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Abstract. Partial Redundancy Elimination (PRE) is a standard pro-
gram optimization which removes redundant computations via Code Mo-
tion. It subsumes and generalizes the optimizations of Global Common
Subexpression Elimination (GCSE) and Loop Invariant Code Motion
(LICM). Recent work has generalized PRE to become Speculative PRE
(SPRE), which uses estimates of execution frequencies to find the opti-
mal places in a program to perform computations. However, the analysis
performed by the compiler is computationally intensive and hence im-
practical for just-in-time (JIT) compilers.

This paper introduces a novel approach which abandons a guarantee
of optimality in favour of simplicity and speed of analysis. This new
approach, called Isothermal SPRE, achieves results which are close to
optimal in practice, yet its analysis time is at least as good as current
compiler techniques for code motion. It is a technique suitable for use in
JIT compilers.

1 Introduction

The simplest computation performed by a program is the evaluation of an ex-
pression, say a+b. If the program contains a sequence of statements similar to

x = a+b;
x = x + c*d;
y = a+b;

then (assuming complications involving aliasing of variable names do not occur)
the second computation of a+b is fully redundant , since neither a nor b is modi-
fied between the two computations of a+b. A good compiler would translate the
code as though it had been written as

t1 = a+b;
x = t1;
x = x + c*d;
y = t1;

where t1 is a new temporary variable (and which would be a good candidate for
implementing as a register).
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The generalization to partial redundancy occurs if we have a program that
contains multiple control flow paths and where a computation is redundant on
some path(s) but not on all paths. An example fragment of program with a
partially redundant occurrence of a+b is shown in Figure 1(a). In this (meaning-
less) calculation, the value of a+b computed in the loop condition will usually
be the same value as was computed on the previous iteration. A compiler which
performs partial redundancy elimination optimization will go through a two step
process of inserting some additional computations of a+b to produce the inter-
mediate version of Figure 1(b) and then eliminating those occurrences which
have become fully redundant to achieve the result shown in Figure 1(c).

while((a+b) > sum) {
if (sum % 10 == 0)

a = a + 1;

sum += b;

}

(a) Original while loop

t1 = a+b; // inserted

while((a+b) > sum) {
if (sum % 10 == 0) {

a = a + 1;

t1 = a+b; // inserted

}
sum += b;

}
(b) After insertions of a+b

t1 = a+b;

while(t1 > sum) { // replaced

if (sum % 10 == 0) {
a = a + 1;

t1 = a+b;

}
sum += b;

}
(c) After deletion of redundancies

Fig. 1. Application of (classical) PRE to a loop

However, the classical PRE analysis is performed without any knowledge of
the relative frequencies of execution of the different paths through the program.
Thus PRE is required to be conservative, and will never choose to insert a com-
putation e at a point P in the program unless it is guaranteed that the value of
e will be used on every path that continues from point P. After those computa-
tions that become fully redundant due to the insertions have been removed, the
number of computations of e cannot be greater than in the original program.
Usually it will be smaller. Another benefit of the conservative approach is that
even unsafe expressions can be moved. An unsafe expression is a computation
which may cause a run-time exception. For example, an array reference A[i] in
Java may cause an exception either because the array A has not been allocated
or because the index i is out of range. If the expression does cause an exception
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at run-time, then the optimized program will at worst raise that exception at an
earlier point in the program.1 In no case would the transformed program raise
an exception that would not be raised in the original program.

The conservatism of PRE causes it to miss optimization opportunities that
involve safe expressions, i.e. expressions that cannot raise an exception when
computed. An enumeration of expressions which should be considered safe de-
pends on the semantics of the programming language and on the platform for
which the code is compiled. For example, a+b is normally safe in the C language.
However a/b would be safe at a point P in a C program only if the compiler
can prove that b is non-zero at P or if the integer division instruction on the
target platform does not generate a divide-by-zero interrupt. (The PowerPC
architecture provides an example of such a platform.)

