

D. Lightfoot and C. Szyperski (Eds.): JMLC 2006, LNCS 4228, pp. 377 – 382, 2006.
© Springer-Verlag Berlin Heidelberg 2006

The Dining Philosophers Problem Revisited

Jürg Gutknecht

ETH Zürich
gutknecht@inf.ethz.ch

Abstract. We present an alternative solution to the Dining Philosophers prob-
lem that is based on Peterson’s mutual exclusion algorithm for N processes,
with the benefit of not using any ingredients beyond atomic read and write op-
erations. We proceed in two steps towards a comprehensible, symmetric, and
starvation-free algorithm that does neither rely on atomic test-and-set instruc-
tions nor on synchronization constructs such as monitors, signals, semaphores,
locks, etc.

1 Introduction

Ever since E. W. Dijkstra posed the story of the dining philosophers as an exercise in
concurrent programming in the early 1970s [1], this problem has attracted and chal-
lenged both theoreticians and programmers, and a variety of different solutions have
been developed, most of them using some kind of synchronization mechanism (typi-
cally a semaphore) to control accesses to chopsticks by hungry philosophers, see for
example [2]. Amazingly, although this problem is unmistakably a restricted mutual
exclusion problem, we could not find any solution that makes direct use of a classical
mutual exclusion algorithm. Therefore, we took the bait and tried to reuse Peterson’s
simple but ingenious solution to mutual exclusion published in 1981 [3].

2 Peterson’s Filter Algorithm

Peterson’s algorithm guarantees mutual exclusion among a fixed number of N proc-
esses with respect to their critical section, without making use of any synchronization
constructs. The state of each process 0,…, N – 1 is captured by an array structured
variable named claiming. For i fixed, claiming[i] serves as an “escalator” for process i
to travel from “floor” 0 (non-critical section) to “floor” N (entrance to the critical
section). On each floor, the shared variable mark is used by a newly arriving process
to leave a “footprint”. Using a notional Pascal-like syntax, our version of the Peterson
algorithm for N processes looks like this:

Program 1. Peterson’s mutual exclusion algorithm for N processes

(* state space *)
var claiming, mark: array N of integer;

(* initialization *)
var i: integer;

378 J. Gutknecht

begin
 for i := 0 to N-1 do claiming[i] := 0 end
end

(* process nr. i *)
var k: integer;
begin
 loop
 … (* non-critical section *)
 (* entry protocol to critical section *)
 for k := 1 to N-1 do
 claiming[i] := k; mark[k] := i;
 while (exists j: j # i:
 (claiming[j] >= k) & (mark[k] = i)) do
 end
 end;
 claiming[i] := N;
 … (* critical section *)
 claiming[i] := 0 (* relinquish exclusivity *)
 end
end

This algorithm is also called the filter algorithm, see [4]. The reason is that for each
floor i from 1 to N - 1 the last process arriving at this floor (the one that left the last
footprint”, that is, the one that set mark[k] to i most recently) is a “victim” that cannot
proceed. As a consequence, at most N – i + 1 processes can simultaneously be on
floor i and, as a corollary, at most one process can be on floor N at any time, so that
mutual exclusion is guaranteed. As a fine point note that the statement claiming[i] :=
N can be omitted without loss.

It is shown in [3] that the algorithm is free from starvation (and deadlock), under
the obvious assumption that each process is always guaranteed to get a chance to
proceed after some finite amount of time. However, note that the algorithm does not
guarantee first-in-first-out handling because one process within the entry protocol can
easily pass another.

3 Peterson Modified for the Dining Philosophers

Let us first recall E. W. Dijkstra’s invention of the Dining Philosophers that is illus-
trated in Figure 1. The original formulation of the problem was this: “Five philoso-
phers sit around a circular table. Each philosopher is alternately thinking and eating.
In the centre of the table is a large plate of noodles. A philosopher needs two chop-
sticks to eat a helping of noodles. Unfortunately, only five chopsticks are available.
One chopstick is placed between each pair of philosophers, and each agrees only to
use the two chopsticks on their immediate right and left side”.

