
Nearly Optimal Register Allocation with PBQP �

Lang Hames and Bernhard Scholz

School of Information Technologies
The University of Sydney, NSW 2006, Australia
{lhames, scholz}@it.usyd.edu.au

Abstract. In this work we present a new heuristic for PBQP which significantly
improves the quality of its register allocations and extends the range of viable
target architectures. We also introduce a new branch-and-bound technique for
PBQP that is able to find optimal register allocations.

We evaluate each of these methods, as well as a state of the art graph colouring
method, using SPEC2000 and IA-32 as a testbed. Spill costs are used as a metric
for comparison. We provide experimental evidence that our new heuristic allows
PBQP to remain effective even for relatively regular architectures such as IA-32,
generating results equal to those of a start-of-the-art graph colouring technique.
Our method is shown to run 3–4 times slower than graph colouring, however it
supports a wide range of irregularities.

Using our branch-and-bound solver for PBQP we were able to solve 97.4%
of the functions in SPEC2000 optimally. These results are used as a yardstick to
show that both PBQP and graph colouring produce results which are very close
to optimal.

1 Introduction

Efficient utilisation of machine resources demands highly optimising compilers as we
reach the limits of Moore’s law [1]. Register allocation is a key optimisation which de-
cides how programs will use the CPU registers which form the top level of the memory
hierarchy. As increases in CPU speed continue to outstrip reductions in memory la-
tency, the efficient use of registers becomes ever more important for ensuring program
performance.

In the intermediate representation of a compiler it is assumed that there are an ar-
bitrary number of symbolic registers available. During the register allocation stage the
compiler attempts to map these symbolic registers to real registers. Symbolic registers
for which no CPU register can be found (because all are already in use) are forced to re-
side in memory. Such symbolic registers are said to have been spilled to memory. Load
and store code must be inserted into the program to retrieve spilled values before they
are used, and store them after they are defined. This inserted code, called spill code, re-
duces program performance and is referred to as the spill cost of the symbolic register.
The challenge of register allocation is to find an assignment which minimises the total
spill cost, while terminating within a reasonable time frame. The scope of the register

� This work has been supported by the ARC Discovery Project Grant “Compilation Techniques
for Embedded Systems” under Contract DP 0560190.

D. Lightfoot and C. Szyperski (Eds.): JMLC 2006, LNCS 4228, pp. 346–361, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Nearly Optimal Register Allocation with PBQP 347

allocation is either on the basic block level (also known as local register allocation) or
over a whole procedure (also known as global register allocation).

The classical formulation of the global register allocation problem is NP complete.
It has traditionally been solved heuristically using the graph colouring method intro-
duced in [2], and extended in [3]. In this method a global register allocation problem
is described by an interference graph in which nodes represent symbolic registers, and
edges represent interference constraints. Using heuristics, the register allocator attempts
to compute a k-colouring of the interference graph, where each colour represents a CPU
register. If a k-colouring of the graph can be found it is mapped to a register allocation.
If no k-colouring can be found then some non-colourable nodes are spilled. Spill code
for these symbolic registers is inserted, the interference graph reconstructed and the
colouring process is restarted.

Graph colouring methods have been shown to be highly effective at producing allo-
cations for regular register architectures [3,2]. They have also been extended to support
architectures with irregularities such as register pairing [4], and register classes and
aliasing [5]. However, graph colouring methods generally lack the descriptive power
required to accurately model the costs and constraints of more irregular architectures.
Several alternative methods of register allocation have been devised to support irreg-
ular architectures, including Integer Linear Programming (ILP) [6], Multi-Commodity
Flow Network (MCFN) methods [7], and Partitioned Boolean Quadratic Programming
(PBQP) [8].

In this work we focus on the underlying mathematical discrete optimisation prob-
lem for register allocation. We are interested in how effective current state-of-the-art
graph-colouring approaches [5] are in comparison with approaches designed for highly
irregular architectures and small embedded system programs [8]. In order to ensure a
fair comparison between the methods we have used spill costs as a metric. Using spill
costs provides a clear and solid mathematical comparison, and avoids the noise which
is introduced by other optimisations run after the register allocation phase. Since spill
costs are estimated by the compiler (either a-priori, or based on dynamic profiles) their
accuracy is dependant on the accuracy of the estimator. However, since each of the
methods we compare relies on the same spill costs this does not affect the fairness of
our comparison.

