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Abstract. The successful assembly of large programs out of software compo-
nents depends on modular reasoning. When the linking of component code is
modular, components can be compiled and type checked separately, deployed
in binary form, and are easier to reuse. Unfortunately, linking is not modular in
many mainstream OO languages such as Java. In this paper we propose an in-
tuitive and formal framework for enhancing a language with modular linking,
which is applied to the specific problem of making linking in Java modular. In
our proposed framework, the degree to which components can be reasoned about
modularly is adversely affected by language features that limit abstraction. We
show that most of Java’s core language features, such as inheritance, permit a
high degree of modular linking even in the presence of cyclic dependencies.

1 Introduction

Reasoning is modular if it can be divided into separate reasoning of a system’s parts,
all of which can be combined into a reasoning of the entire system. General modu-
lar reasoning is indispensable in developing large programs out of third-party software
components [24], because developers do not need to understand the implementations
of the components they reuse. Modular linking is a specific kind of modular reasoning
where component code can be compiled, linked, and statically type checked separately.
Modular linking avoids many “DLL hell” problems related to the link-time binary com-
patibility [9/18] of components. Although modular linking is a common feature of func-
tional languages because of the elegance and simplicity of functions, modular linking
in object-oriented (OO) languages is problematic because of complex language features
related to classes and objects.

The degree to which components can be separated by modular reasoning depends
on what can be hidden, or “abstracted,” between components. Abstraction in Java is
complicated by inheritance: reasoning about a class defined in a component separate
from its inherited superclasses is similar to reasoning about a mixin [4l14]. Mixins have
well-known type-checking challenges related to ambiguous methods, where a subclass
may “introduce” a method that conflicts with a method unknowingly provided by a
superclass, and cyclic inheritance, where mixins are applied recursively. As a result,
statically-typed OO languages that support modular linking have done so by restricting
inheritance [3]], disallowing cyclic dependencies between components [12i17], or by
severely limiting abstraction [3l12].
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In this paper, we propose a framework that intuitively and formally describes how
linking can be made modular independent of a specific language. We apply this frame-
work to the problem of making compilation, linking, and type checking, modular in
the Java language, which models our design and implementation of Jiazzi [19]. Jiazzi
enhances Java with support for externally linked and separately compiled components
based on program units [[13].

Issues related to modular linking in OO languages have been previously explored
in the areas of managing virtual method namespaces [2225], merging module systems
and OO languages [3!12J17]], and reasoning about mixins [4/14]. The work presented in
this paper is the first to show how modular linking can be added to a language using a
general framework, which directly considers the effects of a language’s features, such
as OO inheritance. We show that inter-module inheritance restricts abstraction in a way
that does not significantly decrease the degree of modular reasoning.

Section [2] motivates modular linking in the Java language. Section [3] describes an
intuitive and formal framework for adding modular linking to a language that does not
already support it. Section [4] shows how this framework is used to add modular link-
ing to the Java language, and describes how we have dealt with inheritance and cyclic
dependencies. Section |3 briefly discusses how our modular linking framework can be
used to evaluate language features other than inheritance, such as abstract methods and
symmetric multi-methods. Section [l discusses related work and Section [7] summarizes
our conclusions.

2 Motivation

Programs can be assembled out of separately developed and deployed containers of
code, which we refer to as components. Such components in Java can be physically
realized as Java archive (JAR) files that contain compiled classes. The linking of com-
ponents is important in the development of a program. During linking, type checking is
performed to ensure that safety properties are not violated that could result in segmenta-
tion faults or circumvent security of the program. When compared to other mainstream
languages, Java’s support for program linking is advanced: linking always guarantees
program type safety, can occur dynamically, and supports laziness. Unfortunately, the
linking of components in Java is not modular: the entire code of all components linked
into a program is always type checked together. Because the linking of components in
Java is not modular, interactions between components can result in errors that can only
be debugged by inspecting the source code for all components involved.

In Java, the source code of each component is compiled in an environment where the
implementations of all used classes are available, even if those classes are implemented
in other components. These classes that originate from other components can differ
between compile-time and link-time. For example, the component icon illustrated in
Figure [1] uses the class Cowboy, which is provided by the component cowboy cmpl
when component icon is compiled but later is provided by the component cowboy 1nk
when component icon is linked.

The fact that the class Cowboy is different between the compile-time and link-time of
the component icon is significant because the class Icon, provided by the component
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cowboy. cmpl cowboy 1lnk

Fig. 1. The components icon, cowboy cmpl, and cowboy lnk; throughout this paper, com-
ponents are illustrated as gray-filled rounded rectangles; classes are clouds whose names are
underlined over their methods; clear arrows point from a class to its direct superclass as its con-
taining component is compiled; solid arrows point from a class to its direct superclass as its
containing component is linked

ub cmpl

ud Ink

Fig. 2. The components uc, ub cmpl, ub 1nk, ud cmpl, and ud 1nk

icon,is a subclass of Cowboy. The class Icon implements a draw method, as in “draw-
ing an icon.” When the component icon is compiled against the component cowboy -
cmpl, the class Cowboy does not have a draw method, but when the component icon
is linked against the component cowboy 1nk, a draw method, as in “drawing guns in a
cowboy duel,” exists in the class Cowboy. Assuming both draw methods are public and
have the same signature, the draw method in the class Icon should not override the
draw method in the class Cowboy: the draw method was not visible when the compo-
nent icon was compiled so overriding was not the programmer’s intention. However,
unintended overriding occurs in Java because unmodular linking disregards compile-
time intentions.

