
D. Lightfoot and C. Szyperski (Eds.): JMLC 2006, LNCS 4228, pp. 23 – 36, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Programming Language Concepts for Multimedia
Application Development

Oliver Lampl, Elmar Stellnberger, and László Böszörményi

oliver.lampl@hollomey.com, estellnb@yahoo.de,
laszlo.boeszoermenyi@itec.uni-klu.ac.at

Abstract. Multimedia application development requires features and concepts
currently not supported by common systems programming languages. This
paper introduces two new minimal language extensions increasing expressive
power, safety and optimization possibilities in multimedia programming. New
loop statements are presented to shorten multidimensional array access and
optimize its execution. Furthermore, a new data type concept is presented to
allow quality of service (QoS) definition on data type declaration level. Both
have been implemented in Modula-3 and C#.

1 Introduction

Substantial parts of programs processing multimedia data follow some very common
patterns:

1. In the compression/decompression/transformation part of such programs, large
multidimensional numerical arrays are partitioned into small independent blocks
and processed by algorithms, like the Discrete Cosine Transformation (DCT).

2. In the video streaming and play-back part, long sequences of data (e.g. video
frames) are processed and/or transmitted periodically, under so-called "soft real-
time" constraints.

The manually created code for these recurring patterns is typically cumbersome,
error-prone and inefficient. These observations suggest that we could give good
support for multimedia programming on the level of a programming language. A vast
number of multimedia query languages resp. language extensions exist [15],
nevertheless, to our knowledge, no language support for multimedia systems-
programming exists. We argue in our paper that such a support is advantageous and
easily possible.

The first pattern obviously calls for a simple, automatic parallelization. To handle
the second pattern, we need a notion of time, and a way to express Quality of Service
(QoS) constraints. Instead of defining a brand new language, we investigated the
possibilities of extending some existing programming languages with the minimal
necessary features, considering the following basic principles: Add an extension to a
language only if the following conditions are fulfilled:

1. The new feature enhances the expressive power of the language considerably.
2. The safety of programs using the new feature is enhanced.
3. The new feature enables some automatic optimizations.

24 O. Lampl, E. Stellnberger, and L. Böszörményi

Everything else should rather be put into a library than applied as a language
extension. Under these premises we suggest the following extensions for general
purpose programming languages:

1. A foreach and a forall statement enabling compact and safe expression, and
automatic parallelization of typical video transformation code, operating on
independent blocks of data.

2. A time dimension, which can be added to any existing scalar or array type as an
n+first dimension.

3. A very simple first-order logic based language extension, enabling to express QoS
constraints.

The actual language extensions were designed both in Pascal- and C-style and were
implemented in two well-known representatives of these language families: Modula-3
[13] resp. C# [11]. The parallel development helped us a lot to separate the essence
of a new construct from the syntactic sugar and it was - by the way - the source of a
lot of fun.

2 Related Work

2.1 Parallelism

Generally, two different approaches exist to introduce parallelism. In the synchronous
approach one instruction is used to work on multiple data elements. The asynchronous
approach on the other hand allows the execution of different instruction streams
simultaneously.

In [3] Philipsen and Tichy implement a machine independent forall loop both in a
synchronous and asynchronous version targeting multiple architectures with shared
and distributed memory. Furthermore they showed in [4] that with the use of an
adequate working environment debugging of parallel programs written with forall
loops is feasible and does not pose a big problem.

In [2] Knudsen introduces a queue to distribute the workload of an asynchronous
forall loop on multiple execution units of a shared memory system as provided by
multi processor and multi core computers. Implementing dynamic workload
generation via distributing nested procedures by a queue causes very little overhead in
the range of a few percents. This approach reaches a high utilization even in the last
loop iterations without the need of static analysis.

We have adopted his approach both in our Modula-3 and C# implementation. In
the latter, however, we pass objects instead of using nested procedures because nested
procedures are not supported in C#. Supplying an asynchronous forall seems to be
sufficient in most cases of multimedia programming. Asynchronous foralls are also
open to vectorization thus allowing a further possibility for speedups.

In [14] Zima presents how dependence analysis can be used by compilers to
automatize vectorization and parallelization. Source to source transformation using

 Programming Language Concepts for Multimedia Application Development 25

forall loops as a target construct is suggested. Explicit synchronization barriers are
used rather than implicitly inserted barriers at the end of each parallel loop. The
described techniques can also be used to verify the mutual independence of different
loop iterations, a condition which is demanded but not yet checked by Knudsens
approach, nor by ours. Loop carried dependencies would require explicit assumptions
about loop behavior.

