients [2-5]. Today's model is typically a three 
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dimensional PDE model with diffusion and advection for the cells, with scalar 
modifications based on nutrient and drug concentrations [6]. The PDE models can be 
numerically difficult to implement, however, due to a potentially high degree of 
coupling, besides the complex moving boundary problems. The inclusion of adhesion 
has been proven problematic in this type of model, although there have been some 
attempts [7, 8].  In addition, the reaction–diffusion approach makes the inclusion of 
the stochastic behavior of individual cells difficult to treat. 

One way to circumvent this is to use a Cellular Automata (CA) model. CA 
approaches to biological complexity by describing specific biological models using 
two different types of cellular automata [9]: Lattice-Gas Cellular Automata (LGCA) 
and the Cellular Potts model (CPM).  

LGCA can model a wide range of phenomena including the diffusion of fluids 
[10], reaction-diffusion processes [11], and population dynamics [12 ]. Dormann at al 
used LGCA for simulating dynamic of tumor growth [13]. In their model the dynamic 
of cancer growth can be explained as a reaction-diffusion process with three steps in 
each update. The reaction step contains mitosis, apoptosis, necrosis, and no change. In 
the diffusion step each cell moves to adjacent node according to it's velocity and in 
the redistribution step the occupation of channels in each site change according to 
preference weight. Dormann et al used phenomenological equations with adjustable 
parameters for the reaction part of the automata [14].  

The Potts models [15] are general extension of the Ising model with q-state spin 
lattice, i.e., the Potts model with q = 2 reduces to Ising model. It attracted intense 
research interest in the 1970s and 1980s because it has a much richer phase structure 
and critical behavior than the Ising model [14]. In the cellular Potts model (CPM) [16-
18] of cancer growth, each site contains one cell and considers necrotic, quiescent, 
and proliferating tumor cells as distinct cell types, in addition to healthy cells, with 
different growth rates and volume constraints for each type. In the CPM, transition 
probabilities between site states depend on both the energies of site-site adhesive and 
cell-specific non-local interactions.  

The advantage of CPM is due to its ability for introducing cell-cell interaction in a 
correct and well known physical way. On the other hand LGCA can simulate 
movement of cell in a simple and correct physical way. In this article as explained in 
the next section, these characters of CPM and LGCA has been combined to simulate 
the dynamic of cancer growth on the more understandable and physical basis. 

2   Method  

The basic biological principles included in the model are cell proliferation, motility, 
necrosis, and apoptosis. The main body of the model is similar to the LGCA used for 
simulating reactive-diffusion systems. The cellular automaton evolves on a square 
lattice on which tumor cells (C) and necrotic cells (N) propagate in two dimensions. 
Each cell has associated with a velocity, which indicates the direction and the distance 
the cell will move in one time step. There are five velocity channels in each lattice 
site: 

V0=(0,0) , V1 = (1,0), V2 = (0,1), V3 = (-1,0), V4 = (0,-1), 
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where V0 is resting channel and V1, V2, V3, and V4 represent moving to right, up, left, 
and down, respectively. In each lattice site, we allow at most one cell (N or C) with 
each velocity, or maximum five cells in each lattice site. The dynamic is built from 
the following three basic steps: 1- the reaction step that consists of mitosis, apoptosis, 
necrosis, and no change, 2- the propagation step, and 3- the velocity redistribution 
step. 

2.1   Reaction Step 

Every cell can proliferate, be quiescent, or die due to the apoptosis and the necrosis, 
depending on its environment. We have not enough and detailed information about 
the cell (cell itself is a complex system) and its interaction with other cells and 
materials, so deterministic prediction about the evolution of the cell is impossible and 
it is better to treat the cell dynamic as a stochastic dynamic. Cells adhere to each other 
by cell adhesion molecules (CAMs) which are present in the cell membrane. Usually 
cells of the same type have the same CAMs and adhere to each other more strongly 
than the cells of different types. Glazier and Graner [19] incorporated this type-
dependent adhesion into the Potts model by assigning different coupling energies to 
different pairs of types. 

Assume Ci,j and Ni,j are the number of cancer cells and necrotic cells in site (i,j), 
respectively, and KCC,  KNC  and KNN are cancer-cancer, necrotic-cancer and necrotic-
necrotic couplings, respectively. For the sake of simplicity it is assumed that all cells 
in the same site interact with each others but there is no interaction between adjacent 
sites. Although it seems unrealistic but in the diffusion step the cells will move to the 
adjacent sites, and in the next time step each cell will interact with the cells which 
coming from the neighbours sites. So by evolving cellular automata each cell will 
experience the entire micro environment. The configuration energy of the lattice can 
be written as; 

=
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where Ei,j,conf is the configuration energy of the site i, j and k is the Boltzmann 
constant.   Cell-cell interactions are adhesive, thus the couplings are positive (note 
that there is a minus sign before bracket in the Eq. 2) . Now in each lattice site one of 
the following reactions can occur at each time step; 
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By replacing the right hand side variables of each reaction with the previous one in 
eq. 2 we can compute the corresponding configuration energy and by method use the 
Glauber algorithm [20]  the probability of each reaction in the each lattice site can be 
computed. For example  
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where each term in the right hand side of eq. 3 is a Boltzmann factor. According to 
restriction of maximum five cells in each lattice site and non negative values of Ci,j 

and Ni,j, in some cases one or more of the reactions cannot be occur. For these cases 
we set the corresponding Boltzmann factor equal to zero.   

2.2   Propagation and Redistribution Steps 

In the propagation step each cell will move to neighbor site according to its velocity. 
Because the cells collide with each other the velocity of the cell should be changed. In 
addition, according to the chemotaxic effect, the cancerous cell will move toward the 
source of the chemotaxic materials i. e. the necrotic cells. We can include these 
effects in the redistribution step. In this step the velocity of the cancerous cells and the 
necrotic cells are changed according to the following rules: 

a) Because the necrotic cells are less motile compared to the cancerous cells, first 
the velocity of the necrotic cells is redistributed then the cancerous cells are 
redistributed over the remainder channels. 

b) Due to the adhesion effect the resting channel ( V5 ) is filled first and the 
remainder cells are distributed among the channels  V1  to V4  according to the 
probability of occupation of channels. This probability is proportional to  
the gradient of the concentration of the chemotaxic materials. So in the 
simplest case we can assume that the relative magnitude of these probabilities 
is equal to the relative number of the necrotic cells in the adjacent sites: 
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where Pi is the probability of occupation of the channel Vi, and ni is the number of 
necrotic cells in the adjacent site conjugate to channel Vi. 

3   Results and Discussion 

The simulation is conducted on a 600 × 600 square lattice with central site initially 
defined to contain five cancerous cells. The size of the lattice is chosen sufficiently 
large such that the boundaries do not influence the tumor growth within the 
considered time interval. Multicellular spheroids have a well-established 
characteristic structure. There is an outer rim of proliferating cells (a few hundred m 
thick) and an inner core of necrotic cells. Between these there is a layer of quiescent 
cells, which are not dividing but are alive, and can begin dividing again if 
environmental conditions change. The choice of coupling parameters values (KCC = 3,  
KNC = 1.5 and KNN = 3 ) are determined in such a way to produce multicellular  
spheroids shape (Fig. 1). The results show that by increasing the value of KNC, the 
diameter of the layer of quiescent cells will decrease more rapidly and simultaneously 
the rate of growing of the inner core of necrotic cells will increase. The future of 
tumor strongly depend on the values of KCC and  KNN. For the values of KCC =  KNN < 
2.5 the tumor initially grow up and after some time step the layers of proliferating and 
quiescent cell will be destroyed .  

The average number of cancerous cell versus time step is calculated for 20 
different samples with the coupling parameters KCC = 3, KNC = 1.5 and KNN = 3  
(Fig. 2). After an initial exponential growth phase, growth significantly slows down. 

 
Fig. 1. The pattern of cancer growth on the 600 × 600 square lattice using coupling parameters 
KCC = 3, KNC = 1.5 and KNN = 3 after 150 time steps. Red, green and blue colors correspond to 
necrotic, quiescent and proliferating shells respectively.  
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The advantage of this method compared to other simulation of cancer growth is 
that the present method needs only three parameters KCC,  KNC  and KNN based on the 
well known physical ground i.e. the Potts model. The main aim of this work was to 
show the possibility of combination of the two fundamentally different methods i.e. 
CPM and LGCA, so the simulation has been greatly simplified by neglecting some 
crucial effects such as: interaction of healthy cells with cancerous cells, the effect of 
nutrients concentrations and limited volume space for tumor. We expect addition of 
these effects may be introduced in the reaction part of the automata which is still 
under investigation.  

 

Fig. 2. The average number of cancerous cell versus time step for 20 different samples using  
coupling parameters KCC = 3, KNC = 1.5 and KNN = 3  
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Abstract. The main goal of this work is to introduce a mathematical
model, based on two-dimensional cellular automata, to simulate epidemic
diseases. Specifically, each cell stands for a square portion of the ground
where the epidemic is spreading, and its state is given by the fractions
of susceptible, infected and recovered individuals.

1 Introduction

As is well known, the disease that spread through a large population yields
serious health and economic threats. Then, public health issues have a lot of
importace in our society. Some examples of epidemics are the Black Death during
the mid-14th century, the so-called Spanish Flu pandemic in 1918, the Severe
Acute Respiratory Syndrome in 2002, or more recently, the Avian Influenza.

As a consequence, since the first years of the last century, an interdisciplinary
scientific effort to study the spreading of a disease in a social system has been
made. In this sense, mathematical epidemiology is concerned with modeling the
spread of infectious disease in a population. The aim is generally to understand
the time course of the disease with the goal of controlling its spread. The work
due to W.O. Kermack and A.G. McKendrick in 1927 (see [7]) can be considered
as the first one in the design of modern mathematical models. One can consider
some types of mathematical models depending on the division of the population
into classes. So, we have the SIR models where susceptible (S), infected (I), and
recovered (R) individuals are considered. The susceptible individuals are those
capable to contracting the disease; the infected individuals are those capable
of spreading the disease; and the recovered individuals are those immune from
the disease, either died from the disease, or, having recovered, are definitely
immune to it. For many infections there is a period of time during which the
individual has been infected but is not yet infectious himself. During this latent
period the individual is said to be exposed. In this case we have the SEIR model
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in which the new class of exposed individuals (E) must be considered. Some
infections, for example the group of those responsible for the common cold, do
not confer any long lasting immunity. Such infections do not have a recovered
state and individuals become susceptible again after infection. Then we have the
SIS models. Moreover, there are another variants of these models such as the
SIRS model or the SEIRS model.

Traditionally, the majority of existing mathematical models to simulate epi-
demics are based on ordinary differential equations. These models have serious
drawbacks, for example: They fail to simulate in a proper way the individual
contact processes, the effects of individual behaviour, the spatial aspects of the
epidemic spreading, and the effects of mixing patterns of the individuals.

Cellular automata (CA for short) can overcome these drawbacks and have
been used by several researches as an efficient alternative method to simulate epi-
demic spreading (see, for example, [1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 13]). Usually, when
a model based on cellular automata to simulate an epidemic spreading is con-
sidered, individuals are assumed to be distributed in the cellular space such that
each cell stands for an individual of the population. Nevertheless, some models
have been appeared in the literature with the assumption that each cell of the
cellular space contain a large number of individuals (see, for example, [12]).

The main goal of this work is to introduce a new CA model to simulate
epidemic spreading based on the work due to Sirakoulis et al. (see [12]) in which
the state of the cell is obtained from the fraction of the number of individuals
which are susceptible, infected, or recovered from the disease.

The rest of the paper is organized as follows: In section 2 the basic results
about cellular automata are introduced; the model to simulate the epidemic
spreading is presented in section 3; in section 4 a simulation using laboratory
parameters is shown, and, finally, the conclusions are introduced in section 5.

2 Cellular Automata

Bidimensional cellular automata are discrete dynamical systems formed by a
finite number of r× c identical objects called cells which are arranged uniformly
in a two-dimensional cellular space. Each cell is endowed with a state (from a
finite state set Q), that changes at every step of time accordingly to a local
transition rule. In this sense, the state of a particular cell at time t depends on
the states of a set of cells, called its neighborhood, at the previous time step
t − 1. More precisely, a CA is defined by the 4-uplet (C,Q, V, f), where C is
the cellular space: C = {(i, j) , 1 ≤ i ≤ r, 1 ≤ j ≤ c}; Q is the finite state set;
V = {(αk, βk) , 1 ≤ k ≤ n} ⊂ Z × Z, is the finite set of indices defining the
neighborhood of each cell, such that the neighborhood of the cell (i, j) is Vij =
{(i+ α1, j + β1) , . . . , (i+ αn, j + βn)}. In this work, we will consider the Moore
neighborhood consisting of the cell itself and its eight nearest neighbor cells.
Finally, f is the local transition function: st

ij = f
(
st−1

i+α1,j+β1
, . . . , st−1

i+αn,j+βn

)
∈

Q, where st
ij stands for the state of the cell (i, j) at time t.
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As is mentioned above, the CA evolves deterministically in discrete time steps,
changing the states of the cells by means of the local transition function f . As
the cellular space is considered to be finite, in this work null boundary conditions
must be considered in order to assure a well-defined dynamics of the CA.

3 Description of the Model

In this section, we introduce the CA-based model to simulate the spreading of a
general epidemic. It is suppose that the ground where the epidemic is spreading
stands for the cellular space of the CA, which is divided into identical square
areas, each one of them representing a cell of the CA. In our work different
cells can have different populations: differing densities and different “across cell”
traversal or mobility properties. The main features of the epidemic and the
environment where it is spreading are the following: (1) The epidemic is not
lethal, and no birth, immigration or emigration is considered; consequently, the
total amount of population is constant and, as a consequence, the population of
each cell is always the same; (2) The population distribution is inhomogeneous,
and the total population of the (i, j)-th cell is Nij ; (3) The way of infection is the
contact between an infected individual and a healthy one; (4) Once the healthy
individuals have contracted the disease and have recovered from it, they acquire
immunity, that is, it is impossible for them to be susceptible again; (5) People can
move from one cell to another cell (if there is some type of way of transport), that
is, the individuals are able to go outside and come back inside their cells during
each time step; and (6) It is suppose that when an infected individual arrives
at a cell, the fraction of healthy individuals contacted by him/her is the same
independently of the total amount of population of the cell. Let St

ij ∈ [0, 1] be the
portion of the healthy individuals of the cell (i, j) who are susceptible to infection
at time t; set It

ij ∈ [0, 1] the portion of the infected population of the cell who
can transmit the disease to the healthy ones; and let Rt

ij ∈ [0, 1] be the portion
of recovered individuals from the disease at time t that will be permanently
immunised. As the population of each cell is constant then 1 = St

ij +It
ij +Rt

ij , for
every time step t and every cell (i, j). The state of each cell is a three-coordinate
vector specifying the susceptible, infected and recovered individuals of the cell at
each time step. As these three states are real numbers between 0 and 1, and the
state set must be finite, then a suitable discretization of such parameters must
be included. In this work we will consider 0 ≤ Nij ≤ 100, and consequently, the
state set used will be Q×Q×Q, where Q = {0.00, 0.01, 0.02, . . . , 0.99, 1.00}, that
is, the discretization represents the finiteness of population. As a consequence,
the state of the cell (i, j) is st

ij =
(
DSt

ij , DI
t
ij , DR

t
ij

)
, with

DSt
ij =

[
100 · St

ij

]
/100, DIt

ij =
[
100 · It

ij

]
/100, DRt

ij =
[
100 ·Rt

ij

]
/100, (1)

where [x] is the nearest integer to x.
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The local transition function of the CA-based model is the following:

It
ij = (1 − ε)It−1

ij + St−1
ij vIt−1

ij + St−1
ij

∑
(α,β)∈V ∗

Ni+α,j+β

Nij
μ

(i,j)
αβ It−1

i+α,j+β , (2)

St
ij = St−1

ij − St−1
ij vIt−1

ij − St−1
ij

∑
(α,β)∈V ∗

Ni+α,j+β

Nij
μ

(i,j)
αβ It−1

i+α,j+β , (3)

Rt
ij = Rt−1

ij + εIt−1
ij . (4)

where V ∗ = V −{(0, 0)} , and the real parameter μ(i,j)
αβ is defined as the product

of three factors: μ(i,j)
αβ = c

(i,j)
αβ m

(i,j)
αβ v, where c(i,j)αβ and m

(i,j)
αβ are the connection

factor and the movement factor between the main cell (i, j) and the neighbour
cell (i+ α, j + β), respectively, and v ∈ [0, 1] is the virulence of the epidemic.
Moreover, the parameter ε ∈ [0, 1] stands for the portion of recovered infected
individuals at each time step.

The equations (2)-(4) reflect that every loss in the infected population is due
to a gain in the recovered population, while every gain in the infected population
is due to a loss in the susceptible population. Roughly speaking, the equation
(2) can be interpreted as saying that the portion of infected individuals of a cell
(i, j) at a particular time step t is given by the portion of infected individuals
of this cell which have not been recovered from the disease (first sum of the
summation); by the portion of susceptible individuals of the same cell at time
t − 1 which have been infected by the infected individuals at time t − 1 of the
cell (second sum of the summation) taking into account the virulence of the
disease; and finally note that some susceptible individuals of the cell can be
infected by infected individuals of the neighbour cells which have traveled to the
cell (third sum of the summation). Obviously, it depends on some parameters
involving the virulence, the nature of the connections between the cells, the
possibilities of an infected individual to be moved from one cell to another, and
the relation between the population of the cells. Finally, due to assumption (6)
stated above we have to apply the normalization factor Ni+α,j+β/Nij . Moreover,
equation (3) gives the portion of susceptible individuals of the cell (i, j) at time
t as the difference between the portion of susceptible individuals at the previous
time step and the portion of susceptible individuals which have been infected.
Finally, equation (4) gives the portion of recovered individuals of the cell (i, j) at
time t as the number of recovered individuals of the cell at the previous time step
plus the fraction of infected individuals of the cell which have been recovered in
one step of time. Note that St

ij + It
ij +Rt

ij = 1.
As is mentioned above, the way of infection of the epidemic to be modeled is

the contact between a sick individual and a healthy one. As a consequence, the
healthy individuals of a particular cell can be infected by the infected individ-
uals of this cell or by the infected individuals of the neighbour cells that have
traveled to the main cell. The first case, that is, when an individual is infected by
another individual of his/her cell, is reflected in the first sum of the summation
given in (2). In the other case, given by the second sum of the summation of
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(2), when the infection is carried out by individuals belonging to neighbour cells,
some type of connection between the cells must be exist in order to allow the
epidemic spreading. For example, we can consider the following ways of trans-
port between two neighbor cells: airplane, train or car. This connection is given
by the coefficients c(i,j)αβ ∈ [0, 1]. Obviously, this assumption is a strong simpli-
fication since, for example, airplains or trains could connect distant cells. The
parameter m(i,j)

αβ stands for the probability of an infected individual belonging
to the neighbour cell (i+ α, j + β) to be moved to the main cell (i, j). Note that
this parameter must be given by the main features of the disease to be modeled.

The effect of population vaccination can be also considered in this model.
In this case, a vaccination parameter, ω ∈ [0, 1] , must be considered in the
local transition functions of the model. Such parameter stands for the portion
of susceptible individuals at each time step which are vaccinated. Consequently,
equations (3) and (4) are:

St
ij = (1 − ω)St−1

ij − St−1
ij vIt−1

ij − St−1
ij

∑
(α,β)∈V ∗

Ni+α,j+β

Nij
μ

(i,j)
αβ It−1

i+α,j+β , (5)

Rt
ij = Rt−1

ij + εIt−1
ij + ωSt−1

ij . (6)

Finally, it is very important to decide whether or not the outbreak disease
occurs. In this sense, we will obtain the values of the parameters for which the
epidemic spread from one cell to its neighbor cells. Suppose that in the initial
configuration there is only one cell with infected individuals: O = (i, j), and
set P = (i+ α, j + β) one of its neighbor cells. Then the infected individuals of
this neighbor cell at time step t = 1 is given by the following expression: I1

P =
NOc

P
Om

P
OvI

0
O/NP . In our model, we suppose that there are infected individuals

in the cell P at a particular time step t when It
P ∈ Q − 0 , that is, when

It
P ≥ 0.01 Consequently, as a simple calculus shows, the following equation must

hold: I0
O ≥ NP /

(
100NOc

P
Om

P
Ov
)
.

4 A Simple Simulation

We have used the computer algebra system Mathematica to implement the algo-
rithm stated in the last section. Specifically, the cellular space in the simulation
will be formed by a two-dimensional array of 50 × 50 cells. The initial configu-
ration is formed by only one cell with infected population: the cell (25, 25), with
s025,25 = (0.7, 0.3, 0). For the sake of simplicity, we will use the following artifi-

cially chosen parameters: ε = 0.4, v = 0.6, and m
(i,j)
αβ = 0.5 for every cell (i, j).

Moreover, each cell is connected with all of its neighborhoods with the same
parameter: c(i,j)αβ = 1 for every cell (i, j), and (i+ α, j + β). Finally, it is suppose
that the population in each cell is the same, that is, Nij = N = 100 for every
cell (i, j). The evolution of the number of susceptible, infected and recovered
individuals are shown in Figure 1-(a). Note that the infected population grows
from t = 0, when only one cell has infected inviduals, to t = 28 and, then it
decreases to zero.
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Fig. 1. (a) Evolution of the susceptible, infected and recovered individuals. (b) Evolu-
tion of infected population with vaccination effect.

Finally, in Figure 1-(b) the evolution of infected individuals is shown when the
vaccination process is considered. We suppose that the initial configuration is
formed by only one cell with infected individuals: the cell (25, 25), with s025,25 =

(0.7, 0.3, 0). Moreover ε = 0.6, v = 0.6,m(i,j)
αβ = 0.5, c(i,j)αβ = 1 for every cell

(i, j). Five different values of ω are considered: ω = 0.2, 0.3, 0.4, 0.5, 0.6, and
the vaccination process starts at t = 16. Note that as ω increases, the number
of infected individuals decreases. Moreover, the results obtained show that the
vaccination efficiency decreases with increasing ω (curves for ω = 0.5 and 0.6
are much closer than those for 0.2 and 0.3).

5 Conclusions and Further Work

In this work a new mathematical model to simulate the spreading of an epidemic
is introduced. It is based on the use of two-dimensional cellular automata en-
dowed with a suitable local transition function. Each cell stands for a portion of
the land in which the epidemic is spreading and the population is divided into
three classes: susceptible, infected and recovered individuals.

Traditionally, the CA-based epidemiological models consider only one indi-
vidual in each cell. In the proposed model a large population can “live” in each
cell of the cellular space. Consequently, the main feature of the model is the
definition of the state of each cell as a 3-coordinate vector representing the por-
tion of its population which is susceptible, infected and recovered at each time
step. Moreover, although the total amount of population is constant, it could
not be uniformly distributed between the cells. As the model is based on two-
dimensional CA, the spreading of the epidemic disease is simulated both in time
and space. In this sense, it is simplest than models based on PDEs. The simu-
lation obtained (using artificially chosen parameters) seem to be in agreement
with the expected behaviour of a real epidemic. Consequently, this model can
be used to analyse the impact of real epidemic diseases.
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Future work aimed at designing a more complete CA-based epidemic model
taking into account the effect of births, deaths, etc., and involving additional
effects such as the effect of virus mutation, etc. Moreover, a more detailed study
of the effect of vaccination must be carried out since as the costs of any vacci-
nation program will certainly increase with ω, there seems to be an optimum
value of such parameter such that any other increase of ω will bave a marginal
and inefficient effect.
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Abstract. The Cellular Automata model FlySim was developed for simulating 
life and reproduction cycles of olive fruit flies (Bactrocera Oleae) and their be-
haviour, especially when they infest olive (Olea europaea) groves. This serious 
agricultural problem can be partially tackled in many ways, but not all the 
methods look sustainable, e.g., by using chemical agents at the first signs of the 
infestation. Sustainable solutions could be adopted with the use of interactive 
simulation tools in order to permit developing scenarios and testing different 
strategies. This paper outlines the model and exhibits a first partial application. 

1   Introduction 

An important and difficult problem for olive groves farmers (mainly Olea europaea, 
but also Olea verrucosa, Olea chrysophylla, and Olea cuspidata ) in the Mediterra-
nean area is the infestation of olive fruit flies (Bactrocera Oleae also called Dacus 
Oleae) [5], [10]. The olive oil production worsens in quantity and quality compared 
with the plague gravity [9].  

The life cycle of the olive fruit fly is linked to the seasonal development of olive 
trees and to the local climate. A generation (egg, larva, pupa, adult) can be completed 
in 30 days in optimum weather conditions, while larvae produced during late fall 
pupate in the soil in winter or in olives remaining on trees in spring [7]. Before the 
drupe maturation, females enter a state of reproductive diapause in which few or no 
eggs are produced [5]. Flies may disperse to new locations during this period. When 
quite mature olive fruits (receptive drupes) appear, females are attracted to the fruit 
and begin to produce eggs abundantly and to deposit them in the receptive drupes [8].  

This ecological frame isn’t easy to be focused; it is a complex dynamical system, 
whose evolution depends on climatic, territorial and biological factors [6], [7]. Olive 
fruit fly behaviour may be described efficaciously by its interaction with the environ-
ment at local level; as a consequence, such a type of system looks a good candidate to 
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be modelled and simulated by Cellular Automata (CA), because it evolves mainly on 
the basis of local interactions of its constituent parts. Nonetheless, CA modelling was 
yet applied to a similar problem concerning outbreaks of mountain pine beetle [2]. 

CA are a paradigm of parallel computing [11]; they involve a regular division of 
the space in cells, each one characterised by a state s, which represents the actual 
conditions of the cell. The state changes according to a transition function τ that de-
pends on the states of neighbouring cells and of the cell itself; the transition function 
and the neighbourhood pattern are invariant in time and space. At time t=0, cells are 
in states that describe initial conditions; the CA evolves changing the state of all the 
cells simultaneously at discrete times, according to its transition function.  

FlySim is a CA model for the territorial dynamics of olive fruit flies (Bactrocera 
Oleae) populations; it is the evolution of a forecasting model, developed by the re-
searchers of the Dip. di Agrobiotecnologie (ENEA, Roma, Italy) [1] [3]. It was applied 
in diverse programs for integrated control of the olive fruit flies infestation.  

1.1   CA Empirical Method 

The proposed preliminary CA model FlySim is mixed, deterministic-probabilistic; it 
is related to olive fruit fly behaviour [1], [5], [6], [7], [10] and is based on an empiri-
cal method [4], which may be applied to some macroscopic phenomena in order to 
produce a proper CA model. It is based on an extension of the classical CA definition 
for permitting a straight correspondence between the system with its evolution in the 
physical space/time and the model with the simulations in the cellular space/time. The 
main points of the method are here illustrated shortly: 

− Global parameters (their values are invariant in time or space or space/time) must 
be made explicit: primarily, the size of the cell pce and the time correspondence to a 
CA step ptime must be fixed; they are constant in space/time. 

− The state of the cell must account for all the characteristics, relevant to the evolu-
tion of the system and relative to the space portion corresponding to the cell; e.g. 
number of flies. Each characteristic must be individuated as a substate. The sub-
state value is considered constant in the cell.  

− As the state of the cell can be decomposed in substates, the transition function may 
be also split in many components, the “elementary” processes. We distinguish two 
types of elementary processes: internal transformations, depending on the substates 
of the cell (e.g., flies depositing eggs in the receptive drupes, depending on sub-
states “number of flies” and on the “maturation degree of drupes”) and local inter-
actions, depending on the substates of the cells in the neighbouring. Local interac-
tions may account for the transfer of quantity or propagation of properties from a 
cell to another one in the neighbouring, in terms of flows towards the neighbouring 
cells, e.g. flies moving toward areas with larger concentration of receptive drupes.  

− Some cells represent a kind of input from the “external world” to the CA; it ac-
counts for describing external influences which cannot be described in terms of CA 
rules; e.g. entrance points of olive fruit flies.  

− Special functions supply the history of “external influences” on the CA cells, e.g. 
the climatic conditions. Such functions affect all the cells or some special cells. 
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The model FlySim is illustrated in the next section; the CA transition function is de-
scribed in the successive section; both sections treat the features of the olive fruit fly, 
olive trees and olive groves. The fourth section illustrates the model implementations 
and first results of applications; at the end, comments conclude the paper. 

2   The Model FlySim 

FlySim = <R, X, S, P, τ, I, Γ>  is a two-dimensional CA with square cells, where: 

− R = {(x, y)| x, y∈ N, 0 ≤ x ≤ lx, 0 ≤ y ≤ ly} is a rectangular region of square cells, 
individuated by integer co-ordinates; N is the set of natural numbers; each cell 
corresponds to a portion of territory, where the phenomenon evolves. 

− X = <(0,0), (0,1), (0,-1), (1,0), (-1,0), (1,1), (-1,-1), (1,-1), (-1,1)>  is the 
neighbourhood relation; the co-ordinates of the cells in the neighbourhood of a cell 
c are obtained adding the c co-ordinates; they are the cell itself (called the central 
cell) with index 0 and the eight surrounding cells with indices 1, 2, ... , 8. 

− S is the finite set of states S = Sterritory× Sdrupe× Sfly , where Sterritory regards the sub-
states associated to the terrain and climate features of the cell (e.g. temperature), 
Sdrupe regards the substates that accounts for the drupes conditions in the cell (e.g. 
maturation degree) and Sfly regards the substates that accounts for the general con-
ditions of olive fruit flies in the cell (e.g. stage of development). The complete 
specifications of such substates are reported in the Table 1, 2 and 3. 

Table 1. List of the substates names (to be used as variables) and their meaning for Sterritory 

Sterritory= ST×SavT×ST1×ST2×...×STm×ScT×Sw×SC0×SC1×...×SCm 

NAME MEANING 

T actual temperature  
avT average temperature in the day 

Ti,   1≤i≤m average temperatures of the last m days 
cT thermal accumulation (average temperature for last m 

days) 
w quantity of present water  

Cj   0≤j≤n ratio of the n cultivars in the cell (0 for no cultivar) 

Table 2. List of the names (to be used as variables) of the substates and their meaning for Sdrupe 

Sdrupe=SmaxD1×...×SmaxDn×SrecD1×...×SrecDn×SdamD1×...×SdamDn 

NAME MEANING 

maxDj    1≤j≤n maximum number of drupes (for the j-th cultivar) 
recDj   1≤j≤n number of receptive drupes (for the olive fruit fly) 
damDj   1≤j≤n number of damaged drupes (by the olive fruit fly) 
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Table 3. List of the names (to be used as variables) of the substates and their meaning for Sfly 

Sfly= Se×Sl1×Sl2×Sl3×Sp×Sa×Sed×Sl1d×Sl2d×Sl3d×Spd×Sad×Smf1×Smf2×...×Smf8 

NAME MEANING 

e, l1, l2, l3, p, a 
number of flies at different stages of maturity in order:  

egg, larva1 larva2, larva3, pupa, adult 
ed, l1d, l2d, l3d, pd, ad degree for each maturity stage 

mafk   1≤k≤8 number of adults migrating to the neighbourhood cell k 

− P is the finite set of global parameters of the CA, which affect the transition func-
tion. All the parameters are always global in space/time except when it is specified 
differently. The size of the cell edge and the time corresponding to a FlySim step 
are the fundamental parameters to match FlySim to the real phenomenon. The 
hour+date specification is a space global parameter. The determination of the 
maximum number of drupes in a cell is dependent by a density parameter for each 
cultivar. The determination of the receptive drupes is very complex, it must ac-
count for climatic history in order to determine the ratio (receptivity parameter) of 
the not receptive drupes, which reach a maturity degree to become receptive for the 
flies after the time interval ptime. The receptivity parameters are space global. Pro-
gress (step rate) for each maturity stage is described by a couple of temperature 
connected logistic curves (the former is increasing, the latter is decreasing); there-
fore, six parameters are necessary for each stage, except for the adult stage. The re-
laxation rate and attractor parameters are needed for the fly diffusion algorithm. 
The parameters are reported in the Table 4. 

− τ:S9→S is the transition function; it must account for the average daily temperature, 
thermal accumulation (important for the fly growth), number of receptive drupes 
(depending on the drupe growth), number of deposited eggs, growth of the olive 
fruit flies for each maturity stage (except the adult stage), death rate and diffusion 
of the adult olive fruit fly from a cell to the other cells of the neighbourhood. Cor-
responding elementary processes are specified in the next section. 

Table 4. List of the set P of parameters and their meaning  

P={pce,ptime,pcl,pm,pn,pd1..pdn,pr1..prn,paaf,pec1..pec6,pl1c1..pl3c6,pc1..pc6,psr1..psr6,pa1..pa3,pb1..pb3,pr} 

NAME  MEANING 

ce, time (= 1 hour) size of the cell edge, time corresponding to a FlySim 
step 

cl internal clock (hour and date specification)  
m number of days for historical temperatures  
n number of cultivars 

dj, rj   1≤j≤n density and receptivity parameter for each cultivar 
aaf adult aging factor 

ech, l1ch, l2ch, l3ch, pch, srh  
 1≤h≤6 

six constants of logistic functions for:  
egg, larva1 larva2, larva3, pupa and spawning rate 

a1, a2, a3, b1, b2, b3 couple of constants for the three cell attractors 
rel relaxation rate for fly diffusion 
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− I⊂ R individuates the border cells, if any, where part of adult olive fruit flies pene-
trates in the territory. 

− Γ={γ1,γ2,γ3,γr1,..γrn} accounts for the external influences:  γ1 :pcl→pcl updates hourly  
pcl ;  γ2 :N→ST  updates hourly the substate temperature from a value average of 
around weather stations, γ3 :N×I×Sa→I×Sa  updates the substate Sa in border cells, 
where adult olive fruit flies can penetrate according to a probabilistic rule; 
γri:N×SavT×prj→prj  update the value of the receptivity parameters for each culti-
var. N is referred to the FlySim steps. The Γ functions are applied in order at each 
step before the τ function. 

3   The FlySim Transition Function 

The following subsections describe the elementary processes of FlySim. The new 
values of substate or parameter for the next step are indicated with the name of the 
substate or parameter, followed by the prime sign. Neighbourhood indices are placed 
in square brackets. 

3.1   Temperature 

The new average temperature avT’ is computed for each hour by the following for-
mula: avT’=(T+avT(hour-1))/hour ; the variable hour (1≤hour≤24) is deduced by the 
parameter cl and represents the day hour. When the day last value is computed, then 
T1’=avT’,  Ti’=Ti-1  for  2≤i≤m , and  cT’= 1≤i≤mTi’/m [3]. 

3.2   Drupes and Egg Deposition 

The maximum number of drupes in a cell may be considered in first approximation 
dependent on drupe density for different cultivars, considering the olive coverage of 
each cultivar:  maxDj’=ce2⋅dj⋅Cj  for 1≤j≤n . 

The number of receptive drupes (rD) [10] is computed by the following formula:  
rD= 1≤j≤n((recDj+(maxDj-recDj-damDj)⋅rj). It increases step by step for each cultivar 
until  rj  takes the value 1.  

The damaged drupes [5] are receptive drupes, where olive fruit flies lay eggs (usu-
ally no more than one egg for drupe). The number of possible damaged drupes 
(pdamD) in a step is depending on the number of adult flies in the cell (only 20% of 
flies are spawning female flies): pdamD=a⋅srate⋅time, where srate is the spawning 
rate, which is computed according to two correlated logistic functions of temperature 
T with parameters  srh for 1≤h≤6  (the former  sr1/(1+sr2⋅exp(sr3⋅T))  is increasing, the 
latter  sr4/(1+sr5⋅exp(-sr6⋅T))  is decreasing). 

Three values of temperatures are deduced: Tswitch is obtained by the equation 
sr1/(1+sr2⋅exp(sr3⋅Tswitch))=sr4/(1+sr5⋅exp(-sr6⋅Tswitch)) and represents the “middle” 
value; Tmin  is obtained by the equation sr1/(1+sr2⋅exp(sr3⋅Tmin))=0; Tmax  is obtained by 
the equation  sr4/(1+sr5⋅exp(-sr6⋅Tmax))=0;  srate  is computed according the former 
logistic function for  Tmin≤T≤Tswitch; srate  is computed according the latter logistic 
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function for  Tswitch≤T≤Tmax ;  srate  is null out of range  Tmin≤T≤Tmax  because the adult 
flies die. 

If  rD≤pdamD , then all the receptive drupes are damaged,  recDj’=0  for 1≤j≤n and  
damDj’=damDj+recDj+(maxDj-recDj-damDj)⋅rj  for  1≤j≤n.  

If  rD>pdamD , then  recDj’=((recDj+(maxDj-recDj-damDj)⋅rj)/(1-pdamD/rD)  for 
1≤j≤n  and  damDj’=damDj+(recDj+(maxDj-recDj-damDj)⋅rj)/(pdamD/rD)  for 1≤j≤n. 

Not integer values may be used for pdamD , rD, etc, in support of a more refined 
computation of the phenomenon. 

3.3   Growth and Death Rate of Olive Fruit Flies 

The olive fruit flies maturation rate mrate  is depending mainly from the temperature 
and is computed for each maturity stage (in time order: egg, larva1, larva2, larva3 and 
pupa [6], [7]) except the last one (adult) according to two correlated logistic functions 
of temperature T with six parameters each. The computation for each stage is per-
formed according to the considerations of the previous subsection on the use of the 
logistic function with the determination of the “middle” temperature  Tswitch  and the 
temperature range  Tmin≤T≤Tmax . Note that the flies die out of that temperature range.  

The maturity degree for each stage has 0 as initial value, while 1  represents the 
end of the stage and the beginning for the next one (the death for the adult fly).  

The increase of maturity degree (degree) for each stage, except the adult one, is 
computed by the general formula  degree’=mrate⋅time+degree . Of course, the value 
of  mrate  changes for each maturity stage (it would be properly referred to own ma-
turity stage) and degree substituted by the appropriate substate name, e.g.  
l2’=l2mrate⋅time+l2 . 

The maturity degree for the adult stage ad  may be updated at each step by a simple 
formula  ad’=ad+aaf⋅T . Note that the range of survival temperature for the adult fly  
Tmin≤T≤Tmax  was determined in the previous subsection:  a’=0  out of this range. 

3.4   Diffusion of Adult Olive Fruit Flies 

An attraction weight [10]  aw  (aw≤0) is attributed to each cell; it is related to its olive 
coverage 1-C0 , number of its receptive drupes  rD= 1≤j≤nrecDj , its water quantity w :  
aw=a1⋅(1-C0)⋅exp b1 + a2⋅rD⋅exp b2 + a3⋅w⋅exp b3 . 

Fly diffusion is a local interaction and is modelled according to a minimisation al-
gorithm [4], which determines the movement of flies from the central cell to the other 
cells of the neighbourhood so that the sum of the differences of the “indicator”  
aw+ad  among the cells is minimised. It involves that cells with more attraction 
weight (more convenient conditions) “capture” more flies and that flies diffuse little 
by little towards cells with higher attraction weight.  

More precisely, two quantities are identified in the central cell: a “mobile” part 
(ad[0]), which can originate migration flows (maf[k], 1≤k≤8) toward the other 8 cells 
of the neighbourhood and a “not mobile” part aw[0]; ad[k] and aw[k] 1≤k≤8 are the 
corresponding quantities for the neighbourhood other cells; ind[k]=ad[k]+aw[k],  
0≤k≤8 is defined. 
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The migration flows alter the situation: ind*[0]=ad[0]- 1≤k≤8maf[k]+aw[0], while  
ind*[k]=ad[k]+maf[k]+aw[k],  1≤k≤8. The minimisation algorithm application deter-
mines maf[k], 1≤k≤8, such that the quantity  0≤k1<k2≤8|ind*[k1]-ind*[k2]|  is minimum. 

Number of flies in a cell is obtained trivially by a balancing equation, adding mi-
gration inflows and subtracting migration outflows to the number of flies in the cell at 
the previous step. 

All the adult flies are imposed to have the same age in a cell in this preliminary 
model; therefore, the weighted average maturity degree value is adopted for ad ; such 
an approximation is not so rough, if we consider that there is no large ad difference. 

4   First FlySim Implementation and Simulations 

FlySim, as described in the previous sections, is a preliminary model. The substates 
and the elementary processes represent a strong abstraction for more complex real 
situations; e.g. the pheromone (fly attractor) produced by the mature drupes can over-
come significantly the limits of the cell [10], so that the only olive coverage factor 
(which is strictly bound by the cell) may be insufficient sometimes to account for this 
type of attraction. 

All the elementary processes of type “internal transformations” have been tested 
separately with a large number of instances. This was easily performed because inter-
nal transformations imply a part of the transition function applied to a single cell. 

Results look good within limits of verifying a phenomenon fragment: the qualita-
tive behaviour was always ascertained, but a good quantitative response depends on 
the value of the parameters, which must be tuned by comparison with the data of real 
phenomena in complete simulations involving all the transition function. 

The crucial point is the validation of all the elementary processes of type “local in-
teractions”, because the significant “properties” of the system emerge mainly by the 
application of such elementary processes. 

4.1   Movement of the Flies  

The only local interaction of FlySim for this release is the “diffusion of adult olive 
fruit flies”. 

The diffusion, in absence of attractors, is a plain diffusion with spurious symme-
tries effects. In order to account for a stochastic noise in diffusion and for the number 
of flies (which is an integer and cannot give rise to fractional number), a probabilistic 
correction (less than 10%) was introduced in the computation. 

Diffusion of olive fruit flies was observed to produce an important “shield” effect: 
flies migrate toward more attractive areas but, when many contiguous attractive cells 
form a dense cluster, flies attack the more external olive trees and penetrate very 
slowly inside the cluster. This property is exploited by farmers, which surround clus-
ters of olive trees with precocious olive trees, in order to prevent in time the flies’ 
diffusion (at olive fruit maturing) inside the cluster by preparing opportune actions. 

We present two cases, which have been specifically planned in order to individuate 
the peculiar characteristics emerging by the local interactions in the evolution of the 
phenomenon. The number of steps for both cases was selected to 100 (each step is 1 
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hour); note that this time period isn’t so long to dilute emergent features in a final and 
almost steady state and isn’t so short to lose the evolution prospect. 

The first case represents a conceptual “experiment” (Fig.1): the CA region (in the 
fact a toroidal surface) is divided in eighteen identical rectangles of cells (10×20). The 
initial configuration considers that a rectangle with olive trees doesn’t contain flies 
and vice versa, so that a chequer is built (it isn’t realistic). The edge of the cell is 4 
metres. The number of attractive drupes is 90 for the cells with the olive trees; the 
same number 90 of flies is present for the infested cells.  

 

Fig. 1. The figure represents the evolution of an instance of FlySym at the end of the steps 0, 
25, 50 and 99. The cellular region is a 60×60 cells torus (note that there is an image distortion: 
double space in the horizontal direction). The grey tones scale is referred to the number of flies 
and changes at each step of simulation for a better visualisation.  

The attack of the flies “erodes” little by little the edges of the olive trees rectangles, 
whose cells, free of flies in the subsequent steps, take an irregular shape of cluster. It 
is possible to individuate an intact central area of different form (stochastic effect) for 
the clusters at step 99 (the last one in our simulation). Note that there is no large dif-
ference between step 50 and 99 in comparison between step 0 and 25, because of the 
larger shield effect when the flies distribution causes a reduction in average of the 
flies difference between contiguous cells.  

The second case represents a more realistic situation (Fig.2): the initial configura-
tion of 60×60 cells (a toroidal surface) is the same of the previous case for the trees 
distribution, while the flies are concentrated (3600 for cell) only in a rectangle (5×10) 
of cells, which is the infestation source. 

The larger number of flies overwhelm the cells around almost independently of the 
presence of attractive drupes (Fig.2, t=25).  

The shield effect appears also in this case when the flies’ distribution causes a re-
duction in average of the flies’ difference between contiguous cells. Still, it is evident  
 



 FlySim: A Cellular Automata Model of Bactrocera Oleae (Olive Fruit Fly) 319 

 

Fig. 2. The figure represents the same cellular region of Fig.1 with the same image distortion 
and the evolution of a different instance of FlySym at the end of the steps 0, 25, 50 and 99. The 
grey tones scale is referred to the number of flies.  

at the step 50 and more manifestly at step 99, that there is a different condition for 
rectangles with drupes, which are strongly attacked at the border, while flies penetrate 
in depth for rectangles without drupes. This behaviour agrees with field observations.  

5   Conclusions 

This first qualitative validation of the model is very encouraging; the next necessary 
step is a quantitative validation of the entire model. This involves an organisation at 
farm level in order to obtain daily significant data, defining reliable interpretation 
protocols for such data; e.g. traps to capture flies must be opportunely disposed in 
order to evaluate the most accurately possible the movements of the flies (direction, 
number and so on). 

Moreover, the proposed model needs an accurate selection of the real cases to be 
used for the validation phase; in fact, particularly complicate situations may require 
an excessive number of parameters, e.g. many different cultivars. An expedient could 
be to consider initially simple cases, limited in time where the system evolution isn't  
affected severely by the necessity to know precisely the value of some parameters, 
while the remaining could be accurately evaluated. 

The whole simulation can be based in the future on a real environment represented 
by a Geographical Information System (GIS) which contains data about morphology 
of the territory, distribution of olive trees, rivers, roads and so on, all spatially refer-
enced and superimposed to orthophotos of the territory. The GIS contains also time-
dependent information such as: meteorological data taken from fixed station, number 
of flies captured by traps, maturation degree of the fruit and other biological informa-
tion taken by agronomists. 

Simulation of olive fruit fly attacks is very important in order to establish optimal 
intervention strategies. Efficacy and selection of different chemical treatments  
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depends in correctly forecasting the attack extent and the crop imminence. Alternative 
use of proteinic baits represents a preventive method, based on long-term prediction. 
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Abstract. Our work stems from the consideration that the spreading
of a disease is modulated by the individual’s perception of the infected
neighborhood and his/her strategy to avoid being infected as well. We
introduced a general “cellular agent” model that accounts for a heteroge-
neous and variable network of connections. The probability of infection
is assumed to depend on the perception that an individual has about the
spreading of the disease in her local neighborhood and on broadcasting
media. In the one-dimensional homogeneous case the model reduces to
the DK one, while for long-range coupling the dynamics exhibits large
fluctuations that may lead to the complete extinction of the disease.

1 Introduction

In “Les rois thaumaturges: étude sur le caractère surnaturel attribué à la puis-
sance royale particulièrement en France et en Angleterre” the historian Marc
Bloch [1] wrote that until about 1700, sick people in England and France tried
to be touched by the king who they believed was a miraculous physician whose
mere touch would cure physical illness. Since then, much time has passed, we
do no more touch the king but we still have to face with illness and different
pathologies. Now that we know viruses and bacteria, we are addressing the issue
of studying the mutual influences between collective behaviour, disease spread-
ing and viral evolution. In fact, HIV epidemics has changed many of our sexual
and social behaviors [2] and selection on viral strains has been in act by social
groups [3, 4]. Zanotto and collaborators [5] have shown that viral evolution de-
pends on differences in modes of dispersal, propagation, and changes in the size
of host populations. They also suggest a link between the growing and fluidity
of the human population and its exposure to an expanding range of increasingly
diverse viral strains.

Understanding the role of social behaviour has potentiality of giving better
answers to the pressing public health questions about whether and how we can
contain or slow the spread of an emerging epidemics to give time for vaccine
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development. Moreover, the understanding of key properties of contact networks
may allow to reduce disease transmission, avoid both costly and time consuming
universal vaccination or leaving hidden pockets of poor coverage that will seed
again the epidemics.

Previous epidemiological models have investigated the effect of a wide variety
of parameters, such as use of antiviral agents, super spreaders and individual
variation [6], quarantine and pre-vaccination to contain the spread of disease at
source. However, an outmost important factor that has been ignored so far is
how the perception of the epidemics, as perceived from a neighborhood (short
range information contacts) or from the media (long range), will change the
diffusion parameters.

Here we concentrate on the study of the risk perception on disease spreading
in the case of a homogeneous population. Although spatial variables can play
a major role, it is important to study average statistical properties (mean field
analysis) before taking into consideration more complex geometries. In general,
populations do not experience full-mixing condition. However, well-stirred con-
ditions are recovered whenever conditions of people crowdedness are considered
or if it is possible to focus on a given scale of observation. Noteworthy the for-
mer conditions occur very frequently in urban contexts, for example in tubes
and buses at peak times and aerial spreading of cold-related virus particles from
coughing and sneezing disregards the casual contact. Other examples are chil-
dren in a nursery who have large number of contacts during the day. On the other
hand, we can concentrate on a homogeneous scale of observation if we study dis-
ease spreading in the hubs constituted by airports and train stations. Similarly,
if we are interested in the interplay between cities and the countryside in dis-
ease evolution, we may address the problem considering the interaction between
those two distinct entities, each characterized by homogeneous properties.

Different models for spreading of epidemics have been proposed, either con-
sidering homogeneous populations [7, 8], or in the framework of complex net-
works [9]. This kind of approach allows assessing the relative importance of local
and long-range contacts not only in spreading the infection but also in spreading
information on the infection risk and thus potentially stand as a very useful tool
for public health managing and decision making processes.

The paper is organized as follows. In the next section we present a general
cellular agent model for the study of the perceptive dynamics of a disease spread-
ing. In section III we present the mean field approximation of the model, then
we present the results of the performed simulations and finally we draw our
conclusions.

2 The Model: Partying with Your Neighbors or Stay
Home, Spy Them and Read the News?

We shall develop a quite general agent-based model, allowing age classes
(progression of the illness) and different types of communication networks. We
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propose to use the term cellular agent for it, since it reduces to cellular automata
for a regular lattice of connections, but connections may also change in time.

The single agent i (representing an individual or a group of strongly connected
individuals like a family) is implemented as a set of (directional) incoming con-
nections, an internal state and an output state. Let us denote as Mij the con-
nection from site j to site i. In our model a connection represents the propensity
of being infected, which is proportional to the fraction of time spent together by
the two individuals i and j, but also depends on the type of contact. For this
last reason, the connection needs not to be symmetric: while it may be true for
friendly contacts, the risk of being infected is quite asymmetrical for profession-
als (nurses, physicians, etc.) and also for parents vs. children, and so on. In the
simplest case of unweighted connection, Mij ∈ {0, 1}, ki =

∑
j Mij is the num-

ber of neighbors and si =
∑

j Mij [σj 	= 0] is the number of infected neighbors1.
In the case of weighted connections, s and k are no more integers. The network
of connections may be fixed, or evolving in time. The degree (or connectivity)
of a node is defined as the number of the incoming/outcoming links, while the
degree distributions of a network, P (k), represents the fraction of nodes with
degree k. Many social networks have a scale-free structure [10], and this kind
of networks can only be grown using a connection rule. So, it is natural to as-
sume that new connections may be established, and old one removed, following
a dynamical rule. Actually, one could work with a fully-connected network, and
implement the evolution of connection as a rule for the intensities Mij (possibly
introducing a threshold value for the efficacy of a connection), but this would be
quite expensive in computer terms. We limit the present investigations to fixed
connection all of the same intensity.

We represent the internal state (progression of illness) of the individual i as a
bitstring σi. Each bit in σ (represented as a base-2 number) indicates the pres-
ence of a given strain. In this way we can account for the geographic distribution
of different strains (important for immunization strategies), multiple infections
(co-infection or delayed re-infection) and recombination among strains. To each
possible value of σ is associated an infection probability (infectivity) τ(σ), with
τ(0) = 0. The internal state contains also a time counter, for timing the progres-
sion of the illness. In the present model, we simply assume that the individual
becomes healthy after a certain interval from the last infection. We do not con-
sider here immunization, nor the internal dynamics between infective pathogens
and the immune system [11].

The output state indicate if an individual is infective, and if it is visibly ill. In
this way we can represent incubation periods. In this first study, we assume that
the illness become visible the unit of time (day) after infection, thus obtaining
a parallel evolution.

We assume that the probability of infection is proportional to the frequency
of contacts Mij , but that it is also modulated by the individual’s perception of
the percentage of infected people in her neighborhood as well as by the strategy

1 We use the notation [statement ] to indicate the truth function, which gives 1 if
statement is true and 0 otherwise.
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for avoiding being infected. If an individual realizes that a large fraction of her
neighbors is infected, or is alerted by broadcasting media, then she may change
her habits. She may rise the level of precautions (thus lowering the effective infec-
tivity of the illness) or alter her connection patterns. Since this last choice implies
a large rearrangement of individual lifestyle, this dramatic change is assumed to
take place only in extreme cases. However, even without changing lifestyle it is pos-
sible to lower the infection probability by simply taking elementary precautions.
We assume this to be the most common reaction. Therefore we keep Mij constant
during the simulation, but make the infection probability of a single contact to vary
according with the fraction of infected people among the neighbors (weighted with
the connection strengths) and with the influence by media information. We also
assume that the recovering is immediate, and that the individual becomes imme-
diately susceptible.

The perception (information) about the disease is written ass I(s, k) = exp
[−(H + Js/k)]. The parameter J modulates individual’s response to the the
local infection load. The role of the intensity of the external fields, like public
healths alerts and media influences, is accounted for by the H parameter. In the
following we assume H = 0, but it’s worth noting that this parameter can play
a major role in scenarios of low perception of the risk of infection. This could
be the case of infections characterized by a long-asymptomatic phase, in which
many contacts occurs without the perception of any risk of being infected. In
such scenarios, H turns out to be the only mean to downregulate the spreading
of the disease.

The microscopic infection process is the following: for all the contacts of the
individual i, the bitstring σi is OR-ed with σj , the bitstring representing the
neighboring individual j, if the contact is effective in propagating the infection.
This happens with a probability MijI(si, ki)τ(σj).

The total infection probability pi(si, ki) of an individual i facing si infected
neighbors among the ki, is therefore

pi(si, ki) = 1 −
∏
j

[1 −MijI(si, ki)τ(σj)] . (1)

In the unweighted case, with single-valued connectivity, P (k′) = δk,k′ , and
assuming the same infectivity τ for all strains, equation (1) becomes:

pi(si) = 1 − [1 − I(si, k)τ ]si , (2)

In summary, the algorithm for the microscopic dynamics is as follows. Given
the status of the network at time t, all the nodes of the network are sequentially
considered. According to the infected neighbors and to the influence of long-
rance interactions the probability of infection of each node is calculated and
thus the evolution rule is applied in order to get the status of the network at
time t+1. At the same time a check is made whether infected individuals recover
from disease and become susceptible again.



The Influence of Risk Perception in Epidemics: A Cellular Agent Model 325

3 Results

3.1 One Dimensional Case

Here we consider the simplest case where Mij defines a 1D regular lattice with
k = 2 (nearest neighbors), and where all the contacts have the same strength.
The status of node i is represented by a single bit, σi = {0, 1} and the infectivity
parameter, τ , is single valued.

This case can be mapped on the Domany-Kinzel model [12]. This latter is
defined as a one-dimensional totalistic cellular automaton with k = 2, and its
evolution rule depends on two parameters: p1, the probability becoming infected
if only one of the neighbors is infected, and p2, the probability of being infected
if both neighbors are infected. The correspondence with our model is therefore
p1 = p(1, 2) and p2 = p(2, 2).

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1

J

τ

Fig. 1. Percentage of asymptotic infected population for the one-dimensional, k = 2
case (1000 sites). White: no individual is infected, black: all individuals are infected.

We have obtained the phase space (H = 0) using the (τ ,J) parameters.
The results are shown in Fig. 1. The model exhibits a continuous transition
(second-order) from a healthy state to the complete infection, as the infectivity
increases. As far as J is subsequently increased over a threshold value, the in-
fection can no longer subsist and the population recovers completely from the
disease.

3.2 Long-Range Case

Mean-Field Approximation. The average asymptotic behavior of networks
can be investigated by means of mean field approach. Given N the number of
nodes, let us call Nk = NP (k) the number of nodes with connectivity k; Ωk,k′ ,
the probability of a node with connectivity k being connected to a node with
connectivity k′; Nkck, the number of nodes with connectivity k being infected;
m, the average frequency of contact between two individuals. We refer to the
probability of being infected of a node with connectivity k at time t with ck.
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Now, if only one infective strain is considered, i.e. τ(σj) = τ , the probability of
being infected at time t+ 1, c′k, is given by:
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k
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1 − (1 − m I(s, k)τ)s (3)

If a non assortative network is considered, i.e. Ωk,k′ = Nk′/N = P (k′):

c′k =
k∑

s=1

(
k

s

)(∑
k′

P (k′)ck′

)s(∑
k′
P (k′)(1 − ck′)

)k−s

[1 − (1 −m I(s, k)τ)s]

(4)
and, if k is fixed, i.e. P (k′) = δk′,k,

c′ =
k∑

s=1

(
k

s

)
cs(1 − c)k−s [1 − (1 −m I(s, k)τ)s] (5)

Estimation of the infection reproductive rate. A meaningful epidemiolog-
ical parameter is the basic reproductive rate, R0, which is defined as the mean
number of infections caused by an infected individual in a susceptible popu-
lation [13, 6]. This parameter can be considered an epidemiological threshold.
When R0 < 1 , each person who contracts the disease will infect fewer than one
person before dying or recovering, so the outbreak will cease. When R0 > 1, each
person who gets the disease will infect more than one person, so the epidemic
will spread.

A more careful investigation of this parameter can lead to a better insight in
the dynamics of the epidemics, at the same time allowing to assess the efficacy
of different strategies of containment on the spreading of the disease. For exam-
ple Lloyd-Smith and colleagues have shown that the distribution of individual
infectiousness around R0 is often highly skewed [6]. Longini and collaborators
have investigated bird flu pandemia scenarios. They found that if R0 was below
1.60, a prepared response with targeted antivirals would have a high probabil-
ity of containing the disease. If pre-vaccination occurred, then targeted antiviral
prophylaxis could be effective for containing strains with an R0 as high as 2.1.
Combinations of targeted antiviral prophylaxis, pre-vaccination, and quarantine
could contain strains with an R0 as high as 2.4 [13].

With reference to the model we propose, we can derive the expression of the
basic reproductive ratio, by considering the variation of c′ with respect to c,
when a small fraction of infected population is considered, i.e.

R0 = lim
c→0

∂c′

∂c
= k[I(1, k)τ ] (6)
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In this way we recover the expression of the basic reproductive ratio, when
a unitary mean time of infectivity per individual is considered. From this we
derive the critical value of J, below which the fraction of infected individuals is
different from zero, i.e. R0 > 1,

Jc = k ln(kτ) (7)

Numerical Simulations. To better characterize the role of the mean connec-
tivity of individuals k (randomly chosen), we plot the value of the fraction of
infected individuals, c, as a function of J , for different values of k. In Fig.2 we
report the results of the numerical simulations for the mean field approximation
of the model, plot (a), and for the microscopic dynamics, plot(b). We can first
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Fig. 2. The value of the fraction of infected individuals c, is plotted as a function of J .
The results of the numerical simulations are shown for the mean field model (a) and
for the microscopic dynamics (b, 100 sites).

notice that, for a growing number of neighbors, the fraction of infected indi-
viduals increases. This suggest that if we consider bounded the strength of the
individual perception of the disease, an ever growing influence of the external
field is necessary to keep low the number of infected individuals. By compar-
ing the mean field model with the microscopic dynamics a good agreement is
shown for small values of J (depending on k). For larger values of J , the infected
population exhibits large coherent oscillations, that may lead to a complete re-
cover from the infection and to the disappearing of the epidemics. In the mean
field approximation, for increasing values of k, the model begins to show a high
variation in the fraction of infected individuals, without reaching extinction.

By keeping fixed the value of the mean connectivity and setting H = 0, we
analyzed the mean-field phase space. In Fig.3, the case for k = 50 is reported.
The results of the numerical simulations display either stable solutions and oscil-
latory behaviours. Moreover chaotic dynamics arise for particular values of the
parameters. It is worth noticing that the huge variety of social behaviours is well
reflected by the model outcomes.
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Fig. 3. Mean field asymptotic value of the fraction of infected sites (left) and bifurcation
diagram for k = 50, N = 100. Pluses: fixed points, empty squares: period-2, crosses:
period-3, empty circles: period-4, empty triangles: period-5, empty pentagons: period-6,
empty diamonds: period-8, filled diamonds: chaotic orbits.

4 Conclusions

Our model represents a general framework that enables us to make predictions
and to compare different scenarios of disease spreading management.

The model can be also useful to investigate the effect that the lack of infor-
mation from neighbors and media can have on the disease spreading. Indeed this
can be comparable to the disease incubation period i.e. the lack of symptoms
when the virus is not demonstrable. Similarly we can analyze how a chronic
disease, which represent a latent but infectious state, may reduce the level of
surveillance as well as continuous media and neighborhood alarm.

Viral diseases have different intrinsic biological characteristics which become
coupled with different social and psychological behaviors of the neighborhood,
generating a vast combinatorial of dynamics, as shown by the results of the
phase-space analysis reported in the previous section.

The probability of contacts leading to infection can be calibrated against
seasonal or environmental effects and total and age-specific illness attack rates
of data in past pandemics. In fact, by including age dependent distributions
we can take into account whether an infected person becomes ill or remains
asymptomatic and, if symptomatic, when (if ever) the person withdraws to
household-only contacts [14]. Glass and collaborators [15] found that hetero-
geneity in measles vaccination coverage can lead to an increased rate of infection
among non-vaccinated individuals, with a simultaneous drop in the average age
at infection.

A major factor is the correct identification of target age groups. Recent works
show that pre-scholar children aged 3 to 4 drive influenza epidemics and are
most strongly linked with mortality in the vulnerable groups (elderly) and gen-
eral population than other children [16]. In fact they present flu-like respiratory
illness as early as late September, while children aged 0-2 began arriving a week
or two later and older children first arrived in October and adults began arriv-
ing only in November. This example points to the difference between high-risk
individuals, for example babies under 24 months or the elderly, and those who
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are transmitting the disease to everyone else . The former should be vaccinated
first [17].

The above examples show that the field is at the early stage and will benefit
from an interdisciplinary approach and from a methodic and careful analysis of
the contribution of each parameter.
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Abstract. Many important physical processes reveal spreadable phe-
nomena which describe the expansion with time of a given spatial prop-
erty. The general spreadability concept have been studied using models
based on partial differential equations (PDE’s). These spreadable dynam-
ics are generally non linear and then difficult to simulate particularly in
2 dimensions. A cellular automata approach have been used as an alter-
native modelling tool to model and simulate spreadable systems in the
deterministic case.

We propose in this paper a probabilistic cellular automaton model
that exhibits the growth with time of a spatial property. The obtained
local dynamics are directly implemented and the numerical results are
performed to illustrate spreadable phenomena. An example to epidemic
propagation is given to illustrate the considered phenomena.

1 Introduction

The investigation of phenomena involving spatial growth has gone through a
spectacular development in the last decade. A wide variety of real processes in
physics, biology, urban environment or medicine has been shown to be related
to and raised interest in spatial modelling. These systems usually exhibit an
expansion phenomenon that can be difficult to describe by classical approaches.
The concept of spreadability was then introduced in order to find the suit-
able dynamics for which a certain spatial property can survive inside increasing
domains.

First introduced by El Jai and Kassara [1,2] in 1994, the spreadability and
spray control concepts have been studied using partial differential equations
(PDE’s) and tested essentially for transport and diffusion systems [2,4]. Spread-
able distributed parameter systems provide a mathematical framework for mod-
elling and control expansion phenomena [3,4]. However, these studies were re-
stricted to linear systems while the most of growth processes are non linear.
Recent works devoted to feedback spreading control has been studied using semi-
linear PDE’s in [9,10].

Cellular automata (CA) models which are often described as a counterpart to
PDE’s offer a simple and powerful approach to study spatio-temporal systems
which exhibit complex phenomena by means of simple local rules.

S. El Yacoubi, B. Chopard, and S. Bandini (Eds.): ACRI 2006, LNCS 4173, pp. 330–336, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The mathematical formulation in terms of CA models which aimed at cap-
turing the main features of spreadable phenomena has been considered in [5]. A
study of spreadable systems by means of deterministic CA dynamics has been
done in [6]. We consider in this paper, the probabilistic case which seems to be
more realistic. We numerically illustrate the growth of the domains ωt where the
property is satisfied at time t. The result concerning the convergence of these sets
to a limit L is also emphasized. A simple epidemic model is given to illustrate
the studied phenomenon.

The paper is organized as follows, section 2 is devoted to the description of
spreadable phenomena by means of probabilistic CA rules defined in terms of
birth and survival functions. The given simulation example show the convergence
of the domainsΩt to a limit set when the probabilities are close to one as shown in
the deterministic case [6]. In section 3, an application in the context of epidemic
dynamics is considered and illustrated with a simulation example.

2 Spreadability of Two-Dimensional Probabilistic
Cellular Automata

A CA is an aggregation of identically programmed cells which interact with each
others. Every cell is characterized by a state belonging to a finite set. CA evolves
through a sequence of discrete time steps. The automata state is updated every
step according to a finite set of prescribed rules for local transitions.

The essential elements of a cellular automaton are : its global state, its neigh-
borhood and its dynamics. These features must be specified for each application.
CA models constitute suitable tools for modelling and simulating spatial prop-
erties of a large variety of biogeographical applications. They are discrete in
nature so that they are quite analogous with digital computers. This analogy is
the main reason of our interest in such an approach particularly regarding the
spreadability phenomenon.

We built in this section a class of CA rules which describe spreading effects.
Let us first define the spreadability by means of CA models.

2.1 Spreadability Concept

General concept of spreadability, see [1,2], concerns distributed systems defined
on an open bounded domain Ω, governed by a given dynamics and whose state
at time t ∈ I =]0, T [ and position x ∈ Ω is denoted by z(x, t). Let us consider
a spatial property P which aims to be spread or resorbed with time. It may
be a vegetation cover, a pollution area or a zone of infected population. The
spradability is equivalent to the growth with time of domains where P is satisfied
by the system’s state z(x, t), starting from an initial state z0 which is assumed
to be known in a given subregion Ω0 ⊂ Ω. Let us now express this notion in
terms of CA approach defined on an infinite space.

Consider a two-dimensional lattice L the elements (cells c) of which are rep-
resented by their coordinates (i, j). The state of a cell c is taken in the cyclic
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ring S = {s1, s2, · · · , sk} of cardinality k. Let N denotes the cell’s neighborhood
and f the transition function which allows to calculate the cell’s state at time
t+ 1 given the neighborhood’s state at time t. If st(c) designates the c cell state
at time t and let us define a sequence of domains Ωt where the property P is
satisfied at time t :

Ωt = {c ∈ L | Pst(c)} (1)

We recall the following definition [5]:

Definition 1. The CA defined by the quadruple (L,S, f,N) is said to be P-
spreadable from an initial domain

Ω0 = {c ∈ L | Ps0(c)}

where s0 is an initial CA configuration if the sequence {Ωt}t≥0 is increasing :

Ωt ⊆ Ωt+1 (2)

2.2 Spreadable Cellular Automata Rules

We shall built in what follow, a class of simple CA rules capable to maintain
the property P on increasing subdomains. Let us associate to P , a mapping π
defined on the state set S by :

π : S −→ {0, 1}

x −→
{

1 if x satisfies the property P
0 otherwise

(3)

and denote by K the support of π given by K = {x ∈ S | π(x) = 1}. We can
write

Ωt = {c ∈ L | st(c) ∈ K} (4)

Since the spreadability describes the survival of the property P , it is natural to
define a mapping σ : K −→ K to be related to the survival of P .

In order to study the spatial spreading of P , we shall examine the impact
of the local environment on the generation of domains growth. The presence of
P in the neighbourhood N(c) of cell c at each time t, is given by the quan-

tity [0, 1[% pt(c) =
yt(c)
n

which expresses the local density of π where yt(c) =∑
c′∈Ṅ(c)

π(st(c′)), with n = |N(c)| the neighborhood size and Ṅ(c) = N(c)−{c}.

Let us now consider a mapping ν : [0, 1[−→ {0, 1} where for all y = pt(c) ∈ [0, 1[
:

ν(y) =
{

1 if y ≥ θ1 with probability p1
0 otherwise (5)

which defines the birth of the property inside a cell c according to what happens
around. We then establish the following generic rule :

st+1(c) = (δ1(x)ν(y) + δ2(x)(1 − ν(y)))(1 − π(x)) + σ(x)π(x) (6)
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where δ1 : S −→ K and δ2 : S −→ Kc are two arbitrary mappings and the
variables x and y denotes st(c) and pt(c) respectively.

Suppose that there exists t0 ≥ 0 such that the CA configuration st0 satisfies
the property P . Then the local dynamics defined by eq. (6) describes a P-
spreadable phenomenon from the initial domain Ωt0 . The sequence {Ωt}t>t0

given in (4) becomes :

Ωt+1 = Ωt ∪ {c ∈ Ωt
c | ν(pt(c)) = 1} (7)

which are increasing by construction.

 Time=0  P1=0.7  P1=0.7

 Time=0  Time=10  Time=50

(d): initial condition (e): After 10 iterations (f): After 50 iterations

Fig. 1. Evolution of spreadable CA starting from an initial condition composed of
10 × 10 occupied cells placed at the middle of a 200 × 200 lattice and considering a
Moore neigbourhood of radius r = 2. For (a): θ1 = 0.16 and p1 = 0.7. For (d) θ1 = 0.16,
θ2 = 0.64, p1 = 0.7 and p2 = 0.9.

The rule given by eq. (6) has been implemented with S = {0, 1} and a given
property defined by π : S −→ {0, 1} of support K = {1} with δ1 ≡ 1, δ2 ≡ 0 and
σ ≡ 1. We illustrate the spreadable phenomenon which was generated from the
same initial condition. The codes are written in C language and the visualization
uses the graphical interface of Matlab. The simulation results are obtained in
a two-dimensional space with square cells and periodic boundary conditions.
The three first pictures in Fig. 1 illustrate the spreadable phenomenon with a
probabilistic birth function ν defined in eq. (5) while the other ones consider the
case where the survival function σ : K −→ S is also probabilistic and defined
through a threshold parameter as follows :

σ(st(c)) ∈
{
K if pt(c) − 1

n ≥ θ2 with probability p2
Kc otherwise (8)
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where 0 ≤ θ1 ≤ 1 represents the survival threshold of the property P . One
plots in each case, the variation with time of |Ωt|. The corresponding curves are
depicted in Fig. 2.

The case of probabilistic survival function correspond to a new approach of
spreadability which consists in considering the increase of measure of domains
Ωt instead of the classical definition as shown in Fig. 2(b).
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(a) θ1 = 0.16 and p1 = 0.7 (b) θ1 = 0.16, θ2 = 0.64, p1 = 0.7 and p2 = 0.9

Fig. 2. Variation of the number of sites whose states satisfy the property

3 Spreading Effect Via Cellular Automata: An
Epidemiological Application

Consider a simple epidemiological model describing disease spread by means of
CA approach. It is based on the classical SIR model S (for susceptible), I (for
infected) and R (for recovered) which is a good and simple model for many infec-
tious diseases including measles, mumps and rubella. The CA model describes
the epidemic spread of a population of individuals distributed on the sites of a
fixed array of L × L cells which interact with each other according to a given
neighbourhood. Individuals are born susceptible, then may acquire the infection
and finally recover. The model is probabilistic as these transitions are performed
with given probabilities. Each site may be occupied by a susceptible, infected or
recovered individual, associated with the state value 0, 1 or 2 respectively. The
dynamic evolution of the population is described, step by step, by the following
set of interaction rules :

1. Susceptible individuals become infected with probability pi if the local den-
sity of infected individuals is greater than a threshold θ1.

2. Infected individuals remain in state 1 with probability ps if the local density
of infected individuals is greater than a threshold θ2. Otherwise they recover.

3. Recovered individuals remain in state 2 with probability pr or become sus-
ceptible.

The simulated example is concerned with a square lattice of 200×200 cells with
a Moore neighbourhood of radius r = 2. The property to be spread corresponds
to the infection associated with the state value 1.

In both cases, the increase of the infected zones is observed and the influence
of initial condition is clearly shown. The whole domain is filled after 150 iteration
for fixed initial seed while it is done in 50 iterations in the random case.
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 time= 50  time= 150

(a): initial condition (b): After 50 iterations (c): After 150 iterations

(d): initial condition (e): After 10 iterations (f): After 50 iterations

Fig. 3. Evolution of the epidemic spread starting from: (a)-(c) a seed of square shape
of 62 × 62 infected sites, (d)-(f) a random initial seed with density 0.1 corresponding
to the same number of infected sites as in (a)-(c). Susceptible, Infected and Recovered
sites are presented in green, blue and pink respectively with r = 2, θ1 = 0.16, θ2 = 0.40,
pi = 0.7, ps = 0.8 et pr = 0.9.
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Fig. 4. Variation of the number of susceptible, infected and recovered sites with r = 2,
θ1 = 0.16, θ2 = 0.40, pi = 0.7, ps = 0.8 and pr = 0.9

4 Conclusion and Future Work

In this paper, we have investigated an efficient model for spreadability defined
as the ability of some geographic properties to spread from one defined area to
increasing subdomains. The given probabilistic rule have been implemented and
used to model an epidemic dynamics.

The presented model will be concerned in a future work with the spread
of Chagas disease transmitted by non-domiciliated triatomines in the Yucatan
peninsula (Mexico). It will integrate the space heterogeneity and time delay. A
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simulation tool will be developed for the presented epidemic model. An efficient
control strategy for disease spread has to be investigated.
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Abstract. This paper presents a new framework for modelling tumour-
induced angiogenesis. Classical Cellular Automata approach is employed
to model cellular and intracellular processes that occur in cancer tissue
and neighbourhood. Vascular system is modelled by using Graph of Cel-
lular Automata, which combines graph theory with Cellular Automata
paradigm. A new model is proposed as a starting point for further in-
vestigations on multiscale model covering wide range of spatio-temporal
scales including blood flow processes. The basis of the model with the
algorithms are presented. Preliminary results with short discussion are
also included.

1 Introduction

Angiogenesis is the process of formation of blood vessels. It occurs in embryo-
genesis after the vasculogenesis stage. During vasculogenesis, primary, chaotic
network of capillaries are formed from the endothelial precursors [1]. Next, dur-
ing the angiogenesis stage, the network is rebuilt into a fully functional network
of arteries, capillary vessels and veins.

In adulthood angiogenesis is rigorously controlled by wide range of stimulators
and inhibitors [2]. Their very precise balance makes this process quiescent except
tissue healing, placenta forming during pregnancy and in the cycling ovary. The
angiogenic process can be activated by metabolic stress e.g. low O2 (hypoxia),
low pH or hypoglycemia. Other conditions such as mechanical stress (pressure
generated by proliferating cells), immune response and genetic mutations [2] can
activate angiogenesis too.

Oxygen and nutrients penetrate the tissue only in a certain distance from
the vessel. Distant cells, influenced by metabolic stress, synthesise angiogene-
sis stimulators such as VEGF (Vascular Endothelial Growth Factor) and bFGF
(Basic Fibroblast Growth Factor) [2], [3]. Stimulators migrate towards the near-
est blood vessels. When they reach the vessel, the endothelial cells (ECs) that
lines the wall of this vessel are activated. They start to proliferate and migrate
towards the tumour cell attracted by VEGF and other stimulators. The wall of
the parent blood vessel becomes degraded and it opens to a new capillary. Mi-
grating and proliferating ECs form a hollow tube-like cavity (the lumen), which
are stabilised later by smooth muscle cells and perycites. Finally a new capillary
vessel becomes fully functional.
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Uncontrolled proliferation of tumour cells makes that existing blood vessels
cannot supply them with oxygen and nutrients. In consequence ”starving” tu-
mour cells produce VEGF, bFGF and other stimulators of angiogenesis described
in this case as Tumour Angiogenesis Factors (TAFs). Neighbouring vessels, ac-
tivated by TAFs, start sprouting, and develop toward tumour tissue. Due to
imbalance of angiogenic factors new vessels form a highly chaotic and disorgan-
ised network [6]. Moreover, their walls have a pathological form, i.e. they are
thin and permeable, their diameter changes abruptly etc.

Inhibition of tumour-induced angiogenesis is the most promising strategy in
anti–cancer therapy [2], [1], [5]. Most of the currently tested therapies targeted
endothelial cells. The inhibitors not only suppress ECs proliferation but also
initiate their death what follows to vessels regression. Anti-VEGF treatment
also normalises chaotic structure and abnormal architecture of tumour induced
vessels what improves drug delivery to tumour tissue.

However, clinical tests show that none of the tested inhibitors did success
in broad range types of cancers [1]. Monotherapies fail because angiogenesis
is controlled by very complex balance of stimulators and inhibitors. Therefore,
further investigations have to concentrate on researches including wider range
of angiogenic factors.

1.1 Models of Angiogenesis

Angiogenesis is modelled by using continuous and discrete approaches [3]. Con-
tinuous models employ Partial Differential Equations in order to reflect dis-
tributions of endothelial cells and angiogenic factors. Stochastic movement of
endothelial cells are represented by diffusion equation. Other factors are included
as additional terms to the original diffusion equation. Anderson and Chaplain
[7] simulate diffusion of ECs governed by angiogenic stimulators and fibronectin
influence. Plank et al. [8] meets wider range of angiogenic stimulators including
angiopoetins to their model.

Discrete approach assumes that modelled molecule as endothelial cells or an-
giogenic factors are treated individually. Anderson and Chaplain proposed one
of the most often cited discrete model of angiogenesis [7]. They assume that
growth of the single vessel is governed by move of the endothelial cell located
at the sprout tip. This cell moves across regular, rectangular network according
to defined rules. At each step of simulation the cell moves in one of the four
directions or stays with a certain probability. The probabilities are calculated by
using continuous approach, i.e. diffusion equation supplied with terms reflecting
VEGF and fibronectin influence. Additional rules which model vessels branching
and anastomosing are also defined.

Stokes and Lauffenberg presented a bit different approach [9]. They also model
sprouting vessels as separate structures. Each sprout is described by the position
and velocity of its tip at a given time step of simulation. The velocity is calculated
by using stochastic differential equation that combines viscous damping term,
random motion term and chemotactic term (models TAFs influence).
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Recent researches focus on multiscale model that are able to cover all phe-
nomena contributing to cancer development. Alacorn et al. [10], [11] presented
model that couples processes occurring on different spatio-temporal scales:

– vascular scale that includes vascular network adaptation and blood flow,
– cellular scale: cell-cell interaction (e.g. tumour-normal competition) and cell

spatial distribution,
– intracellular scale: cell division, TAFs secretion and apoptosis.

Alacorn et al. [10] focuses on modelling whole cancer rather than on angiogenic
processes, thus their vascular network has a form of simple hexagonal mesh.

In this paper a new framework for modelling tumour–induced angiogenesis is
proposed. The presented model is regarded as a test for this framework, there-
fore, some problems connected with angiogenesis were substituted by their sim-
plifications. The investigation is targeted on building a modelling environment
that besides wide spectrum of angiogenesis factors, is able to consider blood flow
processes and their influence on vascular system development.

2 The Model of Tumour-Induced Angiogenesis

The model is founded upon the concept of transportation network and consum-
ing (or producing) environment [12], [13]. The network delivers certain resources
to the system, where they are absorbed and changed into progress of the envi-
ronment. Changes in the environment influence network structure. The system
leads to the state of dynamic balance, when the whole environment is equally
supplied. An anastomosing river [14] as well as a vascular system are good ex-
amples of such the phenomenon. We can also consider the system in which the
resources are transported in the opposite direction i.e. the resources are collected
from the environment and transported outside. Branching network formed by a
river and its tributaries fits this scheme.

This approach postulates partial separation of the two time scales represented
by formation of the channel and the environmental factor, respectively. Instead of
modelling local relations between the endothelial cells, blood, nutrients and oxy-
gen, we consider now the global interactions between the blood vessels network
and tissue. The network edges (vessels) can be added or removed accordingly to
the local distribution of TAFs. Conversely, the nutrients distribution is formed
by the entire river network. The feedback between environmental changes and
evolution of the network should be faster allowing for modelling vessels over
larger spatial scales.

The tissue is represented by a mesh of cellular automata. The distribution
of oxygen, nutrients and TAFs is modelled by using Cellular Automata rules of
local interaction [15]. The transportation network is represented by the Graph of
Cellular Automata (GCA) which is built over the CA mesh [12], [13]. The graph
is constructing by choosing some cells from the regular mesh, and connecting
them with edges that represent the sections of the vessels.

The angiogenesis is an extremely complex process which is still not fully un-
derstood. Therefore, the following assumptions had to be made to this model:
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– tumour cells do not migrate nor proliferate,
– ”hungry” tumour cells produce TAFs at constant rate,
– TAFs migrating through the tissue establish gradient of TAFs concentration,
– TAFs concentration exceeding certain threshold activate endothelial cells in

existing vessels,
– only ”mature” vessels are able to create sprouts,
– sprouts grow attracted by TAFs concentration,
– new vessel have to ”mature” before it can be able to fulfil they function —

it corresponds to the process of covering endothelial cells by smooth muscle
cells an perycites.

Most of these assumptions are based on real observations, however some of them
are only hypothesis or they were included for the sake of clarity of the algorithms.

The model can be defined in a more formal way as follows:

CAANG =< Z2, GCA, XK , S, δ >, where :

– Z2 — a collection of cells ordered as a square mesh of Z × Z cells,
– GCA — a planar and acyclic graph defined as (VG, EG), where VG ⊂ Z2 and
EG ⊂ Z2×Z2 are a finite set of vertices and a finite set of edges, respectively,

– XK(i, j) — neighbourhood for the (i, j) cell in regular mesh of automata,
– S — is the set of state vectors corresponding to each cell: S = Sm × Sg,

• Sm — represents states corresponding to all cells in the mesh:
∗ tij — state of a single tumour cell, two possible values: ”full” and

”hungry”,
∗ fij — TAFs concentration,
∗ nij — nutrient (oxygen) concentration,

• Sg — represents states corresponding to the cells that belong to the
Graph of Cellular Automata:
∗ aij — ”age”, maturation level,
∗ pij — indicate ”tip” cell (boolean),

The cells which form the graph are the sources of nutrients (e.g. oxygen).
Nutrients are distributed to the surrounding cells, providing certain gradient
of concentration. Tumour cells with nutrients concentration below the certain
value turn their state into ”hungry” and start producing TAFs. TAFs distribute
through the mesh of automata and establish certain gradient of concentration,
in a similar way as in case of nutrients.

When the TAFs concentration in cell that belongs to the graph exceed certain
threshold, a new branch is initiated. The vessel grows attracted by higher TAFs
concentration. Similarly to the discrete Chaplain and Anderson model [7], growth
of the single vessel is governed by the move of its tip. The consecutive tip cells
are calculated based on local TAFs gradient.

Initially a new vessel is not mature enough to be able to supply nutrients. The
maturation level of each cell in the graph is increased at each step of simulation
until it reach the state ”mature”. The ”mature” cells become the source of
nutrients.
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Vessel forks when the local condition (TAFs concentration exceed certain
threshold and cell is mature enough) are fulfilled. When growing vessel meet
other vessel, it joins them creating anastomosis.

The set of the parameters that tune the model is as follows:

– ρTAF — gradient of TAFs distribution,
– ρN — gradient of nutrient(oxygen) distribution,
– Tb — TAFs threshold that triggers branch forming,
– Nt — nutrients threshold that triggers production of TAFs in tumour cells,
– Ms — maturation speed,
– Pb — branch probability.

2.1 The Algorithm

Fig. 1 presents an outline of the algorithm. At each step of simulation, procedures
that implement the defined rules are applied to cellular automata and graph of
cellular automata.

Fig. 1. An outline of the main algorithm

Procedure updateTumourCells() tests the nutrients concentration in the cells
that represent tumour and triggers the production of TAFs if necessary.
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Procedure 1 An outline of the updateTumourCells() procedure
for all cell in the mesh do

if nij < Nt then
tij ⇐ ”hungry”;

else
tij ⇐ ”full”;

Procedures updateNutrients() and updateTAFdistribution() distribute
nutrients and TAFs, respectively, and they have very similar form. New values
of nutrients and TAFs concentrations are calculated based on maximum con-
centration within their neighbourhoods. Cij denotes a cell identified by using
indexes i, j.

Procedure 2 Procedures updateTAFdistribution() and updateNutrients()

TAFs distribution Nutrients distribution

for all cell in the mesh do
if tij = ”hungry” then

fij ⇐ 1.0;
else

fij ⇐ ρTAF max(fXK(ij));

for all cell in the mesh do
if Cij ∈ VG and aij = ”mature” then

nij ⇐ 1.0;
else

nij ⇐ ρO max(nXK (ij));

Procedure updateVessels() is responsible for vessels growth and maturation
(see Procedure 3). If ”tip cell” marker (pij) is set, procedure addNextTip()
calculates which cell will be added to the branch next. Growing vessels are
attracted by TAFs thus the cell with the largest increase of the tij value will be
added. If there is no such a cell a simple random-walk procedure is applied. An
new cell becomes a ”tip cell”. If selected cell already belongs to other branch,
the ”tip” marker pij is unset, and the branches join creating anastomosis. At
each step of simulation only one cell is added to each sprout.

Procedure 3 An outline of updateVessels() procedure
for all cell Cij ∈ VG do

if pij then
addNextTip(Cij);

if aij < ”mature” then
aij ⇐ aij + Ms;

Procedure branchVessels() tests whether the conditions for branching oc-
cur. If necessary it initiates a new sprout with probability Pb, by setting ”tip cell”
marker — pij . New sprout starts to grow on the next run of the updateVessels()
procedure.
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Procedure 4 An outline of the branchVessels() procedure
for all cell Cij ∈ VG do

if fij > Tb and aij = ”mature” and random() < Pb then
pij ⇐ 1;

3 Results

We present preliminary results obtained by using described model. The model
was implemented in C++ language as a sequential program and run on worksta-
tion under Linux operation system. Results were postprocessed and visualized
by using Amira program (www.tgs.com).

Fig. 2 presents snapshot taken after 200 steps of simulation performed on
mesh 100 × 100 cell. Apart the vascular network, the TAFs distribution is visu-
alized. Single sprouts grow attracted by higher TAFs concentrations. The nodes
of Graph of Cellular Automata were intentionally emphasised.

Fig. 2. Simulation results: vessels network and TAFs distribution

Fig. 3 presents snapshots taken after 100, 120, 220 and 1200 steps of simula-
tion. Simulations were performed on 100 × 100 mesh. The vascular network is
presented together with the TAFs distribution. The algorithm of branch growth
neglects random motion and considers only the TAFs influence. It results in the



344 P. Topa

Fig. 3. Snapshots from simulation performed on 100×100 cells after 100, 120, 220 and
1200 steps. Primary vessel is located on the right edge of the mesh.

clearly visible direction of growth. The assumption that only ”mature” vessels
can branch makes that we observe anastomosing vessels without branching at
all.

Fig. 4 presents the network of blood vessels together with the nutrients and
the TAFs distribution. Simulation was performed on mesh 100 × 100 cells and
snapshot was taken after 1200 steps. Compared with Fig. 3 simulations were
performed with higher maturation speed Ms. As a result most of the sprouts
are already mature enough to supply nutrients and the network has much more
complex structure. Single sprouts have already reached tumour cells, however
they are still not mature enough to supply oxygen and nutrients to starving
cells.
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Fig. 4. Network of blood vessels growing towards tumour cells. Primary vessel is located
on the bottom edge of the mesh. Green area represents tumour cells producing TAFs.
Yellow-to-red area represents nutrients.

4 Conclusions

The general framework combining Cellular Automata and Graph of Cellular Au-
tomata seems to be suitable for modelling tumour-induced angiogenesis. The pre-
liminary results are promising, however at this stage it is pure phenomenological
model, and it has numerous oversimplifications.Future investigations have to care-
fully revise the rules, defined for this model and include the new ones that will be
able to consider other factors and subprocesses that contributes to angiogenesis.

One of the major simplification is the assumption that nutrients can be sup-
plied by any mature vessel. In fact it is not true if the vessel is not a part of
closed circuit. Thus, the further work on this model will be targeted on con-
sidering blood flow processes in capillary vessels and their influence on cancer
development [16]. Moreover, the investigations on blood flow in tumour induced
vessels are another very promising area in anti-cancer researches e.g. improved
drug delivery increases chemotherapy efficiency.

Another issue, which is going to be investigated deeply is quantitative com-
parison of real and simulated vessels networks. Graph representation of vessels
networks facilitates calculating the descriptors for the simulation results. Net-
work descriptors for real vascular networks will be obtained from pictures with
tumour tissue through the pattern recognition process.
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Abstract. Defect-tolerance, the ability to overcome unreliability of
components in a system, will be essential to realize computers built by
nanotechnology. This paper presents a novel approach to defect-tolerance
for nanocomputers that are based on self-timed cellular automata, a type
of asynchronous cellular automaton. According to this approach, defec-
tive cells are detected and isolated by configurations of random flies that
move around in cellular space. We show that detection and isolation are
realized in an on-line manner, i.e., while computation takes place.

1 Introduction

The trend towards nanometer-scale logic devices may lead to computers with
high speed and low power consumption, but this will require new techniques and
architectures. Such nanocomputers may require a regular structure, like in cellu-
lar arrays [1, 2, 3], to allow mass manufacturing based on molecular self-assembly.
Another important issue for nanoscale integration densities is the reduction of
power consumption, and, related to it, heat dissipation. Getting rid of the clock,
i.e., using asynchronous timing, has been suggested as a promising way toward
this end, especially when done in the context of cellular automata (CA) [2, 3].

A major obstacle to the realization of nanocomputers is the reduced reliability
of nanodevices as compared to their VLSI counterparts, due to noise, quantum
effects, etc. Discarding chips that have defects, as done in VLSI manufacturing,
is inefficient and, moreover, it cannot deal with defects occurring during com-
putations. So, other approaches need to be explored to achieve defect-tolerance,
self-repair, and/or self-healing. In the context of CA, defect-tolerance has been
investigated in [4, 5], but the detection of defects is done in an off-line way,
i.e., detection takes place before computation starts. A set of CA-like processors
called Embryonic arrays, capable of self-repair and self-healing, is implemented
in hardware in [6]. The BioWatch, which is implemented by embryonic arrays,
can inactivate faulty component (cells) and replace them by spare ones during its
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Fig. 1. An example of a self-timed cel-
lular space in which each part of a cell
state consists of one bit
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f

Fig. 2. Transition rule in accordance
with the function f

operation [7]. This model, however, requires a self-checking mechanism for each
of the embryonic arrays that needs to be fault-free. Alternatively, Immunotronics
uses an external layer monitoring the status of embryonic arrays to check faults
[8, 9], but this makes the system more complex.

This paper presents an asynchronous CA that can detect and isolate cells with
stuck-at fault defects in an on-line manner, i.e., during computation. We first
establish the computational universality of the underlying CA by embedding a
so-called Toggle Switch Element [10] onto it. Detection and isolation of defects
are then realized by having configurations of random flies move around in the
cellular space and attach to faulty cells. Key to distinguishing a faulty from
a non-faulty cell is the latter’s propensity to eat flies as part of its ability to
undergo state changes. All the tasks including computation and detection and
isolation of faults are accomplished within the CA model, i.e., no external or
off-line detection mechanisms are required.

2 Preliminaries

2.1 Self-Timed Cellular Automata

A self-timed cellular automaton (STCA)[11, 3] is a two-dimensional asynchronous
CA of identical cells, each of which has a state that is partitioned into four parts
in one-to-one correspondence with its neighboring cells. For example, if each part
of a cell state consists of 1 bit, a cell can be in one of 16 states encoded by 4
bits, and the cellular space is an array like in Fig. 1, where a filled circle denotes
a 1-bit, and a open circle denotes a 0-bit. Each cell undergoes transitions in
accordance with a transition function f that operates on the four parts of the
cell qn, qe, qs, qw and the nearest part of each of its four neighbors pn, pe, ps,
pw. The transition function f is defined by

f(qn, qe, qs, qw, pn, pe, ps, pw) = (q′n, q
′
e, q

′
s, q

′
w, p

′
n, p

′
e, p

′
s, p

′
w), (1)

where a state symbol to which a prime is attached denotes the new state of a
partition after update (see Fig. 2). Dummy transitions are not included in the
transition function (1), so we assume that the left-hand side of Fig. 2 differs from
the right-hand side. Furthermore, we assume that transition rules on an STCA
are rotation-symmetric, thus each of the rules has four rotated analogues.
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Fig. 3. Toggle Switch Element in states (a) q0 and (b) q1
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(c) Switching the state of a TSE is achieved by inputting a signal to γ

Fig. 4. Operations of a TSE, where a blob on a line denotes a signal

In an STCA, transitions of the cells occur at random times, independent of
each other. Furthermore, it is assumed that neighboring cells never undergo tran-
sitions simultaneously to prevent a situation in which such cells write different
values in shared bits at the same time (write conflict). Compared to conventional
CAs, an STCA transition rule lacks strict locality in the sense that a cell may
change states that belong to its neighbors. The lack of locality is very limited,
however: every partition of a cell can only be changed by two cells, that is, the
cell to which the partition belongs and the cell to which the partition is adjacent.

There are several approaches to perform computation on STCAs, such as sim-
ulating synchronous CA[11] and embedding delay-insensitive circuits on STCAs
[2, 12], of which we use the latter. To ensure computational universality, we em-
bed a so-called Toggle Switch Element (TSE) on the STCA used in this paper.

2.2 Toggle Switch Element and Its Implementation on STCA

A TSE is a logic element with 3 input lines, 3 output lines and 2 states [10].
Figure 3 shows TSEs with states q0 and q1, where input lines are denoted by
the symbols α, β and γ, and output lines are denoted by the symbols α′, β′ and
γ′. When a TSE in state q0 accepts a signal on input line α (resp. β), it passes
the signal through to the output line α′ (resp. β′) (see Fig. 4(a)). If a TSE is in



350 T. Isokawa et al.

�
�

(a)
� �

�
�
�

�
�

�
�

�

(b)

Fig. 5. (a) A signal configuration and (b) its move forward. The dark cell in each step
is the cell to which a transition rule is applied.
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Fig. 6. A TSE configuration in states q0 and q1

state q1 and a signal on input line α (resp. β) arrives at it, it outputs a signal
on the output line β′ (resp. α′) (see Fig. 4(b)). The state of a TSE is changed
from q0 to q1 or the other way around by inputting a signal on input line γ, after
which a signal is output to line γ′ (see Fig. 4(c)). TSE has been proven to be
computationally universal [10] in the sense that a network of TSEs, consisting
of signals, TSEs and signal lines, can compose a Rotary Element (RE) [13], from
which a universal Turing Machine can be constructed.

To embed a network of TSEs on an STCA, we define signals and their paths
between TSEs. A cell is divided in partitions, each of which can be in one of
9 states, denoted by the set of symbols { , 1, 2, 3, x, y, z, B,W}. Figure 5(a)
shows a signal toward the north on an STCA, whereby the signal is represented
by the partition pair ‘1y’. To move the signal forward, this state pair is first
changed into ’2y’ according to the transition rules (see Fig. 5(b)). Signal paths
are represented by cells of which all the partitions have the state ‘ ’. Since the
STCA is rotation symmetric, a signal going to the south, east, or west can be
defined by rotating the cell configuration in Fig. 5(a).

A TSE is represented on an STCA as a loop structure (Fig. 6) through which
an internal signal is continuously moving, whereby the direction of the signal
denotes the state of the element, clockwise corresponding to state q1 and coun-
terclockwise to state q0.

The internal signal in a TSE, denoted by the partition pair ‘x1’ or ‘x2’, moves
along the ‘xx’ loop of the TSE in a similar way as with the propagation of a
signal, i.e., two stages are used to move a signal forward by one step. Figure 7
shows how an internal signal in a TSE in state q0 propagates along the loop.
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Fig. 7. An internal signal propagating in a TSE in state q0. Only part of the TSE loop
is shown to save space.
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Fig. 8. A TSE in state q0 operating on a signal from α
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Fig. 9. Operation of a TSE in state q1 after an input signal is input to it on β
.

