
Implicit and Dynamic Parameters in C++

Christian Heinlein

Dept. of Computer Science, University of Ulm, Germany
christian.heinlein@uni-ulm.de

Abstract. Implicit and dynamic parameters are proposed as a general
means to reduce the length of argument lists of function calls without re-
sorting to dangerous global variables. In C++, these new kinds of param-
eters constitute a generalization of parameters with default arguments,
whose values can be omitted in function calls. In contrast to the latter,
however, the values of implicit and dynamic parameters are not obtained
from a function’s definition context, but rather from its different calling
contexts. This is in turn similar to so-called dependent names in function
templates, but offers a higher degree of flexibility and comprehensibility.

1 Introduction

There are basically two ways to pass information from one procedure or function
of a program to another: parameters and global variables. Even though the for-
mer are usually preferred for good reasons and use of the latter for this purpose is
generally discouraged, there are circumstances where parameters turn out to be
inconvenient and cumbersome and therefore the use of global variables becomes
tempting. In particular, if functions require large numbers of parameters, most
of which are simply passed down to other functions, providing this information
via global variables could significantly reduce the size of many parameter and
argument lists. Furthermore, if major parts of this information usually remain
unchanged during a program execution, the use of global variables is even more
appealing. Finally, if it becomes necessary to retroactively extend the parameter
list of some deeply nested function, each call of this function must be augmented
with additional arguments, which usually requires the parameter lists of all func-
tions containing these calls to get extended, too, etc.

On the other hand, using global variables to pass information between func-
tions is dangerous, especially in multi-threaded programs, where one thread
might inadvertently change the value of variables needed by other threads. But
even in single-threaded applications, it might happen that global variables re-
quired by a particular function are modified by a subordinate function called
from it. Finally, if exceptions cause unexpected and premature terminations of
functions, temporary modifications to global variables performed by these func-
tions might not be undone as expected.

To dissolve this longstanding tension between using parameters and global
variables, implicit parameters [7] and dynamic variables [3] have been proposed

D. Lightfoot and C. Szyperski (Eds.): JMLC 2006, LNCS 4228, pp. 37–56, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

38 C. Heinlein

earlier as different means to provide the benefits of global variables, i. e., short
and comprehensible parameter and/or argument lists, without suffering from
their drawbacks. While the former are specifically tailored to functional pro-
gramming languages and provide static type checking, the latter also address
imperative languages, but lack static type safety. Building on these approaches,
the main contribution of this paper is their combination into a single coher-
ent framework for imperative languages, i. e., implicit and dynamic parame-
ters, that provides a large degree of flexibility combined with static type safety.
More specifically, language extensions for C++ are proposed which generalize
its notion of parameters with default arguments and also provide a superior re-
placement for dependent names in templates. Nevertheless, the basic concept of
implicit and dynamic parameters is actually language-independent and might be
incorporated into many other languages, too.

After reviewing in Sec. 2 the basics of functions, overloading, and default ar-
guments in C++, the concept of implicit and dynamic parameters is introduced
and developed in Sec. 3. Its basic implementation ideas as a precompiler-based
language extension for C++ are described in Sec. 4, before concluding the paper
with a discussion of related work in Sec. 5.

2 Functions, Overloading, and Default Arguments in
C++

Even though C++ provides a large number of different function kinds, including
global functions, virtual, non-virtual, and static member functions, constructors,
and function call operators [10], their basic principle is always the same: a func-
tion consists of a name, a parameter list, a (possibly void) result type, and a
body. Therefore, examples will be limited to global functions and constructors
in the sequel.

All kinds of functions can be statically overloaded by defining multiple func-
tions of the same name (in the same scope) with different parameter lists, e. g.:

int max (int x, int y) { return x > y ? x : y; }
double max (double x, double y) { return x > y ? x : y; }

When resolving a call to such a function, the static types of all arguments are
used to determine the best viable function at compile time. If no viable function
is found at all or several viable functions remain where none is better than the
others, the call is ill-formed. For example, max(1, 2) and max(1.0, 2.0) will
call the first resp. second version of max defined above, while max("a", "b") and
max(1, 2.0) cannot be resolved due to missing resp. ambiguous definitions.1

The trailing parameters in a function definition might have default arguments,
i. e., associated expressions whose values will be used to initialize these parame-
ters if corresponding arguments are missing in a call, e. g.:

1 Note that in C++ an int value is implicitly convertible to double and vice versa,
and both conversions are equally ranked.

Implicit and Dynamic Parameters in C++ 39

// Print floating point number d on standard output stream
// with minimum field width w and precision p.
void print (double d, int w = 10, int p = 5) { }

This function can be called with one, two, or three arguments, where print(d)
and print(d, w) are equivalent to print(d, 10, 5) and print(d, w, 5), re-
spectively. Therefore, the single definition of print above is similar in effect to
the following three definitions:

// Print d with field width w and precision p.
void print (double d, int w, int p) { }

// Print d with field width w and precision 5.
void print (double d, int w) { print(d, w, 5); }

// Print d with field width 10 and precision 5.
void print (double d) { print(d, 10, 5); }

In the first case, however, a single function is defined which might be called with
different numbers of arguments, while in the second case, there are actually three
different overloaded functions.

A default argument is not restricted to a simple value such as 10, but might be
any expression, which is evaluated each time it is used in a call. Names appearing
in such an expression are interpreted and bound in the context of its definition,
not in the context of a call, e. g.:

int width = 10;
void print (double d, int w = max(width, 20), int p = 5);

If print is called with a single argument d, its second argument w is initialized
with the value of the expression max(width, 20), where width corresponds to
the global variable defined before, even if the calling function contains a local
variable of the same name that basically hides the global one. Therefore, literally
adding a default argument expression to a function call might lead to a quite
different result than omitting the argument.