Because each adjacent pair of philosophers is forced to share one chopstick but re-
quires two of them in order to eat, appropriate synchronization of the philosophers’
access to them is necessary. Therefore, at a fundamental level, we have a restricted
mutual exclusion problem, and so we now try to adapt Peterson’s filter algorithm to
solve it.

 The Dining Philosophers Problem Revisited 379

Fig. 1. A possible scenario of the Dining Philosophers: one philosopher is eating, three phi-
losophers are waiting for their second chopstick, and one philosopher is thinking

Obviously, the thinking phase and eating phase of a philosopher’s process corre-
spond to the non-critical and the critical section of a process in the abstract setting
above. The key idea of how to apply Peterson’s algorithm to the philosophers prob-
lem is now straightforward: reinterpret the permission of entrance into the critical
section as a mere chance to enter, and have the applicant restart his entry protocol in
the case when at least one of his two neighbors is critically engaged (that is eating).

Keeping in mind that (i – 1) (mod 5) and (i + 1) mod 5 are the numbers of philoso-
pher i’s neighbors (due to a linear array being used to represent the circular table) and
using abbreviations c for claiming and m for mark, we deduce the following attempt
to solve the Dining Philosophers problem for five diners:

Program 2. Attempt of a Peterson based Dining Philosopher solution

(* state space *)
var c, m: array 5 of integer;

(* initialization *)
var i: integer;
begin
 for i := 0 to 4 do c[i] := 0 end
end

(* activity of philosopher nr. i *)
var k: integer;
begin
 loop
 (* think *)
 loop (* claim access to chopsticks *)
 for k := 1 to 4 do
 c[i] := k; m[k] := i;

380 J. Gutknecht

 while ((c[(i + 1) mod 5] >= k)
 | (c[(i + 2) mod 5] >= k)
 | (c[(i + 3) mod 5] >= k)
 | (c[(i + 4) mod 5] >= k))
 & (m[k] = i) do
 end
 end;
 c[i] := 5;
 if c[(i - 1) mod 5] >= 0 & c[(i + 1) mod 5] >= 0
 then exit
 end
 end;
 c[i] := -1;
 (* eat *)
 c[i] := 0
 end
end

According to this algorithm, each philosopher i is continuously cycling through the
states c[i] = 0, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, …, 1, 2, 3, 4, 5, -1, 0, 1, 2, …
whose semantics are described in Table 1.

Table 1. State diagram for philosopher processes

State c Semantics

0 thinking

1 hungry, starting entry protocol

2 progressing in entry protocol

3 progressing in entry protocol

4 progressing in entry protocol

5 chance to eat if no neighbor eats

-1 eating

From our above discussion of the filter algorithm we know that the statements in state
c[i] = 5 (in bold type face) run under mutual exclusion, which means that c[i] < 0
invariantly implies c[(i - 1) mod 5] >= 0 and c[(i + 1) mod 5] >= 0 or, in other
words, that, whenever philosopher i is in his critical section, none of his two
neighbors (i - 1) mod 5 and (i + 1) mod 5 are in their critical section.

However, the above solution is not free from potential starvation, as the following
scenario demonstrates: an applicant P detects that one of his neighbors, say Q, is busy
in his critical section and therefore immediately restarts the entry protocol. At roughly
the same time, Q exits the critical section and, because he is still hungry, immediately
requests entrance to the critical section again. This leads to a race between P and Q
that might be won by Q because, as we know, the filter algorithm does not prevent

 The Dining Philosophers Problem Revisited 381

one algorithm from passing another. Because this situation may recur any arbitrary
number of times, P may finally starve due to the “race hazard”.