The input and output ports of the TSE, denoted by arrows in Fig. 6, are
arranged differently as compared to the original TSE, to ensure that the internal
signal of the TSE can easily interact with input signals. A TSE in state q0
processes signals on its input lines as follows. When an input arrives on line α,
as in Fig. 8(a), it waits at the lower-left part of the TSE until the internal signal
arrives from the cell to the right (Fig. 8(b)), after which an intermediate state
is assumed (Fig. 8(c)). This is followed by output to the port α′ (Fig. 8(d)),
whereas the internal signal continues its journey inside the TSE-loop, without
changing its direction. Signal on β is processed in a similar way.

The operation of a TSE in state q1 is more complicated than when it is in state
q0, since signals need to be crossed in that case. Figure 9 shows the transitions
in this case when a signal is input to port β. When the internal signal meets
the input signal on input port β (Fig. 9(a)), the partition pair ‘21’ appears at
the bottom of the TSE (Fig. 9(b)). This pair changes to ‘22’ (Fig. 9(c)), after
which the signal appears on output port α′ and the internal signal continues its
journey inside the TSE-loop (Fig. 9(d) and (e)).

Finally, when a signal is input to port γ the state will be flipped from q0 and
q1 or the other way around (see Figs. 10(a) and (b)).

The reason why almost all the transitions of signals and elements need two
stages to proceed by one step is to cope with the stuck-at faults of partitions
of cells; this occurs when the state of the partition itself can be referred to
and used by neighboring cells but cannot be changed by any transition rules.
Consider the case in which the transition rule to move a signal forward contains
only one stage, as shown in Fig. 11(a), and the cellular space contains stuck-at
faults in the partitions of a lowest cell in Fig. 11(b). When this transition rule
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Fig. 10. Switching the state of the TSE
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(b) In case of stuck-at fault at the bottom of the cell
space

Fig. 11. Example of a stuck-at fault. Cross marks on partitions represent stuck-at
faults.

is applied to the lowest cell, a new signal appears on its north, but the signal
configuration at the lowest cell is not annihilated due to the faults. So, this
configuration becomes a signal generator that produces an unlimited number of
signals. Such a situation can be prevented by checking whether the partitions
are stuck in a particular state, and this is implemented easily by propagating
signals according to a 2-step protocol: in this case signal propagation always fails
when there is a stuck-at fault at one or more cells involved.

3 Wrapping Defects by Random Flies

A useful strategy towards defect-tolerance is to wrap defects in a layer of isolating
cells that are all in a special state assigned for this purpose. Isolation of defects
creates a uniform environment: instead of having to deal with defective cells being
stuck in a great variety of states, there is only one state associated with defective
cells to take into account, and this significantly simplifies avoidance of defects or
creating roundabouts around them at a later stage. A similar strategy is used in [5],
be it that in that paper isolation arounddefects is done off-line, before computation
takes place. Here we conduct isolation on-line, by using ‘random flies’.

3.1 Random Flies

A random fly is a signal-like cell configuration, represented by the partition pair
‘33’. It has no preferred direction as it is symmetric, and it is designed to move
around in cellular space in random directions. This is accomplished by changing
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the partition pair ‘33’ into the pair ‘3z’ in accordance with the transition rules.
Due to the symmetry of ‘33’ and the randomness associated with asynchronous
updating, this transition into pair ‘3z’ can take place in two different ways, as
shown in Fig. 12. We have designed the transition rules of our cellular automaton
such that the partition pair ‘3z’ subsequently changes back into pair ‘33’, but
only so in combination with a left turn (see Fig. 12). The netto result is that in
the end the fly has moved forward to the left, or backward to the right.

��

�� � �

�
�

� � ��
�
�

Fig. 12. Possible transitions of a random fly

3.2 Checking Living Configurations by Random Flies

A collision of a random fly with a signal or a working TSE or other random flies
results in the annihilation of the fly. Figure 13 shows a random fly that collides
with a signal, after which an intermediate state is reached as the precursor of
the final annihilation of the fly. It is also possible that two or more random
flies collide with a signal, TSE, or other fly at a time, and also in these cases
annihilation of the flies takes place. For example, when a random fly attaches
to the input (or output) port of a working TSE, it stays at this port until an
internal signal circulating in the TSE arrives, after which the fly is annihilated. If
another fly also attaches to the same output (or input) port before the internal
signal arrives, a situation like in Fig. 14 will occur, and the two random flies
will disappear in accordance with the transition rules, with the internal signal
continuing its path in the TSE. Other situations concerning collision of random
flies with TSEs are treated in similar ways.

Important is that random flies stuck to a TSE are annihilated whenever the
TSE is working, i.e., to annihilate these random flies it is necessary that an
internal signal flows in the TSE. When the internal signal of a TSE stops, for
example due to a defect, random flies will no longer be annihilated and will
wrap this TSE completely (see Fig. 15). These flies remain in the state ‘3z’, so
all the partitions pointing outwards of this TSE will assume this state, forming
an isolation layer.

3.3 Random Fly Generation

The process of wrapping defects by flies and annihilating flies can only continue
if there are enough flies. So, where do flies come from? It is tempting to generate
them by some external source, but this implies the necessity of a mechanism to
control their density. Rather, we have opted for a self-regulating mechanism, in
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Fig. 13. Random fly colliding with a signal, resulting in an intermediate state, and
finally the fly’s annihilation
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Fig. 14. Two random flies colliding with a signal in a TSE. Eventually, both flies are
annihilated.
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Fig. 15. Isolation of defective TSE by random flies. Shaded random flies represent the
ones stuck to cells that no longer undergo transitions. This may be faulty cells, but
also cells that become inactive as a result of defects in cells near them.

which flies are only generated around where they are needed, that is near TSEs,
because there is where defect cells compromise the correctness and continuation
of the computation process. Such a self-regulating mechanism is implemented
by equipping TSEs with the inherent ability to generate flies as part of their
behavior as defined by the transition rules. Fig. 16 shows transition rules that are
used for this purpose. According to these rules, random flies are generated around
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Fig. 16. Extended transition rules for generating random flies originating from TSEs

the input and output ports of a TSE. Flies are also generated and annihilated
inside TSE loops, but this is only for keeping transition rules simple.

4 Conclusion

The defect-tolerant self-timed cellular automata proposed in this paper can de-
tect and mark stuck-at faults of cells during computation in a self-contained way.
Our model adopts random flies that are produced in the cellular space, check
whether cells are defective by utilizing the ability of cells to change their states,
and isolate those cells that are unable to do so (the defective cells) from non-
defective cells. Cells becoming defective due to some permanent stuck-at fault
occurring at the time of computation will be automatically wrapped in flies and
isolated from healthy cells. This creates a uniform environment of the states in
which cells can be, which can then be dealt with in a follow-up strategy, like the
one in [5], to reconfigure circuits around wrapped defects.

The model employs 154 transition rules.1 Many of these rules are used to
describe the collisions of random flies with signals and TSEs, suggesting that
a relatively large overhead is required by the defect-tolerance mechanism, as
compared to the computation mechanism. Implementation at molecular scales
may therefore be less practical in its current form. In this sense, the situation
is perhaps similar to that with the self-repairing systems mentioned in the in-
troduction [4, 5, 6, 7, 8, 9]. Our method, however, has still room for improvement:
for example, the number of rules can be reduced by limiting the variety of sit-
uations in which random flies are annihilated. Moreover, different asynchronous
models of cellular automata may enable more efficient implementations of the
defect-tolerance mechanism.

We finish with noting that the random fly mechanism in itself may serve as an
illustration how the power of randomness associated with asynchronous updating
can be exploited for the design of relatively simple and localized algorithms.
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Abstract. In the present study, acoustic wave propagation in acoustic
tube in-corporating sound absorbing material is simulated using Cellular
Automata (CA). CA is a discrete system which consists of finite state
variables, arranged on a uniform grid (cell). CA dynamics is described
by a local interaction rule, which is used for computation of new state
of each cell from the present state at every time step. In this study
an acoustic tube model is introduced in which ab-sorbing material is
characterized by direct modeling of porosity and flow resis-tance. Direct
numerical simulation CA model is performed and evaluated by absorp-
tion coefficient using standing wave ratio measure. The results showed
good correspondence with analytical solutions.

1 Introduction

The vibrating structures and various kinds of machineries often cause serious
noise problems to humans within an environment. The passive sound attenua-
tion method is generally employed using resonators, isolation walls and sound
absorbing treatment. Among various kinds of sound absorption materials, porous
materials such as glass wool quilting and polyurethane foams are the most com-
mon and significant technique which are widely used for room acoustics and var-
ious electric devices. However, the recent designing of compact and lightweight
devices put limits on the application of such dissipative materials in conjunc-
tion with saving costs. Hence the material itself, amount and placement must be
determined carefully that can realize high performance damping and low cost.
The development of numerical model which can predict sound propagation and
attenuation effect of those materials is then important for realizing efficient and
suitable engineering design.

Before predicting desired sound absorption effect in a practical environment,
material properties such as acoustic propagation constant and the absorption
coefficient must be determined either numerically or experimentally. The more
precise measurement system has been developed for the latter approach. On
the other hand, theoretical prediction of sound absorbing mechanism of porous
materials has long been investigated which coincides with basic experimental
results[1]. The finite element and also the boundary element methods may be
reliable and useful approach for exploring more realistic situations. However,
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on setting properties and shapes of porous materials with these models certain
approximation must be incorporated which may lead to the lack of micro struc-
ture and the essential mechanism of sound absorption of materials itself. Also,
obtaining transient response of the system with these models require elaborate
modeling procedure.

In this paper, the acoustic wave model is developed using Cellular Automata.
CA is a kind of discrete computations which has been developed for modeling
wide range of phenomena including many physical processes described gener-
ally by partial differential equations[7]. Specifically the wave propagation mod-
els have been studied by researchers based on Cellular Automata[3]-[8]. The
works include Chopard et al.[8] who had modeled wave propagation by Lattice
Boltzmann approach applicable for practical situations such as the radio wave
transmission in complex urban environments. The authors have also developed
an acoustic wave propagation model for two dimensional acoustic problems for
simulating sound source movement, sound diffraction by the presence of barriers
and reflection due to inhomogeneity of acoustic media[9]. Due to its easiness and
simplicity of modeling procedure, the modeling approach also seems suitable for
the problems concerned. However, the preceding work does not include energy
dissipating mechanisms which is nessesary for producing sound absorption ef-
fect. In the present study, the modified version of the acoustic wave propagation
model is numerically developed using CA for understanding fundamental sound
absorption mechanism of porous materials and evaluating sound absorption per-
formance, where the details of porous material structure is considered in the
model. The acoustic waveguide incorporating sound absorbing porous mater-
ial is constituted and the sound absorption effect is predicted. The theoretical
approach for obtaining absorption coefficient is also presented for comparison.

2 Theoretical Description of One-Dimensional Acoustic
Field

In this section, theoretical description of one-dimensional acoustic field is shown,
and the material property related to acoustic characteristics which is commonly
known as the sound absorption coefficient is also derived. Moreover, the parame-
ter known as standing wave ratio (SWR) and used for determining absorption
coefficient by numerically measured sound pressure amplitude is presented.

2.1 The Wave Equation

The generated pressure oscillation in an acoustic medium is observed as sound,
which is described by a set of linear equations for one dimensional field under
the presence of absorbing material[1]:

ρ0

σ

∂u̇(x, t)
∂t

= −∂p(x, t)
∂x

−Rf u̇(x, t) (1)

σ

κ

∂p(x, t)
∂t

= −∂u̇(x, t)
∂x

(2)
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where p(x, t) is a sound pressure and u̇(x, t) a particle velocity, ρ0 density, κ vol-
ume elasticity, σ porosity of porous material and Rf flow resistance constant re-
spectively. Equation (1) corresponds to equation of motion of the continuum per
unit volume, and also (2) satisfies continuity of the medium. The solution to (1)
and (2) without porous material is given by setting σ = 1.0 and Rf = 0.0 , on
the assumption that the wave is harmonic:

p(x, t) = jωρAej(ωt−kx) + Bej(ωt+kx) (3)

where A and B are constants determined by boundary conditions, ω the sound
source frequency, k the wave number respectively. The first term of (3) expresses
a progressive wave, and the second a regressive wave.

If we employ acoustic tube model which has a sound source on one edge, the
pressure distribution inside tube is then calculated by giving boundary conditions
u̇(0, t) = u̇0e

jωt, and also u̇(l, t) = 0 for the another edge closed:

p(x, t) = −jρcu̇0
cos k(l − x)

sin kl
ejωt (4)

In the above (4), l stands for the tube length, u̇0 the driving source velocity.

2.2 Definition of Propagation Constant and Characteristic
Impedance

Sound absorbing materials are usually characterized by acoustic properties
known as propagation constant and characteristic impedance. The absorption
coefficient is then determined by those constants. The characteristic impedance
is defined by the ratio between acoustic pressure and particle velocity while the
wave travels along the media, described as:

Zc =
p

u
= ρcm (5)

In (5), p and u denotes sound pressure and particle velocity, cm sound speed along
material and ρ the density of material, respectively. The propagation constant
γ is defined by the damping the phase chance along the unit length of material
axis, which is given by a complex form:

γ = α+ β, β = ω/cm (6)

In the above (6), α and β signifies damping and phase constant.
Sound propagation model inside acoustic waveguide incorporating absorbing

materials is shown in Fig. 1. The sound wave propagating through the material
1 with thickness d is described by the following (7) with respect to the incoming
sound pressure Pi0 traveling through the air,

p1d = p1ie
−γd (7)

In the case material 1 is backed by another material 2, the inhomogenous bound-
ary between these two materials is characterized by acoustic impedance Z2. In
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Fig. 1. Sound propagation model inside acoustic waveguide incorporating absorbing
material. In this figure, three kinds of acoustic media exist. Hence two boundaries
between air and material 1, and also between materials 1 and 2 are present. P denotes
sound pressure, and Z acoustic impedance.

the same way the acoustic impedance Z1 with respect to the boundary between
air and material 1 is given by the following equation using Z2.

Z1 = Zc
Z2 cosh(γd) + Zc sinh(γd)
Z2 sinh(γd) + Zc cosh(γd)

(8)

Before calculating sound absorption coefficient α, the reflection constant rp must
be determined using acoustic impedance Z1. The constant rp is defined as follows.

rp =
Z1 − ρ0c0
Z1 + ρ0c0

(9)

In (9), ρ0 and c0 denotes density and sound speed of air, respectively. The
absorbing coefficient α is then calculated using (9), according to the following
(10).

α = 1 − |rp|2 (10)

As already described above, in order to obtain absorption coefficient the acoustic
impedance Z1 must be determined, however, Z1 also depends on another im-
pedance Z2. Therefore, Z2 must be first determined by setting the layer be-
hind the target material become air, or directly backed by the rigid wall before
calculating Z1. (In the latter case Z2 become zero.) The rest of the unknown
parameter, propagation constant γ and characteristic constant Zc, are usually
determined by measurements. They are also derived analytically by solving (1)
and (2), for the case the porous material is backed directly by the wall described
as follows.

γ =
ω

c0

√
1 − j

σRf

ωρ0
(11)

Zc =
ρ0c0
σ

√
1 − j

σRf

ωρ0
(12)
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Equations (11) and (12) are used for the comparison with results obtained by
the Cellular Automata acoustic model in subsequent section. γ, Zc and Z1 are
the important parameters for characterizing the property of porous materials.
However, the measurement process as well as parameter calculation seem rather
complex.

2.3 Determining Absorption Coefficient by Standing Wave Ratio
Method

One of the most fundamental approaches for determining absorption coefficient
experimentally is known as the standing wave ratio (SWR) method. Due to its
simple idea and constitution, and also the needless for complex calculation, the
method is suitable for the direct numerical approach such as the CA model dealt
in the present study. As illustrated in Fig. 2, the progressive wave propagates
into the material and a wave reflected at the face of material interferes and forms
standing wave distribution. The standing wave ratio (SWR) is defined by the ra-
tio between the maximum and the minimum peaks of standing wave. Practically,
in an experimental situation, these peaks are explored by scanning microphone
along acoustic tube axis. The SWR, n, is defined as follows.

n =
|Pi| + |Pr|
|Pi| − |Pr|

(13)

The reflection constant rp is then determined by the following equation and fur-
ther absorption coefficient by (10), as well.

rp =
|Pr|
|Pi|

=
n− 1
n+ 1

(14)

Fig. 2. Standing wave distribution inside an acoustic tube. The progressive wave prop-
agates into the material and a wave reflected at the face of material interferes and
forms standing wave distribution. The standing wave ratio (SWR) is defined by the
ratio between the maximum peak and the minimum peak of the standing wave.
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Fig. 3. Simulation model of acoustic tube incorporating absorbing material. A sound
source is located at left hand side of the tube, whereas the porous material located on
the other side.

3 The Cellular Automata Model

In this section, Cellular Automata model is developed for simulation of acoustic
wave propagation in a media incorporating porous material. The simple finite
difference scheme obtained by linear wave equation is referenced for develop-
ing local interaction rule, in a sense that discretized wave equation yields to an
expression of local relationship of wave amplitudes. The rule is then extended
to a more practical case, yet time and space are treated as discrete integers.
The Cellular Automata approach to such a wave propagation problem was dis-
cussed for two dimensional models comparing with analytical solutions. Defini-
tions for state variables and local interaction rules are presented in the following
subsections.

3.1 Space Partitioning and State Definition

Figure 3 shows two dimensional space discretized into rectangular cells. Each
one of the cell is distinguished for its state by three numbers; i) zero for acoustic
media (air), ii) 1 for rigid wall , and iii) 2 for portion of absorbing material.
Additionally, two variables which express the sound pressure and particle velocity
are defined for the first acoustic medium state. These variables are updated
at each simulation step according to the local interaction rules explained in
the next subsection. In advance to composition of local rules, the definition of
neighbor is specified as shown in Fig. 4. For the two dimensional model, cross-
located four cells are neighbors which is conventionally called Neumann Style
neighbors. In each medium state cell the sound pressure variable is assigned
as well as particle velocities in four neighboring directions. Following Cellular
Automata convention, time and space are treated as integers. In order for the
model to be comparable with analytical solution, we assign unit cell length dx =
0.001[m], and also the sound speed c = 344[m/s]. Table 1 shows comparative
listing between CA space and physical parameter.

3.2 Foundation of Local Rules

State parameters given in each one of the cells is updated every discrete time
step according to a local interaction rule which is described in this section.
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Fig. 4. Definition of neighbor in two dimensional acoustic model. Two state variables,
sound pressure P and particle velocity V, are placed in each cell.

Table 1. Table 1. Equivalent system parameters. Parameters defined in the CA model
are com-pared with those in physical system.

Sound speed Unit time step Unit space size
Physical system c = 344 [m/s] dt = 1/344 [sec] dx = 0.001 [m]
2-dim CA model c = 1/

√
2 [cell/step] dt = 1 [step] dx = 1 [cell]

First, the particle velocities in four directions are updated in time with respect
the difference of sound pressure between adjacent cells, whose update rule is
described explicitly as,

Va(x, t+ 1) = Va(x, t) − {P (x + dxa, t) − P (x, t)} (15)

Va represents particle velocity of media and P the sound pressure. Two dimen-
sional cell position is expressed as a vector x and discrete time step as t. A suffix
a in (15) signifies index of four neighbors. The particle velocity further obeys
(16), which expresses energy dissipation by the flow resistance due to presence
of porous material.

Va(x, t) = (1 − n · d)Va(x, t) (16)

In the above (16), n represents number of porous material cells in neighbor, d a
damping constant per unit cell. The pressure is then updated according to the
rule described by (17),

P (x, t+ 1) = P (x, t) − c2a
∑

a

Va(x, t+ 1) (17)

where ca denotes the wave traveling speed in CA space. Sound pressure and
particle velocities are updated according to the local rule described by above
three equations.

Since calculation will be carried out between nearby cells that are separated
only a unit length at every single step, any physical quantities cannot have
the transport speed exceed to this calculation limit. This applies directly to
one dimensional CA model with maximum speed condition ca ≤ 1 , whereas
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not for two dimensional case. Since wave is assumed to propagate isotropically
despite the square compartment of space and cross-style definition of neighbors,
an effective traveling speed must be considered. It is known that the maximum
wave speed becomes ca = 1/

√
2 for two dimensional case, therefore the wave

front travels 1/
√

2 of unit cell length per calculation step. These conditions can
also be obtained by the CFL condition, which provides requirement for numerical
stability of finite difference scheme expressed explicitly as,

c =
Δt

Δx
≤
{

1 for one dimension
1/

√
2 for two dimension

(18)

where Δt and Δx are unit time step and unit length in difference scheme, re-
spectively. By setting Δt and Δx be unity, we get c ≤ 1 as one dimensional
stability condition, and also 1/

√
2 for another. It is straightforward to say that

upper limit condition of propagating speed can be derived not numerically, but
physically in the CA model.

4 Simulation of Wave Propagation

In this section, simulation of acoustic wave propagation is performed for the
acoustic tube model incorporating porous material as shown in Fig. 3, which is
described by the Cellular Automata. Analytical solution is also calculated using
set of equations explained in section 2.

In the CA model, the space inside acoustic tube is divided into 100 x 1000
cells, where the unit size of a cell is assumed to be 1 [mm] for the comparison
with physical system. Hence the size of acoustic tube corresponds to 100 [mm]
in diameter and 1000 [mm] in length respectively. The sound source is provided
by giving forced particle velocity to cells which are located on the left edge of
the tube, whereas the sound absorbing material with certain thickness is located
on the other side by assigning cell state as porous material.

Two cases of simulation are performed in the following subsections. The first
case calculates acoustic field inside sound tube without porous material, where
the resonance characteristic is investigated comparing with analytical solution.
In the second case the CA model is tested for the presence of absorbing material,
where the result is compared with analytically calculated absorbing coefficient.

4.1 Acoustic Tube Model Without Porous Material

The acoustic field inside sound tube model without porous material is calculated.
Analytical pressure distribution caused by pulse excitation at the sound source
can be obtained by (4). The resonance characteristic of the acoustic tube with
length 1 [m] is shown in Fig. 5. The first and the second resonant frequencies
for the tube are 172 and 344 [Hz], respectively. From Fig. 4, it is known that
frequency response obtained by CA model well corresponds to analytical one.
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Fig. 5. Frequency response of acoustic tube. The CA model well coincides with ana-
lytically calculated response.

4.2 Acoustic Tube Incorporating Porous Material

The second case deals with an acoustic field inside sound tube under the presence
of porous material. Two cases of porous material with thickness 50 and 100
[cells] are considered in the present simulation. Hence the thickness of material
becomes 50 [mm] and 100 [mm] in the actual physical system, respectively. The
damping parameter with respect to the (16) in the CA model is set to d = 0.2,
and the inner pores of the material is expressed by randomly locating cell states
by the mixture of medium and material state, so that the porosity becomes
0.8 apparently. Sinusoidal excitation at the sound source whose frequency varies
from 10 to 4000 [Hz] is generated at the left end of the tube. The absorption
coefficient is processed according to the SWR method depicted in section 2.3 by
the measured standing wave amplitudes.

The absorption coefficient is also calculated analytically by using set of equa-
tionsmentioned in section2. In calculatingpropagation constantandcharacteristic

Fig. 6. Absorption coefficient obtained by the CA model. The absorption coefficient is
determined according to the SWR method. The solid and dashed curve signifies ana-
lytically calculated absorption coefficient for the respective material thickness 50mm
and 100mm.
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impedance using (11) and (12), the flow resistanceRf is set 5000 [Ns/m4], and the
porosity σ = 0.8, respectively.

Calculation results obtained by both CA and analytical model are illustrated
in fig-ure 6. The results calculated by the CA model well coincides with ana-
lytical one for two cases of material thickness except for considerable difference
in relatively low and high frequency regions, which is due to the inadequate
formation of standing wave for extremely low frequency in such an short dis-
tance of the present acoustic tube model, and also insufficient partition of space
compared to the wave length in higher frequency.

5 Conclusions

In the present paper, the two dimensional acoustic wave propagation model
is devel-oped using Cellular Automata. Moreover, the sound absorbing model
incorporating porous material is investigated. It is shown that the CA model
well illustrated results which are consistent with analytical solutions.
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Abstract. The development of a new scientific trend - physical mesomechanics 
gave a stimulus to elaboration of new methods of simulation of the self-
organization phenomenon in solids under loading. One such method, is the re-
laxation element method, which maintains an unambiguous connection between 
the stress-drop in the local volume of a solid with plastic deformation in it. 
Based on this method and with combination of cellular automata approach a 
simulation of the evolution of band structures in polycrystals has been studied. 
The model can be referred to the class of geometrical models, known as cellular 
automata. Physical principles, laid on the basis of the model, allowed to reveal 
in the simulated polycrystals self-organization of the band structures and the 
regularities of the development of localization patterns, observed in experi-
ments. The fundamental property of a solid: ”plastic deformation in the local 
volumes of solid is accompanied by stress relaxation in it” lies in the basis of 
the method. 

1   Introduction 

It was experimentally proved and theoretically grounded that the evolution of band 
structures in polycrystalline metals reveals the phenomenon of self-organization. 
Neither theory of dislocations, nor the mechanics of solids can explain such phenom-
ena adequately. That is why  necessary prerequisites have been created for the appear-
ance of the new scientific trend-physical mesomechanics [1,2], filling the gap  
between two extreme approaches: micro- and marcolevels. From the point of view of 
physical mesomechanics the development of the band structures in deformable solid 
under loading is governed by stress relaxation of the stress concentrators on the dif-
ferent scales. The difficulty of the description of the phenomenon of strain localiza-
tion lies in the fact that it is not possible to formulate a universal physical law of the 
connection between the plastic deformation and the stresses in the solid because of the 
relaxation nature of the former. One of the ways to resolve such kind of problems is to 
apply a new method of description of the stress-strain state of the material under load-
ing-Relaxation Element Method [3-7]. The fundamental property of a solid: ”plastic 
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deformation of solid under loading is accompanied by stress relaxation in the local 
volumes of solid” lies in the basis of the method. Because the approach represented in 
this paper is based on two methods - REM and Cellular Automata, let us concentrate 
first on the first one. In the next section of this paper the basic equations of the 
method are demonstrated.  

2   Physical Principles and Algorithm of the Model 

2.1   Constitutive Equations and Postulates of Continuum Theory of Defects 

The dependence of the plastic deformation on the stresses in the local volume of the 
solid is defined by the statements and postulates of continuum theory of defects. Fol-
lowing the procedure, described in [4], we obtain the system of equations 

0,,, =−=+ p
jmnijkl

e
jklijklijij CCf εεσ , or 

.,,
p

jmnijmn
e

jklijkl CC εε =                                                     (1) 

The above equations are enough to unambiguously define the connection between 
incompatible plastic deformation and stresses within a volume of solid. The Relaxa-
tion Element Method (REM) simplifies the solution of the problems, connected with 
theoretical calculation of the stress fields in the continuous medium and the sites of 
plastic deformation.  

2.2   The Stress Field Components for Relaxation Elements 

In [10] it was shown that in the system of origin of coordinates at the center of a circle 
and 0 -axis along the tensile stresses, the components of the stress field beyond the 
round contour [8,9] are equal:  
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This is the known solution of Kisch’s problem [8,9]. However, in the present case the 
analogous stress state of the plane is caused by plastic deformation of the material in 
the circle, and the region without stresses should not be considered as a region where 
there is no material. It is not difficult to prove that at that time beyond the round region 

the non-homogeneous stress field will exist (2) without Δσ stress. Within the site of 

plastic deformation the material will be in compression state −Δσ. 

Shown in Fig. 1a is the spatial distribution of the σy component of the stress field in 
the plane with the site of plastic deformation of the considered type. (see equation (2)). 
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It is seen, that inhomogeneous stress fields exist beyond the site. The stresses break at 

the round contour. Stress relaxation σ by the value Δσ creates around itself the zone 

of elevated stress concentration, while maximum value of stress σy (3Δσ) exceeds the 
value of external applied stress.  

We have proved that the prescription of the value of stress relaxation Δσ within 
the zone of plastic deformation allows to define the stress-strain state beyond this 
zone with the method of theory of elasticity. As a result the stress field in the whole 
volume of solid with the site of plastic deformation became known.  

3   Model 

Application of relaxation elements as defects, characterizing the interaction between 
plastic deformation and stresses allows to simulate the process of plastic strain local-
ization and to obtain the dependency of flow stress on the sequence of separate struc-
tural elements involvement into plastic deformation. Developed on the basis of REM 
model operates on the basis of uniform synchronous cellular automata [10]. 

We followed here the same procedure as in [11]. The calculational field is divided 
into a large number of cells, playing the role of elements of structure. Each element of 
the simulated medium posseses the ability to switch the state by a discrete jump of 
plastic deformation, setting by a definite relaxation element. This procedure means 
that the element of structure can periodically increase its degree of plastic deforma-
tion and as a stress concentrator influences the change Δσ of the stress field in the 
whole volume of solid. The involvement of structural elements into plastic deforma-
tion is realized by definite rules of transition (for example, at the instance of time of 
achieving of critical value of shear stress).  

 

Fig. 1. a) Stress field distribution of the component σy, which is obtained as the critical shear 
stress is attained in some hexagonal cell; b) Neighbourhood pattern in the proposed model: the 
coloured cell 

Interaction of the stress fields from the various structural elements, which have un-
dergone plastic deformation, proceeds automatically according to the procedure, de-
scribed above. The orientation of slip plane in each crystallite was set by generator of 
random numbers from 0 to 360°. The second slip system was chosen to be oriented at 
an angle of π/3 with respect to the previous one. 
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Fig. 2. The distribution of angles, generated by a random numbers generator 

Resolved shear stress in each crystallite was defined according to the equation:  

                              )sin(coscossin)( 22 αασαασστ −+−= xyxy               (10) 

rule: it changes the filed of stresses inside the hexagon and outside of it by placing the 
stress field from plastic site inside the circular region inside the hexagon. Then the 
value of critical shear stress is calculated in the neighbouring grains, the maximum of 
shear stress, corresponding to the minimum of external applied stress is calculated. 
For the case of rigid inclusion, the simulation starts in the similar way as in the case 
without the inclusion.  

The implementation was developed in the programming language C++. The visu-
alization was performed in Java language. 

4   Results and Discussion 

Using the above approach, the simulation of the propagation of the sites of localized 
plastic deformation has been performed for the case of an aluminum polycrystal under 
tensile loading without and with the presence of a rigid inclusion. Shown in Fig. 3 are 
the patterns of plastic shear band evolution in an aluminium polycrystal.  

As can be seen in Figure 3, the grains one after another are involved into plastic 
deformation, consequently embracing the whole specimen grid. The external applied 
stress oscillates around some average value (Fig 3 a).  
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Fig. 3. a) Self-organization of the bands of localized plastic deformation in a polycrystalline 
aluminum under tensile loading; b) Loading curve  
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Fig. 4. a) Self-organization of the bands of localized plastic deformation in a polycrystalline 
aluminum with a rigid inclusion under tensile loading; b) Loading diagram  

Each stress drop on the loading curve matches the intersection of the cross-section 
of the specimen by deformation bands. 

As can be seen from the diagram, the same regularities in its behaviour are de-
tected. With the only difference that it oscillates around lower value than in the case 
without presence of the inclusion. The value is different because, the  internal stress 
field from the inclusion makes contribution. 
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5   Conclusions 

In the present paper the self-organization of the bands of plastic deformation in poly-
crystalline aluminium without and with rigid Al2O3 inclusions is simulated within the 
framework of the combination of two methods-cellular automata method and 
relaxation element method. LPD bands-evolution in a polycrystals with round 
inclusions have been performed. The simulation shows the qualitative difference of 
the development of plastic strain localization in pure aluminium polycrystal and in 
one with a rigid inclusion. The model could be used for the prediction of the evolution 
of the bands of localized plastic deformation in polycrystals with inclusions. Future 
work needs to concentrate on a more sophisticated description of plastic strain 
localization.  
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Abstract. This paper is devoted to modelling of water flow dynamics
in open-channels for the goal of controlling irrigation systems. We expose
and validate a methodology based on Lattice Boltzmann models as an
alternative to the commonly used Saint-Venant equations. We adapt a
bi-fluid model to the case of a free surface water flow. A gravity force
is applied to the heaviest fluid as to maintain it at the bottom. The
considered boundary conditions take into account the control actions
provided by the two underflow gates located at the left and right ends
of the reach. Numerical results for density profiles are given to validate
our approach.

1 Introduction

The control and management of water resources has become an increasingly
important problem in the world and have attracted a strong interest. Irrigation
(water for agriculture, or growing crops) is probably the most important use
of water. Traditional irrigation systems still waste too much water, especially
during transport from the rivers, lakes or reservoirs, to the crop fields. Recent
researches were focused on regulated river systems and developed automatic dam
gate controller for water flow in order to improve the performance of irrigation
systems. Different methods and controllers have been reported in literature in
which a flow, level or volume variable is controlled by acting with a discharge or
gate opening control variable [18,12,13].

The controller design (i.e. the determination of control actions leading to a
desired dynamic behaviour of the controlled system ) is an important step in con-
trol theory. It requires a model that captures the main features of the system.
Open-channels dynamics are commonly described using non-linear partial dif-
ferential equations based on the so-called Saint-Venant (SV) system (see [4,8,11]
and the references therein). The SV system is a well-known approximation of the
incompressible Navier-Stokes equations for shallow water flows with gravity and

S. El Yacoubi, B. Chopard, and S. Bandini (Eds.): ACRI 2006, LNCS 4173, pp. 373–382, 2006.
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a free moving boundary. Its derivation relies on the hydrostatic approximation
where the role of viscosity and friction at the bottom is considered.

SV equations are known to provide an accurate description of the canal dy-
namic behaviour [6,7]. Nevertheless, the problem is that these equations are
very complex and highly non-linear. They cannot be solved analytically except
for very simple situations. Furthermore, the various numerical methods used
to solve SV equation (finite-difference and finite-element methods, collocation
method [19,5]) need a large amount of spatial discretization points in order to
obtain realistic solutions.

We propose in this paper an approach based on lattice Boltzmann (LB) models
which have been successfully used for modelling and simulating several complex
fluid flows [2,3,20]. The LB method, which is an extension of the cellular au-
tomata approach, solves the fluid motion based on the mesoscopic dynamics of
pseudo-fluid particles evolving on a discrete space-time universe (the lattice). It
is especially useful for flows around complex geometries and naturally accom-
modates a variety of boundary conditions such as the pressure drop across the
interface between two fluids and wetting effects at a fluid-solid interface.

The present study focuses on the behavior of the water level in a reservoir
with upstream and downstream gates and the effect of various conditions on
the reservoir boundaries. We consider the Shan-Chen two-fluid model [16] to
simulate an open channel with a free water level.

The paper is organized as follows: section 2 gives a brief introduction to lattice
Boltzmann (LB) models, presents the main features of our model and discusses
various boundary conditions. Section 3 is dedicated to numerical simulations and
model validation. The paper ends with some concluding remarks.

2 System Description

In general irrigation canals can be a complicated structure made up of several
reaches delimited by underflow gates. The gate opening is used as the control
actions. Here we restrict our study to a canal partitioned as a single reach con-
sisting of a single pool with two gates, Gup and Gdown, located at its upstream
and downstream ends, respectively, as depicted in Fig. 1. A one-dimensional por-
tion of a canal is shown. It is assumed to be horizontal with one reach of length
L. The flow dynamics in such open canals are usually described by the so-called
Saint-Venant equations [4,8,11], a set of nonlinear partial differential equations
expressed as

∂A

∂t
+

∂Q

∂x
= 0 (1)

∂Q

∂t
+

∂A

∂x
·
(
gA

B
− Q2

A2

)
+

∂Q

∂x
· 2Q
A

+ gA · (Sf − S̄) = 0 (2)

for all (x, t) ∈]0, L[×R+ where x is the spatial location and t is the temporal
variable; A is the flow cross-section, Q the discharge, g the gravity, h the water
elevation (A = h ·B, where B is the width of the channel), S̄ the channel slope
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and Sf the friction slope. These equations are completed with initial conditions
h(x, 0) and Q(x, 0). The associated boundary conditions are given by a standard
discharge relationship for under flow gates defined as follows :

Qin = αin ·B · θin

√
2g(hup − h(0, t)) (3)

Qout = αout ·B · θout

√
2g(h(L, t) − hdown) (4)

where hup and hdown are the left and right water level respectively, outside
the reach, with hup > hdown. The quantities θout and θin are respectively the
openings of the downstream and upstream gates. The constants αout and αin

are gates-specific coefficients.

Fig. 1. Channel diagram

3 Proposed Lattice Boltzmann Model

3.1 Lattice Boltzmann Approach

Lattice Boltzmann (LB) models constitute an efficient tool to model and simu-
late realistic fluid flows obeying the Navier-Stokes equations. They derive from
Lattice-Gas cellular automata models as they describe, on a Cartesian grid, the
fluid motion by an equivalent mesoscopic dynamics that still contains the suffi-
cient physics to allow accurate recovery of the desired macroscopic behavior.

Let us consider a discrete space made up of a Cartesian lattice of spacing
Δr, with a discrete clock of time step Δt. At any discrete time t, we assume
that particles are entering every lattice site r according to the possible lattice
directions i = 0, . . . , z. By definition, direction i = 0 refers to particles at rest.

In the LB approach, the particle populations are described by densities distri-
bution Ni(r, t). As in any kinetic approach, the fluid density ρ and fluid velocity
u are given by the moments of the Ni (see for instance [3,20,2])

ρ =
z∑

i=0

miNi(−→r , t) (5)
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j = ρ−→u =
z∑

i=0

mi
−→v iNi(−→r , t) (6)

where j is the local momentum. The mi are specific weights associated with
each direction and −→v i denotes the velocity associated with each population. By
defining the ratio between the lattice spacing and time step as v = Δr

Δt
, we obtain

−→v i = v · −→c i.
The dynamics is divided in two steps that alternate over time: propagation

and collision. During the propagation step the Ni from each r move towards a
nearest neighbor site r + ci, in a direction given by the z + 1 vectors ci. Fig. 2
shows an example for z = 8. The collision phase amounts to transforming the
incoming distributions Ni at each lattice site into outgoing distributions.

Fig. 2. Elementary movement vectors

In the case of the well-known BGK model (Bhatnager, Gross and Krook, see
[15,3,20]), the collision operator is a relaxation towards prescribed local equilib-
rium distributions Neq

i . The equation combining the collision and propagation
steps is then

Ni(−→r +Δr, t+Δt) = Ni(−→r , t) −
1
τ

(Ni(−→r , t) −Neq
i (−→r , t) +

Δt

v2C2

−→v i · F (7)

The quantity τ is a relaxation time which allows to control the system viscosity
and C2 is a model parameter whose value is based on tensors isotropy consid-
erations. The equilibrium populations Neq

i (−→r , t) are given functions of the local
density and velocity [3,20]. It can be shown that the LB dynamics is, in some
limits, equivalent to the Navier-Stokes equation. A particularity of the LB ap-
proach is that the pressure p is related to the density ρ as in an ideal gas p = c2sρ,
where cs is the speed of sound.

3.2 The Irrigation Canal Model

In order to model two fluids (water, air) in the channel, we consider the so-called
Shan-Chen model (see [14,16,16]) which implements the interaction of two im-
miscible fluids. In this model, each lattice cell contains two types of populations,
denoted Ri(−→r , t) and Bi(−→r , t), describing the often called red and blue fluids,
respectively. The calculation of the total momentum at each location has to take
into account the momentum of each of the two components
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u ·(ρR

τR
+
ρB

τB
) =

jR
τR

+
jB
τB

=
1
τR

·
z∑

i=0

mi
−→v iRi(−→r , t)+

1
τB

·
z∑

i=0

mi
−→v iBi(−→r , t) (8)

where mi, i = 0 . . . z are the weights of each lattice direction.
In the Shan-Chen model, an interaction force is introduced between the parti-

cles of different kind to mimic their mutual repulsion. The result is the existence
of a surface tension between the two fluids. This interaction force is supposed to
occur only within the nearest neighbours, and can be expressed as follows :

FR(−→r ) = −ψR(−→r )GRB

z∑
i=0

ψB(−→r +Δt
−→v i)−→v i (9)

FB(−→r ) = −ψB(−→r )GRB

z∑
i=0

ψR(−→r +Δt
−→v i)−→v i (10)

Here ψσ = fσ(ρσ(−→r )) (with σ = R,B) is a function of the local density and
GRB defines the importance of the interaction potential. These two expressions
are then used in equation 7 as the value of F and thus couples the Ri and
Bi evolution. In what follows, we choose the following form for the function
ψσ(−→r ) = ρσ(−→r ).

For the case of the canal application (see Fig. 1), we assume that the red
fluid represents the water and the blue fluid the air. The water must stay at
the bottom of the pool and exhibit a hydrostatic pressure variation. This can be
achieved by applying a gravity force to the red fluid only.

Two types of boundary conditions were tested so far for modelling the left,
right and bottom walls of the pool : the bounce-back and the Zou-He boundary
conditions. In the bounce-back case the collision step consists in giving each
population the value of the population of its opposite direction. The Zou-He
boundary condition applies a given velocity at the boundary and is described
in detail in [9,10]. The upper boundary is a pressure flow boundary condition,
which sets the density of each fluid at a fixed value at the boundary.

The gate boundary sites are considered as having a Zou-He boundary condi-
tion with a specified velocity. The velocity is derived from the discharge expres-
sion of the SV model according to the following formula :

uupstream
x = αin ·

√
2(hupstream − hpool) (11)

udownstream
x = αout ·

√
2(hpool − hdownstream) (12)

where αin and αout are gate-specific parameters. The left part of figure 3 shows
where the different boundary conditions are applied.

The numerical experiment consists in having an initial set of values for
hupstream, hpool and hdownstream and let the system reach an equilibrium of
water level between the three regions. The question will be then whether this
equilibrium corresponds to the prediction of SV equations.

We see on Fig. 3 (right) the density (or the pressure) of both fluids as a
function of the elevation above the canal bottom, once the equilibrium is reached.
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Fig. 3. Left : diagram of lattice Boltzmann model for a free-surface irrigation channel.
- Right : Density profiles of the water and air fluid. The intersection between the two
profiles is arbitrarily defined as the water level.

As the air-water interface is not sharp we define the water level as the height for
which the densities of the two fluids are equal.

4 Simulation Results

Simulations with the our model are carried out as follows: at t = 0, the lattice
is initialized with completely closed boundary conditions (the wall boundary
conditions are either Zou-He or bounce-back) until the system has reached equi-
librium. At t = 20000, the wall condition at the top is replaced by our constant
pressure boundary condition. At t = 40000, one or both gates are opened. The
wall condition (whether Zou-He or bounce-back) on the sites belonging to a gate
are replaced with the imposed velocity Zou-He boundary condition, with velocity
taken from eqs. 11 and 12. At t = tend, the simulation ends.

4.1 Simulation with Opened Upstream Gate

In a first simulation we observe the filling of the pool while only the upstream gate
is opened. The wall boundary condition we used for the first simulation is the Zou-
He boundary condition. The size of the lattice is 40× 20, with 20 being the height
of the lattice. Fig. 4 shows the density (or pressure) profiles of both fluids at times
t = 40000 (when the upstream gate is opened) and t = 100000, which is the end of
the simulation. We observe, as expected, that the water level has increased while
keeping the same the pressure gradient as well as the same air pressure.

The Zou-He boundary condition does not ensure a perfect mass conservation
for any value of the incoming population densities. It is thus necessary to verify
whether it results or not in a significant global mass loss (or increase) in the
system. To do so, we evaluate and compare both the global mass increasemsystem

of the system after the gate is opened and the actual mass min which was
introduced in the system through the gate. We obtain the left part of Fig. 5 with
Zou-He boundary condition and the right part with the bounce-back boundary
condition.
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Fig. 4. Evolution of the density profiles of the water and air fluid when the upstream
gate is opened
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Fig. 5. Comparison between the mass of water in the system and the mass of wa-
ter introduced through the upstream gate, with either Zou and He and bounce-back
boundary condition at left, right, and bottom walls

With Zou-He condition, there is a significant mass loss. On the other hand,
with bounce-back wall conditions, the conservation of mass is much better obeyed
(see Fig. 5, right). The evolution of the relative error |min − msystem| /min for
the bounce-back case is shown in the Fig. 6 (left). We explain this small error by
the fact that the top boundary was not replaced by a bounce-back condition. The
constant pressure condition at the upper sites is implemented in the same way
as in the Zou-He condition. Therefore a small mass loss is likely to be observed
at these sites.

Even if the bounce-back boundary condition seems better at keeping in the
system the mass which was introduced at the gate, it shows severe drawbacks
when we observe the density profiles. Fig. 6 (right) shows an example the density
profiles obtained with the bounce-back wall conditions. The pressure drop seen at
the bottom of the lattice, as well as the presence of the second fluid is unphysical.

We believe it is due to the fact the the density is not well calculated in a
bounce-back condition. Density is the sum of all populations but, on a wall,
only half of the populations are present. This results in a bad calculation of the
two-fluid interaction force in the sites which are neighbours to the boundaries.
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Fig. 6. Left : Relative error between the mass of water in the system and the total
mass of water introduced through the upstream gate with the bounce-back boundary
condition. - Right : Density profiles in the case of a bounce-back boundary condition
applied to the left, right and bottom boundaries.

4.2 Simulation with Both Opened Underflow Gates

The next simulation concern a system where both upstream and downstream
gates are opened. The water level is then supposed to converge to an equilibrium
value. Both gates are opened at t = 40000. Fig. 7 (left) shows the evolution of
the mean water level compared to the expected equilibrium value, when the
upstream and downstream water levels are imposed. The expected equilibrium
water level is the one which, in eqs. 11 and 12 makes the inlet and outlet flows
identical.

The mean water level stabilizes at a value close to the theoretical equilibrium
value. After performing several simulations with the two types of boundary con-
ditions as well as different values of the gates coefficients αin and αout (which
are equal in our simulations), we conclude that the simulated water level is
closer to its theoretical value when the bounce-back boundary condition is used
and when the gate coefficients are small. Fig. 7 (right) shows the results of the
measurements.
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The fact that the mean water value is better with the bounce-back than with
Zou-He condition suggests that the water level issue may be related to the mass
conservation issue. It is likely that the influence of the gate coefficients on the
mean water level is also related to the mass conservation. Indeed, the mass
loss which happen with a Zou-He boundary condition is related to how far the
system is from its equilibrium. Increasing the gate coefficients implies that a
stronger flow in the system and thus flow conditions more distant from the local
equilibrium state.

Note also that since the air-water interface is not sharp, an error in the esti-
mation of the water level could occur.

5 Concluding Remarks

We have proposed a two-fluid LB model in order to describe free surface flows
in irrigation canals. At this stage of our project, we have been concerned with
the validation of the very basic property of such system. In particular we have
simulated the water level in a pool subject to an inlet and outlet flow.

On the one hand, we obtained promising results as the simulated water level
is consistent with its expected value. However, we have shown that non truly
mass conserving boundary conditions cannot be used in the present context,
probably due to the fact that gravity induces a density gradient which amplifies
mass loss on the walls. On the other hand, it is expected that the problem with
the bounce-back wall condition at the bottom wall can be overcome with a more
clever calculation of the density.

Finally, a conceptual difficulty of our approach is related to the fact that, here,
the water fluid is compressible. Although this produces a correct hydrostatic
pressure, compressibility introduces a difference between the mass of water in
the pool and its level over the bottom wall. This question will be investigated
more thoroughly in a forthcoming study.

This research is supported by the Swiss National Science Foundation.

References

1. Bhatnager, P., Gross, E., Krook, M. : A model for collision process in gases, Phys.
Rev. 94, 511, 1654.

2. Chen, S., Doolen, G.D. : Lattice Boltzmann method for fluid flows. Ann. Rev. Fluid
Mech. 30 (1998), pp. 329364. H. Chen, S. Chen and W. Matthaeus, Recovery of
the NavierStokes equations using a lattice-gas Boltzmann method. Phys. Rev. A
45 (1992), pp. R5339R5342.

3. Chopard, B., Luthi, P., Masselot, A., A. Dupuis, A. : Cellular automata and lat-
tice Boltzmann techniques: An approach to model and simulate complex systems,
Advances in Complex Systems 5 (2002), no. 2.

4. Chow, V. T. : Open-channels Hydrolics, (International Students Ed. New York :
Mc Graw-Hill, 572 pages (1954).

5. Colley, R. L., Moin, S. A. : Finite element solution of St Venant equation, Journal
of hydraulical engineering. Division ASCE, vol. 102, N HY6, 759-775 (1976).



382 O. Marcou, S. El Yacoubi, and B. Chopard

6. Cunge J.A. : Simulation des coulements non permanents dans les rivires et canaux,
Ecole Nationale Suprieure d’Hydraulique de Grenoble, 173 p. (1988).

7. Cunge J.A., Holly F.M., Verwey A. : ”Practical aspects of computational river
hydraulics”, Pitman Advanced Publishing Program, 420 p. (1980).

8. Graf, W.H. : Hydraulique fluviale, Collection traité de genie civil. Ecole poly-
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Abstract. A Cellular Automata modeling of the lubricating grease flow under 
the shear deformation is proposed. Lubricating greases are composed of thick-
ening agent, liquid lubricant and various kinds of additives. The thickening 
agent forms fibrous microstructures in liquid lubricant, and lubricating greases 
present their special feature due to this microstructure. Though they are widely 
used in mechanical components, there is little understanding on the lubrication 
mechanism including the contribution of the fibrous microstructure. There have 
been proposed no other theoretical model except for the average flow model 
based on the fluid lubrication theory in tribology field. In the present paper, the 
flow modeling of lubricating greases under shear deformation was proposed by 
Cellular Automata, where aggregated thickening agent and liquid lubricant 
were represented by virtual particles movable on the two-dimensional cell 
space. It was assumed that the fibrous microstructure was composed of multiple 
particles, and external stress induces the flow of grease where the particles in-
teracts one another. 

1   Introduction 

Lubricating greases are widely used in mechanical components of various kinds of 
machines. Greases are solid or semi-fluid lubricant. They basically consist of liquid 
lubricant and thickening agent which constructs fibrous microstructures in lubricant. 
Other ingredients which produce special properties may be included1-3. Because of 
this two-phase system, the special features of greases such as the long interval of 
lubricant supply or the simple sealing mechanism are induced. 

The typical properties of lubricating greases have been investigated through mainly 
experimental methods by lots of authors. According to previous literatures, the fibrous 
microstructure in lubricating greases might be observed by electron microscope, and 
they revealed various static-state microstructures depending on the kinds of thicken-
ing agent. Theoretical approach has also been made by several authors4, in which the 
liquid lubricant including fibrous microstructure has been treated as homogeneous 
fluid presenting the feature of Bingham plastic fluid. But, for more than fifty years, 
the dynamic mechanism of microstructures in lubricating greases has not been re-
vealed, and that no theoretical model has been proposed to investigate it. 
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In the present paper, the flow modeling of lubricating greases under shear deforma-
tion was proposed by Cellular Automata (CA), where the aggregated thick fibers 
constructing networks of microstructures in greases, the short fibers of thickening 
agent and liquid lubricant were represented by virtual particles movable on the two-
dimensional cell space. It may be the first proposal by the authors even in tribology 
field that, according to the experimental observation, there exist two kinds of fibers; 
aggregated thick fibers and short fibers of thickening agent. It was assumed that the 
fibrous microstructure was composed of multiple particles, and external stress induces 
the flow of grease where the particles interacts one another due to friction and absorp-
tion effect. 

2   Grease 

General features of lubricating greases and visualized procedure of the fibrous micro-
structure under shear deformation are presented in this chapter1-5. To the best of our 
knowledge, it may be the first observation of dynamic behavior of thickening agent in 
lubricating greases. Further, the observation may be the most important procedure in 
defining the local neighbor rules in modeling by CA. 

2.1   General Description of Lubricating Greases 

Lubricating greases are basically composed of gelling or thickening agent, lubricating 
oil and various kinds of additives. It looks like a gel or a solid. The accepted  
definition of lubricating greases, published by the American Society of Testing Mate-
rials (ASTM), is “a solid to semi-fluid product of a thickening agent in a liquid lubri-
cant. Other ingredients imparting special properties may be included.” Though the 
amount of lubricating greases used in industry is relatively small compared with the 
amount of lubricating oil, it is widely used in mechanical components. The main ad-
vantages of greases to lubricating oils are; long interval of lubricant supply, small 
amount for sufficient lubrication, and simple mechanism of sealing system. On the 
contrary, disadvantages are; large energy loss caused by friction force, lower limit of 
shear velocity, or little cooling capacity. 

Lubricating greases may be classified into two types in reference to the kinds of 
thickening agent: soap or non-soap type greases. Further classification of non-soap 
type greases may be made by urea, organic, and inorganic type greases. Mineral oils 
and synthetic lubricants are used as the base oil for greases. In each type of greases, 
most thickening agent has a fibrous form and constructs a microstructure in liquid 
phase.  

The fibrous microstructure in lubricating grease governs its typical properties. It 
has been said that lubricating greases show elasticity, plasticity and fluidity in re-
sponse to its environment. The magnitude of applied force determines the strain reac-
tion of grease. Up to a particular value of applied stress, the grease will exhibit elastic 
properties; and beyond that value, the grease will deform plastically. With further 
increase in stress, the flow will be accelerated.  

A schematic view of fibrous microstructure is shown in Fig.1. It has been believed 
that lots of fibers form mesh-type microstructure and lubricating oil is comprised by 
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the gap of mesh structure. The microstructure is deformable by the external stress to 
some degree. When a shear deformation is applied to lubricating grease, the mesh-
type microstructure is forced to deform and liquid lubricant comprised in the structure 
is separated into the lubricated space. After the external stress to the structure is re-
moved, then liquid lubricant is comprised again into the gap of microstructure. This 
procedure is shown schematically in Fig.2. 

fibers of thickening agent

liquid lubricant  

Fig.1.  Schematic model of fibrous microstructure 

start to be deformed
under shear stress

fibers are compressed
and liquid lubricant is
seperated from structure

reorientation of
fibrous structures

 

Fig. 2.  Deformation of microstructure 

2.2   Experimental Observation 

It is important to know the physical phenomena in detail to build up a new dynamic 
model of the target. It is well known that there exist fibrous microstructures composed 
of thickening agent in lubricating greases, and lots of photographs were taken by 
electron microscope. But most of them reveal the static feature of microstructure, not 
the dynamic one. In order to make a flow model of lubricating greases, we need to 
know the dynamic behavior of microstructure in the flow state of greases. 

Various attempts were made by the authors to understand the dynamic behavior of 
fibrous microstructure in lubricating greases, and we finally succeeded in visualizing 
the flow by means of phase-contrast microscope developed for biological research. 
Figure 3 shows the visualized microstructure in the test sample of urea-type grease. In 
the close view of Fig.3, there were two kinds of fibers; short fibers whose length was 
several micrometers, and long and thick fibers lying in coils clearly observed in Fig.3. 
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According to the tribologist specialized for grease, the two kinds of fibers, short and 
long one, might be produced in the manufacturing process of grease, and they have 
not been reported in the past literatures. 

50 m

strong fibers of thickening agent

short fibers

liquid lubricant

 

Fig. 3.  Visualized fibrous structures in lubricating grease 

The dynamic flow visualization experiments were conducted in a simplified plain 
bearing system set on the microscope, as shown schematically in Fig.4. The time 
series of visualized flow in a wedge is shown in Fig.5. Among the various phenomena 
observed in this experiment, the following three special features were conspicuous: 

(1) The flow of lubricating greases is composed of the cluster of strong micro-
structures of fibers, short fibers, and liquid lubricant. The size of clusters lu-
bricant seems to flow among the clusters of structures.  

(2) There exists some slipping boundary of lubricating greases in the wedge area 
almost parallel to the moving surface. Though the experiment gives us two-
dimensional view parallel to the moving surface, the slipping boundary may be 
observed by adjusting the focus of microscope. This slipping boundary be-
tween fixed and moving surface may have been clearly observed in a simple 
experiment. 

 

Fig. 4. Experimental set up on the stage of phase-contrast microscope 
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Fig. 5. Dynamic behavior of visualized microstructures in urea grease 

(3) Reverse flows of lubricant were excited among the clusters of microstructure 
at several points in the visual field of microscope. It is not understood clearly 
that the reverse flow was observed in lubricating greases, but this may be 
caused by local pressure gradient in the lubricant. 

3   Modeling by Cellular Automata 

The main purpose of this research is to construct a flow model of lubricating greases 
including the fibrous microstructures by Cellular Automata6,7. Because lubricating 
grease is typically two-phase (or multi-phase) system, it is not easy to propose a pre-
cise flow model including the cluster of microstructures, the slipping boundary and 
reverse flow of lubricant. For more than fifteen years, the average flow model has 
generally been adopted in the simulation of grease flow, and it has been thought to be 
almost impossible to simulate the flow of lubricating greases including microstructure 
in detail. 

3.1   Definition of State 

The simulation was conducted in two-dimensional space perpendicular to the moving 
surface along the sliding direction. The flow of grease in a wedge was essentially 
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three-dimensional one, but a two-dimensional space was set in simplicity. This simu-
lation space was not the same as the one shown in Fig.5, but perpendicular to the 
experimental observation space. From the tribological viewpoint, the flow in the se-
lected space for the simulation was more important, because the flow into a wedge 
produces the pressure supporting the load to the bearing. In fact, it was almost impos-
sible to observe the flow in the present two-dimensional space in the experiment. The 
space was divided into triangular cells, and four kinds of particles representing each 
state of cells were prepared: wall or boundary surface, strong fibers for microstruc-
tures, short fibers, and lubricant. Each particle had the state of mass and velocity. 

Lubricant was represented by particles and rest areas of cell having no particles. 
Because lubricant was generally thought to be incompressible fluid, all the cells  
representing lubricant should be filled with the lubricant particles. But, the flow of 
particles would not realized in such full condition. Then the flow of lubricant was 
visualized by the combination of particles and vacant area. The flow velocity should 
be estimated from the average velocity of particles representing lubricant. 

: first neighbor
: second neighbor

: target

 

Fig. 6.  Cell division and local neighbor definition 

3.2   Local Neighbor Rules 

The local neighbor was defined as the first and second neighbor, corresponding to the 
degree of influence to the target cell, as shown in Fig.6. The interactions between 
surrounding cells concerned in this simulation were the friction effect and the absorp-
tion effect among particles. 

The friction effect, indicated by the parameter α, appeared in the interaction among 
particles and between particles and moving surface. In case of the interaction among 
particles, the friction parameter αpp had the effect on the velocity of the target particle 
when the particles have different velocity. When a particle exists in a cell near the 
moving surface, the particle was given induced velocity from the moving surface 
caused by the friction parameter αpw. The degree of influence corresponded to the 
distance from the surface. 

It was assumed that a particle in the target cell might have absorption effect from 
surrounding particles in the local neighbor. This effect was indicated by the parameter 
β. In this simulation, the absorption effect was considered from the surface βs, from 
the particle constructing fibrous microstructure βfm, from the particle of short fibers 



 A Flow Modeling of Lubricating Greases Under Shear Deformation  389 

βsf, and from the particles of lubricant βl. Each effect was determined by a parameter 
set given as input data. The degree of absorption effect also corresponded to the dis-
tance from the target particle. 

After the velocity of the target particle was estimated and it exceeded the threshold 
value vth given as input data, then the particle moved to the neighboring cell. The cell 
to move was determined due to the direction of velocity vector and the position of the 
cell. When more than one particle was determined to move to the same cell, the parti-
cle having maximum velocity was selected to move and the state of the other particles 
were changed not be able to move. 

4   Simulation Results and Discussions 

Examples of simulation results are shown in Figs.7 and 8. The parameter set repre-
senting the friction and absorption effect is shown in Table 1. 

Figure 7 shows the case where the lubricating grease is placed between a pair of 
parallel plates, and the bottom surface moves at a constant speed in the shear direc-
tion. The dynamic behavior of cluster formation of microstructures and the slipping 
boundary may be simulated qualitatively in reference to the experimental results 
shown in Section 2.2. The strong fibrous structure indicated inside of dotted circle 
moves along the direction changing the form and main direction in the flow of lubri-
cating grease. 

Table 1.  Friction and absorption parameters 

Friction parameters : pp = 1.0
pw = 0.6 (for 1st neighbor)
pw = 0.3 (for 2nd neighbor)

Absorption parameters :                              { s fm sf l }    { s fm sf l }
fibrous structure    {0.1    0.1     1.5    0.0}   {0.1    0.1     1.5    0.0}
short fiber              {0.5    0.1     0.1    0.0}   {0.2    0.1     0.1    0.0}
lubricant               {-0.1    0.5     0.1    0.0}  {-0.1    0.2     0.1    0.0}
                                   1st neighbor                    2nd neighbor

 

The flow under shear deformation in wedge area is shown in Fig.8. In this case, the 
slipping boundary is clearly observed, and the reverse flow of lubricant can be simu-
lated at several points in the wedge area. As described in the previous section, it is 
necessary to simulate dynamic behavior under shear deformation in two-dimension 
space parallel to the moving boundary in comparison with the experimental observa-
tion. But the tree-dimensional simulation would be a future plan. 

The parameters representing the friction and absorption effect were determined by 
trial and error based on the experimental observation in this simulation. And it should 
be noted that these results may be the first simulation which shows the flow of lubri-
cating greases including the dynamic behavior of clusters of thickening agent. It may 
be required to give the physical background to the degree of parameters in the next 
step of this research. 
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Fig. 7.  Simulation of dynamic behavior of grease under shear deformation between parallel 
plates 

fixed wedge wall

moving boundary  

Fig. 8.  Simulation of dynamic behavior under shear deformation in wedge-shape pathway 

5   Conclusions 

In this paper, a dynamic flow modeling of lubricating greases by Cellular Automata 
was proposed, in which the thickening agent and liquid lubricant as the component of 
greases are represented by virtual particles movable in simulation space. The micro-
structures of thickening agent were represented by the aggregation of particles, and 
dynamic behavior of microstructure was simulated under shear deformation of 
greases. Introducing the friction effect between the boundary wall and lubricating 
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grease, and also among the particles, a slipping boundary appeared in the simulation. 
There is still little understanding as for the degree of the friction and absorption ef-
fects introduced in this simulation, and it is necessary to give physical background to 
the parameters expressing friction and absorption effects. 
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Abstract. This paper presents an application of Cellular Automata in
the field of dry Granular Systems modelling. While the study of granular
systems is not a recent field, no efficient models exist, from a computa-
tional point of view, in classical methodologies. Some previous works
showed that the use of Cellular Automata is suitable for the develop-
ment of models that can be used in real time applications. This paper
extends the existing Cellular Automata models in order to make them
interactive. A model for the reaction to external forces and a pressure
distribution model are presented and analyzed, with numerical examples
and simulations.

1 Introduction

Granular systems dynamics has been widely studied during the last decades.
The traditional approach uses fluid models and particle system models for de-
scribing the flow of granular material and the formation of heaps [1]. However,
granular systems show characteristics, such as the appearance of macroscopic
patterns or avalanches, that cannot be properly modelled using this approach.
For this reason, Cellular Automata (CA) have been used to model and study
the statistical properties of these systems [2,3,4].

When simulating the behaviour of a granular system in a computer graphics
application, the visualization of the system’s external surface and its evolution is
crucial [5]. The classical models employ fluid dynamics or discrete element mod-
elling (DEM) to study the systems. Such techniques are not appropriate, since
their computational cost makes them difficult to be included in real time simula-
tions. In contrast, CA based models are simple and describe the granular system
as a grid, so they can be very efficiently rendered by graphics processors [6].

This paper deals with modelling of dry, low cohesive, granular systems for
real time computer simulation of terrain manipulation (tillage, excavation, min-
ing,. . . ). In this context, a simulation is considered to run in real time if comput-
ing a time interval of Δt seconds takes less than Δt using an standard personal
computer.
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1.1 Granular Systems Modelling

A dry, low cohesive, granular system can be considered as a system with two
layers; the standing layer, that forms the slope or the heap of the system, and the
rolling layer, that is a thin layer that flows on the surface of the slope [1]. This
behaviour can be modelled by means of a set of partial differential equations [8]
that describe the evolution of these layers’ thickness.

The model can be formulated as follows [8,9]: the system has two state vari-
ables, the height of the static layer, s(x, y, t) and the height of the rolling layer,
r(x, y, t). The variation of these variables along time is expressed by the set of
equations

rt = v∇(r∇s) − γ(α− |∇s|)r (1)
st = γ(α− |∇s|)r

where α is the so called angle of repose of the system, γ is a parameter that
expresses the rate of matter transfer between layers and v is the speed of the
rolling layer, that is considered constant.

1.2 Description of the CA Model

In [7], some simplifications are taken upon this model in order to define an
update rule for a CA model that reflects the behaviour of a granular system.
The rolling layer is considered of constant width and the update rule is defined
so that matter flows in the direction of maximum slope, indicated by the vector
field −∇h(x, y).

According to the model presented in [7], a CA on an L × L square grid is
considered. This grid represents the plane on which a granular system with con-
stant density ρ is laying. The value of each cell h(i, j) ∈ IR represents the height
of the system on the cell’s centre (xi, yj). The set of points {(xi, yj , h(i, j))}ij is
a discretization of the surface {(x, y, h(x, y))}.

For each cell, (i, j), an approximation to the gradient ∇h(xi, yj) is computed.
When the slope angle obtained from this gradient arctan(|∇h|) is lower than the
repose angle of the system α, the value of cell (i, j) remains unchanged. On the
other case, if arctan(|∇h|) > α, the following update is done:

h(i, j) ← h(i, j) − z+ · (hx(i, j) + hy(i, j))
h(i+ 1, j) ← h(i+ 1, j) + z+ · hx(i, j)
h(i, j + 1) ← h(i, j + 1) + z+ · hy(i, j) (2)

where z+ indicates the velocity of flowing matter, and hx, hy are the partial
derivatives of h(x, y) respect to x and y, computed numerically. For further
detail on how the parameters of model (1) relate to the CA model, refer to [7].

The main advantages of this model are that it can be run in real time and that
it can be easily managed in a 3D graphics environment. However, it lacks the
possibility of interaction, which is a very important aspect in many virtual reality
and simulation applications like a driving or civil heavy machine simulator.
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The goal of this paper is to derive from (2) some models that allow to perform
an interactive simulation of a granular system. Firstly, in Sect. 2, a CA model
that will be able to consider the effect of the application of vertical forces in the
system will be defined. Then, in Sect. 3, a model for the computation of pressure
under the granular system, based on the CA representation will be developed.
Finally, in Sect. 4 a brief analysis about computational issues will be done.

2 Interactive CA Model

In order to provide interactivity to the model (2), a brief analysis of the stress
propagation behaviour within a granular system will be done. Following, and
taking into account the main properties observed, a CA model to consider the
effect of applying vertical forces to the surface of the system will be proposed.

In order to maintain the constant density condition, we will assume that our
system is formed by a cohesionless material, with low compressibility. Examples
of such systems are dry sand, or many fertilizers formed by dry, hard particles.

2.1 Stress Distribution in Granular Systems

A well stated granular systems property, observed both in real systems and in
simulations, is the fact that the internal stress it is not exclusively propagated
vertically within the system. It also spreads horizontally, and forming some angle
ε with the vertical line axis [10,11,12,13]. In that way, if we consider the appli-
cation of a vertical force at a point x on the top of the surface, the stress will
be propagated not only downwards, but also horizontally pushing some material
away.

In the case the force be strong enough, the pressure transmitted from point
x to the surroundings will make some part of the material to move up, as this is
the direction where the pressure offers less resistance. After all, when the whole
process ends, the result is that the height of the material at the surrounding of
x should have raised.

2.2 The Model

If we now discard any discussion about the granular system internal properties,
the behaviour depicted above can be summarized as follows. If an strong enough
force, f , is applied at a point x, a movement of material from point x to the points
surrounding it happens. This system dynamics description is analogous to the
model of the granular system presented by (2), where an increase of the material
in cell i causes a displacement of material from that cell to its neighbours.

The new model proposed here is a modification of the original one, in which
the displacement of material can be fired both, by a large difference in height,
and by a big difference among the vertical forces applied to two neighbouring
cells.

Let’s consider a granular system on a square plane and the CA representation
defined in [7]: an L×L grid with a variable h(i, j) representing the height of the
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system at the centre of cell (i, j). Let f(i, j) be the scalar value of the vertical
force applied on each cell, and let F be a real function F : IR → IR. We define
two new variables for the CA: hf as the composition hf (i, j) := F (f(i, j)), and
the sum h′ := h+ hf .

For each cell (i, j), ∇h′ is computed. Then, in the cells where arctan(|∇h′|)
is higher than the resting angle of the system α, the state of the automata is
updated according to the following rule:

h(i, j) ← h(i, j) − z+ · (h′x(i, j) + h′y(i, j))
h(i+ 1, j) ← h(i+ 1, j) + z+ · h′x(i, j)
h(i, j + 1) ← h(i, j + 1) + z+ · h′y(i, j) (3)

where, again, z+ represents the velocity of flowing matter, and h′x, h′y are ap-
proximations to the partial derivatives of h′(x, y).

A first approximation to F is to consider the height of a square column of
material that weights exactly f . That is

F (f) = η
f

d2ρg
(4)

where g is the acceleration of gravity, ρ is the density of material, d2 is the area
of a cell of the automata and η > 0 is a parameter that allows to define how
easily the force causes matter displacement.

The force function F defined by (4) integrates very well with contact force
models based on spring-damper equations. These models are very common in
real-time applications and avoid large object interpenetrations by means of ap-
plying forces proportional to their overlapping [14,15]. In case of a collision be-
tween a rigid object and a granular system modelled by (3), the force defined by
(4) will cause the granular system deformation, allowing some object advance
until the deformation be large enough to eventually stop it.

2.3 Numerical Simulations

Figure 1 shows two examples of the use of the proposed models with this contact
force computation strategy. A ball has been left fall onto two system configu-
rations; a plane, and a heap. The pictures correspond to the final equilibrium
state, for a value of η = 1, with d = 0.5, α = 30o and z+ = 0.05 for the system’s
parameters. During the simulations, it has been observed that, as expected, if
the value of η is increased, matter flow is higher. Thus lower resistance to pen-
etration is offered, and higher terrain deformation can be observed. This effect
has not been shown in figures for space reasons.

Although the proposed model does not reproduce the inner processes that
drive the interaction between a granular system and a rigid object, the effect
of the interaction is the observed behaviour [16,17], extending the application
range of the one presented in [7], by allowing its use in interactive real time
simulations.
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Fig. 1. A ball thrown on two different configurations of the system. The parameters of
the simulation are η = 1, with d = 0.5, α = 30o and z+ = 0.05.

3 Pressure Distribution Model

In this section, an expression to compute the pressure supported by a cell i in
the base of the automata, according to the state of the system, will be obtained.
In order to simplify the resulting expressions, the developments will be firstly
done over a unidimensional automata. Then, the way to extend the calculus to
the general case will be shown.

Consider a unidimensional granular system, whose state is given by function
h(x), which indicates the height of every point. According to the discretization
shown in [7], this system can be represented by means of a unidimensional CA,
where every cell represents a point of the base. The cell value indicates the height
of the system in that point.

Upon this system representation, we will split the automata in vertical slices,
in such a way that the material existing over the i cell will be considered as a
pile of blocks of height H (see Fig. 2). Let mn

i be the weight of the n-th block
located over the i cell, and let pn

i be the total pressure existing on the base of
the n-th block situated over the i cell.

In order to calculate the pressure over the base of one cell, we will consider,
apart from the own blockmn

i+j , the pressure received by a finite number of blocks
in the upper level[13], all of them centred over the i cell, {pn+1

i+j : j = −r, . . . , r}.
For simplicity we will only consider the closest blocks {mn+1

j : j = −1, 0, 1},
although the development for the general case is analogous.

The way pressure of layer n blocks propagates to layer n−1 will be expressed
by means of a symmetric function φ : ZZ → [0, 1], accomplishing

φ(k) = 0 ∀k : |k| > 1; φ(−1) + φ(0) + φ(1) = 1 (5)

so that φ(t) indicates the rate of the pressure received by the base of block i in
layer n which is propagated to block i+ t in layer n− 1.

For seek of simplicity, we will denote φ(i) = φi, and we will use the index
summation convention, for which any repeated index i is summed over its range,
aibi :=

∑
i a

ibi. Using this notation the pressure over the base of the block at
height n on cell i is

pn
i = mn

i +
1∑

k=−1

φkpn+1
i+k = mn

i + φkpn+1
i+k (6)
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Fig. 2. Scheme of the system vertical decomposition in blocks of height H . The pressure
that acts on the base of block mn

i depends on the weight of blocks that are at the sides
above it (see text).

From this relation among the weight on a level and the weight on the imme-
diately superior level, after recursive substitution, the total weight over a cell in
the base is

p0
i = m0

i + φk1m1
i+k1

+ φk1φk2m2
i+k1+k2

+ · · ·
+ φk1 · · ·φkn−1mn−1

i+k1+···kn−1
+ φk1 · · ·φknpn

i+k1+···kn
(7)

where l again takes values in {−1, 0, 1}. This sum ends when the top of the
system is reached, since if N ∈ IN is such that NH overpasses the system’s top,
mn

i = 0, ∀i,∀n > N .
Equation (7) expresses a pressure model that can be applied to a granular

system represented by a CA. This expression does not depend on the update
rule of the CA, but only on its state. For this reason, it can be applied both to
the original CA and to the one defined in Sect. 2. Note that, when considering
the action of an external force f , it is only necessary to add equivalent weight
to the block where the force is applied.

However, (7) involves the computation of a large summation whenever the
system is updated, i.e. when one of the top mn

i blocks is modified. This is unaf-
fordable in real time applications, where a set of cells must be updated several
times per second. For this reason, a rearrangement of (7) will be done to allow
a more efficient pressure distribution update after a local change affecting a few
cells.

Sorting the terms in (7), it can be rewritten as

p0
i =

N∑
n=0

n∑
j=−n

ajnm
n
i+j (8)

where
ajn =

∑
k1+···+kn=j

φk1 · · ·φkn ; a00 = 1. (9)

Generalization of this model to a bi-dimensional system is straightforward,
from (6), and using a bi-dimensional weight expression φij . Total weight over
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(i, j) cell is obtained as

p0
ij =

N∑
n=0

n∑
s=−n

n∑
t=−n

astnm
n
i+sj+t (10)

where
astn =

∑
k1+···+kn=s

∑
l1+···+ln=t

φk1l1 · · ·φknln ; a000 = 1. (11)

Therefore, from (10) and (11) it is possible to calculate pressure exerted by the
system over every cell in the base.

This model depends of two parameters: the local distribution function φ,
and the block height, H . Election of function φ determines how the material
is distributed from one layer to the immediately lower. As indicated before,
and according to several experimental and simulation studies [12,13], load is
distributed towards the sides. Thus, it is recommended to take φ as φ(−1) =
φ(1) = ε, φ(0) = 1 − 2ε, with 1

3 < ε < 1
2 . This makes that most of the load

distribution will be addressed to the neighbour cells, and not to the one located
just below.

By the other side, election of parameter H determines the angle with re-
spect to the vertical in which the load is propagated, δ = arctan d

H . This angle
depends on the characteristics of each system and should be obtained experimen-
tally. However, and according to experimental and simulation results by several
authors [11,12,13,19] most frequent values oscillate between 30o and 45o with
respect to the vertical, which yields d < H < 2d.

3.1 Numerical Simulations

The model described previously has been implemented and simulated in order
to be compared to other simulations and experimental observations. Numerical
simulations have been performed, starting from an unidimensional system like
the one used in the model developments. These simulations have used a system
with d = 0.5, α = 30o and z+ = 0.05, with density ρ = 1, taking 30o, 34o and 45o

for δ, and φ with ε = 0.4. The most common experiment used in the literature
has been reproduced, consisting on forming a heap by dropping material in a
circular area over an horizontal plane. As results, the pressure distributions in
the base of the automata, once the system reach the steady state, have been
obtained.

In Fig. 3, simulation results show a curve that smoothly follows the heights of
the system. This result is the same that the one obtained from other authors that
have studied the case of material with constat density with numerical simulations
[11], and furthermore, our results do not vary significantly from some other
experimental results [10], except just in the fact that they show fluctuations
that can not be viewed in our results due to the uniformity of our system.

It can be seen in Fig.3 that no substantial difference can be observed upon the
election of parameter δ, which indicates robustness on the procedure followed to
develop the model.
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Fig. 3. Pressure distribution under a heap formed by deposition of material. The y axis
represents the pressure over each point of the base of the heap, that has been formed
by deposition of material at point x = 0. (a) Pressure distribution for different values
of H . (b) Detail of the central region of the heap.

4 Computational Cost Analysis

In this work, the computational properties of the implemented algorithms are
of great importance. The main motivation for developing CA based models has
been the possibility to solve such models in the computer in real time, allowing
their incorporation to graphics and simulation applications. Therefore we will
focus in a detailed analysis of their computational cost, to show that they are
efficient enough to make possible their inclusion in such kind of applications.

The new CA defined in this paper (3), has the same computational cost that
the one described in [7]. This was predictable, since the new interactive model
just incorporates four additions and two divisions per cell. Both offer a maximum
cost of order L2 for an automata L × L, but an implementation sufficiently
optimized offers a cost of order L [6]. As a result, they have been successfully
used in real time graphic applications [7].

It is also necessary to evaluate the influence of the pressure model calculation
in the overall performance of the new algorithm. Calculating the coefficients astn

from (10) implies, if using a recursive algorithm and dynamic programming, a cost
of orderN3. However, it is not necessary to make this computation every time (10)
is computed, since they can be calculated only once for the chosen function φ.

Once the coefficients have been calculated, pressure over a cell computation,
using (10), requires (2n + 1)2 products for every level, n = 1, . . . , N . However,
the computation of the pressure for the whole system should be done just before
the simulation starts, according to the system initial state.

As of that moment, only those cells that are modified by external causes will
produce changes in the pressure distribution, affecting a square area centred in
the cell. This square side will be the number of blocks of height H that are
occupied on that cell. In these cells, only those terms involving the modified
block need to be calculated.

Summarizing, we can state that, by one side, the CA model described in this
paper has a computational cost that, with the appropriate implementation, can
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be reduced to be of order one respect to the side of the automata L. By the other
side, the pressure distribution model in the base of the CA, although it requires a
costly initialization, it can be done previously to the simulation. Once the model
has been set up, the cost of the pressure update after a system modification is
bounded by the square of the number of blocks of height H in which the system
is split, N . This number is usually one order of magnitude below L.

Therefore, the given computational costs allow the use of the automata model
in the realistic simulations included in interactive real time applications.

5 Conclusions

In this paper, an application of CA models to interactive simulation of granular
systems is presented. The main goal has been to develop efficient models of a
complex system, for which the usual modelling methodologies are computation-
ally expensive.

The proposed models complement the work previously done [7], widening it
use range, and allowing CA as a valid alternative to classical models in granular
systems simulation. They improve the previous model by adding two modes of
interactivity. On the one hand, a model of the system response to an external
force is proposed. On the other hand, a model for pressure distribution at the
base of the system is developed.

The models have a realistic behaviour, according to granular systems bibliog-
raphy. The response model of Sect. 2 behaves properly from a qualitative point
of view according to the numerical tests performed, and the force distribution
obtained accomplishes the main properties shown by experimentation and other
simulation methodologies.

Furthermore, it has been shown that both models offer a reduced computational
cost during the simulation, which makes them suitable for real time interactive
applications such as computer graphics applications and simulation applications.

As a future research, some of the aspects of this work will be studied in
more detail. Different expressions for the force function fh will be analyzed,
according to several equilibrium conditions. Within this work, the pressure model
has only been numerically investigated for the case φ(k) = 0 if |k| > 1. Numerical
experiments have to be done for the more general case. Also, some research has
to be done in order to obtain revisions of the pressure model that reproduce
effects observed in real and simulated systems, and that are not reproduced by
the current model. In addition, new models for tool-terrain interaction will be
developed in order to consider additional situations, such as the horizontal forces
that appear on a vertical system-tool interface.
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A Linear Cellular Automaton over a Vector
Space and Its Application to a Generalized

Special Relativity
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Abstract. The theory of special relativity is based on matrix theory.
We generalize matrix theory from the viewpoint of cellular automata,
and using this theory, we propose a new principle of special relativity.

1 Introduction

Special relativity is stated mathematically that fundamental laws of physics are
invariant by the Lorentz transformation, where the Lorentz transformation is
expressed as

L (β) =
1√

1 − β2

(
1 −β

−β 1

)
, β =

ν

c .

By L (β) , the distance ds2 = c2dt2 − dx2 is preserved. However, this condition
is too strict. Cellular automata are transformations with local interaction, and
can thus be used to generalize L (β) by regarding the matrix as a linear cellular
automaton with no interaction (i.e., scope-1). L (β) is consequently obtained as
a special case given by LX (β, 0) = L (β) , where LX (β, γ) is the generalized
form of L (β) including local interaction based on the concept of linear cellular
automata. This case leads to a new principle of special relativity.

2 A Linear Cellular Automaton

A linear cellular automaton consists of a quadruplet 〈Z, V2, N, f〉 , where Z is
the set of all integers (one-dimensional cell space), V2 is a two-dimensional vector
space (state set), N is a neighbor frame with N = {−r, · · · ,−1, 0, 1, · · · , r} ⊂ Z,
and f is a local map with scope 2r+ 1 , that is, f is a linear map from V 2r+1

2 to

V2 such that f =
r∑

j=−r

Ajxj , Aj ∈ M2 (R) where M2 (R) is a set of all matrices

of 2 × 2 size over real field R.
For a local map, the parallel map f∞ from V Z

2 to itself is defined as follows.
For any u∞, v∞ ∈ V Z

2 ,

f∞ (u∞) = v∞ ⇔ vi ≡ v∞ (i) = f (ui−r, · · · , ui−1, ui, ui+1, · · · , ui+r) , i ∈ Z,

=
i+r∑

j=i−r

Ajuj. (1)
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From the theory of linear cellular automata, the parallel map can be expressed

by a polynomial representation F (X) =
r∑

j=−r

AjX
j and note that V (X) =

F (X)U (X) from (1), where U (X) =
∑
i∈Z

UiX
−i and V (X) =

∑
j∈Z

UjX
−j .

Definition 1. For F (X) , the transposed matrix A is defined as tF (X) =
r∑

j=−r

tAjX
−j .

1. In Euclidean space,
F (X) is orthogonal ⇔ tF (X)F (X) = I.

2. In Minkowski space,

F (X) is orthogonal ⇔ tF (X)ΛF (X) = Λ , where Λ =
(

1 0
0 −1

)
.

3 A Generalization of a Matrix

1. The case of Euclidean space.

Definition 2. A generalization AX(γ1, · · · , γn) of a matrix A is defined as

AX(γ1, · · · , γn) = UX(γ1, · · · , γn)AUX(γ1, · · · , γn)−1

where UX(γ1, · · · , γn) satisfies the following three conditions.
(a) UX (0, · · · , 0) = I (Identity matrix).
(b) UX (γ1, · · · , γn) is orthogonal.
(c) UX (γ1, · · · , γn) is continuous on each parameter.
We simply write this generalization as A → AX(γ1, · · · , γn). When the scope
of UX(γ1, · · · , γn) increases, the number of the parameter also increases and
the form of UX(γ1, · · · , γn) becomes more complicated. Therefore, finding
UX(γ1, · · · , γn) with minimum scope except scope-1, we obtain UX(γ) ,where

UX(γ) =
γ

1 + γ2
0 1
0 γ

X−1 +
1

1 + γ2
1 −γ
γ 1 +

γ

1 + γ2
γ 0
−1 0 X, (−∞ ≤ γ ≤ ∞) .

Then UX(γ) has the following four conditions.
(a) UX(0) = I.
(b) tUX(γ)UX(γ) = I.
(c) UX(γ) is continuous on γ.
(d) UX(γ) has a minimum scope-3.

Therefore, when A → AX(γ) , AX(γ) satisfies the following four conditions.
(a) AX(0) = A.
(b) The generalization preserves algebraic property of A.
(c) AX(γ) is continuous on γ.
(d) AX(γ) has a minimum scope-5.
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2. The case of Minkowski space.
Definition 3. A generalization AX(γ1, · · · , γn) of a matrix A is defined as

AX(γ1, · · · , γn) = UX(γ1, · · · , γn)AUX(γ1, · · · , γn)−1

where UX(γ1, · · · , γn) satisfies the following three conditions.
(a) UX (0, · · · , 0) = I (Identity matrix).
(b) UX (γ1, · · · , γn) is orthogonal.
(c) UX (γ1, · · · , γn) is continuous on each parameter.
We simply write this generalization as A → AX(γ1, · · · , γn).
Therefore, finding UX(γ1, · · · , γn) with minimum scope except scope-1, we
obtain UX(γ), where
LX(β, γ) = UX(γ)L(β)UX(γ)−1,

UX(γ) = −γ
1−γ2

0 1
0 γ

X−1 + 1
1−γ2

1 −γ
γ 1 + −γ

1−γ2
γ 0
1 0 X, (−1 < γ < 1) .

Then UX(γ) has the following four conditions.
(a) UX(0) = I.
(b) tUX(γ)ΛUX(γ) = Λ.
(c) UX(γ) is continuous on γ.
(d) UX(γ) has a minimum scope-3.

Therefore, when A → AX(γ) , AX(γ) satisfies the following four conditions.
(a) AX(0) = A.
(b) The generalization preserves algebraic property of A.
(c) AX(γ) is continuous on γ.
(d) AX(γ) has a minimum scope-5.

4 A Generalization of L(β)

Let L(β) → LX(β, γ) , that is, LX(β, γ) = UX(γ)L(β)UX(γ)−1.

Properties of L(β).

1. It has no local interaction.
2. It has a one parameter.
3. tL(β)ΛL(β) = Λ.
4. It preserves the distance ds2 = c2dt2 − dx2 .

Properties of LX(β, γ).

1. It is locally interactive.
2. It has 2-parameters.

3. tLX(β, γ)ΛLX(β, γ) = Λ, Λ =
(

1 0
0 −1

)
.

4. It preserves the distance ds2 =
∑
i∈Z

c2dt2i − dx2
i .

5. LX(β, γ) has a minimum scope-5 with local interaction.
6. LX(β, γ) is continuous on γ.
7. LX(β, 0) = L(β).

Clearly, LX(β, γ) is weaker than L(β), hence, the inclusion of the extra para-
meter γ.
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5 A Physical Meaning of the Parameter γ

The parameter γ has no dimension physically, and hence, must express the ratio
of some physical quantity such as length to length, time to time, mass to mass,
energy to energy, or velocity to velocity (in which case it has already appeared in
L(β)). The case of time to time, reduces to the case of length to length from the
relation ”x = ct”. Other cases are similar. It is thus assumed that γ represents
a length-to-length ratio. Since γ is bounded by 1, the following two possibilities
exist:

(1) γ = l
lmax

, (2) γ = lmin
l ,

where l ,lmin and lmax are the length of the target object, the minimum length
and the maximum one in the inertial system respectively.
Case (1) does not appear valid, since the universe is considered to be expanding.
In case (2), it is considered that the Plank length is the smallest. The hypothesis
is then γ = lmin

l .

Therefore, (1) LX(β, γ) → L(β) if l → ∞ (γ → 0), in other words,LX(β, γ)
≈ L(β) when γ ≈ 0. (2) LX(β, γ) is gradually shifted away from L(β) as l tends
lmin and it exhibits remarkable features as γ → 1.

Given the relation ”x = ct”, the new transformation suggests that there exists
a minimal size or unit in space-time.

6 Role of β and γ

We next consider the effect of Lorentz contraction seen from other inertia sys-
tems. Since lmin and l are contracted at the same rate, we conclude that γ is
invariant.

Therefore, the roles of β and γ in L(β) and LX(β, γ) are as follows.

1. In L(β), C(velocity of light) is invariant for two different inertia systems,
whereas the parameters v and β are not.

2. In LX(β, γ), the parameter γ is invariant for two different inertia systems,
whereas lmin and l are not.

7 A New Principle of Special Relativity

Since L(β) approximates LX(β, γ) and does not contain the parameter γ, L(β)
and LX(β, γ) diverge remarkably as γ tends toward 1. Can LX(β, γ) thus be
applied to micro space-time? Correction of the principle of conventional special
relativity then leads to a new principle of special relativity as follows.

Proposal
“The fundamental laws of physics are invariant by the Lorentz transformation
LX(β, γ) with local interaction”.
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In the conventional theory, space-time is considered to be divisible into small
pieces endlessly. However, the present theory suggests that there exists a minimal
size or unit in space-time. The physical validity of this theory will need to be
determined experimentally.
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Abstract. We present a simple cellular automata model to address the
issue of aeolian ripple formation and evolution. Our simplified approach
accounts for the basic physical mechanisms and enables to reproduce the
observed phenomenology in the framework of a near-equilibrium statis-
tical mechanics formulation.

1 Background

The complex interaction between a granular material and a fluid gives rise to
erosion patterns, dunes and ripples. Such collective phenomena are particularly
influenced by the distribution of the fluid velocity, that may vary widely in space
and time, and by the shape of the grains and their relative density, that gives
origin to buoyancy. Importantly, the instantaneous fluid velocity field depends
on the profile of the sand bed, which is modified by erosion and deposition, and
on the shielding effect of saltating particles.

As reported in Ref. [1], ripples are characterized as being asymmetric and
their formation and persistence is determined by flux intensity. Small ripples
are observed to travel faster than large ones and the temporal evolution of the
maximum ripple height is limited and not linear. Theoretical studies aim at
reproducing some of these relevant aspects.

To address the erosion/deposition process, continuum models of mechanics
can be employed [2,3,4]. Alternatively, accurate hydrodynamical descriptions
have been proposed and deeply investigated [9,5,6,7]. The latter allows to quan-
titatively study the process of ripple formation by incorporating a detailed repre-
sentation of the fluid flow via Navier-Stokes equation, and/or facing the problem
of considering the flow near the soil. However, these approaches are computa-
tionally expensive and difficult to treat analytically in presence of complex and
time-dependent boundaries, or when turbulence and other fluctuating aspects
play an active role. Linear stability analysis [2,3,8] enables to predict the insta-
bility regime of a flat surface and quantifies its associated growth rate.

To gain more insight into the crucial interplay between erosion and deposition,
beyond the linear approximation, a series of simplified theoretical frameworks
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(toy models) have been developed, focusing only on those aspects supposed to be
the relevant ones. Following these lines, it is customary to replace the complex
fluid velocity distribution with a limited number of aggregated data, like the
average shear velocity and the associated fluctuations.

Simple models of sand ripples dynamics were first introduced by Ander-
son [10,11] for grain segregation and stratigraphy. A discrete stochastic model
was further proposed about a decade ago by Werner and Gillespie [12]. Another
minimal model, widely adopted in the relevant literature, was proposed the same
year by Nishimori and Ouchi [13] and therefore termed NO model. Within this
scenario, the saltation and reptation are accounted for and shown to produce
the spontaneous formation of characteristic ripple patterns. Though it repre-
sents a significant step forward in the comprehension of the basic mechanism
underlying the phenomenon, the NO model allows for non realistic structures of
infinite heights, since in this model there is no explicit or implicit mechanism
that leads to the appearance of a critical angle of repose. Recently, Caps and
Vandewalle [14] modified the preexisting scheme by including explicitly the effect
of avalanches (SCA model: Saltation Creep and Avalanches). This modification
results in asymmetric ripple profiles and induces a saturation for the maximal
height.

Cellular automata modeling of sand transportation was pionereed by Ander-
son and Bunnan [15] and by Werner and Gillespie [12]. In these models, the
driving mechanism for sand transport is the saltation/reptation dynamics, even-
tually complemented by toppling, that corresponds to diffusion in a continuous
model. Masselot and Chopard [17,16] also introduced a cellular automata for
snow and sand transportation. They explicitly modeled the fluid flow by means
of lattice Boltzmann methods, while the granular phase is represented as a prob-
abilistic cellular automaton. The erosion mechanism here is modeled by a con-
stant probability of detachment, and local rearrangements are again achieved by
a toppling mechanism.

The elementary building blocks of these stochastic models, like the erosion,
deposition and toppling steps, have a phenomenological nature, implying that
the probability of their occurrence has to be measured experimentally.

In this paper, we shall investigate the process of pattern (ripple) formation,
emerging due to the interactions between a fluid (air) flow and a granular mate-
rial (sand). More precisely, we propose to adopt a standard statistical mechanics
approach to account for the evolution of the system, coupled to an external forc-
ing that drives it out of equilibrium. The role of temperature is here played by
the fluctuations of the velocity field.

This local-equilibrium dynamics enables to reproduce the main characteristics
of ripple dynamics, like the observed stable states and the saturation of ripple
height, without including an explicit mechanism for toppling or other local re-
arrangements. Finally, it is worth emphasizing that this simple scheme can be
straightforwardly extended to accommodate a more detailed description of a real
fluid. In fact, starting from this model, it is possible to develop a two-dimensional
model in which the pattern constituted by the heights of the particles composing
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S R

h[i]

ni

h[i − 1]
h[i + 1]

hm

Fig. 1. Sand bed schematization in the 1D model. For a given site i of height hi, the
symmetric interval of neighbors of amplitude R is shown (dotted line). In order to
account for flux asymmetry the interval considered is shifted by an amount S (dashed
line).

the ripples acts like a boundary condition and the fluid flow evolution is com-
puted according to the Lattice Boltzmann Equation. By doing this it is also
possible to compute in an approximate way the fluid drag in a given point of the
bottom, and also the trajectory of an entrained particle. This extension is very
similar to that used in [16].

2 The Theoretical Framework

We consider a one dimensional discrete model, L being the extension of the seg-
ment partitioned in N equally spaced intervals, and assuming periodic boundary
conditions, Fig. 1.

Label with hi the number of particles constituting the ith slice of the sand
bed. In other words hi represents the height of the ith site. Further, we consider
a bunch of ni particles flowing over the bed. The system is therefore constituted
of two interacting layers of particles.

The two processes governing the dynamical evolution of the system are re-
spectively erosion, which occurs when a resting grain belonging to the surface
of the sediment layer is entrained by the fluid and deposition, that mimics the
deposition of a flowing grain.

More precisely, the following scheme is put forward. First the bunch of flowing
particles it is shifted forward at every time step. Then focusing on the ith site,
we select an interval of R neighbors, asymmetrically shifted by an amount S, see
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hm

hm

hi

hi

hi < hm hi > hm

Fig. 2. In order to account for bed geometry and hydrodynamics effects, we suppose a
grain on the bed surface to experience a force proportional to the difference between its
height and the mean height of a local interval of neighbors. In particular, the erosion
(deposition) probability increases as the height of the site being considered is higher
(lower) than the mean height of the neighboring sites.

Fig. 1. The amplitude of the interval accounts for the range of local interactions
and is shown to be correlated to the shape of the ripple. The quantity S is
introduced to model hydrodynamics effects, such as lift and drag forces [18,8,9],
which result in an asymmetry of the flow.

We then calculate the mean height of the selected interval, hm. As a reasonable
hypothesis, assume that the probability to experience an erosion event increases
when augmenting the gap between hi and hm, under the constraint hi > hm.
Conversely, the deposition will most probably occur when the positive difference
hm − hi gets larger, Fig. 2.

