
D. Lightfoot and C. Szyperski (Eds.): JMLC 2006, LNCS 4228, pp. 403 – 414, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Case Study in Concurrent Programming with
Active Objects

Ulrike Glavitsch and Thomas M. Frey

Computer Systems Institute, ETH Zurich,
8092 Zurich, Switzerland

ulrike.glavitsch@inf.ethz.ch, thomas.frey@alumni.ethz.ch

Abstract. The recent product development of processors shows that multi-core
computer architectures are rapidly becoming reality. Therefore, in order to use
the available processing power, operating systems and programming languages
supporting the development of multi-threaded software will be needed. In this
paper, we present a small case study that shows how elegant and safe concur-
rent programming can be if a powerful programming language and thread-safe
libraries are used. The case study is a simple search tool written in Active
Oberon. The application uses a thread-safe GUI framework that relieves the
programmer from synchronizing requests.

1 Introduction

Present and future multi-core computer architectures require multi-processor operat-
ing systems and support for multi-threading on the level of the programming language
and the environment. Current operating systems are capable to schedule processing
tasks to multiple processors. The complexity is hidden, thus, giving the IT user bene-
fits in terms of efficiency and response times. The structuring of a programming task
into threads and their synchronization is one of the challenges of current program-
ming and can hardly be automated. In standard programming languages and environ-
ments (Java, C#/.NET), multi-threading is supported by a number of specialized li-
brary or language calls. However, their use is cumbersome and very often, the pro-
grammer has to understand the implementation to make correct use of them. In addi-
tion, standard libraries and frameworks for graphical user interfaces (GUI) are seldom
thread-safe (e.g. Java Swing, .NET WinForms). This means that it is the program-
mer’s responsibility to synchronize threads that operate on the same component. What
is desirable is a programming environment in that developing complex multi-threaded
applications becomes more focused on the actual problem and releases the program-
mer from burdens that can be performed effectively by the environment.

Active Oberon is a type-safe, modular object-oriented programming language that
contains dedicated language constructs for threads and their synchronization [1].
Threads are declared as activities encapsulated in objects. Such an active object con-
tains variables and methods like a regular object but its body is executed as a separate
thread. In addition, there exist language constructs to declare critical sections with
respect to an object scope and a powerful wait statement that allows waiting for a

404 U. Glavitsch and T.M. Frey

conditional expression to become true instead of waiting for a primitive signal like it
is commonly used in other languages and threading libraries. With these, it is possible
that an object or a module performs like a monitor [1][2]. It has been shown that these
multi-threading specific language constructs can be adopted by other programming
languages [3].

Bluebottle is an operating system consisting of a lean multiprocessor kernel and a
thread-safe multimedia and GUI framework [1][4]. It is fully programmed in Active
Oberon. The particular thread-safety mechanism of Bluebottle’s GUI framework
makes developing applications easier. Programmers do not need to explicitly syn-
chronize requests to the same GUI component. This built-in synchronization strategy
uses a message queue for asynchronous events, a thread for processing the messages
and a lock for ensuring a consistent view on inter-component relations [5].

This paper presents the design and implementation of a sample application pro-
grammed in Active Oberon under Bluebottle. This application, a search tool, is a typical
concurrent GUI application. We demonstrate that the combination of the language con-
structs of Active Oberon and the synchronization strategy of Bluebottle’s GUI frame-
work is perfectly well suited for this type of problem. While the implementation of this
application in other environments is typically complex and cumbersome, the program
code in Active Oberon becomes clear and concise, and thus, less error-prone.

2 Sample Application

Our case study is a GUI application that allows the user to search for files that contain
a given character string. The GUI of the search tool is shown in Fig. 1. The input

Fig. 1. Graphical user interface of search tool. It shows the results of a search request given the
directory path “AOS:”, the file mask “*.Mod” and the search string “FileList”.

 A Case Study in Concurrent Programming with Active Objects 405

parameters of a search request are a directory path, a file mask (e.g. *.Mod), and a
search string. The search is started by pressing the start button labeled with “Go” and
interrupted by clicking on the button “Stop”. The search results are displayed as soon
as they are found. A status line at the bottom of the window indicates the status of an
ongoing request. It can either show “Processing” or “Ready”. As searching through
files is time-consuming it is possible to open some of the found files while the search
is still ongoing.

A user may open multiple instances of the search tool on his desktop and start sev-
eral search requests in parallel.