Default arguments might be specified later on, after a function has been de-
clared or defined for the first time, and it is even possible to specify different
default arguments for the same function in different local scopes, e. g.:

// Initial definition without default arguments.
void print (double d, int w, int p) { }

// Later declaration with one default argument.
void print (double d, int w, int p = 5);

// Client function.
void client (double d) {
// Local declaration with two default arguments.

40 C. Heinlein

void print (double d, int w = 10, int p = 4);

// Call equivalent to: print(d, 10, 4).
print(d);

}

When an overloaded function is called, only the explicitly specified arguments are
considered to determine the best viable function. However, functions possessing
more parameters than arguments given will be included in the set of candidate
functions if the missing arguments could be provided by default arguments. If
the selected function actually has more parameters than arguments given, the
corresponding default arguments will be supplied afterwards, e. g.:

void f (int x, int y);
void f (double x, int y = 0);

Here, a call such as f(0) would select the second function since the explicitly
specified argument 0 of type int is compatible with its first parameter of type
double and the second parameter can be satisfied from its default argument,
while the first function cannot be called with only one argument. On the other
hand, f(0, 0) would select the first function since the arguments (0, 0) ex-
actly match its parameters, while the second function would require a conversion
of the first argument from int to double. Again, literally adding a default argu-
ment expression to a function call might lead to a different result than omitting
the argument. Furthermore, if a member function has default arguments, these
expressions might refer to private or protected members of the class, which are
inaccessible to clients calling the function; in that case, literally adding a default
argument expression could even lead to a compile time error.

3 Implicit and Dynamic Parameters

This section introduces implicit and dynamic parameters as language extensions
to C++. Their basic idea is similar to parameters with default arguments, as
corresponding arguments can be omitted in function calls, too. However, the way
to obtain values for missing arguments is quite different.

Implicit and dynamic parameters as well as parameters with default argu-
ments will be collectively called optional parameters in the sequel, and the origi-
nal C++ rules for parameters with default arguments are generalized to all kinds
of optional parameters, i. e.:

– If a particular parameter of a function is declared optional, all subsequent
parameters must be optional, too.

– Parameters might be declared optional later on, and the same function might
have different optional parameters in different scopes.

– During overload resolution, only the arguments which are explicitly specified
in a call are used to select the best viable function. Afterwards, if the selected
function has more parameters than arguments given, values for optional
parameters will be added as required.

Implicit and Dynamic Parameters in C++ 41

3.1 Implicit Parameters

Function parameters are declared implicit by prefixing their declaration with the
C++ keyword using2, e. g.:

void print (double d, using int width, using int prec);

If an argument corresponding to an implicit parameter is missing in a call, an
entity with the same name as the parameter from the calling context is sub-
stituted. If no such entity is found there, or if its type is incompatible with
the parameter’s type, the call is rejected by the compiler. For instance, the call
print(d) is equivalent to print(d, width, prec) where the names width and
prec are looked up and bound in the calling context. This implies that the names
of implicit parameters are mandatory in declarations and significant for callers,
in contrast to ordinary parameters whose names are irrelevant for clients and
might even be omitted in function declarations.

According to the general rules about optional parameters stated above, it is
possible to declare a parameter implicit later on, possibly in a different scope, and
it is also possible to change its name on that occasion, including the possibility
to introduce a name for a formerly anonymous parameter, e. g.:

void print (double d, int w, int);
......
void print (double d, using int width, using int prec);

Usually, the “entity” that is used to satisfy an implicit parameter of a called
function is some kind of variable, including local variables and parameters of the
calling function, member variables of an enclosing class, and global variables. In
particular, the calling function might itself possess an implicit parameter of the
same name (and a compatible type). If the implicit parameter has a function
pointer or reference type, however, the entity might also be a function of an
appropriate type, e. g.:

// Sort vector v using function less to compare its elements.
void sort (vector<string>& v,
using bool less (const string&, const string&)) { }

// Namespace N1 containing a definition of less
// and a client function calling sort with the latter.
namespace N1 {
bool less (const string& s1, const string& s2) { }
void client (vector<string>& v) {

sort(v); // calls: sort(v, N1::less)
}

2 At first sight, a different keyword such as implicit might be more appropriate.
However, to avoid incompatibilities with C++ code using this as an identifier, the
existing keyword using has been “re-used.”

42 C. Heinlein

}

// Namespace N2 containing a different definition of less
// and a client function calling sort with the latter.
namespace N2 {
bool less (const string& s1, const string& s2) { }
void client (vector<string>& v) {

sort(v); // calls: sort(v, N2::less)
}

}

3.2 Constructors with Implicit Parameters

If a constructor has implicit parameters, their values are also supplied from the
calling context if necessary, no matter whether the constructor is called directly
in so-called functional notation or indirectly in variable initializations (or member
initializers of other constructors), e. g.:

// Hash table for strings.
class HashTable {
......

public:
// Create hash table with given size and hash function.
HashTable (using int size, using int hash (const string&));

};

// Preferred hash table size and hash function.
int size = 193;
int hash (const string& s) { }

// Direct constructor call.
HashTable t1 = HashTable(101); // calls: HashTable(101, hash)

// Indirect constructor call.
HashTable t2; // calls: HashTable(size, hash)

In this example, the direct constructor call HashTable(101) used in the dec-
laration of t1 is equivalent to HashTable(101, hash), using the definition of
hash given before, while the declaration of t2 contains an indirect call to the de-
fault constructor HashTable() (because the variable is not explicitly initialized),
which is equivalent to HashTable(size, hash).

