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Abstract. We present an alternative solution to the Dining Philosophers prob-
lem that is based on Peterson’s mutual exclusion algorithm for N processes, 
with the benefit of not using any ingredients beyond atomic read and write op-
erations. We proceed in two steps towards a comprehensible, symmetric, and 
starvation-free algorithm that does neither rely on atomic test-and-set instruc-
tions nor on synchronization constructs such as monitors, signals, semaphores, 
locks, etc. 

1   Introduction 

Ever since E. W. Dijkstra posed the story of the dining philosophers as an exercise in 
concurrent programming in the early 1970s [1], this problem has attracted and chal-
lenged both theoreticians and programmers, and a variety of different solutions have 
been developed, most of them using some kind of synchronization mechanism (typi-
cally a semaphore) to control accesses to chopsticks by hungry philosophers, see for 
example [2]. Amazingly, although this problem is unmistakably a restricted mutual 
exclusion problem, we could not find any solution that makes direct use of a classical 
mutual exclusion algorithm. Therefore, we took the bait and tried to reuse Peterson’s 
simple but ingenious solution to mutual exclusion published in 1981 [3]. 

2   Peterson’s Filter Algorithm 

Peterson’s algorithm guarantees mutual exclusion among a fixed number of N proc-
esses with respect to their critical section, without making use of any synchronization 
constructs. The state of each process 0,…, N – 1 is captured by an array structured 
variable named claiming. For i fixed, claiming[i] serves as an “escalator” for process i 
to travel from “floor” 0 (non-critical section) to “floor” N (entrance to the critical 
section). On each floor, the shared variable mark is used by a newly arriving process 
to leave a “footprint”. Using a notional Pascal-like syntax, our version of the Peterson 
algorithm for N processes looks like this: 

Program 1. Peterson’s mutual exclusion algorithm for N processes 

(* state space *) 
var claiming, mark: array N of integer; 

(* initialization *) 
var i: integer; 
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begin 
  for i := 0 to N-1 do claiming[i] := 0 end 
end 

(* process nr. i *) 
var k: integer; 
begin 
  loop 
    … (* non-critical section *) 
    (* entry protocol to critical section *) 
    for k := 1 to N-1 do 
      claiming[i] := k; mark[k] := i; 
      while (exists j: j # i: 
        (claiming[j] >= k) & (mark[k] = i)) do 
      end 
    end; 
    claiming[i] := N; 
    … (* critical section *) 
    claiming[i] := 0 (* relinquish exclusivity *) 
  end 
end 

This algorithm is also called the filter algorithm, see [4]. The reason is that for each 
floor i from 1 to N - 1 the last process arriving at this floor (the one that left the last 
footprint”, that is, the one that set mark[k] to i most recently) is a “victim” that cannot 
proceed. As a consequence, at most N – i + 1 processes can simultaneously be on 
floor i and, as a corollary, at most one process can be on floor N at any time, so that 
mutual exclusion is guaranteed. As a fine point note that the statement claiming[i] := 
N can be omitted without loss. 

It is shown in [3] that the algorithm is free from starvation (and deadlock), under 
the obvious assumption that each process is always guaranteed to get a chance to 
proceed after some finite amount of time. However, note that the algorithm does not 
guarantee first-in-first-out handling because one process within the entry protocol can 
easily pass another. 

3   Peterson Modified for the Dining Philosophers 

Let us first recall E. W. Dijkstra’s invention of the Dining Philosophers that is illus-
trated in Figure 1. The original formulation of the problem was this: “Five philoso-
phers sit around a circular table. Each philosopher is alternately thinking and eating. 
In the centre of the table is a large plate of noodles. A philosopher needs two chop-
sticks to eat a helping of noodles. Unfortunately, only five chopsticks are available. 
One chopstick is placed between each pair of philosophers, and each agrees only to 
use the two chopsticks on their immediate right and left side”. 

Because each adjacent pair of philosophers is forced to share one chopstick but re-
quires two of them in order to eat, appropriate synchronization of the philosophers’ 
access to them is necessary. Therefore, at a fundamental level, we have a restricted 
mutual exclusion problem, and so we now try to adapt Peterson’s filter algorithm to 
solve it. 
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Fig. 1. A possible scenario of the Dining Philosophers: one philosopher is eating, three phi-
losophers are waiting for their second chopstick, and one philosopher is thinking 

Obviously, the thinking phase and eating phase of a philosopher’s process corre-
spond to the non-critical and the critical section of a process in the abstract setting 
above. The key idea of how to apply Peterson’s algorithm to the philosophers prob-
lem is now straightforward: reinterpret the permission of entrance into the critical 
section as a mere chance to enter, and have the applicant restart his entry protocol in 
the case when at least one of his two neighbors is critically engaged (that is eating). 