Changes in the inheritance hierarchies that occur between compilation and linking
can also “break” programs in Java. In Figure 2l the component uc is compiled against
the component ub emp1, but it is linked against component ub 1nk, and the component
ub 1nk is compiled against the component ud emp1, but linked against the component
ud 1nk. When component uc is compiled against the component ub empl, class B
appears as a direct subclass of the class 2, so it is safe for the class C, implemented
in component uc, to subclass the class B. However when the component uc is linked
against ub 1nk, the class B is an indirect subclass of the class C, so an inheritance cycle
is created. Although linking in Java rejects this program, “blame” to one component
cannot be assigned for this error. Instead to understand why this error occurs, and thus
be able to fix it, the changes that occur from the component ub empl to ub 1nk and
from the component ud empl to ud 1nk must be understood together.
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The problems in linking the components illustrated in Figures[Iland Dl are created by
inheritance between classes across component boundaries. In Figure[T] the class Tcon
inherits from the class Cowboy; in Figure 2] the class C inherits from the class B. The
superclasses, the classes Cowboy and B, are implemented in components that change
between compile-time and link-time. Such changes can lead to the typing problems of
mixins [4114], which are classes with explicitly parameterized superclasses. Compared
to mixins, the superclasses of classes Icon and C are implicitly parameterized through
linking.

In Java, differences between a component’s compile-time and link-time environment
are governed by special binary compatibility [9/18|] guidelines, which specify what
changes to components can occur after compile-time that will still allow linking to
succeed. Additive changes between link-time and compile-time, such as adding new
methods or new superclasses to a class, are generally considered safe according to bi-
nary compatibility. In Figure[I]la method is added to the class Cowboy, while in Figure[2
the class D is added as superclasses of the class B.

Even though the changes in Figures [1l and 2] are additive, linking in these examples
still breaks. In Figure [T linking is technically type safe; the components are linked
in Java without errors even though programmer intent is not be adhered to. In Fig-
ure2] the components have cyclic dependencies: they each use each other’s classes and
their dependency graph contains a cycle. Binary compatibility primarily accommodates
changes to libraries, such as AWT, which cannot have cyclic dependencies with pro-
grams. Adding a new superclass to a class is always safe if the containing component
does not have any cyclic dependencies with other components in the system, which is
not the case in Figure 2l

Perhaps inheritance of classes should be restricted across component boundaries or
perhaps cyclic dependencies between components should be disallowed. However, in-
heritance is an essential mechanism in using the OO paradigm to develop entire pro-
grams, not just individual components. The use of cyclic dependencies is the most nat-
ural way to codify two-way interactions that commonly occur between classes in dif-
ferent components. Restricting either inheritance or cyclic dependencies disallows the
language-supported use of OO design throughout a program. Mixin-style inheritance
of classes across component boundaries and cyclic dependencies between components
also enables open classes [6], which are classes that can be extended with new fields
and methods without breaking their existing subtypes.

Modular linking of components can be used to implement open classes with what
we call an open class pattern [19]]. The components illustrated in Figure [3] demonstrate
the mechanics of the open class pattern. The class BButton is a subclass of the class
BWidget in the component base, but rather than directly subclass the class Bwidget,
the class BButton is a direct subclass of the class Fwidget from the component £ixed.
This creates a cyclic dependency between the components base and fixed, because
the class Fwidget is also an indirect subclass of the class BwWidget. The class in the
inheritance hierarchy between classes Fwidget and BWwidget depends on whether the
components base and fixed are linked with the component color 1 or the com-
ponents color 2 and font. With the former linking, one new method setColor is
visible in the class Fwidget, while in the latter linking two new methods setColor
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Fig. 3. The components base, color 1, color 2, font, and fixed; double-head arrows
point from classes to direct superclasses in an alternative way to link these components together

and setFont are visible in the class Fiwidget. Regardless of which linking occurs, the
class BBut ton inherits any new methods added because it subclasses the class Fwidget
rather than the class Bwidget.

In Java, the components illustrated in Figure 3] can be linked together into a valid
program. However, the linking is fragile because type checking is not performed in a
modular way. Jiazzi, our enhancement to Java that supports modular linking of compo-
nents, supports the open class pattern with additional renaming mechanisms, not dis-
cussed in this paper, so that components can be “mixed-and-matched” to form classes
with a desired feature set [[19].

3 Modular Linking

When modular reasoning is applied to the linking of component code, type checking
is “solved” in two phases: first when the component code is initially compiled, and
later when the component code is linked with the code of other components to create a
program. Type checking performed during compilation is not duplicated during linking.
The benefit of modular linking is that the phases of compilation and linking are truly
separate: they occur at separate times and can be performed by different parties.

To better understand modular linking, we propose a formal framework that describes
how modular linking can be implemented in an arbitrary language. An intuition of how
our framework works is illustrated in Figure @l Linking that is not modular, which we
refer to as whole linking, is shown in the top part of Figure @ the code of components
are compiled directly against the code of other components. In our framework, the key
to making linking modular is to provide an abstraction between the compilation of a
component and its linking with other components in a system. Rather than compile a
component against other components in a system, a component is compiled against its
abstraction, as shown in the bottom part of Figure [l The abstractions of components
are then used during linking to ensure they are compatible. Because components are not
compiled directly against each other, as in whole linking, modular linking can reuse the
results of compilation to avoid inspecting component code when ensuring static type
safety of the system during linking.