In other contexts, however, where constructor calls are completely invisible,
these calls must not depend on implicit parameters in order to avoid too much
implicitness and consequent incomprehensibility. This includes implicit copy and
conversion constructor calls as well as implicit default constructor calls in ctor-
initializers [10]. For example, even though the HashTable constructor defined
above may be called with a single argument of type int if the second parameter

Implicit and Dynamic Parameters in C++ 43

hash can be satisfied from the calling context (as shown in the declaration of
t1), this constructor cannot be used as a conversion constructor to implicitly
convert an int value to a HashTable object.

3.3 Dynamic Parameters and Environment Variables

EEven though implicit parameters need not be specified explicitly in function
calls, the compiler checks that corresponding entities are found in the calling con-
text and rejects calls otherwise. While this avoids run time errors or undefined
behaviour due to missing parameter values, it leads to a rather tight coupling
between callers and callees. In particular, it is not generally possible to trans-
parently add another parameter to an existing function, even if it is declared
implicit, because an entity of the same name must be present in every calling
context.

To relax this strict rule and to support more loose couplings between callers
and callees, dynamic parameters are introduced. Syntactically, dynamic parame-
ters look like implicit parameters with default arguments, i. e., their declaration
is preceded by the keyword using and followed by an equals sign and an accom-
panying expression, e. g.:

void print (double d,
using int width = 10, using int prec = 5);

As with implicit parameters, the value for a dynamic parameter is retrieved
from the calling context if the corresponding argument is missing in a call. In
contrast to implicit parameters, however, the value need not be provided by the
direct caller, but might also come from an indirect caller, i. e., from the complete
dynamic scope of the call.

However, since the compiler normally does not know the set of all callers of
a function (and recursively their callers etc.), it can no longer check statically
whether a value required for a dynamic parameter is actually provided. There-
fore, dynamic parameters always possess a default argument which will be used
in cases where no value can be found in the dynamic scope of the call. As with
normal default arguments, the corresponding expression is evaluated each time it
is used, i. e., whenever a call is made that neither provides an explicit argument
nor an implicit value for the parameter, and names appearing in the expression
are interpreted and bound in the context of its definition.

As another significant difference to implicit parameters, entities intended to
provide values for dynamic parameters must be explicitly marked as such to
avoid accidental matches with local variables defined in indirect callers, which
might not even know about a particular dynamic parameter. The underlying
model employed for that purpose is quite similar to the concept of environment
variables found in operating systems: At any point in time during the execution
of a program (or a single thread within a multi-threaded program) there is a
dynamic scope or environment containing variables which have been declared by
so-called export declarations described below.

44 C. Heinlein

To give an example, if print(d) is called (with the declaration of print
given above), this call is always accepted by the compiler and will actually call
print(d, width, prec) if variables width and prec are found in the current
environment, or print(d, 10, 5) if no such variables are found (or a combina-
tion of these if only one of the variables is found).

Because the compiler cannot and does not check whether the value for a
dynamic parameter will be actually present at run time, it is indeed possible to
transparently add additional parameters to existing functions without needing
to check or change their direct callers.3 Of course, to be actually useful, values
for such parameters should be exported to the environment by some indirect
caller.

3.4 Export Declarations

An export declaration is a definition of a global or local variable prefixed by the
keyword export4, e. g., export int width = 10;
The environment variable declared that way is initialized just like a regular
variable by evaluating the optional initializer expression and/or executing an
appropriate constructor. Furthermore, the variable is destroyed in the same way
as a regular variable by executing its destructor when it gets out of scope, i. e.,
when the statement block containing the export declaration terminates (either
normally or abruptly by executing a jump statement or throwing an excep-
tion) or (for a globally declared environment variable) when the entire program
terminates.

In contrast to a regular variable, however, the variable is not inserted into any
static scope at compile time (i. e., it will not be found by normal static name
lookup), but rather added to the current dynamic scope (i. e., the environment)
when the declaration is executed at run time. It is automatically removed from
there immediately before it is destroyed, i. e., at the end of the enclosing state-
ment block (if it is declared locally) or at the end of the program (if it is declared
globally). If a variable of the same name and type as a newly exported variable
is already present in the environment, the former is hidden by the latter until
the latter is removed again, i. e., the environment is organized in a stack-like
manner, and a dynamic parameter always receives the value of the top-most
matching variable, if any. For example:

void print (double d,
using int width = 10, using int prec = 5);

void client1 (double d) { print(d); }

void client2 (double d) {

3 It will depend on the implementation strategy whether or not it is necessary to
recompile the callers.

4 Again, an existing C++ keyword is re-used, which is used for a similar purpose in
Unix shells.

Implicit and Dynamic Parameters in C++ 45

client1(d); // client1 calls print(d, 10, 5)
{ export int width = 20;

client1(d); // client1 calls print(d, 20, 5)
{ export int width = 30, prec = 10;
client1(d); // client1 calls print(d, 30, 10)

}
client1(d); // client1 calls print(d, 20, 5)

}
client1(d); // client1 calls print(d, 10, 5)

}

3.5 Environment Variables with Constant and Reference Types

The type of an environment variable might be any suitable C++ type including
const-qualified and/or reference types. Accordingly, dynamic parameters might
possess such types, and an environment variable is said to match a dynamic
parameter if the following conditions hold:

– the names of the variable and the parameter are equal;
– the core types, i. e., the types without any top-level const or & qualifier, of

the variable and the parameter are identical;
– if the common core type is T and the parameter’s type is T&, the variable’s

type is T or T&, but not const T or const T&.