Keeping in mind that (i – 1) (mod 5) and (i + 1) mod 5 are the numbers of philoso-
pher i’s neighbors (due to a linear array being used to represent the circular table) and 
using abbreviations c for claiming and m for mark, we deduce the following attempt 
to solve the Dining Philosophers problem for five diners: 

Program 2. Attempt of a Peterson based Dining Philosopher solution 

(* state space *) 
var c, m: array 5 of integer; 

(* initialization *) 
var i: integer; 
begin 
  for i := 0 to 4 do c[i] := 0 end 
end 
 
(* activity of philosopher nr. i *) 
var k: integer; 
begin 
  loop 
    (* think *) 
    loop (* claim access to chopsticks *) 
      for k := 1 to 4 do 
        c[i] := k; m[k] := i; 
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        while ((c[(i + 1) mod 5] >= k) 
             | (c[(i + 2) mod 5] >= k) 
             | (c[(i + 3) mod 5] >= k) 
             | (c[(i + 4) mod 5] >= k)) 
             & (m[k] = i) do 
        end 
      end; 
      c[i] := 5; 
      if c[(i - 1) mod 5] >= 0 & c[(i + 1) mod 5] >= 0 
        then exit 
      end 
    end; 
    c[i] := -1; 
    (* eat *) 
    c[i] := 0 
  end 
end 

According to this algorithm, each philosopher i is continuously cycling through the 
states c[i] = 0, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, …, 1, 2, 3, 4, 5,  -1, 0, 1, 2, … 
whose semantics are described in Table 1.  

Table 1. State diagram for philosopher processes 

State c Semantics 

0 thinking 

1 hungry, starting entry protocol 

2 progressing in entry protocol 

3 progressing in entry protocol 

4 progressing in entry protocol 

5 chance to eat if no neighbor eats 

-1 eating 

From our above discussion of the filter algorithm we know that the statements in state 
c[i] = 5 (in bold type face) run under mutual exclusion, which means that c[i] < 0 
invariantly implies c[(i - 1) mod 5] >= 0 and c[(i + 1) mod 5] >= 0 or, in other 
words, that, whenever philosopher i is in his critical section, none of his two 
neighbors (i - 1) mod 5 and (i + 1) mod 5 are in their critical section. 

However, the above solution is not free from potential starvation, as the following 
scenario demonstrates: an applicant P detects that one of his neighbors, say Q, is busy 
in his critical section and therefore immediately restarts the entry protocol. At roughly 
the same time, Q exits the critical section and, because he is still hungry, immediately 
requests entrance to the critical section again. This leads to a race between P and Q 
that might be won by Q because, as we know, the filter algorithm does not prevent 
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one algorithm from passing another. Because this situation may recur any arbitrary 
number of times, P may finally starve due to the “race hazard”. 

Therefore, the algorithm needs further refinement. One way to remedy the race 
hazard is adding a variant of the “bakery algorithm” by introducing a ticket-
numbering system that (roughly) indicates the order of the processes starting the entry 
protocol. However, ticket-numbering may have a transitive (global) effect that pre-
vents an otherwise unblocked philosopher from starting to eat merely because of his 
high ticket-number. A better refinement of Program 2 is based on a mechanism that 
allows a hungry but blocked philosopher in the state c[i] = 5 to raise a flag. For this 
purpose, Boolean arrays l and r are added with the following semantics: 

•   l[i]  ⇔ philosopher i would be allowed to eat but is blocked by his left neighbor 
•   r[i]  ⇔ philosopher i would be allowed to eat but is blocked by his right neighbor 

An additional guard at the end of the filter loop is now used to request each philoso-
pher to yield to any of his neighbors who was previously blocked. The following 
argument shows that the resulting algorithm is free from starvation: assume that some 
philosopher process i cannot proceed from state 5 to the critical section due to one or 
both neighbors who are in their critical section. Then, after some finite amount of 
time, these neighbors will leave their critical section and will not be able to enter 
again before philosopher i has removed his flags l[i] and r[i] and has passed the criti-
cal section himself. 

Program 3. The Final Program Solving the Dining Philosophers Program 

(* state space *) 
var l, r: array 5 of Boolean; 
  c, m: array 5 of integer; 

(* initialization *) 
var i: integer; 
begin 
  for i := 0 to 4 do 
    l[i] := false; r[i] := false; c[i] := 0 
  end 
end 
 
(* activity of philosopher nr. i *) 
var k: integer; 
begin 
  loop 
    (* think *) 
    loop (* enter room and claim access *) 
      for k := 1 to 4 do 
        c[i] := k; m[k] := i; 
        while ((c[(i + 1) mod 5] >= k) 
             | (c[(i + 2) mod 5] >= k) 
             | (c[(i + 3) mod 5] >= k) 
             | (c[(i + 4) mod 5] >= k)) 
             & (m[k] = i) do 
        end 
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      end; 
      c[i] := 5; 
      if c[(i - 1) mod 5] < 0 then l[i] := true 
      elsif c[(i + 1) mod 5] < 0) then r[i] := true 
      elsif ~r[(i - 1) mod 5] & ~l[(i + 1) mod 5]) 
      then exit 
      end 
    end; 
    c[i] := -1; l[i] := false; r[i] := false; 
    (* eat *) 
    c[i] := 0 
  end 
end 

3   Conclusion 

We have demonstrated the approach of adapting a well-proved generic mutual exclu-
sion algorithm to a restricted mutual exclusion problem, with the benefit of automati-
cally inheriting its correctness and other qualities. This approach contrasts with the 
usual approach of handcrafting an algorithm that solves a singular concurrency prob-
lem but inherently carries the dangers of errors due to overlooked scenarios. The net 
result is an elegant, symmetric, and starvation-free solution to the Dining Philoso-
phers’ problem that does neither rely on synchronization constructs nor on hardware 
support for atomic memory updates. 
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