As a testbed we have chosen the register allocation problems in the SPEC2000
benchmark suite, and IA-32 (which is fairly regular) as a target architecture. This com-
bination of architecture and benchmark suite represents a worst case for our method.
This extreme case was chosen in order to investigate how the old PBQP heuristic scaled
under such conditions, and how the new heuristic would fare. To find a yardstick for
the performance of both approaches we employed our optimal solver which can cope
with the large register allocation problems in the SPEC2000 benchmark suite, and the
constraints of IA-32.

The contributions of this work are outlined in the following:

1. We show that the heuristic introduced in [8] performs poorly for larger register
allocation problems.

2. We describe a new heuristic for PBQP that is able to produce allocations of very
high quality in reasonable time.

348 L. Hames and B. Scholz

3. We introduce a new branch-and-bound solver for PBQP. Using this solver we are
able to generate optimal register allocations for 97.4% of the functions in the
SPEC2000 benchmarks.

4. Using the optimal solutions mentioned above we are able to show, for our testbed,
i.e., IA-32 and SPEC2000, that the heuristics for graph-colouring and PBQP leave
little room for further improvements.

The paper is organised as follows. Section 2 provides background information on the
PBQP method of register allocation. Section 3 describes our new heuristic for PBQP.
In Section 4 we explain the branch-and-bound algorithm for PBQP. Section 5 provides
experimental evidence both for the performance of PBQP with the new heuristic, and
the optimality of the achieved solutions. Section 6 surveys related work. In Section 7
we draw our conclusions.

2 Background

2.1 PBQP

The Partitioned Boolean Quadratic Programming (PBQP) problem [8,9] is a specialised
Quadratic Assignment Problem (QAP). Consider a set of discrete variables
X = {x1, . . . , xn} and their finite domains {D1, . . . , Dn} where mi = |Di|. A so-
lution of PBQP is a simple function h : X → D where D is D1 ∪ . . . ∪ Dn; for each
variable xi we choose an element di in Di. By imposing a total order for each discrete
variable domain, sometimes we refer di by its ordinal number ranging from 1 to mi.

The quality of a solution is based on the contribution of two sets of terms:

1. for assigning variable xi to the element di in Di. The quality of the assignment is
measured by a local cost function c(xi, di).

2. for assigning two related variables xi and xj to the elements di in Di and dj in
Dj . The quality of the assignment is measured by a related cost function C(xi, xj ,
di, dj).

Thus, the total cost of a solution h is given below:

f =
∑

1≤i≤n

c(xi, h(xi)) +
∑

1≤i<j≤n

C (xi, xj , h(xi), h(xj)) (1)

The PBQP problem asks for an assignment of a minimum total cost.
We solve PBQP using matrix notation. A discrete variable xi becomes a boolean

vector xi whose elements are zeros and ones and whose length is determined by the
number of elements in its domain Di. Each 0-1 element of xi corresponds to an element
of Di. An assignment of xi to di is represented by setting all elements of xi to zero
except the element of di, which is set to one. Hence, a possible assignment for a variable
xi is modelled by the constraint xT

i · 1 = 1 that restricts vectors xi such that exactly
one element of the vectors is assigned one; all other elements are set to zero.

The related cost function C(xi, xj , di, dj) is decomposed for each pair (xi, xj). The
costs for the pair are represented as a matrix Cij . An element in the matrix corresponds

Nearly Optimal Register Allocation with PBQP 349

to an assignment (di, dj). Similarly, the local cost function c(xi, di) is mapped to cost
vectors ci. Quadratic forms and scalar products are employed to rewrite the objective
function of Eq. (1) to

s.t. ∀1 ≤ i ≤ n : xi ∈ {0, 1}|Di|

∀1 ≤ i ≤ n : xT
i · 1 = 1

min f =
∑

1≤i≤n

xT
i · ci +

∑

1≤i<j≤n

xT
i Cijxj (2)

In [8,9] a solver was introduced, which solves a sub-class of these problems opti-
mally in O(nm3), where n is the number of discrete variables and m is the maximal
number of elements in their domains, i.e. m = max (m1, . . . , mn). For a given prob-
lem, the solver eliminates stepwise discrete variables until the problem is trivially solv-
able, i.e. all quadratic forms xT

i Cijxj are eliminated. Each elimination step requires
a reduction. The solver has reductions R0, RI, RII, which are not always applicable.
If no reduction can be applied, the problem becomes irreducible and a heuristic is ap-
plied, which is called RN. The heuristic chooses a beneficial discrete variable xi and
a good assignment for it by searching for local minima. The solution found is guar-
anteed to be optimal when the reduction RN is not used. Once the PBQP graph has
been fully reduced the backpropagation phase is invoked to compute a final solution by
reconstructing the original PBQP problem.