3 Design

The graphical user interface of the search tool is built using Bluebottle’s GUI compo-
nents. Bluebottle provides a number of standard GUI components to build the most
common user interfaces. The search tool uses two threads for searching through the files
and for displaying the results. The two threads communicate by a buffer and, thus, rep-
resent a classical producer-consumer scheme. The current search results are written to
the GUI using a model-view-controller (MVC) pattern. The consumer process updates
the model of the GUI component. Changes to the model implicitly lead to an update of
the views. Fig. 2 shows the threads (active objects) and the main regular objects in-
volved in this application. The arrows between objects represent method calls.

The singleton object WindowManager receives asynchronous mouse and keyboard
events and forwards them to the corresponding window [4]. In our case, starting and
stopping a search request as well as opening a file for inspection are triggered by
mouse clicks.

The main window of the search tool is represented by an object of base type Form-
Window. It contains the GUI components ordered in a hierarchical structure that con-
trol the appearance of the application. For instance, the top element of the component
hierarchy is a component of type Panel that among others contains a StringGrid com-
ponent to display the search results on the GUI.

The active object Searcher processes a search request. It traverses all files that
match the given mask and checks if the provided string is contained. The Searcher
object waits for a new request after finishing a search task. The results are written to a
buffer of type ListBuffer. The active object Dispatcher reads the elements of the
buffer chunk by chunk as soon as they are available and updates the object String-
GridModel. The object StringGridModel represents the model in the MVC pattern
whereas the view is a GUI component of type StringGrid that is part of the compo-
nent hierarchy contained in object FormWindow. The model StringGridModel man-
ages a dynamic two-dimensional array of strings that are linked with some more
context data. Every change to the object StringGridModel automatically leads to an
update of its view in the FormWindow object.

Status messages are displayed in the GUI component by means of delegate proce-
dures that are registered with the Dispatcher object.

Requests to the search tool window are serialized. This means that mouse events
from the WindowManager object, requests to update the view and status messages are
implicitly synchronized. This is done by a sequencing mechanism implemented by a

406 U. Glavitsch and T.M. Frey

sequencer object that is stored with each FormWindow object. The sequencer object
contains a thread, a message queue and a lock that protects the hierarchy of GUI com-
ponents [5]. Each request to the FormWindow object that is not called by the se-
quencer thread is put in the message queue that is processed by the sequencer thread.
The object FormWindow corresponds to the Active Object pattern that decouples
method execution from method invocation in order to allow synchronized access to an
object that resides in its own thread of control [6].

Fig. 2. Call graph of search tool

FormWindow

WindowManager

Searcher

StringGridModel

Dispatcher

ListBuffer

Sequencer

A

active object
of type A

B
object of type B

1

2

3

4

5

6

7

MouseEvent

Start/Stop

Put

Get

DisplayGrid

Update

startHandler/doneHandler

proc./method call

1

2

3

4

5

6

7

 A Case Study in Concurrent Programming with Active Objects 407

4 Implementation

The following section presents the implementation of the objects Searcher, Dis-
patcher and Listbuffer. It describes the mechanism used to update the StringGrid-
Model object and the status display. Finally, we explain the wiring of the objects.

Recall that the object Searcher administers the search actions. Results are written
to the object ListBuffer and are forwarded by the object Dispatcher to the model
StringGridModel.

4.1 Searcher

The active object Searcher executes an infinite loop that waits for a new search re-
quest, then copies the input parameters from the new search request to those of the
current request, resets the buffer and starts the search. It notifies the end of the search
request to the buffer and waits for the next search request.

Active objects are declared as regular objects but their body is annotated by the
keyword ACTIVE to denote that the object body is executed as a separate thread. The
active object Searcher contains some state variables, the parameters of the ongoing
and the new search request and a reference to the Listbuffer object. The parameters of
a search request are packed in a record type SearchPar for ease of use. The Searcher
object acts as monitor that requests mutual exclusion for its methods [2]. Mutual ex-
clusion for a method is denoted by the keyword EXCLUSIVE after the first BEGIN. A
new search request is started by calling the method Start and is interrupted by calling
the method Stop. The relevant code fragments of the Searcher object are given in the
following. The language constructs that support multi-threading are highlighted.