A formal description of our framework is expressed over systems written in some
language L, where linking of a system ensures the system conforms to the static type
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Y

Fig.4. A comparison between whole linking (top) and modular linking in our framework (bot-
tom); single directed arrows labeled “compile” point from code being compiled to what the code
is being compiled against

safety properties of L. Before modular linking is formally described, a corresponding
whole linking can be formally described with the definition of the rule WHOLE-OK:

—

Fr ENV-OK || ¢ || || ¢ || Fz IMPL-OK c
F. WHOLE-OK p = ¢

Notation: Lower-case letters designate instances of constructs, and the same letters
(differing only with subscripts) are used to designate instances of the same construct.
Rules are in small caps; e.g., RULE-OK. Directed overbars are vectors that designate
unordered sets; e.g., < is a set of construct instances designated by c. A rule within
a vector applies to all elements of any sets under the same vector, but any elements
adjacent to the rule not within the same vector are duplicated as the rule is applied to
these elements; e.g., if © = co, c1, c2 then enforcement of 3 RULE-OK c expands to
enforce s RULE-OK cg, s RULE-OK c;, and s° RULE-OK ca.

For the rule WHOLE-OK, a system p consists of syntactically separated, but not mod-
ular, parts designated by c and written in the language L. We refer to these parts as
L-parts, which have shapes that can be used to reason about interactions between L-
parts. An L-part shape can be extracted from an L-part using the double bar operator
(|| ¢ |- L-part shapes are combined to form a typing environment, which is used to rea-
son about the type correctness of a group of L-parts. A typing environment can be used
to ensure the type correctness of L-part implementations, which is enforced by the rule
IMPL-OK, if it is closed and well-formed, which is enforced by the rule ENV-OK. The
rules ENV-OK and IMPL-OK depend on the language L. In Section[4] each L-part mod-
els a Java class and definitions for the rules ENv-OK and IMPL-OK model type checking
for the Java language.

In the definition of rule WHOLE-OK, only a single “whole” typing environment
formed from the shapes of all the system’s L-parts (M) is used to type check the
system. Linking according to the rule WHOLE-OK is not modular because type check-
ing occurs over a single whole typing environment. For linking to be modular in our
framework, the system’s L-parts are placed inside special kinds of components referred
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Fig.5. An illustration of how abstraction enables modular linking in a system of three units;
abstraction relationships are solid directed lines from what is being abstracted to the abstraction

to as unit constructs, designated by u. Modular linking is then defined in our framework
as follows:

—_— —
Fr COMPILE-OK u Fr LINK-OK || u ||
F. MODULAR-OK p =0

For the rule MODULAR-OK, a system p consists of a set of units W, where each unit
has a signature, designated by || u ||, which describes the unit’s interactions with other
units in the system without revealing the unit’s implementation. The units of a system
each undergo separate compile-time typing that is performed by the rule COMPILE-OK.
Compile-time typing can examine the private implementation of a unit, but does not
look at how the unit is used in a system. All units of a system also collectively undergo
link-time typing that is performed by the rule LINK-OK. Link-time typing only examines
the signatures of the system’s units (M).

To bridge type checking between the compile-time and link-time typing phases, the
signature of each unit abstracts its interactions with other units in the system. The ab-
straction process is illustrated in Figure[Sl A unit signature is divided into two sections:
exports that abstract the unit’s L-parts to other units in the system for use in link-time
typing; and imports that abstract the exports of other units in the system to the unit for
use in its compile-time typing. As a result, the use of a foreign L-part in a unit is ab-
stracted twice: first, when it is exported from its originating unit; and second, when it is
imported into the unit.

An L-part ¢ can be described in a signature by an L-part shape designated by s. The
format of a unitisu = U's; s¢ ¢, where U uniquely identifies the unit u in a system, s;
describes u’s imports, 5. describes u’s exports, and < are the L-parts that make up u’s
private implementation. The signature of a unit only consists of its identifier, imports,
and exports, and does not include its private implementation, so || Us; 5. ¢ || =U's; se.
The definitions of the rules COMPILE-OK and LINK-OK are as follows:
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— — -
FrL ENV-OKS; Ul c|| FrENV-OKS;Us. s UJc| Fz IMPL-OKc

—_—
Fr 5 USse ABSTRACTS-OK 5; U| c ||

. COMPILE-OK u=US; s¢ ¢

- UNIQUE U+ ENV-OK s:f b s; Use ABSTRACTS-OK s:e;
_—
Fz LINK-OK ||u| =USs; s¢

More notation: Multiple sets can be combined into a larger set with the union (U)
operator. A set of structures is designated by adjacent elements under the same overbar,
—

where an element of the structure can be pulled out to form its own set; e.g., U's; can

be used to form U and s:f The construct ? is not a set of s sets; it is a single set that is
formed by unioning the s sets together.

The definition of the rule COMPILE-OK combines a unit’s imports (5;) with the
shapes of the L-parts in its internal implementation (M) to form a compile-time typing
environment, which is used to reason about the unit’s internal implementation using the
rules ENvV-OK and IMPL-OK. These rules are the same as those used in the definition of
whole linking (WHOLE-OK), whose definitions only depend the language L, and do not
depend on whether linking is modular or not. The rule LINK-OK combines the exports
of all units (i) in the system to create an link-time typing environment, which is used
to type check interactions between units in the system.

The key to modular linking in our framework is an abstraction relationship that is
symmetrically enforced between compile-time and link-time typing environments. We
say that a unit’s imports and exports (57 U 5.) “abstracts” a typing environment cor-
rectly if the two following criteria hold: the imports and exports collectively specify a
subset of the abstracted typing environment; and the imports and exports do not hide
anything about the abstracted typing environment that could confuse or create ambigu-
ity in modular linking. “Correctly abstracts” is enforced by the rule ABSTRACTS-OK,
whose definition depends on how type checking can be made modular in language L.