A PBQP problem can be represented as an undirected PBQP graph G〈N, E〉. The
nodes of the PBQP graph are discrete variables xi, for all i (1 ≤ i ≤ n). In the graph
there exists an edge (i, j) for i < j if matrix Cij is not the zero matrix.

2.2 PBQP for Register Allocation

Previous work in [9,8] described how the register allocation problem for irregular ar-
chitectures can be mapped to PBQP. To understand this mapping it is easiest to view
the PBQP graph as an extension of the interference graph.

Nodes in the PBQP graph represent symbolic registers as in an interference graph. In
addition each node u has an associated cost vector cu which describes the costs of each
allocation option for u. In this work we assume that the first element of this vector will
contain the cost of the spill option sp, and subsequent elements will contain the costs of
each CPU register that is valid for u.

Edges in the PBQP graph represent constraints on the register allocation problem as
before. There are usually two types of edges in an interference graph, interference or
coalesce edges (which indicate that there is a benefit to assigning two non-interfering
symbolic registers to the same CPU register). Edges in PBQP graphs have no explicit
type, but are associated with cost matrices Cuv . Each cost matrix Cuv represents the
cost of pairs of allocations for nodes u and v. The contents of each cost matrix de-
termines the effect of its edge on the final solution. Several common matrix forms for
register allocation were given in [8].

For our work we employ only interference matrices. Interference matrices describe
the costs of combinations of assignments for pairs of nodes which interfere. For two
interfering nodes u and v the cost of an allocation (ai, aj) is infinite if ai and aj alias.

350 L. Hames and B. Scholz

Pairs of registers ri and rj are said to alias if writing to one may affect the value of
the other. By definition a register aliases with itself, and the spill option aliases with
nothing (not even itself). For allocations where ai and aj do not alias the cost is zero.
The interference matrix for nodes u and v is thus given by

Iuv(i, j) =

{
0, if ai aliases aj

∞, otherwise.
(3)

As an example, consider the following subset of the IA-32 register architecture. It
contains three 16bit registers named AX, BX and CX, each of which is aliased by two
8bit registers as depicted below.

AX BX CX
AH AL BH BL CH CL

If two nodes u and v have register option sets {sp, AH, AL, BL, CL} and {sp, AX, BX}
respectively, the interference matrix Iuv is given by

Iuv =

sp AX BX
↓ ↓ ↓
0 0 0 ← sp
0 ∞ 0 ← AH
0 ∞ 0 ← AL
0 0 ∞ ← BL
0 0 0 ← CL

(4)

The rows of the matrix represent each allocation option for u (sp, AH, AL, BL and
CL respectively). The columns represent each allocation option for v (sp, AX and BX
respectively). Each element (i, j) gives the cost of an allocation (ai, aj).

The costs in the first row and column are all zero, since the spill option does not alias
with anything. The second column contains two infinities since the AX register option
for v aliases with both the AH and AL options for u. The third column contains only a
single infinity since the BX register option for v only aliases with the BL option for u
(we assume that the BH option has been denied to u by a register exclusion). The final
row, representing the CL option for u, contains all zeros, because no register option for
v aliases with CL.

Neither hardware registers nor register exclusions are explicitly represented in a
PBQP graph. Instead, register exclusions remove options from nodes, reducing the
length of the cost vectors and matrices. This in turn improves the speed of the PBQP
solver.

3 PBQP Heuristic

Our initial experiments using PBQP to allocate registers for SPEC2000 revealed that
the heuristic described in [8], Maximal Degree Minimum Solution (MDMS), performed
poorly for these benchmarks.