Following the previous reasoning, as a first approximation, we suppose the
force acting on a particle to depend on the difference between the height of the
site being considered and the mean height of the neighbors. The energy scales
therefore as:

Ei = (hm − hi)2 . (1)

The erosion and deposition processes are hence characterized by means of the
following change in energy:

Erosion Deposition
hi(t+ 1) = hi(t) − 1 hi(t+ 1) = hi(t) + 1

ΔEer,i = 2(hm − hi + 0.5) ΔEdep,i = 2(hi − hm + 0.5)

Consequently, it is reasonable to assume the erosion and deposition probabil-
ities [19]:

Per,i =

{
1 if ΔEer,i < 0,
exp(−βeΔEer,i) otherwise;

Pdep,i =

{
1 if ΔEdep,i < 0,
exp(−βdΔEdep,i) otherwise.

where βe and βd are constant parameters, analogous to the inverse of effective tem-
peratures 1/Te, 1/Td. The system is out of equilibrium, and these temperatures
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are assumed to be related to the amplitude of the fluctuations of the velocity field
in correspondence with the typical erosion and deposition events.

The local evolution rule is based on a Metropolis Monte Carlo dynamics [19]:
first the deposition takes place followed by the subsequent erosion step. We de-
cided to use this kind of Monte Carlo dynamics as a starting point. Indeed we
are experimenting with other dynamics and also trying to extract the transition
probabilities from a more detailed model, that explicitly accounts for the evolu-
tion of the fluid flow.
Focusing on the ith site, the deposition step yields:

1. for each of the ni flowing particles a uniformly distributed random number
r is extracted;

2. if r < Pd deposition occurs and the height of the site is increased by one,
hi(t + 1) = hi(t) + 1, while the bunch of flowing particles is decreased by
one, ni(t+ 1) = ni(t) − 1,

Analogously, the erosion is characterized by:

1. a uniformly distributed in the unit interval random number r is generated;
2. the site is eroded if r < Pe; in this case the height of the site is decreased

by one, hi(t+ 1) = hi(t)− 1, and the pool of eroded particle is increased by
one, ni(t+ 1) = ni(t) + 1.

The procedure is iterated and the evolution of the heights monitored.

3 Numerical Results

In our simulation we assumed an initial uniformly random generated river-bed.
Small inhomogeneities are magnified as time evolves, and eventually result in
macroscopic ripples that display a characteristic asymmetric profile.

A sequence of successive snapshots of the dynamics is presented in Fig. 3 and
allows to qualitatively investigate the process of formation of coherent structures.

The displacement of a ripple is a consequence of the combined effects of erosion
and deposition: the grains are eroded in the stoss side and deposed in the lee one.
This is indeed a dynamical mechanism: there is a continuous exchange between
the particles at rest and the ones belonging to the flowing population. The net
effect is that the lower end of the stoss side is eroded and this matter deposes
in the lee part, leading to the displacement of the ripple with a velocity that
decreases with size.

The interaction mechanism of two ripples is rather complex, as illustrated by
the “collision” of two ripples of similar size reported in Fig. 4. In order for the
collision to occur, the front ripple has to be larger than the rear one, which is
consequently faster. When the two ripples approach, the lower part of the stoss
side of the front ripple is not eroded anymore. Such an effect is determined (in
the model) by the increasing average height, that includes the contribution of
the approaching rear ripple. In the reality, this corresponds to the reduction in
erosion due to the shielding effect of the rear ripple.
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Fig. 3. Time snapshots of ripple dynamics. Note that the scales of the two axes are
different.

The region of the stoss side next to this one becomes the source of eroded
particles, thus forming a local sink. The size of the front ripple is decreased and
its speed increased. If the relative difference of velocity of the two ripples is low
enough (i.e. for similar ripples of similar size) this depression may proceed so to
make the front ripple detach from the rear one, Fig. 4.

If the rear ripple is small, the sinking region is continuously moved downwind
and finally the two ripples coalesce. This mechanism is illustrated in Fig. 5. In the
third panel (t = 825) one can still recognize a signature of this process: focusing
on the right ripple, originated by the interaction of two ripples of different size
(see first panel), one can still identify the protruding bump on the lee side. This is
the relic of the highest peak displayed by the right ripple in the second panel, that
experienced a reduction in size and consequently proceeded faster. However, this
bump is eventually screened by the rear portion of the ripple. As a consequence
it stops and is therefore engulfed in the incoming massive agglomeration.

These observations are in agreement with direct measurements and provide a
first validation of our simplified interpretative framework [1].

Label with l the linear size of a typical ripple and assume h to represent
its characteristic height. By tuning the parameter R, i.e. varying the extension
of the segment that defines the interacting region, one modulates the ratio h/l
and operates an a priori selection among various types of structures (ripples,
megaripples, giantripples) based on their intrinsic geometry. The crucial role
of R has been investigated through a dedicated campaign of simulations: by
assigning larger values to R corresponds to generating less peaked structures,
which translates into a systematic reduction of the quantitative indicator h/l.
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Fig. 4. When two ripples of similar sizes encounter, an exchange in their relative po-
sitions occur (take into account periodic boundary conditions)

Focusing on ripples, we assume R = 32, and speculate on the role of the re-
maining parameters S (the asymmetry of the interval being considered) and βd

in the formation of the ripple [20]: few quantities of paramount importance are
monitored and compared with analogous predictions reported in the classical
literature [13,14].

As already anticipated, within our simplified scheme, the ripples present an
asymmetric shape which can be measured by introducing the aspect ratio σ
(σ > 0):

σ =
xs

xl
, (2)

where xs (resp. xl) stands for the projection of the stoss (resp. lee) slope on the
horizontal axis, as depicted in Fig. 6. If σ = 1 the ripples are symmetric, while
σ 	= 0 implies an asymmetry. In the main panel of Fig. 7, the evolution of the
ripple aspect ratio σ is plotted as function of time for different values of the ratio
S/R. An initial growth is observed, followed by a subsequent saturation towards
an asymptotic plateau, σas. A self-consistent selection mechanism is therefore
operated by the system and eventually only one specific class of ripples arises
and occupies the one dimensional lattice. The ansatz, σ = σas (1 − exp(−αt)) is
numerically fitted to the simulated profiles of Fig. 7 and shown to interpolate well
the data. To better visualize the tendency of enhancing the degree of asymmetry
for increased values of the local distortion S (working at constant R), σas is
represented versus the ratio S/R in the top-left inset of Fig. 7. Further, to
provide a complete characterization of the morphology of the ripple, we calculate
the angle of repose θr. This is defined as follows: if a bunch of particles is poured
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Fig. 5. An encounter between ripples of different sizes results in the merging of the
structures

onto a flat surface, a conical pile will form. The angle between the edge of the
pile and the horizontal surface is the angle of repose. We calculate it as the angle
between the segment linking the right-extreme grain of the ripple base with the
grain having the maximum height and the horizontal. This angle is dynamically
selected within our proposed approach, as function of the control quantity S/R.

The time evolution of σ was previously monitored in Ref. [14] for both the
NO and SCA models. The original NO formulation predicts almost symmetric
profiles which in turn implies σ � 1. Conversely, for the case of the SCA σ
grows linearly in time and then relaxes to a final value. This remarkable im-
provement was achieved by Caps and Vandewalle by postulating the existence
of a repose angle θr and modeling the process of avalanches, not included in the
NO philosophy. It is worth emphasizing that a similar mechanism is reproduced
here without invoking a priori the existence of a limiting angle. Note that the
saturation for σ is exponentially approached, as obtained in Ref. [14].

Further, simulations are performed to shed light into the role of βd. The
normalized density of particles ρ is calculated as a function of the deposition
distance, for different values of βd. Results (not displayed here) suggest that for
larger values of βd, the particles spend more time in the surrounding halo and
retard the deposition event. We are therefore led to conclude that βd controls
the characteristic length of the reptation process.

Finally, we investigated the dynamical evolution of the maximum ripple height
hmax. In [14] the SCA model was shown to reproduce the non linear evolution
of the ripple amplitude hmax, this success being ascribed to the new ingredi-
ents introduced with respect to the NO scenario. Results of our simulations are
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Fig. 6. Ripple schematization, where xl (xs) is the projection of the lee (stoss) slope
and h is the ripple height
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Fig. 7. Time evolution of ripple asym-
metry σ as a function of the ratio S/R.
Left-inset: asymptotic value of ripple
asymmetry as a function of S/R. Right-
inset: plot of the dynamic angle of repose
θr against the ratio S/R (circles: numeri-
cal values; solid line: numerical fit).

Fig. 8. Exponential increase of the maxi-
mum ripple height hmax with time for dif-
ferent values of the ratio S/R. Small inset:
The asymptotic height has is plotted as a
function of the ratio S/R.

displayed in Fig. 8: as for the SCA an exponential growth law is found, thus
reinforcing the validity of our probabilistic approach as an alternative tool to
address the relevant issue of ripple formation. The asymptotic height, has, is
plotted in the small inset, as function of the ratio S/R.

4 Conclusion

In this paper we propose a local-equilibrium model to study the dynamics of
aeolian ripple. The model is shown to successfully reproduce key observed fea-
tures, despite its intrinsic simplicity. In particular, the irreversible and not trivial
coarsening dynamics with merging and scattering of structures, the saturation of
the maximum height of the ripples and the asymmetry of ripple structures have
been reproduced. The results are critically compared with the classical literature
[13,14], outlining the role of the parameters involved in our formulation and their
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physical interpretation. This simple theoretical picture can be further extended
to accommodate a more detailed description of the fluid flow and include a more
complete representation of the granular phase.

References

1. R.A. Bagnold, The Physics of Blown Sand and Desert Dunes (Chapman and Hall,
London, 1941).

2. O. Terzidis, P. Claudin, and J.-P. Bouchaud, Eur. Phys. J. B 5, 245 (1998).
3. A. Valance and F. Rioual, Eur. Phys. J. B 10, 543 (1999).
4. L. Prigozhin, Phys. Rev. E 60, 729 (1999).
5. A. Valance, Eur. Phys. J. B 45, 433 (2005).
6. P.-Y. Lagree, Phys. Fluids 15, 2355 (2003).
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Abstract. As device lots become more and more expensive, the importance of 
technology computer-aided design (TCAD) is increasing. TCAD can be used to 
simulate device fabrication and performance and to avoid processing experi-
mental lots. Cellular Automata (CAs) have been applied successfully to the 
simulation of several physical systems and semiconductor processes, and have 
been extensively used as VLSI architecture. This paper describes a TCAD sys-
tem for the simulation of the two-dimensional oxidation process in integrated 
circuit fabrication. The TCAD system is fully automated and is also able to 
support, the hardware implementation of the corresponding CA algorithm, lead-
ing to its execution by dedicated parallel processor. The simulation results are 
in good qualitative and quantitative agreement with experimental data reported 
in literature. The proposed system produces as output the corresponding VHDL 
code, which leads directly to the FPGA implementation of the CA algorithm. 

1   Introduction 

In the semiconductor industry, device densities have grown exponentially in the last 
three decades. With each new generation of integrated circuit (IC) manufacturing 
technology, the complexities of IC fabrication processes and devices are increasing 
significantly [1]. Process modelling is an integral portion of technology computer-
aided design (TCAD) and can be used to predict device structures and doping. Truly 
predictive process modelling has proven to be a demanding goal, because the control-
ling physics is complicated and difficult to investigate experimentally [1]. As a result, 
TCAD that accurately predicts the process and device characteristics of anticipated 
wafer fabrication technology is indispensable for future IC fabrication technology and 
device development. 

Oxidation and selective oxidation is an important process in IC fabrication. Layers 
of SiO2 are used as insulators, dielectrics, protective films, and, at several fabrication 
stages, as masks, passivators, and inhibitors. The kinetics of oxidation of Si is fairly 
well understood for one-dimensional problems [2-4]. Whereas, oxidation simulation 
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in one dimension has been successful, there are many difficulties in simulating the 
oxidation in two dimensions [2], because of the advancement of the Si-SiO2 and SiO2-
air fronts during oxidation, particularly in bounded domains. Numerical techniques 
for the oxygen diffusion with moving oxidation fronts on unbounded domains have 
been successfully developed [3], but these methods can not be applied to the cases of 
oxidation of non-planar surfaces, and oxidation through a mask, which are common in 
IC fabrication. 

In order to develop an efficient TCAD system for the modelling of the oxidation 
fabrication process for which the hardware implementation will be straightforward 
Cellular Automata (CAs) were chosen as the simulation and implementation method. 
CAs have been applied successfully to IC fabrication processes, such as photolitho-
graphy [5-6], oxidation [7] and deposition [8]. On the other hand, CAs have been 
extensively used as a VLSI architecture. CAs are one of the computational structures 
best suited for a VLSI realization [9]. The CA architecture offers a number of advan-
tages and beneficial features such as simplicity, regularity, ease of mask generation, 
silicon-area utilization, and locality of interconnections. 

The proposed TCAD system, named “CA_OXIDA_TCAD”, is an interactive tool 
offering the power of automated modelling and VLSI implementation of oxidation 
process with CAs, while hiding architecture and programming issues from the user. It 
is both, a computational tool for modelling oxidation process and an automated  
producer of Very High Speed Integrated Circuit (VHSIC) Hardware Description Lan-
guage (VHDL) synthesizable code for the hardware implementation of the CA algo-
rithms that model oxidation process. More specifically, the user inputs to the TCAD 
system are: the CA lattice size, the maximum process time and the initial and bound-
ary conditions imposed by the oxidation process, namely process geometry, mask 
presence, defects presence and defects temperature. The user can change any one or 
all of the above input parameters until the CA best models the oxidation process. 
Then, the TCAD system produces the graphical simulation results of the CA algo-
rithm. The obtained simulation profiles of the oxidation process are found in very 
good qualitative agreement with experimental and simulation results found in the 
literature [2]. However, it should be mentioned that these simulation profiles are not 
yet calibrated with experimental results. After that, CA_OXIDA_TCAD using a trans-
lation algorithm, that checks the CA parameters values previously determined by the 
user, automatically produces the synthesizable VHDL code that describes the CA 
algorithm. This VHDL code can be fed either into a commercial VLSI CAD system, 
and, as a result, the layout of the dedicated hardware that executes the CA algorithm 
can be designed, too, or to any FPGA Programmer. Furthermore, research workers 
could use the CA_OXIDA_TCAD simulation interface to calibrate and validate the CA 
algorithm of oxidation model using experimental data and produce the corresponding 
dedicated hardware. Another attractive possible feature of CA_OXIDA_TCAD pre-
sented here is the implementation of the resulting VHDL code in a FPGA, able to 
perform some real experiments, and to serve as a powerful “virtual lab” dedicated to 
the modelling of the oxidation process. 
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2   The Oxidation Process and the Corresponding CA Algorithm 

In the oxidation process oxidant from the gas phase interacts with the Si surface, and 
SiO2 is formed. After the oxidation of Si surface, the oxidant diffuses through holes in 
SiO2 towards the Si-SiO2 interface to form new SiO2 material. This interaction is 
accompanied by a large volume increase. The reaction is aided by viscoelastic flow of 
the oxide film towards the surface. Therefore two interfaces are formed: the Si-SiO2 
and the SiO2-air interface, which advance at different rates in opposite directions [2]. 

Oxidation is a nonequilibrium process, with the driving force being the deviation 
of concentration from equilibrium. According to the Deal and Grove model [2, 4], the 
oxidant is transported from the bulk of the gas phase to the gas-oxide interface with a 
flux F1, is transported across the existing oxide towards the Si with a flux F2, and 
reacts with Si at the Si-SiO2 interface with a flux F3. The steady state is reached when: 

F1 = F2 = F3 (1) 

The fluxes are given by: 

( )F h C C1 G G= − S
, 

dx
dC

DF2 −= , iS3 CkF =  (2) 

where hG is the gas-phase mass-transfer coefficient, CG is the oxidant concentration in 
the bulk of the gas, CS is the oxidant concentration adjacent to the oxide surface, D is 
the oxidant diffusion coefficient, C is the oxidant concentration in the oxide, kS is the 
rate of the silicon oxidation surface reaction, and Ci is the oxidant concentration at the 
oxide-Si interface. 

Solving equations (1)-(2), the following solution is obtained: 

( )+++−= 2

4
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tBA
d

τ  (3) 

where d is the oxide thickness and the constants A, B, and τ are fitting parameters of 
the mathematical model described above. The values of these parameters, which are 
determined by fitting the model results to experimental results, can be found in any 
textbook on IC fabrication technology [1]. To produce an oxide of thickness do, a Si 
layer with thickness 0.44 do must be consumed. The Deal-Grove model describes very 
well the oxidation process in one dimension, but its extension to two dimensions is 
very difficult. More specifically, as described analytically in [7], if the Deal-Grove 
model is used, an unphysical discontinuity will appear at the air-Si interface. 

If unit time is small enough (i.e. when [4B(t+τ)/A2<1]), then equation (3) becomes: 

( )d
B

A
t≈ +τ  (4) 

CAs are able to produce a variety of fronts, if the proper local rules are used. To 
simulate the two-dimensional oxidation process using CAs, a local rule must be found 
that produces fronts like the ones which are provided by the Deal-Grove model. The 
area that contains the Si, the SiO2, and the air is divided into a matrix of identical 
square cells with side length a, as shown in Fig. 1, and it is represented by a CA by 
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assuming that each cell is a CA cell. The algorithm becomes more accurate as the side 
length a is reduced, because the number of cells is increased, but this leads to greater 
computation times and memory requirements. The value of a is user defined and 
should be a compromise between accuracy and computer time and memory. The local 
state of the (i, j) CA cell at time t, St

i,j, is given by: 

{ }S F Et
i j

t
i j

t
i j, , ,,= , where E

A

A
t
i j

o

t
, =  (5) 

Et
i,j is the ratio of the oxidized area, Ao, to the total cell area, At, at time t. The state of 

a fully oxidized cell is 1, whereas the state of a non-oxidized cell is 0. Et
i,j may take 

any value between 0 and 1. Ft
i,j is a one-bit flag. If Ft

i,j equals to 0, the cell is located 
at or above the SiO2-air boundary, whereas if Ft

i,j equals to 1, the cell is located at or 
beneath the SiO2-Si boundary. Some examples are given: (a) St

i,j={0, 0}, (b) St
i,j={1, 

0.55}, and (c) St
i,j={#, 1}. The state given by example (a) indicates a non-oxidized cell 

located above the SiO2-air boundary. The state given by (b) indicates that the cell is 
located at the SiO2-Si boundary, and that the 55% of its area is oxidized. Finally, the 
state given by (c) indicates that the cell is fully oxidized and, therefore, it is located in 
the bulk of the oxide and its flag value is not considered. 

air

SiO2

Si
a

a  

Fig. 1. Representation of the Si-SiO2-air system by a CA. The two interfaces, the SiO2-air 
interface and the SiO2-Si interface form the well-known “bird’s beak”. 

The neighbourhood of the (i, j) cell is chosen to be Moore neighbourhood. Several 
CA local rules have been tested and found that the local rule that produces fronts of 
the form of Fig. 1 is: 
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St
i,j is the local state of the (i, j) cell, at time step t, and St+1

i,j is the local state of the  
(i, j) cell, at time step t+1. n, s, e, w, nw, sw, ne, and se are weights that multiply the 
states of the neighbouring cells. The oxidation of the (i, j) cell due to oxidant incom-
ing from the upper cell [i.e. the (i-1, j) cell] is described by (n St

i-1,j), whereas the oxi-
dation of the (i, j) cell due to oxidant incoming from the lower cell [i.e. the (i+1, j) 
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cell] is described by (s St
i+1,j). To produce an oxide thickness equal to do, a Si film 

with thickness 0.44 do will be consumed. Therefore, the relation of weights s and n is: 

s

n
=

0 56
0 44
.
.

 (7) 

The CA was found to produce the desired fronts, i.e. the fronts shown in Fig. 1, 
when the following relations hold between the weights: 

e > ne > se, w > nw > sw and e =  w ,    ne = nw ,    se = sw (8) 

The weights n, s, e, w, nw, sw, ne, and se are the fitting parameters of the model. They 
are related as described by equation (8), and their values can be determined by fitting 
the simulation results to experimental data, in analogy with the A, B, and τ parameters 
of the mathematical model described earlier. 

3   The Proposed TCAD System 

The CA_OXIDA_TCAD system is able of automated modelling and VLSI implemen-
tation of oxidation process with CAs. In modelling of semiconductor processes, 
graphic output is a necessary tool for rapid and clear understanding of the computa-
tion results. Thus user-friendly tools allowing users to interact with the system is a 
basic part of the CA_OXIDA_TCAD environment. CA_OXIDA_TCAD user interface 
has been implemented using Matlab® GUI facilities, enabling interactive simulation. 

The simulation profiles are produced using two CA oxidation algorithms (one with 
discrete state space and one with continuous state space). The necessity of using two 
CA algorithms that differ only in state space stems from the hardware implementa-
tion, which is much facilitated using the CA algorithm with discrete state space. 
These CA parameters are maximum number of CA cells, maximum number of time 
steps, process geometry, mask presence, presence of defects and defects’ temperature, 
and their coordinates or predefined initial and boundary conditions, depicted on 
CA_OXIDA_TCAD simulation interface. The aforementioned parameters remain 
unchanged during the simulation. It should be mentioned that CA_OXIDA_TCAD 
does not impose any a priori limitations on these parameters. All parameters are 
modifiable, can be changed interactively, and the resulting simulations can be looked 
at in graphical form. The main system parameter during the simulation phase is the 
choice of the CA state space (i.e. discrete or continuous). Whatever the user’s choice 
is, the TCAD produces, except the graphical output of the simulation results, a txt file 
that gives the area covered by oxidation process during time evolution. 

As mentioned before a crucial question is for which reason the proposed system 
provides the user with two CA algorithms that differ only at state space. It is proven 
that each one of the two algorithms with proper parameters’ values can model oxida-
tion process as good as the other. The reason is that the translation algorithm of 
CA_OXIDA_TCAD, no matter which state space the user selects, uses the discrete CA 
algorithm as its input and as the basis for producing the synthesizable VHDL code. It 
should be emphasized that in case of continuous CA algorithm, the CA cell takes con-
tinuous values over the range (0) and (1) with accuracy of three decimal digits. More-
over the continuous CA rule is rather simple constructed with the usage of algebraic 
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operators +, * and / and implemented on a Moore neighbourhood. On the other hand, 
in the case of the discrete CA algorithm, the CA cell takes only two values (0) and (1), 
in correspondence, while the discrete CA rule is a lot more complex than the previous 
continuous one and is implemented on a extended Moore neighbourhood. As a result 
the continuous CA algorithm is offered to the user, during the modelling of oxidation 
process, in order to lead him in comparable conclusions in short time. 

To achieve discrete oxidation simulation profiles of same accuracy with the ones 
produced by the continuous CA, the number of discrete CA cells should be increased. 
Due to the fact that the increment of the number of discrete CA cells is analogous to 
the delay production of simulation profiles, the user should find the golden mean with 
several tests. The user will be helped to find the proper parameters values by two 
ways: first by the optical similarity between the produced profiles of continuous and 
discrete CA algorithms appeared in CA_OXIDA_TCAD modelling screen; and second 
by the minimization of the difference between the areas covered by oxidation process 
using the two CA algorithms (i.e. comparison of the equivalent txt files). 

After the performance and the functional correctness of CA oxidation algorithm is 
checked with the help of animated visualization of the environment developed in this 
research work, the CA_OXIDA_TCAD translation algorithm, written in a high-level 
scripting language, is used. This translation algorithm receives the CA algorithm with 
discrete state space as its input, and automatically produces, as output, a synthesizable 
VHDL code. The final VHDL code produced by translation algorithm, including both 
the behavioral and structural parts, addresses the basic VHDL concepts (i.e. inter-
faces, behavior, structure, test benches) included in the IEEE Standard 1076-2002. To 
achieve its goal, the translation algorithm collects information from the discrete CA 
algorithm by checking its primary parameters. After the CA algorithm is read, the 
translation algorithm searches the discrete CA code to detect the CA rule in order to 
produce the VHDL code for the main component, i.e. the CA cell. This will be the 
behavioral part of the final VHDL code, containing process and signal assignment 
statements. To be more specific, the entity declaration of a CA cell describes the in-
put/output ports of the module, which happens to be the main component in our 
VHDL code. In other words, this part describes the functional part of the CA code. 
The architecture body of the behavioral part of VHDL code displays the implementa-
tion of the entity CA cell. Subsequently, the translation algorithm searches the CA 
code to detect the lattice size, the boundary and initials CA conditions, in order to 
construct the structural part of the final VHDL code. The structural part implements 
the final module as a composition of subsystems, like the aforementioned main com-
ponent. It contains signal declarations for internal interconnections, where the entity 
ports are also treated as signals. In addition, it includes component instances of previ-
ously declared entity/architecture pairs, port maps in components, meaning to connect 
signals to component ports, and wait statements. It is clear, that the translation algo-
rithm operates in a dynamical way depending on the previous definitions made by the 
user. 

The VHDL codes produced by CA_OXIDA_TCAD are automatically saved in the 
hard disk, as VHDL files. The VHDL code of the main component is named ca.vhd, 
while four other VHDL codes, referred to the implementation of four counters, are 
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saved as counter5.vhd, counter8. vhd, counterup.vhd and counterdown.vhd, in corre-
spondence. These four counters are needed to construct the main component of the 
VHDL code, since they are integral part of the VHDL implementation of the discrete 
CA local rule. The entity name of the overall CAs is oxidacas.vhd. The final CA cell 
states will be transferred through multiplexers to the outputs of the future produced 
FPGA. The VHDL code for the multiplexer component is also produced automati-
cally by the CA_OXIDA_TCAD system and saved in the hard disk, as a VHDL file. 
This file’s name is multxoxida.vhd, and it is implemented in the final VHDL code, 
namely oxidacas.vhd, as a VHDL component. There is always a possibility, if the user 
wishes so, of functional simulation of VHDL code with the help of the appropriate 
test benches. The translation algorithm automatically produces these test benches 
using the final VHDL code and the initial and boundary conditions of the CA algo-
rithm, plus its termination condition. In other words, the test benches depend on the 
surface geometry of the oxidation process, on the presence or absence of masks, on 
the presence or absence of defects and on defects’ temperature. The file of the test 
benches is also saved as VHDL file in the hard disk, namely as casoxidatest.vhd. The 
results of the simulation of VHDL code are guaranteed to be found in complete 
agreement with the compilation results of CA oxidation algorithm. 

These VHDL codes, after being synthesized by means of a VLSI CAD tool, can 
produce the schematic of the corresponding expression. The design processing of the 
finally produced VHDL code, i.e. analysis, elaboration and simulation, has been 
checked out with the help of the Quartus II, v. 5.1® design software of the ALTERA® 
Corporation. Test benches were automatically constructed by our system, for the 
simulation needs of the VHDL code, and the Simulator of Quartus® was used to simu-
late the operation of the dedicated processor described by the VHDL code obtained. 
As a result, the VHDL code is applied as input to the Quartus® FPGA system, which 
in turn produces the layout of the corresponding dedicated parallel FPGA that exe-
cutes the oxidation process simulation algorithm. 

An example of CA_OXIDA_TCAD application in the simulation and automatic 
generation of VHDL code for the oxidation process is presented in Fig. 2. The simula-
tions to be presented are only a few of the several possible cases that can be handled 
by the proposed TCAD system. However, these simulations are just characteristic 
working cases of the oxidation process and the oxidation simulation profiles obtained 
are in very good qualitative and quantitative agreement with the experimental and 
simulation results found in the literature [2]. In Fig. 2 oxidation simulation profiles 
obtained in the cases of: (a) a planar Si surface using continuous CA, (b) a planar Si 
surface using discrete CA, (c) a rectangular Si line (step) using continuous CA, (d) a 
rectangular Si line (step) using discrete CA and (e) through a metal mask using con-
tinuous CA. The dashed line is the initial Si-air interface before the onset of oxida-
tion. Solid lines beneath the dashed line represent the advancement of the SiO2-Si 
interface at successive time steps. Solid lines above the dashed line represent the 
advancement of the SiO2-air interface at the same successive time steps. These work-
ing case simulations, resulting from both continuous and discrete CA oxidation algo-
rithms, are used for reasons of simplicity, convenience, and statistical comparison, in 
order to check the ability of the discrete CA to produce oxidation profiles of the same 
accuracy with the ones produced by the continuous CA. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 2. Oxidation simulation profiles obtained in the cases of: (a) a planar Si surface using 
continuous CA, (b) a planar Si surface using discrete CA, (c) a rectangular Si line (step) using 
continuous CA, (d) a rectangular Si line (step) using discrete CA and (e) through a metal mask 
using continuous CA. (f) CA_OXIDA_TCAD VHDL code production screen. 

The maximum simulation time and the maximum cell number for each grid side of 
the continuous CA algorithm were chosen equal to 12 and 60, respectively, for all the 
aforementioned working cases studied. As mentioned before, the difference between 
the state spaces of the CA algorithms leads to different evolution times and different 
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grid sizes. Consequently, the values of these algorithm parameters should be in-
creased in the case of discrete state space, so as to simulate the oxidation process with 
the same accuracy, as in case of continuous state space. As a result, the maximum 
simulation time and the maximum grid size are chosen to be 20 and 100, respectively, 
in order to achieve the best combination of computational accuracy and computational 
time-memory, for working case (d). In case (b), these parameters are chosen to be 12 
and 60, respectively, i.e. exactly the same as in the case of the continuous CA. The 
main difference between cases (b) and (d) is induced by the lack of curvature in the 
simulation profiles obtained, arising from the planarity of Si surface. 

The comparison of simulation results on the oxidation profiles in the cases of con-
tinuous state space [Fig. 2(a) and 2(c)] and discrete state space [Fig. 2(b) and 2(d)] 
leads to the conclusion that the proposed binary CA simulates successfully the oxida-
tion process. The qualitative agreement between the oxidation profiles of continuous 
and discrete state space is confirmed by the results of statistical comparison calcula-
tions of the oxidation areas in both cases. Indeed, in all working cases of oxidation 
simulation, as well as the ones not mentioned here for readability reasons, the final 
difference between the covered oxidation areas of the two CAs with discrete and 
continuous state space is never greater than 11%. Furthermore, it should be men-
tioned, that the CA local rule in case of continuous state space includes multiplica-
tions, divisions, and square roots, and its hardware implementation using VHDL 
would result in an integrated circuit with a larger silicon area, and consequently, 
smaller maximum operational frequency compared to the discrete state space VHDL 
code. As a result this implementation would not only be expensive to fabricate, but 
also its power consumption should be taken under serious consideration. Finally, the 
computational complexity of the produced hardware that implements the discrete CA 
algorithm is infinitely smaller than the corresponding complexity of the dedicated 
hardware that would implement the continuous one. 

After the simulation of the oxidation process, the VHDL codes of the main compo-
nent (CA cell) and of the entire CA are depictured automatically on the lower and 
upper window of Fig. 2(f), in correspondence by pressing the "Continue" button on 
Fig. 2(c) or Fig. 2(d). The proposed system produces automatically, in addition to the 
aforementioned VHDL codes, the necessary VHDL codes for the counters and the 
multiplexers needed for the synthesis of the final VHDL code and the VHDL codes of 
the test benches. The main parameter for the generation of the final VHDL code is the 
maximum number of cells per CA grid size, which depended on the choice previously 
made by the user. The only VHDL code that would change because of different initial 
and boundary CA conditions (surface geometry, mask’s presence, defects’ presence 
and defects’ temperature) is the VHDL code of test benches. The functional simula-
tion of the final VHDL code is accomplished using of the above test benches. The 
produced results are in very good agreement with the simulation results of CA algo-
rithm with binary state space. After the comparison of the simulation results for each 
of the CA_OXIDA_TCAD system operations, the hardware implementation of the 
corresponding parallel-specified FPGA is done with other proper VLSI CAD tools 
except the proposed system. For hardware implementation, ALTERA® Cyclone series 
FPGAs were chosen due to their desirable features but mostly because they provide 
the scalable platform with highest densities than most commercial FPGAs. These 
chips also support small designs, up to 20K logic gates, and are suitable for reducing 
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interconnection time delay and thus increasing performance. Functional simulation 
revealed a maximum frequency of operation of 218 MHz of the chosen EP1C12 
FPGA Cyclone device. Inputs to the dedicated processor are the lines through which 
the initial conditions are transferred to the CA, the clock, reset and load control sig-
nals, the boundary condition signals, as well as the power and ground connections. 
The final CA cell states are transferred through multiplexers to the FPGA outputs. 

4   Conclusions 

An efficient TCAD system, named “CA_OXIDA_TCAD”, for the automated model-
ling and VLSI implementation of oxidation process using VHDL, has been presented 
in this paper. A user-friendly interface that enables easy and effective interaction 
between the user and the TCAD system in every stage of the modelling procedure has 
been developed using MATLAB® GUI facilities. The produced profiles of oxidation 
process modelling obtained by CA_OXIDA_TCAD were found to be in very good 
qualitative and quantitative agreement with experimental and simulation results cited 
in literature. In the proposed system, a translation algorithm, written in high scripting 
language, is used to automatically produce synthesizable VHDL code. An example of 
successful modelling and VLSI implementation leading to a FPGA device that models 
oxidation process has been given. As a result, the aforementioned FPGA could serve 
as a powerful “virtual lab” dedicated to the modelling of the oxidation process. 
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Abstract. The paper presents an empirical study aiming at evaluating
and comparing several Machine Learning (ML) classification techniques
in the automatic recognition of known patterns. The main motivations
of this work is to select best performing classification techniques where
target classes are based on the occurrence of known patterns in con-
figurations of a forest system modeled according to Cellular Automata.
Best performing ML classifiers will be adopted for the study of ecosys-
tem dynamics within an interdisciplinary research collaboration between
computer scientists, biologists and ecosystem managers (Cellular Au-
tomata For Forest Ecosystems - CAFFE project). One of the main aims
of the CAFFE project is the development of an analysis method based
on recognition in CA state configurations of spatial patterns whose in-
terpretations are inspired by the Chinese Go game.

1 Introduction

The paper presents an experimental work to evaluate and compare Machine
Learning (ML) classification techniques for the automatic recognition of known
patterns that can occur in the dynamic behavior of a vegetable population model
based on Cellular Automata (CA). This work is part of an ongoing research
collaboration (Cellular Automata For Forest Ecosystems - CAFFE project) be-
tween the Computer Science Department of University of Milano–Bicocca, and
biologists and ecosystem managers of the Systems Research Department of Aus-
trian Research Center (ARC). CAFFE project aims at supporting ecosystem
management in the study of forest systems according to a modeling and sim-
ulation approach based on CA. To this aim a CA–based model of vegetable
populations competing on resources has been developed and validated by good
results in reproducing real conditions in an empirical study on vegetable popu-
lations consisting of robiniae (black locust), oaks, and pine trees on the foothills
of the Italian Alps. The CAFFE model is based on two–dimensional Cellular
Automata, whose cells represent portions of a given area in terms of available
resources and trees. Each cell can host a tree where its specie, size, the amount
of resources it needs to survive, grow, and/or reproduce itself are represented.
Interested readers can refer to [1] for a detailed description of this part of the
research.
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Fig. 1. From left to right: Geta, Iki, Shicho, Ko, and Tsugi patterns that can occur
on a Go board during a game and whose interpretation can be exploited to interpret
similar structures that can occur on configurations of cell states in the CAFFE forest
model

In order to support ecosystem managers in studying the dynamics of the CA–
based forest model, the Go–based pattern detection method has been recently
proposed [2]. The latter suggests to interpret known spatial patterns that can
be recognized in CA configurations mediating their interpretations from the Go
game. Figure 1 shows the structure of Geta, Iki, Shicho, Ko, and Tsugi patterns,
a subset of patterns that can occur on a Go board during a game [3] and that
expert players interpret in terms of competition between adversary stones on
the spatial structure of the board. The patterns shown in the figure have been
selected as the ones whose occurrence in configurations of CA cell states’ can
be interpreted as the related Go pattern that is, the Go pattern with the same
spatial structure). For instance, when a Geta pattern occurs during a game, it is
interpreted as the local capture of a group of stones by a set of adversary stones
that surrounds it. Due to the central role of the concept of liberty in Go rules,
the captured group is considered as lost and it is removed from the board.

Similarly within the competition of vegetable populations on available re-
sources, when a small group of trees is surrounded by trees of other species, it
is considered by ecosystem experts to be in not favorable conditions due the
scarcity of needed resources. Figure 2 shows a Geta pattern that in the following
time steps disappear together with all trees belonging to the captured group.
Unfortunately, the automatic detection of the occurrence of a Geta pattern in

Fig. 2. Three configurations of the CA forest model in which a Geta pattern disappears
together with all trees belonging to the captured group
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the CA cells’ configuration is not a simple task. For instance, Figure 3 shows
three configurations of the CA–based forest model in which the local capture of a
small group of trees can be recognized, but it is evident that pattern dimensions
and positions can vary. Moreover, it is not necessary to have a group of trees
completely surrounded by trees of other species to recognize the occurrence of
Geta. All this elements thus do not allow us to simply design a formal method
for pattern detection within CA configurations.

Fig. 3. Three configurations of the CA–based forest model in which the local capture
of a group of trees (Geta pattern) can be recognized. Cell colors indicate different tree
specie (no tree in the case of white cells).

In the following, we present the results of an empirical study aiming at select-
ing the best performing ML classification techniques in recognizing Geta pattern
in configurations of the CA–based model of forest systems. In particular, after
an overview of our reference forest model, in Section 3 we will introduce the
experimented classifier, data filters, and the data set we built with a selection
of CA configurations. Classification performances and experiment results in de-
tecting Geta pattern will conclude the paper with on outline of next steps in
CAFFE research collaboration.

2 CA–Based Forest Model

The Cellular Automata For Forest Ecosystems (CAFFE) model is based on two–
dimensional Cellular Automata, whose cells, arranged on a square grid, represent
portions of a given area. Some resources are present on the area, divided among
the cells. A cell can host a tree, represented in the model by a set of parameters
defining its species, its size, the amount of each resource it needs to survive,
grow, and/or reproduce itself.

The CA has been defined as [1]:

CA = 〈R,N,Q, f, I〉
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where:

1. R = {(i, j)|1 ≤ i ≤ N, 1 ≤ j ≤ M} is a two–dimensional N ×M lattice;
2. H is the neighborhood, that can be either the von Neumann or Moore neigh-

borhood;
3. Q is the finite set of cell state values;
4. f : Q×Q|H| → Q is the state transition function;
5. I : R → Q is the initialization function.

2.1 Cells’ State

Each cell of the automaton reproduces a square portion of terrain with a side
ranging from three to five meters. Each cell contains some resources, and can
host a tree. The possible states of each cell (Q) represents:

1. The type of terrain the cell reproduces;
2. The resources present in the cell;
3. The amount of resources the cell produces at each update step, and the

maximum amount of resources it can contain, according to its type;
4. Whether a tree is present in the cell, or not;
5. If a tree is present:

(a) the size of the tree;
(b) the amount of each resource it needs at each update step to survive and

grow;
(c) the amount of each resource stored by the tree at previous update steps;

6. Seeds scattered by trees living in the area.

2.2 Update Rule

At each update step of the automaton, the tree present in each cell (if any) takes
the resources it needs from the cell itself and uses them to survive, grow (if enough
resources are available), and produce seeds. Moreover, we defined the update rule
in order to reproduce the increasing influence that a growing tree can have on
neighboring cells. We modeled the impact of a tree in a given position on its neigh-
borhood by making resources flow from richer cells to poorer ones. In other words,
a cell hosting a large tree is poor on resources, since the tree at each update step
takes most (or all) of them. If the neighboring cells are vacant, their resources re-
main unused, and thus are richer than the one hosting the tree. Therefore, if we let
resources flow from richer cells to poorer neighbors, the effect is that in practice
a large tree starts to collect resources also from neighboring cells.

3 Empirical Pattern Recognition Study on Geta Pattern

In order to evaluate classification performances of several ML classifiers when
target classes are based on the occurrence of Geta pattern, we have built a data
set composed by 50 entries. Each entry represents a cell state configuration of
the CA–based forest model where a 7 × 6 grid with Moore neighborhood has
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been considered. Geta pattern occur in 26 entries of the data set that differ
according to pattern size (i.e. the size of the captured group ranges from 1 to 5
cells); pattern position (i.e. translations and rotations of Geta pattern within the
CA grid have been considered); size of involved trees; type of terrain on which
patterns occur; presence of other trees in the neighborhood of surrounding group;
number of surrounding trees: if k is the size of the captured group neighborhood,
the size of the surrounding group can range from k − 2 to k.

Each data set entry represents a CA configuration at a given time step, and
it can be defined as:

C(t) =< s0, s1, ..., sn, p >

where

– p is a boolean attribute that indicates the occurrence of Geta pattern (in
our experiments we considered the occurrence of Geta pattern in a given CA
configuration, if after a maximum of 20 simulation time steps we can observe
the disappearance of the whole group of surrounded trees);

– si ∈ T ×P ×Z (for i = 0 . . . 41) indicates the state of the i–th CA cell, where
T = {water,rock,wet,arid} refers to the type of terrain represented by the
cell; P = {noTree,Pine,Fir} is the type of tree in the given cell (if any); and
Z can assume, according to tree biomass, one of the following values:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

verybig if biomass < 600;
big if 450 < biomass ≤ 600;
highmedium if 320 < biomass ≤ 450;
medium if 230 < biomass ≤ 320;
lowmedium if 180 < biomass ≤ 230;
small if 150 < biomass ≤ 180;
verysmall if 0 < biomass ≤ 150;
⊥ if no tree is present.

In the following, after introducing the set of ML classification techniques we
experimented, we report the results of their performance evaluation both with
no preprocessing and with three different filters on data (introduced in Sec-
tion 3.2). Tests have been performed using the 10–folds cross validation evalua-
tion method [4].

3.1 Experimented Classifiers

ML techniques we experimented to classify CA configurations in which at least
a Geta pattern occurs are:

– Naive Bayes: A widely used framework for classification based on a simple
theorem of probability known as Bayes’ theorem (see for instance [5]). For a
detailed description of this classifier, see for instance [6,7].

– Multilayer Perceptron: A neural network that computes a single out-
put from multiple real-valued inputs by forming a linear combination ac-
cording to its input weights and then possibly putting the output through
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some nonlinear activation function. For a detailed description, see for in-
stance [8,9,10,11].

– Support Vector Machines with Sequential Minimal Optimization:
A method for creating functions from a set of labeled training data, which
operates by finding a hypersurface in the space of possible inputs [12,13].
Sequential Minimal Optimization (SMO) is a training method described
in [14,15].

– K* Classifier: An instance-based classifier which belongs to the class of
k–nearest neighbors classifiers [16,4].

– The ID3 Decision Tree Induction Algorithm: Its aim is to describe
an algorithm whose input is a collection of instances and their correct clas-
sification and whose output is a tree that can be used to classify each in-
stance [17,18].

– Random Tree Classifier: A different variant of decision tree induction
algorithm, much simpler than ID3, with a usually faster training phase.
They are described in [19,20].

3.2 Filters on Data Set

Classifier performances have been studied both with no preprocessing technique
and with the following three filters on data set:

– Resample Filter : produces a random subsample with replacement of the
dataset and maintains the class distribution in the subsample.

– Remove Useless Filter : removes constant attributes, along with nominal at-
tributes that vary too much.

– Attribute Selection Filter : a supervised filter which evaluates the worth of
a subset of attributes by considering the individual predictive ability of
each feature along with the degree of redundancy between them. Subsets
of features that are highly correlated with the class while having low inter-
correlation are preferred. The space of attribute subsets is searched by greedy
hill climbing augmented with a backtracking facility.

3.3 Performance Evaluation

For each class G in which data have to be partitioned by classifiers (i.e. the
occurrence or non–occurrence of Geta pattern), let:

– x(G) be the number of instances belonging to class G which have been
classified as belonging to class C by the classifier system;

– y(G) be the number of instances that have been classified as belonging to
class G the classifier;

– z(G) be the number of instances which really belong to class G.

The classification performance of the system reports values on correctly and
incorrectly classified instances to quantify classifier performance independently
from data classes. They report the number of CA configurations in the test set
which have correctly or incorrectly been classified, in terms of:
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– precision on class G, defined by p(G) = x(G)/y(G);
– recall on class G, defined by r(G) = x(G)/z(G);
– F–measure, defined as: F (G) = 2×p(G)×r(G)

p(G)+r(G)

3.4 Results on Geta Pattern

Table 1,Table 2, Table 3, and Table 4 summarize the results of our experiments
with no filter on data and with the Resample, Remove Useless and Attribute
Selection filters, respectively.

Table 1. Results with no filter on data

Classifiers Corr.Cl.Ist. Corr.Cl.Ist. Prec. Prec. Rec. Rec. F-means F-means
Yes No Yes No Yes No Yes No

Naive Bayes 25 (50%) 25 (50%) 0.514 0.462 0.731 0.25 0.603 0.324
MLP 31 (62%) 19 (38%) 0.613 0.632 0.731 0.5 0.667 0.558
SMO 30 (60%) 20 (40%) 0.594 0.611 0.731 0.458 0.655 0.524
KStar 27 (54%) 23 (46%) 0.543 0.533 0.731 0.333 0.623 0.41
Id3 21 (42%) 17 (34%) 0.538 0.583 0.737 0.368 0.622 0.452

RandomTree 25 (50%) 25 (50%) 0.514 0.462 0.731 0.25 0.603 0.324

Table 1 clearly shows that if no preprocessing is used on data, performances of
all classifiers are poor: only the MLP and the SMO perform significantly better
than a random classifier in this case. From Table 2, Table 3, and Table 4 we can
observe that all filters improve performances of all classifiers, except Random
Projection, which slightly degradates all classifiers performances. Nevertheless,
only the Resample filter remarkably improves the performances of all classifiers.
We hypothesize that this is due to the fact that randomly sampling the dataset,
this filter automatically reduces noise on data.

When the Resample filter is used (Table 2), SMO has very good performances
(all performance measures reported have a value over 0.9). MLP performs slightly
worse than SMO, but still very well (precision and recall are over 0.9 for the class
yes and over 0.8 for the class no). In conclusion, we can state that Resample

Table 2. Results with Resample Filter on data

Classifiers Corr.Cl.Ist. Corr.Cl.Ist. Prec. Prec. Rec. Rec. F-means F-means
Yes No Yes No Yes No Yes No

NaiveBayes 28 (56%) 22 (44%) 0.561 0.556 0.852 0.217 0.676 0.313
MLP 43 (86%) 7 (14%) 0.833 0.9 0.926 0.783 0.877 0.837
SMO 46 (92%) 4 (8%) 0.926 0.913 0.926 0.913 0.926 0.913
KStar 40 (80%) 10 (20%) 0.84 0.76 0.778 0.826 0.808 0.792
Id3 34 (68%) 7 (14%) 0.857 0.8 0.818 0.842 0.837 0.821

RandomTree 38 (76%) 12 (24%) 0.759 0.762 0.815 0.696 0.786 0.727
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Table 3. Results with Remove Useless Filter on data

Classifiers Corr.Cl.Ist. Corr.Cl.Ist. Prec. Prec. Rec. Rec. F-means F-means
Yes No Yes No Yes No Yes No

NaiveBayes 25 (50%) 25 (50%) 0.514 0.462 0.731 0.25 0.603 0.324
MLP 29 (58%) 21 (42%) 0.581 0.579 0.692 0.458 0.632 0.512
SMO 30 (60%) 20 (40%) 0.594 0.611 0.731 0.458 0.655 0.524
KStar 27 (54%) 23 (46%) 0.543 0.533 0.731 0.333 0.623 0.41
Id3 21 (42%) 17 (34%) 0.538 0.583 0.737 0.368 0.622 0.452

RandomTree 25 (50%) 25 (50%) 0.514 0.467 0.692 0.292 0.59 0.359

Table 4. Results with Attribute Selection Filter on data

Classifiers Corr.Cl.Ist. Corr.Cl.Ist. Prec. Prec. Rec. Rec. F-means F-means
Yes No Yes No Yes No Yes No

NaiveBayes 28 (56%) 22 (44%) 0.556 0.571 0.769 0.333 0.645 0.421
MLP 29 (58%) 21 (42%) 0.581 0.579 0.692 0.458 0.632 0.512
SMO 30 (60%) 20 (40%) 0.594 0.611 0.731 0.458 0.655 0.524
KStar 31 (62%) 19 (38%) 0.6 0.667 0.808 0.417 0.689 0.513
Id3 23 (46%) 14 (28%) 0.615 0.636 0.8 0.412 0.696 0.5

RandomTree 29 (58%) 21 (42%) 0.564 0.636 0.846 0.292 0.677 0.4

filter is the most suitable for our data set and Support Vector Machines seems
a reasonable pattern detection strategy for our application.

4 Concluding Remarks and Future Works

The presented work has been conducted within an interdisciplinary research col-
laboration aiming at designing a method for the analysis of forest ecosystems.
Cellular Automata have been adopted as modeling approach and the Go–based
pattern detection method is under design in order to support the analysis CA
dynamic behavior. Go–based pattern detection method proposes to automati-
cally detect in CA configurations a set of patterns whose interpretations have
been inspired by Chinese Go game. In particular, in this paper we have shown
the empirical work we conducted in order to select best performing Machine
Learning classification techniques in the recognition of the occurrence of Geta
pattern in CA configurations (i.e. in Go jargon, Geta indicates the local capture
of a group of stones by adversary stones). Performed experiments suggest Re-
sample filter and Support Vector Machines as pattern detection strategy for this
pattern.

Future experimental works on ML classification techniques will concern similar
studies on other Go–based patterns. In particular, we will focus on dynamic
patterns that, despite Geta and other static patterns, require the analysis of a
sequence of CA configurations in order to be recognized.
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Abstract. A brief approach through a CA-based model is perfect for modelling of 
different urban phenomena at different observation scales. SLEUTH model, situ-
ated in Project Gigalopolis, is a powerful tool for description of urban agglomera-
tion and spatial dynamics. In this paper, new applications of this model, other 
methodological analyses, and sensitivity studies allow us to improve our compre-
hension of model parameters, taking advantage of this type of synthetic descrip-
tion of reality. Many deductions are possible thanks to the comparison of our stud-
ies with other precious databases, already existent, about results of this model. 

1   Introduction 

We can consider Cellular Automata (CA) like analysis tools for complex systems, 
because the city and its land-use can be seen like a mechanism, or parts interacting 
between themselves, in a sort of autonomous systems [1]. Cell changes in a CA are 
spatially and temporally self-correlated, and they simulate some properties of urban 
decision process, subdivided in different zones (i.e. zoning policies). A particular 
really interesting phenomenon that we want to study is the so called urban sprawl, 
which is an uncontrolled and really ungovernable growth of urbanized areas with a 
low density level, that acts outside the cities or among different close cities, with 
several territorial and environmental consequences. To avoid the effort in building 
different models for the same subject, not really different one from the others, the idea 
of the Project Gigalopolis was born from a collaboration between the University of 
California of Santa Barbara and United States Geological Survey, which proposed to 
apply, on a large range of different territories, a CA-based model, already developed: 
SLEUTH [2][3].  

We purpose the first completely autonomous application in Europe, with a critical 
approach about the use of this model: in particular we want to go deep in the meaning 
of the parameters, used to describe urban dynamics if different phases of growth, and 
we want also to individualize the effects through specific simulations and other 
sensitivity analyses for parameters. The goal of this paper is a contribution for the 
ambitious Project Gigalopolis, investigating the meaning of the parameters of the 
model, and the common aspect among different type of urbanized area, so it’s 
possible to build a “DNA of city” through the analysis of the outgoings produced by 
SLEUTH. Experiences and results come out from previous applications are the main 
resource for a deep comprehension of the urban and spatial problems. 
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2   SLEUTH Model and Project Gigalopolis 

In order to characterize urban dynamics SLEUTH works with a strict structure based 
on different layers: as we can see from its name, which is the acronym of input data 
that this model needs, the growth of the city is driven, conditioned, or limited by five 
factors: Slope, Land use, Excluded areas (where the development of urban areas is 
forbidden), Urban areas, Transportation network; this factors are represented through 
different layer, and Hillshade, used as background in visualization.  

This model is located inside the recent panorama of the urban modelling as a 
flexible, robust, reliable tool which can be compared and can be competitive with the 
other CA models. SLEUTH is an evolution of Urban Growth Model, an AC-based 
built for the first time in 1998 by Keith Clarke. So it is structured in two different 
modules, which can be activated independently: UGM (Urban Growth Model), that 
simulate the urban growth, and Deltatron, that allow observing the changes in land 
uses [4]. In its main module, SLEUTH is a probabilistic CA with Boolean logic (for 
example a cell can be only urbanized or not urbanized), and with only five 
parameters; this approach justify the use of “brute force” calibration based on the 
research of parameters in determinate ranges which are progressively reduced. This 
model is valued for the parameters ability in adjusting and representing, in a careful 
way, different phenomena of various areas and regions; then theoretically there isn’t 
any limit in dimension of the studied area: there are case studies about a whole region 
and other application about a single city.  

2.1   Model Parameters and Growth Rules 

The time unit of the urban growth simulation is the growth cycle, and it corresponds 
to one year. Urban growth dynamics in UGM module (which provides probabilistic 
information) are modeled using four sequential rules, like four steps of a cycle; all the 
cells which constitute the whole automata are update on the whole grid after each rule 
application. 

Five parameters (with values between 0 and 100) influence the way how the 
transition rules, which describe growth and transformation of the city, can be applied. 

1. Dispersion coefficient (DI): it controls the number of time that a cell is randomly 
selected to be urbanized during the application of spontaneous growth law.  

2. Breed coefficient (BR): it determines the probability of an urbanized cell, in the 
spontaneous growth phase, to become a new urban core which has the possibility 
to evolve (new spreading centre). Moreover BR is used road-influenced growth 
phase, determining the spread along a road.  

3. Spread coefficient (SP): it defines the probability that a cell, which is part of a 
spreading centre (a cluster with at least two urbanized cells, in a 3x3 
neighbourhood), generates another urbanized cell in its neighbourhood. 

4. Slope resistance (SR): Slope above 21% can’t be urbanized. The slope coefficient 
determines the weight of the probability that a location may be built up. 

5. Road gravity coefficient (RG): it defines the maximum influence distance for 
each road on urbanization probability. It depends also from input map dimension. 
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The urban growth dynamic, implemented in UGM sub-model, is defined by four 
steps, depending on the previous parameters: Spontaneous Growth, New Spreading 
Center Growth, Edge Growth, Road-influenced growth. After these phases, there is 
the self-modification process; without it the model produces linear or exponential 
growth, which is quite far from reality: growth coefficients do not necessarily remain 
static throughout an application. In response to rapid or depressed growth rates, the 
coefficients may be increased or decreased to further encourage system wide growth 
rate trends. 

In order to perform Deltatron module is necessary to predispose input data about 
land use changes. Dynamics we have already seen start from assumption that the 
urbanization process is the engine of changes in non-urbanized land cover. Land 
cover modelling is based on changes of virtual entities, called Deltatron (which 
represent different type of classes we can consider) described in 4 phases: Initiate 
change, Cluster Change, Propagate change, Age Deltatron.. 

2.2   Project Gigalopolis 

Project Gigalopolis deals with the problem of the modelling of urban growth 
dynamics, which nowadays have overcome the regional scale to take a global 
dimension, studying the sprawled city phenomenon. Applying SLEUTH model at the 
greatest number and different types of territories (this software is freeware at 
http://www.ncgia.ucsb.edu/projects/gig.html) it’s possible to analyze the urban sprawl 
phenomenon at a global scale and derive some conclusions, with general validity, 
about the trend of urban development and of urbanized areas. 

In whole theory at the base of this project there is the vision of the urban 
development as driving force of the spatial changes. Project Gigalopolis offers the 
possibility to compare results among a large number of case studies in Cellular 
Automata field applied to spatial analysis: it is allowed the access to database 
composed by parts of results coming from previous application of SLEUTH model.  

Use of this model on a large and heterogeneous range of case studies is made to 
compare the results and understand the real possibility to build new realistic scenarios 
of urban development, creating in a long period an efficient modelling system, as 
swell as to realize shared and updated database to drive local communities in clever 
and responsible development for urban growth. Generalization and contextualization 
of obtained results, also for heterogeneous territories, can allow identifying the “DNA 
of the cities”, as different combination of parameters. 

3   Methodological Analysis, Sensitivity Studies and Applications 

Validity of simulations made with a CA-based urban model directly depends on its 
capability, after a suitable calibration of parameters, to well fit the system we want to 
study. So, to evaluate critically the ability of SLEUTH in simulating urban systems, 
we did a study on an ideal territory characterized by a population distributed 
according the very general Zipf’s rank-size rule, and a simulation of a hypothetical 
case of urban sprawl. But, first of all, we show the behaviour of the model in respect 
to the values of its parameters. 
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3.1   Sensitivity Analysis of Parameters 

In general it is not possible to associate one parameter with one growth process in an 
explicit and univocal way, because the growth parameters BR, DI and RG are highly 
correlated between themselves. This makes difficult to understand each growth cycle 
in urban evolution, and we can observe only the reproduction of the overall urban 
complexity. In order to better define the parameter role, we performed some 
simulations with representative sets of different urban centres (highly constrained for 
development, prevalence of the diffusion effect, sprawl effect, etc.), both in ideal and 
actual territories. 

In case of an ideal territory, characterized by spatial isotropy and by absence of 
previous urban structures (20 years of simulation), given initial conditions, we obtain 
the greatest growth assigning an high value (80-100) to SP parameter rather than to 
BR and DI. This allows the urbanization of cells in the neighbourhood of other cells 
previously urbanized: we can observe exponential growths of urbanized area. With 
high values of BR we obtain with a good approximation a linear growth in 
urbanization processes (high values of DI lead to similar results but with a lower 
velocity in respect to BR). RG shows only a qualitative effect, influencing only the 
localization of new urbanized cells, but not their amount. If we isolate the effect of 
one parameter, minimizing values of the others, we observe an opposite situation 
compared to what we have explained before: the highest urbanization growth is 
obtained with high values of DI parameter. Moreover SP is quantitatively important, 
if and only if either BR and DI values are negligible, or there are previous urban 
agglomerations with a relevant extent (like many urban cores in a metropolitan area). 

For real territories, where we have done the calibration using four years of data 
input (with the possibility to compare the effect produced by a set of parameters with 
a reference situation), maximizing BR, SP, and DI, we obtained a confirmation of the 
previous results. 

This analysis shows that maximization of RG parameter leads to an high 
urbanization of more accessible areas in connection to road network, with equal 
growth rate (due to the values of the other parameters). 

3.2   Ideal Behaviours at Two Extremes: Hierarchic Structure and Urban Sprawl 

The rank-size rule (power law distribution) describes the emergent attitude of urban 
systems, which have the tendency of self-organization: the law relates the population 
of a city classified at one level with the level itself, and it comes from the observation 
of the real behaviour of territorial systems [6]. Generally, distribution of population 
among the cities is such that there are few big centres, and a lot of smaller urban 
cores. 

Even though SLEUTH model has been efficiently used in simulation of urban 
dynamics, it’s possible to apply it also to evolution of territorial systems on large 
scale. The principles which rule the urban development (described by SLEUTH 
parameters) can be seen also in a higher observation level: for example, generation of 
a new urbanized cell, due to dispersion or spread, could represent one or more 
buildings of the same city, or a new urban centre which will grow thanks to the effect 
of breed coefficient; in the same way, the systems of cities take into account, for their 
growth, slope and road network proximity. The decision to consider the power law in 
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order to simulate those territories can be well understood when we consider one of its 
main proprieties, that scale invariance, and as for urban development mechanisms, 
discussed previously, its validity is independent from the considered scale. 

Simulation of a territory to verify Zip’s rule (rank-size) refers to a spatial pattern 
produced by an iterative process with a mechanism of allometric (differentiated) 
growth: we followed this logic for building the model input layers. Observing 
simulation output (calibration set is DI=0, BR=1, SP=0, SR=7 and RG=60), it’s 
possible to notice how it respects territorial organization described by the law: we 
observe to the growth of a lot of very little centres equal-spaced from each others, and 
gravitating, in an ordered way, around big dimension “cores” situated in accessible 
places reached by the road network (radial transportation network, according to Wu’s 
road model [7]).  

We have also the possibility to verify how this experiment fits the law using a 
numerical analysis. As size we can use the extension of the cities, and not population 
anymore (but they are proportional, so we can exchange one with the other). Through 
a graphical and numerical analysis of the map we can extract the empirical data for 
rank-size rule. 

We can observe 67 clusters on our ideal territory, and the rank will go from 0 for 
the largest mass, to 66 for the smallest mass (We can recognise just 4 different class 
of size of cities – masses - , but we will have much more differences in size, 
considering other iterations in the process of territory building). Plotting rank and size 
together in a bi-logarithmic graph we have a definitive confirmation about how the 
functioning of SLEUTH can recognise and interpret a rank-size structure in a good 
way: the number of centres grows in a power way with rank (using logarithms this 
relationship becomes linear, and an example of scale invariance). 

 

Fig. 1. Left: output image of the last year of prediction: it’s possible to distinguish different 
level of urban centres dimensions (simulation date range: 1990-2010). Right: rank- size rule on 
the data of the ideal case study in logarithmic coordinates. 
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Having verified the ability of the model to represent and reproduce a hierarchically 
organized territory, it’s also interesting to see how parameters combination can 
reproduce a hypothetic urban sprawl. 

In this analysis, input layers were realized “ad hoc” for this type of simulation; and 
some hypothesis are necessary [8]: morphologically homogeneous territory (to 
guarantee an equal development probability for each cell at the beginning); no urban 
restrictions and constraints; “star shaped” urbanized area, which generally derives 
from the radial distribution of the road of transportation network. Calibration for this 
input gives values of DI, BR, SP, SR and RG parameters equal to 2, 6, 26, 1 and 1 
respectively. The main parameters which can give an idea of urban sprawl 
phenomenon are BR, DI and SP; but even the road disposition and the resultant 
accessibility have influence upon it. Output suggests that urban area (dis)organization, 
which is typical of urban sprawl, is effectively reproduced in a quite good way. In the 
simulation the SP parameter, in spite of its predominant effect, can’t replicate by itself 
alone urban sprawl phenomenon: it has to be associated with non-irrelevant BR and 
DI values. 

The diffusion phenomenon, part of the sprawl, causes the presence of a high 
number of clusters. They decrease in number progressively, but remain - in average - 
very small.  

3.3   Italian and European Case Studies 

Results of Italian and European real territories are proposed to make the Project 
Gigalopolis database more consistent: in this way the comparison between real cases 
parameters values is easier and it’s possible to trace general characteristics of urban 
growth phenomenon. In order to create land-use input layer, for case studies on real 
territories, we have assumed as opportune to convert our classification (Corine land 
cover) in the American one named Anderson Level I Classification System, also to 
conform ourselves to the classification system used in many other application of this 
model, in order to make the results much more shareable. 

New applications are representing very different case studies: for geographic 
position, territory morphology and urban story and settlements types (one city or 
metropolitan area, more towns and municipalities together…). 

Case studies are heterogeneous overall about technical details, such as input image 
dimensions and precision (cell size).  

Table 1. Precision and parameters values for European and Italian applications 

Region/area cell [ha] DI BR SP SR RG 
Padova-Mestre, Italy 0,85 2 9 3 1 79 
Palermo, Italy 0,25 2 26 38 70 100 
Helsinki, Finland 1,07 2 100 11 1 62 
Bilbao, Spain 0,45 6 22 22 12 53 

The case study about the corridor between Padova and Mestre (near Venice) is 
quite different respect the others because we are analysing not a single city, but a 
territorial system, with an area of 51578 ha and 18 municipalities. The simulation 
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made on 20 years (1997- 2017) shows a constant growth rate and a consequent linear 
growth of the urbanized areas, especially along road network: these results are 
confirmed by demographic analyses, which show a growth of the number of 
inhabitants in those municipalities and consequently of their extension. 

The prevision made for Palermo from 1997 to 2017, otherwise, can be considered 
as a typical example of urban expansion “for contiguity”. This effect is given by an 
high value of SP parameter, higher than Italian and European mean, and this 
behaviour is explained by two reasons: the constraint factor, that is the topological 
structure of the areas outside the city; and the phenomenon of the suburban growth, 
confirmed by a parallel analysis of commuters and residence transfers of people. 

The case of Helsinki, instead, it’s an example of the saturation of urbanized areas; 
whereas the simulation on the future of Bilbao shows a moderate growth near the city 
boundaries. 

 

Fig. 2. Urban growth (1997-2017) and associate probabilities in Palermo, Italy 

4   Remarks and Observations 

The comparison with results from other cases can be performed integrating our results 
with Project Gigalopolis available database. So it’s possible to understand SLEUTH 
strength theoretical and methodological bases and to individualize, in a concise way, 
common characteristics of urban expansion phenomena in different areas, identifying 
“DNA of world and cities”, based on parameters values. The aim is to realize a 
regression that allows not only to describe city growth with a parametric combination, 
but also to deduce city or territory expansion by knowing the intrinsic effects of 
different parameters set. An opposite direction than calibration is ideally followed. 
Which actions and types of growth can a certain combination describe?  

A comparison can be affected among parameters based on different geographic 
location case studies to understand how they can be distinguished in different 
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territory. It’s undeniable that social-economic, building and urban differences exist 
among different continents: they can emerge by this comparison. Instead the 
resistance parameter based on slope is difficult to generalize because it’s typical of a 
land and can be traced back social-economic factors.  

From it follows that: 1) a low value of DI is noticed in historical cities and 
metropolitan areas; in Italy and Europe there is a different space competition than in 
USA (max ID values); 2) BR is maximum in Europe because there is a very rational 
land use: when an installation occurs,  its  possibilities are exploited at its maximum; 
3) the more the cities development is quick and recent (a growth that spreads at first 
from the edges), the more SP reaches high values: the maximum SP values are 
referred to cities which have known an economic and social boom (Mexico City, 
Houston, Tijuana); this is attested by the fact that minimum SP values are registered 
in Italian and European cities; 4) RG is often maximum in Italy and decreasing 
respectively in Europe, USA and other Asian and African countries. BR high and DI 
low values can be associated to planned and monitored territorial systems 
(Netherlands, Helsinki, lands which are also very flat too). There is a difference 
between the coastal and inland cities attitude: the firsts seem to be associated  to 
highest DI values, the seconds refer to lower RG.  

From these qualitative speculations, general principles are deduced  and these can 
be used to describe different types of urbanization according to various parameters 
combination, performing the so called “parameters - real case” regression (Tab. 2). 
Using these methods, an effort to reproduce urban growth in Milan  (between 1980 
and 1997) was performed. According to the previous considerations, a set of  DI=8, 
BR=100, SP=17, SR=1, RG=100 was chosen; results validation is possible thanks to 
the known situation in 1997. The obtained results are qualitatively good (right 
location of new settlements), but there is a trend to underestimate (-1%) the urban 
area, due to the presence in the Exclusion input layer of constraints representing the 
South Milan Agricultural Park from 1980 (but funded in 1990). 

 

Fig. 3. Comparison between parameters values in different counties and cities in the world 
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Table 2. Parameters values ranges for the description of different urban development kinds 

hypothetical parameters values kind of urban area  

DI BR SP RG 
recently developed metropolis 25-40 >50 >80 >50 
urban sprawl 10-20 10-30 10-30 >50 
well-established, planned city <5 >90 <10 40-60 
strongly restricted zone <<5 100 <10 <10 
metropolis with ‘satellite cities’ 5-10 30-40 10-30 >90 

5   Conclusions 

Parameters manipulating is the most synthetic approach to control urban dynamics. 
Being SLEUTH a trend extrapolator (using a historic database), it’s possible to 
intuitively understand which parameter combination can describe urban dynamics for 
an urban complex typology (town, cities, metropolitan areas); it’s possible to 
overcome absence of bi-univocal correspondence between parameters and growth 
phases using this kind of regression. Contextualizing real new case studies and 
methodological analysis permits to trace an inductive experimental approach, of 
which validity is confirmed by Milan application. 

In the future, the intensive use of SLEUTH model for wide areas can be realized 
overcoming the computational problems, due to input images dimension and the large 
number of states explored by the automaton, thanks to parallel computing techniques, 
that is using multi-processor endowed pc or with workstations group. The whole CA 
cells space can be investigated dividing it in subset or subspaces and allocating these 
parts of study area to different computers. In this direction the intent is to integrate 
SLEUTH uses with the so called Computational Grid [9]. So the research continues in 
two directions: on one hand using the model as a tool improving performances; on the 
other hand investigating proprieties, using sensitivity analysis. 
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Università degli Studi di Milano–Bicocca
Dipartimento di Informatica, Sistemistica e Comunicazione,

Via Bicocca degli Arcimboldi 8, 20126 Milano, Italy
{cattang, dennunzio, farina}@disco.unimib.it

Abstract. A Cellular Automaton (CA) describing a predator–prey dy-
namics is proposed. This model is fully local, i.e., without any “spurious”
Monte Carlo step during the movement phase. A particular attention has
been addressed to the comparison of the obtained simulations with the
discrete version of the Lotka–Volterra equations.

1 Introduction

Nonlinear ordinary differential equations are still a fundamental tool in the
analysis of Predator-Prey systems [5, 8]. The limit due to lack of information
about the spatial distribution during the time evolution of the populations have
pushed the research, since the early 1990’s, toward lattice models. These sys-
tems evolves in discrete time steps by means of the application of some rules to
the lattice sites. Most of the proposed lattice models are based on Monte Carlo
(MC) simulation methods [9, 7, 11, 4, 1, 6, 10]. This approach is usually paired
with mean-field equation analysis. The rules used to define the hunting process,
i.e. the strictly local predator-prey interaction, are in many cases determinis-
tic. Sometimes this local interaction does not assume the exclusion principle, so
many entities may stay in the same lattice site [6, 11, 7]. More important, in the
MC methods the movement phase of the species is a non local process. Let us
stress that the random unbounded jumps between lattice sites may be unlikely
w.r.t. the real movement capabilities of the individuals. In effects in many MC
lattice models the focus on the biological semantics of the predation is somehow
considered a secondary aspect. In [2] the predation phase is suitably treated
but the MC modelling of the movement is not completely satisfactory from a
biological point of view.

Cellular Automata (CA) models [12, 3] give a better biological approach to
simulate predator-prey interactions. In the CA context all the lattice sites are
updated in a synchronous way and, generally, the local evolution rule is simpler
than the MC versions. The small cardinality of the CA neighborhood grants to
model properly the individual movements.
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We propose a CA model to simulate predator-prey systems. The probabilistic
predation rule, inspired by [2], has been designed by ecological motivations. We
have defined a truly local movement phase, where wishes and fears of each species
have been taken into account. A comparison between the simulations obtained
by our CA approach and dynamical systems is exposed.

2 Discrete Time Dynamical Systems

Let us consider a single population within a closed environment. We denote
by the variable x(t) ∈ R+ the population magnitude at time t ∈ N and by
r : N �→ R the growth rate function of the population. The system evolves
according to the equation x(t + 1) − x(t) = r(t) · x(t). We consider the logistic
case where r(t) = k (1 − x(t)/L) with k ≥ −1 and L ∈ R+. The parameter L is
the capacity, i.e., the maximum number of individuals allowed by the system in
order to maintain the population in equilibrium. The variation of the parameter
k in the domain −1 < k < 3 determines different dynamical behaviors modifying
the features of the equilibrium points 0 and L.
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Fig. 1. Dynamics in the cases: (a) −1 < k = −0.2 < 0 (0 attracting, L = 100 repelling),
(b) 0 < k = 0.23 < 1 (0 repelling, L = 20 attracting), (c) 1 < k = 1.98 < 2 (0 repelling,
L = 20 attracting with possible oscillations) and (d) 2 < k = 2.6 < 3 (0 and L = 20
repelling)

On the other hand, the behavior of two species x1(t) ≥ 0 (preys) and x2(t) ≥ 0
(predators) in competition in the same environment is summarized by the fol-
lowing discrete time difference equation generalization of the standard Lotka–
Volterra differential equations system with aij ≥ 0{

x1(t+ 1) = x1(t)[(1 + k1) − a11x1(t)] − a12x1(t)x2(t)
x2(t+ 1) = x2(t)[(1 + k2) − a22x2(t)] + a21x1(t)x2(t)

(1)

The study of the equation 1 shows that prey and predator populations exhibit
an evolution consisting of oscillations.

3 The CA Model of Predator–Prey Dynamics

The automaton we consider in this paper is based on the 2D discrete rectangular
lattice space L = {0, . . . ,M − 1} × {0, . . . , N − 1} consisting of M cells in the
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Fig. 2. (a) and (b): dynamics for k1 = 2.8, k2 = 0.5, a12 = a21 = 0.5. (c) and (d):
dynamics for k1 = 2.8, k2 = 0.5, a12 = a21 = 0.7.

horizontal direction and N cells in the vertical one with periodical boundary
conditions (toroidal geometry). Each cell can assume a value in Q = {0a, 1, 2a},
where 0a, 1 and 2a mean that either the cell is empty, it contains a prey or it con-
tains a predator, respectively. A configuration c of the automaton is a function
c : L �→ Q which assigns to each cell (x, y) ∈ L a state c(x, y) ∈ Q, implemented
as a M × N two dimensional array. In this paper we present two CA models.
The second model, as an improvement of the first one, corresponds to better
(and in some sense optimal) results in comparison with the difference equations
discussed in section 2. The enhancement regards the possibility of prey death in
cells whose neighborhood contains a great number of other preys in absence of
predators. The uniformly applied local transition CA rule consists of two steps:
reaction and movement.

The reaction step is composed by two sub-phases: the attack and the re-
production (including also death processes). They depend on the following 4
parameters: bp (prey birth probability), dp (prey natural death probability), bh
(predator birth probability), and dh (predator death probability). In both these
sub-steps the involved neighborhood is the Von Neumann one. Let us introduce
two temporary further states: 0b which means that the cell becomes empty af-
ter the attack sub-step and 2b meaning the cell contains a predator which ate.
In this way, we have obtained a new state set Q0 = {0a, 0b, 1, 2a, 2b}. For the
attack we consider a cell state s ∈ Q in the position (x, y) ∈ L. If it is a prey
(s = 1) we have two possible transitions towards a new state s′ ∈ Q0. If there
are no predators in its neighborhood the cell remains prey (s′ = 1). Otherwise,
it alive (s′ = 1) with probability (1 − dp)npt(x,y) where npt(x, y) is the number
of predators in its neighborhood. If the prey dies the state of the cell becomes
s′ = 0b. If the cell is a predator (s = 2a), the predator fails the hunt (and in
this case s′ = 2a) with probability (1− dp)npr(x,y) where npr(x, y) is the number
of preys in its neighborhood. If the hunt succeeds the state of the cell becomes
s′ = 2b. Let us consider now a cell of state s ∈ Q0 in the position (x, y) ∈ L.
During the reproduction sub-step if the cell is a prey (s = 1), its state does not
change (s′ = 1). If the cell is a predator (s = 2a/2b), it can die with probability
dh. In this case the cell becomes empty (s′ = 0a), otherwise the new state is
s′ = 2a. Let us now trait the situation of an empty cell s = 0a. If either there are
some predators or there are no preys in its neighborhood, the cell remains empty
(s′ = 0a). Otherwise it becomes prey (s′ = 1) with probability (1 − bp)npr(i). In
the case s = 0b (corresponding to the fact that in the previous sub-phase the cell
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Fig. 3. The 4 quadrants of the radius 2 Moore neighborhood of a cell

was occupied by a prey and in its neighborhood there was predators) the cell
remains empty (with s′ = 0a) with probability (1− bh)npt2(x,y), where npt2(x, y)
is the number of predators which have eaten. Otherwise the cell becomes preda-
tor (s′ = 2a).

In order to describe the movement phase let us introduce the mapping T :
Q× L �→ {0, 1} defined as follows:

T (v;x, y) =

{
1 if the state of the cell (x, y) is v ∈ Q

0 otherwise
(2)

We can associate to any cell of position (x, y) and to each state v ∈ Q the
following quantities

n
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which represent the number of cells of state v in the North, South, Est, and
West, respectively, quadrant of the radius r Moore neighborhood centered in the
cell (x, y) (see figure 3). On the basis of these numbers it will be possible to
determine the movement intentions of the individuals. If a cell contains a prey,
the associated direction is the one corresponding to the quadrant containing the
minimum number of predators. If many quadrants contain the same minimum
value, then the direction is chosen with uniform probability. If there are not
predators in the whole Moore neighborhood there is no movement. Analogously,
a predator cell direction is directed toward the quadrant with the maximum
prey number.Once the intentions are set, the movement is modelled so that the
individuals move towards available empty cells in their Von Neumman neigh-
borhood. If the same available empty cell is pointed by many creatures then a
random choice is performed.

4 Simulations

In order to make a first test about the validity of the proposed model, we have
considered the two opposite situations of preys without predators and vice versa.
In the former (see the fig. 4b), the simulations show an increase of the popu-
lation which is similar to the behavior of the logistic difference equation under
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Fig. 4. CA dynamics of (a) predators in absence of preys and (b) preys in absence of
predators. (c) CA dynamics with prey and predators (bp = .6, dp = .7, bh = .3, dh = .2).
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Fig. 5. CA prey dynamics with cosine function (left) and exponential function (right)
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Fig. 6. CA dynamics of an interacting predator–prey system with cosine function

0 < k < 1 (compare with the fig. 1b). In the latter (see the fig. 4a) the decrease
of predators is comparable to the logistic difference equation under −1 < k < 0
(compare with the fig. 1a).

These behaviors occur in any performed simulation independently by the CA
parameters. Differently from the difference logistic equation behavior no oscilla-
tions appear. The figure 4b shows a simulation of a predator-prey interaction.

An improvement of the first CA model
The above discussion, with the inadequacy in obtaining oscillatory dynamics in
the case of a single prey population, led us to modify the attack sub-phase for
cells (x, y) containing a prey (s = 1). If either there is some predator in the Von
Neumann neighborhood of the given cell and the prey is alive to the attack or
there is no predator in its Moore neighborhood of radius r, then it dies (s′ = 0a)
with probability n′

pr(x, y)·f(bp)/(2r+1)2, where n′
pr(x, y) is the number of preys

in the Moore neighborhood of radius r and f is a pre-assigned mapping on the
interval [0, 1]. In this paper we have adopted the two following different choices
f1(bp) = (1 − cos(π/2 · bp)) (cosine) and f2(bp) = 1 − e−e·bp (exponential). The
figure 5 shows two oscillating prey dynamics and the figures 6 and 7 propose
some simulations of interacting populations obtained by the modified model.
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Fig. 7. CA dynamics of an interacting predator-prey system with exponential function

Fig. 8. Different lattice evolution steps

5 Conclusions

We have presented a full CA model of predator–prey systems whose fit with the
logistic discrete time results about the dynamical evolution of the total number
of individuals is very promising. Furthermore, the information about the “spatial
strategies” adopted by the two species during these dynamics, information non
available in the difference (but also differential) equation case, can be obtained.
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Abstract. This work deals with a new methodology for the definition of vol-
canic susceptibly hazard maps through Cellular Automata and Genetic Algo-
rithms. Specifically, the paper describes the proposed approach and presents the 
first results to the South-Eastern flank of Mt. Etna (Sicily, Italy). In particular, 
resulting hazard maps are characterized by a high degree of detail and allow for 
a punctual and accurate evaluation of the risk related to lava invasion. 

1   Introduction 

Cellular Automata (CA) are discrete dynamical systems, widely utilised for modelling 
and simulating complex systems, whose evolution can be described on the basis of 
local interactions. Well known examples are Lattice Gas Automata and Lattice Boltz-
mann models (cf. [1]), which are particularly suitable for modelling fluid dynamics at 
a microscopic level. However, many natural phenomena are difficult to be modelled 
at such scale, as they generally evolve on very large areas, thus needing a macro-
scopic level of description. Moreover, they may be also difficult to be modelled 
through standard approaches, such as differential equations (cf. [2]), and Macroscopic 
Cellular Automata [3] can represent a valid alternative. 

Among the above mentioned phenomena, lava flows may involve serious dangers 
for people security and property, and their forecasting could significantly decrease 
this hazard, for instance by simulating lava paths and evaluating the effects of control 
works (e.g. embankments or channels). SCIARA [4] is a family of deterministic Mac-
roscopic CA models, specifically developed for simulating lava flows, in particular 
for the Etnean “aa” type, which are characterised by a relatively high viscosity degree. 
Numerous versions have been proposed, ranging from mainly empirical [5] up to 
models which embed a proper physical description of the phenomenon and a more 
accurate control of its development [6]. However, experience showed that these latter 
allow for not considerable improvements in terms of simulation results, in spite of a 
notably increase of computational requirements. Consequently, the more sophisticated 
models may represent the better choice for studies needing the high possible accuracy, 
while even a simplest version can be considered for preliminary analysis, especially in 
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case the execution time is a critical factor. Accordingly, the SCIARA-fv version (de-
rived from SCIARA-hex1 [5]) was considered in this study, as it permits satisfying 
simulations of real events and is characterised by low computational times, allowing 
for the execution of an elevated number of simulations, needed for the scope of this 
work. 

Concerning model calibration and validation, the former was performed through 
Genetic Algorithms on a well known case of study, and results then validated on dif-
ferent ones. By applying the model to the simulation of an adequate number of “pos-
sible” events, a preliminary hazard map was obtained for the South-Eastern flank of 
Mt Etna (Italy), based on a new methodology, as described in the following sections. 

2   The SCIARA-fv CA Model 

The Macroscopic CA model SCIARA-fv can be simply thought as a region parti-
tioned into hexagonal cells of uniform size, each one embedding an identical finite 
automaton (fa). Input for each fa is given by the states of the fa in the adjacent cells. 
The state specifies the physical conditions (altitude, lava thickness, flows, tempera-
ture, etc.) of the corresponding space portion. At time t=0, the states of the fa are 
specified according to the initial conditions of the phenomenon to be simulated; the 
CA then evolves by simultaneously updating the state of all the fa at discrete time 
steps, in accordance with the fa transition function. The SCIARA-fv formal definition 
is given by 

SCIARA-fv = <R, L, X, S, P, τ, γ> 

where: 

− R is the set of hexagonal cells covering the finite region where the phenomenon 
evolves;  

− L⊂R specifies the lava source cells;  
− X = {Center, NW, NE, E, SE, SW, W} identifies the hexagonal pattern of cells 

that influence the cell state change. They are the cell itself, “Center”, and the 
“North-West”, “North-East”, “East”, “South-East”, “South-West” and “West” 
neighbors; 

− S = Sa × St × ST × Sf
6 is the finite set of states of the fa, considered as Cartesian 

product of “substates”. Their meanings are: cell altitude, cell lava thickness, cell 
lava temperature, and outflows lava thickness (from the central cell toward the 
six adjacent cells), respectively; 

− P = {ps, ptv, ptsol, padv, padsol, pcool, pa} is the finite set of SCIARA-fv parameters 
(invariant in time and space), which affect the transition function. Their mean-
ing are: time corresponding to a CA step, lava temperature at the vent, lava tem-
perature at solidification, lava adherence at the vent, lava adherence at solidifi-
cation, the cooling parameter and cell apothem, respectively; 

− τ : S7 → S is the deterministic fa transition for the cells in R; 
− γ : St × N → St specifies the emitted lava from the source cells at each step k∈N. 

Even though principally derived from SCIARA-hex1 [5], SCIARA-fv embeds a 
better management of several aspects with respect to the original version, as a more 
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adequate lava adherence evaluation (which considers the effective relation with 
temperature - cf. [2]). Refer to [5] for a detailed description of the model. More-
over, from a computational point of view, SCIARA-fv introduces many optimiza-
tions (e.g. [7]) and a thread-based multiple simulation feature (based on the portable 
OpenThreads cross-platform library), allowing for the simultaneous execution of 
multiple experiments. In particular, SCIARA-fv showed a linear scalability with 
respect to employed processors on both shared memory and NUMA (Non-Uniform 
Memory Access) machines, as the ones adopted in this work. This represents a 
significant computational improvement with respect the previous version, as it per-
mits to reduce the overall execution time of a factor equal to the number of avail-
able processing elements. 

2.1   Model Calibration and Validation 

In general, once that a Macroscopic CA model has been defined, two stages are 
needed to assess its reliability: the calibration and validation phase. The former 
searches a set of parameters able to adequately reproduce a considered case; the latter 
tests the model on a sufficient number of cases (which should be different of those 
considered in the calibration phase, though similar in terms of physical and geological 
properties), permitting to give a final response on its goodness. 

Genetic Algorithms (GAs, [8]), adaptive heuristic search algorithms inspired to 
Natural Selection and Genetics, were here adopted for the calibration phase, as they 
demonstrated to be a good choice in case of Macroscopic CA [9].  

In brief, a solution to a problem is encoded as a genotype (or individual), and the 
set of all possible values it can assume is named search space. At the beginning, the 
GA randomly creates a population of individuals (candidate solutions), each one 
evaluated by means of a fitness function. Subsequently, the selection operator, 
which represents a metaphor of Darwinian Natural Selection, chooses individuals 
that undergo reproduction, by means of genetic operators (generally crossover and 
mutation, representing a metaphor of sexual reproduction), to form a new popula-
tion of offspring. The evolution towards a good solution is typically obtained by the 
iterative application of selection and genetic operators to the initial population. The 
iterative process continues until a termination criterion is met, such as a known 
optimal or acceptable solution is attained, or the maximum number of steps is 
reached. The convergence to a good solution is stated by the “Fundamental Theo-
rem of GAs” [8]. 

In this work, the employed GA was a Master-Slave parallel model (cf. [13]), ex-
actly defined as in [10], except for the number of individuals forming the initial 
population (which was set to 256), and for the number individuals to be replaced  
at each step (set to 16). Importantly, the e1 fitness function was unchanged; it is 
defined as: 

)(

)(
1 SRm

SRm
e

∪
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Table 1. The best set of SCIARA-fv parameters, together with their explored ranges, as ob-
tained through calibration and validation phases. Note that parameter ptv was set to a prefixed 
value, which corresponds to the typical temperature of Etnean lava flows at vents. Parameter pa 
was also prefixed, as it was imposed by the detail of the considered topographic data. 

 

Note that the function e1 gives values belonging to the interval [0, 1]. Its value is 0 
if the real and simulated events are completely disjoint, being m(R ∩ S) = 0; it is 1 in 
case of a perfect overlap, being m(R ∪ S) = m(R ∩ S). As a consequence, the goal for 
the GA is to find a set of CA parameters that maximise e1. 

Calibration was performed on a Nec TX7 NUMA machine composed by 4 
quadri-processors Itanium class nodes, with an overall RAM memory of 32 GB and 
a peak performance of 64 GFLOPS. On the basis of previous empirical attempts, 
ranges within which the values of the CA parameters are allowed to vary were indi-
viduated in order to define the GA search space (cf. Table 1), and a set of 10 ex-
periments iterated for 100 steps. The best result allowed to satisfactorily reproduce 
the considered case of study, the 2001 Nicolosi Etnean lava flow, giving rise to a 
fitness equal to 0.71. 

However, as already discussed in [9], a validation phase is generally needed in or-
der to assess the goodness of the devised parameters, especially in case the fitness 
function only considers areal comparisons. Moreover, as calibration was performed 
on a “short” event (in terms of extension and duration), results had to be confirmed on 
more general cases, which must be considered for the scope of the work. As a conse-
quence, the validation phase was carried out by testing the obtained parameters to 
other well-known real cases of study: the first 28 days of the 1991-93 Valle del Bove 
and the 2002 Linguaglossa events. In this phase, some parameters were slightly re-
fined, and the definitive “best” set, listed in Table 1, permitted a satisfactorily repro-
duction of the considered phenomena. In quantitative terms, the obtained fitness was 
0.78 and 0.72, respectively. A further experiment was also performed for evaluating 
the ability of the model in reproducing lava fields on longer events (in terms of dura-
tion), and the 1792 Etnean lava flow (developed in 90 days) was well reproduced 
(even if only from a qualitative point of view as the pre-event morphological data was 
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obviously not available). Eventually, it is worth to note that, on the basis of the above 
results and by considering that Etnean lava flows may be essentially considered as 
characterised by the same rheological features (cf. [11]), the model can be confidently 
adopted for simulating new cases on the same study area. 

3   A New Methodology for Hazard Map Creation 

The main goal of this work is the definition of a methodology for the compilation of a 
new kind of map showing the hazard related to lava invasion in predefined study areas. 
Differently to standard approaches, in which the hazard is generally based on statistical 
studies of past events [12] or on the application of probabilistic simulation models (e.g. 
[13]), the one here proposed relies on a deterministic “virtual laboratory” (i.e. the 
SCIARA-fv framework) where new events are simulated on present morphological 
data, which implicitly embeds the effects of past events. A grid of vents is defined in the 
study area, and a prefixed number of simulations is executed for each of them, each one 
characterised by its own effusion rate and duration. Moreover, a probability of activa-
tion is assigned to each vent in the grid (activation probability), based on historical, 
prehistoric and geological data, and a probability is assigned to each type of considered 
effusion rate and duration (event probability), devised on the basis of the emission be-
haviour analysis of the study area. Eventually, on the basis of other considerations, more 
additional probabilities can be also considered (e.g. a higher probability can be assigned 
to an event on the basis of the minor distance of the vent with respect to the summit 
craters - altitude probability). The resulting hazard map is thus compiled by taking into 
account both information on lava flows overlapping, and their occurrence probability.  

Accordingly, the definition of the hazard map can not prescind from the following 
requirements: 1) a reliable simulation model, well calibrated and validated, needed to 
perform the simulations; 2) an adequately detailed topography representing the study 
area, together with locations of vents and their probability of activation; 3) a set of erup-
tive histories, together with their probability of occurrence; 4) further probabilities of 
occurrence (e.g. the altitude probability), if any. Once these requirements are satisfied, a 
simulation is executed for each combination of vent location and event history, by stor-
ing results in a database. The resulting map is obtained by evaluating the hazard at each 
point in the study area as follows: 1) for each simulation, the hazard related to a generic 
point in the study area is computed as the product of the defined probabilities of occur-
rence (conditioned probability) if it is affected by the simulated lava flow, zero other-
wise; 2) for each point, the conditioned probabilities are added over all the performed 
simulations. Note that, in such a way some areas will be characterised by very low haz-
ard values (even zero), while others by high ones. Depending on the number of per-
formed simulations and morphological conditions, the hazard of remaining areas may 
range in a quasi-continuous manner between the two extremes. As a consequence, it 
may be possible to compile hazard maps with a high level of description even if, in 
general, few hazard classes are considered adequate for many practical applications. 

The accuracy of the results strictly depends on the reliability of the simulation 
model, on the quality of input data and on the hypotheses on assigning the different 
probabilities of occurrence. Thus, if some of such aspects should not be sufficiently 
adequate, it could be possible (and desirable) to improve them in order to compile a 
resulting hazard map with a higher level of accuracy. For instance, in case of uncer-
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tainty in assigning the probabilities of occurrence, a different map can be obtained by 
simply re-processing the simulations database and by just considering a more reliable 
criterion of analysis. Finally, note that if an equal probability of occurrence is as-
signed to each simulation, a more classical criterion of hazard mapping is obtained, 
which only considers the number of simulated events which affect a given area. 

4   First Application to the South-Eastern Flank of Mt Etna 

The South-Eastern flank of Mt Etna (Sicily, Italy) was chosen as the study area since 
previous studies describe it as one of the most dangerous in terms of possible fracture 
reactivation. Fig. 1 shows the considered area, together with the location of vents 
subdivided in 4 classes of activation probabilities (corresponding to 4/10, 3/10, 2/10 
and 1/10), these latter derived by a statistical study on lava events occurred over the 
last 400 years and on geological considerations [12]. The grid of vents consists of 340 
points, each one located 500 m apart from each other, in order to uniformly cover the 
interested area. Note that, events generated by fractures are not considered. However, 
by also considering the high density of vents in the grid, they can be ignored, at least 
in a first analysis. 

 

Fig. 1. The South-Eastern flank of Mt Etna. Key: 1-4) vent activation probability, in decreasing 
order, corresponding to 4/10, 3/10, 2/10 and 1/10, respectively; 5) study area limits; 6) the 88 
vents considered in the present work; 7) remaining 252 vents 

Moreover, by analysing historical records (also dating back to the last 400 years – 
cf. [12]), eruptions were classified in 50 different typologies, each one characterised 
by its own range of duration and of emitted lava. The worst case (i.e. the most dan-
gerous) was chosen as representative for each class, and its event probability assigned 



458 D. D’Ambrosio et al. 

by simply dividing its class frequency (i.e. the number of events in the class – cf. 
Table 2) by the overall number of occurred events. 

Eventually, the altitude probability (conjectured significant for the considered 
study area [12]) was computed by considering the relation between the topographic 
altitudes of vents and the lava flows occurred in the last 400 years (cf. Fig. 2). How-
ever, in order to provide information over the entire range of altitudes for the study 
area, the tendency line was considered in spite of real data. 

 
Table 2. Frequencies of events occurred on Mt Etnean during the last 400 years, grouped in 
terms of duration and emitted lava. Numbers in brackets show interpolated data (considered for 
evaluating the event probabilities), useful to gather information on “missing” events. Events 
with asterisk were not considered as they represent not realistic cases (i.e. high volume vs. short 
duration, low volume vs. long duration). 

0

5

10

4 0 0 12 00 2 00 0 2 80 0

Altitude (m)

Fr
eq

ue
nc

e

 

Fig. 2. Relation between the elevation of vents (a.s.l.) and the number of occurred lava flows 
for the set of lava flows listed in Table 2. Tendency line is also reported. 

As regards the simulation phase, 50 events (i.e. the representative cases of each 
considered class – cf. data without asterisk in Table 2) must be simulated for each of 
the 340 considered vents (cf. Fig. 1), and therefore a total of 17000 experiments must 
be executed for an exhaustive study. By considering the extent of the study area (a 
map of 2272×1790 hexagonal cells, each with a 5 m apothem, derived from a 1:10000 
scale topography) and the duration of the considered events (which ranges from 15 to 



 Lava Invasion Susceptibility Hazard Mapping Through Cellular Automata 459 

500 days), the adoption of Parallel Computing is mandatory to reduce the execution 
time. Accordingly, the simulation phase is being performed (it is currently in pro-
gress) on two parallel machines: a 16 Itanium processor Nec TX7 shared memory 
super computer and an 8 processor Apple Xserve G5. 

Results here presented are therefore only preliminary, and specifically refer to a to-
tal of 1056 simulations on a sub-grid of vents (88 vents, key 6 of Fig. 1) and on a 
subset of event typologies (the 12 most probable typologies, first 3 rows of Table 2). 
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Fig. 3. An example of effusion rate randomly generated by considering the Etnean lava flows 
trend, where dotted lines define the variation range for a typical real event. The example refers 
to a case of 90 days and a peak of about 10 m3/s. 

As regards the effusion rates of the considered events (cf. Table 2), these were ran-
domly generated on the basis of a representative trend of Etnean lava flows [12]; an 
example is shown in Fig. 3 for a case of 90 days and a peak of about 10 m3/s. 

 

Fig. 4. Hazard map of the study area based on the 1056 executed simulations and the criterion 
described in Section 3. Key: 1-5) hazard classes, in increasing order; 6) study area limits 

The resulting hazard map, obtained as described in section 3, is shown in Fig. 4. 
Eventually, a further map was also compiled by only considering flows overlapping 
(Fig. 5), which is in accordance with a more classical hazard mapping criterion. It is 
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worth to note that results are quite different: in particular the hazard map which only 
considers flows overlapping does not take into account the very low probability of 
occurrence for the events which originate at low elevations, thus determining high 
risk areas even in zones which never were interested by lava flows in the last 400 
years. At the contrary, the map compiled by applying the methodology here proposed 
seems more reliable, as it is more likely that higher risk areas are located at higher 
altitudes, near the summit crater. 

 

Fig. 5. Hazard map of the study area obtained by simply considering the overlapping of the 
1056 executed simulations. Key: 1-5) hazard classes, in increasing order; 6) study area limits. 