Therefore, the algorithm needs further refinement. One way to remedy the race
hazard is adding a variant of the “bakery algorithm” by introducing a ticket-
numbering system that (roughly) indicates the order of the processes starting the entry
protocol. However, ticket-numbering may have a transitive (global) effect that pre-
vents an otherwise unblocked philosopher from starting to eat merely because of his
high ticket-number. A better refinement of Program 2 is based on a mechanism that
allows a hungry but blocked philosopher in the state c[i] = 5 to raise a flag. For this
purpose, Boolean arrays l and r are added with the following semantics:

• l[i] ⇔ philosopher i would be allowed to eat but is blocked by his left neighbor
• r[i] ⇔ philosopher i would be allowed to eat but is blocked by his right neighbor

An additional guard at the end of the filter loop is now used to request each philoso-
pher to yield to any of his neighbors who was previously blocked. The following
argument shows that the resulting algorithm is free from starvation: assume that some
philosopher process i cannot proceed from state 5 to the critical section due to one or
both neighbors who are in their critical section. Then, after some finite amount of
time, these neighbors will leave their critical section and will not be able to enter
again before philosopher i has removed his flags l[i] and r[i] and has passed the criti-
cal section himself.

Program 3. The Final Program Solving the Dining Philosophers Program

(* state space *)
var l, r: array 5 of Boolean;
 c, m: array 5 of integer;

(* initialization *)
var i: integer;
begin
 for i := 0 to 4 do
 l[i] := false; r[i] := false; c[i] := 0
 end
end

(* activity of philosopher nr. i *)
var k: integer;
begin
 loop
 (* think *)
 loop (* enter room and claim access *)
 for k := 1 to 4 do
 c[i] := k; m[k] := i;
 while ((c[(i + 1) mod 5] >= k)
 | (c[(i + 2) mod 5] >= k)
 | (c[(i + 3) mod 5] >= k)
 | (c[(i + 4) mod 5] >= k))
 & (m[k] = i) do
 end

382 J. Gutknecht

 end;
 c[i] := 5;
 if c[(i - 1) mod 5] < 0 then l[i] := true
 elsif c[(i + 1) mod 5] < 0) then r[i] := true
 elsif ~r[(i - 1) mod 5] & ~l[(i + 1) mod 5])
 then exit
 end
 end;
 c[i] := -1; l[i] := false; r[i] := false;
 (* eat *)
 c[i] := 0
 end
end

3 Conclusion

We have demonstrated the approach of adapting a well-proved generic mutual exclu-
sion algorithm to a restricted mutual exclusion problem, with the benefit of automati-
cally inheriting its correctness and other qualities. This approach contrasts with the
usual approach of handcrafting an algorithm that solves a singular concurrency prob-
lem but inherently carries the dangers of errors due to overlooked scenarios. The net
result is an elegant, symmetric, and starvation-free solution to the Dining Philoso-
phers’ problem that does neither rely on synchronization constructs nor on hardware
support for atomic memory updates.

Acknowledgement

I gratefully acknowledge the hint from Daniel Kröning on Nir Shavit’s proof of Peter-
son’s filter algorithm. Also, I thank Ulrike Glavitsch, Gerardo Tauriello and Svend
Knudsen for their critical inspection of the algorithm, and Brian Kirk for his construc-
tive review of earlier versions of this paper.

References

1. Dijkstra, E. W.: Hierarchical Ordering of Sequential Processes, Acts Informatica I, 115 –
138 (1971)

2. Silberschatz, A., Peterson, J. L.: Operating Systems Concepts, Addison-Wesley (1988)
3. Peterson, G. L.: Myths About the Mutual Exclusion Problem, IPL 12(3), 115 – 116 (1981)
4. Shavit, N.: Lecture Notes for Lecture 2, Chapter 2.4.1., Tel-Aviv University,

http://www.cs.tau.ac.il/~shanir/multiprocessor-synch-2003/

	Introduction
	Peterson’s Filter Algorithm
	Peterson Modified for the Dining Philosophers
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