The rule ABSTRACTS-OK represents only part of the extra work that must occur to
make linking modular; the rest of the extra work is performed by link reduction, which
transforms a system of units into a linked system of just L-parts. Link reduction rewrites
the L-parts of units so that no ambiguities in typing occur over the resulting linked
system. Names locally used in a unit must be renamed so that they do not conflict with
the names used in other units of the system. In our framework, link reduction allows
a modular system to be subjected to program evaluation, and allows us to express a
necessary relationship between whole and modular linking as Lemma [T}

Lemma 1 (MODULAR-IMPLIES-WHOLE)

— T T = =
Fz MODULAR-OK p, = U u||Fru — ¢ =+, WHOLE-OK p. = ¢

Link reduction occurs with the arrow ( — ) operator, and only depends on the signa-
—

tures of a system’s units (|| u ||) when linking each unit. Lemma [T states that if modular

linking ensures that a modular system of units (p.) is statically type safe, then whole
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linking ensures that the corresponding linked system (p.) is statically type safe. It is
possible that the linked system is statically type safe when modular linking has deter-
mined that the modular system of units is not; modular linking is more conservative
than whole linking.

When Lemma [T] can be proven, modular linking is sound when the corresponding
whole linking is sound. A proof of Lemma [l depends on link reduction and the rule
ABSTRACTS-OK, where more than one set of definitions may be able to facilitate a
proof of Lemmal[Il ABSTRACTS-OK can be defined in a trivial way that always ensures
a proof of Lemmal[it

— — —
si Use == s,

Fr S; US. NO-ABSTRACTS-OK s,

_—
— — - — = —
Usa Sia Sea FUS; Sc € — ¢C

The definition of the rule -ABSTRACTS-OK forces a unit’s imports and exports to always
be equivalent to the unit’s compile-time and the system’s link-time typing environment,
which means no abstraction occurs at all! The entire shape of every L-part in the system
would be exposed in the imports and exports of each unit, and any trivial change of any
unit in the system would invalidate linking of the entire system. Modular linking is only
useful if a sufficient amount of abstraction can be supported. How much abstraction can
be supported depends on the features of the core language L.

4 MiniJiazzi

The modular linking framework in Section[3]can be applied to the task of modular link-
ing of programs written in a small Java-like core language, which models the addition
of modular linking into Java. Language L is bound to language J, where J is our small
Java-like language called core MiniJiazzi. We refer to the resulting language enhanced
with modular linking as MiniJiazzi because it models Jiazzi [[19]; Jiazzi enhances the
full Java language with modular linking. Our experience with Jiazzi is the primary basis
for our modular linking framework.

4.1 Core language

Core Miniliazzi is similar to other small Java-like languages; e.g., ClassicJava [14]] or
Featherweight Java [16]. The syntax and type-checking rules of core MiniJiazzi are
shown in Figure |6l So that we can focus our discussion on how modular type check-
ing must deal with inheritance and virtual methods, core MiniJiazzi does not support
fields, constructors, or casting. Besides class implementations (c) and class shapes (s)
(the L-parts and L-part shapes in our modular linking framework), the syntax of core
Miniliazzi also defines method implementations (m), method shapes (n), types (t), and
expressions in methods (e). Expressions can instantiate classes, access arguments and
this, and call virtual methods on objects. The extends operator (<) is used to specify a
class’s apparent direct super type, which is either another class or the root type Object.

To aid in our reasoning, we have added two features to the MiniJiazzi core language
that do not have equivalent support in the Java language but are easily derived from con-
ventional Java class definitions. First, a class shape describes only the “fresh” methods
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S = C[U] < tsuper Dfresh n = treturn M[U] (t‘““g X)
—
c = Ssig Mimpl m = Nsig { Creturn }
t = Object |C[U]
e= newC[U]|x|this|e.MU.](es)
N — ———

F UNIQUE C[U] + UNIQUEM[U.| & Fum M[Ul] & ts

-
—

FhtsUter Uty s k¢ C[U] < Object

7 ENV-OK s = C[U] 9ts n = tyer MU (E5 %)

_— —_—
S Fm ty M[Ua](tz x) € C[U] Dfresh C tr M[Ua](ts X)
e
R —

I'(z)=t, I(this)=C[U] s, Fee €t s hrit<t,

S by IMPL-OK C[U] <ts fifreer m = t, M[U.] (%2 %) { e, }

s 4 C[U] < Object S, Fex € ()
s, I ke new C[U] € C[U] S,k this € I'(this)
T I Foe €CU] 8 bty MU](ts X) € Co[Us]
T, Flees €ty 8 ity <ts

5, e MU](er) €t
Fig. 6. The syntax and type-checking rules of core MiniJiazzi; evaluation reduction is not shown

of a class, which must not exist in the class’s superclass. Next, to accommodate link
reduction, class and method names are enhanced with linking offsets. Linking offsets
are significant parts of class and method names; e.g., C[U.] and C[U,] identify different
classes when U, # U,. Linking offsets are used during link reduction to distinguish
names that may clash after linking.

The type-checking rules of core MiniJiazzi consists of definitions for the rules
ENV-OK and IMPL-OK. The rule ENV-OK ensures the following (in the top part of the
judgment that defines ENv-OK; from left to right, top to bottom):

1. The names of all classes, taking into account their linking offsets, are unique in the
typing environment;

2. The shapes of fresh methods are unique in each class;

3. No fresh methods of a class exist in the class’s superclasses, which ensures that a
method can always be unambiguously referred to in a class by its name;

4. All types referred to in a class shape are defined in the typing environment;

5. Each class is a subtype of Object, which ensures there are no inheritance cycles
in the typing environment.



126 S. McDirmid, W.C. Hsieh, and M. Flatt

For simplicity, the definition of rule ENV-OK does not allow for method overload-
ing; overloading can always be handled through renaming. Typing relationships ()
and method relationship (+-,,) are used in the definition of ENv-OK but are not defined
in Figure[6l They have their traditional meanings: subtyping (<) is reflexive and tran-
sitive (< adds associative); the € operator queries whether or not a method is visible
in a class. Both typing relationships and method relationships depend only on a typing
environment.