The example of Figure 2 shows a loop that PRE cannot optimize, but which
SPRE will. The transformation from Figure 2(a) to Figure 2(b) cannot be per-
formed by PRE. Without knowledge of execution path frequencies, an insertion
of t1=a*a in the then clause of the if statement might make the program slower.
PRE has to consider the possibility, for example, that the else clause is never
executed. That would introduce 10000 computations in the transformed pro-
gram that would not have been performed by the original program. However, if
SPRE is given profile information which shows that the else clause is executed
more frequently than the then clause, then it will produce the result shown in
Figure 2(b) because the total number of computations of a*a would be smaller.

for(i=0; i<10000; i++) {
if (A[i]<0) { // 1% frequency

a = a+1;

} else { // 99% frequency

sum += a*a;

}
}

(a) Original code

t1 = a*a;

for(i=0; i<10000; i++) {
if (A[i]<0) {

a = a+1;

t1 = a*a;

} else {
sum += t1;

}
}

(b) Result from SPRE

Fig. 2. A loop that PRE does not optimize

The SPRE approach is restricted to safe expressions because a compiler should
never introduce the possibility of an exception that was not present in the original
program. However, there is no reason why a dual approach of using SPRE for
safe expressions and PRE for unsafe expressions could not be adopted.

A major obstacle to adopting SPRE in a compiler is that the existing analysis
algorithms are computationally intensive. For each candidate expression, the
current formulations of SPRE construct a network flow problem and then finds
a minimum-cut partition of the network. Given that the number of nodes V in
1 However this may cause other difficulties for Java because it has precise exception

semantics and code motion must take this into account.
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the network is proportional to the size of the control flow graph of the program
being analyzed, and given that standard algorithms for finding the minimum cut
have O(V 3) time complexity, finding the solution is costly (even if it finds an
optimal solution).

In contrast, PRE uses data flow analyses which can be formulated as bit-vector
problems. This means that PRE determines solutions for all candidate expres-
sions simultaneously. Furthermore, the worst-case time complexity for solving
the data flow equations is quadratic in the size of the control flow graph, with
linear time complexity being the norm for almost all control flow graphs that
occur in practice.

Although there is undoubtedly scope for implementing faster versions of
SPRE, its analysis time is about two orders of magnitude slower than PRE.
This may be acceptable for use in a standard optimizing compiler where much
effort can be expended to achieve the fastest possible target program. However,
it has restricted applicability in a just-in-time compiler where all the analysis
must be performed on the fly.

In this paper, we introduce a new formulation of SPRE where the optimality
of its final result is sacrificed in order to achieve a very efficient analysis. We
call the new formulation Isothermal Speculative Partial Redundancy Elimination
(ISPRE) for reasons which will be covered later.

ISPRE performs standard data flow analyses which can, again, be imple-
mented as bit vector problems. Furthermore, these analyses are simpler than
those performed by PRE. Since ISPRE uses program profile information, it will
usually produce results which are better than PRE, though they would usually
be a bit worse than those of SPRE. Experimental results included in this paper
confirm this expectation. These same results also demonstrate the speed of the
implementation of ISPRE, comparing it to the speed of PRE and SPRE.

2 Background and Related Work

Common Subexpression Elimination (CSE) has existed as a standard compiler
optimization since the early Fortran compilers [1,2]. The first formulation of
Global Common Sub-expression Elimination (GCSE), via an available expres-
sions analysis, is described in [4].

The generalization from GCSE to partial redundancy elimination (i.e. PRE)
was first described by Morel and Renvoise [10]. They later extended their anal-
yses to the interprocedural case [11].

There have been several developments to PRE that have both improved its
implementation in compilers and the quality of the transformed program. These
include the reformulation of PRE as a set of unidirectional analyses [16], and the
establishment of critical-edge splitting [5] as a crucial component in increasing
the power of PRE. Finally, Lazy Code Motion (LCM) [8,9] is a PRE formulation
which is optimal with respect to lifetimes of the temporary variables introduced
to hold expression values. Since these temporaries would often be implemented
as registers, LCM has the smallest impact on register pressure. LCM is presently
the algorithm of choice in modern optimizing compilers.
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The idea of using profiling information to improve the expected performance of
PRE is due to Horspool and Ho [6]. Subsequent work has shown that the problem
can be mapped to a form of network flow problem known as Stone’s Problem [15].
The name Speculative Partial Redundancy Elimination (SPRE) has been applied
to the problem, and algorithms for finding optimal solutions have been presented
[3,13]. These optimal solutions minimize the expected number of computations
of the candidate expressions, based on the execution frequencies of the different
paths through the program obtained from the program profile. A secondary, but
still very important, concern is in minimizing register pressure. Xue and Cai
[17] have developed a variation on SPRE which minimizes the lifetimes of the
temporary variables while still maintaining optimality.