TYPE
 SearchPar = RECORD
 path, fmask, content : ARRAY 1024 OF CHAR
 END;

 Searcher = OBJECT
 VAR
 newlyStarted, stopped : BOOLEAN;
 currentPar, newPar : SearchPar;
 lb : ListBuffer;

 PROCEDURE &Init(lb : ListBuffer); (* constructor *)
 BEGIN
 newlyStarted := FALSE;
 stopped := FALSE;
 SELF.lb := lb
 END Init;

 PROCEDURE Start(VAR searchPar : SearchPar);
 BEGIN {EXCLUSIVE}
 newPar := searchPar;
 newlyStarted := TRUE
 END Start;

408 U. Glavitsch and T.M. Frey

 PROCEDURE AwaitNewStart;
 BEGIN {EXCLUSIVE}
 AWAIT(newlyStarted);
 newlyStarted := FALSE;
 stopped := FALSE
 END AwaitNewStart;

 PROCEDURE CopySearchParams;
 BEGIN {EXCLUSIVE}
 currentPar := newPar;
 END CopySearchParams;

 PROCEDURE Stop;
 BEGIN {EXCLUSIVE}
 stopped := TRUE
 END Stop;

 PROCEDURE HasStopped() : BOOLEAN;
 BEGIN {EXCLUSIVE}
 RETURN stopped
 END HasStopped;

 PROCEDURE SearchPath;
 VAR mask, name : ARRAY 1024 OF CHAR;
 e : AosFS.Enumerator;
 d : DirEntry;
 BEGIN
 …
 NEW(e);
 e.Open(mask, {});
 WHILE e.HasMoreEntries() DO
 IF HasStopped() THEN RETURN END;
 IF e.GetEntry(name, …) THEN
 IF ContainsStr(name, currentPar.content) THEN
 NEW(d);
 …
 lb.Put(d);
 END
 END
 END
 END SearchPath;

BEGIN {ACTIVE} (* body *)
 LOOP
 AwaitNewStart;
 CopySearchParams;
 lb.Reset;
 SearchPath;
 lb.Finished
 END
END Searcher;

 A Case Study in Concurrent Programming with Active Objects 409

The AWAIT statement as in procedure AwaitNewStart is noteworthy. If the condition
in the argument of AWAIT returns false, the current process is suspended and put in a
list of waiting processes. Additionally to the process, a helper function and the base
pointer of the current stack frame are stored. The helper function is generated by the
compiler and is used to evaluate the condition of the AWAIT statement in a given
stack frame. When a process leaves the end of a critical section, the runtime system
traverses the list of waiting processes and for each process evaluates the condition
using the helper function. If a condition of a waiting process evaluates to true, the
lock of the process that leaves the critical section is atomically transferred to the wait-
ing process which is then scheduled [1]. In C#/.NET and Java, suspending a process
and waking up one or all waiting processes are realized by special library calls and
built-in procedures, respectively. In both C# and Java, the programmer has to place
the statements for waking up waiting processes at each location in the code where a
condition for any of the waiting processes may become true. This is a burden for the
programmer and, in fact, these statements are easily forgotten while developing con-
current C# or Java programs. In addition, if there are processes waiting on different
conditions and only one of the conditions becomes true there is no other way than to
wake up all waiting processes and to suspend those whose condition is not satisfied
yet. Besides that the programs thereby become less readable and less compact this
may result in a number of unnecessary context switches that reduce the efficiency of
the system. Active Oberon wakes up exactly one of those waiting processes whose
condition has become true. Thus, unnecessary context switches are avoided. The cost
is that the conditions of waiting processes are evaluated every time a process leaves a
critical section. Since these evaluations can be performed without a context switch,
this overhead is comparatively small [1].

The procedure SearchPath performs the actual search over all files that match the
given directory path and the file mask. Before inspecting the next file, SearchPath
checks whether the flag stopped is set and returns if this is the case. The algorithm for
finding the occurrence of a given string in a file is the Boyer-Moore string search
algorithm.

4.2 Dispatcher

The Dispatcher thread waits for a new search request and then continuously reads the
search results from the buffer and updates the model of the GUI component that dis-
plays the results. It displays status messages to the GUI of the search tool denoting
that a search is ongoing and when it has finished. The search results are read from the
buffer in chunks to avoid too frequent model updates in the case of very frequently
occurring search strings. The delegate mechanism of Active Oberon is used for both
the model and the status updates. Delegates are declared similar to procedure types
[2]. Formally, a delegate variable is a pair of references that point to an object and to a
type-bound procedure.