The last rule is in accordance with normal C++ rules, which do not allow to
bind a constant object to a non-constant reference via which it could be modi-
fied inadmissibly. On the other hand, the rule about identical core types is much
stricter than normal C++ type compatibility rules, as it completely excludes any
implicit type conversions such as standard conversions between numeric types
or conversions from derived classes to base classes. The main reason for not al-
lowing such conversions is to avoid confusion and unpleasant surprises due to
unexpected or unintended conversions, which already happen occasionally with
normal parameters. Combined with the loose coupling between dynamic parame-
ters and environment variables, the danger of an accidental match would become
even greater. Furthermore, when exporting a variable to the environment, one
should have a clear conception about the dynamic parameters this variable is
intended to match, and thus it should be easily possible to choose the appro-
priate type exactly, without relying on any implicit conversions. (And if really
necessary, one might export several variables of the same name with different
types.) Finally, an efficient implementation of more flexible matching rules would
be extremely difficult, since it would actually require to perform extensive anal-
yses at run time which are normally carried out at compile time. (For the same
reason, the C++ rules for finding a matching handler for a thrown exception do
not allow the full range of implicit type conversions either. However, to support

46 C. Heinlein

the typical idiom of catching exceptions of multiple classes with a single handler
for a common base class, conversions from derived to base classes are considered
in this context.)

Declaring an environment variable of some core type T with or without const
or & qualifiers has important consequences for its usage and actually sets up
different “access rights” for it:5

– If its type is simply T, it will match dynamic parameters with all kinds of
qualification. In particular, it will be possible to change the variable’s value
indirectly via dynamic reference parameters of type T&, even though direct
manipulations of the variable are impossible since it is not part of any static
scope!

– To forbid such indirect modifications of an environment variable, a const-
qualified type, i. e., const T or const T&, can be chosen, because a variable
of such a type does not match a parameter of type T&. In the former case
(const T), the variable becomes completely immutable.

– When using a reference type, i. e., T& or const T&, the environment variable
can be initialized with a regular variable of type T in both cases and then
actually constitutes an alias for the latter. Therefore, modifications to the
regular variable are immediately reflected in the environment variable, i. e.,
the latter can be directly manipulated through the former, no matter whether
its type is T& or const T&. However, the distinction between these types
decides whether indirect manipulations via dynamic parameters are possible
or not: A variable of type T& matches a parameter of the same type which
allows such manipulations, while a variable of type const T& does not match
such a parameter and therefore cannot be modified indirectly.

3.6 Correspondence to Checked and Unchecked Exceptions

The conceptual distinction between implicit and dynamic parameters exhibits
interesting parallels with checked and unchecked exceptions in Java [2].

If the signature of a Java method declares a checked exception, the compiler
checks that each caller of this method either catches the exception or declares
it in its own signature. Likewise, if a function declares an implicit parameter,
the compiler checks that each caller of this function either passes an explicit
argument for it or provides an entity to satisfy it, including an implicit parameter
of its own. Therefore, both scenarios are statically safe: a checked exception is
guaranteed to be caught somewhere, while an implicit parameter is guaranteed
to receive a value.

On the other hand, since unchecked exceptions need not be declared, the com-
piler cannot and does not check that they will be caught somewhere. Likewise,
the compiler cannot and does not check that a dynamic parameter always re-
ceives a value from the current environment. However, the default value provided
5 For experienced C++ programmers, the following considerations are quite obvious,

since they are completely in line with standard C++ rules about constant and refer-
ence types. For less experienced or novice C++ programmers, however, they might
require some time of accommodation.

Implicit and Dynamic Parameters in C++ 47

for such cases guarantees well-defined behaviour anyway, while an uncaught ex-
ception leads to program termination.

In the same way as both checked and unchecked exceptions have useful ap-
plications in practice (even though some programmers tend to avoid the former
to circumvent the strict checks performed by the compiler), both implicit and
dynamic parameters turn out to be useful for different kinds of applications: If
it is essential that a value for a particular parameter is provided (e. g., the com-
parison function for a sort routine) – and there is no reasonable general default
value –, an implicit parameter should be used. If, on the other hand, a value is
dispensable and/or a reasonable default value can be specified (e. g., the field
width for a print function), a dynamic parameter is usually more appropriate as
it allows greater flexibility.

3.7 Replacing Dependent Names in C++ Templates

If a normal C++ function such as max calls another function such as less, the
latter must have been declared earlier, e. g.:

bool less (int x, int y) { return x < y; }
int max (int x, int y) { return less(x, y) ? y : x; }

For functions called from function templates, however, this simple declare-before-
use rule is replaced with rather complicated rules about dependent names, the
point of instantiation of a template, etc. [10]. For example, the following generic
definition of max is accepted by the compiler without any preceding definition of
less, since the latter is a dependent name because its arguments x and y depend
on the template parameter T:

template <typename T>
T max (T x, T y) { return less(x, y) ? y : x; }

If, however, max is actually called with arguments x and y of a particular type T0,
a definition of less accepting these arguments must be found, either in the def-
inition context of max or in the current instantiation context, i. e., in the calling
context of the function. In this regard, dependent names are similar to implicit
parameters, which are also interpreted in the calling context of a function. There-
fore, the fact that max requires a matching definition of less, which is hidden in
its body above, can be specified explicitly in its signature by means of an implicit
parameter:

template <typename T>
T max (T x, T y, using bool less (T, T)) {
return less(x, y) ? y : x;

}

Similar to the original definition of max shown before, this function is also ac-
cepted by the compiler without any preceding definition of less, and a match-
ing definition is required only when max is called. This time, however, no special

48 C. Heinlein

rules about dependent names are required, since the usage of less in the func-
tion’s body obviously refers to the parameter declared in its signature, whose
context-dependent binding is achieved by the much simpler rules for implicit
parameters. Furthermore, using an implicit parameter is actually more flexible
than a dependent name, since it might naturally be bound to different functions
less in different calling contexts (cf. Sec. 3.1), whereas a dependent name is
required to refer to the same function in all instantiation contexts, even across
multiple translation units.6 Finally, it is even possible to pass a function with a
different name as an explicit argument.