3 Notation and Terminology

In this paper, we present an intraprocedural analysis algorithm. That is, each
procedure of a program will be transformed by ISPRE independently of the
other procedures. Extension of ISPRE to the interprocedural case should be
straightforward and is left for future work [12, sec. 19.2].

We assume that each procedure is translated into an intermediate represen-
tation (IR) by the compiler and that machine independent optimizations such
as ISPRE are applied to the IR form. For the purposes of this paper, we assume
that IR statements have these forms only:

L: // a label
x = c // assign a constant
x = y // assign a variable
x = y op z // assign a simple expression
goto L // unconditional branch)
if (a op b) goto L // conditional branch

where op represents a simple operation like addition or multiplication, or like
less-than when used in a conditional branch. The precise details are unimportant
when describing ISPRE.

The sequence of IR instructions for a procedure is partitioned into basic
blocks. A basic block is a maximal sequence of instructions through which the
only flow of control is sequential. This implies that the first instruction in a ba-
sic block must be either a labelled instruction or an instruction which follows a
conditional branch. It also implies that the last instruction in a basic block is a
branch, either conditional or unconditional.

The basic blocks of a procedure form a control flow graph (CFG). A CFG
is a directed graph with the node set N , where each node b ∈ N represents a
basic block. The CFG has an edge set E ⊆ N ×N , and two distinguished nodes:
s ∈ N , a unique start (or entry) node, and f ∈ N , which is a unique final (or
exit) node. Edges (u, v) ∈ E represent the branching structure of the CFG. The
functions succs(u) = {v|(u, v) ∈ E} and preds(u) = {v|(v, u) ∈ E} represent the
immediate successors and immediate predecessors of node u.
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4 Isothermal Speculative Partial Redundancy
Elimination

Isothermal SPRE (ISPRE) is a complete reformulation of SPRE. It is, by design,
an approximate technique for performing code motion using information ob-
tained from program profiles. The major part of the performance gains achieved
by ISPRE are made in one transformation pass over the flowgraph. Further im-
provements can be made with additional passes, but a law of diminishing returns
apply. We distinguish two versions of ISPRE with the names Single Pass ISPRE
and Multipass ISPRE, according to whether just one pass or several transfor-
mation passes over the program are performed. In the following, and in our
experiments, we describe single pass ISPRE.

ISPRE initially uses profile information to divide a CFG G into two subgraphs
— a hot region Ghot consisting of the nodes and the edges executed more fre-
quently than a given threshold frequency Θ, and a cold region Gcold consisting
of the remaining nodes and edges. A pictorial representation of a division of a
CFG into its hot and cold regions is shown in Figure 3. In this picture, the black
region represents Ghot and the grey region represents Gcold.

s

f

Fig. 3. Dividing a CFG into Hot and Cold Subgraphs

The example illustrates that either subgraph may consist of disconnected
components. As shown here, the components of Ghot would usually correspond
to loops. However, that is not necessarily the case because an isolated node with
several predecessors and several successors could be hot while its immediate
neighbours are all cold. It is also possible for a cold component to consist of just
a single edge, to provide a second example of a degenerate case.

More formally,

Ghot = 〈NH , EH〉
Gcold = 〈NC , EC〉
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where

NH = {u | u ∈ N ∧ freq(u) > Θ}
EH = {e | e ∈ E ∧ freq(e) > Θ}
NC = N − NH

EC = E − EH

Given that division into hot and cold subgraphs, we define the Ingress edges
as

Ingress = {(u, v) | u ∈ NC ∧ v ∈ NH}
That is, the Ingress set consists of those edges which transfer control from a
cold node to a hot node. Note that Ingress ⊆ EC must hold (because every edge
adjacent to a cold node must be cold).

ISPRE operates by inserting expressions on edges in the Ingress set, and
thus making some expressions in hot nodes become fully redundant. If those
fully redundant expressions are then replaced by references to temporaries which
hold saved values of the expressions, we have achieved code motion from Ghot
to Gcold.

The code motion is driven by the results of two analyses:

removability, which deduces instances of computations in the hot region that
can be deleted; and

necessity, which deduces edges in the Ingress set where computations must
be inserted, so as to ensure the correctness of the deletions determined by
removability analysis.

Both removability and necessity are formulated as analyses that fall within
the monotone dataflow framework of Kam and Ullman [7]. This implies that they
can be implemented as unidirectional analyses using bit-vector representations of
sets of expressions. That is, we can efficiently compute removability and necessity
for all candidate expressions simultaneously.