5   Conclusions 

The “a priori” knowledge of hazard related to lava invasion is a crucial aspect for risk 
mitigation in volcanic areas. A new kind of criterion for the compilation of lava inva-
sion susceptibly maps, based on Cellular Automata, jointly with Genetic Algorithms 
and Parallel Computing, has been proposed and applied to the South-Eastern flank of 
Mt Etna. Results, even if preliminary, seemed to confirm the more reliability of the 
approach when compared with a more classical criterion of hazard mapping. How-
ever, a more rigorous assessment of the reliability of the proposed methodology is 
certainly desirable for effective usage in civil defense. A possible solution could sim-
ply consist awaiting for next events in the study area but this could, obviously, require 
an unpredictable time. An alternative could consist in compiling the map on a subset 
of sample events (e.g. occurred in the first 300 years) and validate it over the remain-
ing ones, on condition to dispose of a proper “past” topography. Other alternatives are 
also currently being conjectured, which will be certainly taken into account in future 
works. 
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Abstract. The SLEUTH urban growth model is a cellular automata model that 
has been widely used by geographers to examine the rural to urban transition as 
a physical process and to produce forecasts of future urban growth [1].  
Previous SLEUTH applications have generally been limited to individual model 
applications, with little to no comparison of model results [2].  Building upon 
research by Silva and Clarke [3], and borrowing from their metaphorical 
comparison of urban growth characteristics to genetic DNA, this research 
distills a combination of actual city and model behavior in a controlled 
environment to provide for comparisons between disparate model applications.  
This work creates a digital “petri dish” capable of producing normalized model 
forecasts from previously incomparable results.  Results indicate that despite 
the inherent differences between actual model results, sufficient similarities 
were observed among the forecasts to warrant the creation of an urban 
behavioral taxonomy, providing for direct comparison of the results.   

1   Introduction 

Cellular Automata (CA) models are increasingly being used for representing 
geographical processes, including many applications within the field of urban and 
regional modeling [1], [4]. Spatial processes, such as urban growth, exploit the natural 
analogy between two-dimensional CA and time-sequenced grid representations of 
two-dimensional geographic space. As geographer Waldo Tobler realized [5], the grid 
cells of a CA lattice can represent the “state” in areas of land while the lattice of the 
CA can foster geographical processes such as distance decay and spatial 
autocorrelation. While the idea of simulation with CA in the field of geography can be 
traced to Tobler [5], a more formal declaration of the use of CA applicability for 
representing urban systems was by Couclelis [6], leading to a major new modeling 
paradigm in recent years [7]. More recently, CA models have broadened to multiple 
states, and so to land-use change modeling [8]. 

Innovation within the computer and geographical sciences, coupled with increased 
access to quality and affordable remotely sensed data, has led to the use of these new 
urban growth models in both a policy and theoretical context [9].  Responding to 
heavy criticism of the first generation of urban computer models [10], [11], CA 
models have demonstrated practical success in urban planning. Due to data-driven 
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issues, such as inconsistent scale and resolution, urban and regional models are 
generally limited to specific policy situations where little emphasis is placed on 
comparisons between successive applications. Urban areas exhibit extremely different 
characteristics due to the complexity of the processes underlying urban growth. 
Consequently, modeling results produced from heterogeneous applications are 
generally incomparable [12].  

Silva and Clarke [3] suggest that despite overwhelming differences between urban 
areas, there exist fundamental elements that are common to each urban area. This 
variability manifests itself in unique patterns of urban growth for each particular city 
as determined by the local environment or site. Many of these common elements 
relate to an area’s particular dependence on transportation, how technologically 
feasible construction is on steep slopes, to what extent new urban centers develop 
within a system, how likely new spreading centers are to develop their own growth 
cycle, and how quickly spreading centers are to grow. Silva and Clarke [3] further 
suggest that many of these common elements can be empirically quantified for 
individual urban systems. The reduction of the characteristics that describe an urban 
area’s uniqueness bears a resemblance to the biological notion of genetic DNA, a 
complete set of which fully describes a living organism’s growth and development 
cycle, and as such, can metaphorically be considered to be the “DNA of our Regions”. 
Like individual creatures, all cities are unique, yet share common building-blocks that 
permit replication and growth. 

Given the DNA analogy, an experiment was created to distill a combination of 
actual city and model behavior in a controlled environment out of the data-dependent 
context of typical applications. DNA fragments were selected from cities and then 
grown under controlled circumstances in a digital “Petri dish.” As in the work by 
Silva and Clarke [3], the SLEUTH urban growth and land use change model was used 
to quantify differences among worldwide urban areas. To do this, two sets of input 
data were used, including an anisotropic plane representing geographic variability and 
individual parameter sets as fit to various real cities. The anisotropic plane was held 
fixed throughout the experiments while only the SLEUTH control parameter sets 
were varied. The overall goal of this work was to create an experiment that allowed 
for comparison of previously incomparable results. As a means for comparing the 
results, a simple taxonomy was created based on visual and quantitative model 
results.  

2   The SLEUTH Model 

SLEUTH is capable of modeling the complex dynamics of any urban growth or land 
use change system given a set of historical input data. SLEUTH is an acronym for the 
six required data inputs, Slope, Landuse, Exclusion, Urban extent, Transportation,and 
Hillshade, and simulates land use dynamics as a physical process [13].  

During forecasting with SLEUTH, the model is initialized with the most recent 
data as the “seed” layer. SLEUTH then executes a finite set of transition rules that 
influence state changes within the CA. The transition rules involve selecting cells at 
random and investigating the spatial properties of that cell’s neighborhood. Based on 
an urbanization probability derived from the local characteristics of a particular cell, 
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that cell is either urbanized or not urbanized. Monte Carlo simulation is employed to 
reduce stochastic bias, and it has been shown that a large number of iterations does 
not always result in improved results [14].  As such, users typically define between 15 
and 30 iterations.   

Before forecasting, the model must account for the physical differences that exist 
among individual study areas. To do so, SLEUTH employs a calibration routine that 
examines the historical data input to derive a set of parameters representing past 
urbanization trends for each unique region. As the CA iterates, a dozen statistical 
descriptors are computed that relate model behavior to the known historical data. The 
calibration phase of SLEUTH produces a set of five coefficients, each of which 
describes an individual growth characteristic of an urban area, plus their statistical 
goodness of fit to the historical data. A complete set of five calibration coefficients 
(each with an integer value ranging from 0 to 100) influences the degree to which 
each of the four growth rules influences urban growth in the system. These 
coefficients include: 

1. Dispersion – controls the overall dispersive nature of the distribution.  
2. Breed – determines the likelihood that an urbanized cell will start its own 

growth cycle. 
3. Spread – determines the likelihood that the pixels that comprise a new 

spreading center will continue to generate new urban pixels. 
4. Slope – influences the likelihood that a cell will be urbanized on a slope.  
5. Road Gravity – a factor that encourages growth along the road network. 

This set of parameters drives the four transition rules that govern urban growth 
within the system, which simulate spontaneous growth in suitable urban areas, 
diffusive growth in new spreading centers, organic growth in infill and edge areas, 
and road-influenced growth along the transportation network. 

Calibration of the model is based on comparing model output and initial model 
inputs for a variety of parameter combinations. The model is initialized with the 
earliest available time period and “forecasts” urban extent using a coefficient set for 
the time period corresponding to the distance between the first and last data inputs. 
Images of urban extent are produced using many different parameter combinations 
and compared to the control data available for “goodness of fit”. The degree of 
similarity between the simulated images and the control years is determined through a 
set of metrics that are calculated and stored in a log file. The analyst must examine the 
log file to determine the optimal set of parameters based on the calculated metrics, 
deducing which set of parameters produces an image that most closely resembles the 
control data images. Recent work has determined an optimal metric of fit, known as 
the Optimal SLEUTH Metric (OSM) specifically for use in determining best fit [15]. 
As a substitute for an exhaustive search, SLEUTH employs a ‘Brute Force’ method of 
coefficient optimization, which explores the parameter space in successively finer 
intervals. This structured brute force approach has been shown to reduce model 
overfit. Computation time is still a major factor in calibration, and other methods have 
been explored such as genetic algorithms [16].  
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3   Input Data 

The data inputs for this research are twofold, including (1) a set of simulated images, 
and (2) a set of calibration parameters derived from the twenty SLEUTH model 
applications in the data repository for which parameters were reported.  

 

Fig. 1. Inputs: GIS images used in exploring the SLEUTH model parameters 

For the first input, Nystuen [17] suggests that geographical problems must be 
assessed in a uniform representation of abstract space devoid of geographic 
variability, a surface he refers to as the isotropic plane. Contrary to Nystuen’s [17] 
experimental isotropic data space, this work proposes that the isotropic plane, while 
preferable for some applications, is not preferable for others, and as such, cannot be 
considered to be a uniform standard for the modeling of geographic processes.  

Due to the continually variable conditions of the Earth’s surface, urban areas 
necessarily develop under sub-optimal conditions. As a result, the reduction of urban 
growth behavior into a set of parameters requires a variable surface from which a 
forecast can be derived. Otherwise, modeling results would only yield information 
about the overall spread and growth rates of the system. To allow for a robust 
comparison of the results, input data was created that mimicked the variable 
conditions experienced in actual urban systems. 

The initial urban input consists of a single urban cell in the middle of the image 
with all other cells beginning as non-urban (see figure 1). The exclusion layer is 
divided lengthwise from east to west, with the southern portion bearing no resistance  
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Table 1. SLEUTH parameters derived from studies documented in the SLEUTH repository 

Application Location Diffusion Breed Spread Slope Road 

Atlanta, GA  55 8 25 53 100 

Austin, TX  47 12 47 1 59 

Chiang Mai, Thailand  1 4 88 1 25 

Colorado Front Range 11 35 41 1 91 

Houston, TX  1 3 100 22 17 

Lisbon, Portugal  19 70 62 38 43 

Mexico City, Mexico  24 100 100 1 55 

Netherlands  2 80 5 4 5 

New York, NY  100 38 41 1 42 

Oahu, HI  5 96 12 1 50 

Porto, Portugal  25 25 51 100 75 

San Joaquin Valley, CA  2 2 83 10 4 

Santa Barbara, CA  40 41 100 1 23 

Santa Monica Mts, CA 31 100 100 1 33 

Seattle, WA  87 60 45 27 54 

Sioux Falls, SD  1 1 12 34 29 

Tampa/S. Florida 90 95 45 50 50 

Tijuana, Mexico  3 8 70 42 22 

Washington, DC  52 45 26 4 19 

Yaounde, Cameroon  10 12 25 42 20 

to urbanization and the northern portion bearing 50% resistance. No portion of the 
exclusion layer was 100% excluded from urbanization. The center of the slope layer 
has a slope of 0% while the far diagonal corners have the maximum slope of 100%. 
The slope increments radially, appearing as a spherical depression centered at the 
initial urban area with a slope of 0 %. There is a threshold above which urbanization 
cannot occur due to a high degree of slope, resulting in an effective circular constraint 
on growth (the edges of the Petri dish). A threshold was included to represent the 
physical barrier of increased slope, above which urbanization is rarely permitted, or 
even possible. The slope threshold was defined as 23% in this study. The 
transportation layer consists of a single road running north-south through the center of 
the image. The hill-shade layer, which consists of a simple white background, adds 
only to the visual output of SLEUTH. 

For the second input, a collection of parameters from the approximately one-
hundred papers, presentations, theses, and dissertations about the more than 80 
domestic and international SLEUTH applications was performed. Recently, studies 
completed by Gazulis et al. [18] and Clarke et al. [2] have sought to compile, catalog, 
and analyze this wealth of information, resulting in the creation of the SLEUTH 
online data repository, http://www.ncgia.ucsb.edu/projects/gig/.   
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4   Results 

Initial modeling of each parameter set with the hypothetical anisotropic plane resulted 
in more than 2000 SLEUTH output images for the twenty unique parameter sets 
included in this study. Each parameter set produced time-series images in one year 
increments, displaying the probability of urbanization over twenty-five Monte Carlo 
iterations. The result was 100 probabilistic images of urban growth for each parameter 
set outside of the specific data driven environment that usually underlies disparate 
SLEUTH applications.  

The results indicate that the anisotropic plane defined for this study was capable of 
producing conditions to which each parameter set must adapt in order to grow. Each 
unique parameter set adapted differently, producing a distinct urbanization pattern 
both spatially and temporally. However, despite the heterogeneous results produced 
by each parameter set, some spatial and temporal similarities did arise among 
particular applications.  

Based on an analysis of the growth rates of individual regions, and coupled with 
the spatial distribution of urban pixels in each image, sufficient similarities were 
observed among the resulting forecasts to warrant the creation of an urbanization 
behavioral taxonomy. The latter was tabulated by counting growth pixels by quadrant 
in the four principal directions. The initial conditions of the anisotropic plane were 
identical for the east and west quadrants, and as a result, the relative population of 
these two quadrants was averaged, giving three growth dimensions. Growth rates 
were calculated for each of the regions and averaged over the user-specified twenty-
five Monte Carlo iterations. These growth rates were plotted and examined for 
similarities among the individual regions.  

Plots of relative quadrant counts for each of the forecasts were created and 
examined for clustering. A three dimensional plot of north, south, and average 
east/west quadrant population revealed a distinct cluster of points with high values in 
the southern quadrant relative to both the north and average east/west quadrants as 
well as a cluster of points at or near the origin (see figure 2).  

A third cluster appeared with relatively high values in the north and average 
east/west quadrants, as well as near complete urbanization of the southern quadrant. 
However, within this cluster were three parameter sets that produced results that never 
reached full saturation in the southern quadrant – indicating a separate cluster of 
points. 

Each of these clusters represented a different urban growth behavior dependency, 
characteristic, or constraint that could be easily determined through a visual 
inspection of the time series images. As a result, each cluster was given a name 
representing the dependency, characteristic, or constraint that best described the 
cluster’s urban behavior: these were (1) slope resistant growth; (2) transportation 
network dependent growth; (3) little to no growth; or (4) full build out growth.    

An examination of the growth rates for each model application revealed that the 
clusters indicated above tended to have similar growth rates. Growth rates were 
calculated by dividing the number of newly urbanized pixels at each time step by the 
total number pixels urbanized during the simulation and then converted to a percent 
increase.  Growth rates for slope resistant regions tapered off exponentially but  
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Fig. 2. Parameter set by growth direction and behavior class 

generally did not drop to zero by model year 100. Growth rates for transportation 
network-dependent parameter sets also tapered off exponentially, but not in a smooth 
fashion. Year to year variability was extremely high relative to the other classes, 
especially in the initial growth stage between model years 0 and 30. In all fully-built-
out parameter sets, growth rates dropped to zero by model year 100 and experienced 
little to no growth after model year 75. Finally, growth rates of little to no growth 
parameter sets were highly variable in all regions over the course of all 100 model 
years, with extreme year to year variability in the early model years. Rates for these 
sets dropped close to zero by model year 100 and also became less variable.  

Of some interest is the little or no growth class. An interpretation of this group is 
that these are cities which are unable to sustain growth at all given the starting 
conditions for the geographical location. Of course the actual conditions differ from 
those we used as hypothetical examples, but nevertheless, these could be interpreted 
as cities that required some other impetus than normal growth to get started, perhaps 
planning, government incentives, or a convergence of factors such as existence of a 
port, railhead or other factor, including chance. Houston, for example, had the 
advantage of oil finds in the surrounding area adding an external impetus to growth. 

The piece of information that has been missing thus far is the direct influence of 
time on the different categories of urbanization. The model runs allow temporal  
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Fig. 3. Example of Archetypal Growth Patterns 

comparison. For example, the sprawl category seems to accelerate early, while the 
slope resistant class begins sprawl-like infill only after all the available flat land is 
taken, about half way through the model run.  

5   Conclusion 

This research has shown that the output from SLEUTH calibration can provide for 
data-independent modeling of the urban growth of individual areas. In separating the 
behavior of urban growth from the city environment into a set of parameters, we gain 
the ability to experiment with the growth form in time and space using the SLEUTH 
model. An advantage of the approach is that the growth behavior is then directly 
comparable, and, as we have shown, is subject to classification and generalization. 
Exactly why these cities fall into the classes remains the topic of future research. 
Similarly, a more robust analysis would have hundreds or thousands of parameter sets 
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to compare and contrast. Nevertheless, the study shows that models can be used above 
and beyond their traditional role (i.e. forecasting), and we have added a new role as 
experimental platforms for abstract behavior characterization. CA behaviors (e.g. 
extinction, stability, dynamic stability, growth) were expected from a CA model, 
nevertheless we were not aware prior to the analysis that cities could be grouped in 
this way.  

Uninvestigated in this research were the impacts of resolution, temporal sensitivity, 
data sensitivity, or land use. Some of these factors have been the topic of research 
work on SLEUTH and other urban models, yet we feel that these issues can now be 
the topic of further work. 
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Abstract. The spread of fire is a complex phenomenon that many have tried to 
study over the years. As one can imagine, the spread of fire depends on many 
different variables such as the material being burned, the geography of the area, 
and the weather. Here, we will show a Cell-DEVS model based on an existing 
model to speed up the simulation. We use Quantized DEVS and 'dead reckon-
ing' to vary the length of the time steps taken by each cell. This paper explores 
how using one or both of the methods together can sometimes decrease the 
number of messages sent (and hence the execution time). 

1   Introduction 

The spread of fire is a complex phenomenon that many have tried to study over the 
years. As one can imagine, the spread of fire depends on many different variables 
such as the material being burned, the geography of the area, and the weather. It has 
been determined that finding an analytical solution for mathematical models of fire 
spread is almost impossible, and therefore many have looked to simulation as an at-
tractive alternative. Simulations have been found that accurately represent the way in 
which fire spreads, and are now generally the preferred solution for predicting the be-
havior of fire. This goal of predicting fire behavior is important to firefighters (for ex-
ample), because having a tool that is able to predict where the fire will be and how it 
will move will enable them to better plan strategies to control the fire quickly and 
safely. An aspect of great importance in such a tool is that it has to be able to predict 
the fire behavior at the very minimum faster than the fire itself moves, preferably 
much faster. In a real life situation, if we want to use a tool to help us predict how the 
fire will spread we have to be confident that it will give us a reasonable result on the 
order of minutes. Otherwise, valuable time will be lost as the fire spreads further. 

The complexity of how fire spreads has made it the target of study in the modeling 
and simulation field. Mathematical models for this phenomenon are too complex to 
give an analytical solution; therefore, simulations have been used to study it and there 
has been some success in predicting fire behavior using cellular models. Although 
Cellular Automata have been used in defining the kind of models of our interest [1, 2, 
3] CA poses precision constraints and extra computation time. Cell-DEVS [4] was 
proposed to solve these problems by defining cell spaces as DEVS (Discrete Events 
systems Specifications) models [5]. Using Cell-DEVS, a cell space is described as a 
discrete event model in which explicit delays can be used to model accurately the cell 
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timing properties. CD++ [6] allows implementing DEVS and Cell-DEVS models, 
while providing remote access to a high performance DEVS simulation server [4].  

Here, we will show improvement to previously developed fire spreading model us-
ing Cell-DEVS [7]. In this model, the physical area of interest is divided into cells, 
with each cell exhibiting the same behavior. The model uses a simple set of equations 
to determine the temperature of each cell at regular time intervals. The temperature of 
a non-burning cell is an averaging function of its own temperature and that of its 
neighbors. Once ignited the temperature of burning cells, on the other hand, is also a 
function of time – the cell's temperature increases to a peak and then falls back down, 
modeling the exhaustion of fuel in the cell. 

As all the cells are activated on every timestep, performance can be poor (espe-
cially for large models). Here, we explore modifications to the existing model to 
speed up the simulation. This can be done in several ways, including both using 
Quantized DEVS (Q-DEVS) to quantize the model output [8], and using 'dead reck-
oning' to vary the length of the time steps taken by each cell. By using Q-DEVS we 
will be able to reduce the number of messages exchanged between the cells so that 
messages are only sent when the output of a cell passes a quantization threshold. The 
use of dead reckoning contrasts with the traditional method of using an equation (fit 
from experimental data) that determines the temperature of a cell as a function of 
time. In the dead reckoning approach, we find an equation (or set of equations) that 
determines the time the next quanta will be passed as a function of the current tem-
perature. In other words, we will only update the temperature of the cells at the quan-
tum boundaries, by using an equation that determines at what time the next quantum 
will be reached. This paper explores how using one or both of the methods together 
can sometimes decrease the number of messages sent (and hence the execution time). 

2   Background 

A real system modeled using the DEVS formalism [5], can be described as a hierar-
chy of submodels. Each of them can be behavioral (atomic) or structural (coupled). A 
DEVS atomic model is described as M = < X, S, Y, δint, δext, λ, D >. The interface is 
composed of input and output ports (X, Y) to communicate with other models. The 
input external events (those coming from other models) are received in input ports. 
The model specification defines the behavior of the external transition function under 
such inputs (δext). Each state has an associated duration time (D). When this time is 
consumed, the output function (λ) is triggered, and then the internal transition func-
tion (δint) is activated to produce internal state changes. A DEVS coupled model is de-
fined as: CM = < I, X, Y, D, {Mi}, {Ii}, {Zij} >. Here X is the set of input events, and Y 
is the set of output events. D is an index of components, and for each i ∈ D, Mi is a 
basic DEVS model (atomic or coupled). Ii is the set of influencees of model i. For 
each j ∈ Ii, Zij is the i to j translation function. Each coupled model consists of a set of 
basic models connected through the input/output ports. The influencees of a model 
will determine to which models one send the outputs. The translation function is in 
charge of translating outputs of a model into inputs for the others. To do so, an index 
of influencees is created for each model (Ii). For every j in this index, outputs of the 
model Mi are connected to inputs in the model Mj.  
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Cell-DEVS allows defining complex cellular models that can be integrated with 
other DEVS. Each cell of a space is defined as an atomic DEVS. Transport and iner-
tial delays allow defining timing behavior of each cell in an explicit and simple fash-
ion. Cell-DEVS atomic models can be specified as TDC = < X, Y, S, N, delay, d, δint, 
δext, τ, λ, D >. X represents the external input events, Y the external outputs. S is the 
cell state definition, and N is the set of input events. Delay defines the kind of delay 
for the cell, and d its duration. Each cell uses a set of N input values to compute the 
future state using the function τ. These values come from the neighborhood or other 
DEVS models, and they are received through the model interface. A delay function 
can be associated with each cell, allowing deferring the outputs. A Cell-DEVS cou-
pled model is defined by GCC = < Xlist, Ylist, X, Y, n, {t1,...,tn}, N, C, B, Z >. Here, 
Ylist is an output coupling list, Xlist is an input coupling list. X are the external input 
events and Y the external outputs. The n value defines the dimension of the cell space, 
{t1,...,tn} is the number of cells in each dimension, and N is the neighborhood set. C is 
the cell space, B is the set of border cells and Z the translation function. The cell 
space defined by this specification is a coupled model composed of an array of atomic 
cells. Each of them is connected to the cells defined by the neighborhood. As the cell 
space is finite, the borders should have a different behavior than the remaining cells. 
Finally, the Z function allows one to define the internal and external coupling of cells 
in the model. This function translates the outputs of m-eth output port in cell Cij into 
values for the m-eth input port of cell Ckl. The input/output coupling lists can be used 
to transfer data with other models. 

 

Fig. 1. Informal definition of a Cell-DEVS model 

Recently, DEVS has been used recently for continuous systems simulation. In most 
cases, the techniques are based on Q-DEVS [8], whose main idea is to represent con-
tinuous signals by the crossing of an equal spaced set of boundaries. This approach 
requires a fundamental shift in thinking about the system as a whole. Instead of de-
termining what value a dependant variable will have (its state) at a given time, we 
must determine at what time a dependant variable will enter a given state.  

In [7], we showed how Cell-DEVS and CD++ could be used to model fire spread. 
Below is a simplified diagram of the temperature curve used in the original model. 
The temperature curve is divided into four stages, and, at any given instant, each cell 
in the model will be in one of these stages. The first is the inactive stage, when a cell 
has no neighbors with a temperature higher than the ambient temperature (Ta). The 
second is the unburned stage in which the temperature of the cell is increasing due to 
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heat from the neighboring cells; during this stage, the cell’s temperature is between 
the ambient temperature and the ignition temperature (300ºC). The third is the burn-
ing stage in which the cell has reached the ignition temperature and fuel in the cell 
starts to burn. The cell’s temperature increases until it reaches a peak temperature, and 
then begins to fall back down to 60ºC. The fourth and final stage is the burned stage 
in which a burning cell’s temperature has fallen below 60ºC. Because it has exhausted 
its fuel, it can no longer reignite and it is considered inactive. 

 

Fig. 2. Simplified Temperature curve [1] 

The Cell-DEVS model contains two planes of cells. The first represents the fire 
spread itself, in which each cell calculates its temperature. The additional plane is 
used to store the ignition times for the cells (this can be considered merely a state 
variable of the true cells of interest). The cells in the ignition temperature plane have a 
simple rule – record the current simulation time when the corresponding cell in the 
fire spread plane reaches the ignition temperature. The cells in the fire spread plane 
compute fire spreading. When a cell is in the unburned phase, its temperature is calcu-
lated as the weighted average of the current cell’s temperature with its neighbors' 
temperatures. When a cell is in the burning phase, its temperature is calculated as an 
exponential function of time that describes the fire’s behavior, taking into account the 
same weighted average. In the other two phases (inactive and burned), the cell’s tem-
perature does not change, and thus these cells remain in the passive state (the inactive 
cells will of course respond to any temperature changes in their neighborhood, so they 
may eventually ignite). One of the advantages of using Cell-DEVS is that all cells in 
the inactive or burned phase will remain passive, and thus the calculations will be 
confined to the fire front. This saves on the simulation’s execution time.  

The reason for the slow execution time of the simulation is mainly due to the 
high number of messages being exchanged between cells. In the simplest version of 
the model, each cell in the unburned or burning phase will update its temperature 
once every millisecond and will as a result send messages to its neighbors. To rem-
edy this problem a solution must be found that decreases the number of messages 
exchanged.  
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3   Quantizing the Fire Spread Cell-DEVS Model  

In order to increase the speed of the simulation, we propose two simplifications. 
Firstly, if we are able to keep the unburned cells completely in the passive state until 
they reach the ignition temperature, we would reduce the number of cells that send 
out messages to their neighbors. The second is to use quantization to reduce the num-
ber of messages exchanged among the cells. This is explained in more detail below. 

The model we propose will still have the same four phases of inactive, unburned, 
burning and burned. The main difference, however, is that in our model, in addition 
to the inactive and burned phase, the unburned cells also remain passive. We have 
found that a cell in the unburned phase will reach the ignition temperature when: a) 
one of its neighbors has reached a temperature above 650 °K , or b) two of its 
neighbors have reached a temperature above 474 °K. Using this result, we are able to 
keep all cells in the passive state until their neighbors meet these conditions, rather 
than constantly calculating weighted averages. When running the original model, we 
found that all cells more or less exhibit the same temperature curve when they are in 
the burning phase, implying that the temperatures of neighboring cells do not have a 
big impact on a burning cell’s temperature. As a result, when a cell reaches the igni-
tion temperature it can calculate its temperature by following only the temperature 
curve determined from experimentation, rather than taking into account its neighbors 
at every step. By doing this we have restricted the majority of calculations to the 
cells in the burning phase, and removed the need for messages from the neighbors in 
many cases. 

The other method of reducing the messaging between cells is quantization [8, 9]. 
There are two quantization ideas that we have implemented in our model. The first is 
to use Q-DEVS to automatically quantize the model. In Q-DEVS, all cells in the 
model have a fixed quantum size and each cell has a quantizer. Each cell will only 
send output to its neighbors if its temperature has exceeded the next quantum thresh-
old. The quantizer acts as the detector that decides when a threshold has been 
crossed, and it sends out the output only in that case. By implementing quantization 
as described here, the number of messages exchanged between cells will be reduced, 
thus increasing the speed of the simulation. However, the accuracy of the simulation 
will also be reduced. The key is to select a quantum size that gives a good perform-
ance increase for a small reduction in accuracy. The second method of quantization 
involves calculating time based on temperature, rather than temperature as a function 
of time. The first task was to find the inverse of the temperature curve for a typical 
cell [10]. Given such a function f(T), we can calculate the amount of time it will take 
to reach the next quantum level as a simple difference f(T2)-f(T1). By doing this, 
cells can be kept quiescent until they reach the next quantum threshold. After this 
time has passed, they will wake up, calculate the next time at which they will cross a 
threshold, and return to the quiescent state. This saves unnecessary calculation, as 
cells will only become active when a significant change in temperature occurs. To 
obtain the required function f, we started with a typical temperature curve of a cell in 
the burning phase. 
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Fig. 3. Burning Cell’s Temperature Curve 

This function fails the horizontal line test, and therefore is not directly invertible. 
So, it must be divided into increasing and decreasing components, giving us two in-
vertible functions. A state variable can then be used to choose between them during 
execution. We found two functions that approximate the two curves reasonably 
well. Note that for the scope of this paper we are not overly concerned about the ac-
curacy of these functions, as the focus of this study is to analyze the performance of 
our proposed model, which if successful could be refined by fire experts to the de-
sired level of accuracy. Collecting data for this version of the model would also be 
more efficient, as instead of sampling every cell of the real model every millisec-
ond, samples would only have to be recorded at threshold crossings. This could po-
tentially save much data storage, and make better use of network bandwidth in the 
test bed. 

 

Fig. 4. Inverted increasing temperature function 
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The fit for the increasing temperature portion of the curve is shown above in figure 4. 
It uses a sum of two exponential functions: 

TT eeTf *01423.0*0005187.0 *7.784*56.11)( −−=  (1) 

Where T is the temperature in degrees Kelvin. This will be used for cells in there 
“Burning Up” phase, i.e. the phase in which they are burning with increasing tem-
perature. Similarly, the decreasing portion (or “Burning Down” phase) is fit with the 
linear function:  

TTf *052.0)( =  (2) 

 

Fig. 5. Inverted decreasing temperature function 

There are a few things to notice: although we found higher order functions that fit 
the functions with greater accuracy, these had issues related to local maxima and  
minima. As time is necessarily monotonically increasing, it is not acceptable for the 
functions to decrease at any point. Therefore, any function of time must also pass the 
horizontal line test, and therefore be invertible. As a consequence, we cannot model 
any up and down fluctuations in temperature within any of our piecewise curves, and 
we will need a new state for any change in direction. This restriction causes the ob-
tained functions to be linear or near-linear in most regions (the exponential curve 
shown has two nearly linear regions joined by a knee). These functions will be used to 
develop the time advance portion of the model rules, which is easily implemented in 
Cell-DEVS delay functions. 

3.1   Cell-DEVS Model Definition 

In our Cell-DEVS model, temperatures remain on the first plane, and ignition times 
are in the second plane, and a third plane stores information about each cell that will 
help us determine which rule to apply. The second plane has a value of 0 by default, 
and the following values as indicated below: 
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• -100: If the temperature of the cell is between 301 and 474, meaning it is burning 
but not hot enough to cause a neighbor to ignite. 

• -200: If the temperature of the cell is between 474 and 650, meaning it is burning 
and hot enough to cause a neighbor to ignite if another neighbor is in this state. 

• -300: If the temperature of the cell is above 650, meaning it is burning and is by it-
self hot enough to cause a neighbor to ignite. 

• -400: If the temperature has reached the peak temperature (992) from our data 
curve, and is now starting to burn with a decreasing temperature. 

• -500: When the cell has burned out. 

The neighborhood is as follows: Looking at a cell in the first plane (the fire spread 
plane) each cell has its corresponding cell in the second plane (the supporting info 
plane) and the Von Neumann neighborhood of that cell as its neighbors. The local 
computing function described below:  

− A cell whose neighbor in above plane has values of -100, -200 or -300: Cells in 
the Burning Up phase; they have not yet reached their peak temperature. These 
cells will calculate (according to the burning up function) the time delay after 
which they should increment their temperature by the quantum amount and then 
sleep for this time. 

− A cell whose neighbor in other plane has values of - 400: Cells in the Burning 
Down phase; they are still burning but have reached their peak temperature and 
their temperature is falling from here on in. These cells will calculate (according to 
the burning down function) the time delay after which they should decrement their 
temperature and then sleep for this time. 

− A cell whose value is 0 and its neighbor in other plane has a value between 301 
and 474: cells in the “Supporting Info” Plane. After a short time delay, they are to 
get a value of -100 indicating that their corresponding cell has ignited but is still 
below 474 °K.  

− A cell whose value is 0 or -100, and its neighbor in other plane has a value > 
474: cells are in the “Supporting Info” Plane. After a short time delay, they are to 
get a value of -200 indicating that their corresponding cell has ignited and has 
reached 474 °K. Two of these cells can cause a neighbor to ignite. 

− A cell whose value is 0 or -200, and its neighbor in other plane has a value > 
650: cells are in the “Supporting Info” Plane. After a short time delay, they are to 
get a value of -300 indicating that their corresponding cell has ignited and has 
reached 650 °K. This cell alone can cause a neighbor to ignite. 

− A cell whose value is -300 and its neighbor in other plane has a value > 992: 
cells in the “Supporting Info” Plane. After a short time delay, they are to get a 
value of -400 indicating that their corresponding cell has just reached the peak 
temperature and should use the burning down equation. 

− A cell whose value is -400 and its neighbor in other plane has a value < 332: 
cells in the “Supporting Info” Plane. After a short time delay, they are to get a 
value of -500 indicating that their corresponding cell has Burned out. 

− Ignition Rules: A cell in the “fire spread plane” that has not ignited yet (i.e. has a 
value of 300 °K) will ignite if at least two of its neighbors have a value of -200 or 
at least one neighbor with a value of -300. The cell will ignite by being assigned a 
temperate of 301 °K.  
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4   Simulation Results 

We ran the fire spread simulation in CD++ using our proposed model in comparison 
with the original model. The initial values used represented a line ignition scenario 
(i.e. the initial burning cells are in a straight line).  
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Fig. 6. (a) Execution times (b) Number of messages passed 

As we had noted earlier the aim of our model is to reduce the execution time of the 
simulation without reducing the accuracy. Our model successfully reduced the simu-
lation execution time. The following figure shows the execution time and the number 
of messages involved in the simulation of the original model and the two new ver-
sions here presented. As we can see, the reduction in the number of messages  
involved is exponential, thus providing an excellent technique for execution in paral-
lel/distributed environments, in which message passing between the components are 
the cause of most of the execution time of the model. Gains were greater when only a 
few cells were initially activated. 

     

Fig. 7. Execution results at 0, 300 and 1000 time units 

The previous diagrams depict the results we obtained using our model, which were 
similar to the original model. The cumulative average weighted error for the simula-
tions was below 2%, following the trend presented in multiple studies on DEVS quan-
tization [8, 9]. 
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5   Conclusion 

Our study concurred that the original model was too slow in execution time, due to 
the large number of messages exchanged among the cells in the model. Our tech-
niques were able to improve performance. Our first proposed model used quantization 
to reduce the number of messages between the cells and thus increase the speed of the 
simulation. Quantization was implemented by calculating the time steps between 
temperatures, instead of the temperatures at time steps. This achieved the goal of 
keeping all cells “asleep” until a significant event takes place. The effect of neighbor-
ing cells was ignored, as in previous test runs all cells were seen to develop similarly. 
Another modification was to keep cells in the unburned state “passive” until they are 
seen to reach the ignition temperature. This increased performance, but had problems 
with accuracy, and required some prior knowledge of how the fire would develop to 
obtain good equations. We found that the general direction and speed of fire spread 
was maintained by our model, although some finer details such as peak temperatures 
and temperatures of cells at the fire front lost accuracy.  
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Abstract. Rivers can be treated as transportation networks which sup-
ply or collect and remove certain resources from the surrounding envi-
ronment. A positive feedback between environment and river network
both reshapes the configuration of the terrain and produces dynamically
stable web of river channels. Anastomosing rivers exemplify such interac-
tions very clearly. In case of this specific type of river, nutrients carried
by water disseminate to the surrounding soil and stimulate growth of
peat-forming plants. Vertical accumulation of peats changes the shape of
terrain and influence river network. We present a model of anastomosing
river system based on Cellular Automata paradigm. Principal phenom-
ena that contribute to evolution of such a river system are encoded as
rules of local interactions. We discuss extensively the parameters and
their influence on simulation results.

1 Introduction

Transportation networks are unique structures occurring only in highly organ-
ised dissipative systems, such as biological organisms, geological structures and
evolving animal colonies. Functionality of these networks is the principal fac-
tor of evolution. Transportation networks can play two different roles. They can
supply the necessary nutrients, which are consumed by the environment. Trans-
portation networks can also collect and remove some products from productive
environment. These two functions are usually performed simultaneously, as in
the vascular tissue (arteries and veins), road and railway networks and river
systems.

Rivers and river systems have been investigated for years as an important
environmental aspect of human life and as the largest natural transportation
network. Dynamics of river system is a good example of both self-organising
complex system [1] and the source of natural fractals [2]. As shown in [3], a wide
range of natural objects and phenomena possess a fractal–like structure. Exam-
ples of these so-called fractal trees include actual trees in gardens, plants, such as
cauliflowers, river and cardiovascular systems. Unlike transportation networks in
biological organisms, the growth factors influencing river systems can be directly
observed and scrutinised. One can distinguish both global environmental factors
such as terrain configuration, geology, ecological features, climate and local ones,
e.g., erosion, deposition and sedimentation [4].

S. El Yacoubi, B. Chopard, and S. Bandini (Eds.): ACRI 2006, LNCS 4173, pp. 482–491, 2006.
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The existence of diverse topological, biological, geomorphological degrees of
freedom, sharp interfaces between interacting components, multifaceted bound-
ary conditions and self-organised criticality phenomena driving the system dy-
namics, make the river topology intrinsically complex. Consequently, it seems
the phenomena cannot be placed in an appropriate integrable function space
and therefore the classical approaches involving partial or ordinary differential
equations cannot be used in modelling of such the systems. The existing models
prefer statistical methods (e.g., Monte-Carlo simulations, diffusion limited ag-
gregation) and the cellular automata (CA) [13], which employs rules instead of
equations (see [5], [7], [6]).

”Anastomosing river” term refers to river system that possess extremely com-
plex network of forking and joining channels (see Figure 1). Anastomosing rivers
are usually formed by repeated avulsions i.e. sudden change of route by whole or
part of the stream. Avulsions are primarily driven by aggradation of the channel
belt and/or loss of channel capacity and throughput by in-channel deposition
[14]. Both processes are triggered by a low floodplain gradient.

Fig. 1. Part of the Narew River in eastern Poland with clearly visible anastomosing
pattern (illustration courtesy Prof. Gradziński [8])

The area of the river valley, with growing layer of peat bog represents a typical
consuming environment. The nutrients (nourishing resources as ions of nitrogen,
phosphorus and potassium), supplied by river, penetrate the soil surrounding the
riverbeds and stimulate the vegetation of peat-forming plants. Products of their
partial decay accumulates as a peat, what results in gradual raising the level of
terrain. Gradient of nutrients saturation, which appears mainly as a result of
suction of root system, decreases the rate of peat accumulation proportionally
to the distance from the channel. At the same time, sedimentation of organic
and mineral material decreases the throughput of river channels. Water level
fluctuations or jams occurring in channels can lead to avulsion, when part of
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stream leaves the main channel. The route of new channel is determined by
the local terrain topography. The new channels usually merge with the others,
creating a complex network composed of splitting and merging water channels
and small lakes (see Fig. 1). An example of such the river is Narew (Poland,
shown in Fig. 3A). There are many other examples such as the fragments of:
upper Columbia River (south eastern British Columbia, Canada), Ob (Siberia),
Okawango (Africa) and more. The detailed description of the factors, which
govern the evolution of the anastomosing river can be found in [8] and [14].

The hypothesis of ”starving environment” [12] is a focal point of transportation
networks expansion. In the anastomosing river system the peat bog environment
is ”starving”. It means that the supply of nutrients is insufficient, they are con-
sumed very fast and the peat bog growth is restrained. These factors fuel up the
expansion of the river network towards ”hungry” areas. Conversely, ”starving”
plant explores productive environment by the huge network of roots in search
for water and minerals. The positive feedback interaction between two factors:
the network and environment, results in a mutual growth. While dysfunction in
mechanisms stimulating the network expansion causes the death of the entire
system.

In this paper we propose the Cellular Automata approach for modelling river
networks in consuming environment. The CAMAN model ((CAMAN stands for
Cellular Automata Model of Anastomosing Networks) is extended and modified
version of older SCAMAN model [12]. We present the definition of Cellular
Automata and outline of the main algorithm. The results are presented and
discussed extensively.

2 Cellular Automata Model of Anastomosing River

For modelling a river, which is undergoing anastomosis we shall construct the
algorithm of water distribution in terrain of a predefined topography. We use the
modified version [9] of the algorithm described by Di Gregorio and Serra in [10],
which was used for modelling lava and mud flow. The model of water spreading
can be easily extended on anastomosing rivers. According to the definition of
anastomosing river given in the Introduction, we have supplemented the model
with the rules of both nutrients distribution and vertical growth of the peat bog.

Let us define this cellular automata model as follows :

CACAMAN =< Z2, Ain, Aout, X, S, δ >

where:

– Z2 — is the Z × Z square mesh of cellular automata,
– Ain ⊂ Z2 — collection of cells modelling sources - inlets,
– Aout ⊂ Z2 — collection of cells modelling outlets,
– X(ij) — defines the collection of neighbouring cells for an (i, j) cell,
– Sij = (gij , wij , nij , pij), i, j = 1, ..., Z — the vector describing state of an

(i, j) cell:
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• gij — the height of the terrain,
• wij — the height of water,
• nij — concentration of nutrients,
• pij — the peat-bog thickness,

– δ — is a transition function defined as follows:

δ((gt
ij , w

t
ij , n

t
ij , p

t
ij)) = (gt+1

ij , wt+1
ij , nt+1

ij , pt+1
ij ).

Fig. 2. The heights of columns on the cellular automata lattice represent the elevation
of the terrain g and the thickness of both water w and peat-bog layers p

The terrain is modelled by a rectangular mesh Z × Z of cellular automata.
The Moore neighbourhood and the fixed boundary conditions are applied [13]).
The borders of the mesh are simulated as extremely high barriers, which prevent
horizontal dissipation of water from the simulation domain. The only exceptions
are ”inlets” (sources) — from which water is added and ”outlets” where water is
removed from the system.

We defined the following parameters that tune the model:

– γ — gradient of nutrient distribution,
– ρ — peat bog vertical growth rate,
– μ — sedimentation rate.

Main loop of the algorithm consists of three procedures that implement the
rules of CAMAN model (see Algorithm 1). The procedure calculate_flows()
deals with water flow simulation by using method of difference minimising in the
neighbouring cells [9]. The rule is homogeneous for the whole CA system and it
mimics the process of water distribution due to gravitation.

The procedure calculate_nutrient_dist() calculates the concentration of
nutrients in the neighbourhood of cells with non-zero water amount (wij > 0).
We assume that the cells flooded by water have the maximum concentration
of nutrients. This concentration decreases proportionally to the distance from
the nutrient source. The value of γ is the nutrients concentration gradient. The
procedure for each cell calculates maximum concentration in its neighbourhood
and decrease by γ coefficient (see Algorithm 2).
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Algorithm 1. The algorithm of CAMAN model
for all step of simulation do

calculate_flows();
calculate_nutrient_dist();
calculate_peat_growth();

Procedure 2. Outline of the calculate_nutrient_dist() procedure
for all cell in the mesh do

if wij > 0 then
nij ⇐ 1.0;

else
nij ⇐ γ max(nX(ij));

The nutrients concentration influences the thickness of the peat bog layer in
”dry” cells (calculate_peat_growth() procedure). We assume that each time-
step its growth increment is proportional to the current concentration of nutri-
ents with proportionality coefficient ρ. In comparison to SCAMAN model [12],
the rule of growth of peat layer has been extended and now it distinguish be-
tween cells with and without water. Areas covered by water elevate with rate
described by μ parameter what reflects the process of sedimentation occurring
on the bottom of channels. ”Dry” areas grow with ρ rate. Difference between μ
and ρ parameters has substantial influence on resulting patterns (see Figure 7).

Procedure 3. Outline of the calculate_peat_growth() procedure
for all cell in the mesh do

if wij > 0 then
pij ⇐ μ nij ;

else
pij ⇐ ρ nij ;

2.1 Results

To speed up calculations, our model was parallelised and implemented under
MPI environment on SGI/Altix cluster. The results has been postprocessed and
visualised using Amira package (www.tgs.com). In Table 1 we present the para-
meters used in our simulations.

In Fig. 3A we illustrate the snapshots from simulations for cellular automata
mesh of size 530 × 530 grid points. The snapshot is compared with a small
section of Narew River (Figure 3B). The terrain is slightly inclined (the slope is
0.05%) and rough. However, vertical random amplitude of roughness is assumed
to be small and less than 1% of the distance between neighboring cells. Water
is supplied to the system by a single source cell. We can observe the creation of
small floods in the two pictures and similar backbone structure.
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Table 1. Simulation parameters for presented results

Fig. no. γ ρ μ slope mesh
Fig.3A 0.02 0.0002 0.00014 0.05% ( 0.5m/km) 530 × 530
Fig.4 0.02 0.0005 0.0004 0.2% ( 2m/km) 730 × 730
Fig.5 (A,B) 0.02

(C,D) 0.08
0.0005 0.0004 0.05% 330 × 330

Fig.6 0.04 (A) 0.0005
(B) 0.001

(A) 0.0004
(B) 0.0009

0.05% 330 × 330

Fig.7 0.04 (A) 0.0009
(B) 0,0009

(A) 0.00075
(B) 0.00085

0.05% 330 × 330

Fig.8 0.03 0.00003 0.00002 0.05% 330 × 330

Fig. 3. Comparison of modelled river network (A) to small fragment of real anasto-
mosing pattern (B, the Narew River from Figure 1)

In comparison to the previous run, the snapshots shown in Fig. 4 represent
the terrain of a greater inclination (0.2%) and greater number of source cells.
Therefore, despite we used larger system of cellular automata (730 × 730 grid
points), the river system develops faster. The situation from Fig.4A was obtained
after 103 timesteps. As displayed in Fig.4B, after about 2 × 104 timesteps the
environment saturates and the landscape pattern stabilizes in an equilibrium
state.

Figs. 5 and 6 illustrate the various influences of the simulation parameters,
such as gradient of nutrients distribution γ and peat bog growth factor ρ, respec-
tively, on the evolution of river networks. Large value of γ and small value of peat
bog growth factor ρ, cause that smaller area of the terrain is penetrated by the
nutrients. Thus the environment is ”starving”. As a consequence, the complexity
of the river system, as measured by the number of channels and bifurcations,
increases [14]. Irregular distribution of nutrients stimulates creation of more com-
plex river networks. This confirms the hypothesis that ”starving environment” is
a driving force developing transportation networks [12].

Third parameter μ, which represents growth of sedimentation layer, has to be
slightly smaller than the gradient of nutrients spreading. Greater differences be-
tween them result in formation of river networks with deep and narrow channels
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Fig. 4. The river system after A) 103 and B) 2 × 104 time-steps. The saturation of the
environment can be observed.

Fig. 5. The snapshots from simulations of river networks performed on 330×330 point
mesh. After 500 (A,C) and 4 × 103 (B,D) time-steps, illustrate influence of nutrient
gradient parameter γ: 0.02 (A,B) and 0.08 (C,D). Areas covered by peat-bogs are
depicted by using dark green colour.

(see Fig.7A). This increases considerably the total volume of the river system,
decreasing simultaneously the probability of new channels formation and branch-
ing. Conversely, by diminishing the difference between γ and μ, frequent floods
produce deeper river networks.
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Fig. 6. The snapshots from simulations of river networks after 2×104 (mesh 330×330
points) for two different values of the peat bog growth rate ρ: 0.0005 (A) and 0.001 (B)

Fig. 7. The snapshots from simulations illustrating diversity between river networks
obtained for large (A) and small (C) differences between peat bog growth rate ρ and
sedimentation rate μ. In B) a fragment from Fig A) is presented under different angle
to show better the terrain configuration.
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Fig. 8. The landscape changes with time (number of time-steps is given for each pic-
ture) produced for variable outputs of water sources. This figure illustrate periodic
floods in anastomosing river basin.

As shown in Fig. 8, the configuration of anastomosing river basin is also
influenced by periodical changes of water level e.g., spring floods and summer
droughts — modelled by high and low water output from the source cells.

3 Conclusions

The classical synchronous cellular automata paradigm is a perfect tool for mod-
elling drainage systems and dendric rivers [15] such as those created by erosion
[http://fd.alife.co.uk]. We have shown that CA can be used as a fine grained
model for simulating more complex transportation networks. Their role is very
different from drainage itself. Erosion and flow can be simulated as two con-
current phenomena driven by local mutual forces. The transportation network
distributes nutrients to the environment. The slow changes in the environment
(e.g. peat bog growth and changes in terrain configuration) feedbacks the growth
of the network.

The main disadvantage of our CA model is its low computational speed for
simulating more disparate spatio-temporal scales. This is mainly due to the
high degree of spatial and temporal disparity between the processes modelling
the evolution of anastomosing rivers. The flow speed of the river is orders of
magnitude greater than environmental changes, such as the peat bog growth
and sedimentation. This results in the configuration of the terrain not changing
too much. The channels are too shallow which prompts wide floods. Therefore,
the simulated systems from Figs.4–8 and the real anastomosing network from
Fig.1 represent different scales. Modelling realistic anastomosing networks with
our CA model would involve 106 − 108 cells and a similar number of time-steps.
This would be very demanding in terms of CPU time.
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Abstract. The knowledge of phenomena connected with pedestrian dy-
namics is desired in the process of developing public facilities. Nowadays,
there is a necessity of creating various models which take into considera-
tion the microscopic scale of simulation. The presented model describes
pedestrian dynamics in a certain limited area in the framework of inho-
mogeneous, asynchronous Cellular Automata. The pedestrians are rep-
resented by ellipses on a square lattice, which implies the necessity of
taking into account some geometrical constraints for each cell. An inno-
vative idea of social distances is introduced into the model — dynamics
in the model is influenced by the rules of proxemics. As an example, the
authors present a simulation of pedestrian behavior in a tram.

1 Introduction

The modeling of pedestrian behavior has been very popular over the last years.
Scientists and engineers have become interested in methods, which give more and
more realistic results of simulation. As a result of wide research, Cellular Au-
tomata have become one of the most useful approaches to pedestrian dynamics.
Let us mention some interesting recent works.

In the model by Burstedde et al. [2], a concept of static and dynamic floor
fields is proposed. Dynamic floor field makes it possible to track and indicate the
most attractive cells on the basis of selected criteria. Thus, simulated pedestrians
can follow each other in the evacuation process.

Dijkstra et al. [3] present a model, which combines Cellular Automata and
Multi-Agent Systems. Agents in the model have the possibility of perceiving
their local neighborhood and affecting their environment. It makes it possible to
simulate pedestrian traffic in streets or commercial centers.

A model of tourist activity in the Alps is presented in the work by Gloor et
al. [6]. Tourists are understood as agents. Each agent makes certain decisions
such as: excursion destination, route choice etc. In the model, an additional
lattice of nodes (graphs) is added to the basic Cellular Automata lattice. The
shortest way in the network is calculated for all Alpine paths simulated in the
model.

Another problem is presented by Narimatsu et al. [11]. In their works, au-
thors present an algorithm of collision avoidance for bi-directional pedestrian
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movement. Pedestrians walk along a corridor in two opposite directions and
they learn some patterns to avoid collisions.

In this paper, the authors present a Cellular Automata model of pedestrian
dynamics applying the sociological theory of Social Distances introduced by E.
T. Hall [8,9]. As an example a passenger movement in a tram is discussed.

2 Social Distances Theory

The issues of the space requirements of people and optimal distances among them
became a subject of research of sociologists and anthropologists long time ago.
In 1959, Edward Hall popularized spatial research on human beings. In his book:
”The Silent Language” [8], he introduced the term proxemics. He formulated the
basic law of proxemics as follows: We may not go everywhere as we please. There
are cultural rules and biological boundaries. Hall mentioned some interesting facts
concerning personal space among people [8,9]. In proxemics, one can differentiate
four sorts of distances:

Intimate distance ranges from body contact to approximately 40–50 cm. It
can appear between couples, parents and children, friends etc. Intimate dis-
tance is different in various cultures. The infringement of intimate distance
zone by another person causes discomfort and could be perceived as painful.
Already 3 seconds of eye contact in closer distance is perceived as an intru-
sion or expression of pressurization [5].

Personal distance ranges approximately from 40–50 cm to 150 cm. Hall iden-
tifies a close and a far phase [9]. The close phase: 50 to 90 cm permits one
person to touch the other, while the far phase of personal distance: 90 cm to
150 cm ”an arm’s length” does not permit this [1]. The close phase is typi-
cal, for instance, for people, who know each other very well. It is sometimes
called ”a shaking hand distance”. The wider personal distance is the limit of
the personal area of domination. This is the distance which people usually
accept when they meet each other unexpectedly (i.e. in the street). Such
distancing expresses the message that someone is prepared for an open and
neutral conversation [5].

Social distance ranges approximately from 150 cm to 3 m. It is the casual
interaction-distance between acquaintances and strangers. It is common for
business meetings, classrooms and impersonal social affairs [1].

Public distance (above 300 cm) is observed between strangers and in audi-
ences. This distance is also called a public speaking distance.

It is important to emphasize that these distances could vary according to
personality and environmental factors since an abnormal situation could bring
people closer than they usually are [8].

3 General Assumptions

The presented model is based on 2-dimensional Cellular Automata. In the
model, space is represented as a lattice with square cells. The size of each cell
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dg equals 0.25 cm. A formalization for this type of inhomogeneous CA could be
found in [4].

3.1 Pedestrian Representation

Each person in the model is represented by an ellipse, whose center concides
with the center of the cell occupied by that person. The size of each ellipsis
equals a = 0.225 cm (semimajor axis) and b = 0.135 cm (semiminor axis) which
is assumed the average size of a person (WHO data). A pedestrian can transfer
to another cell in Moore neighborhood of radius 1. A person occupying the cell
can take one out of four allowed positions: H , R, V and L which correspond
to the action of turning the ellipsis around by: ±0, ±45, ±90 and ±135 degrees
respectively. Thus, in each time-step-slice, we determine a combination of allowed
positions for each cell on the basis of the neighborhood configuration.

The crucial issue is to establish the set of forbidden and allowed positions
for all cells in Moore neighborhood of radius 1, each cell being occupied by one
person. The calculation of the allowed/forbiden positions is based upon simple
geometrical dependencies. It takes into account: the orientations of two ellipses
occupying two adjacent cells and the size of their crossection. It is assumed
that the position is allowed, if the ratio of the calculated crossection (for this
position) to the size of the ellipsis is smaller than imposed tolerance εN ∈ [0, 1].
For a square lattice, with eight neighbor cells and four possible positions in
each cell one has to investigate only 14 combinations (Fig. 1). The remaining
combinations can be obtained on the basis of the mentioned ones due to the
existing symmetries.

0.024 0.104 0.176 0.24 0.0 0.003 0.115

0.0 0.039 0.012 0.0 0.331 0.133 0.207

Fig. 1. Reciprocal orientations of two persons (represented by grey ellipses) and cal-
culated ratios of crossections (black) and ellipse size for cell size dg = 0.25 cm

As an example, Fig. 2 presents allowed states for neighbor-cells for different
tolerance parameters.
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εN = 0.03 εN = 0.1 εN = 0.11

Fig. 2. Allowed neighborhood configurations for different tolerance parameters

3.2 Social Distances Representation

People in the model are represented by ellipses, thus social areas are represented
similarly. However the eccentricities of both ellipses can differ. The authors sug-
gest that social distances are asymmetric due to the fact that ”social configura-
tion” in front of the person has much more influence on them behavior than the
configuration behind them. Therefore geometrical centers of both the ellipses are
not identical: usually ellipse representing the social area is shifted forward along
line of vision of the considered pedestrian by some distance t (see Fig. 3). Due to

O

A
A′

B

B′

C

C ′

A

D

rA = |OA|
|OA′|

FA

t

Fig. 3. Social area ellipse: semimajor axis equals 4a and semiminor axis equals 5b. Shift
t equals 0.7b. Parameters a and b defined in subsection 3.1.

the mentioned asymmetry, the model has to distinguish the front and the back
of the person which results in 8 possible orientations: N , NE, E, SE, S, SW ,
W and NW . Fig. 3 presents the method of calculating the distance between the
”observer” O and ”intruders” (A, B, C and D). If the intruder enters the social
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area of the observer (on Fig. 3 only A, B and C) the normalized distance r
within the social area is calculated as a ratio of the distance between the centers
of persons (e.g. |OA|) to the distance between the observer and the point of pro-
jection of the intruder’s center on the boundary of the social area (respectively
|OA′|). The normalized distance belongs to the interval [0, 1].

The interaction between the observer and a single intruder is described by ”so-
cial distance force” Fs. The absolute value of Fs depends only on the normalized
distance between them, Fs = Fi(r) where Fi is one of some assumed models for
social distance force (presented in Fig. 4). Fs has reverse sense than the vector
observer-intruder. Total social force affecting the observer is calculated simply
as a vector sum of social forces calculated for each intruder (in the presented
case: Fs = FA + FB + FC).

0 0.5 1 r
0

Fmax

|Fs|

(a) Linear
0 0.5 1 r

0

αFmax

Fmax

|Fs|

Fs(r) =
Fmax(r − 1)

α−0.5
α

(2r)n − 1

(b) Power

0 t0 t1 t2 1 r
0

v3

v2

v1

Fmax = v0

|Fs|

(c) Step
0 t0 t1 t2 1 r

0

v3

v2

v1

Fmax = v0

|Fs|

(d) Polygonal

Fig. 4. Applied social distance force models

3.3 Movement Algorithm

The presented model proposes three possible pedestrians states: Go to, Wait in
intermediate aim (tarpit) and Wait. The general movement algorithm is shown in
Fig. 5.
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A pedestrian’s orientation can be changed only during movement to the next
cell. The new orientation is determined according to the following rules: firstly,
the pedestrian tries to adjust his/her orientation to the movement direction (face
directed forward), otherwise the pedestrian takes one out of the allowed positions
randomly. Social forces do not affect changing the orientation directly.

Depending on their state, pedestrians proceed according to different move-
ment algorithms. Passengers having particular aims (tarpits) in "mind" try to
move towards descending values of potential field. It is possible that in an actual
time-step a passenger has more than one neighbor cell to choose. In this case
a passenger selects the next cell randomly from among them. If a passenger is
blocked, that is in their radius 1 Moore neighborhood there is no cell with a
potential field value better than the potential value of the field occupied by the
passenger, they try to move randomly to one of the cells with equal potential
value.

Sitting passengers only wait for their tramstop. When the tram reaches their
desired destination they run to the exits using movement algorithm described
above.

The only state, when social distances have a direct influence on pedestrians
is the Wait state. Every pedestrian in this state is under the influence of all
other pedestrians. If the value of social force influencing the pedestrian exceeds
the assumed threshold, he/she calculates the new target cell on the basis of
resultant social force vector and changes his/her state to Go to.

4 Model Application in a Tram Simulation

As an example of the model described above, the authors consider passenger
dynamics in a tram NGT–6 used by Public Transport Company in Kraków,
Poland [7]. We take into account a movement algorithm from the previous section
(Fig. 5). Let us analyze some important elements of this algorithm.

Resources and intermediate aims in the model like: seats, validators, exits etc.
are understood as ”tarpits” [7,14]. These tarpit cells are aims of Go to action
and simultaneously they are objects of Wait in intermediate aim. Pedestrians,
behaving according to social distances rules, try to get to intermediate aims. If
their trip is short or if they have not defined any intermediate aims, they are in
the third state: Wait. This state causes pedestrian’s behavior to be passive, that
is if she/he does not violate any strangers’ territory but if her/his social area is
violated, pedestrian recedes the others with greater priority.

5 Implementation

The model has been implemented with the use of C++ programming language.
All features of the model are enclosed into several C++ classes, which represent:
grid, grid cells, passengers, a set of allowed configurations, the geometric model of
social areas and considered variants of social distance forces. The application has
two main parts: the part representing the model and Graphical User Interface.
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Fig. 5. Movement algorithm for each pedestrian for single time step

The most important module of the simulation part of the program is the ex-
ecutive [12], which controls the simulation progress. The executive has to control
time flow in the model and has to ensure that every passenger is handled in
every time-step-slice. Each passenger is enqueued in one of the three lists: the
list of passengers getting off, the list of boarding passengers and the list of pas-
sengers who are standing inside the vehicle. Every list has assigned priority. The
executive examines the lists of passengers in a descending order of priority. In
every time-step-slice all lists are examined. Passengers getting off are handled
first, then boarding passengers or passengers moving towards their intermediate
aims, and finally — passengers standing inside the vehicle. Moving passengers
do not care about the violation of their social distance areas. However, standing
passengers try to find the most comfortable place inside the vehicle. Therefore
the executive examines lists in the described order.

It is worth noting supplementary classes performing key computations. Field-
Pattern class is used to determine the templates of allowed configurations inside
a passenger’s neighborhood, depending on his orientation in the space and his
geometric dimensions. SocialField class computes vector of the ”repulse” force
coming from the intruder who violates the passenger’s social distance area.
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Simulation program is an application working under Windows 2000/XP oper-
ating system. Therefore the Microsoft Visual C++ 6.0 compiler was used. GUI
implementation uses classes of standard MFC library.

6 Simulation Results

In the presented simulation we can observe how the social distance force idea
works. First, let us consider situation with two pedestrians: the first one is in
the state Go to (Action: Go to exit) and the second one is in the state Wait.
The second pedestrian stand on the way of the first one. In this situation the
first one is the ”intruder” for the second one.

In Fig. 6 one can observe a situation in which the pedestrian marked grey goes
to the exit (cells also marked grey). The ”grey” pedestrian (in the state Go to)
influences two others, marked black (in the state Wait). The third, pedestrian
marked black (in the bottom right-hand corner of Fig. 6) is too far from the grey
”intruder” to experience any influence.

Fig. 6. Two consecutive phases of the simulation. Pedestrian marked grey, which get
off the vehicle, violates the social distances of two other pedestrians marked black.
Pedestrians marked black recede and make get off possible.

Fig. 7. Pedestrian proxemics across a vehicle

In Fig. 7 the pedestrian allocation in a part of vehicle is shown. It presents
a typical situation at the tram stop. Some passengers (marked grey) get off the
vehicle, while the majority (marked black) stay inside. Dark grey cells represent
unoccupied seats and light grey cells represent occupied seats. In the popula-
tion of travelling passengers (marked black) one can see a tendency towards
regular, equilibrated allocation. Proposed wall representation is connected with
pedestrian movement possibilities.
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7 Conclusions

An innovative idea of introducing social distances to the CA pedestrian dynam-
ics model, contributes to a significant growth of realism of the simulation. Social
distances mechanisms make simulated interactions among passengers more real-
istic. The authors propose several models of social distances forces. One of the
presented models was called Step (Fig. 4) and it corresponds directly to E.T. Hall
theory. The remaining models of social distance forces seem to be more precise
in interactions simulation.

The second profit resulting from the application of social distances theory is
the explanation of passenger distribution inside a considered area (vehicle). It is
a practical application of proxemics.

To illustrate practical application of the theory of social distances, the au-
thors have created CA modeling pedestrian behavior inside a tram. Space in the
model is represented as square, regular lattice. Pedestrians are represented by
ellipses. A center of an ellipse coincides with the cell center. In one time-step-
slice, pedestrian can transfer into another cell in Moore neighborhood of radius
r = 1.

In one of the previous models [7] the authors presented another pedestrian
representation, where each pedestrian was similarly represented by an ellipse.
The difference is that the ellipse occupied two or four adjacent cells of the lattice.
In such case, the movement algorithm was much more complicated.

The main limitation of the current model is lack of strategical abilities of
pedestrians. Actually, pedestrians always approach the closest aim (in the sense
of potential), while such choice is not necessarily globally optimal (e.g. one could
faster reach another equivalent aim).

Instead of the necessity of computing social distances, discrete character of
simulation allows its to be effective. Simulations based on Molecular Dynamics
(e.g. Social Forces by Helbing and Molnar [10]) gives possibilities of more detailed
simulation, but computational effectiveness of this method is probably lower.
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Abstract. In this paper an emergent microscopic traffic model based on a 
cellular automaton is presented. The model is part of a vehicular traffic study 
recently initiated in the city of Caracas in Venezuela. The proposed simulation 
model is an extension of the Nagel and Schreckenberg model for identical 
vehicles incorporating several important features: Velocities of cars are picked 
from a Gaussian distribution to take into account that not every car driver 
honors velocity limits. The model is validated by fitting measured normalized 
average vehicle flows by means of an iterative unconstrained optimization 
algorithm. For this purpose mean and variance of the velocity distribution are 
considered as optimization parameters together with other model parameters. 
Objective Functions quantifying the mean square deviations of the differences 
of measured and simulated normalized averages flows, are defined. The results 
show that the proposed simulation models reproduce satisfactorily the general 
features of empirical flow measurements. 

Keywords: Cellular Automata, Traffic Modeling, Emergent Behavior, 
Nonlinear Optimization. 

1   Introduction 

In the last decades the study of vehicular traffic has become an area of research of 
great interest and activity in statistical mechanics, condensed matter physics, 
emergent computing, traffic engineering and urban planning. 

Traffic models that incorporate in their implementation, what is called an Emergent 
Microscopic Model Based on a Cellular Automaton (EMMBCA) [1], are of particular 
interest. An EMMBCA consists on a binary cellular automaton with few sets of simple 
rules and the most essentials ingredients sufficient for the emergence of the general 
common features of typical real traffic. In this way elementary local interactions, 
defined by the rules, lead to the emergence of the global complex traffic behavior. 

In the city of Caracas in Venezuela, no great scale vehicular traffic study, including 
a massive recollection of information and traffic modeling and simulation, has been 
yet carried out. As a contribution to fill this gap, preliminary results of a vehicular 
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traffic study recently initiated, including modeling, simulation and validation with 
real data, are presented in this paper. The proposed model incorporates several 
important features: a) velocities of cars are picked from a Gaussian distribution to 
take into account that not every car driver honors velocity limits established to the 
motorways; b) model validation is carried out by fitting to empirical data through an 
iterative unconstrained optimization algorithm. For this propose mean and variance of 
the velocity distributions are considered as optimization parameters; and c) for the 
optimization, objective functions which quantify the mean square deviations of the 
difference of the measured and simulated normalized average flows, are introduced. 

The paper is structured as follow. Section 2 describes the main ingredients that 
constitute an EMMBCA in the context of traffic modeling. Section 3 describes model 
implementation and validation. In Section 4 results are presented and discussed. 
Finally in Section 5 some conclusions and final comments are exposed. 

2   Cellular Automata (CA) and Traffic Models 

Traffic models that incorporate an EMMBCA in their implementations are of 
particular interest, because they are developed bottom up by including the most 
simple and essential ingredients and defining just a few sets of elementary rules, 
necessary to describe the general features of typical real traffic. Nagel and 
Schreckenberg [2] presented one of the most simple and successful emergent traffic 
models based on a cellular automaton. It can be said that most contribution on 
EMMBCA traffic modeling are based on this original model. 

Nagel and Schreckenberg [2] modeled the dynamic of vehicular traffic on a single-
lane freeway. They represented the road by a one-dimensional array of length ,L  

subdivided in n  lattice cells. Each lattice site can be occupied by a car or it is empty. 
Car density (number of cars per length unit) is given by Lnocp=ρ , where ocpn  is 

the total number of occupied lattice cells. Vehicles move in time from left to right. 
It is clear that the dynamical model is totally discrete, velocity and the position of a 

car are discrete variables and time is also considered discrete. Vehicle dynamic is 
modeled according to the following four-step process executed each time step: 

1. Acceleration: If the velocity v  of a vehicle is lower than ,maxv  where maxv  is the 
maximum velocity possible in the system, the speed is advanced by one 

]1[ += vv . 
2. Slowing down: (due to other cars): If the distance D  to the next car ahead is not 

larger than v  )( vD ≤  the speed is reduced to 1−D  ]1[ −= Dv . 
3. Randomization: With probability ,p  the velocity of a vehicle (if greater than zero) 

is decreased by one ]1[ −= vv . 
4. Car motion: Each vehicle is advanced v  sites. 

In the model specifications and definition of boundary conditions for the cellular 
automaton are also required. They can be either Open Boundary Conditions (OBC) or 
Periodic Boundary Conditions (PBC). 
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In the above four dynamic rules defined in the Nagel-Schreckenberg model all the 
elementary actions and interactions of and between vehicles, sufficient to emulate the 
basic features of real traffic are included. However in order to capture more complex 
behavior additional rules need to be formulated and incorporated such as for example 
for lane changing and vehicle overtaking maneuvers. Also, it is necessary to take into 
account aspects related to drivers behavior, which tremendously influences traffic 
dynamics [3]. Huge Traffic Information Systems like OLSIM [4,5] and MITSIMLab 
[6], incorporate in their implementations these and other important features in order to 
model more realistic situations. 

3   Model Implementation and Validation 

This section describes the implementation and validation of an EMMBCA, proposed 
to model and simulate dynamic and performance of traffic in two situations: a two-
lane rectilinear motorway where vehicles move in the same direction along both 
lanes, and, a two-lane curved road where cars move in opposite directions along each 
lane. The model proposed elaborates from the basic rules of the Nagel-Schreckenberg 
model. 

The motorway is modeled as two parallel one-dimensional arrays of length ,L  
each one subdivided in n  lattice cells. Lane-change rules, based on algorithms 
presented in previous CA models [7,8], are incorporated. The curved road is modeled 
as two one-dimensional arrays, each one of total length .2 SlLcr += Each side of the 

road consist of two identical rectilinear segments of length l joined together by a 

circular arc of radius longflR =  and length Θ= RS . Here, Θ is the angle of 

curvature of the circular arc, and longf is a scaling factor introduced to explore 

possible influences of the road configuration on the traffic dynamic due to variation of 
lvsR . ratio. The length l  is calculated from the equation 

                                                       
longf

n
l

Θ+
=

2
.                                                     (1) 

here n is the total number of cells dividing each road-lane. In both motorway and 

road, incentive and security criteria are included. These are essential to avoid car 
collisions. For the road, no overtaking maneuvers are allowed along the curve itself. 

Simulations are performed as follow. First of all, values for the total parameters  
involved in the model are given. These parameters include the number of cells n , number of 

time steps tsn , the lane density ratio 21df  (i.e., ,1221 ρρ=df  with 1ρ  and 2ρ as the 

lane-1 and lane-2 car densities), 1ρ , randomization probabilities ,
1cp ,

2cp the total number 

of experiments Rn , the longitudinal factor longf , initial cars velocities, etc. Values 

for 1ρ are generated using the formula 

                                     )(001.01 countRcount nnn −+=ρ .                                       (2) 
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where countn is an integer variable with values ranging from zero to 1−Rn . In this 

way the values for 1ρ range from low densities (free traffic) to high densities 

(congested traffic), spanning a half of a typical labor-day range, i.e., from midnight to 
noon. Then, for each density value, cars positions and velocities are assigned 
randomly. To take into account that not every car driver honors velocity limits 
established to the motorway, velocities are picked from a Gaussian distribution. The 
mean of the distribution is taken as .maxv  For the cellular space Periodic Boundary 

Conditions (PBC) are assumed in both the motorway and the curved road. Lane 
change and overtaking maneuvers are performed in parallel at each time step, as 
referred in [7,8]. The four-step procedure of acceleration, slowing down, 
randomization and car conduction, is then applied and car positions and velocities are 

updated. After each tsn  time steps average velocity and traffic flow (number of 

vehicles per unit time), for each lane, are evaluated. In this way, simulated flow 
values, average velocities, lane-occupancy (lane use percentage), and the 
corresponding car densities, will be available for comparison with empirical data. 

It was found that the emergent model proposed here reproduces satisfactorily the 
general features of typical real traffic: from the free flow to formation and 
propagation of traffic jams. Additionally, characteristics of Fundamental Diagrams – 
Flow vs. Density, Mean Velocity vs. Density, Mean Velocity vs. Flow, and, Lane-
Occupancy vs. Density– derived from simulations are qualitatively consistent with the 
characteristics shown by empirical-generated Fundamental Diagrams for similar 
situations. Due to space limitations and since it is not relevant for the rest of the 
discussion, these qualitative comparison are not shown here. 

For a quantitative validation of the model, real data measured on location with 
geometric configurations like those implemented, is required. In the city of Caracas 
not too much traffic data has been collected and in most cases is not completely 
reliable or easy available. However, in 2002 the city municipal government contracted 
a traffic study [9] in Las Mercedes (a south-east suburb). Only traffic flow 
measurements were performed. Fortunately, two locations with the required 
geometric configurations were considered in this study: a two-lane bridge (Las 
Mercedes’ Bridge at the end of Rio de Janeiro Avenue), where cars move from east to 
west on both lanes, and a curved section of the two-lane Baruta’s Old Road where 
cars move from west to east on one lane and in the opposite direction along the other 
lane. The availability of this data makes possible a vis-à-vis comparison between flow 
real measurements and those obtained from the simulations. Hence, due to the lack of 
empirical data on density, mean velocity, occupancy, etc., results and discussions 
presented ahead will be based only on traffic flows. 

The data made available in the traffic study consisted on, for the Las Mercedes’ 
bridge, the two-lane average of traffic flows, and for the curved section of Baruta’s 
Old Road, flow measurements on each individual lane. Measurements were carried 
out from Wednesday February 20th 2002 (WedFeb20/2002) to Tuesday February 26th 
2002 (TueFeb26/2002), five labor days and the weekend. Each day, twenty-four 
vehicular average flow data points were reported, from 1:00 am in the morning to the 
next-day-midnight hour, so edN  – the number of empirical flow data available for 

comparison– will be 24 or less. 
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Fig. 1. Empirical Data vs. Numerical Simulation. Evolution in time of average normalized 
flows for the two-lane Las Mercedes’ Bridge. 

In a labor day, variation of traffic flow in the time interval from eve hours to hours 
around midday is a consequence of the progressive increase of the number of vehicles 
driving on the motorway. At certain critical value of the density, flow reaches a 
maximum. For densities greater than this value, flow reduces progressively until it 
reaches a minimum around the rush hour, when car density is maxima. So, process 
exhibits a typical phase transition from a “free-flow” phase toward a “congested-
flow” phase [1]. In the afternoon, things reverse. Density now reduces progressively 
due to gradual reduction in the number of vehicles on the motorway. At some time 
point, density and flow start increasing again until another critical value of the car 
density maximizes flow. Then it reduces again when the next rush hour approaches, 
and the system goes through a second phase transition. Process described repeats until 
eve hours are reached, when ones again, flow has a minimum, and so on. The 
EMMBCA presented here was implemented in such a way that it simulates just the 
first phase transition described, as stated by Eq. (2). In this sense, after sorting in 
increasing order, the five labor-day data sets,  vis-à-vis comparisons between 
simulated and empirical data were performed only for a twelve-hour time interval, 
setting edN  equal to 12. 

In the following section it is shown how the proposed model satisfactorily 
reproduces the general features of typical real traffic. 

4   Results and Discussion 

First, let’s consider the model for the bridge. As mention, it was modeled as a two-
lane rectilinear motorway. The seven adjustable parameters: lane-density ratio ( 21df ), 

randomization probabilities ( ,
1cp

2cp ), and, mean and variance of the velocities 
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Gaussian distributions functions ( ,
1maxv  ,

1vS  ,
2maxv  

2vS ), are used as fitting 

parameters to the empirical data. 
In Fig.1, the results of a trial and error fitting process are presented. The figure 

shows the time evolution of normalized empirical average flow. The eight data points 
presented, shown as solid squares, correspond to eight hours of traffic performance on 
WedFeb20/2002, from 5:00 am in the morning to 12 at noon. Simulation results are 
shown as dashed and solid lines. Dashed lines correspond to simulated flows obtained 
when mean and variance of the velocity distribution are not included among the 
fitting parameters. Simulation represented by the three solid curves (thin, medium and 
thick), resulted from using the full set of seven fitting parameters. It can be 
appreciated that in this former case a considerable improvement in the quality of the 
fit is attained. The cumbersome trial-and-error process eventually leads to a 
reasonable fit of the data (thick curve). 

A more effective way of producing the values of the fitting parameters consists on 
the application of a general optimization technique to a properly chosen objective 
function that quantifies the quality of he fit. To do so, an Objective Function σ  is 
introduced, defined by 

                                              −=
j

sim
jj ff 2exp )(σ .                                                 (3) 

where edNj ,......,3,2,1= , and edN  is the number of empirical flow data. The 

quantities exp
jf and sim

jf are, respectively, average empirical (WedFeb20/2002) and 

simulated normalized flows. Values of sim
jf  are obtained after sampling the 

“continuous” curves generated using the simulation model. 
The optimization algorithm applied to find the optimal values of the seven 

parameters involved incorporates a well-known unconstrained optimization 
technique, the Down-Hill Simplex Method [10]. Since it is an unconstrained 
algorithm, optimal parameters might take arbitrary real values. On the other hand, 

,
1cp

2cp represent randomization probabilities, and must be positive real numbers 

smaller than one. Then, in order to guarantee acceptable values for these probabilities, 
the transformation )1( rrp += [11] is applied. Another approach is to use 

constrained optimization techniques of the type reported in references [12]. 
An iterative process, incorporating the Down-Hill Simplex Method and that uses 

the proposed emergent traffic model for the bridge as generator of the values sim
jf in 

the objective function to optimize, was implemented. It requires a 78x  matrix P  and 

an 8-dimensional vector Y . Each row of matrix P was obtained after giving eight 

arbitrary values to the seven fitting parameters, say, 
1
21df , ,1

1cp 1
2cp , ,1

max1
v ,1

1vS ,1
max2

v 1
2vS ; 2

21df , ,2
1cp 2

2cp , ,2
max1

v ,2
1vS ,2

max2
v 2

2vS ; . . . ; 

8
21df , ,8

1cp 8
2cp , ,8

max1
v ,8

1vS ,8
max2

v 8
2vS . Each set of values represents the coordinates of 

a point in a 7-dimensional Euclidean Space, and are thought to correspond to the eight 
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vertices of a 7-d tetrahedron or simplex. The superscript labels the eight vertices of the 
tetrahedron. Values occurring in vector Y are obtained by evaluating the Objective 

Function σ  at the 8 vertices of the simplex. Fig.2 shows a 3-d example 

where ,21df
1cp and

2cp are the fitting parameters. The structure of the 

corresponding matrix P and vector Y for this particular case, are shown as well. 

At every stage of the iterative process the coordinates of the vertices of the 
simplex, are modified sequentially with a relaxation dynamics so that the shape of the 
7-d tetrahedron is conserved and the value of σ  is decreased at the same time. After a 
large number of iterations, σ reaches a minimum value. This state defines the values 
of the fitting parameters for the traffic model. 

 

Fig. 2. Tetrahedron (simplex) used in the Down-Hill Method (3-d case) 

Fig.3 shows the results obtained with the described procedure on the bridge data 
corresponding to the 5 labor days. The figure depicts the time evolution of simulated 
normalized and empirical flow values. The former values are represented by solid and 
empty squares, empty triangles, diamonds and circles. The simulation result, depicted 
by the solid curve, was obtained using the optimal values of the fitting parameters, 
listed as well in the figure. The minimum value of the Objective Function 

was 0912.0=σ , so that the values of sim
jf  are quite close to those of exp

jf . In 

summary the model parameters obtained by the fitting procedure produces a traffic 
simulation that reproduces quite well the general features of empirical flow data 
reported for Las Mercedes’ Bridge. 

In considering the model for the curved road, the objective function to optimize 
now depends on 9 variables: lane-density ratio cgdf  (i.e. ,gccgdf ρρ= where gρ  is 

the west-to-east-lane car density and cρ is the east-to-west-lane car density), 

randomization probabilities ( ,
gcp

ccp ), means and variances of lane-velocity 

Gaussian distributions ( ,max g
v ,

gvS ,maxc
v

cvS ), the angle of curvature ( Θ ), and the 

longitudinal factor longf . 
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Fig. 3. Empirical Data vs. Numerical Simulation. Evolution in time of average normalized 
flows for the two-lane Las Mercedes’ Bridge. Optimal values of the fitting parameters and 
Objective Function, are shown. 

In order to quantify simultaneously the mean square deviations of the differences 
between averages normalized empirical and simulated flows values, an aggregate 
Objective Function of the form 

                                             )(
2

1
clongggc f σσσ += .                                                (4) 

is proposed. Here, gσ and cσ  are individual-lane objective functions, defined as in 

Eq. (3). Both objective functions were evaluated using WedFeb20/2002 
measurements. 

An iterative process, similar to the one implemented for the case of the bridge, was 
used to find the optimal values of the nine fitting parameters. Again, after a large 
number of iterations, the Objective Function gcσ reached its lowest value. Results for 

each lane are shown in Fig.4. Normalized flow data for the 5-labor-days are 
represented, as before, by solid and empty squares, empty triangles, diamonds and 
circles.  Solid curves in both figures are simulations performed using the obtained 
optimal values of the 9 fitting parameters. The minimum value of the aggregate 

Objective Function was 27.0=gcσ , indicating that in this case, values of sim
jf  are 

not very close to those of exp
jf . 

These results clearly indicate the need of further research. Two important facts 
must be taken into account. First, the aggregate Objective Function gcσ given by  

Eq. (4), depends on a two functions gσ and cσ ; its complexity requires that it be 

defined and handled in a more careful way. Secondly, it is necessary to enhance the 
road simulation model, including additional relevant aspects that influence traffic  
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(a)  (b) 

Fig. 4. Empirical Data vs. Numerical Simulation. Evolution in time of normalized flows: (a) 
West-to-East lane; (b) East-to-West lane, of the two lane Baruta’s Old Road. Lines (dashed and 
solid) represent simulation results. 

dynamic. In spite of all these facts, it can be say that the proposed emergent traffic 
model reproduces the general features of typical real traffic on the considered sector 
of the Baruta’s Old road. 

5   Conclusions and Finals Comments 

An EMMBCA to simulate traffic dynamics and performance on two locations of the 
city of Caracas – a two-lane rectilinear bridge, and, a sector of a two-lane curved road 
with cars moving in opposite directions– was implemented. The model is a 
generalization of the well-known Nagel and Schreckenberg model for identical 
vehicles. 

To take into account some aspects related with car drivers’ behavior, i.e., that some 
of them do not honors velocity limits established for the motorways, car velocities 
were picked from a Gaussian distribution. 

Model validation was carried out through an iterative process which incorporates 
an unconstrained optimization technique to find the minimum of multivariable 
functions. Objective Functions which quantifies the mean square deviations of the 
differences of measured and simulated normalized flow, were defined. Mean and 
variance of velocities distributions were considered as optimization parameters 
together with other model parameters. 

The proposed emergent traffic model describes quantitatively, the general features 
of empirical mean flows measured along a week in two specific locations of the city 
of Caracas in Venezuela. Incorporation of mean and variance of the velocity Gaussian 
distributions as optimization parameters substantially improved the fitting. To 
improve it even further, particularly in the road case, a more appropriate definition of 
the aggregate objective function and additional enhancements in the emergent traffic 
model including additional aspects that influence traffic dynamic, must be 
incorporated. This research is in progress. 
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Abstract. We investigate the performances and collective task-solving capabili-
ties of complex networks of automata using the density problem as a typical case.
We show by computer simulations that evolved Watts–Strogatz small-world net-
works have superior performance with respect to scale-free graphs of the Albert–
Barabási type. Besides, Watts–Strogatz networks are much more robust in the
face of transient uniformly random perturbations. This result differs from infor-
mation diffusion on scale-free networks, where random faults are highly
tolerated.

1 Introduction

Networks are a central model for the description of countless phenomena of scientific,
social and technological interest. Typical examples include the Internet, the World Wide
Web, social acquaintances, electric power supply networks, neural networks, and many
more [1]. In recent years there has been substantial research activity in the science of
networks, motivated by a number of innovative results, both theoretical and applied.
The key idea is that most real networks, both in the natural world as well as in man-
made structures, have mathematical properties that set them apart from regular lattices
and random graphs, which were the two main topologies studied until then. In 1998,
Watts and Strogatz introduced an algorithmic construction for small-world networks
[2], in which pairs of vertices are connected by short paths through the network. The
existence of short paths between any pair of nodes has been found in networks as diverse
as the Internet, airline routes, neural networks, or metabolic networks, among others.
The presence of short paths is also a property of random graphs, but what sets real
networks apart from these latter is a larger clustering coefficient, a measure that reflects
the locality of a structure.

The topological structure of a network has a marked influence on the processes that
may take place on it. Regular and random networks have been thoroughly studied from
this point of view in many disciplines. For instance, the dynamics of lattices and random
networks of simple automata have received a great deal of attention [3,4]. On the other
hand, there are very few studies of the computational properties of networks of the
small-world type. Notable exceptions are Watts’ book [5] and [6] in which cellular
automata (CAs) computation on small-world networks is examined. In these works the
automata networks were designed by a prescribed algorithm. Recently, we have shown
that evolutionary algorithms can be an effective way for obtaining high-performance
computational networks in the small-world region without explicit prior design [7].

S. El Yacoubi, B. Chopard, and S. Bandini (Eds.): ACRI 2006, LNCS 4173, pp. 512–521, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Indeed, many man-made networks have grown, and are still growing, incrementally.
The Internet is a case, for which a preferential attachment growth rule was proposed as
a model, giving good results [8]. The kind of graphs that are obtained in this way are
called scale-free, a term that will be clarified below. Scale-free graphs also share the
small world property.

In this work we study in detail some computational behaviors of automata networks
of the small-world and scale-free types. As a typical example of a collective computa-
tional task we take the density task, which is briefly described below. As natural com-
putational systems often have a degree of stochasticity, it is particularly important to
investigate their behavior in a noisy environment. We shall see the behavior in the pres-
ence of perturbations strongly depends on the network topology, and we shall draw
some conclusions on the suitability of these topologies for collective computation.

In the following section we give a brief account of the Watts–Strogatz small-world
and Barabási-Albert scale-free networks used here, as well as a description of the den-
sity task. Next we will discuss the experimental performance of generalized networks
on the task. After that we study in detail their fault-tolerance capabilities and, finally,
we present our conclusions and ideas for future extensions.

2 Small-World and Scale-Free Graphs

The Watts–Strogatz Model. Following Watts and Strogatz [2], a small-world graph
can be constructed starting from a regular ring of N nodes in which each node has
k neighbors (k � N ) by simply systematically going through successive nodes and
“rewiring” each link with a certain probability β. When an edge is deleted, it is replaced
by an edge to a randomly chosen node. If rewiring an edge would lead to a duplicate
edge, it is left unchanged. This procedure will create a number of links, called shortcuts,
that join distant parts of the lattice. Shortcuts are the hallmark of small worlds. While
the average path length1 between nodes scales logarithmically with the number of nodes
in a random graph, in Watts-Strogatz graphs it scales approximately linearly for low
rewiring probability but goes down very quickly and tends towards the random graph
limit as β increases. This is due to the progressive appearance of shortcut edges between
distant parts of the graph, which obviously contract the path lengths between many
vertices. However, small world graphs typically have a higher clustering coefficient2

than random graphs, and a degree distribution P (k) close to Poissonian.

The Barabási-Albert Model. Albert and Barabási were the first to realize that real
networks grow incrementally and that their evolving topology is determined by the way
in which new nodes are added to the network. They proposed an extremely simple
model based on these ideas [8]. One starts with a small clique of m0 nodes. At each
successive time step a new node is added such that its m ≤ m0 edges link it to m nodes
already in the graph. When choosing the nodes to which the new nodes connect, it is
assumed that the probability π that a new node will be connected to node i depends

1 The average path length L of a graph is the average value of all pairs shortest paths.
2 The clustering coefficient C of a node is a measure of the probability that two nodes that are

its neighbors are also neighbors among themselves. The average 〈C〉 is the average of the Cs
of all nodes in the graph.



514 C. Darabos, M. Giacobini, and M. Tomassini

on the current degree ki of i. This is called the preferential attachment rule. Nodes
with already many links are more likely to be chosen than those that have few. The
probability π(ki) of node i to be chosen is given by:

π(ki) =
ki∑
j kj

,

where the sum is over all nodes already in the graph. The model evolves into a station-
ary network with power-law probability distribution for the vertex degree P (k) ∼ k−γ ,
with γ ∼ 3, which justifies the name scale-free. As for Watts–Strogatz small-worlds,
scale-free graphs have short average path length and clustering coefficients that are
higher than those of the corresponding random graphs with comparable number of ver-
tices and edges.

3 The Density Task on Generalized Networks

The density task is a prototypical distributed computational problem for binary CAs.
For a finite one-dimensional CA of size N it is defined as follows. Let s0 be the initial
configuration of the CA, i.e. the sequence of bits that represents the state of each au-
tomaton at time 0, and let ρ0 be the fraction of 1s in the initial configuration. The task is
to determine whether ρ0 is greater than or less than 1/2. If ρ0 > 1/2 then the CA must
relax to a fixed-point configuration of all 1’s, otherwise it must relax to a fixed-point
configuration of all 0’s, after a number of time steps of the order of the grid size N ,
usually 2N . Here N is set to 149, the value that has been customarily used in research
on the density task (if N is odd one avoids the case where ρ0 = 0.5 for which the
problem is undefined).

This computation is trivial for a computer with a central control: just scanning the
array and adding up the number of, say, 1 bits will provide the answer in O(N) time.
However, it is nontrivial for a small radius one-dimensional CA since such a CA can
only transfer information at finite speed relying on local information exclusively, while
density is a global property of the configuration of states. It has been shown that the
density task cannot be solved perfectly by a uniform, two-state CA with finite radius
[9], although a slightly modified version of the task can be shown to admit perfect
solution by such an automaton [10], or by a combination of automata [11].

3.1 Task Performance on Different Network Structures

The design, evolution, and performance evaluation of one-dimensional CAs that ap-
proximately perform the density task has a long history; an excellent review appears
in [12]. The performance of a CA rule on the density task is defined as the fraction
of correct classifications over n = 104 randomly chosen initial configurations (ICs).
These are sampled according to a binomial distribution among the 2N possible binary
strings i.e., each bit is independently drawn with probability 1/2 of being 0. Clearly,
this distribution is strongly peaked around ρ0 = 1/2 and thus making a difficult case
for the CA to classify. The best CAs found to date either by evolutionary computation
or by hand have performances around 0.8 [12].
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Using his small-world construction, and thus relaxing the regular lattice constraint,
Watts [5] has been able to easily obtain automata networks with performance around
0.85, with the same mean connectivity 〈k〉 as in the regular CA case.

Task Performance on Watts–Strogatz Networks. In [7,13], inspired by the work
of Watts on small-world cellular automata, we have used an evolutionary algorithm
to evolve networks that have similar computational capabilities. Each individual rep-
resents a network topology, and the automaton rule is the generalized majority rule
described by Watts [5]: at each time step, each node will assume the state of the ma-
jority of its neighbors in the graph, and, in case of a draw the next state is assigned
at random with equal probability. We have evolved network topologies starting from
populations of slightly modified regular one-dimensional lattices, and from populations
of random graphs. For the evolutions, we have used two different fitness functions,
in order to obtain two different classes of networks, with small and high number of
shortcuts (captured by the measure of the φ value, which is the fraction of edges in
a graph that are shortcuts), and with different average degrees. Without including any
preconceived design issue, the evolutionary algorithm has been consistently able to find
high-performance automata networks in the same class of those constructed by Watts
(see figure 1).
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Fig. 1. Density task. The φ - performance values of the 50 best individuals found by evolution
starting from rings and random graphs. For comparison, Watt’s results are also plotted (redrawn
from [5]). (a): using a fitness function that does not favor low φ networks, thus obtaining networks
comparable with Watts’ hand-constructed networks with 〈k〉 = 6. (b): using a fitness function
that favors low φ networks, thus obtaining networks comparable with Watts’ hand-constructed
networks with 〈k〉 = 12.

Task Performance on Scale-Free Networks. In accordance to the Albert and Barabási
model, we constructed networks to be used as support for CA computations. Knowing
that the average degree must remain comparable to our work on the small-world graphs
[13], we generated scale-free graphs with 〈k〉 = {6, 12}. Following the model, we then
defined the range of m0 values for each k using the derived equation for m. These
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values of m0 must respect the constraints m ≤ m0 and m ≥ 1 to ensure the graph is
connected. For 〈k〉 = 6, m0 ∈ [4, 25] and for 〈k〉 = 12, m0 ∈ [7, 40]. We assure that
even though m is not always an integer, the exact global number of edges in the graph,
thus 〈k〉, is respected in all cases.

Results as represented in Figure 2 show that performance on the density task of
CAs mapped on scale-free networks are above 0.7 for networks with a smaller m0.
When a certain threshold is reached (m0 about 14 for 〈k〉 = 6 and 35 for 〈k〉 = 12),
performances drop dramatically. This means that the more the structure of the scale-
free network become star-like, with a unique oversized cluster and only small satellites
weakly connected (m → 1), the information circulates with more difficulties. One can
conclude from these results that scale-free network topologies are less suitable than
Watts–Strogatz small worlds as a substrate for the density task. The results are even
worse than those obtained in rings [12] using specialized rules.

Fig. 2. (a) Performance vs m0 of scale-free networks (build on the Albert and Barabási model) on
the density task. The circles represent the performance of networks with an average connection
〈k〉 = 6 and triangles 〈k〉 = 12. On the right, the average percentages of correctly classified
ICs (black), incorrectly classified ICs (dark gray) and unclassified ICs (light gray) for sizes of the
initial clique in [5,20] by scale-free networks with (b) 〈k〉 = 6 and (c) 〈k〉 = 12. Results are
averages over 50 graph realizations.

4 The Effects of Noise

Noisy environments are the rule in the real world. Since these automata networks are
toy examples of distributed computing systems, it is interesting and legitimate to ask
questions about their fault-tolerance aspects. A network of automata may fail in various
ways when random noise is allowed. For instance, the cells may fail temporarily or
they may die altogether; links may be cut, or both things may happen. In this section,
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we shall compare the robustness of standard lattice-CAs to that of small-world and
scale-free CAs with respect to a specific kind of transient perturbation, which we call
probabilistic updating. It is defined as follows: the CA rule may yield the incorrect
output bit with probability pf , and thus the probability of correct functioning will be
(1 − pf ). Furthermore, we assume that errors are uncorrelated. This implies that, for a
network with N vertices, the probability P (N,m) that m cells (vertices) are faulty at
any given time step t is binomially distributed. It should be noted that we do not try to
correct or compensate for the errors, which is important in engineered system but very
complicated and outside our scope. Instead, we focus on the “natural” fault-tolerance
and self-recovering capabilities of the systems under study.

4.1 Evolved Watts–Strogatz Networks Under Probabilistic Updating
Perturbation

To observe the effects of probabilistic updating on the CA dynamics, two initially iden-
tical copies of the system are maintained. One proceeds undisturbed with pf = 0, while
the second is submitted to a nonzero probability of fault. We can then measure such
things as Hamming distances between unperturbed and faulty configurations, which
give information on the spreading of damage [14].

Figure 3(a) shows that, for our evolved Watts-Strogatz small-world networks with
〈k〉 = 6 (results for 〈k〉 = 12 are similar and thus are not shown), the amount of disorder
is linearly related to the fault probability. This is an excellent result when compared with
ring CAs where already at pf = 0.001 the average Hamming distance is about 20 [13],
and tends to grow linearly. At pf = 0.1 it saturates at about 95, while it is still only
about 20 for the small-world CA.
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Fig. 3. Hamming distance (y-axis) vs. fault probability (x-axis): rule-evolved [12] (Mitchell
EvCA) ring CAs (dashed lines) are compared (a) to evolved small-world topology networks (the
two classes of networks, with 〈k〉 ≈ 6 and 〈k〉 ≈ 12, show very similar behaviors, thus a single
curve is plotted), and (b) to hand-made scale-free CA with 〈k〉 = 6 and 〈k〉 = 12. The curves are
averages over 104 distinct initial configurations, each configuration running for 2N time steps.
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Fig. 4. Percentages of correctly classified (black), incorrectly classified (dark gray) and unclas-
sified (light gray) as the fault probability increases for (a) ring-based networks and (b) random-
based networks with a fitness function not favoring low φ values, thus 〈k〉 = 6. Results are
averages over 50 graph realizations.