In summary, implicit parameters constitute a superior replacement for de-
pendent names in function templates, since they reveal hidden dependencies by
moving their names from a function’s body to its signature and provide more
flexible means for their context-dependent binding. On the other hand, calling a
function such as less that is passed as an argument to another function such as
max might be less efficient than a direct, inlined call to less in max. However, if
the code of both max and less is visible, a call such as max(x, y, less) might
be completely inlined by an optimizing compiler, too, yielding, e. g., x < y ? y
: x if less is defined as shown above.

4 Prototypical Implementation

Implicit and dynamic parameters have been implemented prototypically in a pre-
compiler for C++ that is based on the EDG C++ Front End (cf. www.edg.com).
In contrast to a real implementation in a compiler, a precompiler-based ap-
proach has the advantage that it is independent of any particular compiler and
requires much less implementation time and effort. Both of these aspects im-
prove the possibility to experiment with the new language constructs early and
quickly and thus gain important practical experience, which might help to im-
prove the concepts before hard-wiring them in real implementations. Of course,
a precompiler-based approach does usually not achieve the same performance as
a direct implementation in a compiler, but for typical experimental applications
this does not really constitute a problem.

4.1 Dynamic Parameters and Environment Variables

Conceptually, the environment or dynamic scope of a program (or a single thread
within a multi-threaded program) can be represented by a stack whose entries
each contain a pointer or reference to a variable plus information about the vari-
able’s name and type, where the name could be stored as a string of characters,
while the type could be represented by its typeid [10]. To find the topmost
variable that matches a given dynamic parameter, the stack must be searched
in top-down order for the first entry whose name and type are equal to the
parameter’s name and type.

6 And to make things worse, a compiler is not forced to diagnose violations of this
rule!

Implicit and Dynamic Parameters in C++ 49

Although possible in principle, this representation of the environment suffers
from both unnecessary storage consumption for the name and type of each vari-
able and unnecessary run time overhead to find the topmost matching variable.
To reduce these costs, the environment can be represented by a set of stacks,
where each stack contains only references to variables of the same name and
type. In this case, the topmost variable matching a given dynamic parameter is
directly referenced by the topmost entry of the appropriate stack, which can be
found rather quickly, e. g., with binary search or hashing, if names and types are
still represented as strings and typeids, respectively.

Even though much better than the initial solution, this approach still suf-
fers from avoidable run time overhead to find the appropriate stack matching
a dynamic parameter. To completely eliminate these costs, the name of a vari-
able can be encoded statically as a (dummy) type, which can be used as one of
two template arguments for a template class Dyn, where the actual type of the
variable is used as the second argument:

// Entry of stack identified by Name and Type.
template <typename Name, typename Type>
struct Dyn {
Type& var; // Reference to variable.
Dyn* prev; // Pointer to previous stack entry.

// Pointer to topmost stack entry (initially null).
static Dyn* top;

// Constructor pushing variable v on the stack.
Dyn (Type& v) : var(v), prev(top) { top = this; }

// Destructor popping topmost stack entry.
~Dyn () { top = prev; }

};

// Dummy template class to encode variable names as types.
template <char head, typename Tail = void>
struct Name {};

Using the template class Name, a variable name such as x or xyz is uniquely identi-
fied (even across different namespaces and translation units) by the dummy type
Name<’x’> and Name<’x’, Name<’y’, Name<’z’> > >, respectively. Therefore,
the stack containing all references to variables of type int and name x (more pre-
cisely, the pointer to its topmost element) is statically identified by
Dyn<Name<’x’>, int>::top. Consequently, the topmost variable matching a
dynamic parameter of type int and name x can be immediately accessed as
Dyn<Name<’x’>, int>::top ->var, without any overhead for comparing strings
or typeids at run time.

Since variable export operations are performed explicitly by means of
export declarations, while the corresponding remove operations shall happen

50 C. Heinlein

automatically when the enclosing statement block (or the entire program) ter-
minates (cf. Sec. 3.4), it is advantageous to embed these operations in the con-
structor resp. destructor of class Dyn, as already shown above. Then, an export
declaration such as

export int x = expr;

can be transformed to a corresponding declaration of a regular variable with
some unique internal name such as x 1234 (internal, since the original name x
shall not appear in any static scope, and unique, since multiple environment
variables of the same name might be defined), followed by a declaration and
initialization of an additional dummy variable x 1234 of the corresponding
Dyn class:

int x__1234 = expr;
Dyn<Name<’x’>, int> _x__1234(x__1234);

When the control flow of the program reaches these declarations, x 1234 is
initialized with expr and afterwards the constructor of x 1234 is called, re-
ceiving a reference to x 1234 as an argument and pushing it onto its stack. The
corresponding destructor performing the matching pop operation is automati-
cally executed when the enclosing statement block (or the entire program) is
terminated.

By implementing the stacks as linked lists whose elements are global or lo-
cal variables of type Dyn<...> declared at the corresponding export points, no
dynamic storage management is necessary for maintaining the stacks. Instead,
they are “threaded” through the normal run time stack and possibly the global
data segment of the program.