2.2 Quality of Service

Quality of service (QoS) is another important aspect of multimedia applications. A lot
of different notations and specifications can be found to express QoS-related
mechanisms like resource reservation, admission control, and adaptation. Jin and
Nahrstedt provide a classification over existing QoS specification languages [9].
These specification languages try to cover most aspects of QoS and are defined on
application-, user-, or resource-level to allow a user-friendly notation.

To apply QoS constraints directly at the programming language level not all
aspects of QoS have to be met. When applying QoS on displaying of a video the most
important QoS constraints are frame rate, delay, and jitter. These timing limitations
can be expressed using temporal logic. In [1] Blair and Stefani introduce the first
order logic based language QL to define and formally analyze QoS constraints. QL is
based on an event model basically identified by three components: event types (1) ,
events (2) and histories (3).

1. Event types represent a particular state transition in a system (e.g. the arrival of a
frame of video).

2. An event is an occurrence of an event type (e.g. the arrival of a particular frame of
video).

3. The history represents a discrete sequence of events of the same event type.

To reflect a special occurrence of an event in the history the function ()n,ετ is used,

where n represents the nth occurrence and ε the event type. By applying this model,
we can express a wide range of quality of service constraints. E.g. the throughput of

video can be expressed (rε stays for frame reception):

() () δετετ ≤−+∀ nknn rr ,,,

To be precise, this formula specifies that for all video frames, the difference in time
between the arrival of the frame n + k and the frame n is less than a given value δ .

The next example shows the definition of bounded execution time (eε stays for the

emission, rε for the arrival of a frame):

() () δετετ ≤−∀ nn rne ,, ,

In this case, the maximum allowed delay between two different event types is
specified for all of their occurrences.

In [1] Esterel is used for QoS monitoring. It is an imperative language specifically
developed in order to assert the QoS compliance of networked applications. An

26 O. Lampl, E. Stellnberger, and L. Böszörményi

Esterel program consists of a set of parallel processes which execute synchronously
and communicate with each other. Apart from its fancy signaling concept Esterel is
quite minimalistic. Programmers may prefer a better integrated approach that is easy
in practical deployment and that allows them to make use of their existing knowledge.
However, we chose a different approach, see QoS Monitoring.

Our work concerning QoS is based on the event model of QL. It can describe most
of the QoS constraints required in multimedia applications. Nevertheless it is limited
and some constraints cannot be expressed like general reliability requirements such as
Mean Time Between Failure or Mean Time To Repair.

3 Parallelism and Loops

3.1 Extended Loop Statement

Pixel manipulations can be implemented using multidimensional arrays. A lot of
encoder or decoder implementations make use of such data structures. In
programming languages like Modula or C/C++, such arrays are iterated using simple
for statements. In Java and C# new loop statements have been developed in order to
iterate over collections or arrays.

In C# the foreach statement [11] is used to iterate over expressions that can be
evaluated to a type that implements the IEnumerable interface, or a type that declares
a GetEnumerator method which then returns an object of type IEnumerator [8].

foreach (type identifier in expression)

 embedded-statement

These enumerators iterate over the stored elements. For each element the
embedded statement is executed.

In multimedia applications we often want to refer to the index of the elements
accessed. Therefore we extended the foreach statement to define the expression for
retrieving the elements of the array. This enables the programmer to define index
variables which can be accessed during the loop. To avoid unpredictable side effects
index access is read only.

foreach (type identifier = expression in expression)

 embedded-statement

The following example represents a simple implementation of the discrete cosine
transformation (DCT) as used for JPEG implementations [10] implemented in C#.

double value = 0;

 for (int u = 0; u < 8; u++) {
 for (int v = 0; v < 8; v++) {

 for (int i = 0; i < 8; i++) {
 for (int j = 0; j < 8; j++) {

 Programming Language Concepts for Multimedia Application Development 27

 value += (source[i,j] – 128)
 * Math.Cos(((2*i + 1) * u * Math.PI) / 16)
 * Math.Cos(((2*j + 1) * v * Math.PI) / 16);

 }
 }

 coefficients[u,v] = value / 4;

 }
 }

Instead of using four conventional nested for statements the code fragment can be
reimplemented by applying two extended foreach loops without considering the size
of the array being iterated over.

 foreach (double c = coefficients[u,v]
 in source) {

 foreach (int p = source[i,j] in source) {

 value += (p – 128)
 * Math.Cos(((2*i + 1) * u * Math.PI) / 16)
 * Math.Cos(((2*j + 1) * v * Math.PI) / 16);

 }

 coefficients[u,v] = value / 4;

 }

The extended foreach has been implemented in Modula-3 too.