As described in Section 3.1 we have extracted the best individual of 50 independent
evolutionary runs for both considered starting points (ring-based and random-based).
In this first experiment individuals had evolved freely towards shortcut proportions φ
between 0.6 and 0.8. We have studied the performance (or classification abilities) vari-
ation of these networks under probabilistic updating for fault probabilities fp evenly
scattered over [0, 0.3]. Figure 4 show how percentages of initial configurations that are
correctly classified (in black), incorrectly classified (in dark gray), and not classified at
all (in light gray) change as the fault probability increases. These percentages are av-
eraged out over all contributing individuals to that classification category. Figure 4(a)
depicts the behavior of networks having evolved from perturbed rings, whereas Figure
4(b) shows that of networks having emerged from random networks.

Fig. 5. Percentages of correctly classified (black), incorrectly classified (dark gray) and unclas-
sified (light gray) with increasing fault probability for (a) ring-based networks and (b) random-
based networks evolved using a fitness function favoring low φ values, thus 〈k〉 = 12. Results
are averages over 50 graph realizations.
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As pictured in Figure 4 although the fault probability increases rapidly, our evolved
networks show interesting fault tolerance capabilities up to 10% of faulty outputs.
Moreover we note that the proportion of correctly classified ICs compared to the in-
correctly classified ones is around 10:1, and this ratio remains almost constant despite
the increase in the fault probability. This is especially interesting considering that identi-
fying unclassified ICs is trivial (2N steps and no convergence to a steady state) whereas
distinguishing correct from incorrect classification is impossible without knowing the
solution beforehand. We conclude that although an increasing number of ICs will not
reach a fixed point, the ratio between correctly classified and misclassified ICs remains
comparable.

Figure 5 shows classification abilities of networks evolved using a fitness function fa-
voring low values of φ resulting in networks with higher average degrees and generally
better performances. In fact, we can see that where the approximate 10:1 proportion of
correctly vs. incorrectly classified is respected, the percentage of unclassified ICs drops
significantly for both networks evolved starting from ring and from random structures.

4.2 Scale-Free Networks Under Probabilistic Updating Perturbation

To investigate the effects of noise on scale-free automata networks we have used popu-
lations of 50 scale-free networks with m0 = 9 to perform the density task for 7 values
of fault probability fp ∈ [0.0, 0.3] equally scattered over the interval. Figure 3(b) illus-
trates the random faults for both 〈k〉 = 6 and 〈k〉 = 12 compared to the results of the
rule evolved for a ring [12]. The curves for both values of 〈k〉 are practically overlap-
ping. Results show that the robustness of scale-free and small-world (Figure 3(a)) CAs
is comparable for all values of fp.

The performance under noise of the above scale-free automata networks is shown
in Figure 6. The ratio of correctly to incorrectly classified ICs is close to 1:5. Figure 6
shows that as the fault probability increases, the ability of performing the collective task
is lost. When one compares these results to the small-world case in the above section, we
conclude that the fault tolerance is significantly lower in the scale-free case. Figure 6(a)
shows classification details for scale-free networks with an average degree of 〈k〉 = 12
and an initial clique size m0 = 5 and Figure 6(b) for m0 = 10, for increasing fault
probability. The two cases present the same qualitative behavior.

These results raise an interesting issue concerning the fault-tolerance of scale-free
graphs. Indeed, a recent widely publicized result states that scale-free graphs are ex-
tremely robust against random node failures, while they have been shown to be fragile
when the failures concern highly connected nodes (hubs), a fact that is particularly
relevant for the Internet [15]. Thus, scale-free networks are good for information dis-
semination, i.e. when what counts is that alternative paths remain available in spite of
random noise. However, we find that the same structures do not offer such resilience
when a task is to be solved in a collective, coordinated way, such as the density task
studied here; the results would be even worse if the faults were unrecoverable. We have
performed similar computer experiments with scale-free graphs starting from larger
cliques. The results, not shown to save space, confirm the findings described above.
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Fig. 6. Percentages of correctly classified (black), incorrectly classified (dark gray) and unclas-
sified (light gray) as the fault probability increases for (a) an initial clique size of 5 and (b) and
initial clique size of 10. Results are averages over 50 graph realizations.

5 Conclusions

In this work we have empirically investigated the performances and collective task-
solving capabilities of complex networks of automata using the density problem as a
typical case. We have shown by computer simulations that previously evolved Watts–
Strogatz small-world networks have superior performance with respect to scale-free
graphs of the Albert–Barabási type. Then we have investigated in some detail the fault-
tolerance capabilities of both network families against transient uniformly random er-
rors. The main, and relatively surprising, result is that Watts–Strogatz networks are
much more robust in the face of that type of perturbations. On the contrary, scale-free
graphs are extremely vulnerable with respect to this kind of random failures. In the light
of well known results concerning information diffusion on scale-free networks, where
random faults do not impact performance up to a point, our results seem to indicate that
the kind of computation performed “by” the network, as opposed to “on” the network
is very sensitive to network integrity. Nevertheless, both Watts–Strogatz and scale-free
graphs are much more fault-tolerant than standard regular lattice CAs for the task.
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Abstract. The characteristics of heterogeneous traffic (with variation in vehicle 
length) are significantly different from those for homogeneous traffic. The 
present study describes an overview of the development and validation of a 
stochastic heterogeneous traffic-flow simulation model for an urban single-lane 
two-way road, with controlled intersection. In this paper, the interaction 
between vehicle types during manoeuvres at the intersection are analysed in 
detail. Two different motorised vehicle types are considered, namely cars and 
buses, (or similar length vehicles). A two-component cellular automata (CA) 
based model is used. Traffic flow data, captured manually by Dublin City 
Council at a local intersection, are analysed to give a baseline on how the 
distribution of short and long vehicles affect throughput. It is anticipated that 
such detailed studies will aid traffic management and optimisation strategies for 
traffic flow. 

Keywords: Heterogeneous, motorised traffic, two-component cellular 
automata. 

1   Introduction 

Studies of road traffic characteristics are necessary for planning, design and operation 
of road facilities, in addition to regulation and control of traffic. In Western countries, 
specifically Ireland, car and heavy goods vehicle (HGV) traffic volumes have 
increased dramatically over the past 30 years [1], and this trend is likely to continue, 
at least in the short term. 

Field observations of traffic flow can be difficult and time consuming to obtain. 
Frequently, such experiments in the field must cover a wide range of traffic volume 
and composition to provide practical benefits. Computer simulation models offer a 
viable alternative for in-depth study and a practical tool for understanding traffic 
dynamics.  

There are three different conceptual frame works for modelling traffic. A fluid 
dynamical model [2], the car- following model [3], [4] and [5] and cellular automata 
models [6],[7] and [8] for modelling traffic on both highways and urban networks. 
These cellular automata (CA) traffic models represent a single lane road as a one-
dimensional array of cells of certain length, with each cell either empty or occupied 
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by a single vehicle. Vehicle movement is updated according to a given rule set, which 
applies to all constituent units.  

Typical urban roads support mixed traffic with a variety of motorised vehicle 
types, using the same right of the way.  As an extreme case, traffic composition in 
South Asian countries, specifically India, is mixed with both motorised and non 
motorised vehicles and with e.g. little or no lane discipline [9], whereas traffic in 
Western European countries consists of a mix of mainly motorised vehicles of 
different length. The features that characterise mixed traffic systems, otherwise 
known as heterogeneous traffic, mainly reflect the wide variation in size, 
manoeuvrability, and static and dynamic properties. 

Much of the work on heterogeneity in traffic flows has been done in India for 
widely diverse units [10], [11], [12] and [13]. As such, these include motorised and 
non-motorised flows. These models cannot be used for a comprehensive study of 
mixed motorised traffic flow characteristic in a “single-lane”, due to different patterns 
of road usage, e.g. multiple occupation of cells.  The work presented thus aims at the 
development of an appropriate traffic simulation model for Western European roads. 
The Western European model is a simplified model, which excludes multiple and 
shared occupation, (unlike e.g. Indian characteristic road-usage patterns). We propose 
and developed a simplified and novel heterogeneous two-component cellular 
automata model that allows for two classes of vehicle, long and short. The model was 
designed to describe stochastic interaction between individual vehicles and is 
independent of headway distribution [14]. In this heterogeneous model space mapping 
rules are used for each vehicle type, namely long and short vehicles, where the former 
equal a multiple of two of the latter.  The detailed description of the update rules of 
the different vehicle types is given in the following section. 

2   Methodology 

The To describe the state of a road using a CA, the street is first divided into cells of 
length 7.5m [8]. This corresponds to the typical space (car length + distance to the 
preceding car) occupied by a car in a dense jam. Each cell can either be empty or 
occupied by exactly one car. A speed say, v=5, means that the vehicle travels five 
cells per time step or 37.5 m/s (135 km/h). 

In our model, each cell is occupied by one particle per cell corresponding to a 
standard car of length less then or equal to 7.5metrs. Long vehicles (LV) are taken, 
for simplicity, to be double the length of a standard car i.e. two cells are required for 
one LV. A short vehicle (SV) is understood to be a car of length 1, while a LV is of 
length 2. Both SV and LV will move exactly one cell in the next time step if the cell 
in front is vacant.   

The update rules are as follows. 

C t
n  designates the state of the nth cell at time step t. If C t

n  >0, there is a vehicle in 

nth cell at time step t. The updates of the cells are on a vehicle- by- vehicle basis i.e. if 

the C t
n  =1 (SV) in this time step and the cell in front is vacant then the SV will move 

one cell otherwise the SV will stay in the same cell in the next time step. Similarly, if 
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C t
n  = C t

n 1+  = 2 (LV) in this time step and the cell in front is vacant then the LV will 

move one cell in next time step otherwise the LV will not move. In general, if either a 
given LV or SV is considered in this time step and the cell in front is occupied either 
by a SV or LV, then the given vehicle will not move in the next time step. Otherwise, 
it will move by one cell. In the two-component cellular automata model described, the 
states of the cells update simultaneously, in each cell is examined in the same time. In 
the case of a LV a single cell clearance is needed for the vehicle to move as a whole 
(22 designation) through half its length. 

 
The algorithm is: 

•   If C t
n = 1 and C t

n )1( + = 0, then C )1(
)1(

+
+

t
n = C t

n and C )1( +t
n =0 

•   If C t
n = 1 and C t

n )1( + > 0, then C )1( +t
n = C t

n  

•   If C t
n = C t

n )1( − = 2 and C t
n )1( + = 0, then C )1(

)1(
+
+

t
n = C t

n and C )1( +t
n = C t

n )1( −  

and C 1
)1(

+
−

t
n = 0  

• If C t
n = C t

n )1( − = 2 and C t
n )1( + >0, then C

)1( +t
n = C )1(

)1(
+
−

t
n = 2  

2.1   Traffic Light Controlled Intersection  

In Fig.1, roads are labelled road-1, road-2, road-3, road-4, with major and minor as 
indicated. The shaded area is the intersection area and the junction is control by traffic 
light and a pre-determined cycle of green, yellow and red lights, with the yellow light 
occurring twice per cycle. This is common in most European countries including 
Ireland. 

 

Fig. 1.  A schematic traffic flow at a single-lane two-way signalised intersection 
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Signalisation of Traffic Light: Fixed Time Scheme.  In this scheme, the traffic flow 
is controlled by a set of traffic lights, which are operated in a fixed cycle manner. 
Fixed-cycle intersections operate with a constant period of time T= 100 seconds for 
each cycle, where this is divided into a green, yellow and red periods for each phase. 
For road-1 and 3 Green= 55 seconds, yellow= 5 seconds and Red= 40 seconds where 
as road- 2 and 4, Green= 35 seconds, yellow= 5 seconds and Red= 60 seconds. 

 

Fig. 2. Break down of a single fixed cycle 

In our model we consider two phases for controlling the four roads. In phase-1 the 
traffic light is green for major road-1 and road-3 (simultaneously red for road-2 and 
road-4). In the second part, the lights change colour to yellow for major road-1 and 
road-3 and simultaneously change to red for road-2 and road-4. In phase-2 the cycle 
repeats i.e. road-2 and road-4 become green and road-1 and road-3 red and the light 
changes colour to yellow for road-2 and road-4 and simultaneously red for road-1 and 
road-3. 

 
                                 ( i )                                                              ( ii ) 

Fig. 3.  A right turning (RT) vehicle from major road ( i ) SV  ( ii ) LV 

Vehicle Manoeuvring at the Intersection.  Fig. 3 shows the requirements in terms of 
free cells for right turning vehicles from both major and minor road in a controlled 
intersection. Right turning short vehicles and long vehicles require 2 marked free cells 
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for manoeuvring. “0” means that the cell is free or vacant whereas left turning (LT) 
and straight through vehicles need one free cell before entry into the intersection.  In 
previous work [14], right turning SVs and LVs check only one free cell for 
manoeuvring. In the situation when two vehicles, travelling in the opposite direction, 
have entered the intersection to turn right, both vehicles wait for an indefinite period 
of time i.e. there is a deadlock condition. In this paper we present an improved 
version of our previous model, which requires clearance to complete the manoeuvre 
once commenced and which should be more realistic where intersection controls are 
observed. 

CA models have considerable flexibility in terms of modelling urban road feature 
and a one-dimensional two-component deterministic automata model, can be used to 
simulate the interactions between various types of vehicles. The speed of the vehicle 
is taken simply to be either 0 or 1. 

3   Simulated Results 

Simulation was carried out for 36000 time steps (equivalent to 10 hours) for a road 
length of 100 cells for all approaches and under different values of traffic parameters, 
such as arrival rate, turning rate and proportion of short and long vehicle in each of 
the four roads. The basic inputs that are necessary to underpin and validate the 
simulation are given in Section 3.3.  This is a base line and we would expect to vary 
the base line values, which underpin the sensitivity analysis, enabling us to determine 
how robust the model is to different assumptions and values. The intersection chosen 
for developing the model in this study is a single lane two-way signalised intersection.  
Based on the assumptions given in Section 2 we studied throughput (the number of 
vehicles, which cross the intersection in a given time) and entry capacity or capacity 
of the intersection (the number of vehicles passing from an entrance road on to the 
intersection per unit time). In each of these scenarios the simulation ran for 10 hours 
and we have averaged the result over 10 independent runs of the program unless 
otherwise specified.  

3.1   Overall Throughput of the Intersection 

Table1illustrates effects of different SV: LV proportions on overall throughputs. In 
each scenario, the turning rates of all approaches are based on analysis of the field 
data. For road-1, left turn (LT): straight through (ST): right turn (RT) =0.1:0.85:0.05, 
for road-2, LT: ST: RT=0.16=0.65:0.19, for road-3, LT: ST: RT=0.03:0.09:0.07 and 
for road-4, LT: ST: RT= 0.23: 0.71: 0.06.  The arrival rate of the two major roads and 
minor roads are taken to be equal and vary from 0.1 to 0.3 (equivalent to 360 vph to 
1800 vph). It is found that the average throughput of the intersection increases when 
arrival rate increases both in homogeneous (100 percent SV) and heterogeneous 
(SV+LV) traffic. In contrast, heterogeneous traffic throughput decreases with 
increased proportion of LV in the traffic mix. 
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Table 1. Avg. throughput Vs. arrival rate and long-vehicle proportion 

 
Arrival Rate (AR1=2=3=4) 

 

 
 
SV: LV 

0.1 0.2 0.3 0.4 0.5 
1: 0 14405 28744 38411 44781 47874 

0.9:0.1 14249 28143 36308 42153 44517 
0.8:0.2 14031 27352 34509 39497 41052 
0.7:0.3 13984 26171 32865 36557 37690 
0.6:0.4 13793 24905 31327 33573 34464 
0.5:0.5 13707 23855 29624 30809 31720 
0.4:0.6 13534 22461 27320 28453 28995 
0.3:0.7 13411 21762 25576 26301 26709 
0.2:0.8 13272 20913 23786 24138 24601 
0.1:0.9 13145 20109 22177 22396 22580 

0: 1 12997 19280 20303 20248 20242 

3.2   Capacity of Major Road 

Right-turning vehicles from the major-road in a shared lane,( where RT, ST and LT 
vehicles are on the one lane), can block ST and LT vehicles behind and on the same 
road. RT rates (RTR) of the major-roads thus have great impact on capacities of these 
roads. In order to examine the capacity, we varied major- road1 right turning rate 
(RTR1) from 0.1 to 0.2, with major-road3 RTR3=0. Arrival rates of AR1 = AR2 
=AR4 = 0.15, (equivalent to540 vph), were used initially, with the arrival rate of 
major road 3 varied from 0.05 to 0.55, (i.e. equivalent to 180 vph to 1980vph).  
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Fig 4 shows, unsurprisingly, that the capacity of the major-road 1 declines as RTR 
of road-1 and arrival rate of oncoming traffic in major-road-3 increases. Here we 
conclude that capacity of the major road declines when the percentage of RTR 
increases and /or the arrival rate of the oncoming major- road-3 increases. 

4   Validation of the Model with Real Data 

4.1   Field Data 

The data for SV: LV ratios are studied for one local single lane two-way intersection 
(Rathgar Road/ Frankfort Avenue) in Dublin, Ireland. The intersection is controlled 
by signals, with basic characteristics and composition of flow at the intersection as 
detailed in Table 2. The traffic flow data were collected on 17th December 1997 by 
Dublin City Council, Ireland over a 10 hours period at every 15-minute intervals; 
weather was fair. 

Table 2. Field Data collected by Dublin City Council 1997, total for 10 hours 

Road number Road-1 Road-2 Road-3 Road-4 
Totals (SV+LV) for 10 hours 4937 2428 4941 2138 
Averages per seconds 0.14 0.07 0.14 0.06 
Total SV 4703 2391 4678 2111 
Total LV 234 31 263 27 
Left turning (LT) SV 523 378 137 497 
Straight through (ST) SV 3941 1545 4173 1504 
Right turning (RT) SV 239 468 368 128 
Left turning (LT) LV 9 9 3 2 
Straight through (ST) LV 219 24 254 22 
Right turning (RT) LV 6 4 6 3 

4.2   Comparison of Simulated Data with Field Data 

The model developed needs to be validated against real life situations (field 
conditions). Accordingly, while the simulation model may attempt to replicate 
directly the mixed traffic flow on a given single lane two-way control intersection, for 
which we have observed data, this is clearly one possible realization only. The field 
data represents an average day’s traffic and so it makes sense to validate our model 
using an average run.  For 50 runs of ten hours, and the parameter values observed, 
the average results are presented in Tables 3 and 4 and Figure5. The model was run 
50 times to ensure convergence of the average and this average was used in 
validation. 
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Table 3. Comparison results of our model and field data  

Short vehicle (SV) Long vehicle (LV) Road Number Turn 
 
Obs Data 

 
Avg. Sim. Data 

 
Obs . Data 

 
Avg. Sim. Data 

LT 523 478.12 9 21.42 

ST 3941 4057.68 219 184.9 

Road-1 

RT 293 240.8 6 10.34 

LT 378 395.04 9 7.74 
ST 1545 1596.74 24 29.66 

Road-2 

RT 468 464.34 4 9.32 
LT 137 149.32 3 6.48 

ST 4173 4458.44 254 203.98 

Road-3 

RT 368 163.02 6 7.7 

LT 497 510.1 2 5.06 
ST 1504 1578.06 22 14.68 

Road-4 

RT 128 49.24 3 0.32 
Obs.= Observed, Avg. Sim= Average simulated 
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Fig. 5. Model validation (comparison of observed and simulated turning data of SV and LV 
from two major roads) 

From the Figure and table, it appears that the simulation model reproduces, 
accurately, observed behaviour at the intersection. 

Table 4 presents the comparison of observed and average simulated entry capacity 
or capacity of each approach of the study intersection. Simulated capacity matches the 
corresponding observed value with low % error. The highest relates to road2 and may 
be due to variation of cycle time with respect to the real time situation.  
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Table 4. Comparison of observed and simulated entry capacity or capacity of the intersection 
over 10 hour  

Intersection entry capacity (vehicle in 10 hours) 
Road number Obs. Data Avg. sim. Data % Error 

Road-1     4937 4993.26 +1.13 
Road-2 2428 2502.84 +3.08 
Road-3 4941 4988.92 +0.96 
Road-4 2138 2157.46 +0.91 

5   Conclusions 

In this paper, we have described a prototype two- component cellular automata 
model, which attempts to simulate heterogeneous motorised traffic flow at a single-
lane two way signalised intersection. Importantly, we consider vehicles of different 
length, (true to real life situations). In order to achieve a more realistic microscopic 
simulation, various vehicle arrival and turning rates, as well as different vehicle types 
are built into our model. 

On investigating the throughput of mixed (SV+LV) traffic and comparison with 
the homogeneous (SV or LV), our model clearly reproduces the decrease in 
throughput observed when traffic is mixed (proportion of LV increases).  

Secondly, the major road capacity is clearly shown to depend on the arrival rate of 
the opposing major road and RT rate of the major roads as well as LV proportion. 
Finally, our model of vehicle manoeuvres at an urban road configuration has been 
validated using field data. The simulation results show good agreement between 
simulated and observed data. Future work will examine other features such as delay 
time, queue length and congestion period for both simple and complex intersections. 
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Abstract. In this paper we deal with mathematical modeling of participants’ 
movement based on cellular automata (CA). We describe some improvements 
of CA models of pedestrian motion taking into account the real geometrical 
constraints induced by a specific restricted space. Also some presumable opti-
mization problems in traffic modeling based on CA are discussed. Besides 
some general problems of cellular modeling are discussed which are related to  
the accounting of mentality of traffic participants. 

1   Introduction 

Recently Cellular Automata approach (CA) explicitly and sometimes implicitly ex-
pands the fields of applications [1, 2, 3]. The CA has been applied to car traffic [4,5] 
and pedestrian movements [1,2,3] including pedestrian flows [6,7,8] and fire evacua-
tion [9]. There is a gap between real world applications and theoretically known solu-
tions since some essential elements are not incorporated in CA, for example, the real 
world geographical and geometrical constraints. 

Although some optimization traffic problems are studied in the framework of 
quantitative logistics [10] and network flows [11], sometimes leading to computation-
ally difficult (NP-hard) problems. All above mentioned models do not taking into 
account the dynamical laws of CA, namely the evolution of models based on CA as 
well as some mentality properties of traffic participants. An unrealistic assumption is 
done by imposing that a single car driver could be simulated as a simple cell. Note 
that an elementary model of the driver itself is a more complex model than the classi-
cal cellular automata model. For example, the mechanical movement of human re-
quires very complicated models [12]. Taking into account essential properties of men-
tality is a fundamental task for many scientific areas such as informatics, psychology, 
and management science. Hence it will be important to incorporate the mentality 
properties into CA. 

The purpose of this paper is twofold. (i) We have incorporated the real world geo-
metrical requirements into the CA for the pedestrian movement problem including 
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some optimization versions for crowd flows and have simulated them for understand-
ing the fire evacuation in restricted areas like buildings, stadiums, supermarkets,  
concert halls, etc.; (ii) we have transferred a frame of models with the associative 
memory into CA and suggest to incorporate the Hopfield neural network as an inter-
nal structure of cells representing some mentality properties of participants in traffic.     

2   Model Based on Cellular Automata 

We assume that each pedestrian in a group of pedestrians tries to move in the prede-
fined direction which is the same for all participants [9, 13, 14]. If it is impossible to 
move in that direction, for example there is an obstacle represented by either another 
tight concentration of pedestrians or a wall, the pedestrian tries to change the moving 
direction by choosing a direction with a smallest concentration of obstacles along the 
chosen direction. The field of a cellular automaton is represented by a homogeneous 
lattice and the state of each cell is coded by either 1 (occupied by either an obstacle or 
pedestrian) or 0 (not occupied by an obstacle or pedestrian). It is clear that the state of 
a cell occupied by a wall cannot be changed in contrast to a cell occupied by another 
pedestrian. At each step we define all single available pedestrian movements within 
the fixed neighbourhood. In case of the Neumann’s neighbourhood we compute the 
probabilities of participant’s movement into one of four neighbouring cells as follows. 
We set this probability to zero if a neighbouring cell is occupied by a wall, and assign 
non-zero probabilities to cells of all other directions. By increasing the probability in 
a chosen direction we model an intention of each participant and the crowd to move in 
that direction simultaneously decreasing the probabilities in all remaining directions 
such that the sum of all involved probabilities will be unchanged. By combining the 
weights of probabilities along a chosen direction for the fixed number of successive 
cells (predicts a movement depending on states of r cells) we are able to model some 
predefined super-positions of different types of neighbourhoods. For example, a se-
quence of Neumann’s neighbourhoods can be embedded (combined) in (with) a se-
quence of Moore’s neighbourhoods. The described above rules predefine the dynamic 
properties of our model such that all participants are able to move with different 
speeds taking into account both types of possible obstacles.  

3   Some Simulation Results of Crowd Movement 

By means of developed software it is possible to solve a wide class of problems. 
Many of them concern pedestrian movements. Here we pose a brief description of 
such examples. 

One of the advantages of applied software is the possibilityy to consider the real 
geometry of the movement space: buildings, street networks, transportation infrastruc-
ture etc. The plans or maps of geometry of the space region may be prepared sepa-
rately in different computer files with the help of usual tools for design and visualiza-
tion (see MATCAD, GIS, and MatLab etc.). The geometry can be presented by a 
simple variant or more complex one. Also different conditions for movements may be 
preconditioned. For example, the pedestrians may move into one or two directions. 
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The first simulated example was the problem on width of pass, which is narrowed 
at obviously set characteristics of a stream of pedestrians.  We have simulated the 
calculations of the width of pass, beginning from which the movement of pedestrians 
will be comfortable. The results are as follows. At narrower pass the pedestrian 
stream is unstable and non-uniform on different zones of movement (before pass and 
after it); sometimes before pass the condensations are observed which do not dissipate 
for a long time; that testifies an occurrence of a jam on the way of movements. 

Other problems consist the finding of optimal (that is such, that does not lead to a 
jam at probably big density of a people flow) configuration and arrangement of obsta-
cles in the pass (one, or several identical objects, which block itself half of pass area). 
We shall make an optimal choice with three existing variants, namely with 1, 2, or 3 
obstacles. The results are as follows. The best data it is received at the quantity of 
gaps ng =2. The worst results are obtained at a lot of obstacles, which testifies that it is 
the worst variant.  The jams arise before obstacle from time to time.  Results can be 
compared also, being looked on the graph. 
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Fig. 1. Dependence of average achievement time for two pedestrian streams from number of 
gaps in pass 

In third example we describe the problem of evacuation of the staff from office the 
plan of which is depicted in Fig.2. The ways of evacuation are pre-determined. The 
plan is represented as a suitable for simulation (black cells are walls and other obsta-
cles - an accessories, computers, etc.).  30% of the office space is occupied by people. 
Iterations of evacuation are presented in Fig.2. The full output of all staff has required 
less than 300 iterations. Basic numerical characteristics in this case are: (1) average 
time of reaching an output by pedestrians; (2) general evacuation time. 

The  obtained results may be useful for specific applications (created software will 
be useful for simulation of traffics, evacuations from buildings, ships, fire emergency, 
antiterrorist actions, holidays planning etc.). The next natural step is an attempt to 
optimize the simulated processes. Some combinatorial optimization models and meth-
ods could be useful for such problems.   
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Fig. 2.  Application of the approach in modeling of evacuation. Results of simulation. We show 
the plan of the office, the ways of evacuation and iteration 10 and 150 (left and right).   

4   The Problems of Mentality Accounting in Trafficking 

In Sections 2 and 3 we have presented results restricted by the classical approach of 
CA without taking into account the mentality properties for pedestrian movements. 
This problem is also new for other approaches: multi-agent systems, master equation, 
non-linear differential equations.  

The accounting of mentality of the participants of social processes (including traf-
ficking) is one of the main tendencies in developing more adequate models. There are 
many presumable ways of doing such accounting – from the attempts to model the 
human consciousness and decision – making in artificial intelligence to the simplest 
statistical roles. Earlier in the frame of the models with associative memory we have 
found a particular way and new prospects in accounting and interpretation of mental-
ity in the models of large socio–economical systems [15].  As the first step of mental-
ity accounting we suggest to incorporate the Hopfield neural network model as the 
internal structure of cells (elements). Such representation is useful for the stock mar-
ket dynamics. A part of approach could be incorporated into the CA traffic models.  

Of course many aspects related to the mentality accounting should be represented 
in the complicated models of the traffic: monitoring and recognition of traffic situa-
tion; decision – making process on movement direction, velocity and goals; possibili-
ties of movement implementation etc.  In principle in the context of CA modelling it 
should follow to the complication of cell states description, introducing non - homo-
geneous rules for cell state changes and some portion of non-locality in the models.  

One of the most interesting properties in social systems is the anticipation property. 
The anticipation property is the property that the individual makes a decision account-
ing the prediction of future state of the system [15, 16]. Concerning the specific case 
of the traffic problems we stressed that the anticipatory property is intrinsic for traffic. 
At the local level each participant of the traffic process tries to anticipate the future 
state of traffic in local neighbourhood when he makes the decision on movement. 
Also the macro neighbourhood of traffic participants might be accounted for the 
common radio information). The adequate accounting of anticipatory property in the 
CA methodologies is a difficult problem because it requires also complication of CA 
models by introducing the internal states of CA cells and special internal dynamical 
laws for mental parameters. Right now we are able to propose some consequences for 
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traffic considerations. One of the consequences is that the accounting of anticipatory 
property might be done for mathematical models of differences equations type.  

For example, the CA model is represented as the following discrete time equation 

                   
( 1) ({ ( )} ( ), ), 1, 2,...,i i js t G s t j N i R i M+ = ∈ =                     (1) 

where R – the set of parameters for cell’s rules,  N(i) - the set of neighbours of i –th 

cell in CA,   
( )js t

  sets of states in neighbours of i – th cell, M – the number of cells 
in CA. The anticipation may have different types depending on the prediction horizon 
in time and the scales of mentality accounting. But in the simplest case the anticipat-
ing on one time step in the neighbourhood of cell follows to counterpart of (1): 

 

( 1) ({ ( )},{ ( 1)} ( ), ), 1, 2,...,i i j js t G s t s t j N i R i M+ = + ∈ =              (2) 

The difference between (1) and (2) is that in the equations (2) the possible states at 

the next time step (the term  
( 1)js t +

 ) is taken into considerations. That is the rules 
of such CA should depend on the next states in the neighbourhood of i – th cell.  

The main peculiarities of the equation is that such equations may have multivalued 
solutions for some range of parameters. For example we have found the multivalued-
ness in solutions for anticipating neural networks. In our case the multivaluedness 
origins by branching the solutions of models at each time step. The multivalued solu-
tions correspond to possibilities of different scenarios in the evolution of systems with 
anticipation. In traffic problems it may correspond on many possible routes of traffic 
movements at each time moment. Remark that the ‘anticipative’ modification may be 
introduced just in game ‘Life’. The suggested generalizations are open investigations 
of the anticipatory cellular automata (ACA). 

Investigation of ACA is the matter of future. But here we would like to remark 
some general new possibilities. A new class of research problems is the investigation 
of self–organization processes in the anticipating media, in particular in discrete 
chains, lattices, networks constructed from anticipating elements. In such a case the 
main problems are self–organization, emergent of structures including dissipative, 
bifurcations, synchronization and chaotic behaviour.  

The extension of the results described in the present paper to new traffic models 
would open new possibilities for exploring behaviour of traffic participants. As it is 
follows from our investigations anticipation and multivaluedness also may serve as 
the source of uncertainty in the systems. Thus potential new tools for managing such 
uncertainty will follow from mathematical modelling of anticipatory traffic systems. 

5   Conclusions   

In this paper we have presented some ways and tools for improvement the CA based 
models and their software. The presented results are interesting for practical applica-
tions. Described models may be used as the polygon for testing new developments 
and ideas in the field of cellular automata investigations. A further research tasks 
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include some of the discussed optimization problems. Also some absolutely new 
possibilities for CA properties are proposed which are connected with the accounting 
of anticipatory properties of traffic participants.  The main new possibility is the mul-
tivaluedness of solutions of CA models with anticipation. 
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Abstract. In recent studies on traffic flow, cellular automata (CA) have
been efficiently applied for simulating the motion of vehicles. Since each
vehicle has an exclusion volume and moves by itself not being ruled by the
Newton’s laws of motion, CA is quite suitable for modelling traffic flow.
In the present paper, we propose a stochastic CA model for traffic flow
and show the availability of CA modelling for the complex phenomena
that occur in real traffic flow.

1 Introduction

Traffic flow has been attracting much attention from physicists, engineers and
mathematicians as a complex, nonequilibrium and self-driven many-particle sys-
tem. Studies of traffic flow expands in a wide variety of fields and now includes
general transport phenomena [1,2,3]. In real traffic, each vehicle is not ruled by
the Newton’s laws of motion because it is equipped with an engine and deter-
mines its motion by itself, i.e., self-driven. Therefore, one needs to have another
look at this subject taking a distance from traditional approaches in physics. In
the present work, we exclusively focus on a one-lane traffic, which is essential in
traffic dynamics, and accordingly, only one-dimensional cellular automata (CA)
are considered.

A number of different approaches to traffic flow have been made from various
viewpoints such as microscopic and macroscopic, continuous and discrete, deter-
ministic and stochastic [1,2,3]. According to these approaches, a number of mod-
els have been introduced thus far. We shall pick up three representative examples
and review a theory that unifies the three models via the ultra-discretization
method and the discrete Euler-Lagrange transformation. The Burgers equation,
expressed as

ρt = 2ρρx + ρxx, (1)

is known as an elementary model of traffic flow. Here, we denote the density
of vehicles on a road by ρ and use subscript notation for partial derivatives as
usual. It formulates the evolution of density distribution of vehicles, i.e., it is a
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macroscopic, continuous model. Recent studies show that the Burgers equation
is directly connected with other basic models of traffic flow [4]. The Burgers
equation is, at first, transformed into a CA model (a microscopic discrete one)
through ultra-discretization [5]. It provides a method to reveal another profile
of models, and enables us to return from macroscopic to microscopic. From the
Burgers equation, we thereby obtain the so-called Burgers cellular automata
(BCA), which is an extension of the Rule-184 CA [4]. Rule-184 CA has a very
simple update rule, i.e., if the adjacent site is not occupied, the vehicle move
ahead with a given probability, but otherwise it does not. Each site in Rule-184
CA contains one vehicle at most, and the rule is generally called the hard-core
exclusion rule. Meanwhile, each site in BCA allows multiple occupations.

Moreover, BCA can be transformed into another basic model, i.e., the Optimal
Velocity (OV) model, through the discrete Euler-Lagrange (E-L) transformation.
The discrete E-L transformation is made on fully discrete variables, and then
field variables change to particle variables [4]. The OV model is a continuous,
microscopic model, and is expressed as

d2xi

dt2
= a

[
V (xi+1 − xi) −

dxi

dt

]
, (2)

where xi = xi(t) denotes the position of the i-th vehicle at time t and the
function V is called the Optimal Velocity (OV) function [6,7]. The OV function
gives the optimal velocity of a vehicle in terms of the headway xi+1 − xi, where
the i-th vehicle follows the (i+1)-th in the same lane, and then the OV function,
in general, is monotonically increasing. Parameter a presents the sensitivity of
the driver to accelerate or decelarate. In particular, the OV model obtained from
BCA has OV function which is a step function. This suggests that the OV model
with a step function is essential as well as elementary.

Cellular automaton models are efficient and flexible compared to those de-
scribed by differential equations, and they have been used to model complex
traffic systems such as ramps and crossings [2]. The Nagel-Schreckenberg (N-S)
model, a well-known CA model, successfully reproduces typical properties of real
traffic [8]. What makes it sophisticated is a random braking rule, which is a plau-
sible mechanism to simulate the motion of vehicles in a single lane. Nevertheless,
the N-S model does not succeed in reproducing the so-called metastable state,
i.e., an unstable state which breaks down to the lower-flux stable state under
some perturbations.

Extensive study of traffic flow has revealed that the metastable property,
appearing in the medium density region, is universal in real traffic flows, and ac-
cordingly that property is essential in modelling [9]. Moreover, it is quite distinct
among non-equilibrium statistical systems [1]. In other words, this metastable
property plays a critical role in characterizing traffic flow from the viewpoint of
dynamics, and it is hence required for traffic models to exhibit this property.
Thus far, one needs the slow-start rule to reproduce a metastable state in exist-
ing CA models [9,10,11,12]. It introduces a delay for vehicles to respond to the
changing traffic situation, i.e., if a vehicle stops due to the hard-core exclusion
rule, the slow-start rule forces it to stop again at the next time step. In contrast,
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due to the second-order derivative, the OV model naturally includes a similar
mechanism to the slow-start rule.

In the next section, we introduce a stochastic CA model following [14,15], and
then we show that the model inherits the sophisticated features from the OV
model.

2 The Stochastic Optimal Velocity Model

First of all, we explain the general framework of our stochastic CA model for
one-lane traffic. The roadway, being divided into cells, is regarded as a one-
dimensional array of L sites, and each site contains one vehicle at most. Let Mt

i

be a stochastic variable which denotes the number of sites through which the
i-th vehicle moves at time t, and wt

i(m) be the probability that Mt
i = m (m =

0, 1, 2, . . .). Then, we assume a principle of motion that the probability wt+1
i (m)

depends on the probability distribution wt
i(0), wt

i(1), . . ., and the positions of
vehicles xt

1, x
t
2, . . . , x

t
N at the previous time. The updating procedure is as follows:

– Calculate the next intention wt+1
i (i = 1, 2, . . . , N) from the present, inten-

tion wt
i(0), wt

i(1), . . . and positions xt
1, x

t
2, . . . , x

t
N ;

wt+1
i (m) = f(wt

i(0), wt
i(1), . . . ;xt

1, . . . , x
t
N ;m) (3)

– Determine the number of sites Mt+1
i through which a vehicle moves (i.e. the

velocity) probabilistically according to the intention wt+1
i .

– The new position of each vehicle is

xt+1
i = xt

i + min(Δxt
i, Mt+1

i ) (∀i), (4)

where Δxt
i = xt

i+1 − xt
i − 1 denotes the headway. (Headway is defined to be

the clear space in front of the vehicle, and thus in a CA model we need to
subtract 1 to take account of the site occupied by the vehicle itself.)

The hard-core exclusion rule is incorporated through the second term of the
right hand side of (4).

We call the probability distribution wt
i the intention because it is an intrinsic

variable of the vehicle. It brings uncertainty of operation into the traffic model
and has no physical counterpart. In what follows, we assume wt

i(m) ≡ 0 for m ≥
2. It is notable that

∑∞
m=0 w

t
i(m) = 1 by definition and the expectation value

〈M t
i 〉 =

∑∞
m=0mw

t
i(m), and hence, setting vt

i = wt
i(1), we have wt

i(0) = 1 − vt
i

and 〈M t
i 〉 = vt

i . From (3) we have{
wt+1

i (1) = vt+1
i = f(vt

i ;x
t
1, x

t
2, . . . ; 1)

wt+1
i (0) = 1 − vt+1

i ,
(5)

and we therefore express the intention by vt
i in stead of wt

i . As long as vehicles
move separately (i.e. Δxt

i � 0), the positions are updated according to the
simple form

xt+1
i =

{
xt

i + 1 with probability vt+1
i

xt
i with probability 1 − vt+1

i ,
(6)

and consequently we have
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〈xt+1
i 〉 = 〈xt

i〉 + vt+1
i (7)

in the sense of expectation value. This equation expresses the fact that the
intention vt+1

i can be regarded as the average velocity at time t.
Let us take an evolution equation

vt+1
i = (1 − a)vt

i + aV (Δxt
i), (8)

in (3), where a (0 ≤ a ≤ 1) is a parameter and the function V takes the value in
[0, 1] so that vt

i should be within [0, 1]. Equation (8) consists of two terms, i.e.,
a term turning over the intention vt

i into the next, and an effect of the situation
(the headwayΔxt

i). The intrinsic parameter a indicates the sensitivity of vehicles
to the traffic situation, and the larger a is, the less time a vehicle takes to change
its intention.

A discrete version of the OV model is expressed as

xi(t+Δt) − xi(t) = vi(t)Δt, (9)

vi(t+Δt) − vi(t) = a
[
V (Δxi(t)) − vi(t)

]
Δt, (10)

where Δxi(t) = xi+1(t) − xi(t), and Δt is a time interval. Due to the formal
correspondence between (8) and (10), we call a stochastic CA model defined by
(8) the Stochastic Optimal Velocity (SOV) model, hereafter.

3 The SOV Model with a Step OV Function

In this section, we take a step function

V (x) =
{

0 (0 ≤ x < d)
1 (x ≥ d) (11)

as the OV function. Here, d is the smallest safe distance to move forward. Then,
we impose a periodic boundary condition and adopt the parallel updating as
usual. We denote the density of vehicles to sites by ρ = N/L (L is the number
of sites, and N the number of vehicles), which is a macroscopic variable, and
a conserved quantity of motion under the periodic boundary condition, no en-
trances or exits. Another macroscopic variable flux, Q = ρv, is defined using the
average velocity in a steady state;

v :=
1
N

N∑
i=1

(xT
i − xT−1

i ), (12)

where time T should be taken large enough for the system to reach a steady
state.

A fundamental diagram, a plot of the flux versus the density, illustrates how
traffic conditions depend on density. It represents the characteristics of a traffic
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Fig. 1. The fundamental diagram of the SOV model with the step OV function (11)
plotted at each value of sensitivity parameter a. The smallest safe distance (i.e. the
discontinuous point of the OV function) is d = 2, the initial value of the intention
is v0

i = 1. Theoretical curve (gray) illustrated from (14) and (16) has a complete
agreement with simulated data (dots). The system size is L = 1000.

model, and hence traffic models are required to reproduce a fundamental diagram
observed in real traffic flow.

Figure 1 shows the fundamental diagram of the SOV model with the step
OV function (11). We find that the diagram consists of two lines corresponding
respectively to free-flow phase (positive slope) and jam phase (negative slope).
It is remarkable that there is a region of density where two states (a free-flow
state and a jam state) coexist. The second-order difference allows the model to
show this property, so-called hysteresis. The free-flow line in the fundamental
diagram has a slope of 1, i.e., all the vehicles are moving deterministically (i.e.
vt

i = 1) without jamming. This kind of state can be implemented in the uniform
state; equal spacing of vehicles and the initial velocity v0

i = 1 for all i. As can
be seen from (8), the intention changes

{
vt

i = 1 − (1 − v0
i )(1 − a)t (Δxt

i ≥ d),
vt

i = v0
i (1 − a)t (Δxt

i < d), (13)

and consequently the uniform states constitute a line segment

Q = ρ (0 ≤ ρ ≤ ρh) (14)
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Fig. 2. Schematic picture of the case that a free vehicle reduces its intention v0
i = 1

approaching a cluster, and finally comes to be in the cluster. The vehicle stops with a
headway to the cluster ahead, which is estimated from the OV function.

in the fundamental diagram. The maximum-flux density ρh, at which the vehicles
take the minimum value d of equal spacing, is given as follows:

ρh =
1

1 + d
. (15)

In Figure 1, we see that the formula (15) is in the complete agreement with the
simulated results in the case of d = 2.

The flux of traffic flow increases in proportion to the density of vehicles while
the density is small. However, as the density becomes bigger, close-range inter-
action between vehicles makes a wide, strong correlation over them, and conse-
quently gives rise to a jam. Then, there appears a turning point at which the
flux declines for the first time. Around that point (the so-called critical point),
the states of traffic flow bifurcates into a stable branch and a metastable branch,
and moreover phase transition occurs between them. In order to estimate the
critical point, we consider that the jam line should be expressed by

Q =
ρc

ρmax − ρc
(ρmax − ρ), (16)

where ρmax and ρc denote respectively the density at which flux vanishes and
that of the critical point. From (16) and Q = ρv, we have

1 − ρ

ρ
=

1 − ρmax

ρmax
(1 − v) +

1 − ρc

ρc
v. (17)

Equation (17) suggests that the spatial pattern divides into two kinds, i.e., clus-
tering (v = 0) and free flow (v = 1). Then, since the vehicles move at velocity
1 or 0 in the present model, v just indicates the ratio of those in free flow, and
moreover total average headway 〈Δx〉 = (1 − ρ)/ρ is calculated from the aver-
age headway of the clustered vehicles 〈ΔxJ 〉 = (1 − ρmax)/ρmax and that of the
vehicles in free flow 〈ΔxF 〉 = (1−ρc)/ρc. These two values reflect a macroscopic
property of the SOV model with the OV function (11), but we should estimate
them from a microscopic viewpoint. In what follows, we consider the case of
d = 2, following [16].

First, we think of ρmax as the limit density at which all free-flow domains of the
roadway close up and no vehicle can move then. Let us consider the situation
illustrated in Figure 2 that a free vehicle with its intention 1 is going into a
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Fig. 3. The theoretical curve of the maximum density ρmax (thick line) at which the flux
vanishes with the corresponding numerical results (cross). They have perfect agreement.
We also show a corresponding curve of the original OV model (thin line) by use of (20).

cluster. Then, taking the time t = 0 when the headway firstly gets equal to d,
the intention decreases as vt

i = (1 − a)t. Since it gives the probability of the
vehicle moving at t, the average headway, while in cluster, amounts to

〈ΔxJ 〉 =
∞∏

t=1

(1 − vt
i) =

[ϑ4(0, 1 − a)4ϑ2(0, 1 − a)ϑ3(0, 1 − a)
2(1 − a)1/4

]1/6
, (18)

where ϑk(u, q) (k = 1, 2, 3, 4) are the elliptic theta functions. Consequently, we
obtain the density of clustering vehicles

ρmax =
1

1 + 〈ΔxJ 〉
, (19)

as a function of the sensitivity parameter a. Note that 0 ≤ 〈ΔxJ 〉 ≤ 1 since
d = 2, and 〈ΔxJ 〉 is equivalent to the probability of Δxt

i taking the value of 1.
Figure 3 shows the graph of ρmax, and it has a perfect agreement with the

numerical results read off from Figure 1. In [16], they give the explicit formula
of ΔxJ , the uniform headway with which vehicles stop in a jam. It reads

ΔxJ = d− vmaxσ

2a
, (20)

where d = 2 and vmax = 1 in the present case, and σ � 1.59. By use of (20), we
illustrate the corresponding graph in Fig. 3 as well. Since the original OV model
does not incorporate a hard-core exclusion rule, the sensitivity parameter a is
limited in the scope of ΔxJ ≥ 0 so as to avoid any collision. In contrast, the
maximum density of the SOV model is retained, due to that rule, not to diverge
within 0 ≤ a ≤ 1.

Next, in order to estimate 〈ΔxF 〉 we consider that two vehicles in the front of
a cluster are getting out of it as illustrated in Figure 4. Then, as described above,
there occur two cases since d = 2; Δx0

i = 1 with probability 〈ΔxJ 〉 and Δx0
i = 0
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Fig. 4. Schematic picture of the situation that two adjacent vehicles in the front of
a cluster recover their intention and get out of the cluster. We estimate the headway
with which the two vehicles finally come to move free.

with probability 1 − 〈ΔxJ 〉, where we again take the time t = 0 when Δxt
i

becomes d. Corresponding to Δx0
i = 0 and 1, we describe 〈ΔxF 〉 respectively as

〈ΔxF 〉0 and 〈ΔxF 〉1, and accordingly our main result is expressed as follows:

ρc =
1

1 + 〈ΔxF 〉 , (21)

where
〈ΔxF 〉 = 〈ΔxF 〉1〈ΔxJ 〉 + 〈ΔxF 〉0(1 − 〈ΔxJ 〉). (22)

Let τ denote the interval of time for the front vehicle to get out of the cluster.
Provided that clusters are large enough to take approximately v0

i = 0 and that
the second vehicle leaving the cluster maintains a headway of at least d, we
conclude that v0

i = 0, v0
i+1(τ) = 1 − (1 − a)τ , vt

i = 1 − (1 − a)t, and vt
i+1(τ) =

1 − (1 − a)τ+t from (13). Note that τ is a stochastic variable, and hence v0
i+1

and vt
i+1 are dependent on τ .

In the case of Δx0
i = 1: Since vt

i indicates the probability of moving ahead at
one site, the probability of τ = t amounts to

P1(τ = t) = vt
i

t−1∏
s=1

(1 − vs
i ) (23)

and moreover, the distance which the two make in free flow amounts to
∞∑

t=1

[
vt

i+1(τ) − vt
i

]
=

1 − a

a
v0

i+1(τ). (24)

Consequently, we have 〈ΔxF 〉1 in a convenient form for computation:

〈ΔxF 〉1 = d+
∞∑

τ=1

1 − a

a
v0

i+1(τ)P1(τ) = 1 +
ϑ2(0,

√
1 − a)

2(1 − a)1/8 . (25)

In the case of Δx0
i = 0: The probability of τ = t amounts to

P0(τ = t) = vt
i

t−1∑
s=1

[
vs

i

t−1∏
r=1, �=s

(1 − vr
i )
]

(26)

Consequently, from (13) we have
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Fig. 5. The theoretical curve of the critical density ρc (thick line) at which the flux
bifurcates into a metastable branch and a stable jam branch (i.e. hysteresis), with
the corresponding numerical results (cross). They also have a perfect agreement. The
corresponding curve (thin line) of the original OV model is illustrated by use of (28).

〈ΔxF 〉0 = d+
∞∑

τ=1

[1 − a

a
v0

i+1(τ)P0(τ)
]
, (27)

and finally 〈ΔxF 〉 is formulated as a function of the sensitivity parameter a from
(18), (22), (25) and (27).

The formula of ΔxF in the corresponding case of the OV model, given in [16],
reads

ΔxF = d+
vmaxσ

2a
, (28)

where d = 2, vmax = 1, and σ = 1.59. Figure 5 shows the critical density ρc versus
the sensitivity parameter a. It also has a perfect agreement with the numerical
results read out from Fig. 1. By use of (28), we illustrate the corresponding graph
in Fig. 5 as well. We find that the two theoretical curves present a qualitative
agreement, while there are some quantitative differences due to the choice of
unit car size.

4 Conclusion

The Stochastic Optimal Velocity model was introduced in the preceding paper
[14] as a stochastic cellular automaton model extending two exactly solvable
models (the Asymmetric Simple Exclusion Process and the Zero Range Process).
Moreover, since it has the same formulation as the Optimal Velocity model, the
SOV model can be regarded as a stochastic extension of the OV model.

In the present paper, we focus on the stochastic effects on the stability of
the spatial-temporal patterns. For that purpose, we take the Optimal Veloc-
ity function to be a step function, and analytically estimate the critical point
where the stability of solutions changes. In this model, the sensitivity parameter
presents the strength of stochasticity. Then, as the stochasticity increases, there
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appears a density region where two different states coexist. A detailed investiga-
tion reveals that the high-flux state consists of the uniform configuration and the
low-flux states does of the other configurations. We show that the stochasticity
introduced into CA breaks some steady patterns and induces phase transitions.
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Abstract. Random boolean networks (shortly, RBN) have proven useful in 
describing complex phenomena occurring at the unicellular level. It is therefore 
interesting to investigate how their dynamical behavior is affected by cell-cell 
interactions, which mimics those occurring in tissues in multicellular 
organisms. It has also been suggested that evolution may tend to adjust the 
parameters of the genetic network so that it operates close to a critical state, 
which should provide evolutionary advantage ; this hypothesis has received 
intriguing, although not definitive support from recent findings. It is therefore 
particularly interesting to consider how the tissue-like organization alters the 
dynamical behavior of the networks close to a critical state. In this paper we 
define a model tissue, which is a cellular automaton each of whose cells hosts a 
full RBN, and we report preliminary studies of the way in which the dynamics 
is affected. 

1   Introduction 

A very interesting line of research on the study of biological organization is the 
“ensemble approach”, pioneered several years ago by one of us [1][2] in the study of 
genetic networks. According to this line the emphasis is placed  on the typical 
properties of networks which are supposed to capture some characteristics of real 
biological systems, instead of concentrating upon the study of specific cases. While 
the detailed study of specific organisms and specific genetic circuits is of the utmost 
importance, it is claimed here that the ensemble approach provides a useful 
complement to it. The search for typical (often called “universal”) behaviors has 
proven very useful also in the study e.g. of phase transitions and dynamical systems 

Random boolean networks (RBN) have been proposed as a model of genetic 
regulatory networks, precisely with the aim of devising a model which should be 
manageable enough to draw conclusions about its generic behaviors, which should be 
compared with experimental data. Many excellent presentations of the model exist 
[2][3], and we will only very briefly outline it below (section 2).  
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In most cases, the RBN model has been used to model a single cell, or a population 
of single cells, and it has proven able to capture some of their properties, including the 
response to perturbations in gene knock-out experiments [4][5]. It has also been 
suggested that evolution may tend to adjust the parameters of the genetic network so 
that it operates close to a critical state, which should provide evolutionary advantage; 
this hypothesis has received intriguing, although not definitive support from recent 
findings [6][7]. 

On the other hand, multicellular organisms are organized in tissues composed by 
similar cells which are often close in space, and it is natural to ask whether the 
multicellular organization affects the dynamics. Does interaction lead to a higher 
order, or rather the contrary? Kauffman recently suggested that it is likely that the 
whole tissue operates close to the critical state, and that the single cells might be 
slightly more ordered than if they were alone. While some work addressing this issue 
in the context of scale-free RBN has been performed [8], in this paper we investigate 
on the effects of interactions among neighboring cells using “classical” random 
boolean networks (precisely defined in section 2).  

In particular, we set up a 2D CA model, described in section 3, where each lattice 
site is occupied by a RBN, and introduce a mechanism whereby neighboring RBN 
can influence each other. 

Section 4 describes the experiments which have been performed with this model, 
in order to analyze the effects of coupling on the dynamics. Finally, in section 5 we 
draw some brief conclusions and indications for further work. 

2   A Brief Description of RBN 

There exist some different realizations of the idea of a random boolean network, 
which may differ in the network topology, the choice of the set of boolean functions, 
the updating strategies [2][3][9]. We will described here only the model which we 
used in our study, which is the same as that originally proposed by Kauffman, and 
which will be briefly called the “classical” RBN.  

Let us consider a network composed of N genes, or nodes, which can take either 
the value 0 (inactive) or 1 (active). Let xi(t)∈{0,1} be the activation value of node i at 
time t, and let X(t)=[x1(t), x2(t) … xN(t)] be the vector of activation values of all the 
genes (for simplicity, it will be assumed that activations are boolean). 

Real genes influence each other through their corresponding products and through 
the interaction of these products with other chemicals, by promoting or inhibiting the 
activation of target genes. In the corresponding model network these relationships are 
lumped in directed links (directed from node A to node B, if the product of gene A 
influences the activation of gene B) and boolean functions (which model the response 
of each node to the values of its input nodes). In a classical RBN each node has the 
same number of incoming connections kin, and its kin input nodes are chosen at 
random with uniform probability among the remaining N-1 nodes. The probability 
that a particular combination of input activities gives the response “1” is the same for 
all the nodes and is specified by the value p. Both the topology and the boolean 
function associated to each gene do not change in time (i.e. we use the so-called 
quenched model). The network dynamics therefore is discrete and synchronous, so all 
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the nodes update their values at the same time: once the connections and the boolean 
functions of each node have been specified, X(t) uniquely determines X(t+1). 

A careful analysis of some known real biological control circuits has shown that  

a) Boolean functions with a low probability of activation (i.e. a relatively high number 
of outputs which are 0) are more frequent than the others 

b) In most cases the functions are limited to those which are canalizing  

In this preliminary work we take (a) into account, while the set of boolean 
functions is built, as usual, by choosing one with probability p and 0 with probability 
1-p (therefore these functions are not necessarily canalizing). 

The model shows two main dynamical regimes: by observing for example how the 
average number of attractors and the average cycle length scales with the number of 
nodes N we can note that these variables could increase their values as a power law 
(ordered region) or could diverge exponentially (disordered region), depending upon 
the value of the parameter kin and the bias p (see Figure 1a). Systems near the 
interface between the two regions (i.e. in the “critical” region) show a particularly 
interesting behavior, as described in the introduction. 

Several observations (summarized in [2][10]) indicate that biological cells, because 
of this biological constraints, tend to be found in the ordered region not too far from 
the border between ordered and disordered regimes (the “edge of chaos”) thus 
allowing both control and evolution. 

In this work we are interested in understanding what happens when the cells are 
grouped in a higher order organization like a tissue, asking what is the influence (if 
any) of this grouping on the ordered/chaotic behavior of cells. 

A priori, it could be argued that cells in tissues should be rather more ordered than 
isolated ones, thus simplifying system-level control, but also the opposite, i.e. that the 
additional interactions could introduce more constraints, leading to a more frustrated 
(and disordered) system. These hypotheses need testing, and this can be done in a 
disciplined way using particular models. 

     
(a)     (b) 

Fig. 1. (a) Ordered and disordered regions for a single random boolean network; the border 
between the two region is given by the formula (kin)-1=2p(1-p)[3] (b) the mathematical 
idealization of a tissue utilized in this article: each square cell is a complete random boolean 
network; a subset of its nodes interacts with the first four neighbors RBNs 



 Coupled Random Boolean Network Forming an Artificial Tissue 551 

3   A Model Tissue 

Now we have to define a mathematical analogue of a generic tissue. This requires  to 
define: 

(a) a topology of the tissue 
(b) the kind of random boolean networks present on each cell of the tissue 
(c) the rules of interaction among the cells of the tissue 

A simple topology like that of Figure 1b, where square cells interact with their first 
four neighbors inside a two dimensional world, represents a schematization of the 
spatial topology of some tissues, and will be used here. 

Each tissue is composed by homogeneous cells, and in general all the cells of a 
given multicellular individual share the same genetic material, therefore in each cell 
we have to consider a copy of the same random boolean network (same topology of 
the RBN and same boolean function). 

The rules of interaction among cells are very important. It is possible to take into 
account several possibilities, however the physics of the problem provides useful 
suggestions. A gene in cell A can influence another gene in cell B by synthesizing a 
protein which (may trigger a cascade of reactions some of whose products) may cross 
the cell membrane. Therefore, if a gene is active in A (so that its value is 1) it may 
affect B, but if it is inactive it has no effect.  

Therefore we assume that: 

• only a subset of the total number of nodes that define the RBN can be influenced 
by neighboring cells (not all the proteins cross membranes) ( described by a 
parameter fraction of interacting nodes, frin) 

• the effective input given to the other nodes by node aij (activity of node j belonging 
to cell i), whose protein can diffuse through the membrane, is “1” if at least one of  
the four nodes with the same value of j , belonging to the RBNs present in the four 
neighboring cells of cell i , is “1” 

• the interactions are limited to nearest neighbors (we adopted the von Neumann 
neighborhood N,S,E,W) 

The model defined above is clearly a square cellular automaton, where each cell has a 
fairly complicated behavior, since it hosts a full RBN. 

4   Results 

4.1   Description of Parameters and Methods 

In our initial testing of this system, we concentrated on networks which are close to 
their critical point. This choice should allow us to better detect the effects of 
embedding them in a higher order system. Therefore, taking into account the fact that 
in nature those activation functions which (in the boolean approximation) show a bias 
towards the  value 0 seems to be preferred, we chose kin=3 and p close to 0.21 (the 
critical value for kin=3, cfr the legend to Figure 1a). Incidentally, this choice implies a 
large presence of canalizing functions (as it is found in biology [11]): also with the 
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highest p value we utilized (p=0.22), more that 78% of boolean functions are 
canalizing in at least one input. 

The initial condition is chosen at random for every RBN, independently from those 
of the other cells. 

The number of nodes of every RBN (N) is 100, and the dimension of our artificial 
tissue is a square of 20x20 elements (so the total number of genes in the tissue is 
40.000); the global topology is that of a torus. 

In order to find the attractors of each RBN, we run the system for 1600 steps (a 
step being a  complete update of each node of each RBN present in the system), and 
check the presence of an attractor in each RBN belonging to the tissue during the last 
200 steps (therefore, we are not able to find attractors whose period is higher than 200 
steps, nor those which are reached after a very long transient). When each RBN 
reaches an attractor (or when the system reaches 1600 step) the search ends.  

For each level of the intensity of interaction frin (the fraction of nodes whose 
outcome can affect neighboring cells) we made a series of 1000 runs, each run 
involving a different RBN (same kin and p, but different topology and boolean 
functions) and different initial conditions. 

We consider the following variables. For each series of runs: 

• the fraction of runs α where all the cells of the system reach the same attractor (out 
of 1000 runs) 

• the fraction of runs β where all the cells of the system reach an attractor (out of 
1000 runs) 

• the fraction of runs γ where no cell reaches an attractor (out of 1000 runs) 

and, for each run of each series: 

• the number of different attractors present at the end of the run 
• the number of different periods present at the end of the run 
• the average length of the 20x20 RBN periods at the end of the run 
• the structural factor sfct  (see below) at the end of the run 

sfct is an aggregate variable we utilize as a first indicator of presence of homogeneous 
zones inside the artificial tissue. For each RBNi, we compute the number of nearest 
neighboring RBNs that are in the same attractor of RBNi, and sum all the 20x20 
quantities. If all the RBN share the same attractor (the idealized situation where all the 
cells of the system belong to only one kind of tissue) this variable reaches its 
maximum value 1600 (20x20x4), otherwise the cells self organize in more sparse 
structures. 

4.2   Experimental Results 

First of all, we analyze the behavior of the aggregate variables α, β and γ as function 
of the interaction intensity. As the strength of this interaction grows, the fraction of 
runs β where all the cells of the system reaches an attractor decreases; contemporarily, 
the fraction of runs γ where no cell reaches an attractor increases. Obviously, these 
measures are influenced by the search parameters we utilized, but this general 
behavior seems to happen for many sets of parameters. This indicates that the increase 
of interaction strength  introduces more and more disorder into the systems. 
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But this is not the whole story of the phenomenon: as the strength of this 
interaction grows, the fraction of runs α where all the cells of the system reach the 
same attractor increases. What's more, if we consider the fraction of runs (out of the 
runs where all the cells of the system reach an attractor) where all the cells of the 
system reach the same attractor, this increase is even more evident. This is an 
evidence that the increase of interaction strength  introduces more and more order into 
the systems, if the system is already prone to the order (Figure 2a). 

   

(a)     (b) 

Fig. 2. Fraction of runs where all the cells of the system reach the same attractor (α),where all 
the cells of the system reach an attractor (β) and where no cell reach an attractor (γ). (a) Tissue 
constituted by ordered RBN (kin=3, p=0.20); (b) tissue constituted by slightly disordered RBN 
(kin=3, p=0.22). 

A tentative explanation may be based on the observation that, also for RBN well 
inside the ordered region, exists a small but finite subset of networks that are chaotic 
[12]. That is, a possible interpretation of our result is that the increasing strength of 
interaction among neighboring RBNs amplifies the already present tendencies (or at 
least the already present tendencies of the majority of RBN present inside the tissue). 
Networks prone to disorder are more disordered, and networks already prone to order 
can reinforce their tendency and are more ordered.  

This description is enforced by a new series of simulations (Figure 2b), where the 
RBN are more slightly into the chaotic region (this series has p=0.22; we remember 
that the border between order and chaos for systems with kin=3 is approximately 
p=0.211). The runs where all the cells reach an attractor decrease in a more evident 
way, but the system is still able to increase the fraction of cases where all the cells 
reach the same attractor (phenomenon again more evident if we consider the fraction 
of cells that reach the same attractor out the fraction of runs where all the cells reach 
an attractor). 

Then, what happens to fairly ordered systems? We have to carefully interpret, or 
select, the data we produced: how we can compare systems where all the cells reach 
an attractor and systems where only 30% (5%, 75%, …) of the cells do it? As a first 
step we decided to take into account only the systems where all the cells reach an 
attractor (but a survey of some less conservative cases shows that the general 
conclusions could be quite similar).  
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Therefore, we extract from our data (kin=3 and p=0.20) all the systems where all 
the cells reach an attractor; the data are very noisy (the number of possible different 
RBNs and the number of possible different initial conditions are enormous, and 
therefore any realistic set of runs is always an undersampling), nevertheless some 
interesting trends are visible (see Figure 3). The most tangible changes are evident on 
the distributions of the number of different periods and of the average period (Figure 
3b and Figure 3c): the higher the strength of the interaction among neighboring cells, 
the narrower are the distributions. That is, the system decrease the number of different 
periods that are present on the artificial tissue at the end of the runs, and their average 
becomes smaller; on average, the RBNs are compelled to share some characteristics. 
A second observation is that a large part of the effect is already present at the first 
“switch on” of the interaction: the further strengthening of the interaction results in 
changes of smaller entity. 
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(c)    (d) 

Fig. 3. Distribution of the number of different attractors (a), of the number of different periods 
(b), of the average of periods presents on the artificial tissue (c) and of the structural parameter 
sfct (d) as function of the strength of interaction coupling (spanning from 0.0 to 1.0 – see the 
legends). The involved RBNs are ordered networks (kin=3 and p=0.20); the total number of 
RBNs that normalize the distributions is shown by line α in Figure 2a. 

Let us now consider the number of attractors present inside the artificial tissue. 
Figure 3a (the distribution of the number of different attractors present at the end of 
each run) shows that there is a small effect due to the growing strength among 
neighboring RBN, but this distribution doesn’t allow us to observe, for example, the 
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formation of “islands” of attractors inside the matrix (which might be an interesting 
phenomenon). Therefore we need another indicator: as a first attempt, we propose the 
quantity sfct discussed above. The sfct distribution has an evident peak on it 
maximum value (that is, the cells tend to reach the same attractor); moreover, this 
peak grows hardly as the interaction strength increases (Figure 3d and its insert). 
When the system doesn’t reach this so homogeneous situation, it could be found in a 
very high number of situations (the long tails at the left of the peaks), but the 
importance of these tails decreases as the strength of interaction becomes more 
intense. That is, the presence of  homogeneous zones inside the system is more and 
more intense as the interaction strength grows up (see Figure 4 for an example of 
association between the presence of homogeneous zones and the value of sfct). 

          
(a)    (b) 

         
(c)    (d) 

Fig. 4. Emerging of homogeneous zones inside the artificial tissue; the variable shown is the 
kind of attractor. (a) interaction strength at 0 and sfct=323; (b) interaction strength at 0.1 and 
sfct=308; (c) interaction strength at 0.3 and sfct=1138; (d) interaction strength at 0.7 and 
sfct=1600. This last case shows a complete homogeneous tissue, with only one attractor. 

There is another more subtle and interesting issue: in Figure 4 we are observing the 
kind of attractors, but this is not NECESSARILY WHAT MATTERS FROM A 
FUNCTIONAL VIEWPOINT. If we consider one node (whose product can pass 
through the cell membrane) of one particular RBN and if its activation is “0”, this 
doesn’t means that the real effect of this activation is “0”. It is enough that one of its 
neighboring RBNs has the same node with activation “1”, that under all the functional 
aspects this node behaves as the state “1”. That is, it is possible that a part of 
differences we are now observing among the cells doesn’t exists as functional 
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difference. And, for a tissue, it is important that all the cells be similar under the 
functional aspect. This aspect of the problem will be the subject of further analysis. 

5   Conclusions 

This work is a preliminary study of the effects of the interactions among several 
RBN:  an intriguing phenomenon has been observed, i.e. that the interaction, as it has 
been modeled here, can have different effects on different kinds of RBN. In 
particular, the fraction of networks which do not reach an attractor increases, 
indicating a growth of dynamical disorder. But, limiting our considerations to those 
networks which reach an attractor within the time limits of our simulations, we 
observe that they tend to more homogeneous attractors. It is interesting to speculate 
about the possible implications of this finding from the viewpoint of evolution theory; 
since a certain degree of order is needed to allow robust functionality, those networks 
which reach an attractor might have been selected, and in this case the ordering effect 
of interaction would prevail – a finding which seems biologically plausible. Further 
work has to been done in order to investigate, inter alia,  the effect of different 
coupling interactions, different values of parameters, and to investigate the interaction 
between genomic and functional differences. 
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Abstract. Flocking behavior is widely used in virtual reality, computer games, 
unmanned vehicle, robotics and artificial life. However, coordination of 
multiple flocking behaviors to accomplish such tasks remains a challenging 
problem. This paper reports some progress for implicit coordination and gets 
swarm intelligence as works based on the flocking behavior. It consists of two 
parts. In the first part, we study on the pattern formation problem with avoiding 
complex constraints, that is how can a group of agents be controlled to get into 
and maintain a formation. The second part considers the studies that use 
adaptation strategies in controlling multiple agents based on probabilistic 
methods. Specifically we investigated (1) how probabilistic method is used to 
reorganize generate group (flocking) behaviors, and (2) how adaptation at the 
individual level is used to make multiple agents respond to obstacles in the 
environment. 

1   Introduction 

To creatures a large number of objects by hand would be a tedious job.  To make the 
job easier, we would like to try to automate as much of the process as possible.  For 
the case of flocks or herds of creatures, Reynolds [1,2] introduced a simple agent-
based approach to animate a flock of creatures through space. In this method, each 
creature makes its own decisions on how to move, according to a small number of 
simple rules that consider the neighboring members of the flock. In nature, 
aggregations of large numbers of mobile organisms are also faced with the problem of 
organizing themselves efficiently.  This selective pressure has led to the evolution of 
behavior such as flocking of birds or herding of land animals and schooling of fish. 
The reasons why organisms form flocks are varied and include protection from 
predation, improved food search and improved social cohesion. However, the actual 
dynamics of the flocking behavior are essentially constrained by the dynamics of the 
individual organisms and the flock is relatively limited in the types of behavior it can 
exhibit.  This gives a flock of a given organism, be it fish or bird, its characteristic 
look and feel.  

Boids models are considered and accepted or rejected on the basis of how well 
observed phenomena can be imitated.  The scientific approach has very different 
objectives the goal is not just to produce realistic simulations but also to understand 
and explain the local mechanisms that control patterns.  As such the wealth of 
behavioral data available can be incorporated.  We show appropriate spatial and 
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temporal statistics that need to be applied to evaluate the conditions of models. 
Perhaps, most importantly analytical methods can be used to translate the local 
mechanisms into macroscopic dynamics.  

First, in this paper, we present a theoretical analysis for emergence mechanism of 
flocking behavior in steady-state.  Secondary, we suggest two effective methods, with 
"probabilistic method" and "adaptive change of action rules to combine multiple 
parallel action rules agents have. Finally, we investigate the theoretical analysis 
results and the method with 3D multi-agent simulation.  

2   Literature on Flocking Behavior 

A flock may be loosely defined as a clustered group of individuals with a common 
velocity vector. Note that flocking of aircraft is different from formation flying. In 
the latter, aircraft are arranged according to predefined relationships that generally 
remain fixed during the flight. With flocking flight, there are no predefined relation-
ships and the flock members may constantly change their position within the group. 
The fixed relationships within aircraft formations make them relatively difficult to 
maneuver, whereas the fluid nature of a flock allows relatively rapid changes in 
flock direction. 

Reynolds first demonstrated the viability of obtaining coherent flocking behavior 
from simple rules. The primary application for this work was in developing realistic 
motions of groups of agents in computer simulation. For large numbers of agents, for 
example a flock of birds, the process was cumbersome and did not produce realistic 
results. This led to the use of relatively simple flocking rules that would automatically 
govern the dynamic behavior. 

The dynamics and stability of multi-robot formations have drawn recent attention 
by Wang and by Chen and Luh. Wang [3] developed a strategy for robot formations 
where individual robots are given specific positions to maintain relative to a leader or 
neighbor. Sensory requirements for these robots are reduced since they only need to 
know about a few other robots. Wang's analysis centered on feedback control for 
formation maintenance and stability of the resulting system. It did not include 
integrative strategies for obstacle avoidance and navigation. In work by Chen and Luh 
[4] formation generation by distributed control is demonstrated. Large groups of 
robots are shown to cooperatively move in various geometric formations. Chen's 
research also centered on the analysis of group dynamics and stability, and does not 
provide for obstacle avoidance. In the approach forwarded in this article, geometric 
formations are specified in a similar manner, but formation behaviors are fully 
integrated with obstacle avoidance and other navigation behaviors.   

Flierl, Grunbaum, Levin and Olson analyses the processes by which organisms 
form groups and how social forces interact with environmental variability and 
transport [5]. They discuss the transformation of individual based models into 
continuum models for the density of organisms. A number of subtle difficulties 
arise in this process however we find that a direct comparison between the 
individual model and the continuum model is quite favorable. They examine the  
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dynamics of group statistics and give an example of building an equation for the 
spatial and temporal variations of the group size distribution from individual based 
simulations. 

We have suggested that agent has multi action rules with "probabilistic method" 
and "adaptive change of action rules" [6]. The flock breaks away form a box-type 
obstacle and goes toward the destination. 

3   Agent Based Simulation for Flocking Behavior 

A method is presented for flocking behavior of creatures, birds, fishes and so on, that 
can form herds by evading obstacles in airspace, terrain or ocean floor topography in 
3D space while being efficient enough to run in real-time.  This method involves 
making modifications to Reynolds' flocking algorithm as following.   

 Cohesion: steer to move toward the average position of local flockmates 
 Separation: steer to avoid crowding local flockmates 
 Alignment: steer towards the average heading of local flockmates 

The agent is individual and it is behavior determines how it reacts to others in its 
local neighborhood. An agent outside of the local neighborhood is ignored. A Flock 
often consists of multi local interactions of each agent.  

Simulations show that reasonable flocking behavior can be obtained using just 
cohesion and alignment rules. Left unchecked, the cohesion rules will tend to lead to 
flock overcrowding. To balance this, a separation rule is used, where the active flock 
member tries to translate away from the local flock centroid.  

Each agent has direct access to the whole scene's geometric description, but 
flocking requires that it react only to flockmates within a certain small neighborhood 
around itself. That the relative position vector to an agent’s position and the relative 
velocity vector to an agent’s velocity characterize the neighborhood. The evading 
obstacles rule added to the flocking algorithm has a constant parameter that can be 
adjusted to produce different behaviors. 

4   Theoretical Analysis of Emergent of Flocking Behavior 

The flocking algorithm works as follows: For a given agent, centroids are calculated 
using the sensor characteristics associated with each flocking rule. Next, the velocity 
vector the given agent should follow to enact the rule is calculated for each of the 
rules. These velocity vectors are then weighted according to the rule strength and 
summed to give an overall velocity vector demand. Finally, this velocity vector 
demand is resolved in to a heading angle, pitch attitude and speed demand, which is 
passed to the control system. The control system then outputs an actuator vector that 
alters the motion of the aircraft in the appropriate manner. Each agent recognizes two 
physical values. One is the position to flockmates from the agent. The other is the 
relative velocity of flockmates.  Agent i acquires the flockmate agent j in visual  

sensor range.  Agent i can recognize vector ijd  that is the position vector to the 
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flockmate agent j.  It also recognizes vector dtddv ijij /=  that is the relative velocity 

vector.  

Cohesion force vector ciF , separation force vector siF  and alignment force vector 

aiF  are defined from these two physical values, flocking force vector fiF  expression 

is defined as liner combination of cohesion, separation and alignment force. 
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Where coefficient ciw , siw and  are weights each force and positive. If flocking force 

vector 0=fiF , then, the flock moving becomes steady-state. In this case, both first 

and second term in Eq.(1) has to equals 0 .  
The condition of first term in Eq. (1) is 
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Eq. (2) shows the distance between agent and flockmates in steady-state. If siw  is 

smaller or ciw  is larger, then the absolute value of the sum of the position vector 

in

j
ijd  becomes shorter. The steady-state condition of second term, alignment term, 

in Eq.(1) is  
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Eq. (3) shows the velocity of both agent and flockmates is same in steady-state. If aiw  

is larger, then recognizes vector ijv  comes to zero more quickly, and the velocity of 

agent comes to the velocity of flockmates more quickly.   
Here, we make agents have a new action rule; "go toward a destination". The 

propulsion toward a destination is defined diF . The new action rule is in parallel with 

and conflict "flocking behavior". We combine the new action rule to "flocking 
behavior" with a "Probabilistic Method". The method is that an agent recalls to go 

toward the destination by probability p. Total force of the whole flock totalF is  
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where fF  is the average of flocking behavior force of agents, and dF  is average force 

that agents want to go toward a destination.  We combine the two actions rules with a 
probabilistic method. Then, it emerges that the flock follows a horizontal circular path 
around the destination. To solve the equation of motion of circular movement, L is an 
average distance from agent to the destination and is estimated as a follow equation.  
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Where dF  is the average of dF  by time scale, m is a mass of agents, q is a 

coefficient come from spatial distribution of each agent, v  is the magnitude of sum of 

all agents' velocity vector. Eq. (5) shows L is proportional to m and 2v , and is 
inversely proportional to p and dw . 

5   Simulation Results on Purposive Flocking Behavior 

Each agent is homo and has parallel and conflict two action rules; "flocking behavior" 
and "go toward a destination". Amount of agents is 100. 

The simulation result is shown in Fig 
1. The flock follows a horizontal circular 
path around the destination. Fig.2 is a 
graph about SD and L versus time t, 
where SD is the standard deviation of 
positions of agents' position and L is the 
distance form the center of the positions 
of agents to the destination. When t = 
2000, SD becomes constant. It indicates 
that flocking behavior become in steady-
state in this time. L becomes also 
constant same time. It indicates that the 
flock's track become in circular orbit. 

Fig.3 shows that SD and L versus p. 
An approximate equation about L and p 
is follow.  

L = 1.30/p + 0.0709 (6) 
 

start 

destination 

 

Fig. 1. The track of the flock. It is a circular 
orbit. (recall probability: p = 0.15) All 
agents that construct the flock are bound in 
a plane: z = - 0.220 x - 0.181 y. 
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Eq.(6) indicates L is inversely 
proportional to p. This result 
matches Eq.(5) very well. 

Next step we put an obstacle 
in front of agents. A flock is 
closing to it. Each agent in the 
flock wants to avoid an 
obstacle. In the case of 
conventional Boids model, a 
flock is split three flocks. On 
the other hand, in the case of 
"adaptive change of action 
rules", the flock members don't 
disjoined. Fig.4 shows R-m 
curve, where R is the distance 
from the agent to the center of 
all agents position and m is 
agent density that define as the 
density of number that an agent 
recognizes other agents in his 
visual range. In the case of 
conventional Boids model as 
shown in Fig.4(b), R-m curve 
splits three clusters. On the 
other hand, in the case of 
"adaptive change of action 
rules", R-m curve keeps its 
shape as shown in Fig.4(c).  

6   Conclusions 

We usually ascribe agents' behaviors as if they are oriented toward a goal. Agents or a 
group of agents pursue their own goals. We might characterize these behaviors as 
purposive behaviors. On the other hand, agents also often behave by reacting to 
others. Therefore, what we also have is a mode of contingent behavior that depends 
on what other agents are doing  

Therefore, we have to look closely at agents who are adapting to other agents. In 
this way, the behavior of one agent affects the behaviors of the other agents. How 
well agents accomplish what they want to accomplish depends on what other agents 
are doing. What makes this kind of interactive situation interesting and difficult is that 
the aggregate outcome is what has to be evaluated, not merely how agents behave 
within the constraints of their own environments. 

We analyzes theoretically for emergence mechanism of flocking behavior in 
steady-state. We have investigated the problem how an agent has combined two 
action rules; both "flocking behavior" and "go toward a destination". We have 
suggested "probabilistic method" as a solution for the problem. Then, it emerges that 
the flock follows a horizontal circular path around the destination. All agents are bound  
 

 

Fig. 2. Standard deviation: SD and the distance form the 
flock to the destination: L vs times: t. (recall probability: 
p = 0.15). 

 

Fig. 3. Standard deviation: SD and the distance form the 
flock to the destination: L vs recall probability: p 
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Fig. 4. R-m curve. R is the distance from the agent to the center of all agents’ position. m is agent 
density that define as the density of number that an agent recognizes other agents in his visual range. 

in circular track plane. As the time scales increase, we investigated the statistical 
properties of flocking behavior and show theoretically analysis matches the simulation 
result very well. We also challenged the problem how the flock don't disjoin when 
avoiding an obstacle. We have suggested "adaptive change of action rules" as a 
solution for this problem and ensured the effectiveness of the method in a simulation. 
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Abstract. This paper propose  a maze routing algorithm based on cellular 
automata. The aim  of this algorithm is find the shortest path  between the 
source cell and the target cell , so that the path does not pass from  the 
obstacles. Algorithm has two phases, exploration and retrace. In exploration 
phase a wave is expanded from source cell and it puts token on cells which it 
passes via  them  while expanding. In the retracing phase , we start from target 
cell, follow the wave and arrive to source cell; the path created in this phase is 
desirable. Propose algorithm is simple and it’s transactions are local and follow 
the cellular automata properties. This algorithm find the desirable path in  

mm × two dimensional CA in )m(O 2 time step. 

Keywords: cellular automata, routing, maze routing algorithm, physical design, 
parallel algorithm. 

1   Introduction 

Maze routing algorithm find the smallest path between the source and target point in a 
planner rectangular graph. For doing routing by these algorithms, at first entire plan 
(the place where we want to do routing operation) is simply modeled by grid cells. 
For doing it , entire plan is displayed by a set of square cells with unit surface which 
are placed in a two dimensional form just as we have thrown a grid on the plan. 

Now, by using these cells and relationship between them, the graph is obtained. In 
this Manner , each ci  cell is displayed by vi  node in graph. The nodes similar the 
cells which have obstacle are called closed nodes and other nodes are called non 
closed ones. If  ci  and c j  cells are neighborhood, there will be one edge between vi  

and v j  nodes in graph.  The weight of each edge in graph equals one, except those 

edges related to closed nodes, whose weight equals zero.  
In the planner rectangular grid graph , each node has four neighbor nodes. The 

nodes similar to those area of plan which routing can be done by them , are displayed 
in the non closed form and the another nodes are displayed in the closed form. The 
aim of maze routing algorithms is to find a path between source and target nodes that 
this path does not pass any closed nodes and it has also the shortest length. This types 
of algorithms has two phases: exploration and retrace and  algorithm start from 
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exploration phase. In this phase we start from source node , consider all possible paths 
that start from it, and continue all of them  so that one of  those paths arrive at target 
nodes. 

When  path arrives to target nodes, the retrace phase will start. In this phase by 
using the way of back tracking it is recognized that which nodes of graph settle in the 
connective path between target and source node. After this phase algorithm is 
finished. For doing the retrace phase, it is necessary to set some information about 
paths in exploration phase, then by using this information the retrace phase is 
done[7,8,11,15]. Maze routing algorithms used in robot path planning and routing 
phase of  VLSI physical design[8,15]. 

The first algorithm of this type algorithms is introduced by Lee. Which find the 
shortest path in one grid graph with wh × dimensions in )wh(O ×  [8], then 

several algorithms based on Lee’s algorithm for improving the way of path extension 
and run time of algorithm, are reported such as algorithms of Soukup[14] and 
Hadlock[7].  One of the interesting properties of maze routing algorithms is 
parallelism that hidden on it. This case has caused that  these algorithms are simply 
maps on the parallel structures and in spite of constancy of algorithm complexity, the 
run time of algorithm, because of doing algorithm by suitable hardware and being 
reduced the number of  instruction done by every processor,  are decreased to a large 
extent. Some of these maps have done by Sagar and Massaka[19]. 

In this paper, one maze routing algorithm on CA is proposed. The proposed 
algorithm is so simple. In this algorithm, each cell of CA perform little transactions 
which cause to reduce the run time of algorithm. The used structure also is simple, 
parallel and local which is suitable for maze routing algorithm. In this algorithm at 
first the plan maps on the two dimensional Ca; then by using the simple, local and 
suitable rules, routing phase is implemented. In this paper we describe the basic 
concepts of CA in section 2, then explain and implement it by CA in section 3. 

2   Cellular Automata(CA) 

Suppose a regular network of finite state machine. Each machine called cell. 
According to a fixed and uniform pattern each cell is related to some of it’s adjacent 
cells. This relationship is local and uniform for all cells. The Cell and all cells related 
to it are neighbors of cell. Each cell can have one state from limited state at each time 
step. The states are similar for all cells. At each time step state of all cells update 
simultaneously and according to uniform rule. This rule is function of states of cell’s 
neighborhood. Therefore in any time next state of cell is dependent on the current 
state of it’s neighborhood. This network start from an initial configuration, at any time 
step by using the rule for all cells, the configuration is updated and finally the network 
produce a complex and interest behavior. 

According to the explanation the differentiation of CA and other automata network 
is: simplicity of structure, local communication between cells, establishing a uniform 
communicative pattern for all cells, simultaneously update of cells, updating cells by 
uniform rule and producing the complex,  interesting behavior from simple cells and 
rules. According to these properties, CA is referred as a parallel, local and uniform 
structure in most of literatures, which can simulation the behavior that have these 
properties[4,6,6,15,18]. 
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Today CA has been used in several areas, such as random pattern generation, 
computation theory, physical and biological system simulation and applied 
science[3,5,6,9,12,15,16,18]. 

So far, by using  several method has proved that CA is universal computing model 
[1,2], but in real world , this model is often used to simulate physical phenomena and 
this model   has drawn attention of researcher of some sciences such as physics and 
biology rather than that of researcher of computer science. They simulate the 
evolution of physical phenomena by CA rules step by step. Whereas according the 
definition , a computational model is not a mechanism for describing the evolution of 
phenomena; but it is a structure  to perform computing on the input data. 

In this paper CA is seen as general computing machine and an algorithm is 
proposed to solve one problem by CA. To solve the computational problems, a data 
structure and a procedure are needed.  The data structure saves input and output data 
and procedure convert input  data to output. The stage of processing and convert input 
to output in CA done state transmission of CA. Although  in the definition of standard 
CA the memory isn’t used but if CA like to play a role of a general computing 
machine, each automate cell needs several memories to save  the values of input and 
output and also the automata should have the ability to read   the values of input and 
the ability to write the values of output(from-to) memory. The definition proposed 
follow , which is considered as the definition of CA in this paper, is the extended 
definition of Mealy Automata[5]. 

Definition 1: CA is a seven-tuple as {Q, d, v, Σ, Δ, δ, λ} when: 

1. Q: the set of states that each cell can be have. 

2. d: define the dimension of cell’s space. If d=2 , we will have  a two 
dimensional CA. 

3. For each cell x in CA , vector V specify k+1 neighbors that is directly 
communicate to cell. 

4. Σ :  the input alphabet of CA. 

5. Δ : the output alphabet of CA. 

6. δ : the transmission function in the form Q)Q(: 1kn →Σ×δ + . According to  
the function, next state of  a cell is dependent on state and values of input 
memories of all neighbors in the current step. N is the number of input and 
output registers of cell. 

7. λ : the transducer relation which is a finite  subset of  n1kn )Q( Δ×Σ× + . This 
transducer  defines the value of each output  memory according to state and 
value of input memories of it’s neighborhood. Here each cell of CA writes on 
those memories that reads from them, therefore  Δ=Σ . 

3   A Maze Routing Algorithm Based on CA 

3.1   Algorithm Implementation by CA 

In this section , the implementation of  algorithm by CA is explained. In order to do 
that, first entire plan should be mapped in a two dimensional CA with von Neumann   
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neighborhood. In this way, entire plan is considered as e set of cells with have unit 
area. Those cells that cover the obstacles of the plan are considered with the Block(B) 
initial state. The initial state of cells that equivalent to the source and target points are 
considered respectively Source(S) and Target(T) and initial state of other cells are 
considered Free(F). It is clear that desirable path passes among the cells with F state. 
Therefore ,the memory variable(state) is needed for save the state of cell. Hereafter 
we use B-cell, S-cell, T-cell, and F-cell respectively for the cell with state B, cell with 
state S, cell with state T and cell with state F. 

As it described, a wave must be produced from the source cell. For implementation  
the wave production the below method is used.  In the first step, the wave arrives at 
just cells in the neighborhood of source cell. Now the F-cells that wave arrive to them, 
update their states to Mark(M). In the next step, wave includes all F-cells  which have 
a M-cell neighbor, that these cells also update their states  to M. Expanding the wave 
continues so and by this way, the exploration phase is implemented. According to this 
scenario, we can  do the wave expanding by simple rule: each F-cell has at least one 
M-cell or S-cell neighbor update it’s state to M.  

As it  is explained in the idea of algorithm, the wave should put a token in places 
where it passes, so that the path is made regarding that in retrace phase. While the 
above scenario  does not do this and only expands the wave. Now, the scenario must 
be verified to save the affect of wave expanding in cells. 

As maintained, in each step that the wave expands, number of F-cells change to M-
cells, in fact those F-cells that are in the neighborhood of M-cells or S-cell  update to 
M-cells. Then to  save the affect of wave, it is sufficient to know that  which neighbor 
of F-cell is M-cell or S-cell and save this information in a memory variable. In order 
to do this, we use a memory variable called “direction”. This variable can save one of 
the Right, Left,  Down up and null values. In initial configuration, the value of this 
variable is null for all F-cells and T-cell and it is don’t care for another cells. 

Now, each F-cell which is in the neighborhood M-cells or S-cell, checks that which 
side cell that neighbor is placed, and regarding that, it assigns value to it’s Direction 
variable. If the M-cell or  S-cell is placed at up, down, left and right of cell, the value 
of Direction variable respectively  will update to  Up, Down, Right and Left. If cell 
has more than one M-cell neighbor, it’s Direction variable choice  one of them 
randomly. T-cell is also doing operation such as M-cell, but it’s state isn’t update and 
only it’s Direction variable gets value. 

When the wave arrives at T-cell (the Direction variable of this cell gets value that 
isn’t equal to null) exploration phase is finished and retrace phase start. In this phase, 
the path must be specified  from T-cell to S-cell step by step and the cells  is placed in 
the path must be change to P-cells. But  how this path is made? To explain this, first  
we define the following concept: 

Definition 2: pointing to: Cell A points to cell B if one of the following cases has 
been happened: 

• Cell A is down neighbor of cell B and Direction value of cell A is equal to Up.  

• Cell A is up neighbor of cell B and Direction value of cell A is equal to Down.  

• Cell A is left neighbor of cell B and Direction value of cell A is equal to Right.  

• Cell A is right neighbor of cell B and Direction value of cell A is equal to Left.  
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In retrace phase, if  T-cell or P-cell has a M-cell neighbor  and in addition point to M-
cell neighbor, then that neighbor changes to  P-cell. The result of using the scenario 
will be so: when the Direction variable of T-cell gets value against null (that is when 
wave arrives at T-cell) retrace phase has been started. Therefore , in the first step of 
new phase, that M-cell which T-cell points to it changes to P-cell; and the next step 
the M-cell which points to new P-cell changes to P-cell, this operation continues to 
arrive at S-cell. The desired path involves P-cells. When the path arrives at S-cell the 
algorithm is finished(That is S-cell has a T-cell or P-cell neighbor). 

3.2   Structure of Cells 

In the proposed algorithm, each cell has two memory variables called State and 
Direction. State variable specifies the stat of cell and can get one of the following 
values: 

• Source(S): the source cell has S state. 

• Target(T): the target cell  has T state. 

• Block(B): the cells  which the path can’t pass through them, have  B state. 

• Free(F): the cells which the path can pass through them, have F state. 

• Mark(M): the cells which  the wave arrives at them, have M state. 

• Path(P): the cells which placed in the  final path, have P state. 

Direction variable: this variable specifies the  affect of wave expanding in each cell 
and can get one of the following variables: 

• Up: the cells which the wave arrives at them via up neighbor, the value of their 
Direction variable equals to Up.  

• Down: the cells which the wave arrives at them via down neighbor, the value 
of their Direction variable equals to Down. 

• Left: the cells which the wave arrives at them via left neighbor, the value of 
their Direction variable equals to Left. 

• Right: the cells which the wave arrives at them via right neighbor, the value of 
their Direction variable equals to Right. 

• Null: the cells which the wave doesn’t arrive at them’ the value of their 
Direction variable equals to Null. 

3.3   Initial Configuration of CA 

In the initial configuration, the plan must be mapped on CA. To do it, the cells  which 
have obstacles, are being B-cell. The cells similar to source and target respectively   
get S and T state and state of others cells will be F. The value of Direction variable for 
F-cells and T-cell equals null in initial configuration and for other cells will be don’t 
care. 
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3.4   Final Configuration of CA 

At the end of algorithm, the cells which place on the path have P state (p-cells). The 
cells which state of them equal T, B or S in the initial configuration, remain fix. 

3.5   Rules of CA 

• If  State variable  of cell equals S, it remains fix in the next step. 

• If  State variable  of cell equals B, it remains fix in the next step. 

• If  State variable  of cell equals F, one of the following cases is done: 

o If cell dos not have M-cell or S-cell between neighbors, it remains fix in the 
next step. 

o If  cell has only one M-cell or S-cell neighbor, the State variable of cell gets M 
value and cell points to suitable neighbor( if the M-cell or  S-cell  neighbor has 
been placed at up, down, left  and right of the cell, Direction variable of cell 
gets Up, Down, Left and Right value respectively.) 

o If  cell has some M-cell or S-cell neighbors, the State variable of cell gets M 
value and cell points to one of them randomly. 

• If  State variable  of cell equals T, the cell follows the rule of F-cell but State 
variable of cell remains fix. 

• If  State variable  of cell equals M, one of the following cases is done: 

o If cell dos not have P-cell or T-cell between neighbors, it remains fix in the 
next step. 

o If cell has at least one P-cell or T-cell neighbors and cell points to one of them, 
the State variable of cell gets P value. 

• If  State variable  of cell equals P, it remains fix in the next step. 

3.6   Complexity of Algorithm 

The path from source to target in a mm × two dimensional CA, can’t have a length 

more than 2m , because the path can’t pass each cell more than one time and the 

number of cells is also 2m . Therefore, time complexity of algorithm is  )m(O 2 . 

4   Conclusion 

In this paper a maze routing algorithm based on two dimensional cellular automata 
was proposed.  This algorithm find a smallest path from source cell to target cell and 
path doesn’t pass the obstacles. The proposed algorithm is simple and has local 
transactions that match with properties of cellular automata. Each cell of CA also has 
simple structure and accesses only the contents of neighbor cells in each time and 
VLSI circuit of it can be designed easily. This algorithm find the desirable path in 

mm ×  two dimensional CA in )m(O 2 time step. 
 



570 S. Golzari and M.R. Meybodi 

References 

1. Bruks, W.: Essay on Cellular Automata. Urbana. IL:University of Illinois Press 
(1970) 

2. Conway, J.H., Berlekamp, E., Guy, R.: Wining Ways for Your Mathematics Plays. Vol. 2. 
Academic Press (1982) 

3. Culik, K., Hurd, L., Yu, S.: Computation Theoritic Aspects of Cellular Automata. Physica 
D. Vol. 45. (1990) 357-378 

4. Farmer, D., Toffoli, T., Wolfram, S. (eds.): Cellular Automata Proceedings of An 
Interdisciplinary Workshop. Amsterdam. North Holland (1984) 

5. Gordillo, L., Lunna, V.: Parallel Sort on Linear Array of  Cellular Automata. IEEE 
Transaction on Computers (1994) 1904-1910 

6. Gutowitz, A.H.: Cellular Automata. Cambridge. MA:MIT Press (1990) 
7. Hadlock, F.O.: A Shortest Path Algorithm for Grid Graph. Networks (1997) 
8. Lee, C.Y.: An Algorithm for Path Connection and it’s Application. IRE Transaction on 

Electronic Computers (1961) 
9. Mitchel, M.: Computation in Cellular Automata: A Selected Review. Technical Report. 

Santa Fe Institute. Santa Fe. New Mexico (1996) 
10. Packard , N.: Two Dimensional Cellular Automata. Journal of Statistical Physics. Vol. 30. 