Based on this representation of the environment, a dynamic parameter dec-
laration as in the following example:

void print (double d, int w, using int prec = 5);

is transformed to an ordinary parameter declaration with a default argument:

void print (double d, int w, int prec =
Dyn<Name<’p’, Name<’r’, ...> >, int>::top ?
Dyn<Name<’p’, Name<’r’, ...> >, int>::top->var : 5);

If the function print is called with three arguments, the default argument is
simply ignored. If it is called with only two arguments, the default argument
is evaluated as follows: If the pointer top of the stack identified by the name
prec and the type int is not null, i. e., if this stack is not empty, the variable
referenced by its topmost entry is used; otherwise, the original default argument
of the dynamic parameter (which is simply 5 in the example) is evaluated. In
particular, the original default argument is evaluated only if necessary, i. e., if
no suitable value is found in the environment.

Implicit and Dynamic Parameters in C++ 51

To simplify the presentation, the above description has ignored two details:
First, if the type of an environment variable is const T or const T&, it must not
match a dynamic parameter with a non-const reference type T&. To accomplish
this, all Dyn classes actually have a second static data member nctop as well
as a second link field ncprev that points to the topmost resp. previous stack
entry referencing a non-const variable. Furthermore, two different constructors
for pushing a const resp. non-const variable are provided which do not resp. do
modify the nctop pointer. To find the topmost variable matching a non-const
reference type T&, the nctop pointer is used instead of top, while for all other
kinds of types (i. e., T, const T, and const T&) top is used as described above.

Second, if multi-threaded programs shall be supported, the static data mem-
bers top and nctop must not directly point to stack entries, but rather refer
to some kind of thread-local objects which contain such pointers, in order to
maintain a separate environment for each thread.

4.2 Implicit Parameters

While the implementation of dynamic parameters is rather simple and straight-
forward – and the conceptual decoupling between export declarations and func-
tion calls using exported entities leads to an analogous decoupling in the imple-
mentation –, the precompiler-based implementation of implicit parameters turns
out to be more difficult.

A rather obvious idea is to simply add missing arguments to function calls,
e. g., to transform a call such as print(d, w) to print(d, w, prec) if print’s
third parameter prec is implicit. If the identifier prec is not known in the calling
context or has an incompatible type, this approach would naturally lead to a
corresponding compiler error message in that case.

However, there are two important problems with this approach, which have
already been pointed out in Sec. 2: First, the process of overload resolution might
lead to different results if an argument for any kind of optional parameter is ei-
ther explicitly specified or omitted. Second, if an implicit parameter is preceded
by a parameter with a default argument (including a dynamic parameter), and
the corresponding argument is also omitted in a call, it would have to be explic-
itly added, too. However, this is generally difficult for a precompiler operating
on source code for two reasons: First, the meaning of names occurring in the
default argument expression might be different when it is evaluated in the call-
ing context instead of its definition context; second, some of these names might
be inaccessible in the calling context if they refer to private or protected data
members of a class (if the function to be called is a member function of this class).

The problem regarding overload resolution can be solved as follows: Similar
to a dynamic parameter, an implicit parameter is also transformed to a param-
eter with a (dummy) default argument. This allows overload resolution to be
performed before adding any missing arguments, i. e., by considering only the
explicitly specified arguments. Afterwards, any implicit type conversions which
are necessary to convert the arguments to the exact parameter types of the se-
lected function are made explicit. (In the example given at the end of Sec. 2, the

52 C. Heinlein

call f(0), which will be resolved to the second definition of f and thus requires
an implicit conversion of its argument 0 from int to double, would be trans-
formed to f((double)0).) Finally, missing arguments corresponding to implicit
parameters are added to the call, again using explicit conversions to the corre-
sponding parameter types. (If the second parameter y of f would be implicit,
the resulting call would be f((double)0, (int)y).) By inserting explicit type
conversions for all arguments of the augmented call, the process of overload res-
olution will in fact resolve it to the same function as the original call without
any additional arguments.7

The problem regarding preceding parameters with default arguments can be
solved in principle by encapsulating default argument expressions into parame-
terless auxiliary functions with unique compiler-generated internal names. Call-
ing such a function will always execute the encapsulated expression in the context
of its definition, without any interference of the calling context. Furthermore, if
a default argument belongs to a member function of a class, the corresponding
auxiliary function can be defined as a member function of the same class in or-
der to have access to private and protected members of the class. By using these
auxiliary functions, it is in fact possible to explicitly add all missing arguments
to a function call, no matter whether they belong to parameters with default
arguments, to dynamic parameters, or to implicit parameters.

However, since the actual generation of these auxiliary functions is amazingly
complicated in practice (in particular for function templates, where the auxil-
iary functions must be templates, too, and for member functions defined outside
their class, where the auxiliary functions must be predeclared in the class), it has
not actually been implemented yet. As a consequence, the current prototypical,
precompiler-based implementation does not allow parameters with default ar-
guments (including dynamic parameters) to appear in a parameter list before a
dynamic parameter. For practical applications, this does not constitute a severe
restriction, since it is always possible to place implicit parameters before any
other kind of optional parameter. Of course, in a real compiler, the problems
discussed above do not exist at all, since it is always possible to appropriately
add missing arguments to a function call in assembly or machine code.

Based on the preceding considerations, a function declaration such as

void print (double d, using int width, int p = 5);

will be transformed to

void print (double d, int width = *(int*)0, int p = 5);

where *(int*)0 is a dummy expression of type int, actually dereferencing a null
pointer of type int*. A call to print such as print(d) will be transformed to
print((double)d, (int)width), i. e., by explicitly adding an argument for the
second parameter width, its default argument expression will never get executed

7 Except in very strange situations where multiple functions with the same parameter
types defined in different namespaces are visible simultaneously.