The definition for rule IMPL-OK ensures the following (again top to bottom, left to
right): all methods implemented by a class are declared by the class or one of its super-
classes; all fresh methods of the class are implemented; and all implemented methods
are well-typed; I'(...) = ... defines an expression typing environment.

Expression-level typing () is a judgment over recursive expression structures that
determines the static compile-time types of expressions. It takes the form 5, C[U], I" I-.
e € t. The typing of expressions is standard; e.g., typing of method calls at the bottom
of Figure |6 only ensures that the method exists in the statically determined type of
the calling expression, and that the argument expressions are typed as subtypes of the
argument types.

The evaluation reduction rules and the proof that shows that whole type checking in
core MiniJiazzi is sound are similar to those in other ClassicJava [[14] and Featherweight
Java [[16]. In this paper, we concentrate on a proof of Lemma[Il from Section[3 To do
this, we apply our modular linking framework to core MiniJiazzi by defining the rule
ABSTRACTS-OK and link reduction.

4.2 Modular Linking

MinilJiazzi is a small model of Jiazzi, which enhances Java with program units [[13]]. We
focus on how Jiazzi units make linking in Java modular and not the novel features of
Jiazzi units, such as externally-specified linking and hierarchical structuring.

Modular linking is implemented in MiniJiazzi as follows. MiniJiazzi specifies an ab-
straction relationship that allows for the modular detection inheritance cycles and name
clashes, but also allows for enough hiding to permit expressive linking organizations,
such as those that use the open class pattern. In MiniJiazzi, potential name clashes
(method and class name ambiguity) that could occur with modular type checking are
prevented through link reduction.

The structure of units is described in Section[3las U s; s. <. The class shapes de-
scribed by a unit and the classes in a unit’s private implementation initially have empty
linking offsets ([o]). Linking offsets will not be specified until link reduction of the
modular system occurs. The fact that linking offsets are empty does not have any effect
on the rules ENV-OK or IMPL-OK.

At minimum, abstraction in MiniJiazzi must ensure that the signature of a unit is a
“subset” of the compile-time and link-time typing environments of its unit. This criteria
is described by the definition for weak abstraction:

5Us.=Cljatem  Clo]Clss| SiFmmneClo] 5 ki Clo] <t.

F7 S; Us. WEAK-ABSTRACTS-OK 5,
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The unit’s typing environment abstraction is designated by s; U s., which is the
imports and exports of a unit. The abstracted typing environment is designated by s,
which is either the compile-time typing environment of the unit or a link-time typing
environment of a system. The single bar operator takes a class shape and returns its class
identifier; e.g., |s—r] is a set of class identifiers for classes described in the abstracted
typing environment s,..

The definition of the rule WEAK-ABSTRACTS-OK ensures the following (top to bot-
tom, left to right):

1. Every class described by the abstraction is described by a same-named class in the
abstracted typing environment;

2. The methods of each class described by the abstraction exists in a class with the
same identifier or its superclass of the abstracted typing environment;

3. The superclass of each class described by the abstraction is a superclass of a class
with the same identifier in the abstracted typing environment.

The definition of the rule WEAK-ABSTRACTS-OK does not enable modular type
checking to detect irresolvable method ambiguity or inheritance cycles, and so cannot
be used in a proof of Lemmalll The problem is that the abstracted typing environment
contains the superclass relationships specified by the abstraction (s, F: C[o] < ts), but
the abstraction is free to hide any superclass relationships expressed by the abstracted
typing environment. Take as an example the components illustrated in Figure 2] from
Section 2] where an inheritance cycle occurs because the fact that class B is a subclass
of class C at link-time can be hidden from component uc during its compile-time. A
stronger definition of abstraction, which does not allow for the hiding of subclassing
relationships, is as follows:

- —
5;Us,=Clo]ats o  CloCls,| 8 Fmn€Co] Clojats ...C5

ks S; USe STRONG-ABSTRACTS-OK S,

The definition of the rule STRONG-ABSTRACTS-OK differs from WEAK-ABSTRACTS-OK
only in that it prevents the hiding of superclass relationships in the abstracted typing
environment by the abstraction with C[o] <t ... C 5,. While this stronger abstraction
does enable modular type checking—itrejects the linking in Figure[2land can be used in
a proof of Lemmal[Il—it does not permit enough information hiding through abstraction;
e.g., it prevents useful applications of the open class pattern.

In Figure [3 from Section 2] the class DWidget may or may not be one of the su-
perclasses of class Fwidget, depending on whether or not the components color 2
and font are linked with the components base and fixed in a system. With the
rule STRONG-ABSTRACTS-OK, the fact that the class Dwidget is a superclass of class
FWidget, and indirectly a superclass of class BButton, would have to be apparent
during the compile-time of the components base and fixed. Unfortunately, this also
eliminates the possibility of linking components base and fixed with the component
color 1 instead, where the class DWidget is not provided.