Nearly Optimal Register Allocation with PBQP 351

reduceR0, RI, RII

RN

reduce
colourable node∃ colourable

reduce node with
lowest spill cost
to degree ratio

else

Fig. 1. Reduction Decision Tree

Previous work, presented in [9], showed that better results can be obtained by pre-
computing an RN reduction order using a traditional graph colouring approach. (Graph
colouring approaches select and remove colourable nodes before non-colourable ones;
a node u is considered colourable if no allocation of registers to u’s neighbours pre-
cludes an allocation of a register to u itself.)

In the following we present a heuristic which is able to dynamically determine a
reduction order for RN nodes based on colourability. At the core of our heuristic is an
efficient and accurate method of determining colourability for irregular architectures.

The reduction order produced by our method is similar, though not identical, to that
produced by graph colouring. Our reduction order is determined during the reduction
phase based on the decision diagram depicted in Figure 1. During the reduction phase
nodes of degree two or less are removed by the R0, RI and RII reductions. These reduc-
tions are performed irrespective of the colourability of nodes (on irregular architectures
even low degree nodes may be non-colourable due to large register exclusion sets).
Once all remaining nodes are of degree three or higher our RN heuristic is invoked to
decide which node to reduce.

Our RN heuristic sorts the remaining nodes in descending order of degree. Based on
this order it searches for a colourable node. If a colourable node is found it is removed
from the PBQP graph and placed on the reduction stack. Sorting the nodes by degree
ensures that the colourable node of highest degree is reduced. This improves the perfor-
mance of the reduction process by maximising the number of nodes whose degrees are
reduced.

If no colourable node is found we apply Brigg’s spill heuristic [3] to reduce the node
with the lowest ratio of spill cost to degree. No register assignment is made at this stage;
instead our heuristic is optimistic in the sense that it defers the actual assignment until
the backpropagation phase.

At the end of the reduction phase all nodes reside on the reduction stack. During the
backpropagation phase the PBQP solver pops nodes from the reduction stack and rein-
serts them into the PBQP graph. As nodes are reinserted, the solver selects a decision
vector that minimises the cost of the final solution. All nodes that we have classified
as colourable (cf. the path via predicate “∃ colourable” in Figure 1) are guaranteed to
be allocated a register. Nodes reduced by the R0, RI or RII reductions are solved op-
timally, and will be allocated a register if one is available. Nodes reduced due to the
spill heuristic may or may not be allocated a register. Nodes which cannot be assigned
a register will be assigned the sp option.

352 L. Hames and B. Scholz

The performance of our heuristic depends on the efficient determination of coloura-
bility. For regular architectures colourability can be determined by comparing the de-
gree of a node u to the number of available registers k. If degree(u) < k then the node is
colourable. For irregular architectures this condition is insufficient because each neigh-
bour of u may exclude more than one register option from u (due to register aliasing).
We describe below a fast and accurate method to determine the colourability of nodes
for irregular architectures. Our method is based on the PBQP graph and its associated
cost matrices.

We observe that a node u is colourable if either of the following two conditions hold.

(1) The maximum number of colours which could be denied to u by a colouring of u’s
neighbours is less than the total number of colours available for u.

(2) There is at least one colour which is a valid choice for u, but not for any neighbour
of u.

To determine whether Condition (1) holds we calculate the maximum number of
register choices that can be denied to node u by a colouring of u’s neighbours. It is
not practical to calculate this value exactly, because this would require enumerating all
colourings of the neighbours of u. Instead we calculate a safe upper bound on Condi-
tion (1) by examining the worst case colourings of each of u’s neighbours considered
individually. This upper bound we call the impact upon u, denoted by impactu.

If the adjacency set of a node u is given by adj(u), and the impact of a single neigh-
bour v by impactu(v), then the impact upon u by its neighbours is given by

impactu =
∑

v∈adj(u)

impactu(v). (5)

In order to calculate impactu(v), we need to look at the columns of the cost matrix
Cuv . The number of infinite elements in each column j represents the number of reg-
isters which could be denied to node u by selecting register rj for node v (cf. Eq. (3)).
For instance it can be seen in Eq. (4) that selecting the AX register for v (column 2) re-
moves two options from u, whereas selecting the BX option (column 3) removes only
one option, and the sp option (column 1) removes none.