(1985) 901-942. 
11. Pan, Y.,  Hsu, Y.C., Kubitz, W.J.: A Path Selection Global Router. Proceedings of Design 

Automation Conference (1987) 
12. Sarkar, P.: Brief History of Cellular Automata. ACM Computing Surveys. Vol. 32. No. 1. 

(2000) 
13. Sherwani, N.A.: Algorithm for VLSI Physical Design Automation. Western Michigan 

University. Kluwer Academic Publishers (1993) 
14. Soukup, J.: Fast Maze Router. Proceedings of 15th Design Automation Conference (1987) 

100-102 
15. Toffoli, T., Margolus, N.: Cellular Automata Machines: A New Environment  for 

Modeling. Cambridge. MA:MIT Press (1987) 
16. Wolfram, S.: Statistical Mechanics of Cellular Automata. Review of Modern Physics. Vol. 

55. (1983) 601-644 
17. Wolfram , S.: Computation Theory of Cellular Automata. Communication  in 

Mathematical Physics. Vol. 96. (1984) 15-57 
18. Wolfram, S.: Theory and Application of Cellular Automata. Singapor: World scientific 

(1986) 
19. Sagar, V.K., Masara, R.E.: General Purpose Parallel Hardware Approach to the Routing 

Problems of VLSI Layout. IEEE Proceedings G. Vol. 140. Issue. 4. (1993) 294-304 



Optimal 6-State Algorithms for the Behavior of
Several Moving Creatures

Mathias Halbach, Rolf Hoffmann, and Lars Both

TU Darmstadt, FB Informatik, FG Rechnerarchitektur
Hochschulstraße 10, D-64289 Darmstadt, Germany

Phone: +49 6151 16 {3713, 3606}; Fax: +49 6151 16 5410
{halbach, hoffmann}@ra.informatik.tu-darmstadt.de, ra@lboth.de

Abstract. The goal of our investigation is to find automatically the
absolutely best rule for a moving creature in a cellular field. The task
of the creature is to visit all empty cells with a minimum number of
steps. We call this problem creature’s exploration problem. The behav-
iour was modelled using a variable state machine represented by a state
table. Input to the state table is the current state and the neighbour’s
state in front of the creature’s moving direction. The problem is that the
search space for the possible rules grows exponentially with the number
of states, inputs and outputs. We could solve the problem for six states,
two inputs and two outputs with the aid of a parallel hardware platform
(FPGA technology). The set of all possible n-state algorithms was first
reduced by discarding equivalent, reducible and not strongly connected
ones. The algorithms which showed a certain performance for five initial
configurations during simulation were extracted by the hardware and
send to the host PC. Additional tests for robustness and the behaviour
of several creatures was carried out in software. One creature with the
best algorithm can visit 99.92 % of the empty cells of 26 test configura-
tions. Several creatures up to 16 can perform the task more efficiently
for the tested initial configuration.

1 Introduction

The general goal of our project is to optimize the individual and cooperative be-
havior of moving creatures in order to fulfill a certain global task in an artificial
environment. The simulation and optimizing procedures of such problems are
very time consuming and therefore require support by special hardware or mul-
tiprocessor systems or at least optimized software if non-trivial problems have
to be solved.

The CA model was chosen because its modeling capabilities are well suited to
such problems with local interactions and also it is inherently massively parallel
which allows an easy and efficient mapping to hardware structures.

There are many applications for such artificial worlds:
– Synthetic Worlds : Games, genetic art, optimization of the behavior of the

creatures to reach global goals, social behavior, self organization.
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– Computational Worlds: Creatures are considered as active moving objects.
Passive objects contain data. Creatures are programmed or are able to learn
to solve a complex algorithmic problem.

With this approach also real world problems can be addressed as soon as the
features of the creature and the features of the environment come close to the
real world features of interest.

The problem of finding optimal solution of moving agents using a state ma-
chine has also been addressed in [1], and the problem has practical applications
like mowing a lawn [2] or exploring an unknown environment by robots. Results
of our preceding investigations were presented in [3,4,5,6] and were addressing
the hardware architectures for acceleration. In contrast, this contribution is fo-
cused on the evaluation of the found algorithms for one creature, the robustness
of these algorithms and the behaviour of several creatures.

2 CA Model for Moving Creatures

The Task: Visit all Empty Cells in Shortest Time. We have studied a
simplified problem in order to perceive the open questions and to find some first
solutions in the context of optimizing the behavior of creatures. The problem is
defined as follows.

Given is a two-dimensional grid of cells which are of type OBSTACLE, EMPTY,
or CREATURE. All these cells together define the artificial world. The environ-
ment is the fixed part of the world defined by the obstacles and the empty cells.
Border cells and obstacles are both modeled as OBSTACLE. CREATURE is a
more complex type with a simple brain and it is able to move around. It has
associated an actual moving direction and can look forward one space unit in
that direction. The cell in front of the creature is called front cell and its location
is called front position. A creature will move forward to the front position if the
front cell is empty and no other creature intends to move to it at the same time.

Initial Configuration. At the beginning the number and the placement of the
obstacles are given. Also the creatures are placed in certain start positions with
defined directions.

Goal. The goal is to find an optimal and simple local algorithm for the creatures
to visit a maximum number of empty cells with a minimum number of time steps
for a given set of initial configurations.

The Actions.The creature may perform four different actions: R (turn Right),
L (turn Left), Rm (turn Right and move, i e. move forward and simultaneously
turn right), Lm (turn Left and move, i. e. move forward and simultaneously turn
left).

The action R/L is performed if the front cell signals not free (m = 0) because
of an obstacle, a creature or a collision conflict. The action Rm/Lm is performed
if the front cell signals free (m = 1).

The Rule. Each cell stores in its state the information (Type, Direction). We
call “My” the cell which is acting according to the uniform CA rule.
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The sub rule for My.Type=CREATURE is
if (My.FrontCell.Type=EMPTY) and (My.FrontCell.SignalsFree) then

My.Type=EMPTY // delete because of moving, case b in fig. 1
else

My.Direction:= TurnRight/Left(My.Direction)
// only turn R/L, cases a1, a2 in fig. 1

The sub rule for My.Type=EMPTY is
n = Number of Creatures in the Neighbourhood with direction to My
if (n=1) then

My.Type:=CREATURE // create, move by copy, case b in fig. 1
My.Direction:= TurnRight/Left(My.NeighbourCreature.Direction)

creature in one
out of two directions

obstacle or
creature

irrelevant

(a1)    if (obstacle or creature)     then turn (L/R)

(a2)    if (collision)               then turn (L/R)

(b)    if not((a1) or (a2))            then move and turn(Lm/Rm)

Fig. 1. The rule for the moving creatures

In the case (a1) (fig. 1) a creature can only turn right or left because either
an obstacle or another creature is in front. If more than one creature wants to
visit the same cell (they have a common front cell) we have the conflict/collision
case (a2). We have solved this problem by forbidding all creatures to move on. A
creature will move only if the front cell is empty and no other creature wants to
move to it. Note that the moving of a creature in a CA is a coordinated action
between two cells. The source cell is deleting the creature whilst the destination
cell is copying the creature.

Conflict Resolution in Detail. Different ways of detecting and resolving con-
flicts are possible. One way is to use a two phase algorithm [7]: In the first phase
the cell to be visited selects one creature and copies it in a hidden place. In the
second phase the creature which was already copied deletes itself and the hidden
creatures becomes a real creature.

In our approach we resolve the conflict in one phase (during the current clock
cycle). Each creature which wants to visit the same empty front cell sends a request
signal and awaits a grant signal. The front cell analyses the requests and generates
only one grant signal which is send back to the selected creature. In our current
implementation no grant signal is send back if more than one creature requests.

Our implementation is an extension of the CA model with von-Neumann
neighborhood. Each cell contains logic (from the hardware view) or an addi-
tional function (from the mathematical view) which generates feedback signals
for arbitration (fig. 2). By this technique the neighborhood of the creature (the
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feed-back
logic

requesti

granti

front
cell

Fig. 2. Asynchronous feed-back logic used for arbitration

current front cell) can be extended to all neighbors of the front cell. Therefore
a creature can indirectly be informed that another creature is either two cells
ahead or diagonal in front. The arbitration signal is only influencing the next
state of the creature but is not further propagated to avoid very long propagation
chains and possible asynchronous oscillations.

Behavior of the Creatures. For the reason of simplification we have assumed
that all creatures act according to the same algorithm. In our first approach we
use a state machine for that purpose. The state machine can also be seen as
control logic, intelligence or brain of the creature. The state machine is based
on a programmable state table stored in the control memory. To study the basic
problems thoroughly we reduced the intelligence to a minimum.

The state table for our problem consists of two tables called TableFree and
TableNotFree (fig. 3a). Input to the state machine is the current control state
s and the moving condition m. Output of the state machine is the next control
state and the action signal d. The state s is a value between 0 and n − 1. The
moving condition is either true or false. The action signal is d = 0 if the action
R (for m = 0) or Rm (for m = 1) shall be performed. The action signal is d = 1
if the action L (for m = 0) or Lm (for m = 1) shall be performed.

We consider the state machine as a Mealy automaton with inputs (m, s),
next state s′ and output d. The state table consists of two parts. The part
for m = 0 is called TableNotFree and the part for m = 1 is called TableFree.
TableNotFree is selected if the creature cannot move, TableFree is selected if the
creature is able to move. An algorithm is defined by the contents of the table.
We are coding an algorithm by concatenating the contents line by line to a string
or a corresponding number, e. g.

1L2L0L4R5R3R-3Lm1Rm5Lm0Rm4Lm2Rm string representation
= 1L2L0L4R5R3R-3L1R5L0R4L2R simplified string representation

The state table can be represented clearer as a state graph (fig. 3b). If the state
machine uses n states, we call such an algorithm n-state algorithm. Note that the
number of states of the state machine considered as a Moore automaton is the
product n× #r, where #r is the number of possible directions (4 in our case).

3 Results

The Number of Algorithms. In the general case that the different values of
the states, inputs and outputs are not restricted to powers of two, the number
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Fig. 3. A state machine (a) models the behavior of a creature. Corresponding 6-state
algorithm G6 (b) and the secondary robust algorithm C6 (c).

of M of all algorithms which can be coded by a table oriented state machine is

M = (#s× #y)(#s×#x)

where n = #s is the number of states, #x is the number of different input
states and #y is the number of different output actions. Note that M increases
dramatically, especially with #s, which makes it very difficult or even impossible
to check the quality of all algorithms in reasonable time.

We are trying to reduce the number of algorithms which shall be checked for
their performance. One sub goal is to generate only such algorithms which fulfill
certain properties. Therefore we have analyzed the algorithms. The set of M
algorithms were divided into the following main classes:
– P (without prefix): Each state reachable from initial state 0 is able to return

to the initial state.
– N (normalized): Equivalent algorithms which only differ in their state en-

codings are represented in a unique form. Only the representatives are in
that class.

– R (irreducible): Algorithms in this class are true n-state algorithms which
cannot be reduced to algorithms with less than n states.

– V (all reachable): All states can be reached from the initial state 0 for each
algorithm in this class.

The set of relevant algorithms we are interested in is the intersection Q =
P ∪N ∪ V ∪R. The number of algorithms has been evaluated in software until
n = 5 and in hardware for n = 6, represented as Karnaugh-Veitch diagram (fig.
4). The percentage of relevant algorithms relatively to all algorithms is decreasing
from 100 % (n = 1) to 1.0 % (n = 5) and 0.2 % (n = 6).

Finding the Optimal Rules. We have generated and evaluated all relevant
n-state algorithms for n ∈ {2, 3, 4, 5, 6} using simulation and statistics. The
optimal rules until n = 5 could be detected by software using optimized C++.
The optimal rules for n = 6 could only be found by the use of programmable
hardware (FPGA technology).
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Fig. 4. The number of algorithms in the different classes

The procedure in general to discover the best algorithms is
for all relevant algorithms do

for all configurations do
count the cells which are visited and how many steps are needed
evaluate the quality

All relevant algorithms were simulated and evaluated for the five initial con-
figurations shown in fig. 5 for one creature. Algorithms were discarded during
simulation if the creature showed a bad behavior, especially if the number of
visited cells did not increase after a certain number of generations. There are
different parts in the whole evaluation process which consume different amounts
of time for
– the enumeration of the next algorithm,
– picking out a relevant algorithm (discarding non relevant algorithms),
– the simulation with a set of configurations,
– discarding algorithms which show insufficient performance during simula-

tion,
– selecting the best algorithms (candidates),
– further testing if the candidates do not behave weak under other initial

configurations (test for robustness),
– further testing how the candidates perform for more than one creature.

In order to evaluate the creatures’ behavior the following questions are of
interest. Is the creature able to visit all or almost all cells for a given set of
configurations? Is the algorithm robust, meaning that it will perform also well

Fig. 5. The initial configurations 1 to 5 from left to right
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under different configurations? How fast is the creature? How many cells are
visited in a time period (number of generations)? What is the speed-up if p
creatures are used instead of one?

The following definitions and metrics are used in order to qualify the perfor-
mance of an algorithm

– R := number of empty cells,
– g := generation (time step),
– r(g) := number of visited cells in generation g,
– rmax := the maximum number of cells which can be visited for g → ∞,
– gmax := the first generation in which rmax is achieved,
– e := rmax

R [%], the coverage or exploration rate, i. e. visited cells
all empty cells ,

– successful := true, if e = 100 % ,
– speed := R

gmax
, i. e. only defined for successful algorithms,

– mean step rate := 1
speed , i. e. the mean number of cells visited per generation.

The initial configuration plays an important role and it influences significantly
the results. The mean step rate to visit n cells during g generations is greater
or equal than one, because at least one more generation is necessary to visit
a cell which was not visited before. An optimal algorithm would yield a mean
step rate of 1, if each cell is visited once only (remember space filling curves,
HILBERT curve [8], PEANO curve [9]). Such optimal algorithms can only be
found for certain configurations and a sufficient intelligent creature. Our simpli-
fied creature is not able to move directly forward, therefore a mean step rate of
around 2 would already be a good result.

If a particular algorithm showed a bad behavior (no improvement between
generation g and generation g+Δ), the time consuming simulation process was
abandoned and the algorithm was excluded from the set of possible solutions.
Only solutions which exceeded a certain degree of performance were taken into
account and they formed the set of candidates. The candidates were sent from
the simulation hardware platform to a host PC. In a post processing step on a
PC the candidates were checked again for their quality using 21 additional initial
configurations in order to test for robustness. At least the best algorithms which
showed the best behavior on average were selected.

Less than 6-state Algorithms. We have evaluated all 2-state, all 4-state and
all 5-state algorithms. The best 2-state algorithm was 0R1L-1R0L. With this
algorithm the creature was able to visit 61 % of all empty cells of the 5 initial
configuration.

The best 4-state algorithms were A4 = 0R1L2R3R-1L3L1R2L and B4 =
1L3L2R0R-2L0L3R1R. Both were able to visit 97 % of all empty cells of the 5
initial configurations.

Exactly six 5-state algorithms were found which have been successful (100 %
coverage) for all 5 initial configurations. Two of those are A5 = 2R1L3R4R0R-
1R0L3L2L4L and B5 = 0L4R2L1R3R-1L2R3L4L0R. The fastest algorithm is
A5 with a mean step rate of 4.26 (speed = 0.234). Although these results are
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good, it should be noted that these algorithms may be less performant under
different initial configurations.

6-State Algorithms. The best 6-state algorithms were discovered by the aid
of configurable logic (FPGA). A first set of 312 948 of relevant algorithms with a
minimum level of performance (coverage, speed) was elaborated by the hardware
and send to the host PC for further processing. By the application of further
tests a second set of 64 061 algorithms was generated, which belong to the class of
relevant algorithms Q. This set was used for further simulations and evaluation.

In order to sort out the best algorithms, a robustness test with 21 addi-
tional initial configuration was performed in software. They differ from the 5
primary configurations in their size, distribution of obstacles and the start posi-
tion/direction of the creature. For the whole set of 26 initial configurations the
following 10 best algorithms with respect to (1.) success, (2.) coverage and (3.)
speed were discovered:
1. G6: 1L2L0L4R5R3R-3L1R5L0R4L2R 6. E6: 1R2L0R4L5L3L-3R4R5R0L1L2R
2. B6: 1R2R0R4L5L3L-3R1L5R0L4R2L 7. F6: 1R2L0L4R5R3R-3L4L5L0R1L2R
3. C6: 1R2R0R4L5L3L-3R4R2L0L1L5R 8. H6: 1L2L3R4L2R0L-2L4L0R3L5L4R
4. A6: 0R2R3R4L5L1L-1R5R4R0L2L3L 9. I6: 1L2L3L4L2R0L-2L4L0R3R5L4R
5. D6: 1R2R3R1L5L1L-1R0L2L4R3L1L 10. J6: 1R2R3R0R4L5L-4R5R3L2L0L1L
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Fig. 6. Evaluation

The best algorithm G6 (fig. 3) can visit 99.9197 % of all empty cells of all the
26 test configurations. The mean speed for the successful visited configurations
is 0.26. A surprise was that G6 cannot visit two cells of configuration 7. J6
visits only 78.529 % of all the 26 test configurations but J6 is the fastest for the
successful configurations.

The most robust algorithm G6 (fig. 3) shows a noticeable symmetry. A crea-
ture turns left (L), if it starts in state 0 and cannot move (dotted transition). If
the creature can move after 2 or 3 L turns it changes into the lower half of the
automaton with the action Lm. In the lower half of the automaton the actions
are inverted compared to the upper half. The algorithm B6 differs from G6 only
by exchanging R and L. C6 (fig. 3) differs from G6 by inverting the actions and
inverting the directions of the state transitions.
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Fig. 7. Visited cells vs. number of generations

The speed of an algorithm depends not only on the algorithm itself but also
on the actual initial configuration. For one of the initial configurations (empty
environment of size 40×16 with no obstacles, start position of the creature in the
middle, direction to the right) the speed of the 10 candidates are shown in fig. 7.
It can be observed that the algorithm D6 is the fastest for that configuration,
followed by B6 and D6. J6 is slightly faster than C6 between generation 500 and
1200, but is at least not able to visit all empty cells.

Fig. 8. Initial configurations used to evaluate the behavior of several creatures

Several Creatures. The 6-state algorithms which were found for one creature
were tested for their performance for 2, 4, 8, 16 creatures. The initial configura-
tions are shown in fig. 8.

The results are shown in the tables of fig. 9. If the number of creatures is
doubled the number of needed generations gmax can be less than the half (1043 →
286), as can be seen for algorithm D6. This means that a group of n creatures may
do better than n times under certain circumstances (effect of synergy). Another

Number of generations gmax
Algo- Number of creatures
rithm 1 2 4 8 16
A6 not succ. 272 79 80 39
B6 337 311 143 138 38
D6 1043 296 176 136 31
J6 322 280 140 102 34

Speed per creature
Algo- Number of creatures
rithm 1 2 4 8 16
A6 0.31 0.53 0.26 0.27
B6 0.50 0.27 0.29 0.15 0.28
D6 0.16 0.28 0.24 0.15 0.34
J6 0.52 0.30 0.30 0.21 0.31

Fig. 9. Generations and Speed for a different number of creatures
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effect can be noticed if the speed per creature is considered: Four creatures
with algorithm A6 work relatively faster than one creature with algorithm J6
(0.53 → 0.52). In other words: Several creatures may do the job more efficiently
(with less work units = gmax × creatures) than one creature.

4 Conclusion

The creature’s exploration problem was modelled as a cellular automaton (CA)
because CAs are massively parallel and can be perfectly supported by hard-
ware. The brain of the creature was modelled using a state table driven state
machine. The number of n-state algorithms is exploding with the number of
states, inputs, and outputs. The evaluation of a single algorithm needs a check
for relevance, simulation with a number of configurations, robustness tests, and
statistics. Therefore the whole process is very time consuming. We found and
evaluated the best 6-state algorithms for one creature and checked them for ro-
bustness. These algorithms were also applied to a configuration with up to 16
creatures. Several creatures can perform the given task more efficiently in some
cases, meaning that the work (generations × creatures) can be minimized using
more than one creature.
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Abstract. In this paper, we consider one of old-age problems about trade-off re-
lation between homogeneity and diversity. We investigate combat based on 
agent-based simulation, not conventional mathematical model based on attri-
tion. By introducing synthetic approach and adapting evolutionary learning to 
action rules that are expressed by a combination of parameters in combat simu-
lation, we focus on the interaction between sets of action rules. For searching 
how many sets of action rules does work well, we change the number of sets of 
action rules. And we make statistical analysis and show that there is good in-
termediate stage between high homogeneity and high diversity in group. 

1   Introduction 

It is quite often the case that an organization which has proper and reliable people 
does not work at all. It is also quite normal that a professional sports team made from 
first-class players does not achieve the excellent results. 

In the society, neither the group that consist only of leaders nor the group that con-
sist only of followers perform well. Leaders and followers must coexist in one group. 
When a group consists of same type of people, homogeneity of the group will be high 
and diversity will be low. On the contrary, when a group consists of totally different 
people, diversity is high and homogeneity is low. Assume that a scale of a group to be 
constant, homogeneity and diversity of a group are trade-off relation. 

Extremely high homogeneity or extremely high diversity is not preferable for a 
group. The middle state, in which character of people is basically similar and yet 
somehow different, is preferable. Trade-off between homogeneity and diversity is one 
of the age-old problems in social science. 

Making social group (e.g. governments or company and so on) and cooperating 
with each other, we can accomplish what we cannot achieve by only one power. 

In this study, we treat military forces, which are the most typical yet the simplest 
social groups. Analyzing a mathematical model based on Lanchester equation is a 
conventional way of the military study. Lanchester equation describes a process of 
attrition, however it can treat only simple force-on-force attrition.  

In recent years, synthetic approach using agent-based simulation starts to gaining 
attention. Flexibility of the model gives an advantage on the synthetic approach. [2,3] 
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By synthetic approach, we show that the total gain of a group is maximum at the stage 
that homogeneity and diversity are middle.  

This paper is organized as follows. Next section reviews combat simulation. EIN-
STein, the subject of our study, is presented in section 3. In section 4, the scenario is 
introduced. We explain EINSTein GA in section 5. Section 6 provides simulation 
result and compares performance. Section 7 concludes. 

2   Modelling Combat Using the Statistics of Scaling Systems 

Combat simulations are often used for analysis and training. However, traditional 
linear models of combat such as Lanchester equations treat attrition as a continuous 
function of time. However, recent thinking on the nature of warfare has it that combat 
is an inherently nonlinear situation. Attrition is during duels followed by maneuver in 
space and time. Tactics will try to concentrate duels for all individuals. If the statisti-
cal moments of the data scale, it can be expected that the variance relative to the size 
of the force will increase as the size of the force decreases. The dependence of the 
statistical variance on the size of the force results from using an attrition rate which is 
not continuous. The interesting question is then, what happens to the statistics if the 
opposing forces are allowed to position themselves in a dynamically evolving and 
non-linear way? 

Experience in a wide range of fields for which complex adaptive systems exist has 
shown that increasing the detail of the model does not necessarily improve its ability 
to reproduce reality, but often simply reflects the emphasis placed on various aspects 
by the designer. This complexity makes modeling of a combat situation difficult, 
particularly because the model designer must assume knowledge of how the partici-
pants will behave in a given situation. Thus there is a real danger that the model will 
simply reproduce the preconceived ideas of the modeler. 

With the growing acceptance of agent-based models as a method for simulating 
combat, which are designed to incorporate behavior which adapts to the situation, it 
may be that a clearer link between fractal statistics and the non-linear dynamics of 
combat can be established. Combat must generally be considered to be a complex 
adaptive system that evolves in an unpredictable way. Complex networks in many 
fields have been shown to generate discontinuous functions to describe various quan-
tities as functions of space and time, which often show scaling similarities. The mod-
ern combat simulation be modeled with simplified agent-based models combined with 
complex networks, in which an agent’s behavior is determined by some set of rules, 
which are also constrained by the networks of friends and enemies. 

3   The Outline of EINSTein Combat Simulation 

As main subject of this study, we use EINSTein developed by the Center for Naval 
Analyses. [1] 

EINSTein is a multi-agent artificial war simulation consisting of 2 dimensional lat-
tice-shaped battlefield and agents of two groups, which are red force and blue force, 
fighting in the battlefield. There are a red flag and a blue flag in a battlefield. 
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Agents act based on local information that they obtained from their own sensor. 
Agents use the flags’ position as landmark of action. Parameters to govern an action 
of agents are classified into basic capability, personality and meta-rules. 

Basic capability contains states, fire range rF, firepower, sensor range rS, combat 
threshold range rT, movement range rM, defense, maximum simultaneous targets num-
ber and so on. Through simulation, the constraint condition of range is 

STF rrr ≤≤ . De-

pending on the attacked degree, agents takes one of three states, alive, injured or killed.  
Agent personality is also modeled using by 6-componet weight vector w . 

),,,,,( EFFFIEAEIFAF wwwwwww =   1,11.. =≤≤− XX wwts  (2.1) 

Each weight shows how much agents are attracted or repulsed by other friendly 
and enemy agents or flags.  

Agents decide where to move by calculating minimum value of penalty function 
given by: 
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Where Bxy is the (x, y) coordinate of battlefield B; AF, AE, IF and IE represent the sets 
of alive friends, alive enemies, injured friends and injured enemies within the agent’s 
sensor range rs; NX  is the total number of elements of type X within the agent’s sensor 
range; DA,B is the distance between elements A and B; FF and EF denote the friendly 
and enemy flags; and new

yxD ,
 and old

yxD ,
 represent new and current distance of x and y.  

Meta-rule represents condition modifier. If a certain condition was satisfied, then 
penalty function is changed over partly. Take “Advance”, for an example, if enough 
friendly agents do not exist nearby, then do not advance to the enemy flag.  

4   Simulation 

The baseline scenario is that red force breaks through a defence line of blue force and 
seizes landmark area around the flag at top right corner. Figure 1 shows appearance of 
the scenario. Size of a battlefield is (50, 50). 

Blue force: 

• Make defence line at distance 25 from blue flag. 
• Have single shot hit probability 10 times superior to red.  

(kB = 0.05, kR = 0.005) 
• Have equal or shorter sensor range to red (rS= 3) and have shorter fire 

range (rF = 2). 
• Escape from red, if blue agent senses disadvantage. 
• Consist of a single squad. (All members has same action rule.) 
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Red force: 

• Have mission to seize top right-hand corner within 50 time step. 
• Initial 60 strong, equal to blue. Consist of single squad or multi squads. 

For a common point, blue and a red agent can move eight neighbourhoods by one 
step. Through a study blue parameters are fixed, and red parameters are changed to fit 
the mission except sensor and fire range and single shot hit probability. We use ge-
netic algorism for change of parameters. 

  

Fig. 1. Screenshot of the scenario The landmark area is around the flag at top right corner 

5   Evolutionary Learning in Combat Simulation 

Genetic algorism (GA) is one of probabilistic optimal value searchings based on natu-
ral selection. A chromosome which has a tendency to lead success of survival is 
stayed in, and a chromosome of other properties to bring unsuccessful disappears. To 
apply this property to real problems, candidates of problem solution are expressed 
with some rows of symbol and considered to be chromosome. To search for the 
chromosome that degree of fitness is high, operations of selection / crossover / muta-
tion with chromosome are repeated. [5] 

In EINSTein, sets of parameters are regarded as chromosome and adapt GA. De-
gree of fitness is replaced with mission fitness. Mission in this scenario is “maximize 
number of red agents (=Rt(D)) within distance D of blue flag”, so mission fitness 
function in this scenario is given by: 
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Where tmin is earliest possible time that red agents could move to within distance D of 
blue flag, Rmax is maximum possible value, and T is termination time for the run. The 
mission fitness is given by time average. 

In our study, we use multiple-squad personality search mode. GA searches over 
set of personality parameters. And the number of squads and the size of each squad 
remain fixed throughout GA. Note that squad called in EINSTein is a group of 
agents who have same set of personality parameters, and is not combatant group 
acting together. GA in EINSTein is summarized as follows. By learning evolution-
arily, set of parameters (set of action rules) which make mission fitness high could 
be found.  
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6   Effect of Evolutionary Learning 

To compare achievement of the mission in the scenario, we change the squad num-
bers of red force from 1 to 6, and carry out GA for each case. The number of agents of 
each squad is 60 / (number of squad). At case of 6 squads, for instance, red force has 
six 10-strong squads and 10 agents in one squad share same action rule. Parameter n 
in mission fitness function f is 2.GA is carried out for 500 generations. 100 popula-
tions per 1 generation, 10 initial conditions per 1 population. GA solutions in each 
case are saturated around 300 generations.  

To compare performance of GA solutions in each case, plot time steps in horizon-
tal axis and the number of agents which arrived at landmark area in vertical axis. As 
red line in time-series plot moves to left-top, mission fitness could become higher. 

 

Fig. 2. Time-series plots of “numbers of red agents near blue flag (D = 7)” 

Figure 2 shows performance of GA solutions in each case, “sq” means squad.  
Characteristic common point of Figure 2 is that red agents begin to arrive from 

time step 25, and number of average arrived agents is around 2 or 3 to time step 40. 
On the contrary, characteristic different point of Figure 2 is that 3 or 4 squads case is 
most success, over 10 red agents can arrive on average, and average number is less 
than 10 in other cases. 

By this characteristic, too much or too little squad number does not make good re-
sult. Just good squads number can get good performance. Remember that squad in 
this study means sharing same action rule, the case that some action rules are inter-
laced make strong positive interaction than the case all member have the same action 
rule. On the contrary, tendency that ties of interaction weaken comes out with many 
action rules. 
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To make specific mention of action rule, set of parameters of each squad of GA so-
lution are common to about a point to move towards blue flag basically, but details of 
if then rule are slightly different. 

7   Conclusion and Future Works 

In this study, we treat trade-off between homogeneity and diversity by synthetic ap-
proach using agent-based combat simulation and bear out that the middle stage of 
homogeneity and diversity make good result for social group.  

Expressing metaphorically, when red forces are compared to one boss and several 
squads are compared to several subordinate, there is just good number of subordinate 
to carry out some task.  

In this study, we treat single purpose military unit. In future works, we will treat 
multi purpose military unit. In other words, for organizing military force to achieve 
multi purposes at the same time, our concern is which one is better, gathering up mili-
tary unit of the specialist group adapted each single purpose, or preparing single mili-
tary unit achieving multiple purpose, or the combination that is neither. 
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Abstract. In this paper, we present Cellular Automata (CA) based conflict-
resolution in Role-based Access Control (RBAC). In RBAC, delegation of role 
is necessary for scalability of general computing environments. However, this 
practical principle can lead to conflicts at compile time and run time. Thus we 
propose a policy for Separation of Duty (SoD), and demonstrate role-delegation 
without any conflicts. Our delegation scheme based on a special class of CA 
such as Multiple-Attractor CA (MACA) can be efficiently used for granting 
strategy in complex automatic system within RBAC. 

Keywords: Multiple-Attractor Cellular Automata, Role-based Access Control, 
Separation of Duty, Role-Delegation. 

1   Introduction 

Cellular automata (CA), as introduced by John Von Neumann [1], have been accepted 
as a good computational model for the simulation of complex physical systems, and 
have been used in evolutionary computations for over a decade. They can readily 
simulate complex growth patterns and have been used in various applications, such as 
parallel processing computations and number theory [2]. Various studies have pre-
sented the characteristics of CA based on a group and non-group CA [3, 4]. While in 
the state-transition graph of a group CA all states belong to some disjoint set of cy-
cles, non-group CA are characterized by the presence of some non-reachable states in 
the state- transition graph. 

Role-based access control (RBAC) emerged rapidly in the 1990s as a proven 
technology for managing and enforcing security in large-scale enterprise-wide sys-
tems. Its basic notion is that permissions are associated with roles, and users are 
assigned to appropriate roles. This greatly simplifies security management. Two 
significant areas of extensions to the RBAC96 model have been proposed; one 
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concentrates on the specification of constraints [5, 6], the other describes a frame-
work for role-based delegation [7, 8]. However, these two extensions create a new 
range of problems within a role-based access control model. The main concern is 
that specified separation of duty (SoD) can conflict with a model allowing for the 
delegation of authority through role transfer. 

Thus, the current study proposes two kinds of exclusion clarified by role, i.e. ex-
clusion specified by role sets and role pair, and divides the exclusion into two types, 
positive and negative. How to detect conflict in role delegations is demonstrated 
based on linear non-group CA such as multiple-attractor CA (MACA). We propose 
two algorithms for setup and activation and show how CA computation is used for the 
proposed schemes. 

2   Characterization of RBAC and CA 

This section covers the basic concept and background of RBAC and CA. 

2.1   Role-Based Access Control 

A significant body of research on RBAC models and experimental implementations 
has developed [9]. RBAC is a proven alternative to traditional discretionary and man-
datory access controls; it ensures that only authorized users are given access to certain 
data or resources. It also supports three well-known security principles: information 
hiding, least-privilege, and SoD. 

Under the core RBAC model, users are assigned to roles based on their competen-
cies, authority, and responsibilities. User assignments can be easily revoked, and new 
assignments established as job assignments dictate. With RBAC, users are not granted 
permissions to perform operations on an individual basis; instead, permissions are 
assigned to their roles. System administrators can update roles without updating the 
permissions for every user on individual basis [9]. 

A role is a semantic construct forming the basis of access control policy. With 
RBAC, system administrators can create roles, grant permissions to those roles, and 
then assign users to the roles on the basis of their specific job responsibilities and 
policy. In particular, role-permission relationships can be predefined, making it sim-
ple to assign users to the predefined roles. Without RBAC, it is difficult to determine 
what permissions have been authorized for which users. 

Users create sessions during which they may activate a subset of roles to which they 
belong. Each session can be assigned to many roles, but it maps only one user. The 
concept of a session corresponds to the traditional notion of subject in the access control 
literature. Constraints are an effective mechanism to establish higher-level organiza-
tional policy. They can apply to any relation and function in an RBAC model. When 
applied, constraints are predicates that return a value of acceptable or not acceptable. 

In short, a delegation from one entity to another either gives the later some rights or 
obligation. A delegation of right in security systems causes the delegatee to gain some 
additional access rights, whereas a delegation of responsibility causes the delegatee to 
gain some new responsibility. Both theses delegations are based on ‘role’. Thus we 
focus on the mapping users and roles except permission onto a CA at the first stage. 
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2.2   Cellular Automata 

A CA is a collection of simple cells arranged in a regular fashion. CAs can be charac-
terized based on four properties: cellular geometry, neighborhood specifications, 
number of states per cell, and the rule to compute to a successor state. The next state 
of a CA depends on the current state and rules [10]. Only 2-state and 3-neighborhood 
CAs are considered in this paper. Each mapping is called a ‘rule’ of the CA.  

The next state transition for the ith cell can be represented as a function of the pre-
sent states of the ith, (i+1)th, and (i-1)th cells for a 3-neighberhood CA: Qi(t+1) = 
f(Qi-1(t), Qi(t), Qi+1(t)), where ‘f’ represents the combinational logic function as a CA 
rule implemented by a combinational logic circuit (CL), and Q(t+1) denotes the next 
state for cell Q(t). 

Using the logic function defined in the above, it is also represented by the charac-
teristic polynomial p(x) by determinant of characteristic matrix T so that the state at 
the next instant can be represented by Qi(t+1) = T⋅Qi(t). The state- transition diagram 
of a four-cell linear CA is shown in Fig. 1. It has attractors 0000, 0001, 1000 and 
1001, and its characteristic polynomial is p(x) = x2(x2 + 1). The state-transition dia-
gram of such a CA consists of multiple (single-cycle) attractors and trees rooted on 
such attractors.  

 

Fig. 1. State- Transition Diagram of a Four-Cell Linear Null Boundary CA with Rule <102, 
102, 60, 60> 

The following Theorem 1 indicates that there are enough available MACAs. 

Theorem 1 [11]. For any two integer n and m (0 ≤ m ≤ n) there exists an n-cell MACA 
with 2m attractors. 

3   MACA Based Role-Delegation 

SoD is dividing right for critical operations so that no user acting alone can compro-
mise the security of the data processing system. Existing systems typically rely on 
mutual exclusion of roles to enforce SoD polices and the policy is usually interpreted 
using mutual exclusion rules between roles [9]. However, there still remain difficult 
problems related to how strictly the policy is interpreted and how this SoD policy 
should be implemented in distributed computing environment.  
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To remedy the problems, we classify the policy of SoD rule and present a detailed 
explanation of the policy of SoD rules in section 3.1. We also demonstrate an efficient 
role-delegation algorithm without any conflicts in section 3.2. 

3.1   Policy of SoD Rules 

We classify two kinds of mutual exclusion clarified by role, i.e. a role set based ex-
clusion and role pair based exclusion. Each kind is divided into two types, positive 
and negative. 

Definition 1. (Role-set (pair) based mutual exclusion: SE (PE)) Positive type, PSE 
(PPE) is clarified based on mutually exclusive role-set (pair) while negative type, 
NSE (NPE) is clarified based on mutually non-exclusive role set (pair).  

It is possible to declare a set of roles that are mutually exclusive or not. This feature is 
particularly desirable if the application requires elaborate SoD requirements. Mean-
while, role-pair based mutual exclusion is a more complex feature since the number 
of pairs is n(n-1)/2 for n roles. 

Example 1. Assume that there are four roles, R1 through R4, and a mutual exclusion 
relationship exists as followings; PSE: R1(R2, R3), R2(R1, R3), R3(R1, R2, R4), R4(R1, 
R3), NSE: R1(R4), R2(R4), R3(φ), R4(R2), PPE: (R1, R2), (R1, R3), (R2, R3), (R3, R4) and  
NPE: (R1, R4), (R2, R4). 

In PSE and NSE, the roles in parentheses represent exclusive sets or non-exclusive 
sets, respectively, e.g. a user with R2 cannot have R3 at the same time, but R4. In PPE 
and NPE, all roles are tied by pair, and each pair shows that two roles are mutually 
exclusive or not. As shown in the above example, PSE and NSE always have the 
same number of sets as the number of roles. However, if the number of mutually 
exclusive roles is more than half of them, NSE can reduce the initialization time but 
both cases have a similar searching time for finding exclusion. It is better to use NPE 
when the number of mutually exclusive roles is more than n(n-1)/4. This can mini-
mize both the initialization time and searching time. 

3.2   Role Delegation 

We consider two occasions, setup and activation, for the whole procedure. Setup is 
the point of time when mutually exclusive roles are set to the system, and activation is 
the point of time when role delegations occur among users. We demonstrate how to 
detect conflicts corresponding to PSE, NSE, PPE, and NPE based on CA mechanism. 
As shown in Fig. 1, the graph consists of a set of distinct components; each compo-
nent is an inverted tree containing an equal number of states. The CA states and at-
tractors can be viewed as the addresses connecting user nodes and roles, respectively. 

We assume that there are four roles for distribution such as the above example in 
section 3.1. We could assign one role to each of the four users, but is it essential to 
have four, or could fewer users suffice? Using graph theory, there is an easy way to 
determine this number. The chromatic number, χ(G), of a graph is the minimum num-
ber of colors that are required to color vertices so that no two adjacent vertices are the 
same color [9]. 
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Table 1. Mutual exclusion relationships among states in MACA according to Example 1 

Types 0000 0001 1000 1001 
PSE 0001, 1000 0000, 1000 0000, 0001, 1001 0001, 1000 
NSE 1001 1001 - 0001 
PPE (0000, 0001), (0000, 1000), (0001, 1000), (1000, 1001) 
NPE (0000, 1001), (0001, 1001) 

For the sake of comprehension, we explain our procedures using Example 1. Only 
three colors are needed to ensure that no edge is connected to one vertex of the same 
color; therefore, SoD requirements can be maintained by assigning roles R1 through 
R4 to three different users, corresponding to the three colors. In initialization proce-
dure, R1 through R3 should be assigned to the different users while R4 can be assigned 
to U1 or U2, since they have only the roles, R1 or R2 that are not mutually exclusive 
with R4. However, R3 cannot be assigned to U2 since the two roles, R2 and R3, are 
mutually exclusive. The setup procedure illustrates the assignment of role and user 
onto MACA as following. 

(1) Determines the minimum number of users by chromatic number, χ(G). 
(2) Constructs an n-cell MACA with 2m attractors where n ≥ χ(G) and 2m ≥ the num-

ber of roles. 
(3) Assigns each role and user to each attractor and leaf state, respectively. 
(4) The remained roles are assigned to the users who belong to roles which are not 

mutual exclusive with the remained roles according to the given SoD constraints. 

After the setup procedure, Current roles and users are assigned to role-tree without 
any conflicts. If the CA is loaded with a particular address and allowed to run for a 
number of cycles equal to the depth of such trees, it will evolve through a number of 
states before reaching the root of the corresponding tree. Thereafter, the evolved state 
always reaches the attractor autonomously.  

Hence, by autonomous evolution from the CA state of user node, we can obtain the 
role corresponding to a user. In the activation procedure, there are two possible ap-
proaches for delegation. One is that a user wants to delegate a role to a non-specific 
user; the other is that a user wants to delegate a role to a particular user.  

In the former case, our scheme firstly finds a role that is a non-exclusive relation-
ship with the role that a user wants to delegate, and checks if the user assigned the 
role is assigned a role which is mutually exclusive relationship with the previous role. 
If not, the user is assigned to the role-tree; otherwise, it is regarded as conflict and a 
new user is generated and assigned to the role-tree. The next procedure illustrates a 
role delegation when a user, Ui wants to delegate a role, Rj,  

(1) Finds attractors (roles) that are in a non-mutual exclusion relationship with Rj 
according to NSE or NPE. 

(2) Checks if the users assigned the roles found in (1) have been assigned to a role 
which is mutually exclusive with Rj according to PSE or PPE. 

(3) Assigns the user to the Rj-tree; otherwise, conflict occurs, and optionally a new 
user, Uk, can be created and assigned to the Ri-tree. 
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In the above example, we assume that U2 wants to delegate R2 to another user. We 
can find that R4 (1001) is in a non-mutual exclusion relationship with R2 (0001) ac-
cording to Table. 1, but U1 assigned R4 has already been assigned to R1 which is in a 
mutual exclusion relationship with R2. Hence, a new user, U4, can be created and 
assigned to R2.  

In the latter case, if a user wants to delegate a role to a particular user, then we can 
simply obtain the result by checking the relationship of two roles associated with two 
users. In this case, we can simply obtain the result by checking whether two roles are 
mutually exclusive or not. For example, we assume that U2 wants to delegate R2 to U3. 
We can find that R2 (0001) is in a mutual exclusion relationship with R3 (1000) ac-
cording to Table. 1 so that conflict occurs. However, if U1 wants to delegate R4 to U2 
then we can get the result with R4-tree assigning U2. 

Through the whole proposed algorithms, we could simply find conflict by checking 
relationships between attractors based on evolution of user nodes. A user node should 
evolve for a number of cycles equal to the depth of trees then the evolved state always 
reaches the attractor. After the whole procedures, the previous user node can be de-
leted from the graph according to the administration policy. 

4   Analysis and Discussion 

For elaborate granting rights, we have realized SoD requirements by exclusion of 
role. In this case, assignment of roles in a SoD environment can become complex. 
To accomplish this task safely and automatically, a system must first ensure that 
no single user has all roles needed to accomplish a critical task and then ensure 
that roles are assigned to individuals in such a way that no individual will have all 
of these roles through some combination of roles. Users also must be assigned to 
roles in such a way that no user can violate SoD rules through a combination of 
roles. The following items show the superiority of our policy and role-delegation 
mechanism. 

− Positive and negative type on role-set and role-pair: We propose two types of 
policy for SoD requirements according to the number of mutually exclusive rela-
tionships. It is a practical alternative plan if the system does not provide enough 
capability. 

− Role-delegation based on MACA: We find each role by evolution from each user 
node so that conflicts among users and roles can be simply found by proposed 
scheme. Thus, setup and activation can be achieved without any conflicts. 

− Algorithm classification: The setup algorithm should be performed at the first stage, 
and the activation algorithm can be divided into two types. One is that a user wants 
to delegate his/her role to whoever he/she is, and the other is that a user needs to 
delegate his/her role to a particular user. Both cases occur frequently in a distributed 
computing environment so that operating two procedures separately offers much 
better system performance and capacity. 
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5   Conclusion 

Since multiple subjects can grant authorizations and the problem of cascading and 
cyclic authorization may arise, administration in RBAC is more difficult to control. 
Thus, we have proposed an efficient delegation mechanism based on the policies of 
an SoD requirement and MACA computation. The proposed policy for SoD require-
ment and delegation scheme can block that user acting alone can compromise the 
security of the data processing system, and it also minimizes frequent granting opera-
tions without any conflicts. Thus, we expect that our mechanism can be effectively 
used for granting strategy in complex automatic system within RBAC. 
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Abstract. Robotic systems are usually built as independent agents that collaborate 
to accomplish a specific task. Analysis of robot path planning consists of route 
planning and path generation. We will show how to apply the Cell-DEVS formal-
ism and the CD++ toolkit for these tasks. We present a Cell-DEVS model for 
route planning, which, based on the obstacles, finds different paths available and 
creates a Voronoi diagram. Then, we show route planning using the Voronoi dia-
gram to determines an optimal path free of collision. Finally, we introduce a Cell-
DEVS model that can be applied to the routing of self-reconfigurable robots. 

1   Introduction 

The analysis of robot path planning in general include a multirobot system in coopera-
tive environments (all mobile agents interact, trying to achieve a common goal). In 
most cases, the environment under study consists of a physical environment, a num-
ber of robots, objects in the environment, a set of predefined tasks, a task distribution 
scheme (specifying what to do at every moment), and intercommunication mecha-
nisms. Path planning typically refers to the design of specifications of the positions 
and orientations of robots in the presence of obstacles. Path planning can be static or 
dynamic, depending on the mode in which the obstacle information is available. In 
order to follow the movement of robots in the work area, we need a spatial planner 
which must find a path free of obstacles to follow a predefined trajectory. In general, 
this consists of two phases:  

• Route planning: a route is defined as a sequence of sub-goals that must be reached 
by the robots before reaching the final goal.  

• Path generation: once the plan has been created, different heuristics (for instance, 
the shortest path) could be used to reach the predefined goal. 

Cellular models provide an advantage to carry out these tasks. Route planning us-
ing Voronoi diagrams can be easily constructed using simple 2D cellular models 
(without needing to compute distance or intersections, sorting distances, and or ex-
plicit modeling of objects). Since cellular models only use local rules, any proposed 
algorithm can be applied to objects of arbitrary size/shape. Cell-DEVS [1] allows de-
fining cell spaces using the DEVS (Discrete Events systems Specification) formalism 
[2] to define a cell space.  

We present a Cell-DEVS model for route planning, which, based on the obstacles, 
finds different paths available and creates a Voronoi diagram. Then, we provide an 
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algorithm for route planning, and we present an algorithm that takes the Voronoi dia-
gram and determines an optimal path free of collision (considering the size of the ro-
bot). We apply this heuristics to create a Cell-DEVS model able to solve the route 
planning phase. Finally, we introduce an advanced Cell-DEVS model that can be ap-
plied to the routing of self-reconfigurable robots. 

2   Background 

Cell-DEVS improves execution performance of cellular models by using a discrete-
event approach. It also enhances the cell’s timing definition by making it more ex-
pressive. Each cell, defined as TDC=< X, Y, S, N, delay, d, δINT, δEXT, τ, λ, D >, uses 
N inputs to compute its next state. These inputs, which are received through the 
model's interface (X, Y), activate the local computing function (τ). State (s) changes 
can be transmitted to other models, but only after the consumption of a delay (d). 
Once the cell behavior is defined, a coupled Cell-DEVS is created by putting together 
a number of cells interconnected by a neighborhood relationship. A coupled Cell-
DEVS is composed of an array of t1x…xtn atomic cells, defined as GCC=< Xlist, 
Ylist, X, Y, n, {t1,...,tn}, N, C, B, Z >. Each cell is connected to its neighborhood (N) 
through DEVS ports. Border cells (B) can have a different behavior or be “wrapped”. 
Finally, the model’s external couplings can be defined in the Xlist and Ylist. Each cell 
in a Cell-DEVS is a DEVS atomic model, and the cell space is a DEVS coupled 
model. DEVS is a formalism based on generic dynamic systems, including well de-
fined coupling of components and hierarchical modular construction. A DEVS model 
is described as a composite of submodels, each of them being behavioral (atomic) or 
structural (coupled). Each atomic model, defined by AM=< X, Y, S, δext, δint, λ, ta>, 
has an interface (X, Y) to communicate with other models. Every state (S) is associ-
ated to a time advance (ta) function, which determines its duration. Once this time is 
consumed, the model generates results by activating an output function (λ), and the 
internal transition function (δint) is fired. Input external events activate the external 
transition function (δext). Coupled models are defined as a set of basic components 
(atomic or coupled), which are interconnected through the model's interfaces.  

                 

Fig. 1. Informal definition of Cell-DEVS, and shift mapping to the square lattice 

CD++ [3, 4] was developed following the definitions of the Cell-DEVS formalism. 
Cell-DEVS are described using a built-in specification language, which provides a set 
of primitives to define the diferent parameters of the model. The behavior of a cell 
(τ function) is defined using a set of rules of the form: RESULT DELAY CONDITION. 
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When an external event is received, the rule evaluation process is triggered to calculate 
the new cell value. The CONDITION is evaluated; if satisfied, the new cell state is ob-
tained by evaluating the RESULT expression. The cell will transmit these changes af-
ter a DELAY. A Lattice Translator allows using different topologies, which are trans-
lated into square CD++ rules, using the mechanism depicted in Fig. 1. 

The algorithms here presented are based on Voronoi diagrams, which use the idea 
of proximity to a finite set of points in the plane P={p1…pn} (n 2). The diagram as-
sociates every point pj to their closest points pi (i ≠j), conforming covering sets [5, 6]. 
Points equidistant to two elements in P define the border of a region. The resulting 
sets define a tessellation of the plane (exhaustive, as every point belongs to a set, and 
they are mutually exclusive). Voronoi diagrams can be used to study the movement of 
a robot of a given size, describing paths surrounding the obstacles (and indicating the 
distance to them). These indicators allow a robot to determine if the path is feasible to 
pass through the path. 

 

Fig. 2. Voronoi Diagram 

We are also interested in models of self-reconfiguring robots. These systems are 
versatile in both their structure and the tasks they perform [7]. These robots are com-
posed of a number of modules that can reshape according to the task to be carried out. 
Each robot is independent of the rest, and they act as parallel entities. The ability of 
reconfiguration leads to flow-based locomotion algorithms (allowing the robots to 
conform to the terrain on which they have to travel), which can be nicely modeled as 
cellular models. 

3   Route Planning Models 

Our path-planning model is based on [5] where CA are used to process a “top down” 
bitmap of a diamond-shaped area including a robot of arbitrary shape. The algorithm 
produces a Voronoi diagram that can be used to determine a path equidistant from ob-
stacles in the space. Paths are calculated by marking the intersections of expanding 
“wavefronts” propagated by cellular expansion from given starting points. The input 
is an array of cells with values 1 (obstacle) or 0. The model executes in two stages: 

1. Object boundary detection: cells and their neighborhoods are examined and 
compared to a set of 12 “edge code” templates. Each cell matching a con-
figuration in the template uses the corresponding code (1-12) for the second 
stage. 

2. Cells with edge codes are expanded in free space. Where expansions inter-
sect, the cell of the intersection is given a timestamp and considered part of 
the final Voronoi diagram. The final state contains the Voronoi diagram. 
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Fig. 3. (a) Input bitmap; (b) 3D neighborhood 

The following state variables are required for every cell: the original encoding of 
detected obstacles (0 or 1); the calculated edge code for the cell (1-12); a flag value 
used during the “wavefront expansion”, and the point on the Voronoi diagram repre-
senting this cell’s position. We put each state variable on a separated plane in a 3D 
Cell-DEVS. Plane 0 (x, y, 0) contains the original bitmap representing the space, 
Plane 1 (x,y,1) contains the edge codes, Plane 2 (x,y,2) includes the propagation of 
edge codes over time, and Plane 3 (x,y,3) stores  the final Voronoi diagram. The 3D 
neighborhood is shown in Figure 3.b).  

 [Path-Finding] 
dim : (10, 10, 4)  delay : transport localtransition : nothing-rule 
neighbors:(-1,0,0)(0,-1,0)(0,0,0)(0,1,0)(1,0,0)(0,-1,-1) ... (0,1,-1) 
zones : bound-rule { (0,0,1)..(9,9,1) } plane2-rule { 
(0,0,2)..(9,9,2) }  
     plane3-rule { (0,0,3)..(9,9,3) } 
[nothing-rule] 
rule: { (0,0,0) } 10 { t } 
[bound-rule] 
rule: 1 10 { (0,0,-1)=1 and (0,-1,-1)=1 and (-1,0,-1)=1 and (0,1,-
1)=1 and (1,0,-1)=1 }  
... 
rule: 12 10 { (0,0,-1)=1 and (0,-1,-1)=1 and (-1,0,-1)=0 and (0,1,-
1)=0 and (1,0,-1)=1 }  
[plane2-rule] 
rule: {(0,0,-1)+0.1} 10 { (0,0,-1) >4 and (0,0,-1)<13 } 
... 
rule: {(0,1,0)} 10 { fr((0,1,0))=0.1 and isint((0,-1,0)) and isint((-
1,0,0)) and isint((1,0,0)) } 
[plane3-rule] 
rule: {(time)} 10 { (0,0,0)=0 and %check and (-1,0,-1)!=(0,1,-1) } 
... 
rule: {(time)} 10 { (0,0,0)=0 and %check and (0,-1,-1)!=(0,1,-1) } 

Fig. 4. Cell-DEVS model definition in CD++ 

Fig. 4 describes the model definition in CD++. The model specification defines a 
10x10x4 Cell-DEVS (a surface grid of size 10x10 and the four data planes). Four sets 
of rules which are used on each plane. The 3D cell model is effectively divided into 
four 2D models by using separate zones consisting of plane regions. The rule sets are: 

− nothing-rule: used by the original data plane to keep the values from being 
changed. 

− bound-rule: coding of edge directions. Patterns of cell values in each cell and its 
neighborhood are classified as one of 12 edge codes. The rules in this section per-
form the classification if the cells in the data plane correspond to one of 12 templates.   
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− plane2-rule: Cells with edge codes from 1-4 must be discarded. Cells with edge 
codes 5-12 are copied into a new grid and given a flag value for propagation in the 
third stage. The rules in this section carry over the values from the second plane 
which satisfy the criteria (4 < edge_code < 13).   

− plane3-rule: the Voronoi diagram. In the previous plane, cells receive data values 
from their immediate neighbors and propagate the data out from any given starting 
point (points where these data wavefronts collide are those farthest away and equi-
distant from the starting obstacles; these are the points of interest when plotting a 
path for a robot). This plane examines the values in the plane below. If more than 
has its flag is set (and they do not contain the same values), the cell belongs to the 
Voronoi diagram. The Voronoi diagram is given the iteration number at which the 
cell was added to the diagram. 

The first example here presented shows the execution of the model using a partial 
boundary and two obstacles.  

    +----------+    +----------+    +----------+    +----------+ 
   0|1111111111|   0|          |   0|          |   0|          | 
   1|111       |   1| 57       |   1|          |   1|          | 
   2|          |   2|   222222 |   2|          |   2|          | 
   3|          |   3| 22222222 |   3|          |   3|          | 
   4|          |   4| 222   22 |   4|          |   4|          | 
   5|    111   |   5| 22 192 2 |   5|          |   5|          | 
   6|    111   |   6| 22 857 2 |   6|          |   6|          | 
   7|          |   7| 222   22 |   7|          |   7|          | 
   8|          |   8|          |   8|          |   8|          | 
   9|1111111111|   9|          |   9|          |   9|          | 
    +----------+    +----------+    +----------+    +----------+ 
... 
    +----------+    +----------+    +----------+    +----------+ 
   0|1111111111|   0|          |   0|          |   0|          | 
   1|111       |   1| 57       |   1| 57777    |   1| 33  55   | 
   2|          |   2|   222222 |   2| 57  92   |   2| 33 455   | 
   3|          |   3| 22222222 |   3| 57 1922  |   3| 444444   | 
   4|          |   4| 222   22 |   4| 5  192 2 |   4| 54 333   | 
   5|    111   |   5| 22 192 2 |   5| 11119222 |   5| 54322234 | 
   6|    111   |   6| 22 857 2 |   6| 88885777 |   6| 54322234 | 
   7|          |   7| 222   22 |   7|  8 857 7 |   7|    333   | 
   8|          |   8|          |   8|   88577  |   8|    444   | 
   9|1111111111|   9|          |   9|          |   9|          | 
    +----------+    +----------+    +----------+    +----------+ 

Fig. 5. Partial boundary and two obstacles 

The inputs describe a boundary on the upper and lower horizontal edges of the 
10x10 space, as well as two small obstacles inside the space. The input values in the 
first plane remain unchanged, and the edge codes in the second plane are generated 
after one iteration. The third plane is initially populated with edge codes >4, and these 
values are successively propagated across their neighborhoods (note the are “holes” 
where cells were out of reach of their neighbors). Propagation stops when cells have  
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no more non-flagged neighbors. The final plane is the Voronoi diagram, where “for a 
diamond shape of diagonal size d, the path planning process selects those Voronoi 
edges that consist of points with labels of value l ≥d+½”. Since the first values on the 
diagram are 2’s, one should add that offset to find the desired values. In this case, for 
a robot of diagonal size 2, the points on the graph of value 4 or 5 represent viable 
travel paths which can be used by a robot of diagonal size 2 to travel avoiding the two 
obstacles.   

    +----------+    +----------+    +----------+    +----------+ 
   0|1111    11|   0|          |   0|          |   0|          | 
   1|1111    11|   1|          |   1|          |   1|          | 
   2|111    111|   2|          |   2|          |   2|          | 
   3|111    111|   3|          |   3|          |   3|          | 
   4|111    111|   4|          |   4|          |   4|          | 
   5|111    111|   5|          |   5|          |   5|          | 
   6|111    111|   6|          |   6|          |   6|          | 
   7|111    111|   7|          |   7|          |   7|          | 
   8|11    1111|   8|          |   8|          |   8|          | 
   9|11    1111|   9|          |   9|          |   9|          | 
    +----------+    +----------+    +----------+    +----------+ 
. . .  
    +----------+    +----------+    +----------+    +----------+ 
   0|1111    11|   0|          |   0|          |   0|          | 
   1|1111    11|   1| 117 22 0 |   1| 6 7771 0 |   1|  2  442  | 
   2|111    111|   2| 16 22 11 |   2| 66 7111  |   2|   244332 | 
   3|111    111|   3| 16 22 01 |   3| 66660000 |   3|    4432  | 
   4|111    111|   4| 16 22 01 |   4| 66660000 |   4|    44    | 
   5|111    111|   5| 16 22 01 |   5| 66660000 |   5|    44    | 
   6|111    111|   6| 16 22 01 |   6| 66660000 |   6|  2344    | 
   7|111    111|   7| 17 22 01 |   7|  7771 00 |   7| 233442   | 
   8|11    1111|   8| 6 22 111 |   8| 6 7111 0 |   8|  244  2  | 
   9|11    1111|   9|          |   9|          |   9|          | 
    +----------+    +----------+    +----------+    +----------+ 

Fig. 6. Two large obstacles 

Once we find the Voronoi diagram, we obtain a number of possible paths. We can 
find the shortest path based using a flooding technique like in [6]. We built a Cell-
DEVS model to generate the shortest path: a cell is considered to be part of a valid 
path if its value is larger or equal to the robot size (valid cells). A cell with more than 
2 valid neighbors is called a node. An output node is a cell where the robot is located 
before moving, and an end node is the destination. The shortest path to the end node 
is based on the Manhattan distance. The algorithm consists of two phases: flooding 
and selection. The flooding algorithm explores all possible paths starting on the output 
node in parallel, choosing only valid cells. When a node is found, the path is divided 
in parallel. If during the exploration two paths are crossed, only the one with the best 
value continues. Selection starts when we get to the end node; we backtrack, looking 
for the minimum cost according to the chosen criteria. In this way, we can find a 
minimal path, as seen in the following figure. 
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Fig. 7. (a) Initial Voronoi Diagram; (b-c) Flooding; (d) Selection 

Our Cell-DEVS implementation encodes the distance to the objects at the begin-
ning of the process (obtained by the Voronoi diagram selection presented in previous 
section). The following figure shows two examples of execution based on the original 
Voronoi diagrams. On Fig. 8.b), we see a modification, in which we have added an 
extra connection in the bottom-left part of the diagram (which affects the shortest path 
found). 

                

Fig. 8. (a) Shortest path (b) Shortest path with modified Voronoi diagram 

4   Modeling Self-reconfiguring Robots 

In this section we will show how to model self-reconfiguring robots, based on the 
work presented in [7]. Self-reconfiguring robots are composed identical modules that 
can autonomously reshape. The problem we will use as our case study is that of  
robotic locomotion in the two-dimensional plane, following a flow-like locomotion 
pattern. The model is capable of: (1) linear motion on plane of modules; (2) convex 
transitions into a different plane; and (3) concave transitions into a different plane [1]. 
The control algorithm uses local rules and it is constructed as a cellular model. We 
will show the behavior of a self-reconfiguring robot moving in a non-structured space, 
avoiding the obstacles presented. Ten different states can be defined for each cell: 
empty (0), occupied by a non-moving module (1), occupied by an obstacle, or occu-
pied by a robot moving in N/S/E/W direction (3-9). The model uses a modified Moore 
Neighborhood. The model consists of 27 rules controlling the full behavior of a cell. 
Each cell can be in a specific state, from a total of 10 states. The basic idea behind the 
model is that locomotion is produced from a two-phase mechanism, in which in the 
first phase each cell determines if it has to change its state, and the new state it will  
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Fig. 9. (a) Neighborhood shape; (b) Model’s rules 

reach. On the second phase, depending on the state of each neighbor, a cell might de-
cide to cancel its decision, or to go ahead as planned.  

The following figure shows some of the execution results obtained when using a 
square topology. Particularly noteworthy is the fact that the robot climb obstacles 
with a relative height of 3 units, and when it climbs down, it follows the shape of the 
terrain. 

  

   

Fig. 10. Model execution 

                                 

Fig. 11. (a) Hexagonal Neighborhood definition; (b) Model’s rules 

The model was extended to a hexagonal topology, resulting is on the same two-
phase mechanism, but fewer rules (21). The amount of possible states is also reduced 
(8). The following figure shows a graphical representation of the model, showing the 
local rules. The following figure shows the model representation using hexagonal 
Cell-DEVS in CD++ (notation in Fig. 7a) 
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[reconfig-robot-hexa] 
dim : (15,45)  delay : transport   border : wrapped 
neighbors : (-1,-1)(-1,0)(-1,1)(0,-1)(0,0)(0,1) (1,-2) (1,-1) (1,0) 

(1,1) 
 
[reconfig] 
rule: 1 100 {[0]=0 and [4]=1 and [5]=3 and ([6]=0 or [6]=2)} 
rule: 1 100 {[0]=3} 
rule: 4 0 {[0]=1 and [1]=0 and [2]=0 and [3]=0 and [4]=1} 
rule: 0 100 {[0]=4 and [1]=0 and [2]=0 and [3]=0 and [4]=1} 
rule: 1 100 {[0]=0 and [1]=0 and [5]=1 and [6]=4} 
rule: 1 100 {[0]=4} 
rule: 5 0 {[0]=1 and [1]=0 and [2]=0 and [3]=0 and [4]=0 and [5]=1} 
rule: 0 100 {[0]=5 and [1]=0 and [2]=0 and [3]=0 and [4]=0 and [5]=1} 
rule: 1 100 {[0]=0 and [1]=5 and [2]=0 and [6]=1} 
rule: 1 100 {[0]=5} 
... 

Fig. 12. (a) Hexagonal Neighborhood definition; (b) Model’s rules 

The following figure shows the model’s execution. As we can see, the results ob-
tained are similar to those presented in Figure 12, using the hexagonal topology. 
Nevertheless, using a square topology required 18.2 seconds to travel across all ob-
stacles, while the second robot, modeled with a hexagonal topology required only 
15.8 seconds.  

     

Fig. 13. Model execution 

5   Conclusion 

We have introduced the use of CD++ for applications of path planning in robotic ap-
plications. We first presented a model that correctly simulates the behavior of path-
finding algorithms, creating a Voronoi diagram as a result. The map describes paths 
surrounding the obstacles, and indicating the distances between them, allowing de-
termining if a robot can pass through the path. After, we presented an algorithm that 
takes the Voronoi map and determines a shortest path between the robot and the des-
tination. The use of hexagonal topology, with fewer rules, resulted in faster move-
ment. The cellular models presented show the feasibility of this approach in solving 
complex application using very simple rules, permitting observation of emerging be-
havior. In this way, one can develop algorithms that can execute parallel searches and 
improve the quality and speed in the determination of the paths. 

The use of cellular models is very efficient, as it can operate extremely quickly (in 
just a few cycles of evolution) and every cell is being solved in parallel, in contrast to 
more traditional, mathematical approaches which require more complex calculations 
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of distances and angles. The downside is that it does require a full knowledge of the 
obstacle. In addition, the model does not provide a complete solution in the case 
where there is not one distinct solution path.  
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Abstract. One-Time Password (OTP) authentication schemes have been grown 
based on the time synchronization or one-way hash functions, although they can 
be trouble some and have a high computational complexity. In order to remedy 
the problems, the current paper provides a low-complexity authentication 
scheme which is only composed of logical bitwise operations such as XOR, 
AND, OR, and NOT. Our scheme highly minimizes the computational and 
transmission complexity and solves the time or sequence synchronization prob-
lems by applying singular CA based on the non-reversibility and uniqueness of 
the state configuration. Thus, our secure authentication scheme can be effec-
tively used for other applications requiring authentication that is secure against 
passive attacks based on replaying captured reusable passwords. 

Keywords: One-Time Password, Cellular Automata, Singular Operation, Au-
thentication, Hash function. 

1   Introduction 

One-Time Password (OTP) authentication was first proposed by Leslie Lamport [1], 
and Bellcore’s S/KEY system, from which the OTP is derived, was proposed by Neil 
Haller [2]. Recently, Ben Soh and A. Joy addressed an efficient OTP scheme based on 
a web service evaluation model [3]. However, all these schemes have practical diffi-
culties such as high hash overhead, additional transmission complexity, and the time / 
sequence synchronization since there is not an alternative solution. 

A natural progression from fixed password schemes to challenge-response identifi-
cation protocols may be observed by considering OTP schemes. Variations include 
[4]: shared lists of one-time passwords, sequentially updated one-time passwords, and 
one-time password sequences based on a one-way function. However, their draw-
backs are the maintenance of the shared list, the synchronization of sequences, and the 
high hash overhead [1, 5]. 
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Cellular automaton (CA), introduced by John Von Neumann [6], have been ac-
cepted as a good computational model for the simulation of complex physical sys-
tems, and have been used in evolutionary computations for over a decade. It can 
readily simulate complex growth patterns and it has also been used for in various 
applications, such as parallel processing computations and number theory [7]. 

Various studies have presented the reversibility and non-reversibility of CA based 
on a non-singular and singular CA [8, 9]. The non-singular CA contains only cyclic 
states while the singular CA contains both cyclic and non cyclic states. In order to 
satisfy the characteristics of the OTP scheme, the CA should provide the non-
reversibility and uniqueness of the state configuration - that is, the previous state is 
not reachable from the present state of the CA, and there is no duplicate state in a CA.  

Thus, this current study finds the CA which satisfies the non-reversibility and 
uniqueness of the state configuration, and constructs the OTP scheme based on the 
mentioned properties. The proposed OTP scheme, based on singular CA, eliminates 
the computational and transmission overhead and time/sequence synchronization 
problems. It provides also sufficient security satisfaction. 

2   Cellular Automata 

A CA is a collection of simple cells arranged in a regular fashion. CAs can be charac-
terized based on four properties: cellular geometry, neighborhood specification, the 
number of states per cell, and the rules to compute to a successor state. The next state 
of a CA depends on the current state and rules [6]. A CA can also be classified as 
linear or non-linear. If the neighborhood is only dependent on an XOR operation, the 
CA is linear, whereas if it is dependent on another operation, the CA is non-linear. If 
the neighborhood is only dependent on an XOR or XNOR operation, then the CA can 
also be referred to as an additive CA. 

According to the conditions, they are divided into three types: null boundary CA, 
periodic boundary CA, and intermediate boundary CA [7]. A CA is said to be a Null 
Boundary CA (NBCA) if the left neighbor of the leftmost cell and right neighbor of 
the rightmost cell are regarded to be 0. A CA is said to be a Periodic Boundary CA 
(PBCA) if the leftmost cell and rightmost cell are regarded to be adjacent to each 
other, i.e., the left neighbor of the leftmost cell becomes the rightmost cell, and the 
right neighbor of the rightmost cell becomes the leftmost cell. A CA is said to be an 
Intermediate Boundary CA (IBCA) if the left neighbor of the leftmost cell is regarded 
to be the second right neighbor, and right neighbor of the rightmost cell is regarded to 
be the second left neighbor. 

A one-dimensional CA consists of a linearly connected array of n cells, each of 
which takes the value of 0 or 1, and an evolutionary function F(s) on the state con-
figuration, s, with q variables. The value of the cell state si is updated in parallel using 
this function in discrete time steps as si(t+1)= F(si+j(t)) where –r  j  r [8]. The pa-
rameter q is usually an odd integer, i.e. q = 2r+1, where r is often named the radius of 
the function F; the possible configuration and the total number of rules for radius r 
neighborhood are 2q and 2n, where n = 2q. The evolutionary function F(s) on the state 
configuration, s, is also expressed as Ts by a characteristic matrix, T on the transition 
rule. 
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The new value of the ith cell is calculated using the value of the ith cell itself and the 
values of r neighboring cells to the right and left of the ith cell. If a non-singular rule is 
applied to a CA then the CA is called a non-singular CA (NCA), otherwise the CA is a 
singular CA (SCA). In a two state 3-neighborhood CA, there are 256 rules [10].  

The success of the OTP authentication to protect host systems is dependent on the 
non-reversibility property. A CA provides both reversible and non-reversible proper-
ties by F. In a non-singular CA, the previous state can be easily found by computing 
the inverse of a rule, but it is computationally infeasible to find the inverse of a rule in 
a SCA [11]. The current paper only considers the singular 3-neighbour CA with null 
boundary condition based on the non-reversible properties. 

3   SCA Based Authentication 

The security of our scheme is based on the non-reversibility and uniqueness of the 
state configuration. Such a function must be tractable to compute in the forward di-
rection, but computationally infeasible to invert, and the evolved states must be dis-
tinctive. In order to achieve the conditions, a system should compute and save the 
singular rule and the length according to the given initial state. A length represents the 
number of the unique states in a CA. 

Theorem 1. (SCA) A CA is a singular CA if and only if the determinant det T ≠ 1, 
where T is the characteristic matrix for the CA. 

Proof. If the CA under the transition operation with T forms a cyclic non-singular, 
then for all states, s, there should exist an integer m such that Tm = I and s = Tms = s 
where I indicates the identity matrix. The necessary condition to have an m such that 
Tm = I, is det T = 1. This follows because if Tm = I, then [det T]m = 1 so that det T = 1. 
The contraposition also holds, hence the proof. 

Definition 1. The rule applied on a uniform non-singular CA is called a non-singular 
rule, otherwise, called a singular rule. 

Remark 1. (non-reversibility) Since SCA are associated with singular T matrices, 
characterization of such CA in terms of the inverse matrices is impossible. The for-
ward state transition is represented as s(t+1) = Ts(t). However, there does not exist 
the reverse state transition, i.e. s(t) can not be found from the given s(t+1) and T be-
cause of its singular property. 

Fig. 1 shows the transition-configurations and lengths when the initial state is a 4-bits 
vector (1011). The non-singular CAs, that applied rules 90 and 150, have the cyclic 
property that the initial state appears after a certain number of evolutions. The singu-
lar CAs, that applied rules 171 and 129, have the property that an indefinite state 
appears after a certain period which is called a length, L. It shows that each CA has 
the unique states as many as its length. 

Remark 2. (Uniqueness of the state configuration) In our scheme, we have defined 
and utilized the states in length which is composed of distinctive states. Thus there are 
no overlapped states in the given length so that it guarantees the uniqueness of the 
state configuration. The number of unique states is exactly equal to its length. 
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(a) State transition of NCA                        (b) State transition of SCA 

Fig. 1. The state transition diagram of (a) NCA applied nonsingular rules 90 and 150 and (b) 
SCA applied singular rules 171 and 129. [rule 90: si(t+1) = si-1(t) ⊕ si+1(t), rule 150: si(t+1) = si-

1(t) ⊕ si(t) ⊕ si+1(t), rule 171: si(t+1) = (¬(si-1(t)∨ si(t))) ⊕ si+1(t) rule 129: si(t+1) = ¬((si-1(t) ⊕ 
si(t))∨(si-1(t) ⊕ si+1(t))), where the notations ‘⊕’, ‘∨’, and ‘¬’ indicate the bitwise XOR opera-
tion, OR operation, and NOT operation respectively.] 

Registration phase 
S-1. A user, A chooses a pass-phrase, , and transmits it to the system, B. 
S-2. The pass-phrase is concatenated with a seed, , by B (δ = || ). B decides a singu-

lar rule, , and finds the length, , of the singular CA. Then it computes and 
saves δo = T (δ), and initializes its counter for A to CA = 1. 

S-3. B transfers , , and δ to A.  

Authentication phase 
L-1. A computes δi = T -i(δ), and transmits A, i, and δi to B. 
L-2. B checks i = CA, and T (δi) = δi-1. If both checks succeed, B accepts the pass-

word, sets CA ← CA + 1, and saves δi for the next session verification. 

The proposed scheme consists of two phases: The registration phase and authenti-
cation phase. In the registration phase, the information is exchanged by secure chan-
nel while the authentication message is sent to the system through insecure channel. 
The proposed efficient OTP authentication is operated as above. 

In the setup phase,  may be of any length within 64 bits to 96 bits, and  should be 
remainder bits, 32 bits to 64 bits, so that the secret, δ, is initialized as 128 bits length. 
The notations ‘||’ indicates the concatenation operation. In S-2,  can be just one sin-
gular rule or the combination of rules, e.g., <107, 230> - That is the rules are applied to 
the CA alternately. The password for the ith identification session, 1  i  , is defined 
to be δi = T  -i(δ0). In the login phase, for the ith session, B already has the user’s iden-
tity and counter, along with the verifier, δi-1, so that B simply checks the user’s authen-
tication by applying the transition function T  once. After use of all state configura-
tions during the  times, the singular rule  should be changed into another rule ´. 

4   Discussion and Analysis 

In order to solve the high hash computation problem, our scheme has taken advantage 
of the CA characteristics that the computation only consists of logical bitwise opera-
tions such as XOR, AND, OR, and NOT, while the hash function is composed of not 
only the logical bitwise operations but also padding, appending length, and additional 
operations. Moreover the CA computations are performed in parallel. 

Our scheme has a minimal path to check whether a user is certified in a login 
phase, and it does not need the synchronization of time. If A and B have gotten out of 
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synchrony because of unstable computer network – A sends δi and B uses T (δj) to 
authenticate it, with i ≠ j – then this can be detected by repeatedly applying  to B’s 
authenticating value until a match is obtained.  

We recommend that the whole size of the state configuration, |δ| is 128 bits which 
consists of  and . To reduce the risk from techniques such as exhaustive search or 
dictionary attacks, the user’s secret pass-phrase should be between 64 bits and 96 bits. 
This is believed to be long enough to be secure and short enough to be entered manu-
ally. We also recommend 3-neighbor CA which has r = 1 since a longer neighbor CA 
does not ensure better safety but adds to the complexity of the computations. 

Meanwhile, the length, , should be reasonably long enough but not too long. If the 
 of a CA is too short or too long, it causes the frequent renewal of the rule or pass-

word guessing from the attacker. Thus we recommended that the length of CA should 
be in the several hundreds to several thousands. Table 1 shows the length when the 
rules are applied to the initial value, ‘evolutionry1234’. Only the CAs applied the 
singular rules have relatively shorter length, 657 and 127, which correspond to rules 
107 and 230. Meanwhile the CAs applied the combinations of non-singular rule and 
singular rule <90, 129>, <171, 90> have sufficient lengths, 2,524 and 2,471. There are 
a number of the combination rules which are sufficient in length. 

Table 1. The length corresponds to the singular rule and the combination of a non-singular rule 
and singular rule with the initial state as mentioned in section 3 

 
singular rule 

combination of non-singular rule 
and singular rule 

rule no. 107 230 90, 129 171,90 
length 657 127 2,524 2,471 

The following criteria are crucial for the robust security of authentication schemes. 

− Password guessing attack: It is computationally infeasible for the attacker to 
choose a password which is same as the current δi from the previous session keys 
δi-j, where 1 ≤ j ≤ i-1. 

− Replay attack: Though the attacker replays δi to B in the login phase, the request 
will be rejected, since δi is used only once. 

− Impersonating A: It is also infeasible that the attack can acquire a shared secret δ0 
since he cannot extract it from any information which he obtains.  

− Stolen verifier attack: Though the attacker has stolen the verifier, T -i(δ0), in ith 
session, T -(i+1)(δ0) can not be computed by any method since it is infeasible to find 
the inverse in the SCA. 

Table 2. CPU time comparison among our singular CA and typical hash schemes according to 
the number of one-time passwords 

           (unit: sec.) 
functions 500 1000 5000 

MD5 1.1 2.2 28.4 
SHA-1 1.3 2.6 33.2 
SCA 0.8 1.5 19.7 
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We implemented and measured CPU times of a singular CA, MD5 and SHA-1 ac-
cording to the number of one-time passwords in order to prove the better performance 
of CA computation using a Pentium 4, CPU 2.60GHz. Table 2 shows the performance 
comparison of CPU time among SCA computation and typical hash schemes. In soft-
ware computing, we have implemented it in serial, however, our scheme has had better 
time complexity than the other hash schemes. As shown in Table 2, our SCA computa-
tion has more than about 30% and 40% lower time complexity compared to MD5 and 
SHA-1, respectively. Based on hardware implementation or parallel computing tech-
nique, it is obvious that our scheme would be much faster than the other schemes be-
cause of its parallel property and simple computation. 

5   Conclusions 

One-time password schemes provide significant additional protection but their use is 
limited due to the complexity and inconvenience regarding week networks. Our sim-
ple scheme provided not only minimal computational complexity and transmission 
path but also safety guarantees. We have shown that only our scheme has logical 
bitwise operations and one path for authenticating purposes, and it can resist the 
above mentioned attacks. In addition, our CA computation is much faster than hash 
schemes in both software and hardware implementations, so that we believe that our 
authentication scheme is suitable and practical for low power network environments 
because of its light computation and simple transaction. 
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Abstract. This work shows that sequences generated by a class of linear
cellular automata equal output sequences of certain nonlinear sequence
generators. A simple modelling process for obtaining the automata from
a partial description of such generators is here described. Furthermore, a
method that uses the linearity of these cellular models for reconstructing
some deterministic bits of the keystream sequence is presented.

Keywords: Stream cipher, cellular automata, linear model, cryptog-
raphy.

1 Introduction

Most keystream generators are based on Linear Feedback Shift Registers (LF-
SRs) [5] whose output sequences, the so-called PN-sequences, are combined in a
nonlinear way. Such generators are easy to implement and produce keystreams
with high linear complexity, long period and good statistical properties [8].

Cellular Automata (CA) [2] have been proposed as an alternative to LF-
SRs [3] [7] as every sequence generated by a LFSR can be obtained from one-
dimensional CA too. Moreover, it has been proved [9] that linear one-dimensional
CA are isomorphic to conventional LFSRs. This work uses CA in such a way
that generators designed as nonlinear structures in terms of LFSRs preserve lin-
earity when they are expressed under the form of CA. The specific generators
that may be linearized in this way are those made out of one or more LFSRs
plus a feed-forward nonlinear function, such as the Clock-Controlled, Cascade-
Clock-Controlled and Shrinking generators, or the generators producing Kasami,
GMW, No and Klapper sequences etc. [8]. These sequences belong to the class
of interleaved sequences [6], which are pseudorandom sequences such that each
sequence can be decomposed into a collection of shifts of an unique PN-sequence.
It will be shown that these sequences can be obtained from CA made out of a
basic structure concatenated a number of times. Once one of these generators
has been linearized, a method for reconstructing unknown bits of the output
sequence based on intercepted keystream bits has been developed. In this sense,
linearity of the cellular models is used for the cryptanalysis of the generators.
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2 Basic Structures

Next some aspects of the two basic structures used in this work are described.
This work deals only with one-dimensional linear null hybrid 90/150 CA. A

natural way to specify such CA is an L-tuple M = [R1, R2, ..., RL], where Ri = 0
if the i-th cell satisfies rule 90 while Ri = 1 if the i-th cell satisfies rule 150.

The characteristic polynomial Pi(x) of any CA [R1, R2, ..., Ri] can be com-
puted in terms of the characteristic polynomials of the previous sub-automata
according to the recurrence relationship where P−1(x) = 0 and P0(x) = 1:

Pi(x) = (x +Ri)Pi−1(x) + Pi−2(x), 0 < i ≤ L (1)

A Multiplicative Polynomial Cellular Automaton is defined as a cellular au-
tomaton whose characteristic polynomial is of the form PM (x) = (P (x))p where
p is a positive integer. If P (x) is a primitive polynomial, then the automaton is
called a Primitive Multiplicative Polynomial Cellular Automaton.

The Cattell and Muzio synthesis algorithm [1] computes two 90/150 CA for
each input characteristic polynomial. It takes as input an irreducible polynomial
Q(x) ∈ GF (2)[x] defined over a finite field and computes two reversal linear CA
whose output sequences have Q(x) as characteristic polynomial.

The Shrinking Generator (SG) is composed by two LFSRs [4]: a control
register R1 that decimates the sequence produced by the other register R2.
Lj (j = 1, 2) denote their corresponding lengths with (L1, L2) = 1 and L1 < L2,
while Cj(x) ∈ GF (2)[x] (j = 1, 2) denote their corresponding characteristic poly-
nomials. The sequence {ai} produced by R1 controls the bits of the sequence
{bi} produced by R2 which are included in the output sequence {zj} according
to the following rule: If ai = 1, then zj = bi, while if ai = 0, then bi is discarded.
Long period, high linear complexity and good distributional statistics are prop-
erties satisfied by the shrunken sequence [4]. Therefore, this scheme is suitable
for practical implementation of stream ciphers and pattern generators.

3 Linear Modelling by Concatenation of CA

Now the particular form of the automata that will be used to linearize the class
of interleaved sequence generators is analyzed. Since the characteristic polyno-
mial of these automata is PM (x) = (P (x))p, it seems quite natural to construct
a multiplicative polynomial cellular automaton by concatenating p times a basic
automaton (or its reverse version). In this way, the construction of a linear model
based on CA is carried out by the following generic algorithm:

Input: The parameters of a nonlinear keystream generator producing an inter-
leaved sequence.

– Step 1: Determine the irreducible factor P (x) of the characteristic polyno-
mial of each interleaved sequence.

– Step 2: Compute the pair of basic CA whose characteristic polynomial is
P (x) by means of the Cattell and Muzio algorithm.
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– Step 3: For each one of these basic CA, construct by successive concatena-
tions a longer cellular automaton able to generate the original interleaved
sequence. The concatenation of the basic automaton can be realized with
complementation of any extreme bit.

Output: Two linear CA producing the corresponding keystream sequence.
The SG is a typical example of cryptographic generator with characteristic

polynomial of the form PM (x) = (P (x))p. In particular, in this case P (x) is
a primitive polynomial of degree L2 and p = 2(L1−1). Moreover, P (x) is the
characteristic polynomial of the cyclotomic coset E given by:

P (x) = (x + λE)(x + λ2E) . . . (x+ λ2L2−1E) (2)

with E = 20 + 21 + . . .+ 2L1−1 and λ the generator element of GF (2L2).

4 Cryptanalytic Application

Since CA-based linear models describing the behavior of sequence generators
have been derived, a cryptanalytic attack that exploits the weaknesses of these
models has been developed too. The proposed attack is here applied to the SG,
but it can be extended to any interleaved sequence generator. Starting from bits
of the intercepted sequence and using the CA-based linear models, additional
bits of the shrunken sequence can be reconstructed.

Given r bits of the shrunken sequence z0, z1, z2, ..., zr−1, we can assume with-
out loss of generality that this sub-sequence has been generated at the most
left extreme cell of its corresponding pair of CA. That is xt

1 = z0, xt+1
1 =

z1, ..., x
t+r−1
1 = zr−1. From r bits of the shrunken sequence, it is always possi-

ble to reconstruct r − 1 new sub-sequences {xt
i} of lengths r − i+ 1 at the i-th

cell of each automaton such as follows:

xt
i = Φi−1(xt

i−1, x
t+1
i , xt

i−2) (1 < i ≤ r), (3)

where Φi−1 corresponds to either rule 90 or 150 depending on the value of Ri−1.
For instance, if r = 10, {zi} = {0, 0, 1, 1, 1, 0, 1, 0, 1, 1} and R1 = R2 = R3 = 0,
the application of the equation (3) gives rise to the first sub-triangle, notatedΔ1,
in Table 1. Now, if any sub-sequence {xt

i} is placed at the most left extreme cell,
then r−2i+2 bits are obtained at the i-th cell in the second chained sub-triangle,
notated Δ2. Repeating recursively n times the same procedure, r−ni+n bits are
obtained at the i-th cell in the n-th chained sub-triangle Δn. Table 1 shows the
succession of 4 chained sub-triangles constructed from 10 intercepted bits of the
shrunken sequence. In fact, the 10 initial bits z0, z1, z2, ..., z9 generate 8 bits at
the third cell in Δ1. These 8 bits are placed at the most left extreme cell pro-
ducing 6 new bits at cell 3 in Δ2. With these 6 bits, we get 4 additional bits in
Δ3. Finally, 2 new bits are obtained at cell 3 in the sub-triangle Δ4. Since rules
90 and 150 are additive, for any Ri the corresponding generated sub-sequence
will be the sum of elements of the shrunken sequence. General expressions can
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be deduced for the elements of any sub-sequence in any chained sub-triangle.
In fact, the i-th sub-sequence in the n-th chained sub-triangle includes the bits
zj corresponding to the exponents of Pi−1(x)n where Pi−1(x) is the character-
istic polynomial of the sub-automaton R1R2...Ri−1, see the equation (1). More
precisely, for the previous example the characteristic polynomial of the sub-
automaton R1R2 is P2(x) = x2 + 1. Thus, xt

3 in the different sub-triangles will
take the form:

xt
3 = z0 + z2 in Δ1; xt

3 = z0 + z4 in Δ2;
xt

3 = z0 + z2 + z4 + z6 in Δ3; xt
3 = z0 + z8 in Δ4; . . .

Table 2 shows the general expressions of the sub-sequence elements in Δ1 and
Δ2 for the example under consideration.

Table 1. Reconstruction of chained sub-triangles from 10 shrunken bits

Δ1 : R1 R2 R3 . . . Δ2 : R1 R2 R3 . . . Δ3 : R1 R2 R3 . . . Δ4 : R1 R2 R3 . . .

0 0 1 . . . 1 1 1 . . . 1 0 1 . . . 1 1 1 . . .
0 1 1 1 0 0 0 0 1 1 0 1
1 1 0 0 1 0 0 1 0 0 0
1 1 1 1 0 1 1 0 0 0
1 0 0 0 0 0 0 1
0 1 0 0 0 1 1
1 0 0 0 1
0 1 1 1
1 1
1

On the other hand, in [6] it is shown that the shrunken sequence is the in-
terleaving of 2(L1−1) different shifts of an unique PN-sequence of length 2L2 − 1
whose characteristic polynomial P (x) is given by the equation (2). Consequently,
the elements of the shrunken sequence indexed zdi, with i ∈ {0, 1, . . . , 2L2 − 2}
and d = 2(L1−1), belong to the same PN-sequence. Thus, if the elements of
the i-th sub-sequence in the n-th chained sub-triangle take the general form:
xt

i = zk1 + zk2 + . . .+ zkj , with

kl ≡ 0 mod 2(L1−1) (l = 1, . . . , j), (4)

then such a sub-sequence can be written as xt
i = zkm , with zkm satisfying the

equation (4). Therefore, {xt
i}, the i-th sub-sequence in the n-th chained sub-

triangle, is just a sub-sequence of the shrunken sequence shifted a distance δ
from the r bits of the intercepted sequence. The value of δ depends on the
extension field GF (2L2) generated by the roots of P (x). In brief, the chained
sub-triangles enable us to reconstruct additional bits of the shrunken sequence
from bits of the intercepted sequence.

The number of reconstructed bits depends on the amount of intercepted
bits (proportional to 2L1−1). Indeed, if we know Nl bits in each one of the
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Table 2. General expressions for sub-sequences in Δ1 and Δ2 with R1 = R2 = R3 = 0

Δ1 : R1 R2 R3 . . . Δ2 : R1 R2 R3 . . .

z0 z1 z0 + z2 . . . z0 + z2 z1 + z3 z0 + z4 . . .
z1 z2 z1 + z3 z1 + z3 z2 + z4 z1 + z5

z2 z3 z2 + z4 z2 + z4 z3 + z5 z2 + z6

z3 z4 z3 + z5 z3 + z5 z4 + z6 z3 + z7

z4 z5 z4 + z6 z4 + z6 z5 + z7 z4 + z8

z5 z6 z5 + z7 z5 + z7 z6 + z8 z5 + z9

z6 z7 z6 + z8 z6 + z8 z7 + z9

z7 z8 z7 + z9 z7 + z9

z8 z9

z9

PN-sequence shifts, then the total number of reconstructed bits is given by
2(L1−1)∑

l=1

Nl∑
k=2

(
Nl

k

)
.

In order to compare the proposal with known related results, note that on the
one hand, both reconstructed bits and their positions on the shrunken sequence
are known with absolute certainty, and on the other hand, the off-line phase is to
be executed before intercepting sequence. The off-line computational complexity
of the proposed attack is O(LA

2 ∗ 2LS) whilst its on-line complexity is O(LA ∗
2LS−2). If we compare it with the one of known attacks on SG, we find that all
of them are actually exponential in LS or in LA.

Let us consider now as an illustrative example a SG with the following pa-
rameters: L1 = 4, L2 = 5, C2(x) = 1 + x + x3 + x4 + x5. According to
the equation (2), we can compute the polynomial P (x) = 1 + x + x2 + x4 +
x5 while the two basic automata 1 0 0 0 0 and 0 0 0 0 1 are obtained
from the algorithm of Cattell and Muzio. The corresponding CA of length
L = 40 are computed via the algorithm developed in sub-section 3.1. Indeed,
they are CA1 = 0060110600 and CA2 = 8C0300C031 in hexadecimal nota-
tion. In addition, let α be a root of P (x) that is α5 = α4 + α2 + α + 1 as
well as a generator element of the extension field GF (2L2). The period of the
shrunken sequence is T = (2L2 − 1) · 2(L1−1) = 248 and the number of inter-
leaved PN-sequences is 2(L1−1) = 8. Finally, the intercepted sequence of r =
24 is: {z0, z1, . . . , z23} ={1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1}.
With the previous premises, we accomplish the reconstruction process.

For CA1: The chained sub-triangles provide the following reconstructed bits.
For i = 3, sub-automaton R1R2 and P2(x) = x2 + 1.

– In Δ4, xt
3 = z0 + z8, xt+1

3 = z1 + z9, . . . , x
t+15
3 = z15 + z23. Considering

z0, z8 as the first and second element of the PN-sequence and keeping in mind
that in GF (2L2) the equality 1 + α = α19 holds, we get xt

3 = z19·8 = z152,
xt+1

3 = z153, . . . , x
t+15
3 = z167. Thus, 16 new bits of the shrunken sequence

have been reconstructed at positions 152, 153, . . . , 167.
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– In Δ8, xt
3 = z0 + z16, xt+1

3 = z1 + z17, . . . , x
t+7
3 = z7 + z23. As before

keeping in mind that the equality 1+α2 = α7 holds, we get xt
3 = z7·8 = z56,

xt+1
3 = z57, . . . , x

t+7
3 = z63. Thus, 8 new bits of the shrunken sequence have

been reconstructed at positions 56, 57, . . . , 63.

For CA2: The chained sub-triangles provide the following reconstructed bits.
For i = 3, sub-automaton R1R2 and P2(x) = x2 + x+ 1.

– In Δ8, xt
3 = z0 + z8 + z16, xt+1

3 = z1 + z9 + z17, . . . , x
t+7
3 = z7 + z15 + z23.

As before, keeping in mind that the equality 1 +α+α2 = α23 holds, we get
xt

3 = z23·8 = z184, xt+1
3 = z185, . . . , x

t+7
3 = z191. Thus, 8 new bits of the

shrunken sequence have been reconstructed at positions 184, 185, . . . , 191.

In brief, from 24 intercepted bits a total of 32 new bits have been reconstructed.

5 Conclusions

In this work, it is shown that wide classes of LFSR-based sequence generators
with cryptographic application can be described in terms of CA-based structures.
In this way, sequence generators conceived and designed as complex nonlinear
models can be written in terms of simple linear models. Based on the linear-
ity of these cellular models a method of reconstructing with absolute certainty
unknown bits of the generated sequence is also presented.
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Abstract. This paper aims at showing that Physics is very close to
the substitution-diffusion paradigm of symmetric ciphers. Based on this
analogy, we present a new Cellular Automata algorithm, termed Crystal,
implementing fast, parallel, scalable and secure encryption systems. Our
approach provides a design principle to ensure an invertible dynamics for
arbitrary neighborhood. Thus, several variants of our CA can be devised
so as to offer customized encryption-decryption algorithms. Considering
larger data blocks improve both security and speed (throughput larger
than 10Gbps on dedicated hardware).

1 Introduction

As introduced by Shannon [7], symmetric block ciphers are usually based on r
rounds of diffusion and confusion operations applied to a plain text message M .
This transformation is usually considered in a purely mathematical framework,
with no reference to any physical process despite the fact that the term diffusion
actually refers to a well known physical phenomena.

It seems that the contribution of physics to classical cryptography (quantum
cryptography thus excluded) has been only to provide some vocabulary but no
design principles and the few physical devices that have been proposed to encode
a message are usually rather exotic and their security hard to prove [6].

Here we claim that the analogy between classical physics and symmetric block
cipher is strong, natural and useful. This claim is made very clear when consid-
ering discrete physical models such lattice gases automata (LGA) used to model
fluids [1].

These models consist of a discrete space time abstraction of the real world. N
point-particles move on a regular lattice in D spatial dimensions. The possible
velocities of each particle are restricted by the lattice topology: the propagation
P moves, in one time step Δt, a particle from one site to one of its neighbor.
Thus, if z is the lattice coordination number, particles may have z possible veloc-
ities. A collision C occurs between particles entering the same site from different
directions. The result of such a collision is to create new particles in some di-
rections and to remove some particles in others. Particle motion and collision
are repeated alternatively for any chosen amount of time. Mathematically, the
dynamics of our discrete fluid can be described by

M(t+Δt) = PCM(t)
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where M(t) is the configuration of the particles over the full lattice at iteration
t. This dynamics is structurally identical to the diffusion-confusion paradigm of
cryptography. Diffusion is produced by an operator P and operator C imple-
ments a substitution box.

The other relevant ingredient from Physics is the second principle of thermo-
dynamics which states that all configurations evolve to a final state which seems
to contain no more memory of the initial situation. As such, this process is a
good encryption mechanism. Deciphering, fortunately, is possible since the mi-
croscopic laws of physics are fully symmetrical with respect to past and future.
Theoretically then, there is a way to come back. It is however highly impractical
with real physical systems: one would have to reach every single particle of the
system and to reverse its microscopic velocity with arbitrary precision.