We have discovered an effective compromise between the weakest and strongest
abstraction relationships: superclass relationships are hidden by the abstraction of a
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e

Comipile ABSTRACTS-OK Linking 9
ihiod Abstraction Typing

Environment Environment
(2) (c) (&) @
e ——

Fig.7. An example of how the inheritance graph of an abstraction can hide inheritance relation-
ships of classes in compile-time and link-time typing environments not visible in the abstractions

unit if and only if the classes involved are hidden by the abstraction. With help from an
auxiliary rule SUPER-OK, this best definition of the rule ABSTRACTS-OK is as follows:

clo]«C S, Calo] & |si| U
< Ca N r a i e
ool at. .. c 5 o] acile] ... €3 [o] & [si] Us]
5 Us2,5 by Clo] SUPER-OK . ZU si, sLI—J Calo] SUPER-OK t;
s; Us¢, sy by Clo] SUPER-OK t,

s;iUsc =Clo]<ts 1 Clo] C |s/|
— — — — — T T e
Sr Fmn € C[o] s; Use, s, 7 C[o] SUPER-OK t,

k7 S; USe ABSTRACTS-OK s,

This definition of rule ABSTRACTS-OK permits the hiding of classes between units
even if the classes occur in the middle of the inheritance hierarchy of two classes that
are visible in the unit; e.g., class Dwidget can be hidden from the components base
and fixed in Figure[3l However, it also prevents the hiding of subtyping relationships
between visible classes; e.g., a subtyping relationship between the Cowboy and Icon
classes cannot be hidden if these classes are visible in the same scope.

The rule SUPER-OK ensures that a unit’s abstraction (s; U s.) expresses every di-
rect and indirect inheritance relationship in the abstracted typing environment (s;.) for
classes visible in the abstraction. This relationship is illustrated in Figure [7, where the
inheritance graph of the abstraction (center) expresses the proper inheritance relation-
ships of classes A, B, and C, but ignores classes D and E, which are not visible in the
abstraction. The relationship just discussed in English is expressed as Lemmal[2l whose
proof follows directly from the definition of rule SUPER-OK:

Lemma 2 (SUPER-ABSTRACTION)

s/ Usc =Clo]dts ... Clo] C|sr| 5 USe,s, by Clo] SUPER-OKt, =
VCalo] € [s:] U [sel, VCo[o] € [s5] U Jse| . 57 USZ e Calo] < Cuo] < 57 b4 Calo] < Golo]
Our chosen definition of the rule ABSTRACTS-OK can be used in a proof of Lemma/[Il
in Section [3] and allows for a sufficient amount of abstraction to make modular type
checking useful.
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When units are combined together into a linked program, linking must ensure that
name clashes between unit implementations do not cause ambiguities during evalua-
tion of the program. Name clashes in OO languages result from classes from different
units with the same name, or distinct methods with the same names that are defined in
compatible classes that originate from different units. While modular type checking can
detect name clashes between units if the names involved are exposed in unit signatures,
MinilJiazzi’s abstraction relationship permits hiding between units. Classes and methods
hidden within a unit’s implementation should not clash with classes and methods from
other units. MiniJiazzi’s definition of link reduction ensures that references to hidden
classes and methods are disambiguated during linking.

MiniJiazzi achieves disambiguation with linking offsets. Every class and method ref-
erence within a unit implementation is qualified with a linking offset that is used dis-
ambiguate these references. Method implementations also have linking offsets to en-
sure that they implement or override the appropriate method from a superclass. Linking
offsets are always treated as parts of class and method names. Unlike names, however,
linking offsets are not provided by the programmer; they are assigned during link reduc-
tion, in much the same way as branch offsets are rewritten when a dynamically-linked
library (DLL) is loaded into memory. Before link reduction occurs, all linking offsets of
a unit’s implementation are empty. Link reduction then binds linking offsets according
to the unit that the class or method originates from.

The core judgments of link reduction specify class and method linking offsets. Other
judgments are merely used to traverse the structure of a unit and are not shown in this
paper. The following pair of judgments determines how linking offsets are bound for
class references:

— — —
Clo] & |sial Clo] € sia|  Clo] €8ep  UsSeb €USe

= — — — == — — —

U's{ 8¢,Ua Siq Sea Cq Fg Clo] — C[U4] U 'si 5¢,Ua Siq Sea Ca Fg Clo] — C[Up]

These judgments are used to specify linking offsets of any class referred to in a unit.
References to classes that are not imported into the unit must be to classes that originate
in the unit, so such references are assigned the linking offset of the referring unit, which
is identified in the judgments as U,. References to imported classes are resolved to the
unit that exports those classes in a system. Linking offsets for method reference are
bound using a similar but more complicated pair of judgments:

Pa— _ —_—
Sia U lcall Fm M[o] €fresn Colo]  8ia U lcall Fe Clo] < Colo]  Co[o] & [sial
= — — —
U s{ 8¢,Ua Siq Seq Cq FJ C[o]:M[o] — M[U,]

Pa— _ —_—
Sia Ullcall Fm M[o] €fresh Calo]  §ia U l[call b4 Clo] < Cafo]  Calo] € [sial
—
Up5i €Us. 5 Fm Mo] €presn Golo]  CGolo] € [sen| 3¢ ¢ Calo] < Co[o]
—_—

U'S; Sc,Ua Sia Seq Ca . Clo]:M[o] — M[Uy]

Each method reference (C[o]:M[o]) is associated with a class (C[c]) that must implement
the method being referred to. To determine the method’s linking offset, the class that
introduces the method must be first found in the compile-time typing environment of
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unit cowboy {

import

export class Cowboy[o] < Object

{ Object drawl[o] (), Object duallol () }

F A

class Cowboy[cowboy] < Object

{ Object draw|cowboy]|() { /* a gun duel x/ },
Object dual[cowboy|() { this.draw[cowboy]() } }

}

unit iecon {
import class Cowboyl[o] < Object { }
export class Icon[o] < Cowboy { Object paint[o] () }

A

class Icon[icon] < Cowboy[cowboy]

{ Object paintlicon|() { this.draw[icon]() },
Object draw[icon|() { .../x draw icon */ } }

}

unit main {
import class Icon[o] < Object
{ Object paintlo] (), Object drawl[o] () }

export class Main[o] < Object { Object main[o] () }
b A

class Main[main] < Object

{ Object main[main]() { this.draw[cowboy]() } }

}

Fig. 8. The units cowboy, icon, and main that are linked together into a system; linking offsets
that result from link reduction are shown

the unit. In the top judgment, the introducing class is not an import of the unit, so
the method must originate from the referring unit (U.). In the bottom judgment, the
introducing class is an import, so the class that introduces the method must be found
with respect to the link-time typing environment. The unit that the introducing class is
exported from is used as the method’s linking offset.