 FOREACH c = coefficients[u,v] IN coefficients VIA u,v DO

 FOREACH p = source[i,j] IN source VIA i,j DO

 value := value + (FLOAT(p-128,LONGREAL)
 * cos(FLOAT((2*i+1)*u,LONGREAL)*Pi/16.0D0)
 * cos(FLOAT((2*j+1)*v,LONGREAL)*Pi/16.0D0));

 END

 coefficients[u,v] := value / 4.0D0;

 END

The extended foreach loop expresses more clearly how elements are assigned within
the loop. Furthermore, no array ranges have to be considered. The compiler internally
generates the correct code for iteration and therefore provides more safety. No infinite
loops can be created and the statement enables the programmer to express index based
calculations with arrays. Like the original foreach in C#, the current element of the
loop can be directly accessed.

3.2 Parallel Loop Execution

To optimize performance, parallelism can be added to the loop to distribute its
execution into several threads. This executional optimization can be reached due to

28 O. Lampl, E. Stellnberger, and L. Böszörményi

the fact that a foreach statement as defined in [11] does not necessarily guarantee a
special order of execution. The semantic only defines that each element of the given
collection or array is accessed. This fact can be used to implement a foreach loop in
which each of the iterations can be executed simultaneously. The syntax is very
similar to the shown foreach or the extended foreach statement, but the semantics
differ.

forall (type identifier in expression)

 embedded-statement

forall (type identifier = expression in expression)

 embedded-statement

The block executed each time the loop iterates is embedded into a job class. The
instance of this class represents a job which is executed for each loop iteration.
Instead of executing the jobs in sequential order, they are put into a queue to feed
workers which can operate in parallel. These workers are controlled by a management
framework which observes the execution of all workers. Furthermore, it ensures that
sequential execution follows after all parallel work is done. The compiler itself
generates code to fork the workers, distribute the work to each worker and
synchronize all workers when all work has been completed. After all parallel work is
done, the program continues normally.

3.3 Parallel Processing Framework and Results

The default worker pool implementation is integrated into the system class library of
Mono [7]. To give programmers the ability to implement their own worker pools the
default behavior of jobs and the worker pool is defined by the interfaces IJob and
IworkerPool (see figure 1). The worker pool can be exchanged during runtime by
replacing the default worker pool implementation with the WorkerPoolFactory.

Each time a forall statements loop body is executed, an IJob object is created and
added to the worker pool. At the end of the loop the waitTillFinished method is called
to ensure that work has been done before continuing. The implementation uses the
default multithreading libraries. The same behavior can be achieved using
asynchronous method invocation. This feature of the Common Language Runtime
[12] can be used to inherently introduce concurrency into a program. The forall
statement has also been implemented in Modula-3 using nested procedures [5, 6, 16]
instead of passing objects.

But parallelism is not without issues. The programmer has to consider the overhead
for thread creation, control and the cost of object initialization. Normal loops can be
terminated using return or break statements. This cannot be easily achieved when
using parallelized execution. So the use of these statements has been forbidden,
because of the misleading semantics. If break or return is used, the programmer wants
the execution of the loop to stop, but the parallel execution disables immediate loop
termination. Another problem is exception handling within the loop. This is achieved
by catching exceptions within the worker threads, and throw them at the end of the
execution to allow the programmer to use the default exception handling mechanisms
of the language.

 Programming Language Concepts for Multimedia Application Development 29

Fig. 1. Classes involved in the parallel loop statement

The performance enhancement is demonstrated using the simple block based DCT
(see prior example). The forall statement is applied to parallelize the processing of
blocks where the number of threads and the number of blocks are varied. The
measurement was done on a quad processor machine showing linear scalability and
little overhead (see figure 2 and 3).

The execution time of the forall statement using one single thread is only a few
percents higher than the execution time of an implementation using for statements.
This overhead is caused by object initialization and thread control. When increasing
the number of threads, the execution time decreases significantly, but when the
number of threads reaches the number of processors, the management overhead grows
considerably. Similar results are presented in [2] which proofs the efficiency of our
implementation.

At this point the presented concept will be evaluated according to the criteria
defined at the beginning of this paper:

1. The expressive power of the extended foreach statement has been demonstrated by
rewriting a DCT. The new statement tries to express the array loops with more
simplicity in syntax but of course higher complexity in semantics.