On the contrary, with LGA systems, this time reversal is possible since the cal-
culation is Boolean and performed without truncation error. We can thus reverse
the arrow of time by simply inverting the direction of motion of each particles:
M(t) = RM(t), where R is the so-called time-reversal operator. Therefore, a
deciphering mechanism is already embedded in a system obeying CRC = R and
PRP = R. It is then identical to the ciphering steps because

(CP )rR(PC)r = (CP )r−1CPRPC(PC)r−1

= (CP )r−1R(PC)r−1 = R (1)

It is well known that time-reversibility in a physical system is highly sensitive
to any small perturbation. Thus, the keying mechanism for the cipher may be
viewed as errors that are deliberately introduced to prevent an attacker to reverse
time.

Due to their properties of producing a complex behavior, cellular automata
(CA) have been considered by several authors as a way to build cryptographic
devices [5,9,4]. Several of the proposed CA are designed to produce a sequence of
bits out of a secrete key and, as such, provide a stream cipher in which a sender
and a receiver can both produce the same complex sequence of bits starting from
an initial state given by the key.

However, when symmetric block ciphers are devised, it is necessary that en-
cryption can be inverted in order to be able to decipher an encoded message.
Therefore, a central question arises about how to build invertible CA’s.

The standard definition of CA uses the so-called ”gather-update” paradigm [1]
(first get the neighbor values and then update the cell). It is well known that
finding the inverse of a CA rule when the gather-update paradigm is used is a
difficult task [3]. A procedure to produce a reversible CA rule (the rule is its own
inverse) is the so-called technique of Fredkin [8]: a reversible cellular automata
can be constructed by using the following rule:

s(r, t+ 1) = f(s(N(r), t)) ⊕ s(r, t− 1)

where f is arbitrary and N designate the neighborhood of cell r. This rule is said
to be of second order since it requires state t and t−1 to compute the evolution.
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Another approach to produce invertible CA uses the so-called block-permuta-
tion CA [3]. The central idea is to partition the CA cells into adjacent blocs of
size w × w, with respect to origin (ox, oy), and to define a function F applying
the block to itself. By changing the partition offset (ox, oy), one obtains a family
of different transformations of the cell space. Several of these transformation can
be composed so as to produce a CA rule. Within this paradigm of block-partition
CA, an invertible CA can be designed by taking the function F invertible. This
approach however is restricted to regular, Cartesian grids and is non-local.

Finally, a last paradigm to implement a CA rule is the collision-propagation
paradigm of LGA discussed above to model discrete physical systems. In this
approach, it has been noted that the dynamics is reversible (i.e. is its own inverse)
when the collision operator implements a reversible physical processes.

Our approach exploits this last paradigm to build a general reversible CA in
a possibly irregular topology, of arbitrary dimension, through the introduction
of three inter-related operators P , R and C. The main advantage of this formu-
lation is that it offers an effective way to build both a hardware and a software
device, with high scalability. In addition, it reconciliates the well admitted Shan-
non generic model of symmetric cryptography (confusion and diffusion) with the
promising domain of complex dynamical systems (e.g CA) that are often con-
sidered as exotic and non-reliable cryptographic methods.

2 Description of the Algorithm

We first discuss a simple instance of the algorithm and then we formalize a
general approach. Let us consider a 2D square periodic lattice with z bits per site
and containing a N -bit message. With N bits distributed over the z directions,
the lattice size must be

√
N/z ×

√
N/z.

When z = 8, each lattice site has eight neighbors, four along the main lattice
directions, as well as four along the diagonals. This so-called D2Q8 topology
defines the action of P . Note that the z links are two-way between the intercon-
nected neighbors; they are labeled by a direction index j = 0, ..., (z − 1) so that
opposite directions j and j′ are such that j′ = j + (z/2) mod z. By definition,
the reverse operator R swaps the content of direction j and j′. By construction,
we thus have R2 = 1, i.e. R−1 = R.

The collision C is implemented as lookup table. In order to ensure CRC = R,
the following randomized algorithm is used (here z = 8):

for all a=0 to 255, such that C(a) is still undefined
do b=rand(0,255)
until C(R(b)) is undefined
C(a)=b; C(R(b))=R(a);

endfor

The cipher key K is a N -bit string. It can be easily constructed from a N ′-bit
string, with N ′ ≤ N , using any acceptable padding procedure.
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With these ingredients, we propose the following block cipher algorithm

algorithm Crystal(M,K) // M is the message, K the key
reverse(M), reverse(K)
propagation(M), propagation(K)
repeat r times
M=M+K
collision(M), collision(K)
propagation(M), propagation(K)

end repeat
M=M+K
return M, K

end algorithm

Note that operators R, C and P act locally but, by extension we also use the
same symbols to denote the synchronous action of R, C and P at all sites.

It can be shown that Crystal both encodes and decodes the blocks. Indeed
the above algorithm can be expressed in a matrix formulation(

M ′

K ′

)
=
(

1 1
0 1

)[
PC

(
1 1
0 1

)]n

PR

(
M
K

)

in which we assume a modulo 2 algebra so that(
1 1
0 1

)(
M
K

)
=
(
M ⊕K
K

)

In addition, we define the product of the operator PC by a matrix as

PC

(
1 1
0 1

)
=
(
PC PC
0 PC

)

In order for our scheme to be reversible, we need(
1 1
0 1

)[
PC

(
1 1
0 1

)]n

PR

(
1 1
0 1

)[
PC

(
1 1
0 1

)]n

PR =
(

1 0
0 1

)

This is achieved provided that

PRP = R−1 CR−1C = R

The proof follows by applying the same procedure as used in eq. 1 and by the
fact that, in a modulo 2 algebra(

1 1
0 1

)2

=
(

1 0
0 1

)

Note that in simple and regular topologies we have R = R−1. However, the
above formulation shows that any topology of interconnected cells for which
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PRP = R−1 and CR−1C = R hold can be used to implement the Crystal
algorithm.

Such a topology can be constructed in a very general way, with possibly a
different number of neighbors for each cell. The key condition is to distinguish
the input and output links of the cell and to impose a suitable symmetry relation
between them. This is detailed below.

Let R be a one-to-one mapping from the inputs to the output, as shown for
instance in fig. 1 (a). So, within a cell there must be the same number of input
and output ports. The collision operator C is also a one-to-one transformation
of the the input data into the output data. This mapping is constructed so that
CR−1C = R. The propagation operator P transfers these output data to the
input ports of the corresponding neighboring cells, as illustrated in fig. 1 (b).
In order to build a reversible CA rule the following must be true: for each link
connecting output j of cell r to input � of cell r′, there is a second link connecting
output �′ of cell r′ to input j′ of cell r. If j and � are such that j = R(j′) and
�′ = R(�) (see fig. 1) then, by construction PRP = R−1.

jm

j’

m’

input

output

j

j’

cell r

input

output

l’

l

cell r’

input

output

(a) (b)

Fig. 1. (a) Illustration of the reverse operator R. (b) Illustration of the propagation
operator P .

Therefore, any irregular interconnection topology obeying this pairwise sym-
metry can be devised to obtained a reversible dynamics. More generally, an
invertible dynamics can be obtained by having two collision operators C and
C′ such that C′R−1C = R. Thus, we can also think of our algorithm as a way
to connect different processors, each running locally an invertible encryption
process C and whose decryption is C′.

Within this relatively large framework, we can easily imagine several keying
mechanisms, such as a secret topology, a secret collision or the more classical
choice of secret bit string K.
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3 Throughput and Security

We derive some properties of our cryptographic system in the case of the D2Q8
topology. These properties allow us to quantify both the security and the per-
formances of the Crystal algorithm.

(1) A required property of a cipher is a high sensitivity to a little modification
in the initial message M . We observe in fig. 2 that, after a number r of rounds
equals to the lattice diameter d = (1/2)

√
N/z, a single bit error causes an

avalanche of the full lattice size. The average Hamming distance between two
messages initially differing only by one bit is (1/2)N as expected for two random
messages. Based on the speed at which information travels in the lattice, the
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Fig. 2. Evolution of the Hamming distance between two messages initially differing only
by one bit. In (a) we have N = 64 × 64 × 8 = 32768 bits and in (b) N = 4 × 4 = 128
bits. Comparison with the ideal curve (eq. 2 is given with the doted parabola. The
solid line parabola is the theoretical estimate of eq. 3). Finally, the vertical line show
the iteration r = (

√
2/2) N/z at which the plateau should be reached.

Hamming distance can at best evolve as (see [2])

H(r) =
1
2
z(2r + 1)2 (2)

In numerical experiments, the speed at which the 1/2 plateau is reached is less
than predicted by eq. 2 because after a collision, only about z/2 bits differ from
the reference configuration. From fig. 3, we can assume that the error propagates
roughly as a disk. Its diameter grows on average by one lattice site at each
iteration. Thus, during the first r =

√
N/z/2 rounds, H behaves as

H(r) =
z

2
πr2 (3)
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Fig. 3. Snapshot of the error propagation region, after 16 and 32 iterations, in a system
of size 64×64. The non-blank regions indicates where the two configurations differ. The
darker the gray, the more are the bits that differ. The dashed-line disks have radius 16
and 32, respectively; thus, the error propagates at speed one for this topology.

Therefore the minimal number r of rounds needed to mix the information all
over the system must be r = αd where α is some constant larger than 1.

(2) Once the number of round is determined, we may compute the throughput
of the algorithm. As any CA model, the dynamics of our system can be fully
parallelized so that propagation and collision take a constant time for any N .
Then, the time T needed to encrypt is proportional to the number of rounds but
independent of the block size

T ∝ r = αd ∝
√
N/z (4)

and therefore the encryption throughput W is

W =
N

T
∝

√
N (5)

Thus, when large data blocks are encrypted, the throughput increases although
the number of round increases. The reason is that the number of rounds grows
slower than the amount of data. Implementation studies on FPGA indicates that
W > 10Gb/s can be achieved with reasonable resources.

(3) It is commonly accepted that increasing the number of round r increases
security. Therefore, with a full parallel implementation and large data blocks,
both security and throughput are improved when Crystal is used.

Security can be assessed quantitatively by a differential cryptanalysis ap-
proach. The goal is to obtain information on the key K by considering how
two plain text messages M1 and M2 get encrypted into M ′

1 and M ′
2.

With M
(m)
i and K(m) denoting the state of the messages and the key after m

rounds, the algorithm Crystal gives

M
(m)
i = PC

(
M

(m−1)
i ⊕K(m−1)

)
(6)
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for i = 1, 2. By XORing the above relation for i = 1 and i = 2 and applying
inverse propagation, we obtain

P−1
(
M

(m)
1 ⊕M

(m)
2

)
= C

(
M

(m−1)
1 ⊕K(m−1)

)
⊕ C

(
M

(m−1)
2 ⊕K(m−1)

)
(7)

It is now convenient to define F−1 as

a1 ⊕ a2 ∈ F−1(b) iff b = C(a1) ⊕ C(a2) (8)

For a given collision operator C, F−1 can be computed easily by an exhaustive
search [2]. With definition 8, we can rewrite eq. 7 as

F−1P−1
(
M

(m)
1 ⊕M

(m)
2

)
= M

(m−1)
1 ⊕K(m−1) ⊕M

(m−1)
2 ⊕K(m−1)

= M
(m−1)
1 ⊕M

(m−1)
2 (9)

By repeating this relation, one obtains

M
(1)
1 ⊕M

(1)
2 =

(
F−1P−1)r−1

(
M

(r)
1 ⊕M

(r)
2

)
(10)

where r is the number of rounds. In [2] we show that if M (1)
1 ⊕M

(1)
2 is known

to the attacker, it is rather easy to obtain the secret key K with an extra 2z

operations.
Below we compute how much computational effort is required to obtainM (1)

1 ⊕
M

(1)
2 from M

(r)
1 ⊕M

(r)
2 which, by hypothesis, is known since attackers are sup-

posed to have access to any pairs (M,M ′) they want.
Since we assume that r > d, where d is the lattice diameter, M (r)

1 and M
(r)
2

differ over all N/z lattice sites. In order to perform the backward scheme indi-
cated in eq. 9, one has to find all possible pre-images of P−1

(
M

(m)
1 ⊕M

(m)
2

)
by F−1. Empirically we observe that the number of pre-image of a given b is
larger than 2z/4. Of course this depends on the choice of C, but this seems to
be a minimal value for a C constructed with our randomized procedure.

Therefore, for each lattice site, at least 2z−2 values are possible for M (r−1)
1 ⊕

M
(r−1)
2 . This requires to select (N/z)2z−2 candidates for M (r−1)

1 ⊕M
(r−1)
2 . The

same argument can be repeated r − d times. After that, we can quickly exclude
some possibilities. Indeed, at this point, we know that the error has not been
able to propagate up to the outer boundary of the lattice. For these lattice
sites, M (d−1)

1 ⊕ M
(d−1)
2 must be zero. Thus the number of sites for which the

exploration continues is (
√
N/z − 2)2. If we undo one more step, even more

possibilities can be excluded and the pre-images of “only” (
√
N/z − 4)2 sites

must be investigated.
Following this idea for the d − 1 steps, one has to explore 32 × 52 × ... ×

(
√
N/z − 1)2 possible configurations1, each with 2z/4 = 2(z−2) possible values.

1 For a D2Q8 topology.
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An inferior bound for this number is (see [2])

(
32 × 52 × ...× (

√
N/z − 1)2

)
2z−2 > (d/2)2d2z−2 =

1
4

(
N

z

)d

2z−2

Thus, in total (undoing the rounds beyond and below the diameter) implies to
investigate

N > (N/z)r−d2(z−2)(r−d)(N/z)d2z−4 = (N/z)r2(z−2)(r−d)+(z−4) (11)

candidates for M (1)
1 ⊕M

(1)
2 .

Let us define the security measure S as the logarithm of our estimate of N

S = log2 N (12)

A security of S = 128 is usually considered as safe. Eq. 11 can be shown as a
graph. In figure 4 (a), we show how r must change with respect to N , for a given
security level S. In figure 4 (b) we show how security S increases with N when
we take the number of round r as twice the diameter d.
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Fig. 4. (a) Number of rounds r as a function of block size N , to keep a given security
level S. Note that r must be larger than the diameter d. The limit r = d is shown by
the dashed curve. (b) Security S as a function of block size N , for r = 2d.

4 Conclusion

A first specificity of Crystal with respect to standard block ciphers is that it is
made of many fully identical components (the sites). Hence, it is local, scalable,
fully parallel and fits naturally on silicon.

Second, Crystal can be tailored in many different variants, so as to provide
each user with a unique encryption-decryption method, whose details can be kept
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secret in addition to the key. The simplest way to customize Crystal is to choose
a personal substitution box C. Indeed a large number of C’s can be generated
with the same level of security. Other ways to customize the algorithm is to have
a main substitution box C and a second one C′ active only at some secrete cells.
Finally the shape of the encryption domain can be a secrete information.

In conclusion, we have described a new cipher which is cost effective to develop
and implement, simple to analyze and which efficiently addresses the increasing
needs for high throughput, high security and high level of versatility.
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Abstract. In this work, the use of memory cellular automata to design
a cryptographic protocol to provide assurance of digital images integrity
is studied. It is shown that the proposed protocol is secure against the
adequate cryptanalytic attacks. As a consequence, memory cellular au-
tomata seems to be suitable candidates to the design of hash functions.

1 Introduction

The rapid development of new technologies for the fast provision of commercial
multimedia services yields a strong demand for reliable and secure copyright
protection for multimedia data. In this sense, digital image protection is one of
the most important problems that have arisen with the use of internet. As is well
known, digital images can be easily altered by using common suitable software.
Consequently, it is of special importance to decide whether a given image is
authentic or has been modified subsequent to capture by some available digital
image processing tools. That is an important question in, for example, legal
applications, news reporting, medical images, etc., where we want to be sure
that the digital image truly reflects the original image used. Another important
application arises in the e-commerce where the digital images of the goods to be
sold are stored into a data base with free-access for the buyers. Obviously, the
buyer wants to be sure that the digital image is genuine and no modification has
been done. To address these issues several protocols have been proposed in the
literature (see, for example [8,11,18,19]).

The main goal of the protocol proposed in this paper is to guarantee the
authenticity of digital images stored into a data base. The protocol is based
on the use of memory cellular automata (see, for example, [1,3]). Basically, the
proposed protocol consists of computing for each image, I, a fingerprint, FI ,
such that minimum changes in I yields a different fingerprint. As a consequence,
if one suspects that an image has been modified, then its fingerprint must be
computed and compared with the derived from the original one which is securely
stored. If both fingerprints are equal, the image is the original, otherwise, the
image has been changed. Note that, the proposed protocol does not define a hash
function. Nevertheless, it can serve as a basis for the development of message
authentication codes (MAC protocols).
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Roughly speaking, memory cellular automata are delay discrete dynamical
systems formed by a one-dimensional array of cells, which are endowed with a
particular state at each time. These states change at every step of time according
to a local transition rule. The main characteristic of cellular automata is that
they are very simple models of computation capable to simulate complex be-
havior (see, for example, [24]). Several cryptographic protocols based on cellular
automata have been proposed in the last years not only for text data (see, for
example [4,7,9,10,12,13,15,16,17,21,22,23]), but also for images (see, for example,
[5,6]). Nevertheless, any cryptographic protocol based on cellular automata to
guarantee the integrity of digital images has not been proposed.

The rest of the paper is organized as follows: In Section 2, the basic theory
of cellular automata is introduced; in Section 3, the model to guarantee the
authenticity of digital images is shown and an example is also given; in Section
4, the security analysis of the algorithm is performed; and finally the conclusions
and the further work are presented in Section 5.

2 Overview of Cellular Automata

In this section an overview of the theory of memory cellular automata is pre-
sented. Moreover, the interpretation of a digital image in terms of memory cel-
lular automata is also shown.

A cellular automata (CA for short) is a special class of discrete dynamical
system which is formed by a finite one-dimensional array of n identical objects
called cells. Each one of them can assume a state from a finite state set S. The
i-th cell of the bidimensional lattice is denoted by (i), and the state of such cell
at time t is st

i.
The CA evolves deterministically in discrete time steps, changing the states of

all cells according to a local transition function, f : Sm → S. The updated state
of each cell depends on the m variables of f , which are the states at previous time
steps of a set of cells, including the cell itself, and called its neighbourhood. The
set of indices defining the neighborhood of the CA is the ordered finite subset
V ⊂ Z, with |V | = m, such that for every cell (i), its neighborhood, Vi, is the
set of m cells given by

Vi = {(i+ l) : l ∈ V } . (1)

In this work, symmetric neighbourhoods of radius p are considered; that is, the
neighbourhood of each cell is formed by its p nearest cells at left, its p nearest
cells at right and the cell itself. Note that it is given by the following set of
indices:

V = {−p,−p+ 1, . . . ,−1, 0, 1, . . . , p− 1, p} . (2)

Consequently, the evolution of the state of the cell (i) is given by st+1
i = f (V t

i ),
where V t

i stands for the states of the neighbour cells of (i) at time t. The vector
Ct = (st

1, . . . , s
t
n) ∈ S × (n. . .× S, is called the configuration at time t of the CA.

The set of all configurations of a CA is denoted by C. As the number of cells is
finite, boundary conditions must be considered in order to assure the well-defined
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dynamics of the cellular automata. In this paper, periodic boundary conditions
are taken: if i ≡ j (modn), then st

i = st
j .

Moreover, the global function of the CA is a map, Φ : C → C, that yields the
configuration at the next time step during the evolution of the cellular automa-
ton, that is, Φ (Ct) = Ct+1. If Φ is bijective then the CA is called reversible
(RCA for short) and the evolution backwards is possible by means of the inverse
CA whose global transition function is Φ−1 (see [20]).

The standard paradigm for cellular automata considers that the state of every
cell at time t+1 depends on the state of its neighbour cells at time t. Nevertheless,
one can consider cellular automata for which the state of every cell at time t+1
not only depends on the states of the neighbour cells at time t, but also on their
states at previous time steps: t−1, t−2, etc. This is the main feature of memory
cellular automata, MCA for short (see [1]). Specifically, a k-th order MCA is
defined by a global transition function given by

Φ : C × (k. . .× C → C, (3)

where
Ct+1 = Φ

(
Ct, Ct−1, . . . , Ct−k+1) . (4)

Finally, remark that every image defined by r× c pixels and by a palette of 2b

colors (where b = 1 stands for black and white images, b = 8 stands for grey-level
images, and b = 24 stands for general color images) can be interpreted as a set
of r configurations of a MCA with c cells, by simply considering each row of
pixels as a configuration, and each pixel as a cell of the configuration. The i-th
coefficient of such configuration, that is, the state of the i-th cell, is the numeric
value associated to the color of the i-th pixel of the row. As a consequence, the
state set of the MCA is given by S = Z2b .

3 The Protocol to Authenticate Digital Images

3.1 Description of the Protocol

In this section the model based on MCA to authenticate digital images is pre-
sented. Let I be a digital image defined by a palette of 2b colors and r× c pixels.
Basically, the protocol consists of computing a fingerprint, FI = (f1, . . . , fc) ∈
S × n. . . × S using a (r + 1)-th order MCA. This fingerprint must be securely
stored using another protocol (see, for example, [14]). Consequently, if we want
to check the authenticity of the image I, we have to compute its fingerprint by
means of the same protocol and compare the result with the fingerprint securely
stored. If both fingerprints are the same, then the original image is authentic;
otherwise, it has been changed.

Specifically, the proposed protocol is as follows: Let I be an image defined by
r× c pixels and by a palette of 2b colors. Let C1, . . . , Cr, be the r configurations
obtained from the r rows of pixels of the image I. Then Ct ∈ Z2b × c. . . × Z2b

for each 1 ≤ t ≤ r. Moreover, the initial configuration, C0, must be computed
at random and it is the secret key of the protocol.
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Let us consider the (r + 1)-th order RMCA with c cells and S = Z2b , defined
by the following local transition function:

st+1
i = f

(
V t

i , . . . , V
t−r+1
i

)
+ st−r

i

(
mod 2b

)
, (5)

where 1 ≤ i ≤ c. Recall that this RMCA is reversible (see, for example [2]) and
the local transition function of its inverse is the following:

st+1
i = −f

(
V t

i , . . . , V
t−r+1
i

)
+ st−r

i

(
mod 2b

)
. (6)

Note that, in terms of the global transition function, it yields:

Ct+1 = Φ
(
Ct, . . . , Ct−r

)
. (7)

Now, computing the sucessive configurations of the MCA given by (5) and start-
ing from C0, C1, . . . , Cr, we obtain the following sequence of configurations:

C0, C1, . . . , Cr, Cr+1, Cr+2, . . . , C2r+2. (8)

The last configuration computed, that is: C2r+2 is considered the fingerprint of
the image I.

3.2 An Example

In this section, a MCA-protocol with a simple local transition function is intro-
duced. Let us consider the image shown in Figure 1 which is given by 128× 128
pixels and 28 = 256 gray-level colors.

Fig. 1. Gray-level image defined by 128 × 128 pixels

For the sake of simplicity, let us consider a 129-th order MCA whose local
transition function is as follows:

st+1
i = f0

(
V t

i

)
+ . . .+ fr−1

(
V t−r+1

i

)
+ st−r

i

(
mod 2b

)
, (9)

with 1 ≤ i ≤ 128. Furthermore, the function fk is defined as follows:

fk

(
V t−k

i

)
= st

i−αk
+ . . .+ st

i−1 + st
i + st

i+1 + . . .+ st
i+αk

(
mod 2b

)
, (10)
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where 1 ≤ αk < c/2. Note that this function can be considered as the local tran-
sition function of a (non-memory) cellular automata endowed with symmetric
neighborhoods of radius αk. Set

C0 = {155, 160, 141, 85, 20, 214, 81, 121, 95, 92, 236, 20, 251, 94, 49,
205, 234, 218, 2, 255, 162, 15, 198, 25, 205, 200, 204, 78, 4,
189, 52, 28, 247, 135, 208, 124, 199, 40, 232, 63, 119, 25, 46,
98, 93, 243, 66, 156, 77, 112, 0, 115, 72, 38, 115, 127, 136, 214,
6, 65, 173, 166, 141, 101, 163, 33, 94, 129, 60, 190, 200, 64, 12,
130, 239, 118, 59, 227, 52, 186, 7, 182, 253, 38, 74, 4, 237, 246,
6, 61, 91, 68, 33, 248, 31, 9, 158, 144, 129, 81, 56, 102, 181, 65,
82, 83, 18, 83, 114, 202, 39, 192, 56, 224, 15, 123, 144, 104, 168,
8, 199, 165, 142, 130, 71, 33, 188, 111} , (11)

the initial configuration. Let us consider the following artificially chosen Ω =
{α1, . . . , α128}:

Ω = {1, 3, 3, 2, 3, 1, 1, 1, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 3, 3, 2, 1, 1, 1, 2, 2, 3, 2,
2, 1, 2, 2, 3, 1, 2, 3, 3, 3, 1, 2, 2, 2, 2, 1, 1, 2, 1, 1, 2, 3, 2, 2, 1, 2, 1, 1, 2, 2,
2, 1, 3, 2, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 3, 3, 2, 1, 2, 3, 1, 2, 2, 2, 3, 3, 2,
1, 3, 1, 1, 3, 1, 3, 3, 2, 1, 1, 2, 2, 2, 2, 1, 3, 1, 2, 2, 2, 2, 1, 3, 2, 1, 3, 2, 3, 2,
3, 1, 1, 2, 2, 3, 2, 3} . (12)

Then, if we compute the evolution of the MCA, the configuration C258 is the
fingerprint. Specifically, it is:

FI = {0, 221, 55, 206, 204, 185, 47, 125, 97, 173, 243, 37, 154, 150, 239, 137, 244, 51,
105, 61, 190, 197, 0, 216, 28, 208, 138, 85, 133, 196, 123, 242, 122, 26, 31, 70,
197, 119, 203, 169, 44, 213, 204, 36, 57, 175, 108, 163, 136, 95, 202, 35, 87,
82, 232, 62, 12, 91, 105, 229, 202, 247, 96, 132, 174, 217, 44, 227, 104, 94,
129, 54, 166, 13, 161, 35, 106, 128, 193, 153, 154, 7, 176, 89, 203, 13, 178,
8, 152, 11, 172, 132, 31, 150, 253, 237, 63, 70, 38, 192, 180, 168, 66, 179,
72, 52, 193, 158, 79, 24, 222, 207, 134, 3, 225, 78, 126, 153, 226, 123, 147,
204, 139, 228, 26, 59, 183, 94} . (13)

In Figure 2 the graphic representation of the fingerprint is shown.

Fig. 2. Fingerprint of the original image

Remark that, taking into account the diffusion process, it is sufficient to con-
sider αk < c/2. Moreover, in this sense, in order to obtain higher diffusion the
configuration at time 2r + 2 is considered as the fingerprint.
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4 Security Analysis

In this section the security of the protocol introduced in the last section is
analyzed. Specifically, for evaluating its security, some properties are studied:
The sensitivity to initial conditions and the preimage resistant, second-preimage
resistant and collision resistance properties. Moreover, the complexity of the
proposed protocol is computed.

4.1 Sensitivity to Initial Conditions

A desirable property of any cryptographic protocol is that a small change in the
inputs should result in a significant change in the ciphertext. That is, in our case,
changing value of one randomly pixel in the original image I should produce a
great change of the pixels of the fingerprint.

Then suppose that only one pixel is modified in the original image of the
example I, say for example the 64-th pixel of the first row that passes from the
gray level given by the number 100 to the grey level defined by the numeric value
101 (note that the human eye does not detect such change). If its fingerprint is
calculated using the same MCA as in the example above, then the following
result is obtained:

FI = {36, 63, 14, 81, 69, 26, 183, 165, 162, 103, 111, 50, 237, 204, 165, 46,
33, 226, 241, 159, 236, 185, 13, 41, 165, 206, 201, 27, 69, 50, 104, 173,
135, 115, 158, 239, 159, 107, 90, 141, 184, 208, 17, 208, 201, 74, 135,
174, 147, 128, 168, 50, 181, 74, 223, 107, 84, 79, 107, 94, 177, 204, 99,
202, 177, 174, 19, 92, 106, 82, 201, 99, 157, 5, 0, 50, 72, 161, 204, 164,
181, 161, 65, 6, 16, 8, 63, 235, 39, 254, 134, 46, 158, 239, 11, 168, 44,
179, 229, 134, 243, 166, 203, 4, 85, 40, 239, 1, 215, 199, 11, 116, 60, 57,
53, 91, 249, 83, 36, 163, 28, 45, 4, 103, 240, 156, 219, 16} , (14)

and as a simple calculus shows, all pixels are different from the original finger-
print.

In this sense, note that if only one pixel is changed in the i-th row of the
original image, then 2 ·αr−i pixels are changed in the configuration Cr+1, 2 ·α0+
2 ·αr−i pixels are changed in the configuration Cr+2, 2 ·α1+2 ·α1+2 ·αr−i pixels
are changed in the configuration Cr+3, and so on. Consequently, if α0, . . . , αr−1
are sufficient large, then in a few iterations the change of only one pixel yields
the change of all pixels of the fingerprint.

4.2 Collision Resistance

The main feature of the proposed algorithm is that it satisfies some desirable
properties for data integrity protocols: The preimage resistant property, the
second-preimage resistant property and the collision resistant property (see [14]).

The preimage resistant property states that for essentially all pre-specific out-
puts, it is computationally infeasible to find any input which yields to that
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output. This property holds in our case since if we have a fixed fingerprint
FI = C2r+2, to obtain the image I = {C1, . . . , Cr}, it is necessary to solve the
following system of equations:⎧⎪⎪⎨

⎪⎪⎩
C2r+2 = Φ

(
C2r+1, . . . , Cr+1

)
C2r+1 = Φ

(
C2r , . . . , Cr

)
· · ·
Cr+1 = Φ

(
Cr, . . . , C0

) (15)

Then, by substituting recursively, the following system is obtained:

C2r+2 = Ψ
(
Cr, . . . , C0) , (16)

which is formed by c equations with (r + 1) c unknown variables:

{st
i, 1 ≤ i ≤ c, 0 ≤ t ≤ r}. (17)

Moreover, the protocol also satisfies the second-preimage resistant property
which establishes that it must be computationally infeasible to find any second
image Ī = {C̄1, . . . , C̄r} which has the same fingerprint, FI , as a specific image
I = {C1, . . . , Cr}. In this case one has to solve the following system of equations:

Ψ
(
Cr−1, . . . , C0) = Ψ

(
C̄r−1, . . . , C̄0) , (18)

which is formed by c equations with (r + 1) c unknown variables:

{s̄t
i, 1 ≤ i ≤ c, 0 ≤ t ≤ r}. (19)

Finally, the proposed protocol is a collision resistance model, that is, it is
computationally infeasible to find two distinct images, I and Ī, which yield to the
same fingerprint. In this case, the system of equations obtained is similar to the
last one but with 2 (r + 1) c unknown variables: st

i, s̄
t
i with 1 ≤ i ≤ c, 0 ≤ t ≤ r.

4.3 Computational Complexity

The complexity of execution of the cryptographic protocol introduced in this
paper, depends on the local functions used. A simple computation shows that
the complexity of the MCA proposed in the example is O

(
r · c · log

(
2b + 1

))
.

5 Conclusions and Further Work

In this work the study of the use of memory cellular automata in the design
of protocols to guarantee the integrity of digital images has been introduced.
Specifically, a very simple local transition function is proposed and it is shown
to be secure against the most important cryptanalytic attacks.
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The main features of proposed protocol are the following:

– It is very easy to compute the fingerprint of each image.
– It is very easy to verify whether or not a digital image has been modified.
– No external adversary can be able to efficiently produce the fingerprint for

any digital image of his/her choice.

Further work aimed at studying another suitable local transition functions
with the same security level and with the same (or less) computationally com-
plexity. Also, it will be very important to design a RMCA-based algorithm with
a lesser and fixed fingerprint and with the same security level. Moreover, this
work can serve as a basis for the development of MCA-based hash functions. In
this case, some specific cryptanalysis of the local transition functions employed
will be studied rather than brutte-force attacks.
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5. Álvarez Marañón, G., Hernández Encinas, L., Mart́ın del Rey, A.: A new secret
sharing scheme for images based on additive 2-dimensional cellular automata, Pro-
ceedings of the 2nd Iberian Conference on Pattern Recognition and Image Analysis,
LNCS 3522 (2005) 411-418.
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Abstract. The paper proposes a methodology to generate family of
expander graphs based on Two Predecessor Single Attractor Cellular
Automata (TPSA-CA). The construction is finally applied to develop a
one-way function whose security lies on the combinatorial properties of
the expander graph. It is shown that while the forward transformation
of the one-way function is computationally efficient the inverse opera-
tion appears to be intractable. Such a one-way function can be an ideal
candidate for one-way functions and thus help to develop fast and secure
key establishment protocols.

Keywords: Expander Graphs, Cellular Automata, One-way functions,
Security, Efficiency.

1 Introduction

Expander Graphs have been a significant tool both in theory and practice. It
has been used in solving problems in communication and construction of error
correcting codes as well as a tool for proving results in number theory and com-
putational complexity. The combinatorial properties of the expander graphs can
also lead to the construction of one-way functions [1]. Informally, the one-way
functions are a class of functions in which the forward computation is easy, but
the inverse is hard to find. The one-way functions form an important core of all
key agreement algorithms which are an important step in secure electronic com-
munication. The well known Diffie-Hellman key exchange algorithm [2] provides
a ground-breaking solution to the problem of secured key distribution. How-
ever the security of the algorithm depends on the one-wayness of the modular
exponentiation, which is a costly process in terms of computational resources.
Since the seminal paper of Diffie-Helmann, there has been efforts in develop-
ing key exchange protocols whose security lies on one-way functions which are
computationally efficient. However designing a strong one-way function which is
computationally strong and yet efficient is a challenging task.

The present paper uses a special class of Cellular Automata (CA) [3], known as
the Two Predecessor Single Attractor Cellular Automata (TPSA-CA) to generate
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expander graphs on the fly. The elegance of the scheme is that it uses regular,
cascadable and modular structures of CA to generate random d regular graphs
of good expansion property with very less storage. The state transitions of each
TPSA is captured in a single state, which is known as the graveyard of the CA.
Finally, the expander graphs have been used to construct the one-way function
according to the proposal of [1].

The paper is organized as follows: Section 2 presents the preliminaries of the
expander graphs. The TPSA-CA has been used to generate a family of expander
graphs in section 3. Section 4 presents the final composition of the one-way
function based on the TPSA-CA based expander graphs. The work is concluded
in section 5.

2 Preliminaries on Expander Graphs

Informally expander graphs are a class of graphs G = (V,E) in which every
subset S of vertices expands quickly, in the sense that it is connected to many
vertices in the set S of complementary vertices. It may be noted that the graph
may have self loops and multiple edges in the graph. The following definition
states formally the expansion property of these class of graphs [4].

Definition 1. The edge boundary of a set S ∈ G, denoted δ(S) is δ(S) =
E(S, S) is the set of outgoing edges from S. The expansion parameter of G
is defined as h(G) = minS:|S|≤n/2

|δ(S)|
|S| where |S| denotes the size of a set S.

There are other notions of expansion, the most popular being counting the num-
ber of neighbouring vertices of any small set, rather than the number of outgoing
edges. Following is an example of expander graph [5].

Example 1. Let G be a random d-regular graph, in which each of n vertices
is connected to d other vertices chosen at random. Let S be a subset of atmost
n/2 vertices. Then a typical vertex in S will be connected to roughly d × |S|/n
vertices in S, and thus |δS| ≈ d× |S||S|/n, and so |δ(S)|

|S| ≈ d |S|
n . Since, |S| has

its minimum at approximately n/2 it follows that h(G) ≈ d/2, independently of
the size n.

Although d-regular graph random graphs on n vertices define an expander, for
real life applications it is necessary to have more explicit constructions on O(2n)
vertices, where n is the parameter defining the problem size. This is because to
store a description of a random graph on so many vertices requires exponentially
much time and space. Two well known constructions are given in [6,7,8].

The properties of the eigenvalue spectrum of the adjacency matrix A(G) can
be used to understand properties of the graph G. The adjacency matrix of
a graph G, denoted by A(G) is an n × n matrix that each (u, v) contains the
number of edges in G between vertex u and vertex v. For a d-regular graph, the
sum of each row and column in A(G) is d. By definition the matrix A(G) is sym-
metric and therefore has an orthonormal base v0, v1, . . . , vn−1, with eigenvalues
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μ0, μ1, . . . , μn−1 such that for all i we have Avi = μivi. Without loss of generality
we assume the eigenvalues sorted in descending order μ0 ≥ μ1 ≥ . . . ≥ μn−1.
The eigenvalues of A(G) are called the spectrum of G. The following two results
are important in estimating the expansion properties of the graph.

1. μ0 = d
2. d−μ1

2 ≤ h(G) ≤
√

2d(d− μ1)

Thus, the parameter d − μ1, also known as the Spectral Gap gives a good
estimate on the expansion of the graph G. The graph is an expander if the
spectral gap has a lower bound, i.e, d− μ1 > ε′.

A graph G1 has better expansion properties than graph G2, implies that for
any subset S, |S| ≤ n/2 of the graph G1 has a larger number of neighbour-
ing elements outside the set S, compared to that in G2. Mathematically, the
value of h(G1) > h(G2). Informally, it implies that the graph G1 expands faster
compared to graph G2. The hardness of inverting the one-way function based
on expander graphs increases with the expansion of the expander graph [1]. A
random regular graph has good expansion properties. However the problem of
realising such a graph is in its description which grows exponentially with the
number of vertices. In the following section we show a construction of a family
of random d regular graph using the properties of a special class of CA, known
as the Two Predecessor Singe Attractor Cellular Automaton (TPSA CA). It
has been shown that the graph has good expansion properties. The merit of the
construction lies in the fact that the generation is extremely simple and leads to
efficient one-way functions.

3 Expander Graphs Using TPSA CA

TPSA CA are a special class of non-group CA in which the state transition graph
forms a single inverted binary routed tree at all zero state. Every reachable state
in the state transition graph has exactly two predecessors. The only cyclic state
is the all zero state (for a non-complemented TPSA CA), which is an attractor
(or graveyard). If Tn is the characteristic matrix of an n cell automaton then the
necessary and sufficient conditions to be satisfied by the Transition matrix for
the CA to be TPSA CA is: (i) Rank(Tn)=n−1, (ii) Rank(Tn + In)=n, In being
an n × n identity matrix (iii) Characteristic Polynomial = xn, (iv) Minimal
Polynomial = xn[3]. For an n cell TPSA CA with characteristic polynomial
xn and minimal polynomial xn, (i) the number of attractors is 1, the all zero
state, (ii) the number of states in the tree is 2n. For an n cell TPSA CA having
minimal polynomial xn the depth of the tree is n. Following is an example of a
4 cell non-complemented TPSA CA.

Example 2. The state transition matrix for the CA is denoted by:

T4 =

⎛
⎜⎝

1 1 0 0
1 1 0 0
0 1 1 1
0 0 1 1

⎞
⎟⎠
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(a) The state transition graph of a 4 cell
non-complemented TPSA CA
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complemented TPSA CA

Fig. 1. A 4 cell non-complemented TPSA CA

The state transition diagram of a 4 cell TPSA is shown in Fig. 1(a). As
an example let us compute the next state of 14, which in binary form is X =

(1110)T . Thus the next state is obtained as Y = T4

⎛
⎜⎝

1
1
1
0

⎞
⎟⎠ =

⎛
⎜⎝

0
0
0
1

⎞
⎟⎠ = 1 Thus

the next state of 14 is 1, which may be observed in Fig. 1(a). Here {0} is
the attractor or graveyard state. The states {5, 6, 4, 7, 8, 11, 9, 10} make
the non-reachable world, while the states {13, 14, 12, 15, 1, 2, 3, 0} make the
reachable world. The corresponding interconnection is given in Fig. 1(b). As
may be observed that the structure comprises of local interconnections leading to
efficient designs.

Next, we present an method to recursively synthesize an n cell TPSA. The state
transition matrix of the n cell TPSA is denoted by Tn and is generated from an
n − 1 cell TPSA CA characterized by the matrix Tn−1. The following theorem
describes the property exploited in the construction.

Theorem 1. Given that Tn−1 is the chararacteristic matrix of an (n − 1) cell
TPSA, the matrix Tn denoted by:

Tn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

| 0
| 0

|
...

Tn−1 | 0

|
...

| 0
| 0

− − − − − −
0 . . . 0 1 | 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

represents the characteristic matrix of an n cell TPSA.



640 D. Mukhopadhyay and D. RoyChowdhury

Proof. It is evident that since the element at the nth row and (n−1)th column is 1
and by the construction methodology all the rows have 0 in the (n−1)th columns
the row added is linearly independent from the other rows of Tn. Hence it adds
by 1 to the rank of Tn−1. Thus, rank(Tn) = rank(Tn−1)+1 = n−1+1 = n Sim-
ilarly, using the fact that rank(Tn−1 ⊕ In−1) = n− 1 (where In−1 is the identity
matrix of order n− 1), we have rank(Tn ⊕ In) = n. The characteristic polyno-
mial of the matrix Tn, denoted by φn(x) is evaluated as det(Tn ⊕ xIn), where
det denotes the determinant. Thus we have, φn(x) = xφn−1(x) = x.xn−1 = xn.
(φn−1(x) denotes the characteristic polynomial of Tn−1).

In order to evaluate the minimal polynomial we make use of the following propo-
sition.

Lemma 1. Let φn(x) and ψn(x) be the characteristic polynomial and the min-
imal polynomial of the matrix Tn, respectively. Let the greatest common divisor
(gcd) of the matrix (Tn ⊕ Inx)∨ that is the matrix of algebraic complements of
the elements of the matrix (Tn ⊕ Inx) be d(x). Then, φn(x) = d(x)ψn(x).

From the matrix (Tn⊕Inx)∨ it may be observed that the element at the position
(0, n) is 1 and thus the gcd d(x) is also 1. Thus the minimal polynomial is equal to
the characteristic polynomial which is xn. Thus, we observe that the construction
follows all the four necessary and sufficient requirements of a TPSA CA. This
completes the proof.

Example 3. Given the fact that T2 =
(

1 1
1 1

)
is the characteristic matrix

of a 2 cell TPSA CA. Thus, using the above theorem it is evident that T3 =⎛
⎝ 1 1 0

1 1 0
0 1 0

⎞
⎠ is the characteristic matrix of a 3 cell TPSA CA.

We have seen above that the state transition in the above class of TPSA CA is
governed solely by the characteristic matrix. This class of CA is known as the
non-complemented TPSA CA. On the contrary when the next state is obtained
by the application of the characteristic matrix and then xoring with a 0−1 vector
F , the CA is known as the complemented TPSA-CA. The following results show
how complementing the state transition function of the non-complemented CA
generates a class of automaton with the same properties as the original TPSA
CA.

Lemma 2. Corresponding to a non-complemented TPSA CA M1 and a state Z,
there exists a complemented CA M2 with state Z as an attractor. If the charac-
teristic matrix M1 be indicated by Tn and it is required to build a complemented
TPSA CA such that Z is the graveyard (attractor) then the characteristic matrix
of the complemented CA, Tn is related to Tn by

Tn(X) = Tn(X) ⊕ (In ⊕ Tn)Z

where X is the seed to the CA and In is the identity matrix of order n.
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Lemma 3. A complemented TPSA CA has the same structure as a non-compl
emented TPSA CA. To emphasize

– Number of attractors in the complemented CA is the same as that in the
original non-complemented CA.

– Number of reachable states and non-reachable states are same as that in the
original non-complemented CA.

Lemma 4. If any state Z in the non-reachable world of a non-complemented
CA is made the graveyard in a complemented TPSA, then the non-reachable
elements become elements of the reachable world in the commplemented CA and
viceversa. Thus the reachable world (W1) and the non-reachable world (W2)
exchange themselves.

Proof. LetX andZ be twonon-reachable elements in the n cell non-complemented
CA with characteristic matrix Tn. Let X be the lth level sister of Z. In all cases
l < n. Thus, we have:

T l
n(X) = T l

n(Z)

Let us consider the state transition diagram of the complemented CA with Z as
the graveyard. The state transition of the complemented CA is indicated by T n.
We shall prove that in this state transition graph X is a reachable state. Let,
the depth of X in the graph of the complemented CA be t. If t is less than n
then X is a reachable state. Since, Z is the graveyard of this graph we have:

T
t

n(X) = Z

T t
n(X) ⊕ (In ⊕ T t

n)Z = Z

T t
n(X) = T t

n(Z)

Thus, X and Z are tth level sisters in the state transition graph of the non-
complemented CA. But we know that they are lth level sisters. Thus t = l < n.
Thus, the depth of X is lesser than n and hence X is a reachable state in the
state transition graph of the complemented CA.

3.1 Construction of Expander Graph Using the TPSA CA

The TPSA CA can be effectively used to generate a random d regular graph
on the fly. It may be noted that the entire nature of the graph is stored in the
graveyard state, thus leading to a very compact storage of the graph. This is
because given the graveyard state, the entire transition graph can be obtained.

In order to construct the d regular graph we proceed as follows: Let Z1 ∈
W1 (non-reachable world in the non-complemented TPSA CA) and Z2 ∈ W2
(reachable world in the non-complemented TPSA CA). Let, G1 and G2 be the
state transition graphs with Z1 and Z2 as the graveyards respectively.

Clearly, in G1 if X ∈ W1, degree(X) = 3 and if X ∈ W2, degree(X) = 1.
Similarly, in G2 if X ∈ W1, degree(X) = 1 and if X ∈ W2, degree(X) = 3.
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Here degree is defined as the sum of the indegree and the outdegree in the
corresponding graph.

Thus, in the graph G obtained by a union operation in the graphs G1 and G2,
allowing multiple edges and self loops, we have for X ∈ G, degree(X) = 4. If we
continue the union operation in the above method we have degree(X) = 2(t+1),
where t is the number of union operations. Table 1 shows the result of an
experimentation performed with the TPSA based regular graph. It measures the
value of the two largest eigen values for random TPSA based graphs for degree
4, 8, 12 and 16. The difference between the largest two eigen values is known as
the spectral gap and should be large for good expansion of the graph. Results
show that the spectral gap and hence the expansion increases proportionately
with the number of union operations (t).

Table 1. Spectrum of a 4 cell TPSA based regular graph

No. of Graveyards Degree First Second Spectral g/t
Union (t) Eigen Value Eigen Value Gap (g)

1 {0},{4} 4 4 3.2361 0.76 0.76
3 {0,15},{4,8} 8 8 4.899 3.10 1.03
5 {0,15,3},{4,8,10} 12 12 6.3440 5.66 1.14
7 {0,15,3,2},{4,8,10,9} 16 16 5.2263 10.77 1.54

3.2 Setting Parameters of the d Regular TPSA Based Graph for
Good Expansion Properties

In the present section we compute the expansion obtained in the d regular TPSA
based graph in terms of the parameters of the graph G. Let the number of nodes
in the graph be n and the degree of each node is d. Let, us consider a random d
regular graph which has a subset A with αn vertices (0 < α < 1).

For the graph G to have good expansion properties the set A should have
more than βn (0 < β < 1) neighbours outside A. The probability of such an
event should be high.

Equivalently, we may state that the probability that the number of neighbours
of the vertices of A outside A is less than βn is negligible. Let us fix A and B
such that |A| = αn and |B|=βn.

It is required that the vertices of A be matched to N(A) (neighbours of A
outside A) s.t N(A) ⊂ B. If we first consider a single matching αn vertices can
have maximum αn neighbours in N(A). The probability that the neighbours of
A are in B is :

p =
no. of ways in which N(A) can lie inside B

no. of ways in which N(A) may be chosen outside A
=

(
βn
αn

)
(
n− αn
αn

)
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Hence, if we consider a d-matching, assuming all the edges to be independent
we have

Pr[N(A) ⊂ B] =

⎛
⎜⎝

βn
αn

n− αn
αn

⎞
⎟⎠

d

≈ ( β
1−α )αnd

Thus, we have the following probability:

Pr[∃A ∈ G s.t |A| = αn, |N(A)| ≤ βn] ≤
∑

|A|=αn

∑
|B|=βn

( β
1−α )αnd

≤
(
n
αn

)(
n
βn

)
( β

1−α )αnd

Next, we use the following approximations:
(
n
αn

)
= 2nH(α),

(
n
βn

)
= 2nH(β).

Here, H(α) = −α log2 α−(1−α) log2 (1 − α). Thus, setting α = 1
m and β = 1

2
and some simplifications we have:

Pr[∃A ∈ G s.t |A| = αn, |N(A)| ≤ βn] ≤ 2n[log2 m−(1− 1
m ) log2(m−1)+1+ d

m log m
2(m−1) ]

≈ 2−cn

Hence in order to make the probability negligible we may choose parameters m
and d such that c becomes positive. The value of d gives us an estimate of the
number of union operations t to be performed.

3.3 Mathematical Formulation of Adjacency in the TPSA Based
Graph

The graph G(V,E) can thus be described as a union operation between the
graphs G1 and G2 where Z1 ∈ W1 and Z2 ∈ W2 are the respective graveyard
states. Hence the degree in this case is d = 2(1 + 1) = 4.

The following algorithm computes the four neighbours of a given state in the
graph G.
Algorithm 1. Computing neighbourhood of a vertex in G

Input: Z1, Z2, a state X ∈ G
Output: The four neighbours of X (U, V, W, Y )
Step 1: Clearly,

U = Tn(X) ⊕ (In ⊕ Tn)Z1

V = Tn(X) ⊕ (In ⊕ Tn)Z2

Step 2: Compute, X ⊕ (In ⊕ Tn)Z1 = ( x1, x2, . . . , xn )T

Step 3:

If(x1 = x2){/ ∗ X ∈ G1 ∗ /
set wn = 0, Compute wn−1 = xn, wn−2 = xn−1, . . . , w2 = x3, w1 = w2 ⊕ x1

set yn = 1, Compute yn−1 = xn, yn−2 = xn−1, . . . , y2 = x3, y1 = y2 ⊕ x1

}
else{/ ∗ X ∈ G2 ∗ /
repeat Step 2 with Z2 replacing Z1

}
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It is evident that the distribution of the neighbourhood is identical to that
of Z1 or Z2 which are randomly chosen. Thus, we have a four regular pseudo-
random graph when we have only one union operation. The degree may be
increased with the number of union operations. The advantage lies in the fact
that in general the description of a random graph grows exponentially with
the number of vertices. However, using the TPSA based construction one may
generate graphs which exhibit randomness and also may be described using
polynomial space, as we require to store only the graveyard state. For an N
cell TPSA, in order to compute the neighbourhood of any state, Algorithm 1
is applied in constant time, as each of the steps 1, 2 and 3 may be applied in
constant time parallely on the N bit input vector. Herein lies the efficacy of the
TPSA based expander graphs.

4 Application of TPSA Based Expander Graphs in
Constructing One-Way Functions

The one-way function using the d-regular graph generated by the TPSA is based
on the construction proposed in [1]. The one-way function maps a string in
{0, 1}n to another in {0, 1}n. The algorithm is based on a d regular graph gener-
ated by the TPSA. As already mentioned the graveyard states are from W1 and
W2. Let Z1 denotes the graveyard states from W1 and Z2 denotes the graveyard
states from W2. If there are i elements in Z1 and Z2 then the number of union
operations required to generate the d regular graph is 2i − 1 and so we have
d = 2(2i− 1 + 1). Thus we arrive at the number of graveyard states required as
i = d

4 .
The evaluation of the one-way function is as follows:

Algorithm 2. One-way function (f) using the state transitions of a TPSA
Input: Z1 ∈ W1, Z2 ∈ W2, a state X ∈ {0, 1}n.
Output: The one-way output Y ∈ {0, 1}n such that Y = f(X)
Step 1: Consider an N cell TPSA, where N = log2(n). Generate a collection C,

which constitutes of the neighbours of each node in the regular graph generated by the
state transitions of the TPSA using Algorithm 1. Mathematically, C = {Si, if v ∈
Si, E(v, i) = 1, i ∈ {1, . . . , n}}.

Step 2: For i = 1 to n, project X onto each of the subsets Si. If Si = {i1, i2, . . . , id},
then the projection of X on Si denoted by XSi , is a string of length d indicated by
{Xi1 , Xi2 , . . . , Xid}.

Step 3: Evaluates a non-linear boolean function Π on each of the n projections thus
giving an n bit output, {Π(XS1), Π(XS2), . . . , Π(XSn)}. The non-linear function Π is

Π(z1, z2, . . . , zd) = (
d/2

i=1

zizi+d/2) mod 2.

The forward transformation is very efficient as the total time required is O(n).
This may be observed as the time required to perform Step 1 is due to that
required to apply Algorithm 1 at all the 2N vertices. Hence the total time is also
proportional to 2N = n. The time required to apply Step 2 and Step 3 is also
proportional with n and hence the total time required. However computing the
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inverse seems to be intractable even when the collection C is known. As proved
in [1] the complexity of a proposed inverting algorithm is atleast exponential in
minπ{maxi{| ∪i

j=1 Sπ(j)| − i}}.
We have shown in section 3.2 that the probability that the size of the neigh-

bourhood of any subset S is proportional with n is very high. Thus for all cases
the value of minπ{maxi{| ∪i

j=1 Sπ(j)| − i}} is O(n) and hence the complexity
of a possible inverting algorithm proposed in [1] is atleast exponential in O(n).
Thus the problem of inverting the one-way function seems to be intractable.

5 Conclusion

The paper proposes a novel method to generate expander graphs with good
expansion properties based on the state transitions of a special class of Cellu-
lar Automata, known as the Two Predecessor Single Attractor CA (TPSA-CA).
The expander graphs has been finally used to compose an efficient one-way func-
tion whose security lies on the combinatorial properties of the expander graphs.
The one-way function may be an ideal candidate for use in key establishment
protocols.
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Abstract. This paper presents novel combinational logic designs with plus-
shaped quantum-dot cellular automata (QCA) using minority gate as the 
fundamental building block. Present CMOS technology of VLSI design is fast 
approaching its fundamental limit, and researchers are looking for a nano-scale 
technology for future ICs in order to continue the pace of circuit miniaturization 
predicted by Moore’s law even beyond 2016. QCA is considered to be a 
promising technology in this regard. This paper provides the fundamentals of 
QCA followed by the proposed QCA structure realizing a minority gate, given 
by the Boolean expression m (x1, x2, x3) = x1

’.x2
’
 + x2

’.x3
’
 + x3

’.x1
’. Universality of 

minority gate is established, and minority gate oriented design principles are 
provided. Minority gate oriented designs for XOR and full adder are presented. 
Simulation results show the effectiveness of the proposed designs. 

Keywords: Nano-computing, Quantum-dot Cellular Automata, Minority Gate. 

1   Introduction 

Gordon Moore of INTEL predicted in 60’s that the packing density of IC chips would 
double every two years. This is known as the famous Moore’s law. Thanks to the 
ceaseless efforts of the VLSI research community, Moore’s law was more or less 
obeyed for the last fifty years. However, as the present CMOS technology of VLSI 
design is fast approaching its fundamental limit, reality is gradually deviating from 
Moore’s prediction (Fig.1). It seems that further reduction in device size will produce 
quantum mechanical effects that hinder device functionality. However, it is quantum 
mechanics that provides hope for further development in IC technology.  

Quantum-dot cellular automata (QCA) [1-6] is projected as a promising nano-
technology for future ICs. It offers a new way of information processing which is 
conceptually simple. Unlike conventional electronics, QCA stores logic states  as 
positions of individual electrons rather than voltage levels. Although QCA is still in 
the research stages, it has been experimentally verified [7-9] and practical issues in 
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the realization of QCA have been investigated [10]. In [11] Niemier et al proposed a 
potentially implementable field programmable gate array (FPGA) for QCA. Fault-
tolerant computing with QCA is dealt with in [12-14].  

 
Fig. 1. Progress in IC technology 

This paper presents novel minority gate oriented designs of combinational circuits. 
The flow of information through the circuits is controlled by four clock signals [15, 
16] each shifted in phase by 90 degrees. The design and simulation is carried out in 
the QCADesigner [17] environment. 

 

Fig. 2. Structure of a QCA cell  

Rest of the paper is organized as follows. Section 2 presents the fundamentals of 
QCA. The structure of the minority gate and its characterization are presented in 
Section 3. The minority gate based logic designs are given in Section 4, which is 
followed by the simulation results given in Section 5. Section 6 concludes the paper.  

 

Fig. 3. Diagonal (plus-shaped) QCA cell 
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2   Preliminaries 

The following subsections present a brief overview of the fundamentals of QCA. 

2.1   Cell Structure  

A QCA is an array of structures known as quantum-dots. Computing with QCA is 
achieved by the tunneling of individual electrons among the quantum-dots inside a 
cell and the classical Coulombic interaction among them. A quantum-dot is a region 
where an electron may be localized. It acts like a well, because once an electron is 
trapped inside the dot, it cannot escape due to lack of adequate energy. However, 
when sufficiently energized, the electron may tunnel to another quantum-dot. A QCA 
cell consists of four of such dots, positioned at the four corners of a square. Fig. 2 
shows the structure of a QCA cell and the way of storing a single bit within such a 
cell. Each cell contains two extra electrons. They can tunnel among the dots but 
cannot go out of the cell. Moreover, these are subject to electrostatic repulsion so that 
they are forced to settle into the opposite corners. The corresponding polarizations P 
= -1 and P = +1, represent the logic values of  “0” and “1” respectively. Depending on 
the relative position of the quantum-dots within a cell, QCA cells are classified as 
either normal (or, cross-shaped), or diagonal (i.e., plus-shaped). The structure of a 
plus-shaped cell and the way to represent a single bit with it are shown in Fig. 3. 

2.2   Wire 

QCA cells retain their electrons but inter-cell electrons interact electrostatically. 
Hence, the electrons rearrange among the dots through tunneling so that the whole 
cell-arrangement acquires ground energy level. If a cell C1 is fixed at polarization P, 
the adjacent cell C2 will be induced to the same polarization P. A binary wire (Fig.4) 
is an array of QCA cells. Once a logic “0” or “1” is fixed at one end of the array, the 
other cells acquire the same logic value. In other words, one bit of information may be 
instantaneously propagated from one end of a QCA wire to the other end. 

 

Fig. 4. QCA wires 

Depending on the category of constituent cells, there can two kinds of binary 
wires, viz., normal, and diagonal. A diagonal wire consists of diagonal cells. A bit, 
while passing through a diagonal wire, toggles itself at each successive cell. 
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Fig. 5. Majority Voter Logic 

2.3   Logic Gates 

Logic gates are realized by appropriate arrangement of QCA cells. The basic logic 
operation in QCA circuits is majority voting, MV (Fig.5). A 3-input MV outputs a 
logical one whenever there are more than one logical ones at the inputs. The AND/OR 
operations can be realized with the majority gate by keeping x3=0, and x3=1, 
respectively. However, the majority voter is not functionally complete because it 
cannot realize logical NOT. Separate cell arrangements are required for this.  

 

Fig. 6. Co-planer wire crossing 

Interestingly, QCA have the unique property of being able to create co-planer wire 
crossings. This is shown in Fig. 6. A normal QCA wire can cross a diagonal QCA 
wire on the same plane without interfering one another. Hence, interconnection in a 
QCA wire is easier than in conventional electronic circuits. In principle, the majority 
voter, inverter, and wire crossing, are sufficient to create any complex digital circuit. 

2.4   Clocking 

The basic QCA cell has no inherent directionality for information flow. Therefore, in 
an arbitrary arrangement of QCA cells, information may propagate in uncontrollable 
directions. Four clock signals, each shifted in phase by 900, are used to retain control 
over the flow of information in a QCA circuit (Fig.7). When the clock signal is low 
the cells are latched, i.e., the electrons settle in their respective quantum-dots. When it  
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is high, they are relaxed. This implies that they are equally likely to exist in any of the 
four quantum-dots and consequently, have no polarization. During the transition 
periods, the cells are in the process of either being latched or relaxed. 

 

Fig. 7. QCA clocking scheme 

QCA clocking is realized by controlling the potential barriers between the cells. A 
high tunneling potential makes the electron wave function de-localized resulting in 
indefinite polarization. When the potential barrier is raised, tunneling potential is 
decreased and the electrons localize. This, in turn, gives a definite polarization to the 
QCA cell. The entire process is completely adiabatic. Four clocking zones, each 900 

out of phase, are employed to bypass the problems associated with thermal excitation. 
The phases through which a single clocked QCA cell undergoes attached to a certain 
clocking zone is shown in Fig. 8(a). A QCA wire with different clocking zones to 
facilitate information flow in a predefined direction is shown in Fig. 8(b).  

 

Fig. 8. Information flow through clocking zones 

3   Minority Gate 

The logic of a 3-input minority gate is expressed as m(x1,x2,x3) = x1’.x2’+x3’.x1’+ 
x2’.x3’. It outputs a logical one whenever there are two or more logical zeros at the 
inputs. A 4-cell realization of a minority gate [18] is shown in Fig.9. The structure 
uses plus-shaped QCA cells instead of the conventional cross-shaped cells. Fig.10 
shows the simulation results obtained through QCADesigner. The simulation results 
confirm that the proposed structure follows the desired logic of minority gate.  
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Fig. 9. Minority gate with QCA 

 

Fig. 10. Simulation results for minority gate 

Minority gate is universal.  The following derivations prove this. 

 NAND  : (x1.x2)’ = x1’+ x2’ = x1’.x2’ + x1’+ x2’ = m (x1, x2, 0)  
 NOR : (x1+x2)’ = x1’.x2’ = m (x1, x2, 1) 
 NOT : x1’ = m (x1, 0, 1)   
 AND : x1.x2 = ((x1.x2)’)’ =  m ( m (x1, x2, 0) , 0, 1)   
 OR  : x1+x2 = ((x1+x2)’)’ =  m ( m (x1, x2, 1), 0, 1)   

As the expressions show, 2 minority gates are needed to implement AND/OR logic. 
However, only one is sufficient for this purpose. This can be achieved in two ways :  

 i) By configuring the minority gate as MV and obtaining the AND/OR logic as 
specific cases of majority voting. 
 ii) By applying complementary values of the input variables through proper 
selection of the length of the diagonal wires leading to the inputs of the minority gate.  

 

Fig. 11. Dual function realization 
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Majority voter can be realized with minority gate by positioning a diagonal cell 
next to the output cell (Fig.11). Evidently, minority and majority outputs are available 
at successive cells of the diagonal wire at the output of the minority gate. This is due 
to the toggling property of logic values at alternative cells of a diagonal wire. 

 

Fig. 12. Schematic symbols for minority/majority gate 

4   Logic Design  

For the purpose of minority gate oriented logic design, two symbols, one for minority 
gate, another for majority voter realized with minority gate, are introduced in this 
paper (Fig.12). The symbols manifest the fact that the I/O lines of the device must be 
perpendicular to each other. This inherent property of QCA circuit building blocks 
plays an important role during complex circuit design. The proposed schematic 
symbols help the process of QCA circuit design by bringing out the hidden layout 
constraint and making the designer aware of it. Fig.13 depicts the schematic diagrams 
and the corresponding cell structures of the basic gates realized with minority gate.  

 

Fig. 13. Universality of minority gate 

Various minority gate oriented combinational circuits are designed and tested with 
the QCADesigner tool. Among them, an XOR gate and a full adder are presented here 
because of their importance in combinational circuit design. Fig.14 and 15 show the 
schematic diagram and the QCADesigner implementation of the XOR gate. 
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Fig. 14. Schematic diagram of minority oriented XOR 

 
Fig. 15. Minority gate oriented XOR with QCADesigner 

Fig.16 and 17 show the schematic diagram and the QCADesigner implementation 
of the full adder. The rectangles with C0, C1, C2, and C3 represent a series of 
consecutive cells belonging to the respective clocking regions.  The arrows indicate 
the direction of flow of information. The present design employs two full cycles of 
QCA clocking between the input and the final output. This is because both XOR and 
 

 

Fig. 16. Schematic diagram of minority oriented Full Adder 
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Fig. 17. Minority gate oriented Full Adder with QCADesigner  

full adder are two level logic functions. In order to synchronize the input to the 
second level logic, the outputs of the first level should be at the same clock region. 

5   Simulation Results 

This section reports the simulation results for the designs under QCADesigner. It 
consists of various CAD features required for complex circuit design with QCA cells. 
The simulation steps are as follows: 

a) Input vectors are applied to the corresponding input cells, so that the cells are 
polarized to the input values.  

b) Then, the polarization of the cells are iteratively calculated by the simulation 
engine until each cell converges to a polarization within the preset tolerance.  

c) Polarization of the output cells are recorded and then a new iteration starts.  

 

Fig. 18. Simulation results for XOR 

Fig.18 and Fig.19 show the simulation results for the XOR and the full adder 
circuits respectively. The simulator engine was setup to bi-stable approximation with 
exhaustive verification type. Here, outputs for every possible input sequence are 
produced. To control the flow of information, 4 clock signals, each shifted in phase by 
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900 are used. There are 8 clocked regions from the input to the output. Hence, the 
output is 2×360° out of phase from the input. Considering the phase lag, we find that 
the truth tables of XOR and full adder are satisfied. The results for simulation engine 
set to bi-stable approximation are shown. Similar results are obtained for the other 
models, viz., non-linear approximation, digital simulation, and coherence vector. 

 

Fig. 19. Simulation results for Full Adder 

6   Conclusions 

Novel combinational circuits with plus-shaped quantum-dot cellular automata (QCA) 
using minority gate as the fundamental building block are presented in this paper. 
QCA is a promising nano-technology for continuing the pace of miniaturization of 
IC-chips even beyond the year 2016. The fundamentals of QCA are discussed, 
followed by the proposed QCA structure realizing the minority gate, given by the 
expression m(x1,x2,x3)=x1

’.x2
’
+x2

’.x3
’
+x3

’.x1
’. Universality of minority gate is proved 

and minority gate oriented design principles are provided. The designs for XOR gate 
and full adder are presented that employs only plus-shaped QCA cells and uses 
minority gate as the basic building block. Simulation results are reported that 
manifest the effectiveness proposed designs. 
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Abstract. Two-dimensional cellular automata (CA) systems are widely used for 
modeling spatio-temporal dynamics of evolving populations. Conversely, the 
logistic equation is a 1-D model describing non-spatial evolution. Both 
clustering of individuals on CA lattice and inherent limitations of the CA model 
inhibit the chaotic fluctuations of average population density. We show that 
crude mean-field approximation of stochastic 2-D CA, assuming untied, 
random “collisions” of individuals, reproduces full logistic map (2≤r≤4) only if 
infinite neighborhood is considered. Whereas, the value of the growth rate 
parameter r obtained for this CA system with the Moore neighborhood is at 
most equal to 3.6. It is interesting that this type of behavior can be observed for 
diversity of microscopic CA rules. We show that chaotic dynamics of 
population density predicted by the logistic formula is restrained by the motion 
ability of individuals, dispersal and competitions radiuses and is rather 
exception than the rule in evolution of this type of populations. We conclude 
that the logistic equation is very unreliable in predicting a variety of evolution 
scenarios generated by the spatially extended systems.  

Keywords: spatially extended systems, cellular automata, logistic equation, 
chaotic dynamics. 

1   Introduction 

The individuals from evolving populations are usually distributed in space. This 
generates at least two potentially important consequences for their dynamics. First, 
individuals interact more frequently with neighbors than with more distant individuals 
creating rich collection of spatial structures. Second, individuals at different locations 
may experience different environmental interactions influencing their birth and death 
rates. Therefore, creation of spatial patterns and heterogeneity of the environment 
have been suggested in [1] as an explanation of substantial differences between 
behavior generated by simple ecological models e.g., by the logistic equation, and real 
evolution of many organisms.  

Of course, there are other reasons why the logistic equation may fail to give an 
adequate description of population growth [2]. The per capita effect of density on 
population growth may not increase linearly with density or there may be a time delay 
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in the operation of density dependence. Time delays can occur in structured 
populations when density affects vital rates at particular ages or sizes. Similarly, 
spatial patterns produced by colonies of organisms can be treated not only as a 
consequence of population dynamics, the effect of energy minimization or dissipation 
but also as a built-in, self-control mechanism of further evolution. 

In [1] the authors discussed how great an effect does spatial structures generated by 
evolving population have on the total logistic growth. They employ an individual-
based model (IBM) with spatially localized dispersal and competition. From a 
deterministic approximation to the IBM, describing the dynamics of the first and 
second spatial moments, they concluded that populations may grow slower or faster 
than would be expected from the non-spatial logistic model. Moreover, they may 
reach their maximum rate of increase at densities other than half of the carrying 
capacity as states the logistic formula. These types of behavior can be controlled both 
by values of dispersal/competition radiuses and their ratio.  

Surprisingly, the methodology proposed in [1] explains the evolution of only stable 
colonies, i.e., the situations when the total number of individuals converges to a fixed 
point.  Other types of dynamics including chaos are not discussed in [1] at all. 
Therefore, the important questions arise. Can spatially distributed population reveal the 
chaotic behavior similar to this predicted by non-spatial logistic equation?  Which 
factors decide about transition from a stable to chaotic population and vice versa? What 
is the role of spatial structures in controlling chaos? These problems can be addressed 
within a modeling formalism best matched to the type of investigated population. 

The attempts to decide the role of spatial component of population dynamics has 
inspired a variety of modeling formalisms, which differ in grain and detail. Space, 
time, and local population state may be treated as discrete or continuous variables. 
Local processes and spatial locations of population individuals may or may not be 
explicitly modeled. For example, IBM method, mentioned above, is continuous in 
time and space. Population is defined by discrete objects moving in space. In PDE 
based models [3] population density is a continuous function of time and spatial 
coordinates. Both models describe nonlinear local population dynamics and include 
explicit space. Conversely, the approaches based on coupled logistic map treat space 
in an implicit way [2,4].   

To compare chaotic modes of logistic model and spatially extended system we use 
2-D stochastic cellular automata system, which simulates evolution of a discrete 
population in a discrete space and time. In the first section we introduce and discuss 
stochastic CA model representing spatially correlated and uncorrelated populations. 
We also derive its limitations in simulating chaotic behavior. Then we show that for 
similar but motionless systems only fixed point behavior is observed. At the end we 
summarize our findings. 

2   Logistic and 2-D Stochastic CA Systems 

Non-spatial population dynamics is governed by the logistic map:  

( )xxrx −⋅→ 1'                                                    (1) 

The variable x represents the current population density while x’ denotes the density 
of the following generation. This is obvious that x (and x’) ∈[0,1]. The dynamics of 



 In Search of Cellular Automata Reproducing Chaotic Dynamics 659 

this map is well understood. If the growth rate parameter (biotic potential) r is 
between 0 and 1, the equilibrium at x=0 is stable. If 1<r<3, x=1-1/r is the fixed point 
of iteration (1). At r=3 there is a period-doubling bifurcation, starting a period-
doubling cascade that leads to the onset of chaos at r>3.5699. If r>4 the map 
generates negative numbers and is no longer interpretable as an ecological model. 

The random collision of individuals assumed in the logistic equation, often referred 
to as the ‘‘mean-field’’ assumption, may not represent interactions among organisms 
well. It is obvious how unsatisfactory this assumption is observing plant populations. 
Spatially localized colony of plants develops clumped structures. In such the 
structures, individuals can experience strong effects of competition with their 
neighbors, even though unexploited resources are located nearby. To define the 
conditions for which a spatially extended system mimics well the logistic equation 
and when their behaviors become different, let us define a simple 2-D cellular 
automata model of evolving population. 

  

a b c

 

Fig. 1. Snapshots from a few specific examples of 2-D automata based on the model a) spin 
glasses, b) annealing rule, c) Fredkin parity rule automata. 

We consider species living on a two-dimensional discrete, squared lattice 
ℑ={X(k,l), k=1,...,M;l=1,...,M}. The lattice is periodic, homogeneous, limited but 
large enough for edge effects to be neglected. In all simulations we used M=200 
because larger lattices do not change considerably the results obtained. Moreover, the 
structures with correlation lengths < 100 produce adequate statistics. We consider 
binary CA, i.e., if an individual resides at node (k,l) then X(k,l)=1, otherwise X(k,l)=0. 
Every (k,l) node “sees” only its closest neighbors from Ω(k,l) vicinity, e.g., for the 
Moore neighborhood, only Nm=8 adjacent nodes. Initially, the lattice is populated 
randomly with density x=x0. The population evolves in space and time. The CA 
system is updated synchronously according to the following rule:  

 
                                             X’(k,l)→R(X(k,l),N(k,l))                                            (2)                 

 

where X’(k,l) denotes the (k,l) node state in the following generation and 0≤N(k,l)≤Nm 
is the number of individuals in Ω(k,l). We define the stochastic rule R as a set of 
probabilities: 

                       A(X,N) = {0<aX,N<1,  X∈{0,1}, N=1,...Nm : X’(k,l)=0},                  (3)  
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where aX(k,l),N(k,l) corresponds to the probability that in the following generation the 
X(k,l) node with N(k,l) neighbors becomes/remains unpopulated (i.e., X’(k,l)=0). For 
example, a1,8=1 means that the (k,l) individual surrounded by N(k,l)= 8 other 
individuals will die in the following generation (i.e., X’(k,l)=0), while a0,8=0.6 
indicates that the unpopulated (k,l) node surrounded by N(k,l)=8 individuals (in its 
closest neighborhood) will remain empty in the following generation with the 
probability equal to 0,6. This type of CA represents broad class of 2-D cellular 
automata, including totalistic CAs as well as many known specific automata [5] such 
as “game of life”, Fredkin, parity rule automata, Vichniac annealing rule, spin glasses, 
and many others. In Fig.1 we show a few examples. 

Let us assume that we are not interested in a restricted behavior of the model, e.g., 
generated by specific initial conditions or anisotropic rules. As displayed in Fig.2, a very 
feeble stochastic term may change the CA evolution substantially. On the one hand, it 
destroys regular patterns produced by evolving population. On the other, the chaotic 
fluctuations of population density calms down and the population becomes stable. The 
same transition occurs by violating randomly the symmetry of the pattern from Fig.2a.  

 

a b

t t 

x x 

Rule violation

 

Fig. 2. a) Regular spatial patterns producing the chaotic time evolution of the average 
population density x for deterministic 2-D CA defined as follows: a1N(k,l)=1 for 0<N(k,l)<8 and 
a1N(k,l)=0 elsewhere, and a0N(k,l)=1-a1N(k,l). The population starts from a single individual located 
in the lattice center. b) Fixed point behavior obtained during the same simulation but after a 
slight modification of the CA rule specified in a). After this modification the rule reads as 
follows: a1N(k,l)=0.99  for 0<N(k,l)<8 and a1N(k,l)=0 elsewhere, and a0N(k,l)=1-a1N(k,l). 

We are looking for a local rule R, for which the 2-D CA system as a whole will 
mimic the logistic formula from Eq.(1). Particularly, we expect observing the chaotic 
behavior such as this generated by Eq.(1) for r=4.  
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2.1   Uncorrelated Population 

We consider here a CA model of “uncorrelated” populations. The random collisions 
and untied motion of individuals – being the assumptions of the logistic model - we 
simulate by their random scatter over the CA lattice after each evaluation round. That 
is, our CA model is realized in two steps which repeat in time. After employing the 
rule R synchronously in all the lattice nodes, each individual is moved randomly to an 
optional, unoccupied node. Then the number of neighbors N(k,l) of each lattice node 
undergoes the Bernoulli distribution. Therefore, the average population density x 
evolves in time according to the following formula: 

( )
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0<p<1 and 0<q<1 are “environmental” probabilities of survival of both existing 
individuals and newborns to the next round, respectively. The expressions in brackets 
represent the competition terms. We are looking for rules R (i.e., A(X,N) sets) which 
can reduce Eq.4 to Eq.1.  After some algebra we get the following relationships: 
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where r is the biotic potential from Eq.1. The maximum value of r, i.e., rmax can be 
computed from (5) for a0i=a1i=0 and i=Nm/2, thus: 
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Therefore, only for infinite neighborhood Nm→∞ - i.e., infinite dispersal and 
competition radiuses - one can obtain fully developed chaotic fluctuations, the same 
as produced by the logistic equation for r=4. A few exemplar rules of 2-D CA rules 
yielding chaotic populations (in respect to x) are collected in Table.1. Projections on 
(a1,i) and (a0,i) planes of allowed solutions of Eq.5 are shown in Fig.3. Despite these 
microscopic rules are not perfect copies of the resulting macroscopic behavior, they 
are of a very similar nature. Except of the third set in Table 1, the remaining sets 
mimic dispersal and competition rules from the logistic equation. As shown in Fig.4, 
our CA model exactly reproduces the logistic map for r∈[2,3.6]. 

Let us reduce the number of possible solutions of Eq.5 focusing on the totalistic 
cellular automata. Then the subsequent state of each (k,l) node depends on the 
probability aN’(k,l)∈(0,1) computed for all N’(k,l)=N(k,l)+X(k,l) individuals in Ω(k,l) 
neighborhood including the i=(k,l) node.  
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Table 1. A few examples of stochastic rules computed from Eqs.5,6 and producing chaotic 
behavior for “uncorrelated” CA populations (Nm=8, p=q=1) corresponding to the logistic 
equation with r=rmax=3,6 

 
 
 

a1i              a0i a1i              a0i a1i              a0i a1i              a0i 

No neig 
i= 

I II III IV 

 

a1 a0

Number of neighbors i Number of neighbors i  

Fig. 3.  Projections of allowed solutions of Eq.5 on (a1,i) and (a0,i) planes. The continuous 
surfaces are drawn as the guide for eyes. The bright-dark shades correspond to values from 
[0,1] interval. 

  
 

2 3.6 3.6 3.53

r 

y 

 
Fig. 4. The logistic map obtained for 2-D CA system of “uncorrelated” individuals (Nm=8,  

p,q=1). The lattice of size 1000x1000 was considered to obtain the picture on the right. 
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By substituting ai=aN’(k,l)=a1i=a0i+1 and for p=q=1 the Eq.5 simplifies: 
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producing a unique solution. The values of resulting probabilities are shown in Table 
1 in the second set (II). The expression in brackets reproduces macroscopic logistic 
curve in “microscopic” scale, where X is the population density in the closest 
neighborhood of i=(k,l). As shown in Fig.4, the CA system with rule R defined by 
Eq.7 reproduces the logistic map also in the macroscopic scale. Does this rule behave 
in the similar way for correlated, motionless CA populations? 

2.2   Motionless and Correlated Population 

To discuss this problem, let us consider the lattice of independent automata X(k,l) with 
continuous states. Their values Xkl are the real numbers evolving according to the 
logistic formula: 

( )klklkl XXX −⋅⋅=′ 14 .                                                   (8) 

At the beginning of simulation, the values X0
kl in the lattice nodes are generated 

randomly by using uniform random number generator X0
kl=rndkl∈[0,1]. Such the 

system is locally chaotic. As shown in [6], the subsequent Xkl values for each cell 
match well the following statistical distribution: 

( )( )klkl rndX ⋅−⋅→ πcos1
2

1 ,                                              (9) 

where rndkl∈(0,1) are random numbers reproducing the uniform distribution.  It is 
easy to compute that the expectation value x=E(X)=1/2 over the lattice space and the 
variance σ2=1/8. Thus the system is globally stable.  Let us modify this system 
introducing interactions between neighboring cells such that: 
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Ykl is the local average of Xkl and the states of the nodes from its neighborhood Ω(k,l). 
Averaging Eq.10 over entire lattice we finally get: 
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where x is the average over all the CA states. If σ2=0 ⇔ ∀k,l=1,..,M; Ykl=Xkl= x   
this system is globally chaotic.  

If Xkl values on the lattice would be generated by using uniform random number 
generator, it is easy to check that the stochastic variable Ykl undergoes the Bernoulli 
distribution (see Fig.5a). Then for average population density x, σ2(Y)=x(1-x)/(Nm+1). 
Thus for 2-D CA with the Moore neighborhood (Nm=8) we finally obtain from Eq.11 that: 

( ) ).5(55,3
9

5
3   and  1 ==−⋅⋅=′ rxxrx                             (12) 
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This is less than we have obtained from Eq.6 (r=3,6) for the discrete, “uncorrelated” 
CA model. This difference is the result of continuous representation of currently 
considered CA system.  

 

a b c

 

Fig. 5. The histograms representing average number of neighbors in the Moore neighborhood 
for population density x=2/3 for a) randomly generated population by uniform generator (the 
Bernoulli distribution of neighbors number) b) continuous CA defined by Eq.6 and c) discrete 
CA 

   

Fig. 6. Globally chaotic system, described by Eqs.10,11 with σ2=0, becomes globally stable if 
the starting value in the middle of the lattice is different than in other nodes (here ∀k,l, 
k,l=1,...,200: k≠100 ∧ l≠100; X0

kl=0.4 ∧ X0
100,100=0.4001). In the right hand side figure the 

value of x≈2/3. Black color represents small values with Xkl<0.5. 

If the number of neighboring cells Nm→∞, i.e., both dispersion and competition 
radiuses are infinitely large, than σ2(Y)→0 and fully developed (r=4) chaotic behavior 
is observed (see Eq.11). However, the process defined by the Eq.10 produces 
distribution of Y, which departs considerably from the Bernoulli distribution. As can be 
deduced from Figs.5a,b, its standard deviation is considerably greater. This 
additionally decreases the value of r in Eq.11. As demonstrate the results of computer 
simulations (see Fig.6), population density stabilizes for x≈2/3. This suggests that in 
Eq.12 the value of r≈3. Therefore, as shown in Fig.6, starting the evolution given by 
Eq.10 with identical values of X0

kl  in the lattice nodes but the central node, finally, the 
chaotic system becomes globally stable. For Nm→∞ (Ω(k,l)→ ℑ)  the local densities Ykl 
“seen” by each node will be the same. Thus the values generated in each node by 
Eq.10 should be also the same. The whole system will be then chaotic in the same way 
as the system described by Eq.11 for σ2=0. On the other hand, even very small 
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differences between Ykl will produce the same effect as this observed in Fig.6. The 
interplay between fast growing differences between node values boosted by the chaotic 
logistic map and smoothing effect of averaging in Ω(k,l), will decide about the way the 
population density evolves. Therefore, more formal approach is required to scrutinize 
how σ2 value behaves for Nm→∞ and in which extent it influences (decreases) r value 
in Eq.11. By solving this problem one can decide definitely if spatially localized 
stochastic CA can or cannot mimic the chaotic behavior from the logistic map. 

For discrete “motionless” population, modeled by using binary CA automata the 
situation is very similar to this described above for continuous state system. Instead of 
the continuous rule given by Eq.10, we have probabilities of extinction/survival 
represented by Eq.7 (or derived from Eq.5 in more general case), which is discrete 
equivalent of Eq.10. Because Eq.11, is valid also for the discrete case, it is seen from 
Fig.5c that the value of biotic potential for “motionless” population should be less 
than for “uncorrelated” population. We have employed the variety of rules, generating 
chaotic fluctuations for “uncorrelated“ population, in the “motionless”, discrete 
system. Similarly, as it was for the continuous CA, each time we obtain stable 
population with density x≈2/3. We can conclude, that the spatial structures produced 
by static populations, as these shown in Fig.7a, can restrain organisms to encounter 
each other proportionally to their average density. This way, they can postpone or 
inhibit completely the chaotic changes in average population density.  

  

Fig. 7. The snapshots displaying distributions of individuals on CA lattice for two different CA 
systems.  Motionless (left) and “uncorrelated” (right) populations are compared. Populated sites 
are colored in white. 

3   Concluding Remarks 

We can summarize our findings as follows: 

1. Uncorrelated, randomly scattered populations evolving on 2-D CA lattice can 
mimic the same pathway to chaos as this resulting from the logistic model, i.e., 
evolution from stable colonies through bifurcation swarms to chaos.  
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2. The fully developed chaotic behavior (r=4) occurs only for infinitely large 
dispersal and competition radiuses.  For the Moore neighborhood the maximal 
biotic potential is r=3,6, a little bit larger than r=3.57 when chaotic fluctuations 
begins. For von Neumann neighborhood (r=3,33(3)) only the first bifurcation can 
occur.  

3. This global logistic map can be obtained for variety of microscopic laws of 2D 
CA system. 

4. Motionless, spatially extended CA systems with limited neighborhood capacity 
(i.e., limited dispersal and competition) are stable. No chaotic fluctuations in 
population density are observed for irregularly spaced populations evolving 
according to stochastic rules.  

5. The appearance of spatial structures (clusters) plays a regulatory role of a stable 
evolution. However, no mathematical proof is given here to confirm this 
hypothesis for all possible stochastic laws and increasing neighborhood radius 
above the Moore’s one.  

6. As a problem for the future work, it would be interesting to inspect how 2D CA 
model will behave for intermediate dispersal and competition and limited motion 
ability of individuals. 

Ability of motion, large dispersal and competition radiuses allow for chaotic – wide – 
inspection of a “solution” space in looking for the optimal evolution conditions. 
However, in case of external attack in the moment when the population is the weakest 
one (i.e., the smallest) it can extinct quickly. On the other hand, stable and motionless 
populations producing spatial structures are immune on the external danger, but their 
evolution ability is limited. All of these factors inhibiting chaotic evolution are 
discussed in details in [7].  
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Abstract. Cellular automata are discrete dynamical systems that are
widely used to model natural systems. Classically they are run with
perfect synchrony ; i.e., the local rule is applied to each cell at each time
step. A possible modification of the updating scheme consists in applying
the rule with a fixed probability, called the synchrony rate. It has been
shown in a previous work that varying the synchrony rate continuously
could produce a discontinuity in the behaviour of the cellular automaton.
This works aims at investigating the nature of this change of behaviour
using intensive numerical simulations. We apply a two-step protocol to
show that the phenomenon is a phase transition whose critical exponents
are in good agreement with the predicted values of directed percolation.

1 Introduction

The research described in this article is motivated by the need to address a
general question raised in the modelling activity: “Does a given model keep its
behaviour when it is submitted to a perturbation of its updating scheme ?”
Of course, this question is too wide to be tackled in all its generality and we
choose here to study it in the more narrow context of cellular automata, taking
asynchronism as a means of perturbation.

In its classical paradigm, a cellular automaton consists of a collection of finite
state automata arranged on a regular grid, which update their state at each
time step according to a local rule. Using this formalism, we obtain discrete
dynamical systems that are used for modelling spatially extended phenomena
governed by a local rule. Such phenomena are to be found in various fields
such as physics (e.g., atoms interaction in a crystal), chemistry (e.g., non-stirred
reaction-diffusion), biology (e.g., virus spreading), etc. (see [1], chap. 1 for a
review). The method used for assessing the validity of a model generally consists
in comparing the output produced by the model to some experimental data.
We claim that this step is of course necessary but that it is not sufficient: one
may also need to examine to which extent the behaviour observed is due to the
implicit hypotheses of the model, namely: discretisation of state, regularity of
the grid, perfect synchrony of the transitions.

The latter problem was at first addressed in [14] by means of simulation, the
evaluation of the change in behaviour remaining qualitative. Other experimental
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works such as [3,17,15] followed, showing that the update scheme was indeed a
key point to study. On the theoretical side, very few results have been obtained
so far: the independence on the “update history” was shown undecidable in [9],
existence of stationary distributions was studied in [12] and a first classification
based on the convergence time was proposed in [7] and extended in [8]. In the
work [6], we experimentally showed that the perturbation of the updating scheme
of elementary cellular automata may alter significantly the behaviour of some
rules while other rules remained robust. We used one of the simplest means of
introducing asynchronism in the dynamics: instead of applying the rule simulta-
neously to all the cells, each cell has a given probability α, called the synchrony
rate to apply the rule.

This study showed that, among other phenomena, for seven elementary cellu-
lar automata, there exists a particular value of the synchrony rate αc for which a
small change of value produces an abrupt change of behaviour. It was then con-
jectured that this brutal variation could be explained by the existence of a phase
transition, more precisely that the universality class1 of the phase transition was
directed percolation (DP). We wish to emphasize that this hypothesis was mainly
supported by the observation of the space-time diagrams patterns produced near
criticality. Previous identification of directed percolation was obtained in other
contexts such that probabilistic cellular automata [5] or synchronisation of two
copies of cellular automata [10,16]. To our knowledge, the only example of di-
rected percolation induced by asynchronism was given by Blok and Bergersen
for the famous Game of Life [4].

2 Description of the Model

Let a ring of n cells be indexed by L = Z/nZ, a configuration is word on {0, 1}L.
The density of a configuration x is the ratio of cells in state 1. An elementary
cellular automaton (ECA) is described by a function f : {0, 1}3 → {0, 1} called
the local rule. Each ECA is indexed according to the usual notation [18].

Using the stochastic asynchronous updating scheme, the local rule f allows
to define a probabilistic global rule F which operates on the random variables
xt according to x0 = x with probability 1 and xt+1 = F (xt) such that:

∀i ∈ L, xt+1
i =

{
f(xt

i−1, x
t
i, x

t
i+1) with probability α

xt
i with probability 1 − α

By taking α = 1, we fall back on the classical synchronous case and as α is
decreased, the updtae rule becomes asynchronous while the effect of an update
remains unchanged.

The rules that were experimentally detected as showing a brutal change of
behaviour for a non-trivial value of α are ECA 6,18,26,50,58,106,146 (only “min-
imal representative rules” are considered). Figure 1 shows how the variation of
1 Universality class is a term from statistical physics that describes all the different

phenomena that obey the same laws near criticality (e.g., see [11] for a review on
the directed percolation universality class).
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Fig. 1. Two types of phase transitions observed with ECA. (a) The upper three lines
show the space time diagrams for ECA 50 (left) and ECA 6 (right). Synchrony rate
is decreased, from α = 0.75 (up) to α = 0.25 (down). Time goes from left to right;
the time factor is rescaled by a factor 1/α (i.e., for α = 0.25 only time steps that are
multiples of 4 are displayed). (b) Lower line : asymptotic density as a function of the
synchrony rate ; it is estimated by the computation of the average density obtained on
a sampling time S = 103, after a transient time T = 105 has elapsed.
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synchrony rate affects the behaviour of three such rules. We see that two different
behaviours are exhibited:

(a) The system quickly converges to a frozen fixed-point configuration where all
the cells are in state 0, we say that we are in the subcritical phase.

(b) The system evolves to a steady state characterised by an evolving branching-
annhilating pattern, we call this steady state the supercritical phase.

The separation between the two phases can be seen on Fig.1.b: the phase
transition is materialised by the change in the average density (see legend). If
the directed percolation hypothesis is valid, then theory and observations [11]
predict that for an infinite lattice size system, the temporal evolution of the
density dα(t) obeys the following laws:

– for the critical value the density decreases as a power law: dαc(t) ∼ t−δ ;
– for the supercritical phase α > αc, the system converges to a stationary

state characterised by a non-zero asymptotic density d∞(α). Near the critical
point, the asymptotic density follows a power law: d∞(α) ∼ (α− αc)β .

We emphasize that the critical exponents δ = 0.1595 and β = 0.2765 are
known only experimentally (the values are given here with four digits, see [11]
for better precision). They are valid for an initial random configuration where
each cell has an equal probability to be in state 0 or 1.

Naturally, these predictions only hold for infinite systems ; as simulation re-
quires finite lattices, we are bound to introduce finite-size effects. In the following
section, we explain our protocol for measuring these exponents and limiting ex-
perimental errors.

3 Protocol

The measure of DP-critical exponents is a delicate operation that generally re-
quires large amount of computation time. The main difficulty resides in avoiding
systematic errors when obtaining statistical data near the transition point. For
example, it happened that authors were mislead by their measures and con-
cluded that a phase transition phenomenon was not in the DP universality class
[13], which was later proved wrong [10].

In order to limit the influence of systematic errors, we use the two-step pro-
tocol that was used by Grassberger in [10]:

– We measure the critical synchrony rate αc by varying α until we reach the
best approximation of a power-law decay for the density. This first experi-
ment also allows to measure the critical exponent δ.

– We measure the asymptotic density d∞ as a function of α and then fit a
power-law in order to calculate β.

Note that these two steps are not independent since the second operation uses
the previously computed value of αc.
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Fig. 2. ECA 50 : Determination of of the critical synchrony rate αc using d = f(t) for
different values of α. Each curve shows the average obtained with on 100 runs. (a) α is
varied by increments of 10−3, for 2.105 simulation steps. (b) α is varied by increments
of 10−4, for 106 simulation steps. The straight line has slope −δDP = 0.1595 and is
plotted for reference.
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In all the following experiments, we fixed the lattice size to n = 104 (as in [10]),
verifying that the variations of the results when the system size was decreased
to n = 5000 was less than the precision of measures. However, a more detailed
protocol would require to do a scaling analysis, i.e., to compute the limits of
each measure as n goes to infinity.

3.1 Determination of δ

Figure 3 shows the temporal decay of the density for ECA 50 as α is varied by
10−3 steps from 0.626 to 0.630. The curves are obtained by averaging the data
on 100 runs of time T = 2.105. We see that as α is increased, the curve in a
log-log plot transforms from a concav function to a convex function ; the best
linearity is obtained for α = 0.628. As predicted, we see that the curve’s slope
in its linear part is close to δDP = 0.1595.

In order to improve the precision on the measure of αc, we repeated the
previous experiment by varying α with a step of 10−4 using a sampling time
T = 106. This operation is the most time-consuming as this computation requires
more than 1014 applications of the local rule. The convexity of the curves was
determined numerically, by plotting the local slope (see [11]) as a function of
time according to:

δeff(t) =
log d(t) − log d(t/m)

log t− log(t/m)
=

log [d(t)/d(t/m)]
logm

with m varying between 4 and 10 (heuristic criterion).
The values of α for which the best linearity was obtained are displayed in

Table 1. The value of the slope, δ, is given in the third column of the table for
comparison with δDP. We took t ∈ [2000, 200000] as a fit interval to limit the
influence of the transient time and the deviation from a power-law decay.

We wish to call the reader attention on the fact that we cannot identify the
precision of this fit as the precision on the measure on δ. Indeed, as we are
necessarily slightly subcritical or supecritical, the curve d(t) eventually deviates
from a power-law. To get an estimation on the precision on δ, we used the
following heuristic method: if we bound the αc according to α1 < αc < α2, we
use the quantity Eδ = |δ(α1) − δ(α2)| as an estimator of the precision on δ.
The results displayed in Table 1 show that the computed values of δ and Eδ

are compatible with the predicted value δDP. It is interesting to notice that a
variation on α of the order of 10−4 produces a relative variation of 10% on the
value of δ. This explains why αc has to be measured with high precision.

3.2 Determination of β

The second part of the experiments consists in measuring the critical exponent
β using the values of the asymptotic density as a function of α. To estimate
this asymptotic density, it is necessary to adjust the sampling time as α varies.
Indeed, as α approaches αc, the asymptotic density vanishes as :
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Fig. 3. ECA 50: Determination of the critical exponent β using the time decay prop-
erties. Each point is obtained according to using a particular sampling time (see text).
The curve have slope β50 = 0.2688± 0.0107. Note that both x and y axis are displayed
in logarithmic scale.

d∞(α) = (α− αc)β , and the increase of the time needed to reach this density is
thus exponential: this phenomenon, known as critical slowing down (e.g., [11]),
limits the precision on the measure of the asymptotic density d∞.

The quantity Δα = α− αc was varied according to an exponential increment
from 0.0032 to 0.128. This interval is determined by the following trade-off: the
computer time limits lower values of Δα (critical slowing down) and for higher
values of Δα the system “saturates” and no longer follow a power-law. The
deviation from the power law is a phenomenon that is predicted by theory and
that can be studied for its own interest. However, we prefer here to restrict our
measures to the linear part of the curve.

Sampling times were increased as Δα was decreased and the highest sampling
time T = 4.105 was used for Δα = 0.0032. The experiment was conducted for the
seven ECA and the calculated values are shown in Table 1. Again, the computed
values of β are in good agreement with the reference value βDP = 0.2765.