A new data type RetrievedList to contain chunks of the buffer is defined. A buffer
element is of type DirEntry (see Sec. 4.3). It is a record structure that contains the
directory information of a file, e.g. the file name, its size, creation date, etc.. Frag-
ments of the program code of Dispatcher are shown below. Dedicated language con-
structs are again highlighted.

410 U. Glavitsch and T.M. Frey

TYPE
 RetrievedList = RECORD
 data : ARRAY RListSize OF DirEntry;
 noEl : INTEGER
 END;

TYPE
 GridDisplayHandler = PROCEDURE {DELEGATE} (VAR rl :
RetrievedList);

 SearchStatusHandler = PROCEDURE {DELEGATE} ();

 Dispatcher = OBJECT
 VAR
 newlyStarted, stopped : BOOLEAN;
 rl : RetrievedList;
 display : GridDisplayHandler;
 startHandler, doneHandler : SearchStatusHandler;
 lb : ListBuffer;

 (* constructor *)
 PROCEDURE &Init(lb : ListBuffer;
 d : GridDisplayHandler;
 sh, dh : SearchStatusHandler);
 BEGIN
 SELF.lb := lb;
 display := d;
 startHandler := sh;
 doneHandler := dh;
 stopped := FALSE
 END Init;

 …
 (* procedures Start, AwaitNewStart, Stop and
 HasStopped as in Searcher *)
 …

 BEGIN {ACTIVE}
 LOOP
 AwaitNewStart;
 startHandler;
 LOOP
 lb.Get(rl);
 IF rl.noEl = 0 OR HasStopped() THEN EXIT END;
 display(rl);
 END;
 doneHandler;
 END
 END GridDisplayHandler;

 A Case Study in Concurrent Programming with Active Objects 411

4.3 ListBuffer

The ListBuffer data structure is implemented as a circular buffer. The Searcher thread
puts the search results into the buffer one by one whereas the Dispatcher thread con-
sumes them in chunks.

The variables and signatures of the methods of ListBuffer are given below. The
Listbuffer object contains a variable chunkSize that denotes the minimum number of
buffer elements returned by procedure Get in case of an ongoing search request. This
number is computed dynamically. It is initialized to 1 and adapted after each call to
Get. Procedure Get returns only if the number of available elements in the buffer are
greater or equal to chunkSize or if the search is finished. If the number of available
buffer elements is greater than chunkSize the variable chunkSize is adapted. All meth-
ods can only be accessed by one process at a time, i.e. they are declared with the
EXCLUSIVE keyword. Thus, an instance of ListBuffer like the instances of Searcher
and Dispatcher acts as a monitor.

TYPE ListBuffer = OBJECT
 VAR data : ARRAY RListSize OF DirEntry;
 in, out, chunkSize : INTEGER;
 finished : BOOLEAN;

 PROCEDURE &Reset; (* constructor *)

 PROCEDURE Put(d : DirEntry); (* produce *)

 PROCEDURE Get(VAR rl : RetrievedList); (* consume *)

 PROCEDURE Finished(); (* signal end of searching *)

END ListBuffer;

4.4 StringGridModel Update

The model of the GUI component that displays the search results is updated by the
delegate DisplayGrid that is a method of the type FileList. The FileList declaration
contains the GUI component, its view, as a variable and provides further methods like
opening a file in the GUI component.

Excerpts of the program code of DisplayGrid and how it is embedded in the decla-
ration of FileList is shown below. The variable grid denotes the GUI component that
shows the search results. It has a reference to the underlying model and provides a
locking mechanism such that changes to the model are synchronized. The methods to
lock the model are Acquire and Release. They are highlighted in the code fragment
below. The method Release implicitly performs an upcall to the observers of the
model to update the view.

TYPE FileList = OBJECT
 …
 grid : WMStringGrids;
 …

 (* delegate *)
 PROCEDURE DisplayGrid(VAR rl : RetrievedList);

412 U. Glavitsch and T.M. Frey

 VAR i : LONGINT;
 d : DirEntry;
 BEGIN
 grid.model.Acquire;
 FOR i := 0 TO rl.noEl – 1 DO
 d := rl.data[i];
 …
 (* add the new search result d to the model *)
 …
 END;
 grid.model.Release (* performs an implicit update
 of the view *)
 END DisplayGrid;

 …

END FileList;

4.5 Status Messages and Interconnection of Objects

The delegates for displaying the status messages of the search tool are two very short
methods of the object of type FormWindow. The constructor of FormWindow creates
the instances of type Searcher, Dispatcher and ListBuffer and connects them as shown
in Fig. 2. The buffer of type ListBuffer is registered with the active objects Searcher
and Dispatcher and the delegate procedures are installed with the object Dispatcher.
The following program code shows fragments of the constructor that creates the ob-
jects and their connections. We also present the two delegate procedures that display
the status messages. The important pieces of code are marked with highlighted com-
ments.