2. The safety of the programs is enhanced due to the fact that the loop termination
condition is hidden in the compiler generated code and guarantees that the loop
comes to an end after it has accessed all elements of the data structure.

3. The forall loop can be used to optimize the execution time of the program
(demonstrated by examples and graphs), where the loop body is separated into
work packages and put into an efficient parallel processing framework.

30 O. Lampl, E. Stellnberger, and L. Böszörményi

Fig. 2. The amount of time needed to process a given number of blocks using a set of threads

Fig. 3. The efficiency of the distribution to multiple workers

4 Monitoring QoS Constraints

4.1 Quality Aware Data Types

Instead of implementing QoS monitoring with Esterel as shown in [1], we introduce
the concept of quality aware data types. The declaration of said types allows the
programmer to specify the quality of service contract for a simple data type. A special
assignment operation is used to examine declared constraints and cause exceptions in
case of constraint violations.

100 200 300 400 500 600 700 800 900 1000

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Efficiency of the forall statement

1 Thread
2 Threads

3 Threads

4 Threads
6 Threads

Number of blocks

E
ffi

ci
en

cy

100 200 300 400 500 600 700 800 900 1000

0

1

2

3

4

5

6

7

8

9

Simple DCT using parallel foreach

for-statement

1 Thread

2 Threads

3 Threads
4 Threads

6 Threads

Number of blocks

T
im

e
in

 s
ec

on
ds

 Programming Language Concepts for Multimedia Application Development 31

The intent of quality aware data types is not to enforce a specified constraint. To
achieve this, real time systems have to be used. In case of multimedia applications
users might agree to quality of service changes if the cost is reduced, so we just have
to check possible violations and inform about their occurrence.

Quality aware data types are declared by an additional dimension of time. This
n+first dimension is declared using the token [~].

type [~] identifier

The dimension of time can be parameterized to specify quality of service
constraints. The initialization of the type can be expressed in a static way for primitive
data types with a constant constraint or using the new command to allow dynamic
creation. The dynamic way provides exchangeability of the quality of service object
to implement adaptive quality of service features.

type[~(IQoSObject)Identifier]

type[~] identifier = new type
 [~(IqoSObject)identifier]

The quality of service parameter definition is encapsulated within an IQoSObject.
This interface is used to implement QL like quality of service constraints, which are
controlled automatically by compiler generated code. The programmer may use
available implementations of QoS constraints and can also add own code.

4.2 Implementation Issues

Quality aware data types are implemented using event histories. Such events can be
evaluated by an IQoSObject which then decides whether the given constraint can be
held or not. The event happens at the assignment statement and is recorded in the
history. In order to distinguish between an assignment and a QoS monitored
assignment we define the timed assignment operation “~=”.

Each time a quality aware data type is assigned using the timed assignment
operation, its currently embedded constraints are checked. If the check fails a
QoSException is thrown, which is used to react upon constraint violation. This allows
easy implementation of adaptive quality of service constraints, e.g. the frame rate can
be changed or the size of frames can be reduced. The definition of an additional
assignment statement is advantageous because it allows the programmer to decide if
the quality aware data type is monitored for the current assignment or not. This can be
compared to video processing. If we playback a video, we monitor QoS constraints to
achieve correct frame rate, jitter and delay. In case of management operations on
videos, e.g. format conversion or video analysis for meta data retrieval, we do not
necessarily need to monitor QoS.

The first example demonstrates a quality aware numerical type which is assigned
within a for statement to values of a given array. The quality aware variable value is
defined with the constraint QoSDelay. This object is initialized with the variable to be
monitored and a numerical value expressing the delay in milliseconds to slow down
execution. Each time value is assigned using the timed assignment statement the
execution is delayed to print one value per second to the console. The numerical value
is streamed.