Implicit and Dynamic Parameters in C++ 53

at run time. Furthermore, by not adding an explicit argument for the third
parameter p, its default argument will be used correctly as expected.8

To summarize, the transformation of a function call generally proceeds as fol-
lows: First, the normal process of overload resolution is performed to select the
best viable function according to the explicitly specified arguments. (For that
purpose, a complete semantic analysis of the source program is necessary, which
is indeed performed by the EDG C++ Front End.) Then, it is checked whether
the selected function has implicit parameters whose values are not provided by
the explicit arguments. If this is the case, the names and types of these param-
eters are used to add corresponding arguments to the call. If one of these names
is not known in the calling context, or its type is incompatible with the type of
the parameter, this automatically causes the Front End to issue a corresponding
error message.9 Furthermore, implicit type conversions of the explicitly speci-
fied arguments are made explicit to guarantee (in most circumstances) that the
process of overload resolution will select the same function as for the original call.

In contrast to dynamic parameters, where an exact match of core types is
required (cf. Sec. 3.5), implicit parameters naturally allow implicit type conver-
sions: If the type of the entity denoted by the respective name x in the calling
context is different from the type T of the implicit parameter, a corresponding
conversion is performed automatically (if possible) when the augmented argu-
ment expression (T)x is evaluated.

4.3 Constructor Calls with Implicit Parameters

Constructor calls depending on implicit parameters can be transformed in ex-
actly the same manner as calls to ordinary functions, i. e., by adding correspond-
ing arguments, no matter whether they appear directly in so-called functional
notation [10] or indirectly in variable and member initializers. For example, the
declarations of t1 and t2 shown in Sec. 3.2 will be transformed as follows:

HashTable t1
= HashTable((int)101, (int (*) (const string&))hash);

HashTable t2((int)size, (int (*) (const string&))hash);

In the same way, so-called mem-initializers of constructors can be transformed.

4.4 Invisible Constructor Calls

If a constructor call is completely invisible, it must not rely on implicit parame-
ters in order to avoid too much implicitness and consequent incomprehensibility
8 Basically, this could cause overload resolution to fail for the transformed call, if

another definition print (double, int) accepting the same arguments is visible.
Since such a function is not directly callable due to ambiguity, such cases are not
expected to be practically relevant. In the worst case, the programmer must specify
all arguments explicitly in order to select the desired function.

9 In particular, no attempt is made in such a case to find a worse matching function
that does not require these implicit parameters.

54 C. Heinlein

(cf. Sec. 3.2). Therefore, an appropriate error message is produced by the pre-
compiler if such a constructor call is encountered.

5 Related Work and Discussion

The most obvious related work to implicit parameters as proposed in this paper
are implicit parameters as proposed by Lewis et al. [7]. Even though the moti-
vation for introducing such a concept as well as the basic idea is very similar in
both cases, there are several differences in detail, however: Most obviously, Lewis
et al. present their work in the realm of functional programming languages, while
this paper specifically addresses imperative languages. Apart from that, Lewis
et al. draw a clear syntactic distinction between implicit and regular parameters
of a function: The former are not specified in the function’s parameter list, but
simply used in its body, where they are distinguished from other identifiers by
prefixing their name with a question mark. Nevertheless, the type of a function,
which is usually inferred from its body by the interpreter or compiler, but might
also be specified explicitly in an additional signature, contains the information
about implicit parameters. By that means, a function calling another function
with implicit parameters implicitly inherits the latter’s implicit parameters in its
own type. Furthermore, since implicit parameters do not belong to the regular
parameter list of a function, special syntax is required to explicitly pass their
values in a call.

In contrast, implicit and regular parameters are treated uniformly in our ap-
proach, i. e., both are explicitly declared in a function’s parameter list and both
are used homogeneously in a function’s body. In fact, since the implicitness of a
parameter might be declared later on, there is no distinction whatsoever between
implicit and regular parameters in a function’s body. As a consequence of this
uniformity, explicit values for implicit parameters are passed in the same way as
values for regular parameters, i. e., via the normal argument list of a call.

The fact that implicit parameters are part of a function’s type in both ap-
proaches enables static type checking and guarantees that functions cannot be
called without directly or indirectly supplying values for all implicit parameters.
The other side of the coin, i. e., the drawbacks of this tight coupling between
calling and called functions, is also pointed out by Lewis et al.: If another im-
plicit parameter is added to a function later on, its own signature as well as
the signatures of all direct and indirect callers have to be modified if they have
been specified explicitly. To avoid this bother, they suggest as a compromise to
use ellipses to obtain signatures with only partially specified context informa-
tion. However, since the type of a function that is inferred by the compiler still
contains complete information about all implicit parameters, this approach does
not really relax the tight coupling mentioned above.

For exactly this reason, dynamic parameters and environment variables are
proposed in this paper as a dual concept to implicit parameters, that allows a
more loose coupling between callers and callees. This part of our proposal is
similar to dynamic variables as proposed by Hanson and Proebsting [3], again

Implicit and Dynamic Parameters in C++ 55

with some important differences, however: First of all, dynamic variables have
no relationship with function parameters; they are created and “exported” to
the environment with a set statement corresponding to our export declarations,
and accessed anywhere in a program with a matching use statement. Therefore,
similar to the implicit parameters of Lewis et al., the uses of dynamic variables
are “hidden” in function bodies, i. e., a function’s dependency on the value of a
dynamic variable is not documented in its signature. In contrast, dynamic pa-
rameters in our approach integrate the effect of a use statement with a parameter
declaration and therefore explicitly reveal the uses of environment variables in
a function.