TYPE
 Window = OBJECT(WMComponents.FormWindow)
 VAR
 (* GUI component that displays status messages *)
 label : WMStandardComponents.Label;
 …
 filelist : WMSystemComponents.FileList;
 lb : ListBuffer;
 s : Searcher;
 d : Displayer;
 …

 PROCEDURE &New();
 BEGIN
 …
 NEW(filelist); (* object creation and wiring *)
 NEW(lb);
 NEW(s, lb);
 NEW(d, lb, filelist.DisplayGrid,
 SearchStartHandler, SearchDoneHandler);
 …
 END New;

 A Case Study in Concurrent Programming with Active Objects 413

 (* delegate *)
 PROCEDURE SearchStartHandler;
 BEGIN
 label.caption.SetAOC(“Status: Processing ...”)
 END SearchStartHandler;

 (* delegate *)
 PROCEDURE SearchDoneHandler;
 BEGIN
 label.caption.SetAOC(“Status: Ready ...”)
 END SearchDoneHandler;
 …
 END Window;

It must be noted that this easy way of programming the updating of status mes-
sages is due to the synchronization mechanism of Bluebottle’s GUI framework. The
delegate procedures SearchStartHandler and SearchStopHandler are called from the
Dispatcher thread and are executed in the context of the GUI thread, i.e. the se-
quencer thread of FormWindow.

Behind the scenes, the GUI framework checks whether the calling process is the
same as the sequencer thread. If this is the case, it puts the method call into the mes-
sage queue of the sequencer thread. Otherwise, the call is executed immediately
within the sequencer thread. Checking this condition costs only a few clock cycles in
Bluebottle and, thus, can easily be done within the framework [4].

In C#/.NET, the programmer has to check explicitly whether a context switch to
the GUI process is required and is forced to handle the two cases appropriately. Cor-
rect handling of these cases requires knowledge of the GUI framework that in our
opinion should be hidden from the programmer. Bluebottle’s GUI framework is a set
of libraries where the programmer does not need to know any implementation details
to perform his task.

5 Conclusions

We showed that concurrent programs written in a powerful programming language
(Active Oberon) using thread-safe libraries (Bluebottle’s GUI framework) are com-
pact, readable and less error-prone. The constructs for multi-threading are integrated
in the programming language which facilitates their use. In addition, the dedicated
language constructs are lean and very effective such that the program code remains
clear and concise. The thread-safety of the GUI framework relieves the program de-
veloper from synchronizing requests to the same component. This contributes in a
similar way to the readability and compactness of the program code.

References

1. Muller, P. J.: The Active Object System – Design and Multiprocessor Implementation.
Ph.D. thesis, Institut für Computersysteme, ETH Zürich (2002)

2. Hoare, C. A. R.: Monitors: An operating systems structuring concept. Comm. ACM (1974)
17(10):549-557

414 U. Glavitsch and T.M. Frey

3. Güntensperger, R., Gutknecht, J.: Activities and channels: C# language extensions for con-
currency control and remote object communication. IEE Proceedings – Software
150(5):315-322 (2003)

4. Frey, T.: Bluebottle: A Thread-safe Multimedia and GUI Framework for Active Oberon.
Ph.D. thesis, Institut für Computersysteme, ETH Zürich (2005)

5. Frey, T. M.: Architectural Aspects of a Thread-safe Graphical Component System Based on
Aos. Lecture Notes in Computer Science 2789, Springer (2003)

6. Lavender, R. G., Schmidt, D. C.: Active Object: An Object Behavioral Pattern for Concur-
rent Programming. In Pattern Languages of Program Design 2 (J. O. Coplien, J. Vlissides,
and N. Kerth, eds.), Addison Wesley (1996)

	Introduction
	Sample Application
	Design
	Implementation
	Searcher
	Dispatcher
	ListBuffer
	StringGridModel Update
	Status Messages and Interconnection of Objects

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