4.1 Removability Analysis

An expression e is a possible candidate for removal if (1) e is a safe expression
and (2) there is an upwards exposed use of e in at least one node u ∈ NH . As
mentioned previously, an expression is safe at a particular program point if com-
puting it at that point cannot generate an exception. Exactly which expressions
can be considered safe is both language and platform dependent, and is beyond
the scope of this paper. An expression a op b, for some operator op is upwards
exposed in a basic block if it is not preceded in that basic block by any assign-
ments to a or b (or, in the terminology of dataflow analysis, is not preceded by
any statements which kill e).

Our removability analysis is based on the assumption that every candidate
expression is available on every edge in the Ingress set. An expression e is
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available at a point P if it has been computed on every edge leading to P without
being subsequently killed (i.e. no operand of e has been modified). The necessity
analysis will ensure that our assumption is satisfied.

Given the assumption, removability analysis just becomes available expres-
sions analysis [1]. A candidate expression e is removable from node u if and only
if u contains an upwards exposed use of e and if e is available on entry to u. The
dataflow equations, with modifications to incorporate our assumption, can now
be stated.

First, the following sets are computed for each basic block by processing the
intermediate code in the block.

XUSES(b) def= { e | expression e occurs in b and is not preceded
by any redefinitions of operands of e }

GEN(b) def= { e | expression e occurs in b and is not followed
by any redefinitions of operands of e }

KILL(b) def= { e | block b contains a statement which
may redefine an operand of e }

Then the following dataflow equations are solved by finding a least fixed point
solution.

∀b ∈ N :
AVOUT(b) = (AVIN(b) − KILL(b)) ∪ GEN(b)

AVIN(b) =
⋂

p∈preds(b)

{
Candidates if (p, b) ∈ Ingress

AVOUT(p) otherwise

∀b ∈ NH :
Removable(b) = AVIN(b) ∩ XUSES(b)

In the above equations, Candidates represents the set of all candidate ex-
pressions. The solutions to the equations for Removable indicate which upwards
exposed uses of expressions can be removed from each node in Ghot.

Note that the equations for AVIN and AVOUT are solved for all blocks in
the CFG, not just in the hot region. This is because the expression availability
within the cold region is useful in completing the necessity analysis.

4.2 Necessity Analysis

The solutions for the Removable sets assume that computations of all candidate
expressions are available on the Ingress edges. That assumption could be satisfied
by inserting the computations on all those edges. However, that would be a
suboptimal solution because not all the insertions would be needed. There are
two reasons why inserting an expression e on an edge (u, v) in the Ingress set
may be unnecessary.
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1. It is useless: the expression may not reach any exposed use of e in the hot
region which has been deemed to be removable, or

2. It is redundant: the expression e may already be available at the end of block
u.

The dataflow equations for NEEDIN and NEEDOUT determine whether in-
sertions of the candidate expressions would be useless or not. When they have
been solved, their results are used to construct the Insert sets. The calculation
of these sets takes into account whether the insertion would be redundant or
not.

∀b ∈ NH :
NEEDIN(b) = (NEEDOUT(b) − GEN(b)) ∪ Removable(b)

NEEDOUT(b) =
⋃

s∈succs(b)

NEEDIN(s)

∀(u, v) ∈ Ingress :
Insert(u, v) = NEEDIN(v) − AVOUT(u)

4.3 An ISPRE Example

An example CFG to be optimized by Isothermal SPRE is shown in Figure 4(a).
For the example, we use a threshold value Θ of 900. Thus the hot region Ghot
consists of blocks b2, b3, and b4, and edges b2→b3, b3→b5, and b5→b2, while the
Ingress set consists of edges b1→b2 and b4→b5. ISPRE assumes that the result
of the computation of a+b is available in temporary variable t0 on edges b1→b2
and b4→b5. Although ISPRE does not actually transform the CFG at this stage,
the removability analysis assumes the existence of the extra computations on the
Ingress edges, as shown in Figure 4(b).

Removability analysis then finds that the computation of a+b in block b3 would
be redundant and can be replaced with t0. The result is shown in Figure 4(c).

Finally, we can clean up the CFG. We should, whenever possible, avoid in-
serting new code on edges because that implies the creation of new basic blocks
and that, in turn, may cause the compiler to generate more branch instructions.
In our example, the code to be inserted in edge b1→b2 can be moved to the
bottom of block b1; similarly the code to be inserted on b4→b5 can be moved
to the bottom of node b4. The result is shown in Figure 4(d).