The MiniJiazzi units shown in Figure [§] based on the illustration of Figure [1] from
Section 2] demonstrate how link reduction resolves method ambiguity. The unit icon
specifies what it expects from other units through its imports. Since the unit icon does
not import the method draw from the cowboy unit, link reduction binds the linking
offset of the call to method draw in class Icon to the unit icon. Since the unit cowboy
exports the method draw, whereas the unit icon does not, link reduction binds the
linking offset of the call to draw within the class Main to the unit cowboy.

In Java, method scope is established by packages and access flags. If the above ex-
ample was written in normal Java using packages and access flags (the method draw
in a package cowboy would be public, and the method draw in a package icon would
be package-only), ambiguity between the draw methods could not be avoided and the
Java source compiler would even reject such a construction. In this MiniJiazzi program
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a source compiler error does not occur: the scopes of the draw methods are separated
by abstraction and the unintended ambiguity is avoided through link reduction.

Rather than use linking offsets, other approaches [22)23125] disambiguate between
methods using dictionaries that are based on unit-like scopes. With dictionaries, a link
reduction phase is not necessary; rather dictionaries are queried during evaluation. The
advantage of using link reduction is the ability to easily express Lemmalll which would
be much more complicated if the evaluation of a modular system were different from
the evaluation of a non-modular system.

Link reduction only binds linking offsets and does not need to otherwise change
the structure of class expressions within a unit. The abstraction relationship ensures
that referenced classes and methods exist within the program typing environment and
that method implementations override methods correctly. The only nontrivial aspect of
proving Lemmal[dlis showing that the typing environment formed by the shapes of the
resulting link-reduced classes is well-formed. We express this as Lemma 3

Lemma 3 (LINK-REDUCED-ENV-OK)

— — — =m0 - = =
p=u=Usiscc;, FsjENV-OKS{U]|cs|, s Usd, 8¢

_
Fs §; US. ABSTRACTS-OK 5, U || ¢, || Fs s/ UsS. ABSTRACTS-OK 5,

N p—
FUNIQUEU |ufFsu — & = F;ENV-OK| c, ||

The proof of Lemma[3] primarily depends on using LemmaPlto show that the signature
of each unit abstracts the inheritance graph of the link-reduced classes. That is, the link-
ing typing environment of the modular system forms an inheritance graph that abstracts

—_—
the inheritance graph formed by the non-modular system (|| c, ||), which is expressed
as Lemmal] that has the same antecedents as Lemmal[3t

Lemma 4 (MODULAR-WHOLE-SUBTYPING)

_

—_— — — —_— — — - — = — —

= VU, Siq Seq Ca,Ub Sip Sep Cp € U'S; Se Cz, VCa € |Seal, VCb € |Sep]-
—

- e
Sc ¢ Cafo] < Cylo] < || cy || Fe Ca[Ua] < Co[Us]

The last consequent of Lemma [4] states that all subtyping relationships in the linking
environment between pre-linked classes (C.[o] and Cy[c]) must be preserved in the post-
linked classes (Ca[Us] and Ca[Us]). LemmaMlrepresents the core of our proof of Lemmal[l
for MiniJiazzi.

Proof sketch: Our proof of Lemma [] proceeds by using induction and showing that
contradictions necessarily occur if this consequent does not hold. Our inductive base
case is based on the fact that segments in the inheritance hierarchy remain unchanged
between pre-linking and post-linking as long as they do not contain imported or ex-
ported classes. As a result, the following two implications always hold:

_

5 b1 Calo] 9Colo] = [ oy || Fe CalUa] < Co[Us)

p— =
| cy || Fe CalUa] # Co[Us] — 50 F¢ Calo] ACs[o]
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These base cases will be reached reached as long as the the post-linked inheritance
graph is acyclic, which is given by ENvV-OK already being enfrorced on the linking
environment.

4.3 Comparisons with Jiazzi

Miniliazzi formally describes Jiazzi linking system that was introduced in [19]. Jiazzi
contains many features that make linking more convenient. Jiazzi supports package sig-
natures that describe the shapes for a package of classes and can be reused between
units. Package signatures are used to generate import class stubs that enable unit com-
pilation to occur with a standard Java complier. When implementing a unit from scratch,
package signatures can also be used to generate skeletons for exported classes. Alter-
natively, package signatures can be inferred automatically from existing Java classes
by assuming public and protected classes and methods should appear in the signatures.
Linking occurs after compilation with Java bytecode rewriting of method and class
names to implement linking offsets. Unit imports and exports are supported with ex-
tension that simplifies usage of the open class pattern that was described in Section 2l
Using this mechanism, a unit can extended a package of classes without creating new
subtypes. For this purpose, the abstraction we have shown to be safe and possible with
Miniliazzi is very essential as it makes the open class pattern possible.

5 Beyond Inheritance

When considering modular linking, inheritance in Java permits a sufficient amount of
abstraction; e.g., the open class pattern as illustrated in Figure 3] from Section [2] can
be expressed. Abstract methods in Java, however, cannot be abstracted, despite their
name: abstract methods can never be hidden in visible classes and Java interfaces, be-
cause modular type checking must ensure concrete subclasses implement all abstract
methods. This becomes a significant expressiveness problem when abstract methods
are used aggressively in “framework classes,” or when components evolve to provide
new functionality that require adding new abstract methods to classes.