32 O. Lampl, E. Stellnberger, and L. Böszörményi

int[~new QoSDelay("value", 1000)] value;

int[] data = {1,2,3,4,5,6,7,8,9};

for (int i = 0; i < data.Length; i++) {

 value ~= data[i];

 Console.WriteLine(value);

}

The control structure for video transcoding applications is implemented using
quality aware data types. The variable output is declared as a quality aware data type
and initialized with th QoS constraint QoSThroughPut. The QoS constraint is used to
monitor the throughput of frames. It is initialized to monitor that every 1000
milliseconds 25 frames are processed. The short code for transcoding ensures that the
quality of service constraint for display is held if not, an exception is thrown to
terminate the execution of the loop. If the programmer implements the quality of
service check manually, the code would be much more complicated. The quality
aware variable output limits its execution time while being assigned using the timed
assignment statement.

public void transcode(FrameIterator frames) {

 IQoSObject constraint =
 new QoSThroughput(“output”, 1000, 25);

 Frame[~] output = new Frame[~constraint];

 try {

 foreach(Frame f in frames) {

 output ~= transcodeFrame(f); // transcoding function

 display(output); // display output

 }

 } catch (QoSException e) {

 Console.WriteLine(“QoS Constraint Violation!”);

 }

}

4.3 QoS Management Framework

The history of the events are recorded with the implementation of the
IQoSHistoryManager (see figure 4). This class registers events, assigns quality of
service constraints to these events, and stores their histories within a time frame. The
default implementation available in the system class library is used by the compiler by
default. To enable the programmer to provide its own implementation, the default
history manager can be exchanged using the QoSHistoryManagerFactory.

 Programming Language Concepts for Multimedia Application Development 33

Fig. 4. Classes involved in quality of service management used in the default implementation

As the history manager can observe many events, we can define quality of service
constraints applying these events. The bounded execution time of video frame
processing can be used to demonstrate the implementation of a quality of service
object.

private string input, output;

private long execTime;

public int CheckQoS() { // bounded execution time

 int delta =
 (int)((TimeSpan)(this.manager
.GetSignalHistoryCurrent(this.output) -
 this.manager
 .GetSignalHistoryLastOccurrence(this.input)))
 .TotalMilliseconds;

 // check if delay can be held,
 // if not throw exception

 if (delta > this.execTime) {

 throw new QoSException(
 "Bounded execution time of "
 + delta + "ms exceeds limit of "
 + this.execTime + "ms!");

 }

 return 0; // go on normally

}

The quality of service constraints are specified by implementing the interface
definition IQoSObject. The method CheckQoS must implemented which monitors the

34 O. Lampl, E. Stellnberger, and L. Böszörményi

QoS constraint. It throws an exception if the constraint cannot be held or slows down
execution by returning a numerical value. This values is interpreted as time in
milliseconds to wait after the timed assignment. If zero is returned, the code following
the timed assignment statement is executed without delay.

The history manager is used to calculate time ranges between events and compare
these ranges to specified values. Predefined constraint implementations are provided
by a system class library and can be used by the programmer.

private string signal;

private int count, delay;

public int CheckQoS() { // throughput

 int delta =
 (int)((TimeSpan)(this.manager
 .GetSignalHistoryCurrent(this.signal)-
 this.manager
 .GetSignalHistory(this.signal,
 this.manager
 .GetSignalHistoryCount() - this.count)))
 .TotalMilliseconds;

 // check if delay can be held
 // if not throw exception,
 // otherwise delay execution to

 // reach expected delay value

 if (delta > this.delay) {

 throw new QoSException(
 "Throughput of " + this.count
 + " exceeds limit of "
 + this.execTime + "ms!");

 }

 return delta - this.delay; // slow down execution

}

4.4 Results

To justify the concept of quality aware data types it is evaluated against the criteria
defined at the beginning of this paper:

1. The expressive power is enhanced because quality of service constraints can be
expressed on the data type declaration level. This allows the developer to use
embedded QoS without worrying about the implementation. Although the system
libraries should include lots of default constraints that can just be used, the
developer is enabled to express a new constraint by just implementing a simple
interface which emphasizes the extensibility in case of constraint implementation.

 Programming Language Concepts for Multimedia Application Development 35

 Furthermore, one can use polymorphism or other object oriented language concepts
to implement, extend, or vary given quality of service constraints. Moreover, we
consider the possibility to access a history not only as an aid for the
implementation but as something that imposes a basic structure upon QoS
monitoring thus improving readability. With the use of a history manager it
becomes possible to write programs that are quite close to a specification.

2. The automatic and implicit generation of events triggered at every assignment to
the QoS monitored structure increases the safety of the program. Instead of the
error-prone task of registering every event manually, this is done by compiler
generated code.

3. Optimization of the code can be seen by comparing length and simplicity.
Currently no further optimization possibilities can be presented. More
investigations are needed to show how the concept of quality aware data types can
help to generate more efficient code.