4.4 Multipass ISPRE

The analysis described above partitions the CFG into two regions: a hot region
and a cold regions. Once the code motions implied by that partitioning have been
completed, there is no reason why the same process should not be repeated with
a smaller threshold value. The smaller value for Θ will select a larger subgraph for
Ghot, one that contains the previous Ghot region. The ISPRE transformations
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c = a+b

b1

b2

b3 b4

b5

990 10

999
1

1

b = ...

(a) Original CFG

b1

b2

b3 b4

b5

990 10

999
1

1

t0 = a+b

t0 = a+b

c = a+b b = ...

(b) After insertions on Ingress
edges

b1

b2

b3 b4

b5

990 10

999
1

1

t0 = a+b

t0 = a+b

c = t0 b = ...

(c) After removing redundant
computations

b1

b2

b3 b4

b5

990 10

999
1

1

t0 = a+b

c = t0 b = ...
t0 = a+b

(d) After code straightening

Fig. 4. Example of ISPRE

for the second pass will again move computations from the hot region to the
cold region, improving the overall performance of the program.

We propose, but we do not yet have experimental justification for, the halving
of the threshold value on each pass until the expected performance gains become
unimportant.
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The structure of multipass ISPRE would be as follows:

Θ = 0.90 * maximum frequency
repeat

perform ISPRE on the CFG
Θ = Θ / 2

until Θ is small

Much of the analysis for the second and subsequent iterations of ISPRE can
reuse the results of the dataflow analyses from the previous iteration, just up-
dating the solutions.

5 Experimental Results

For our experiments, we used the gcc compiler (version 4.1.0) when applied
to various programs from the SPEC CPU2000 benchmark suite.[14] For these
preliminary experiments, the test subsection of the suite has been used. (We
plan to use the full ref suite in future experiments.)

Table 1 compares the effects of different PRE optimization algorithms. The
column labelled LCM shows the execution times when compiled by gcc using
its PRE algorithm, which is an implementation of LCM [8]. The two columns
labelled SPRE show the (a) times when an optimal speculative PRE algorithm
is used by the compiler, and (b) those times as compared to LCM. (The imple-
mentation of SPRE follows that given in [13].) Finally, the two columns labelled
ISPRE show the results achieved by the method described in this paper. In the
comparisons with LCM, a negative percentage value shows a smaller time than
LCM while a positive value shows the converse.

For all the ISPRE experiments reported here, a single partitioning of the
CFG was performed. That is, the multipass ISPRE was not tested in these ex-
periments. The threshold parameter Θ was always set to be 90% of the highest
node frequency in the CFG. We observe that even a single pass of ISPRE pro-
duces execution times which are very similar to those for SPRE. Taken over the
set of twelve benchmarks, ISPRE produces slightly better results than SPRE.

One might ask how it is possible that an approximate technique like ISPRE
could produce better timings than SPRE which is provably optimal. A partial
answer is that SPRE is optimal only with respect to the expected number of
evaluations of the candidate expressions when the program is run. The dynamic
number of evaluations is not perfectly correlated with execution time because
of interactions between PRE and other compiler optimizations, and there are
interactions with the code generation phase of the compiler. We suspect that
the dominant interaction effect is register pressure. The version of SPRE imple-
mented for these experiments does not take register pressure into account. On
the other hand, LCM keeps the lifetimes of the introduced temporary variables
to a minimum and is therefore minimizing its effect on register pressure. We also
believe that ISPRE naturally chooses insertion points for new computations at
places which do not have a severe impact on register pressure.
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Table 1. Execution Times of Optimized Programs

LCM SPRE ISPRE
Benchmark time

(seconds)
time

(seconds)
relative to

LCM
time

(seconds)
relative to

LCM

164.gzip 1.183 1.266 7.02% 1.190 0.59%
181.mcf 0.118 0.119 0.85% 0.115 -2.54%
197.parser 1.418 1.416 -0.14% 1.305 -7.97%
253.perlbmk 4.364 4.363 -0.02% 4.373 0.21%
255.vortex 3.376 3.203 -5.12% 3.194 -5.39%
300.twolf 0.145 0.144 -0.69% 0.146 0.69%
173.applu 0.149 0.150 0.67% 0.150 0.67%
178.galgel 4.930 4.750 -3.65% 4.770 -3.25%
183.equake 0.553 0.532 -3.80% 0.532 -3.80%
188.ammp 5.688 5.281 -7.16% 5.213 -8.35%
189.lucas 7.102 7.094 -0.11% 7.202 1.41%
301.apsi 4.128 4.150 0.53% 4.164 0.87%