4 Discussion

The problem of determining how changes of behaviour were triggered by gradual
changes in the update rule were investigated by numerical simulations. The re-
sults show good evidence that the phenomenon observed for seven asynchronous
elementary cellular automata is a second order phase transition which belongs
to the directed percolation universality class.
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Table 1. Critical values α̃c for the seven ECA with DP ; the digit between parentheses
is uncertainty (in 10−4 units). Corresponding value of δ is given with an approximation
of the error on δ (see text). Critical exponent β calculated using the given value α̃c.

ECA α̃c δ(α̃c) Eδ β

6 0.2824 (4) 0.158 0.014 0.265 ± 0.015
18 0.7139 (2) 0.155 0.028 0.271 ± 0.009
26 0.4748 (2) 0.164 0.032 0.264 ± 0.015
50 0.6282 (2) 0.159 0.024 0.269 ± 0.011
58 0.3400 (2) 0.162 0.022 0.270 ± 0.017
106 0.8144 (4) 0.155 0.023 0.273 ± 0.048
146 0.6751 (2) 0.163 0.027 0.259 ± 0.021

The observation of the synchronous behaviour of the seven ECA studied in-
dicate that there is certainly no straightforward relation with the existing clas-
sifications. For example, ECA 6, 50 and 58 are “periodic” (or Wolfram class II)
rules while ECA 18, 26, 106 and 146 are “chaotic” (or Wolfram class III) rules.
This indicates that at criticality, cell-scale details of cellular automata become
irrelevant while some global scale-free behaviour governs its evolution.

These result may also further confirm a famous conjecture by Janssen and
Grassberger (see [11] for a short presentation) that states that a model should
belong to the DP universality class if it satisfies the following criteria:

– uniqueness of absorbing state (the all-zero state in our case),
– the possibility to characterise the phase transition by a positive order para-

meter (the density in our case),
– the definition of dynamics by short-range process (true by definition of CA),
– and the absence of additional symmetries (e.g., state symmetry) or quenched

randomness (true for all of the seven ECA considered).

This last condition is essential since ECA 178, which is a rule symmetric by
operation of left/right and 0/1 exchanging, was also detected to have a phase
transition but was not found into the DP universality class.

The most challenging question now consists in explaining why some ECA
show phase transitions while other have a smooth behaviour. A possibility of
investigation would be to examine how the dynamics of asynchronous CA can
be mapped with other well-studied phenomena such as synchronisation of con-
figurations [10] or Domany-Kinzel probabilistic CA [5]. However, such a reduc-
tion does not appear simple since ECA 6 has an “inversed” phase transition:
the subcritical (frozen) state is reached by the increase of the synchrony rate.
Another interesting problem is to find examples of such phase transitions in
nature. For example, this mechanism could help explaining the trigger of the
self-organisation phase in cellular societies [2,6].

Acknowledgement. The author expresses his acknowledgments to A. Ballier,
H. Berry, M. Morvan and J.-B. Rouquier.
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17. Birgitt Schönfisch and André de Roos, Synchronous and asynchronous updating in
cellular automata, BioSystems 51 (1999), 123–143.

18. Stephen Wolfram, Universality and complexity in cellular automata, Physica D 10
(1984), 1–35.



On Symmetric Sandpiles

Enrico Formenti, Benoît Masson, and Theophilos Pisokas

Laboratoire I3S, Université de Nice-Sophia Antipolis, Bât. ESSI, 930 route des Colles,
06903 Sophia Antipolis Cedex, France

{enrico.formenti, benoit.masson}@unice.fr,
pisokas@polytech.unice.fr

Abstract. A symmetric version of the well-known SPM model for sand-
piles is introduced. We prove that the new model has fixed point dynam-
ics. Although there might be several fixed points, a precise description of
the fixed points is given. Moreover, we provide a simple closed formula
for counting the number of fixed points originated by initial conditions
made of a single column of grains.

Keywords: SOC systems; sandpiles; fixed point dynamics; discrete dy-
namical systems.

1 Introduction

Self-Organized Criticality (SOC) is a very common phenomenon which can
be observed in Nature. It concerns, for example, sandpiles formation, snow
avalanches and so on [1].

Practically speaking, it can be described as follows. Consider an evolving sys-
tem. After a while, the system reaches a critical state. Any further move from this
critical state will cause a deep spontaneous reorganization of the whole system.
No external parameter can be tuned to control this reorganization. Thereafter,
the system starts evolving to another critical state and so on.

Sandpiles are a very useful model to illustrate SOC systems. Indeed, consider
toppling sand grains on a table, one by one. Little by little a sandpile will start
growing and growing until the slope reaches a critical value. At this moment,
any further addition of a single sand grain will cause cascades of grains and
deep reorganization of the whole pile. Afterwards the sandpile restarts growing
to another critical state and so on.

A formal model for sandpiles, called SPM, has been introduced in [7,8,9].
The sandpile is represented by a sequence of “columns”. Each column contains a
certain number of sand grains. The evolution is based on a local interaction rule
(see Section 2): a sand grain falls from a column A to its right neighbor B if A
contains at least two grains more than B; otherwise there is no movement. The
SPM model has been widely studied [2,7,12,3,11,10]. In particular, it has been
proved that it has fixed point dynamics and a closed formula has been given to
calculate precisely the length of the transient to the fixed point [7]. Moreover, a
precise description of the fixed point has been given [8].

S. El Yacoubi, B. Chopard, and S. Bandini (Eds.): ACRI 2006, LNCS 4173, pp. 676–685, 2006.
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All these results are very interesting but they have two main drawbacks. First,
they lack generality; indeed, the fixed point results are always obtained starting
from very special initial sandpiles (just one column). In [5,4], we tried to solve
this problem by giving a fast algorithm for finding the fixed point starting from
any possible initial condition. Second, the model lacks symmetry; in fact, grains
either stay or move to the right only. Remark that in Nature, sandpiles evolve
absolutely in a symmetrical manner.

In this paper we introduce SSPM: a symmetric version of SPM. The new model
follows the rules of SPM but it applies them in both directions. For technical
reasons that will be clearer later, we allow only one grain to move per time step.

We prove that SSPM has fixed point dynamics. This is not a great surprise.
To validate the new model, one should give a precise description of these fixed
points and compare their “shape” with those of sandpiles in Nature.

To this extent we use a formal construct which allows a better description
of the dynamics: orbit graphs. They are directed graphs of the relation “being
son of”. In Section 3.2, the precise structure of their vertices is given (under
the condition of considering initial configurations made by a single column):
a configuration belongs to some orbit graph if and only if it admits a crazed
LR-decomposition (see Section 3.2).

Practically speaking, a configuration admits a crazed LR-decomposition if it
can be decomposed into an increasing part L and a decreasing part R and both
in L and in R any two plateaus (i.e. consecutive columns of identical height) are
separated by at least a “cliff” (i.e. consecutive columns with height difference
strictly greater than 1).

The special structure of the vertices allows a very useful description of the
fixed points: they are configurations which admit a crazed LR-decomposition
without cliffs.

Finally, using this characterization of the “shape” of fixed points we provide
a closed formula which computes the number of fixed points originated from
the initial configuration (n) (a single column containing n grains). The surprise
is that the formula is *

√
n+. Unfortunately, we have no practical or “visual”

explanation for such a formula.
Remark that due to lack of space, and because of the technicality of some proofs,

most of them are omitted here and can be found in the long version of the paper [6].

2 The SPM Model

A sandpile is a finite sequence of integers (c1, . . . , ck); k ∈ is the length of the
pile. Sometimes a sandpile is also called a configuration. Let C =

⋃
k∈ ( +)k be

the set of all configurations.
Given a sandpile (c1, . . . , ck), the integer n =

∑k
i=1 ci is the number of grains

of the pile. Given a configuration (c1, . . . , ck), a subsequence ci, . . . , cj (with
1 ≤ i < j ≤ k) is a plateau if ch = ch+1 for i ≤ h < j; s = i − j + 1 is the
length of the plateau and p = ci its height. A subsequence ci, ci+1 is a cliff if
ci − ci+1 ≥ 2.
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In the sequel, each sandpile (c1, . . . , ck) will be conveniently represented on a
two dimensional grid where ci is the grain content of column i.

A sandpile system is a finite set of rules that tell how the sandpile is updated.
SPM [7] (Sand Pile Model) is the most known and the most simple sandpile
system. All initial configurations contain n grains in the first column and nothing
elsewhere i.e. they are of type (n). It consists in only one local rule which moves
a grain to the right whenever there is a cliff.

Formally, for any configuration c, if there exists i ∈ such that ci − ci+1 ≥ 2,
then c evolves to c′ according the following relations:{

c′i = ci − 1
c′i+1 = ci+1 + 1 .

This process is iterated until the rule cannot be applied anymore. We say that
a fixed point is reached.

Along the evolution of the pile, the rule may be applicable at different places
in the configuration. To illustrate this, we represent the set of reachable configu-
rations (starting from a single column) on an oriented graph where the vertices
are the configurations. There is an edge between two configurations c1 and c2

when c2 can be obtained by applying the local rule somewhere in c1 (see Figure 1
for an example, starting from a single column with 8 grains). This is called the
orbit graph of the initial configuration c, denoted by Gc.

Fig. 1. G(8), orbit graph of a single pile with 8 grains for SPM

The following theorem proves that the fixed point is unique, independently of
the order of application of the local rule.

Theorem 1 ([7]). For any integer n, G(n) for SPM is a lattice and is finite.

The following lemma characterizes the elements of the lattice.

Lemma 1 ([8]). Consider a configuration c and let n be its number of grains.
Then, c ∈ G(n) for SPM if and only if it is decreasing and between any two
plateaus of c there is at least a cliff.

Remark 1. Consider a configuration c, and assume that c contains a plateau of
length 3. Such a plateau can be seen as two consecutive plateaus of length 2.
Thus, by Lemma 1, c does not belong to any orbit graph.



On Symmetric Sandpiles 679

From Lemma 1, it is easy to see that a fixed point Π is a decreasing configuration
with no cliffs and at most one plateau. Therefore for any n ∈ , we can describe
the fixed point Π of (n) by

Π =
{

(p, p− 1, . . . , 1) if q = 0 ,
(p, p− 1, . . . , q + 1, q, q, q − 1, . . . , 1) otherwise,

where 〈p, q〉 is the unique decomposition of n in its integer sum:

n = q +
p∑

i=1

i = q +
p · (p+ 1)

2
.

3 The Symmetric Model

In this section we extend SPM to SSPM (Symmetric SPM) according to the
following guidelines: a grain can move either to the left or to the right, if the
difference is more than 2; when a grain can move only in one direction, it follows
the SPM rule (right) or its symmetric (left).

For all configurations c = (c1, . . . , ck), the following local rules formalize the
above requirements:

V r
i (c1, . . . , ck) =

{
(c1, . . . , ci−1, ci+1+1, . . . , ck) if i 	= k ,

(c1, . . . , ck−1,1) otherwise,

V l
i (c1, . . . , ck) =

{
(c1, . . . , ci−1+1, ci−1, . . . , ck) if i 	= 1 ,

(1, c1−1, . . . , ck) otherwise.

Let δr
i (c) denote the difference between the grain content of column i and the

one of column i+1 of c; define δr
k(c) = ck. Similarly, δl

i(c) denotes the difference
between the grain content of column i and the one of column i − 1 of c with
δl
1(c) = c1.

Notation. For a, b ∈ with a < b, let [a, b] denote the set of integers between a
and b.
From the local rule we can define a next step rule f̄ : C �→ P(C) as follows

f̄ (c) =
{
V r

i (c) | δr
i (c) ≥ 2, i ∈ [1, k]

}
∪
{
V l

i (c) | δl
i(c) ≥ 2, i ∈ [1, k]

}
.

Finally, using the next step rule, one can define the global rule which describes
the evolution of the system from time step t to time step t+ 1 :

∀S ∈ P(C), f(S) =
⋃
c∈S

f̄ (c) .

When no local rule is applicable to c, i.e. f({c}) = ∅, we say that c is a fixed
point of SSPM. For n ∈ , let fn denote the n-th composition of f with itself.

The notion of orbit graph can be naturally extended to the symmetric case
by using the functions V r

i and V l
i . In the sequel, when speaking of orbit graph,

we will always mean the orbit graph w.r.t. the SSPM model.
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3.1 Fixed Point Dynamics

In this section we prove that SSPM has fixed points dynamics. This result is
obtained by using a “potential energy function” and by showing that this function
is positive and non-increasing.

Given a configuration c = (c1, . . . , ck), the energy of a column ci (i ∈ [1, k]) is
defined as follows

ε(ci) =
ci∑

j=1

j .

Therefore, the total energy of a configuration c = (c1, . . . , ck) is naturally defined
as

E(c) =
k∑

i=1

ε(ci) .

The proof of the following lemma can be found in [6].

Lemma 2. Consider a configuration c = (c1, . . . , ck) with n grains. Then it
holds that E(c) ≤ E((n)); equality holds if and only if c = (n).

The function E can be naturally extended to work on set of configurations as
follows

∀S ∈ P(C), E(S) = max {E(c), c ∈ S} ,

with E(∅) = 0.
The following lemma is straightforward from the definition of the energy

function.

Lemma 3. For any set of configurations S 	= ∅, E(f(S)) < E(S).

The following simple proposition describes the general structure of the orbit
graph. Its proof can be found in [6].

Proposition 1. For any initial configuration c, Gc is finite, contains at least a
fixed point but no cycles.

The following corollary is given only to further stress the result of Proposition 1.

Corollary 1. SSPM has fixed point dynamics.

Corollary 1 says that independently of the order of application of local rules both
with respect to type of rule and to the application site, SSPM evolves towards a
fixed point. The problem is that this fixed point might not be unique. Figure 2
gives an example of this fact.

Despite the non-uniqueness, in the next section we give a precise character-
ization of the structure of the fixed points. This characterization is essentially
deduced from the properties of the vertices of the orbit graphs.
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Fig. 2. G(5), orbit graph of a single pile with 5 grains for SSPM. Remark that there
are two distinct fixed points.

3.2 Orbit Graphs

In [8], the authors precisely described the structure of the orbit graph of SPM
when started on initial condition (n). They proved that it is the graph of a
lattice. As a consequence, they deduced the uniqueness of the fixed point for
SPM.

We have already seen that in the SSPM case, the dynamics is of fixed point
type, but the fixed point might not be unique. Hence, it is clear that the orbit
graph of SSPM is no more the graph of a lattice. In this section, we detail the
overall structure of the vertices of these graphs.

A configuration c = (c1, c2, . . . , ck) is LR-decomposable if it can be divided
into two zones : L(c) = [1, t], R(c) = [t+ 1, k] such that

1. ∀i ∈ L(c), i 	= t, ci ≤ ci+1 i.e. L(c) is non-decreasing;
2. ∀i ∈ R(c), i 	= k, ci ≥ ci+1 i.e. R(c) is non-increasing.

Figure 3(a) give an example of LR-decomposition. For any configuration c,
let T (c) = {i ∈ [1, k], ∀j ∈ [1, k], ci ≥ cj}. In the sequel, T (c) is called the top of
c, see Figure 3(b).

L(c) R(c)

(a) LR-decomposition.

T(c)

(b) The top of c.

Fig. 3. Decomposition of a configuration c

Given a configuration c = (c1, c2, . . . , ck), a set of consecutive indexes I ⊆ [1, k]
is crazed if any two plateaus in I are separated by at least a cliff. A configuration
c has a crazed LR-decomposition if it admits a LR-decomposition in which both
R(c) and L(c) are crazed.
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A configuration might have several different LR-decompositions. The following
propositions tell which of them we are interested in. All the proofs of this section
are very technical, they can be found in [6].

The proof of Proposition 2 will be made progressively, using several technical
lemmas.

Lemma 4. Consider n ∈ and c ∈ G(n). Then c is LR-decomposable.

Lemma 5. Consider n ∈ and c ∈ G(n). Let T (c) be the top of c. Any LR-
decomposition of c is such that both L(c) \T (c) and R(c) \T (c) have no plateaus
of size strictly greater than 2.

Lemma 6. Consider n ∈ and c ∈ G(n). Let T (c) be the top of c. Any LR-
decomposition of c is such that both L(c) \ T (c) and R(c) \ T (c) are crazed.

It is obvious that the cardinality of T (c) is bigger of equal to 1 for all configu-
rations. Using very simple examples one can verify that |T (c)| can also be equal
to 2, 3 or 4. The following result proves that these are the only possible values
for the cardinality of T (c) when c belongs to an orbit graph.

Lemma 7. Consider n ∈ and c ∈ G(n). Then |T (c)| ≤ 4.

The following proposition gives a precise characterization of the configurations
of the orbit graph. Its proof is very technical as many different cases have to be
considered, but each of them is solved quite simply using the previous lemmas.

Proposition 2. Consider n ∈ and c ∈ G(n). Then c has a crazed LR-decom-
position.

The converse of Proposition 2 is proved using another technical lemma, both
proofs are in [6].

Lemma 8. Consider a configuration c, c 	= (n) for all n ∈ , which admits a
crazed LR-decomposition. Then, there exists d such that c ∈ f({d}) and d admits
a crazed LR-decomposition.

The next proposition proves that having a crazed LR-decomposition is sufficient
to belong to an orbit graph.

Proposition 3. If a configuration c admits a crazed LR-decomposition, then
there is a n ∈ such that c ∈ G(n).

Because of Proposition 2, any fixed point Π of G(n) has very precise character-
istics. It admits a crazed LR-decomposition L(Π), R(Π), and it has no cliffs.
Therefore, both L(Π) and R(Π) have at most 1 plateau since they are crazed.
Moreover, there may be another plateau at the junction between L(Π) and
R(Π), i.e. at most 3 plateaus in Π .

The structure of the fixed points is described on Figures 4. Figure 4(a) repre-
sent the fixed points Π such that |T (Π)| = 1, Figure 4(b) is for the fixed points
Π such that |T (Π)| ≥ 2.
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1 2

3

p

(a) Case |T (Π)| = 1.

1 2

p

(b) Case |T (Π)| ≥ 2.

Fig. 4. Structure of the fixed points

3.3 A Kind of Magic

From Corollary 1, we know that for any n ∈ , the configuration (n) leads to at
least one fixed point. In this section we compute precisely the number of fixed
points of SSPM with initial condition (n).

In order to understand how a fixed point can be obtained, we try to give a
visual construction. Consider Figures 4. The n grains of the fixed point must
be arranged in the grayed part and can partially occupy the dashed frame with
the supplementary constraint that grains in the dashed part must be as much
clustered to the ground as possible. Boxes labeled 1, 2 and 3 in Figures 4(a)
and 4(b) cannot be filled (for more details see the proof of Lemma 9). Remark
that if p is the height of the grayed part, then this area contains p2 grains in
Figure 4(a), and p2 + p grains in Figure 4(b).

Lemma 9 will be the main tool that we use to count the number of fixed
points, it proves that the “shapes” outlined in Figure 4(b) describe exactly all
the possible fixed points. We preferred to put the proofs of the following lemmas
in the long version of the article [6] since they are rather technical.

Let g1(n) be the numbers of fixed points Π such that |T (Π)| = 1, and g2(n)
the numbers of fixed points Π such that |T (Π)| ≥ 2.

Lemma 9. For any n ∈ , consider SSPM with initial condition (n). The num-
ber of fixed points of G(n) is given by G(n) = g1(n) + g2(n).

The two following lemmas give the exact expression of g1(n) and g2(n).

Lemma 10. For any n ∈ , consider SSPM with initial condition (n). The
number of fixed points of G(n) with top of length 1 is given by

g1(n) =

⎧⎪⎨
⎪⎩
n− p2 + 1 if n− p2 ≤ p− 1 ,

2p− n+ p2 − 1 if p ≤ n− p2 ≤ 2p− 1 ,

0 otherwise,

where p is the unique integer such that p2 ≤ n < (p+ 1)2.



684 E. Formenti, B. Masson, and T. Pisokas

Lemma 11. For any n ∈ , consider SSPM with initial condition (n). The
number of fixed points of G(n) with top of length bigger than 1 is given by

g2(n) =

⎧⎪⎨
⎪⎩
n− p2 − p+ 1 if n− p2 − p ≤ p− 1 ,

p if n− p2 − p = p ,

3p− n+ p2 + 1 if p+ 1 ≤ n− p2 − p ≤ 2p+ 1 ,

where p is the unique integer such that p2 + p ≤ n < (p+ 1)2 + (p+ 1).

The following proposition gives a closed formula for the number of fixed points
in the orbit of initial condition (n). The formula is somewhat “magical” since it
is very simple but we have neither practical nor visual explanation for it. It is
easily obtained from the previous lemmas, see [6] for more details.

Proposition 4. For any n ∈ , consider SSPM with initial condition (n). The
number of fixed points of G(n) is given by G(n) = *

√
n+.

Remark that it would also be possible to give the exact expression of each of
these fixed points, but it would be complex and of no interest here.

Finally, remark that we did not take into account the initial position of the
columns. For the same fixed point, there may exist different fixed points which
have the same shape, but at different indices. In this paper we do not consider
this fact, we only take into account the general shape of the configurations.

4 Conclusions and Future Work

In this paper we have introduced SSPM: a symmetric version of the well-known
SPM model. We have proved that SSPM has fixed point dynamics and exhibited
the precise structure of the fixed points which are in the orbit of initial condition
(n). Moreover, we showed a simple closed formula for counting the number of
distinct (i.e. having different shape) fixed points. Remark that this result is
surprising since the combinatorial complexity of the orbit graphs becomes higher
and higher when the number n of grains grows. This complexity contrasts with
the simplicity of the formula for the number of fixed points: *√n+. Moreover,
this formula is to some extent fascinating: although it is very simple, we have
neither a practical nor a visual explanation for it.

This research can be continued along three main directions:

– Corollary 1 says that, starting from any initial configuration, SSPM has
fixed point dynamics. Can we give a formula or at least tight bounds for the
shortest path to a fixed point? For the longest?

– Section 3.2 gives a precise characterization of orbit graphs for initial con-
ditions made of one single column. It would be interesting to extend this
characterization to more general initial conditions or at least to find an al-
ternative characterization.
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– The model we introduced is intrinsically sequential: only one grain moves
at each time step. It would be interesting to introduce a model similar to
SSPM but with synchronous update. This would be even more realistic than
SSPM for the simulation of natural phenomena.
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Abstract. In this paper we introduce Affective agents, a formal frame-
work based on Situated Cellular Agents (SCA) approach to represent
crowding phenomena as resulting from the interaction of reactive sit-
uated agents. The main aim of this work is to extend the previously
introduced SCA–based approach to crowd modeling and simulation, in
order to explicitly represent agents’ emotional states and to study the
role of emotion interaction and diffusion within crowding situations.

Several modeling and computational approaches have been proposed to tackle
the complexity of crowding phenomena that is, phenomena that can emerge from
the dynamic interaction of groups of moving entities (i.e. persons, in the case
of human crowds) that share a limited space. Among decentralized modeling
approaches, Cellular Automata (CA [1]) provides a discrete abstraction of the
shared environment, the state of CA cells encapsulate the presence of entities
in portions of the physical environment and cells’ transition rule encapsulates
pedestrian behaviors [2]. Despite CA–based approaches that consider individuals
as homogenous entities that locally interact by communicating their states to
neighbors, distributed crowd models based on Multi Agent System (MAS [3]) are
composed by autonomous entities whose actions and interactions can be hetero-
geneous. Within this class of models, our reference modeling and computational
framework is Situated Cellular Agents (SCA [4]). SCA model is rooted on ba-
sic principles of CA: it intrinsically includes the notions of state and explicitly
represents the spatial structure of agents’ environment; it takes into account the
heterogeneity of modeled entities and provides original extensions to CA (e.g.
at–a–distance interaction).

According to SCA, human crowds are described as system of autonomous,
situated agents that act and interact in a spatially structured environment. Sit-
uated agents are defined as reactive agents that, as effect of the perception of
environmental signals, can change either their internal state or their position on
the structured environment (agent autonomy is thus preserved by an action–
selection mechanism that characterizes each agent). Interaction between agents
can occur either locally, causing the synchronous change of state of a set of adja-
cent agents, and at–a-distance. In the latter case, agent interaction occurs when
a signal emitted by an agent propagates throughout the spatial structure of the
environment and is perceived by other situated agents. A SCA–based model of
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a crowd can be composed by agents characterized by several types. In particular
the type of a SCA agent specifies the set of states it can assume, its perceptive
sensitivity to signals emitted by other agents, and its acting abilities.

In order to enrich SCA modeling tool, we are currently studying an extension
of SCA in which situated agents are endowed with an explicit representation of
their emotional state according to which they can behave and interact. We claim
that this improvement will allow SCA model to be fruitfully adopted to study
situations where emotions and their diffusion play a central role in the crowding
dynamics. In the following, after a more formal description of SCA model, we
will show how a specific SCA type (i.e. Affective SCA) can be defined to repre-
sent basic emotions and their role in agent behavior according to affectons [5].
The latter is a basic computation model defined by finite–automata to study the
dynamics of emotional interactions in random environments. An affecton is an
emotional automaton which takes states from a set of basic emotions (i.e. happi-
ness, anger, confusion, anxiety and sadness), and updates its state depending on
its current state and a state of its input (which is also a made of state–emotions).
More details about affectons can be found in [5].

1 SCA Model Overview

Situated Cellular Agents (SCA) is a formal and computational framework for the
specification of complex systems characterized by a set of autonomous entities
interacting in an environment whose spatial structure represents a key factor in
their behaviors (i.e. actions and interactions).

A Situated Cellular Agent is defined by the triple
〈
Space, F,A

〉
, where Space

models the environment where the set A of agents is situated, acts autonomously
and interacts through the propagation of the set F of fields and through local
interaction (i.e. reaction). Space is defined as an undirected graph of sites (let
P be the set of sites). Every site p ∈ P can contain at most one agent, and it is
defined by the agent situated in it, the set of fields active in it, and the set of its
adjacent sites.

A field f ∈ F is defined by〈
Wf ,Diffusionf , Comparef , Composef

〉
where:Wf denotes the set of values that field f can assume; Diffusionf : P×Wf×
P → (Wf )+ is the diffusion function of the field computing the value of a field on
a given space site taking into account in which site and with which value it has
been emitted. Fields diffuse along the spatial structure of the environment, and
more precisely a field diffuses from a source site to the ones that can be reached
through arcs as long as its intensity is not voided by the diffusion function.
Composef : (Wf )+ → Wf expresses how field values have to be combined (for
instance, in order to obtain the unique value of field at a site), and Comparef :
Wf × Wf → {True, False} is the function that compares field values. This
function is required, for instance, in order to verify whether an agent can perceive
a field value.
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A SCA agent a ∈ A is defined by the 3–tuple

< s, p, τ >

where τ is the agent type (see below for τ =
〈
Στ , P erceptionτ , Actionτ

〉
defini-

tion), s ∈ Στ denotes the agent state and can assume one of the values specified
by its type, and p ∈ P is the site of the Space where the agent is situated.

An agent type τ is defined by the 3–tuple〈
Στ , P erceptionτ , Actionτ

〉
.

Στ defines the set of states that agents of type τ can assume. Perceptionτ : Στ →
[N×Wf1 ] . . . [N×Wf|F | ] is a function associating to each agent state a vector of
pairs representing the receptiveness coefficient and sensitivity thresholds for each
field f ∈ F . Finally, Actionτ represents the behavioral specification for agents
of type τ . Agent behavior can be specified using a language that defines four
basic primitives: emit() (to emit a SCA field), react() (to specify the coordinated
change of state among adjacent agents according to their states), transport()
(to allow agent moving towards an adjacent vacant site), and trigger() (to allow
the agent to change its state).

2 Affective SCA

In order to represent affectons [5] according to SCA, let us define affective agents
as SCA agents of type

Affective =
〈
ΣAffective, P erceptionAffective, ActionAffective

〉
where

ΣAffective = {H,A,C, S}
defines according to [5], happiness (H), anger (A), confusion (C), and sadness
(S) as the set of emotional states that affective agents can assume. It is out of
the scopes of this paper to motivate the selection of this set of basic emotions.
Interested readers can refer to [5] for a detailed argumentation on this topic.
PerceptionAffective is a function that associate to each agent state of

Affective agents a vector of pairs to express its ability to perceive a field accord-
ing to its emotional state. This means that, for instance, agents in state C (i.e.
confused) may be characterized by a higher sensitivity threshold to each field than
agents in any other emotional states. Each vector pair ofPerceptionAffective func-
tion refers to a field possibly propagating throughout the agent environment, and
indicates for the i–th field, agent receptiveness coefficient and sensibility threshold
to field fi.

PerceptionAffective : ΣAffective → [N ×Wf1 ] . . . [N ×Wf|F | ]

ActionAffective represents the set of SCA actions that affective agents can
perform. In particular, we can describe state–transition functions presented in [5]
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to describe emotional interactions as a reaction() between adjacent affective
agents. The effect of a reaction among a set of neighboring SCA agents is their
synchronous change of state. Another basic actions defined by SCA framework
that will be adopted for this study is trigger() whose effect is the change of an
agent emotional state according to the perception of a field emitted by another,
possibly at–a–distance Affective agent.

3 Concluding Remarks and Future Works

In this paper we have introduced Affective agents, a formal framework based
on SCA approach to represent crowding phenomena as resulting from the inter-
action of reactive situated agents. The main aim of this work is to extend the
previously introduced SCA–based approach to crowd modeling and simulation,
in order to explicitly represent agents’ emotional states and to study the role of
emotion interaction and diffusion within a crowding situation.

Future works will concern the study of the dynamics of systems of Affective
SCA and its comparison with dynamic properties of affectons. Next research
steps will concern the adoption of this tool to experiment the behavior of af-
fective crowds that is, large groups of pedestrian in which the emotional state
of individuals influence the crowd dynamics. This experimentation will focus
on studying emotion diffusion in static and dynamic crowds, and the selected
scenario will present several different situations in which the role of emotions is
crucial in the dynamics of the resulting system. For instance, a possible scenario
concern a football match within a stadium where peculiar interesting dynamics
can be observed before, during, and after the match.
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Abstract. Cellular Automata (CA) have been used in traffic simulation,
but in general with models that do not correspond to canonical CA. Here
we analyse the differences and the implications of using CA or agent
based simulations, with a particular focus on the updating procedures.
A proposal for increased realism in traffic simulation is presented.

1 Introduction

A Cellular Automaton (CA), by definition, is a grid of cells with a defined
geometrical configuration, each one running a local (transition) function, and all
being synchronously updated [1]. Therefore, computation is associated with the
cell, or the spatial element. CA is a useful tool for simulation, due to its relative
simplicity and to the fact that it produces visually interpretable results.

In road traffic and pedestrian simulation there is a significant use of CA for
modelling and simulation [2,3,4,5,6,7,8,9]. However, the vast majority of the work
in these areas does not use CA in the strict sense. In fact, the local function is not
applied to spatial elements, but to the moving elements (cars, or individuals).
Hogeweg, in 1988, has pointed out the distinction between these two approaches
in terms of possible differences in modelling complexity [10]. However, only re-
cently a few studies have proposed a separation of the two types of elements
in two distinct layers: a CA layer for the spatial elements and a Multi-Agent
System (MAS) layer for the mobile elements [11,12,13,14].

More important than a disparate semantics of CA usage is the functional
implication that this discrepancy brings about. In particular, the updating pro-
cedure inherited from CA is synchronous, meaning that all elements of the grid
are updated in parallel. The inadequacy of this updating for simulation of nat-
ural systems has been identified long ago [15]. Worse than that, it has also been
shown that it induces artificial structure in CA behaviour [16,17,18,19].

Natural collective systems are not synchronous in the sense that their com-
ponents do not react to a signal exactly at the same time [20]. Therefore,
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asynchronous, or random sequential updating have been defended as more realis-
tic models of natural systems [10,17,21]. Synchronous updates may be used with
an update time significantly shorter than the characteristic time of the natural
system modeled. However, even in this case, the fact that synchronous updates
induce artificial structure in the output is reason enough to use asynchronous
updates instead.

In this paper, we briefly analyse the main differences between using local func-
tions for cell update and for agent update in traffic simulation. And in doing so
we also analyse the implications of using asynchronous updates in the simula-
tion. In the end we propose a model that, in a natural way, better approaches
the real system behaviour.

2 Local Function - Cell vs. Agent

Simulation of agent movement is naturally performed if the local function is as-
sociated with the active (moving) agent—the multi-agent approach. It is possible
to convert an agent based local function to an equivalent one associated with
the spatial cell—the CA approach. This follows from the universal computation
capability of CA [1]. However, the simplicity of the local function will be lost for
anything more elaborate than the notorious rule 184 [4]. This rule is only valid
for constant unitary speeds. A mere increase of the maximum speed to two units
implies that the neighbourhood radius r has to be increased to 2, which modifies
the state space of the CA local function. This distortion does not happen if the
local function is associated with the active element. A variation of the speed
ranges only implies modifying local function parameter values accordingly.

Another significant difference between these two approaches is related to the
updating policies. In the CA approach we can not modify the updating policy
without further adaptations. Consider, for instance, the case of rule 184 with a
synchronous update, which is a simple model for traffic simulation. If, instead, we
use a random asynchronous update we will notice that there is not a conservation
of active elements. This means that vehicles may be created or disappear along
iterations. Here again, there are workarounds but involving a modification of the
rule and of the number of cell states. In the case of the multi-agent approach
this effect of non-conservation of elements does not happen, independently of
the realism of the updating policies and of the obtained results. For example,
the Asymmetric Stochastic Exclusion Process (ASEP), also uses updates of the
active elements’ positions. Results of different updatings change the dynamics,
but the number of elements is conserved [22,4,23].

3 Updating Policies

By comparison to synchronous models, asynchronous ones may be regarded as
introducing a form of noise [24,19]. In fact, we may consider that, besides signal
amplitude fluctuations, timing fluctuations are also a form of noise [25]. In the
latter case it takes the form of delays or speedups in the updating time instead
of changes in the output of the local function.
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Synchronous updating has also been applied to ASEP. In [4] is referred that
changing the ASEP from synchronous to asynchronous introduces noise. How-
ever, instead of trying to eliminate it, as is also defended in that reference, we
should aim at correcting parameters in the model (in case we need to produce
more realistic behaviour). Every natural system is subject to different forms of
noise.

In asynchronous updatings several alternatives are possible, producing dif-
ferent results and possessing more or less realism. According to a statistical
analysis in [19], time driven asynchronous updating, with independent timings
for each cell, is more realistic. The waiting times of each timer are exponentially
distributed, with mean 1.

However, an exponential distribution of the update timings is also not realistic.
It may well happen that after one cell update the next scheduled update for that
cell, randomly drawn from that distribution, is infinitesimally close. This is not
reasonable in natural systems. Therefore, a model including a typical reaction
time for each component is defended. This reasoning is valid likewise to CA,
ASEP or MAS. The artificialities introduced by the simulation process should
be minimised, independently of the used model. Consequently in this paper
we defend the use of combined MAS-CA, or ASEP for traffic simulation, with
asynchronous updating procedure including some lower bound of response time
for each component.

4 Discussion

We have described two important aspects to improve realism of traffic simulation
using CA. One is that CA must be limited to simulate non moving elements.
Active elements should be simulated by MAS based models, or more simply by
ASEP. If space cells have any dynamics (e.g., pavement deterioration) a CA could
model space. Otherwise a simple grid may be used for it. The second aspect is
that asynchronous updating in discrete simulation avoids the pitfalls of artificial
structure induced by synchronous updates. It is, therefore, more realistic.
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Abstract. Modeling crowd behavior is an important challenge for cog-
nitive modelers. We propose a novel model of crowd behavior, based on
Festinger’s Social Comparison Theory, a social psychology theory known
and expanded since the early 1950’s. We propose a concrete framework
for SCT, and evaluate its implementations in several crowd behavior
scenarios. The results show improved performance over existing models.

1 Introduction and Background

Modelling crowd behavior is an important challenge for cognitive modelers. Ex-
isting models, in a variety of fields, leave many open challenges. In social sciences
and psychology, models often only offer qualitative descriptions, and do not easily
permit algorithmic replication. In computer science, models are often simplistic,
and typically not tied to specific cognitive science theories or data.

Social psychologists observe that people in a crowd act similar to each another,
often acting in a coordinated fashion, as if governed by a single mind [1]. However,
this coordination is achieved with little or no verbal communications. Le Bon
explains the homogeneous behavior of a crowd by two processes: (i) Imitation,
where people in a crowd imitate each other; and (ii) Contagion, where people in
a crowd behave differently from how they usually behave, individually. Some [1]
theorize that individual become a part of the crowd behavior when they have
”common stimulus” with people inside the crowd. For example, a common cause.

Work on modelling crowd behavior has been carried out in other branches of
science, in particular for modelling and simulation. For instance, Blue and Adler
[2] use Cellular Automata in order to simulate collective behaviors, in particular
pedestrian movement. The focus is again on local interactions: Each simulated
pedestrian is controlled by an automaton, which decides on its next action or
behavior, based on its local neighborhoods. Helbing et al. [3] focus on simulating
pedestrian movement. Each entity moves according to forces of attraction and
repulsion. Pedestrians react both to obstacles and to other pedestrians. The
study shows that this results in lane formation.

We propose a novel model of crowd behavior, based on Social Comparison
Theory (SCT ) [4], a popular social psychology theory that has been continuously
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evolving since the 1950s. The key idea in this theory is that humans, lacking
objective means to evaluate their state, compare themselves to others that are
similar. We propose a concrete algorithmic framework for SCT, and evaluate its
implementations in several crowd behavior scenarios. We show that these result
in improved performance compared to previous approaches.

2 A Model Based on Social Comparison Theory

The research question we address in this paper deals with the development of
a computerized cognitive model which, when executed individually by many
agents, will cause them to behave as humans do in crowds.

We took Festinger’s Social Comparison Theory [4] as inspiration for the social
skills necessary for our agent. According to the Social Comparison Theory, people
tend to compare their behavior with others that are most like them. To be
more specific, when lacking objective means for appraisal of their opinions and
capabilities, people compare their opinions and capabilities to those of others
that are similar to them. They then attempt to correct any differences found.

We believe that the Social Comparison Theory may account for some charac-
teristics of crowd behavior:

Common stimulus between crowd participants. One of the social com-
parison theory implications is group formation. Festinger notes [4]: ”To the
extent that self evaluation can only be accomplished by means of comparison
with other persons, the drive for self evaluation is a force acting on persons
to belong to groups, to associate with others. People, then, tend to move
into groups which, in their judgment, hold opinions which agree with their
own and whose abilities are near their own”.

Imitational behavior. By social comparison, people may adopt others’ be-
haviors. Festinger writes [4]: ”The existence of a discrepancy in a group with
respect to opinions or abilities will lead to action on the part of members of
that group to reduce the discrepancy”.

To be usable by computerized models, social comparison theory must be trans-
formed into a set of algorithms that, when executed by an agent, will proscribe
social comparison behavior. Each observed agent is assumed to be modelled by
a set of features and their associated values. For each such agent, we calculate a
similarity value s(x), which measures the similarity between the observed agent
and the agent carrying out the comparison process. The agent with the highest
such value is selected. If its similarity is between given maximum and minimum
values, then this triggers actions (o - with least weight) by the comparing agent
to reduce the discrepancy. In order to close the gap, we use a gain function g(o)
for the action o, which translates into the amount of effort or power invested in
the action. For instance, for movement, the gain function would translate into
velocity; the greater the gain, the greater the velocity.

g(o) =
Smax − Smin

Smax − s(c)
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The process is described in the following algorithm, which executes the com-
paring agent.

1. For each known agent x calculate similarity s(x)
2. c ← argmax s(x), such that Smin < s(c) < Smax

3. D ← differences between me and agent c
4. Apply actions to minimize differences in D.

3 Experiments and Results

We evaluate our social comparison model as accounting for pedestrian move-
ment phenomena, such as lane formations in bidirectional movement, grouping
in grouped pedestrians, and behavior in the presence of obstacles. To implement
the model for pedestrian movement experiments, we used NetLogo [5]. We sim-
ulated a sidewalk where agents can move in a circular fashion from east to west,
or in the opposite direction.

For lack of space, we report here only on a subset of the experiments. See [6]
for additional details. In these, each agent modelled its peers using the following
set of features and corresponding weights: Walking direction (weight: 2)—east or
west; Color (weight: 3); and Position (weight 1) in terms of distance and angle.
The similarities in different features (fi) are calculated as follows. fcolor = 1 if
color is the same, 0 otherwise. fdirection = 1 if direction is the same, 0 otherwise.
and finally, fdistance = 1

dist , where dist is the Euclidean distance between the
positions of the agents.

The rationale for feature priorities, as represented in their weights, follows
from our intuition and common experience as to how pedestrians act. Distance
is the easiest difference to correct, and the least indicative of a similarity between
pedestrians. Direction is more indicative of a similarity between agents, and color
even more so.

Pedestrian Movement. In order to evaluate our model on bidirectional pedes-
trian movement we perform experiments in which we varied Smin and Smax,
and thus the gain component g(o). In these, we measured performance using
two characteristic features of pedestrian movement, used in previous work [3]:
The total number of lane changes, and the flow (average speed divided by the
space-per-agent). By varying the number of agents in the fixed space, controlled
crowd density. Each trial lasted 5000 cycles, and was repeated dozens of times.
The results are contrasted with a random-choice model [3,2].

Figures 1(a) and 1(b) show the lane-changes and flow in these experiments.
The figures show that there is no reduction in flow and there is significant im-
provement to the number of lane changes, with an increased gain. For lack of
space, we do not show screen shots here, but the results also demonstrate that
increased gain causes the agents to group more closely together.

Grouped Pedestrian Movements. We wanted to evaluate the SCT model
on grouped pedestrians, where agents of the same color move together. To ac-
count for the intuition that friends and family walk side-by-side, rather than in
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Fig. 1. Individual pedestrian movement experiments

columns, we added another feature: The similarity in position along the x-axis
and revised features and weights accordingly. In these experiments, all agents
move in the same direction. Gain was allowed to vary per the model, as described
above. We examine populations with a different number of colors (5, 10, and 20)
and measure the grouping results using hierarchical social entropy [7], shown in
Table 1. The results of our model are much lower (almost by a factor of two)
than random-choice model.

Table 1. Grouping measurements of random-choice and social comparison models.
Lower values indicate improved grouping.

# Groups Random SCT
5 173.2 87.4
10 143.3 85.8
20 101.5 60.1

4 Summary and Future Work

This paper presented a preliminary algorithmic model proscribing crowd behav-
ior, inspired by Festinger’s Social Comparison Theory [4]. Though there is lack
of objective data against which the model can be tested, the results are promis-
ing and seem to match intuitions as to observed behavior. We are developing an
implementation of the Social Comparison Theory model in the Soar cognitive
architecture [8].
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Abstract. Crowd safety and comfort in highly congested places not only de-
pend on the design and the function of the place, but also on the behaviour of 
each individual. In this paper, an integrated evacuation system is described. The 
proposed system comprises three stages. The main stage includes an efficient 
computational tool based on Cellular Automata (CA) capable of simulating 
main features of pedestrian dynamics during the evacuation of large areas, sup-
ported by a multi-parameterised graphical-user interface (GUI). Moreover, an 
image-processing tracking algorithm is used for the calibration of the system 
providing all the necessary information about the number of individuals and 
their distribution in the under test area. Finally, the VLSI implementation of the 
proposed model is straightforward due to the simplicity of the CA rule, thus 
leading to the design of a dedicated processor. 

1   Introduction 

Risk management issues present high research interest especially concerning places, 
such as exhibitions, museums, transport stations, etc, which are highly congested by 
individuals not familiar with the place. Every pattern of the modern activity results 
into the gathering of a large number of people into buildings, auditoriums and other 
kind of places (sports halls, museums, churches etc). Moreover, huge and inevitable 
gathering occurs in arrival/departure areas, thus, making clear need for the design and 
implementation of an efficient evacuation system, which can be vitally helpful to the 
safe crowd guidance in cases of emergency. 

Thorough research in panic crowd movements [1-2] has indicated that individuals 
under such situations develop a herding behaviour and clogging, thus becoming un-
able to effectively use all means of emergent evacuation. Crowd safety and comfort 
not only depend on the design and the operation of the place, but also on the behav-
iour of each crowd individual. The traditional approach of motion prediction applied 
to large crowds of pedestrians was based on the modeling of the crowd as if it were a 
continuous homogeneous mass that behaves like a fluid flowing along corridors. Re-
cent approaches, enhanced by modern computer power, suggest that the crowd con-
sists of discrete individuals who are able to react with their surroundings. 
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Computational intelligent techniques such as CA were introduced in order to model 
more efficiently crowd behaviour [3]. CA can sufficiently represent phenomena of 
arbitrary complexity and at the same time can be simulated exactly by digital com-
puters, because of their intrinsic discreteness [4]. As far as it concerns the simulation of 
pedestrian dynamics, two-dimensional (2-d) CA models have been reported in litera-
ture [5-6]. Some of them treat pedestrians as particles subject to long-range forces [6] 
and others use walkers leaving a trace by modifying the underground on their paths [5]. 

The results of the present research focus on the design and the implementation of 
an integral system that will provide active guidance to a crowd under panic, in such a 
way that it will also exploit effectively all existing means and escaping ways. The 
final system will be composed of cameras, sensors, computers, processors and elec-
tronic devices responsible for the broadcasting of sound and optical signals. The user-
friendly parameterized model that simulates evacuation processes attempts at further 
and more detailed investigation of pedestrian dynamics focusing on specific rather 
than generalised behaviour under certain conditions. To this direction, the user is 
provided with the ability to predefine features of the evacuated area, incorporating 
both topological-oriented parameters and parameters that describe the crowd forma-
tion. The calibration of the CA model results from an image processing system re-
sponsible for the recognition of the exact position and density distribution of the 
crowd in the under test area. 

2   The Crowd Tracking System 

The crowd tracking system encompasses both software and hardware implementa-
tions. As far as it concerns the software part, it includes the CA-based evacuation 
simulation tool as well as the corresponding image processing tracking system. Fur-
ther upgrade of the system is achieved with the on-chip (VLSI) realization of the CA 
model, which incorporates advantages of low-cost, high-speed and easy chipset pro-
gramming, as well as with the inclusion of a sound-optical notification system guided 
by the corresponding outputs of the dedicated CA processor. 

A computational model which simulates the movement of the crowd in cases of room 
evacuation has been developed. Empirical studies of the international bibliography have 
been taken into account as well as studies of the social psychology that describe and 
model crowds in state of panic. This computational model is properly parameterised in 
order to be equipped with the ability of receiving and properly processing data from the 
camera-based multiple people tracking system. The grid of the 2-d CA based simulation 
tool is considered as homogeneous and isotropic, while the CA cells can obtain two 
possible states; either free or occupied by one particle. During each time step, an indi-
vidual chooses to move in one of the eight possible directions of its neighbourhood. The 
general scheme is that each particle moves towards the direction closest to an exit. A 
3×3 median matrix for each occupied cell, depending on the CA cell itself and its eight 
closest neighbours, is updated at every time step. Each matrix element represents a 
possible updated spatial and temporal state of the occupied cell, placed at the centre of 
the matrix. The values of the elements indicate the distance of the occupied cell and its 
neighbours from the evacuation point. As soon as all possible routes have been detected, 
the shortest prevails and the particle moves in this way to the next time step. In case of 
multiple exits, the whole procedure is repeated for each one separately. In Fig.1, two 
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different snapshots of a simulation process are presented with the help of a developed 
graphical user interface (GUI) based on Matlab®. 

  

Fig. 1. Two different snapshots of the CA model GUI. Middle-aged individuals are coloured 
red, while weak groups of individuals (children or elderly) are coloured green. Black dots 
correspond to obstacles and turquoise dots to exit points. 

As far as it concerns calibration purposes, efforts have been focused on the incor-
poration of a tracking algorithm capable to estimate the number of individuals and 
their distribution in the under test area, in real time, using instant images. The real-
time execution of the appropriate tracking algorithm plays a significant role to the 
proposed system, since it will establish its functionality to manage situations strongly 
related to the safety of people during evacuation processes. Implementation of real-
time, display and image processing systems are rather difficult due to the huge 
amount of data that is processed. Nevertheless, models for multiple people tracking 
based on video technology and sensor networks have been developed efficiently [7-
8]. These models are normally based on background subtraction algorithms in order to 
isolate foreground information from background images, continuing with the segmen-
tation of the foreground pixels which aims at the moving objects clarification. Track-
ing of the moving objects is finally succeeded by comparing consecutive frames  
under various criteria. Hence, data obtainable by multimedia surveillance systems can 
be supplied to the CA model in order to calibrate it and to test its capability of repro-
ducing various observed phenomena under panic circumstances. The implemented 
algorithm combines the required resolution along with the execution rate aiming at 
the optimized management of situations under danger. 

Finally, regarding the VLSI architecture of the CA model, it has been proposed a 
local neighbourhood 2-d CA, where the next state of each cell depends on the current 
state of one of its eight neighbours, i.e. the element of the median matrix which is 
closest to an exit and itself. In order to have a flexible design, we should be able to 
configure a cell with different rules. Moreover, to provide wider flexibility OR gates 
should be incorporated, since the inter-connection between cells is based on OR-logic. 
Each 2-d CA cell is connected through nine switches to its eight nearest neighbours 
and itself. A particular rule is applied by setting the corresponding switches to 1 or 0. 
Thus, a nine bit word is required to control the nine switches corresponding to a sin-
gle 2-d CA cell. Additionally, another bit is required to configure the cell in OR 
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mode. The CA model architecture is shown in Fig. 2. In effect, by providing a gener-
alised 2-d CA structure, programmability has also been incorporated [9]. 

             

CA cell

CA cell

CA cell

CA cell

CA cell

CA cell

CA cell

CA cell

CA cell

 

Fig. 2. Architecture of a single cell of the CA model (left) and a 2-d CA structure (right)  

3   Conclusions 

The aim of this paper is the development of an integrated computational system capa-
ble to guide the crowd in cases of immediate evacuation of an area. The proposed 
methodology includes data receipt from a moving image tracking system in order to 
clarify the number and the distribution of the detected crowd. This data is used as the 
calibration background of the CA based crowd tracking simulation tool. The system 
will produce signals to guide the crowd using sound and optical signals. Certain at-
tributes of crowd behaviour, such as collective effects, collisions and delaying factors 
have been successfully encountered during simulation. Several phenomena of crowd 
dynamics, meaning transition to incoordination (arching) due to clogging as well as 
mass behaviour, have been taken into account. The VLSI implementation of the pro-
posed CA algorithm is straightforward with no silicon overhead. 
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One interesting view of crowd modelling is the consideration of crowd effects as 
being generated from the point of view of individual agents. By modelling individual 
decisions of agents (rather than generalizing from a population of identical ones) we 
can represent the heterogeneity inherent in large crowds. The heterogeneous approach 
allows for different agents to interpret the environment differently (via cognition, 
memory or other intrinsic factors). 

Pelechano et al. [1] have used a psycho-emotional model to consider wayfinding 
by agents with varying training. Although the results are of interest, jumping from 
simple models of homogeneous agents to a complex psychological model makes it 
hard to isolate the effects of heterogeneity. Bandini et al. have designed heterogeneity 
into their SCA model [2], but we prefer to explore the question incrementally by 
adding heterogeneity to an existing model, allowing for comparison of behaviours. 

The CA model of Kirchner & Schadschneider (K&S) [3] considers individual 
agent desires to follow locally perceptible gradients. The Swarm Force model [4,5] 
retains K&S’ general approach, but incorporates the physical forces required to 
reproduce key crowd behaviours. Neither model takes full advantage of the 
individual-centred approach to explore heterogeneity within the crowd because only 
location-specific processing is performed (the agents are all basically the same). 

In addition to a penchant for homogeneity, previous models have not tended to 
examine the important effect of the provision of information concerning the overall 
situation (whether by physical discovery, overhead announcements or inter-agent 
communication). In our view, timely information about the location and operational 
status of exits, for example, is of crucial importance in evacuations; different modes 
of discovery will produce different crowd patterns. Pauls [6] reported that “crowd 
incidents often exhibit… a failure of front-to-back communication”; information 
about an unfolding crush at the front of a crowd must be conveyed to those at the rear 
(with whom damaging pushing forces originate) to prevent disasters.  

It is with a view toward examining the effects of heterogeneity and illuminating the 
importance of information that we here propose the Swarm Information Model (SIM). 
Its aim is to study crowds of heterogeneous individuals who base their actions on the 
differing perceptions of the world engendered by unfolding information. 

1   The Swarm Force Model and SIM 

SIM is an extension of the Swarm Force model [4,5] which in turn is based on K&S’ 
crowd model [3]. The models consist of a rectangular grid of cells, either designated 
as walls or which hold up to one agent. Agents select and move to an adjacent cell in 
each time step, and may be forced to remain still should their desired cell be occupied 
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by another agent. Some cells are designated as exit cells, and agents who occupy 
these cells are considered to exit the model on the next timestep. 

The information available to agents for cell selection is restricted to their 
immediate surroundings, and is dispersed throughout the space through the concept of 
a field: a set of information having a distinct value at each grid cell. K&S define two 
such fields: the static field, whose value is the distance to the closest exit cell, and the 
dynamic field, which allows trail following analogously to ant pheromones. Two 
sensitivity parameters, kS and kD, allow adjustment of the weight agents place on these 
two fields when selecting the cell they wish to move to next. The cell selection 
formula of the Swarm Force model is as follows: 

pij = N exp(kDDij) exp(kSSij) (1 – φij) ξij (1) 

Here, pij represents the probability that an agent will select a neighbouring cell (i, j).  
Dij and Sij represent the value of the dynamic and static fields (respectively) at this 
location, φij is the vacancy factor (0 if a cell is unoccupied and 0.5 otherwise), while ξij 
is 0 for walls, 1 otherwise. N is the normalisation number equal to (Σpij )

-1. 
Force within the model is a third field whose value on occupied cells is the vector 

force experienced by the agent on the cell. Force is generated by agents pushing the 
occupants of desired cells when blocked; is cumulatively retransmitted by agents; 
when moderate overrides equation (1) as the decision mechanism for cell selection; 
and, when excessive, injures agents (who then act in all respects as walls). 

2   SIM Explained 

SIM departs from the previous models in two major respects. First, it allows for 
individual agents to perceive the modelled world differently from one another, 
creating a heterogeneous crowd. Second, it allows for agents to change their view of 
the world, either under the influence of the new information field, or through a simple 
inter-agent communication mechanism. 

Multiple static fields. As with previous models, the basis of agents’ view of the 
world is the static field that, mediated through the kS sensitivity parameter, motivates 
agents to move toward points of interest (e.g. exits). To produce different views of the 
world, the SIM model simply provides a set of static fields rather than a single one. 
The set of static fields specifies the ways agents can view the world. The additional 
fields may include points of interest at locations other than real exits (representing 
blocked exits, or a misinformed agent), and may omit points of interest at legitimate 
exits (representing exits that are unknown to the agent). The additional static fields 
are complemented by an agent variable (current-static) that tracks which static 
field is being consulted by that agent. 

In short, by allowing the agent access to multiple static fields, different agents have 
access to different internal maps leading to heterogeneous decision making. 

Information Field. The information field is a new field within the model that causes 
agents to change their view of the world upon visiting certain locations. Like the 
agent’s current-static variable, the value of the information field is an index into 
the set of static fields. Upon entering a cell the agent compares the value of the 
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information field with the agent’s internal current-static. Should the field indicate 
a higher index, the agent permanently updates its current-static accordingly. 

Like the arrangement of exits and the setup of the static field(s), the information 
field is a creation of the modeller; working together, these three constructs determine 
the evacuation scenario being studied. The information field is likely to be fixed at the 
outset of the model, but it is also possible to change the information field during the 
course of model execution. This can model, for example, the effect of localized or 
generalized overhead announcements concerning the situation. 

Communication. By providing for direct communication we can use this model to 
investigate behaviour engendered by informing agents of different views of the world, 
including misinformation, without physically visiting locations of interest. 

If enabled, communication occurs when an agent a is blocked from moving due to 
an agent b’s occupation of a’s desired cell. Agent a provides its current-static 
value to b, which updates its own value (if it was lower). Conceptually, 
communication occurs as an attempt by a to get b to move out of the way. 

Example Scenario. Consider a simple example scenario with two exits, one blocked. 
Using two static fields we can represent two states of agent “belief”, one incorrect in 
which there are two functional exits (two points of interest: one at an exit, one at a 
wall cell) and one correct in which there is one functional exit (one point of interest, 
at the exit). If we wish to model a scenario where agents may run to the blocked exit, 
find it blocked, then move to the correct exit then we set the information field to 1 
throughout the space, and 2 in the immediate proximity of the blocked exit. Agents 
“see” the blockage of the second exit upon moving into this proximate zone. Upon 
this movement they update their current-static variable to 2, switching to the 
second static field, and thereby viewing only the true exit as a point of interest. 

3   Scenarios Studied and Results 

Results are given here for three scenarios. The first scenario is the example scenario 
just described, with no communication between agents. The second scenario is the 
same, but with communication. In the third scenario there are two exits, both 
functional, but one is not well known (only one randomly selected agent knows about 
the second exit at the outset of the model). There are two static fields; the first field is 
incomplete (showing a point of interest at only one of the doors) while the second 
field shows points of interest at both doors. The information field is entirely set to 1, 
except for a small area proximate to the “secret” exit which is set to 2 (this allows 
agents who wander close the secret door to “discover” it). Communication is enabled. 

The SIM outcomes demonstrate important differences from the Swarm Force and 
K&S models. In the first scenario agents divided into two crowds based on initial 
proximity to each point of interest. Agents discovering the blocked exit attempted to 
turn back toward the functional exit. They were prevented from doing so by naïve 
agents who were clustered around the blocked exit but outside the proximal 
information zone; the naïve agents did not know the exit was blocked and so pushed 
in toward the blocked exit while the knowledgeable agents pushed out towards the 
functional exit. Stasis resulted. Given appropriate injury thresholds this pattern of 
force application created injuries along the boundaries between the two crowds.  
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The second scenario began to unfold as the first with the creation of two crowds. 
The effect of communication was to allow the first naïve agent between a 
knowledgeable agent and the functional exit to be converted into a knowledgeable 
agent. This agent then converted the next naïve agent and so on until a stream of 
knowledgeable agents was able to move toward the functional exit. As the 
knowledgeable agents left the proximity of the blocked door, naïve agents were able 
to move into the space created and continue the information process. Ultimately all 
agents moved to the functional exit, and all agents became knowledgeable. 

There were two broad outcomes of the third scenario. If the one knowledgeable 
agent was initially attracted to the well-known exit then few agents left by the secret 
one. If the single knowledgeable agent was initially attracted to the secret exit then 
through communication engendered by the normal contention for space in a large 
crowd it informed naïve agents. In this case the knowledgeable agent sponsored a 
small crowd of individuals to move to the secret exit. Depending on the geometry of 
the situation it is not necessarily the case that the naïve crowd will ever find out about 
the secret exit, but if it does then some agents may leave the rear ranks at the well-
known exit and move to the secret exit. 

4   Conclusion and Future Work 

We have proposed a new model that demonstrates the effects of heterogeneity within 
crowds and also the results of providing situation-level information. The modelled 
crowd behaves quite differently from a homogeneous one, displaying non-adaptive 
effects (like stasis and injuries when numerous agents work at cross purposes due to 
differing goals). The new model additionally allowed for complex scenarios involving 
changing goals and unfolding information, characteristic of more realistic situations. 

We have not explored adding more dynamic fields, but doing so could result in 
agents with similar views of the world following each other. Rather than switching 
between fields, agents could maintain their own distinct kS and kD values for each 
field, changing them dynamically as information is gained. This would allow for 
declining belief in certain options and consequently a more cognitive model. These 
interesting points are left for future research. 
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Introduction. We are presenting results from our project “Creature’s explo-
ration problem”. The problem is the following: p creatures move around in an
environment in order to visit all reachable empty cells in shortest time. All crea-
tures behave according to the same rule.

The creature may perform four different actions: R (turn Right) with turn
right only; L (turn Left) with turn left only; Rm (turn Right and move) with
move forward and simultaneously turn right; Lm (turn Left and move) with
move forward and simultaneously turn left.

The action R/L is performed if the front cell signals not free = (m = 0)
because of an obstacle, a creature, or a collision conflict. The action Rm/Lm is
performed if the front cell signals free. In case of a conflict in which two or more
creatures want to visit the same cell, all creatures are blocked until the conflict
disappears. For more details see [13].

The rules are implemented with a state machine containing a state table. We
consider the state machine as a MEALY automaton with inputs (m, s), next
state s′ and output d (fig. 1a). An algorithm is defined by the contents of the
table. We are coding an algorithm by concatenating the contents to a string line
by line, e. g.

1L2L0L4R5R3R-3Lm1Rm5Lm0Rm4Lm2Rm // string representation
= 1L2L0L4R5R3R-3L1R5L0R4L2R // simplified string representation

The state table can be represented more clearly as a state graph (fig. 1b).
If the state machine uses n states, we call such an algorithm n-state algorithm.
If the automaton is considered as a MOORE automaton instead of a MEALY
automaton, the number of states will be the product n × #r, where #r is the
number of possible directions (4 in our case).

In the general case that the different values of the states, inputs and outputs
are not restricted to powers of two, the number of M of all algorithms which can
be coded by a table oriented state machine is M = (#s × #y)(#s×#x), where
n = #s is the number of states, #x is the number of different input states and #y
is the number of different output actions. Note that M increases dramatically,
especially with #s, which makes it very difficult or even impossible to check the
quality of all algorithms in a reasonable time for #s ≥ 7 with #x = #y = 2.

S. El Yacoubi, B. Chopard, and S. Bandini (Eds.): ACRI 2006, LNCS 4173, pp. 707–711, 2006.
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Fig. 1. A state machine (a) models the behavior of a creature. Corresponding 6-state
algorithm (b)

The following definitions and metrics are used

– k := number of creatures
– R := number of empty cells
– g := generation (time steps)
– r(g): = number of visited cells in generation g
– rmax := the maximum number of cells which can be visited for g → ∞
– gmax := the first generation in which rmax is achieved
– e := rmax/R[%], the coverage or exploration rate, i. e. visited cells

all empty cells ,
– successful := true, if e = 100%
– speed := R/gmax (only defined for successful algorithms)
– mean step rate := 1

speed (the mean number of cells visited in one generation)

In preceding investigations we could evaluate the best 6-state algorithms for
one creature by the aid of special hardware. The behaviour of all relevant algo-
rithms was simulated and evaluated for 26 initial configurations The following
10 best algorithms with respect to (1.) success, (2.) coverage and (3.) speed are:

1. G: 1L2L0L4R5R3R-3L1R5L0R4L2R 6. E: 1R2L0R4L5L3L-3R4R5R0L1L2R
2. B: 1R2R0R4L5L3L-3R1L5R0L4R2L 7. F: 1R2L0L4R5R3R-3L4L5L0R1L2R
3. C: 1R2R0R4L5L3L-3R4R2L0L1L5R 8. H: 1L2L3R4L2R0L-2L4L0R3L5L4R
4. A: 0R2R3R4L5L1L-1R5R4R0L2L3L 9. I: 1L2L3L4L2R0L-2L4L0R3R5L4R
5. D: 1R2R3R1L5L1L-1R0L2L4R3L1L 10. J: 1R2R3R0R4L5L-4R5R3L2L0L1L

The goal of this investigation is to find out, how many creatures can do the
whole work most efficiently. The cooperative work of k creatures is proportional
to the number of generations (time steps) to visit all cells, multiplied with the
number of creatures: W (k) = gmax(k) × k. The relative efficiency is the work
of one creature related to the work of k creatures using the same algorithm Alg
for all the creatures: Frel = WAlg(1)/WAlg(k). The absolute efficiency is the
work the work of one creature using the best algorithm divided by the work of
k creatures using the algorithm Alg.: Fabs = WAlgBest(1)/WAlg(k).

Results. We used the best 6-state algorithms we had evaluated for one creature.
Then we observed the global behaviour using 1, 4, 8, 16, 32, 64 creatures in an
empty field of size 25 × 25 with an obstacle in the centre. The creatures were
equally distributed along the border as shown for 64 creatures in fig. 3.
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Table 1. (a) Generations rmax to visit all empty cells. (b) Work units (Generations ×
Creatures) to visit all empty cells.

Creatures (a) Creatures (b)
Algorithm 1 4 8 16 32 64 1 4 8 16 32 64

A 647 718 375 196 60 2588 5744 6000 6272 3840
B 3166 971 2012 476 332 66 3166 3884 16096 7616 10624 4224
C 3333 1120 629 1516 223 169 3333 4480 5032 24256 7136 10816
D 7525 1750 2080 763 508 64 7525 7000 16640 12208 16256 4096
E 4169 1120 1291 1544 587 58 4169 4480 10328 24704 18784 3712
F 4213 971 736 282 130 4213 3884 11776 9024 8320
G 3166 971 2012 476 332 66 3166 3884 16096 7616 10624 4224
H 8009 1478 918 892 385 221 8009 5912 7344 14272 12320 14144
I 7168 1990 1777 449 296 44 7168 7960 14216 7184 9472 2816
J 4831 435 525 64 38648 6960 16800 4096

The number of generations rmax in which all cells can be visited depends
on the algorithm and decreases in most cases with the number of creatures
(tab. 1a). In some cases the creatures were not able to visit all empty cells (A-1,
F-8, J-1, J-4). In other cases more creatures needed more time than less creatures
(A-4 < A-8), (B-4 < B-8), (C-8 < C-16) etc. The whole task can be accomplished
with a minimum number of 44 generations (I-64).

An interesting question is the following: how many creatures and which algo-
rithm should be used in order to complete the task with a minimum of working
units. You can imagine some workers who have to be paid per working time.
You may find out from tab. 1b that you have to pay at least 2588 work units
(A-4). If you could spend about 9 % more money (2816), your task would be
accomplished about 15 times faster than with A-4 using 64 creatures (I-64).

The results can be presented more general if the work is normalized to the
work of one creature. Therefore the efficiency measures were introduced.

Always the same algorithm is used for the relative efficiency (fig. 2a). In some
cases (especially D-64, I-64, H-4) the efficiency is greater than one. That means
that the work could be done cheaper using more creatures.

In the case you compare the cooperative work (with any algorithm) to the
work of a single creature with the best algorithm (B-1, G-1), the absolute ef-
ficiency should be used (fig. 2b). There are two cases (A-4, I-64) in which the
efficiency is greater than 100 %, it means that in certain cases more creatures
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Fig. 3. Algorithm I with 64 creatures, generations 0, 12, 24, 36, 44 with conflicts
(marked dark)

can really do better (cheaper) than only one. In other words: more creatures can
lead to a super linear speed-up (synergy effect) through cooperation.

The most efficient algorithm I with 64 creatures (I-64) was further investigated
by simulation. In each of the generations 0, 4, 8, 12, 16, 20, 24, 28, 32, 36,
38, 40 (fig. 3) four conflicts are arising where two creatures are involved, in
total 48 conflicts. The sum of creatures who are involved in conflicts is in total:
(conflicts)× 2 = 96 which is very low, compared to the number of working units
(2816). Furthermore all conflicts, except for generation 38 have a positive effect
because one of the creatures will visit an empty field in the next generation. In
this example the conflicts have a positive effect if the creatures meet each other
collateral (angle 90◦), whereas the conflicts are irrelevant if the creatures meet
frontal (angle 180◦).

Further investigations are planned with creatures which have different behav-
iors, have different actions, e. g. move forward, move backward, and can commu-
nicate with each other.
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Abstract. A discrete model of pedestrian motion is presented that is im-
plemented in the Floor field- and Agentbased Simulation Tool (F.A.S.T.)
which has already been applicated to a variety of real life scenarios.

1 The F.A.S.T. Model of Pedestrian Motion

The F.A.S.T. model is discrete in space and time with an orthogonal lattice.
It can be classified as probabilistic CA with extensions demanded by reality.
There is a hard-core exlusion between the agents, of which at maximum one can
stand at a cell at a certain point in time. An agent needs the space of one cell.
This implies a cell size of roughly 40 · 40 cm2, the minimum space a pedestrian
occupies [Dre67]. So far the model follows earlier models [Klu03, Kes01]. In fact
this model is in many aspects an extension - mainly related to speeds larger one
cell per round - of the model presented in [Kir02] which itself had predecessors
[Bur01a, Sch01a, Bur01b].

There are three levels of decision making in this model: 1) The choice of an
exit, 2) the choice of a destination cell, 3) the path between the current and
the destination cell. The first two are probabilistic processes. The third one is
deterministic, except for the order in which the agents carry out their steps
to reach the destination cell. The process of choosing a destination cell is done
completely in parallel by all agents, while the actual motion is a totally sequential
process.

In the following a round includes the decision for an exit as well as for a
destination cell and all steps, while a step is the movement of an agent from one
cell to one of the nearest neighbour cells i.e. a part of the path from the current
towards the destination cell.

1.1 Choosing an Exit

At the beginning of each round all agents choose one of the exits with the
probability pA

E = N(1 + δAEkE(A))/S(A,E)2, with A numbering the agents, E
numbering the exits agent A is allowed to use, δAE = 1 if agent A chose exit E
during the last round and δAE = 0 otherwise, kE(A) being agent A’s persistance
to stick with a once taken decision for one of the exits, S(A,E) being the distance
between the exit and the current position of agent A, and N as normalization
constant guaranteeing

∑
E pE = 1. The distance is squared so the probability

is proportional to the inverse of the area of a circle around the exit with radius

S. El Yacoubi, B. Chopard, and S. Bandini (Eds.): ACRI 2006, LNCS 4173, pp. 712–715, 2006.
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S(A,E). Given a homogeneous density of agents all over a scenario with high
symmetry this area is proportional to the number of agents which are closer to
the exit than agent A. Therefore this is a measure of a possible queue before
agent A at exit E.

1.2 Choosing a Destination Cell

In a model which is spatially and temporally discrete an agent’s (dimensionless)
velocity is the number of cells which he is allowed to move during one round.
As the real-world interpretation of the size of a cell is fixed by the scale of
the discretization, the real-time interpretation of one round fixes the real-world
interpretation of such a dimensionless velocity. One round is chosen to equal
the typical reaction time of one secound. Typical maximal velocities vmax of the
agents therefore are three to six cells per round.

In the F.A.S.T. model an agent chooses one cell (the destination cell) he wants
to move to out of all cells he would be able to reach during one round, except for
those that are occupied. Which cells are part of the neighbourhood that belongs
to a certain vmax (i.e. the shape of such a neighbourhood) is described in [Kre05].

Probabilities for the possible Destination Cells. Probabilities get assigned
to each free and unoccupied cell in the neighbourhood of an agent that corre-
sponds to the maximum velocity of that agent, that that particular cell is chosen
as destination cell. The probability that an agent chooses cell (x, y) is

p = NpS
xyp

D
xyp

I
xyp

W
xyp

P
xy (1)

While N is a normalization constant all pX
xy are partial probabilities from the

different influences on the movement of an agent.

1. pS
xy is the influence of the static floor field which contains the information

on the distance towards the exit.
2. pD

xy is the influence of the dynamic floor field [Sch01b] which contains the
information of the motion of the other agents.

3. pI
xy is the influence of inertia effects.

4. pW
xy is the influence of nearby walls.

5. pP
xy is the influence of the density of nearby agents.

These five influences will be introduced in more detail now.

Moving towards the Exit - Following the Static Floor Field: Before the simulation
begins, the distance from each cell to each exit is calculated using Dijkstra’s
algorithm [Dij59] and stored in the static floor field. With the static floor field
pS is calculated for a certain cell at (x, y) as pS

xy = e−kSSxy , with kS being the
coupling strength of an agent to the static floor field knowledge as well as will to
move are parametrized. All of the five influences are weighted against each other
in their relative strengths by coupling constants kX and all coupling constants
are individual parameters of the agents.
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Herding Behaviour - Following Others: Asides the main CA where the agents
move, there is another CA - the dynamic floor field - where agents leave a virtual
trace whenever they move. This trace decays and diffuses with time. In the
F.A.S.T. model the dynamic floor field is a vectorial field. So an agent who has
moved from (a, b) to (x, y) changes the dynamic floor field (Dx, Dy) at (a, b) by
(x − a, y − b) after all agents have moved. Right after that all values of both
components of D decay with probability δ and diffuse with probability α to
one of the (von Neumann) neighbouring cells. Since the vector components can
be negative, decay means a reduction of the absolute value. Diffusion is only
possible from x- to x- and from y- to y-component. The influence on the motion
of the agents is pD

xy = ekD(Dx(x,y)(x−a)+Dy(x,y)(y−b)) where (a, b) is the current
position of the agent.

Inertia: Contrary to Newtonian physics pedestrians experience de- and acceler-
ating in motion direction as being less ardous than walking through curves. Due
to the shape and functionality of the human movement apparatus pedestrians
can de- and accelerate from and to their preferred walking velocities almost in-
stantaneously compared to a timescale of one secound. However deviating quickly
by e.g. 90◦ from a certain direction while keeping up the walking speed is far
more difficult. So only centrifugal forces are considered to have an influence on
the motion of the agents.

On a perfect circle the centrifugal force - which in the F.A.S.T. model is the
measure for inertia influences - is Fc ∝ v2/r. This assumption after a few steps
[Kre06] leads to the following inertia dependence of the movement probability
pI(xt+1, yt+1) = e−kI(vt+1+vt) sin |φ|

2 with φ as angle of deviation from the former
direction of motion and t counting the timesteps.

Safety Distance towards Walls. This is considered via pW
xy = e(−kW Wxy) where

Wxy is the distance of the cell (x, y) towards the closest wall. For distances larger
than a certain Wmax the effect vanishes completely and pW

xy = 1.

Staying Polite - Keeping a Distance Towards other Agents. After each round
for each cell (x, y) the number NP (x, y) of agents in its Moore neighbourhood is
counted. The more agents are immediately neighboured, the less another agent
might want to choose this cell as his destination: pP

xy = e−kP NP (x,y). Then the
density at the border of a crowd changes less rapidly, while in the center of the
crowd the density remains high since all free cells which an agent can reach
during one round are surrounded by agents.

1.3 Moving Towards the Destination Cell

Once all agents have chosen their destination cell the agents start moving towards
them. The sequence in which the agents execute their steps is chosen randomly
in a way, that agent D executes a step, then agent B, then again agent D, then
agent K. During one step an agent moves deterministically onto that cell within
the Moore neighbourhood of his current cell, that lies closest to his destination
cell. To represent the dynamic space consumption [Wei92] a cell which has been
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occupied once during this process remains blocked for all other agents until the
end of the round. So if the cell closest to the destination cell is blocked the agent
moves to the secound closest and so on. If there is no cell left that is unblocked
and closer to the destination cell than the current cell the round ends for that
particular agent.
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Abstract. Pedestrian flow in the concourse of the stations was simulated by 
Cellular Automata, and based on the simulation results, an evaluation index for 
billboards set along the pathway in the concourse was proposed. The practical 
value of billboards may depend on not only their size or placement, but the 
number of people who pay attention to them. In this paper, some visible area 
was set to each person walking in the concourse of the station, and the pedes-
trian flow was simulated by defining various local neighbor rules based on our 
experience from gates to the door of trains, or door to the gates. The score for 
each billboard was accumulated when a person took a look at the billboard in 
the view area, and evaluation index was proposed. The number of people in the 
concourse was counted in practice and it showed good agreement with the 
simulation results. 

1   Introduction 

Billboards hung from the ceiling or on the walls in the concourse of the station are 
effective medium for advertisement. In these days, several posters are sometimes 
attached on the floor just in front of the gates for advertisement. Though its size, 
position and direction are most important factors, the practical value of billboards 
may mainly depend on the number of people who pay attention to them. But, to the 
best of our knowledge, the evaluation method for billboards has not been proposed in 
the past quantitatively. This is partly because there has been no simulation tool to 
count the number of people in the concourse of station and partly because no one has 
proposed the idea to evaluate billboards based on the number of people who take a 
look at them. 

In the present paper, the pedestrian flow in the concourse of station was simulated 
by Cellular Automata1,2, and the number of pedestrians who caught the billboards into 
their own view was counted for evaluation. For this purpose, several local neighbor 
rules were defined based on the observation of pedestrian in the concourse and also 
on the database stocked in Japan Railroad companies. The evaluation was conducted 
concerning the distance to the billboard, the direction of pedestrian in relation to the 
boards, the degree of crowdedness around the boards, and other parameters. 
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2   State Variables and Local Neighbor Rules  

The concourse was divided into rectangular cells, and the state variable of “floor”, “bill-
board”, “pedestrian” and “obstacle” including walls or pillars were defined for each cell. 
For the cells indicating the variable of “pedestrian”, the variable of “walking speed”, 
“direction” and “ID number of each pedestrian” were added. The state of “entrance”, 
“exit”, “stairs” or “gate” was appended to the cells indicating the state of “floor”. 

A person might move forward or either of front sides, as shown in Fig.1. The 
maximum velocity of pedestrian was set to 2.5, 1.4, 1.0 and 0.7 m/s, which were 
based on the measurement data. Each pedestrian was assumed to have fan-shaped 
visible area as shown in Fig.2, and distance to the front end of visible area and the 
center angle of the fan was changed according to the walking velocity. 

One side of the square cells was set to 0.5 m. Though one person was allowed to stand 
on one cell at one time as a general rule, two persons might step into one cell around the 
gate cell or in the case when two persons might pass each other in the crowded area. 

Pedestrian  

Fig. 1.  Cell to proceed 

 

Fig. 2. Visible area of a pedestrian 

3   Simulation Results of Pedestrian Flow 

Typical examples of simulation result are shown in Fig.3. This example is the main 
part of the concourse in Tamachi Station, which is an average size station in Tokyo 
Metropolitan area. The number of passengers getting on and off is said to be 350 
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thousand per one day, and the simulation results shown in Fig.3 correspond to the 
rush hour on a weekday in the morning. These results show good agreement with the 
field investigation database counted in the same concourse of the station. 

 

Fig. 3.  Simulation result in the concourse of Tamachi Station 
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4   Evaluation Index for Billboards 

Based on the flow simulation of pedestrian in the concourse, the degree of recognition 
for each billboard was evaluated2. When a billboard comes into the visible area of a 
pedestrian, the recognition index is estimated for each time step, and total index is 
accumulated during the simulation interval as follows; 
 

R_INDEX = Σ (A x Cde x Cps x Cds x Cdr ) 
 
where, A is the fundamental score depending on the size of billboard, Cde is the pa-
rameter for the density around the board, Cps is for the position of board, Cds is for the 
distance between the person and the board, Cdr is for the direction of board against the 
pedestrian. The accumulated index is shown beside of each billboard in Fig.3. 

5   Conclusions 

In this paper, the pedestrian flow in the concourse of stations was simulated by Cellu-
lar Automata, which showed good agreement with the field investigation database. 
Setting visible area to each pedestrian and the number of chance when a billboard in 
the concourse came into the visible area was counted, a quantitative evaluation index 
for the billboards was proposed. The effects of the size of billboards, the density of 
persons around the boards, the placement position, the distance between the board and 
the pedestrian, and direction of the board against the pedestrian were taken into ac-
count in the evaluation index. 

This research was partly supported by East Japan Marketing & Communications, 
Inc. The authors would like to express sincere thanks for their cooperation. 
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The design of different kinds of environmental structures, at different detail
levels, from the corridors or emergency exits of a building to the whole trans-
portation system on urban or regional scale, may benefit from an envisioning
of how it will perform, given specific assumptions on the usage conditions and
the behaviours of the autonomous entities which will populate it. There is thus
a growing interest in models and technologies supporting the simulation of this
kind of domains. An innovative trend in supporting architects in their activities
is represented by virtual environments in which alternative architectural designs
can be visualized and compared by involved actors, in a collaborative decision
scheme [1,2]. This kind of approach could be improved by the possibility to in-
clude in the virtual environments also an envisioning of pedestrian dynamics in
the related architectural structures, given the fact that human movement be-
haviour has deep implications on the design of effective pedestrian facilities [3].

Several continuum models for pedestrian dynamics are based on an analytical
approach. A relevant example is represented by social force models [4], in which
individuals are treated as particles subject to forces. Other analytical models
take inspiration from fluid-dynamic [5] and magnetic forces [6] for the represen-
tation of pedestrian flows. A different approach to crowd modelling provides the
adoption of Cellular Automata (CA) [7], with a discrete spatial representation
and discrete time-steps. The cellular space includes both a representation of the
environment and an indication of its state, in terms of occupancy of the sites it
is divided into. Transition rules must be defined in order to specify the evolution
of every cell’s state; they are based on the concept of neighbourhood of a cell, a
specific set of cells whose state will be considered in the computation of its tran-
sition rule. Local cell interactions may represent the motion of an individual in
the space, and the sequential application of this rule to the whole cell space may
bring to emergent effects and collective behaviours, for instance lane formation
and evacuation configurations [8].

Even if the CA-based approach is generally better understood than analyti-
cal models by experts in different application domains, and more easily applied
to model related scenarios, both these approaches share the limit of consider-
ing individuals as homogenous entities, and generally do not provide elements
of flexibility and dynamism, like changes in behaviour of individuals. This may
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Fig. 1. Integration between a bidimensional discrete simulator and the 3D Studio Max
environment

not represent an issue for large scale simulations, in which a certain degree
of approximation is unavoidable and often tackled by the adoption of a sto-
chastic approach, but in other situations it could be relevant to take this kind
of information into account. For instance, the evaluation of information signs
placement depends on different factors related to their effectiveness, and thus
to their visibility. The latter is strongly dependant on the behaviour of indi-
viduals moving throughout the environment, their goals and destinations, but
even their perceptive capabilities. These factors are relevant in the decision of
what directions the active entities will take, and to include these concepts in
a CA would require an extremely high number of rules, a very large cell state
and probably the extension of the concept of neighbourhood to simulate at-
a-distance interactions (for instance to model the attractiveness of destination
sites). All these considerations lead to consider a Multi-Agent System (MAS) [9]
approach to the modelling or this kind of situation. In fact, a MAS consists of
a number of possibly heterogeneous agents that act and interact inside an en-
vironment, which enables their perception, interaction and action. Accordingly,
Multi Agent Based Simulation (MABS) is based on the idea that it is possible to
represent the global behaviour of a dynamic system as the result of interactions
occurring among an assembly of agents with their own operational autonomy.
In particular the Situated Cellular Agents (SCA) model [10] is a situated MAS
model, whose spatial structure represents a key factor influencing agents’ choices
on their actions and in determining their possible interactions. The model has
been successfully applied in different contexts, and in particular its focus on the
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Fig. 2. A screenshot of an animation generated by the 3D visualization system

modelling of the environment as well as its inhabiting agents and their interac-
tions, make it particularly suitable for the modelling of crowds of pedestrians [11].

In different situations it can be useful, for sake of communication with non-
experts, to obtain a more effective visualization of simulation dynamics. A rele-
vant part of the project in which this work has been developed provides thus the
generation of effective forms of visualization of simulation dynamics, to simplify
its understanding by non experts in the simulated phenomenon. In particular,
the developed simulator can be integrated with a 3D modelling and rendering
engine (more details on this integration can be found in [12]). One of the applica-
tions developed to implement SCA based simulations exploits a simulator based
on a bidimensional spatial structure representation and an existing commercial
3D modelling instrument (3D Studio MAX1). The simulator has been developed
as experimentation and exploitation of a long term project for a platform for
SCA based simulations [13].

The overall integration of the bidimensional discrete simulator and the 3D
Studio Max environment is summarized in Figure 1. In (a) the bidimensional
simulator produces a log-file provided with a fixed-record structure, in which
every record is related to a node of the spatial structure or the position of an
agent with reference to this structure. Initially, the simulator prints the structure
of the environment, then the starting position of each agent. For every iteration
of the simulation the new position of every agent is also printed. This file is then
parsed by a 3D Studio Max script (step (b) in the Figure) which generates a
plane and walls related to the spatial structure, nodes related to sites, and bipeds

1 http://www.autodesk.com/3dsmax
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related to agents. Splines are then generated starting from the discrete positions
assumed by various agents, and represent bipeds’ movement. This process intro-
duces modifications to trajectories defined by the bidimensional simulator whose
sense is to give a more realistic movement to agents’ avatars. A screenshot of a
sample animation generated in a realistic 3D environment is shown in Figure 2.

While this approach has been applied to the crowd dynamics generated by a
SCA based simulator, it can be generally applied to any kind of discrete crowd
modelling and simulation system, such as a CA based one.
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Abstract. The microscopic scale of pedestrian dynamics modeling re-
quires creating various kinds of models. Two features of a model seem to
be most important: simulation realism and computational effectiveness.
The paper describes nonhomogeneous CA model of pedestrian dynamics
for a certain limited area. The pedestrians are represented by ellipses
on a square lattice, which implies the necessity of taking into account
some geometrical constraints for each cell. Edward Hall’s idea of so-
cial distances is introduced into the model — pedestrian behavior in the
model is influenced by the rules of proxemics. As an example, the authors
present a simulation of pedestrian behavior in a tram.

1 Introduction

Over the last years Cellular Automata have become one of the most useful
approaches to modeling pedestrian dynamics.

Let us mention some interesting recent works: the model by Burstedde et al. [1]
uses the idea of static and dynamic floor fields. Dynamic floor field points more
attractive directions. Dijkstra et al. [2] present a hybrid model with Cellular Au-
tomata and Multi–Agent Systems. Gloor et al. [4] build a model of hikers’ activity
in the Alps. In the model, an additional lattice of nodes (graphs) is added to the ba-
sic CellularAutomata lattice. Narimatsu et al. [9] present an algorithm for collision
avoidance by learning some patterns of bi-directional pedestrian movement.

Generally, a considerable part of current works dealing with crowd dynamics
could be subsumed under the term of nonhomogeneous CA models. In this pa-
per, the authors present a Nonhomogeneous CA model of people representation
combined with pedestrian dynamics based on the sociological theory of Social
Distances by Hall [6, 7].

2 Pedestrian Representation and Social Distances

Human beings can be represented by ellipses rather than by circles. Thus, the
classical CA model with square-cells is not suitable for a realistic simulation of
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pedestrian dynamics especially in the case of large density (crowd simulation).
Therefore, the authors decided to enrich the classical model to make it possible to
represent ellipses on the classical square-grid. For this purpose, we assumed that
a person occupying one cell can be in one of four allowed configurations, which
correspond to the 0, 45, 90 and 135 degree rotation of the ellipse representing
the pedestrian. Owing to the introduction of new degrees of freedom in each cell,
new constraints need to be imposed on the behavior of pedestrians occupying
neighboring cells. A person occupying the cell modifies a set of allowed states
in the cells lying in the Moore neighborhood of radius 1. To determine the set
of forbidden positions in the neighborhood, a simple geometrical criterion is
applied: a position is forbidden if the cross-section of two ellipses representing
two neighbors is greater than prescribed in the model tolerance.

The authors therefore enriched the model by incorporating the idea of social
distance forces (Fig. 1) which are the most important driving forces according to
which people automatical establish the position and distribute themselves within
a bounded area. In his theory of proxemics Hall differentiates four sorts of social
distances [6, 7]: Intimate distance, Personal distance, Social distance and Public
distance. They are reflected in the model in a flexible way. The range of these
distances could be different dependending on a situation.

Such an enriched CA model retains its simplicity because the domain is dis-
cretized by a square-cell lattice and one occupied cell still represents one person,
which makes the implementation of movement rules much easier. The cost of
calculating and checking additional states for each cell is moderately low.

3 Using the New Model for Describing Pedestrian
Dynamics in a Tram

3.1 Model Architecture

The authors decided to adapt the three-phase simulation model described in
detail in [10]. Usually, the first level (executive) is provided by a specialized
simulation tool (i.e. simulation programming language) and is hidden for the
model designer. If one decides to use a general programming language (like
C++), it is necessary to implement executive too.

The role of executive is to ensure proper sequence of simulation events and
to handle interactions between model objects. The exact model implementation
(the whole model logic) is provided by second level routines written by the model
designer. The last, third phase contains all subsidiary routines, i.e. statistics
gathering and processing.

The described model is implemented using C++ language. Every pedestrian
is represented by an agent. The executive is written from scratch. It updates the
states of the grid cells and decides whether and when to pass control to han-
dling routines of particular agent (pedestrian). Therefore the executive maintains
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Fig. 1. Social forces

and examines sequentially four lists of agents: boarding pedestrians, getting off
pedestrians, waiting pedestrians and sitting pedestrians.

3.2 Simulation Results

The example of a simulation for tram passanger dynamics, as a practical illus-
tration of applying the developed model, is presented in Fig. 2. The geometry
of a tram is represented by a set of square-cells. Pedestrians are represented
by ellipses, whose centers coincide with cell centers. In one time-slice-step, a
pedestrian can move into another cell in Moore neighborhood of radius r = 1.

Fig. 2. Three consecutive phases of the simulation. The pedestrian getting off the
vehicle (marked grey), violates the social distances of other pedestrians (marked black),
who draw back and make getting off possible.



New Cellular Automata Model of Pedestrian Representation 727

4 Conclusions

The authors’ previous model [5] assumed different pedestrian representation:
although each pedestrian was also represented by an ellipse, physically he/she
occupied two or four adjacent cells of the lattice. In such a case, the movement
algorithm was much more complicated.

The main goal of the new model is much more realistic modeling of pedestrian
dynamics at the cost of applying some simple additional rules on a square-cell
grid. Social distances mechanisms make simulated interactions among passengers
more realistic and explain passenger allocation inside a considered area.

The proposed solution combines the advantages of classical CA (simplicity and
effectiveness) and a more sophisticated method based on molecular dynamics,
e.g. Social Forces by Helbing and Molnar [8], (accuracy and realism).
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Since Cellular Automata (CA) have been proposed by von Neumann in the late 
1940s, CA have been applied in a variety of scientific researches on complex system, 
including traffic models and biological fields. It is an idealization of a physical system 
in which space and time are all discrete. As one of the examples achieving most re-
markable progress is the CA model for pedestrian dynamics. Since the pedestrian 
flows are caused by collective crowd behavior, it is difficult to handle directly each 
pedestrian by solving coupled differential equations, although the social force model 
has been proposed [1]. CA approach could be more appropriate to describe pedestrian 
dynamics, because pedestrian flows are naturally emerged in a collective behavior in 
a CA model. The floor field CA model has been developed for pedestrian dynamics 
[2,3], where two kinds of floor fields, a static and a dynamic one, are introduced to 
translate a long-ranged spatial interaction into an attractive local interaction. So far, 
only the social force model and floor field model are the approach to show lane for-
mation, oscillations of the direction at bottlenecks and the so-called faster-is-slower 
effect, which are basics for pedestrian modeling.  

In previous study, the extended floor field CA model has been proposed to con-
sider the complex room of arbitrary geometry [4]. To describe the evacuation dynam-
ics, the static floor field is given according to the minimum path based on the visibil-
ity graph and Dijkstra’s algorithm. As seen in Fig. 1, the von Neumann neighborhood 
was adopted. For each pedestrian, the transition probability, Px,y, where x and y is a 
move in x and y directions, respectively. The pedestrian moved to the nearest four 
cells at next time step or remained at the same cell, but he could only move in four 
directions: forward, backward, left, and right. That is, the direction of each pedestrian 
movement was limited. This might be a problem if we discuss the evacuation time.  

Figure 2 shows the example of evacuation toward the exit. We consider two paths 
of A and B. Needless to say, the distance of path B is much shorter than that of path A 
in real situation (see left figure), because there are no grids and people can take any 
paths. Since there are grids in the CA simulation (see right figure), both are the same 
distance. Therefore, if we count the evacuation time in CA model, the oblique four 
directions in Fig. 1 may be needed as well. However, it should be noted that, because 
of the longer movement within one time step, the allowance of movement toward the 
oblique neighbor cells corresponds to the faster motion of the pedestrian, which may 
also give unrealistic solution. To improve the model, it is better to consider any direc-
tion and any velocity of pedestrian movement.  
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Fig. 1.  Target cells for a person at the next time step 
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Fig. 2. Example for evacuation toward the exit, with two paths of A and B.Left figure is 
movement in real situation without grid points, and rightfigure shows one with CA grids 

Here, we explain a new approach for arbitrary velocity and directions for pedes-
trian dynamics [5]. It is based on the Real-coded Lattice Gas (RLG), which has been 
developed for fluid simulation [6,7]. In RLG model, similar to the Lattice Gas Auto-
mata [8,9], the particles are used for modeling fluid as a fully discrete molecular  
dynamics. The main difference is that the particles have continuous velocity distribu-
tions to show Maxwell-Boltzmann distribution in the equilibrium state. Furthermore, 
collision and streaming schemes do not depend on the explicit lattice structure in the 
discrete space. That is, the particle of lattice gas has real number in the velocity, and 
travel to any direction. We apply this scheme to the CA model for pedestrian dynam-
ics. We call it Real-coded Cellular Automata (RCA). The numerical procedure is 
explained briefly. 

The update rule of RCA consists of 4 steps, and the position of the pedestrian is re-
newed. The unit discrete time step is used, and the space is discretisized with grids. 
The grid is square and its length is Δ. 

1) First, the streaming process is performed to move the pedestrian position by its 
moving velocity. It can be described simply as the sum of position and velocity vec-
tors of pedestrian i, 

iii vxx +='                                                          (1) 
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where x’i and xi are the post- and pre-streaming position for the pedestrian i, and vi is 
its moving velocity. In this method, vi can be arbitrary velocity and x’i is not on at the 
grid at this stage. Then, as shown in Eq.2, the velocity components in x- and y-
directions are divided into two parts of [ ]iv and { }iv : the former is the integer part 

corresponding to grid number and the latter is the decimal part less than the grid 
length.  
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2) To keep the pedestrian position right on the grid point, the pedestrian is reposi-
tioned on the grid point. This procedure is shown in Fig. 3. There are four candidates, 
points A, B, C, and D. Which one is selected is stochastically determined by each 
probability. As shown in Eqs.3-6, the probability of movement to each point is 

Ap ,
Bp , 

Cp , 
Dp , respectively.  

{ }{ }iyixA vvp ,, �=                                                              (3) 

{ }( ) { }iyixB vvp ,, �−= 1                                                      (4) 

{ } { }( )iyixC vvp ,, −= 1�                                                      (5) 

{ }( ) { }( )iyixD vvp ,, −−= 11 �                                              (6) 

Needless to say, the sum of these values is 1. However, this is not the final position. 
The third step is needed to avoid the collision between pedestrians.  
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Fig. 3.  The position and movement of the pedestrian at the step 2 

3) At the second step, whenever the pedestrian attempt to move to grid point where 
someone already exists, he can not move and remain at the pre-streaming position.  
4) The pedestrian change the direction to move toward the target, for example, the 
exit in Fig.2. It could be a corner in the corridor when people evacuate in the building 
[4]. We assume that the angle pedestrian can change is set to be +45° or -45°, which 
corresponds to our natural behavior when we try to avoid instantly the collision  
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during walking or running. If the pedestrian hits the wall, he also changes the direc-
tion. The above update rules are applied to each pedestrian randomly.  

Here, we show the example simulated by RCA. Figure 4 shows the simulation of a 
crowd in the street. Calculation domain is 30m×15m. The time step is 1 s, and the grid 
length is 1 m. The pedestrian is walking from the left to right, or visa verse. A white 
circle expresses a person moving toward the right, and a black circle expresses a per-
son moving toward the left. Both upper and lower boundaries are the wall area, and 
pedestrian change the direction if he comes to the wall. The number of people we put 
in the domain is 1 to 4, which is set randomly. The moving velocity of the pedestrian 
is always 1.2 m/s, except that he cannot move according to the step 3. The lane is 
automatically formed in this simulation. Other examples are also found in Ref. 5. We 
conclude that the proposed Real-Code Cellular Automata (RCA) can be used for the 
simulation for pedestrian dynamics, although more benchmark studies will be needed. 

 

Fig. 4.  Lane formation by a crowd in the street (91 time steps) 
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