However, our concept is non interruptive in comparison to Esterel. Esterel allows to
terminate the execution of a code block prematurely if the result is outdated before its
calculation finishes. We claim that this is only a minor restriction. The time gain of
immediate cancellation will be small in many cases, whereas subsequently inserting
test operations for the case that no sufficient operating system support should be given
could slow down the overall performance drastically.

5 Conclusion and Future Work

The aim of this paper is to introduce two new minimal language extensions to
improve multimedia application development. New loop statements are presented
which can be applied when accessing large multidimensional arrays often used in
parts of encoder or decoder software. The extended foreach statement is used to allow
index access during the loop, and the forall loop inherently introduces parallelization
to the loop execution. Furthermore the concept of quality aware data types is shown to
define QoS monitoring on a data type declaration level which helps us to implement
QoS based streaming. These extensions are justified by three basic principles:
expressive power, safety and optimization possibilities. This is emphasized by
examples of the current implementations in Modula-3 and C#.

Both Modula-3 and C# and their actually used language environments show a lot
of pleasant features, and none of the two languages can be declared as a definite
winner. Despite of the well-known stylistic differences, the existence of nested
procedures in Modula-3 eased the implementation of some features considerably.

In the search towards a multimedia language we want to identify challenges in
current programming languages and their embedded concepts. The concepts described
in this document still raise a lot questions. Our aim is to define quality of service
constraints not directly with code, but with syntax extensions to allow a compact and
declarative definition. Furthermore, we want to analyze the possibility of compile
time optimizations on code generation based on the compile time knowledge of such
constraints.

36 O. Lampl, E. Stellnberger, and L. Böszörményi

References

[1] Gordon S. Blair, Jean-Bernard Stefani: Open distributed processing and multimeda. -
Addison Wesley Longman Ltd., 1998 ISBN 0-201-17794-3

[2] Svend Erik Knusen: Statement-Sets .- Third International ACPC Conference with Special
Emphasis on Parallel Databses and Parallel I/O Klagenfurt, Austria: September 1996

[3] Michael Philippsen, Walter F. Tichy: Modula-2* and its Compilation .- Universität
Karlsruhe, 1991 First International appeared in: First International Conference of the
Austrian Center for Parallel Computation, Salzburg, Austria, 1991, Springer Verlag,
Lecture Notes In Computer Science 591, 1992

[4] Stefan U. Hänßgen, Ernst A. Heinz, Paul Lukowicz, Michael Philippsen, Walter F. Tichy:
The Modula-2* Environment for Parallel Programming, 1993

[5] Michael Philippsen, Markus U. Mock: Data and Process Alignment in Modula-2*,
Department of Informatics, University of Karlsruhe, 1993

[6] Laszlo Böszörményi, Carsten Weich: Programming in Modula-3 - An Introduction in
Programming with Style. - Springer Verlag, Heidelberg 1996

[7] Mono: Open Source .NET Development Framework - http://www.mono-project.com
[8] Microsoft Developer Network: C# Programmer's Reference, http://msdn.microsoft.com
[9] Jingwen Jin, Klara Nahrstedt: QoS Specification Languages for Distributed Multimedia

Applications: A Survey and Taxonomy – IEEE Multimedia Magazine, July 2004, pp. 74-87
[10] Ralf Steinmetz, Klara Nahrstedt: Multimedia Systems – Springer Verlag, 2004, ISBN 3-

540-40867-3
[11] Standard ECMA-334 - C# Language Specification, 3rd Edition June 2005
[12] Don Box, Chris Sells: Essentials .NET Volume 1 – The Common Language Runtime. -

Addison Wsley 2004, ISBN 0-201-73411-7
[13] Greg Nelson: Systems Programming with Modula-3. - Prentice Hall, 1991 ISBN 0-13-

590464-1
[14] Zima,H.P., Chapman,B.M.: Supercompilers for Parallel and Vector Computers ACM

Press Frontier Series/Addison-Wesley (1990); Japanese Translation, Ohmsha (1995)
[15] J. Z. Li, M. T. Ozsu, and D. Szafron. MOQL: A multimedia object query language.

Technical Report TR-97-01, Department of Computing Science, University of Alberta,
January 1997

[16] Elmar Stellnberger: Enhancing the Usability of Nested Procedure Values in a Multi
Threaded Environment. Manuscript

	Introduction
	Related Work
	Parallelism
	Quality of Service

	Parallelism and Loops
	Extended Loop Statement
	Parallel Loop Execution
	Parallel Processing Framework and Results

	Monitoring QoS Constraints
	Quality Aware Data Types
	Implementation Issues
	QoS Management Framework
	Results

	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