Binary compatibility in Java allows new abstract methods to be added to library
classes. It also allows concrete classes to have abstract methods that are not imple-
mented [18]; e.g., the AWT class Graphics is often enhanced with new abstract meth-
ods as the AWT library evolves. This is only safe when there are assurances that unim-
plemented abstract methods are never invoked; e.g., a program compiled against the
old AWT library will not cause the new abstract methods added to the class Graphics
to ever be called. Such assurances cannot be automatically verified with static type
checking, so Java uses run-time type checking to detect and reject attempts to invoke
unimplemented abstract methods.

Our proposed modular linking framework can be used to reason about modular link-
ing in other languages, OO or otherwise. It can also be used as a metric for new ex-
perimental language features. Consider symmetric multi-methods, which support dis-
patch over arbitrary arguments. Compilation and linking of symmetric multi-methods
require the detection of cases where a multi-method is overridden ambiguously [21]],
that is, where two or more specializations of the multi-method are equally applicable
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to a combination of argument bindings. When this is enforced in the most direct way,
multi-methods cannot support much abstraction under our modular linking framework
because any class used in the specialization of a visible multi-method can never be hid-
den within a component. However, like inheritance, there is probably a middle ground
similar to the rule SUPER-OK, where class hiding can be permitted if ambiguous multi-
method overriding is type checked more conservatively.

6 Related Work

Separate compilation and modular linking are explored extensively by Cardelli [5] with
linksets. In comparison, the work presented in this paper tackles modular linking from
a different direction: rather than build modular linking into a newly designed language,
we show how modular linking can be added to an existing language after it has been
designed. Cardelli also does not address mutually-dependent modules or language fea-
tures such as inheritance. On the other hand, Cardelli’s correctness criteria are more
rigorous including issues such as non-termination. In another direction, MTAL (mod-
ular typed-assembly language) [[15] explores the low-level implications of binaries and
modular linking. In contrast, our framework does not deal with low-level details such as
Java bytecode, and instead focuses on high-level language abstractions. Effective mod-
ular systems must deal with both issues. Our modular linking framework is based on
program units, which initially were conceived for Scheme and ML [10], and have been
considered in OO extensions of Scheme [10]. With Jiazzi, we have shown how program
units can be added to statically-typed OO languages.

Drossopoulou et al. extensively explore and formalize binary compatibility [9] and
linking [8] in Java. Jiazzi eschews Java’s binary compatibility in favor of modular link-
ing, which we believe is more appropriate for component software. Both modular link-
ing in Jiazzi and binary compatibility in Java address the technical “fragile base class
problem.” Ancona et al. [1] use a notion of a compilation schema to explore separate
source code compilation and runtime linking in Java. The task of separate compilation
in Jiazzi, as modeled by MiniJiazzi, is simplified because compile-time and link-time
typing environments are explicitly separated by our modular linking framework.

The language JavaMod [3] explores adding a module system to the Java language,
while the ML-like language Moby [11112] explores modular linking for a class-based
core language. Unlike Jiazzi, neither JavaMod nor Moby support mixin-style inheri-
tance with abstraction. In JavaMod, methods hidden in a superclass are not visible in a
subclass, while in Moby, methods provided by a superclass can only be invoked by ex-
plicitly specifying the superclass. Like most ML-like languages, Moby does not support
modules with cyclic dependencies. MiniJiazzi is the first formalization of a statically-
typed module system that supports cyclic dependencies, full mixin-style inheritance, and
abstraction for an OO language. The language SmartJavaMod [2] enhances JavaMod
with a form of signature inferencing and class overriding. It is an open question whether
signature inferencing is feasible in a MiniJiazzi-like system because of abstraction.

The languages Dubious [21]] and EML [20] explores modular type checking of sym-
metric multi-methods, while MultiJava [6l7] explores how symmetric multi-methods
can be added to Java in a modular way. The hiding of abstract methods is also restricted
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in these languages to preserve modular type checking. Imports are not expressed in the
module interfaces of these languages, which leads to a different definition of abstraction
than we model in our modular linking framework. Even without multi-methods in the
Java language, Jiazzi can implement the open class idiom that multi-methods enable, as
illustrated in Figure 3| from Section

Enforcing the privacy of methods in OO languages has been explored extensively in
the literature. Riecke and Stone [22] formally explore method privacy in structurally
typed OO languages by using method dictionaries, while this work is extended by
Stone [23]] and Vouillon [25] in the context of class and mixin-based languages. Mini-
Jiazzi differs by using linking offsets rather than dictionaries to enforce method scopes
and disambiguate between method namespaces.

7 Conclusion and Future Work

We have shown how modular linking can be added to statically-typed OO languages
such as Java while allowing several expressive features: cyclic dependencies between
components, inheritance across component boundaries, and non-trivial abstraction be-
tween components. Our modular linking framework provides the intuitive and formal
foundation for our work, and we have used this framework to formally reason about
how modular linking can be added to Java with MiniJiazzi. MiniJiazzi models Jiazzi,
which is an enhancement of Java whose implementation is available for download:
http://www.cs.utah.edu/plt/jiazzi

Although we have shown that inheritance is a modular language feature because it
permits an adequate amount of abstraction, abstract methods are problematic, while
multi-methods are still an open question. Future work should explore how our modular
linking framework and language features such as abstract methods and multi-methods
can be made to support more abstraction.

Modular reasoning is what makes developing software out of components possible.
This reasoning goes beyond linking, compilation, and type checking to also include
execution, testing, debugging, semantic correctness, and so on. Future work should ex-
plore how these other kinds of reasoning can be made modular through a more general
modular reasoning framework.
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