Furthermore, in the C++ implementation of dynamic variables, their types are
restricted to pointers to “polymorphic” classes [10], i. e., pointers which might be
used in dynamic cast operations, while dynamic parameters and environment
variables might possess any C++ type. In particular, the different combinations
of const and reference types described in Sec. 3.5 allow a very fine-grained
control of “access rights” to an environment variable, ranging from completely
immutable variables to those that can be modified (directly or indirectly) both
in their export context and in any using context. On the other hand, dynamic
variables support a more flexible matching between set and use statements
by allowing a pointer to a derived class object to match a pointer to a base
class, while the types of dynamic parameters and environment variables are
required to match exactly except for differing const and reference qualifiers. In
addition to the conceptual reasons for this restriction outlined in Sec. 3.5, this
enables a maximally efficient implementation that does not require any kind of
searching for matching variables at run time. In contrast, any implementation
of dynamic variables, whether straightforward or more sophisticated, requires a
linear search through the environment stack (which might be threaded through
the normal run time stack) to find the first variable with a matching name and
type. Even if variable names would be encoded as dummy types and used as
template arguments as described in Sec. 4.1 (which is even better than any kind
of hashing proposed in [3]), a search for a matching type cannot be avoided if a
pointer to a derived class object shall match a pointer to a base class.

Similar to Sec. 3.6, Hanson and Proebsting also point out that dynamic vari-
ables are a data construct based on dynamic scoping, while exception handling
is actually a dynamically scoped control construct. We add the observation,
that the distinction between checked and unchecked exceptions has conceptual
parallels to our distinction between implicit and dynamic parameters.

Other control constructs based on dynamic scoping include control flow join
points in aspect-oriented languages [6, 8], Costanza’s dynamically scoped func-
tions [1], and the author’s local virtual functions [4, 5]. As shown in [4], the latter
can actually be used to simulate both exception handling and dynamically scoped
variables (called semi-global variables there), even though the latter is somewhat
cumbersome in practice.

The general concept of dynamically scoped variables can be traced back to
early implementations of Lisp, where it was actually a bug instead of an intended

56 C. Heinlein

feature. Nevertheless, since it is still considered a useful concept in addition to
the usual static scoping, the basic idea has survived in Common Lisp’s special
variables [9]. Similarly, scripting languages such as PostScript, Tcl, Perl, etc. also
provide similar concepts. Finally, as already mentioned in Sec. 3.3, environment
variables found in operating systems are another embodiment of basically the
same idea.

Of course, any kind of implicitness in a program bears the danger of ob-
scuring important details and thus making programs harder to understand and
debug. On the other hand, however, explicitly passing around large numbers of
parameters also bears the danger of obscuring a few important ones with many
unimportant ones. Therefore, just like any other language construct, implicit
and dynamic parameters should be used with care and perceptiveness to make
programs easier to read and understand in the end.

References

1. P. Costanza: “Dynamically Scoped Functions as the Essence of AOP.” ACM SIG-
PLAN Notices 38 (8) August 2003, 29–36.

2. J. Gosling, B. Joy, G. Steele, G. Bracha: The Java Language Specification (Third
Edition). Addison-Wesley, Reading, MA, 2005.

3. D. R. Hanson, T. A. Proebsting: “Dynamic Variables.” In: Proc. 2001 ACM
SIGPLAN Conf. on Programming Language Design and Implementation (PLDI)
(Snowbird, UT, June 2001). ACM, 2001, 264–273.

4. C. Heinlein: “Local Virtual Functions.” In: R. Hirschfeld, R. Kowalczyk, A. Polze,
M. Weske (eds.): NODe 2005, GSEM 2005 (Erfurt, Germany, September 2005).
Lecture Notes in Informatics P-69, Gesellschaft für Informatik e. V., Bonn, 2005,
129–144.

5. C. Heinlein: “Global and Local Virtual Functions in C++.”
Journal of Object Technology 4 (10) December 2005, 71–93,
http://www.jot.fm/issues/issue 2005 12/article4.

6. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. G. Griswold: “An
Overview of AspectJ.” In: J. Lindskov Knudsen (ed.): ECOOP 2001 – Object-
Oriented Programming (15th European Conference; Budapest, Hungary, June 2001;
Proceedings). Lecture Notes in Computer Science 2072, Springer-Verlag, Berlin,
2001, 327–353.

7. J. R. Lewis, M. B. Shields, E. Meijer, J. Launchbury: “Implicit Parameters: Dy-
namic Scoping with Static Types.” In: Proc. 27th ACM Symp. on Principles of
Programming Languages (Boston, MA, January 2000). ACM, 2000, 108–118.

8. O. Spinczyk, A. Gal, W. Schröder-Preikschat: “AspectC++: An Aspect-Oriented
Extension to the C++ Programming Language.” In: J. Noble, J. Potter (eds.):
Proc. 40th Int. Conf. on Technology of Object-Oriented Languages and Systems
(TOOLS Pacific) (Sydney, Australia, February 2002), 53–60.

9. G. L. Steele Jr.: Common Lisp: The Language (Second Edition). Digital Press,
Bedford, MA, 1990.

10. B. Stroustrup: The C++ Programming Language (Special Edition). Addison-
Wesley, Reading, MA, 2000.

	Introduction
	Functions, Overloading, and Default Arguments in C++
	Implicit and Dynamic Parameters
	Implicit Parameters
	Constructors with Implicit Parameters
	Dynamic Parameters and Environment Variables
	Export Declarations
	Environment Variables with Constant and Reference Types
	Correspondence to Checked and Unchecked Exceptions
	Replacing Dependent Names in C++ Templates

	Prototypical Implementation
	Dynamic Parameters and Environment Variables
	Implicit Parameters
	Constructor Calls with Implicit Parameters
	Invisible Constructor Calls

	Related Work and Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