Summary 33.154 32.468 -2.07% 32.354 -2.41%

Table 2. Compilation Times

LCM SPRE ISPRE
Benchmark time

(seconds)
time

(seconds)
relative to

LCM
time

(seconds)
relative to

LCM

164.gzip 2.300 2.460 6.96% 2.330 1.30%
181.mcf 1.200 1.240 3.33% 1.190 -0.83%
197.parser 8.370 9.150 9.32% 8.370 0.00%
253.perlbmk 28.630 33.430 16.77% 28.600 -0.10%
255.vortex 23.150 24.200 4.54% 23.270 0.52%
300.twolf 12.890 14.660 13.73% 12.840 -0.39%
173.applu 2.930 2.920 -0.34% 2.930 0.00%
178.galgel 10.580 10.760 1.70% 10.550 -0.28%
183.equake 1.110 1.330 19.82% 1.050 -5.41%
188.ammp 6.600 7.280 10.30% 6.730 1.97%
189.lucas 1.900 1.940 2.11% 1.940 2.11%
301.apsi 6.230 6.190 -0.64% 6.200 -0.48%

Summary 105.890 115.560 9.13% 106.000 0.10%

One of the claims made in this paper is that the analysis performed by ISPRE
is much faster than SPRE and similar to that of the standard implementations
of PRE. This claim is supported by the timings shown in Table 2. These timings
show the total compilation times for the benchmark programs. In the environ-
ment of JIT compilation, all the initial phases of a compiler (lexical analysis,
syntactic analysis, semantic analysis and IR code generation) would have been
performed before the program begins execution. Thus the time spent on per-
forming code optimization becomes much more significant.
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Table 3. Compilation Times for PRE Optimization Phase Only

LCM SPRE ISPRE
Benchmark time

(seconds)
time

(seconds)
relative to

LCM
time

(seconds)
relative to

LCM

164.gzip 0.010 0.140 14.00 0.010 1.00
181.mcf 0.020 0.300 15.00 0.010 0.50
197.parser 0.040 0.680 17.00 0.040 1.00
253.perlbmk 0.230 4.760 20.70 0.340 1.48
255.vortex 0.130 1.040 8.00 0.210 1.62
300.twolf 0.060 1.740 29.00 0.130 2.17
173.applu 0.030 0.050 1.67 ε -
178.galgel 0.270 0.270 1.00 0.310 1.15
183.equake ε 0.160 - 0.200 -
188.ammp 0.060 0.590 9.83 0.020 0.33
189.lucas 0.040 0.020 0.50 0.030 0.75
301.apsi 0.030 0.040 1.33 0.070 2.33

Summary 0.920 9.630 10.47 1.170 1.27

To further reveal the difference in analysis times between the three different
PRE implementations, Table 3 shows just the times spent in performing the PRE
optimization during compilation. The columns which show relative performance
are displayed as ratios (not as percentage differences) because most ratios are large
numbers. The large ratios for SPRE, e.g. 29 for the 300.twolf benchmark, occur
with the benchmarks which contain large CFGs and are a symptom of the cubic
time computational complexity of the SPRE analysis. In a couple of cases, the
benchmark programs are small and the measured times are negligible. In these
cases, the times are shown as ε and the ratios between the times are left blank.

The case of 183.equake shows a negligible compilation time with LCM but
a much larger compilation time with ISPRE – even larger than the compilation
time with SPRE. It is currently under investigation.

6 Conclusions and Further Work

This paper has introduced a new way to implement partial redundancy elim-
ination in a compiler. Unlike other PRE implementations, there is no claim
of optimality for any cost metric (not lifetimes of saved expression values, not
expected number of expression computations). However, we do claim that the
method is simple to implement, is fast, and produces results that are close to
those produced by the optimal SPRE algorithm. We claim the the technique is
fast enough to be used by JIT compilers.

We have much further work to do, including: evaluation of multipass ISPRE,
selection of threshold values, analysis of register pressure and lifetime issues,
incorporating unsafe expressions into the framework, and optimizing in the pres-
ence of Java or C# exception handling.



Fast Profile-Based Partial Redundancy Elimination 375

We believe that ISPRE has the potential to become the code motion optimiza-
tion algorithm of choice in future compilers, especially just-in-time compilers.
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