We write inf count(Cuv, j) for the number of infinite cost elements in column j of
matrix Cuv, and mu for the number allocation options for u. Then impactu(v) is given
by

impactu(v) = max
1≤j≤mu

{
inf count(Cuv, j)

}
. (6)

To determine whether Condition (2) holds for node u we determine the set of regis-
ters which cannot be denied to u by any colouring of its neighbours. This set we call
safe regsu. For Condition (2) to hold the cardinality of safe regsu must be greater than
zero. To determine whether register ri resides in safe regsu, we examine row i of each
of the neighbouring cost matrices of u. If row i of a matrix Cuv contains an infinite
element, then ri may be denied to u by some selection for v, thus ri must be removed
from safe regsu.

In order to calculate safe regsu, we place all register options except the spill element
in safe regsu. For each neighbour v of u we examine the cost matrix Cuv . Each of the

Nearly Optimal Register Allocation with PBQP 353

rows of this matrix represents a valid register choice for u. For each row i that contains
an infinite element we remove the corresponding register ri from safe regsu, since a
certain colouring of v could exclude ri from u. At the end of this process the registers
remaining in safe regsu are those whose rows contained no infinite elements in any of
the neighbouring matrices of u.

In Eq. (4) it can be seen that register AH (row 1) must not be in safe regsu, since row
1 contains an infinity. Likewise registers AL and BL must not be in safe regsu because
rows 2 and 3 contain infinities. Row 4 however, representing the CL option, does not
contain an infinity, so CL is in safe regsu.

Because the cost matrix construction process takes into account register classes and
aliasing, these phenomena are implicitly considered in the determination of colourabil-
ity. In addition, a positive effect of register exclusions, not considered in [3] and [5],
is accounted for: if all neighbours of a node u are excluded from occupying a regis-
ter that is a valid option for u, then u is colourable. On regular architectures register
exclusions are rare and this effect would not significantly improve accuracy. However,
for irregular architectures register exclusions are common and register sets are typically
small. Considering this register exclusion effect can therefore yield a small increase in
the accuracy of the colourability criterion.

An algorithm to calculate the colourability criterion according to Conditions (1)
and (2) is given below. Therein options(u) denotes the valid allocation options for node
u, and sp denotes the spill element.

4 Branch-and-Bound for PBQP

Branch-and-bound is a general technique for solving discrete and combinatorial opti-
misation problems [10]. The general idea of branch-and-bound relies on two concepts.
First, branching is a decomposition of the problem into sub-problems. Since branching
is applied recursively to each of the sub-problems, the generated sub-problems form a
tree called a search tree. Second, bounding is a fast way of finding lower bounds and
upper bounds, respectively, for the optimal solution within sub-problems.

The branch-and-bound algorithm prunes sub-problems whose lower bounds are
greater than the upper bound for any other sub-problem. If an upper bound for a sub-
problem matches its lower bound, then the sub-problem has been solved. For finding
the minimum all sub-problems of the search tree are either pruned or solved. Due to
limited computational resources, sometimes not all sub-problems of the search-tree are
either pruned or solved, and the branch-and-bound algorithm is terminated before find-
ing the minimum of the objective function. In this case, the minimum lower bound and
the minimum upper bound, among all non-pruned sub-problems, bound the minimum
of the objective function. For branch-and-bound methods there are different ways to
bound sub-problems and how to create and inspect the nodes in the search tree.

We extend the PBQP solver with branch-and-bound techniques. The approach intro-
duced in [8] solves a PBQP problem optimally if R0, RI and RII reductions entirely
decompose the problem. If no R0, RI or RII reduction can be applied in the reduction
phase, the PBQP becomes irreducible and a heuristic selects a discrete variable xl and
chooses a concrete solution for xl in Dl. We refer to this step as RN reduction. If the

354 L. Hames and B. Scholz

Algorithm 1. Colourability Criterion
Input: PBQP Graph G, node u ∈ G.
Output: Boolean value describing the colourability of u.

1: impactu ← 0
2: safe regsu ← options(u)\sp
3: for all v ∈ adj(u) do
4: impactu(v)← 0
5: for all j ∈ {1, . . . , |Dv |} do
6: inf count(Cuv, j)← 0
7: for all i ∈ {1, . . . , |Du|} do
8: if Cuv(i, j) =∞ then
9: inf count(Cuv, j)← inf count(Cuv, j) + 1

10: safe-regsu ← safe-regsu\ri

11: end if
12: end for
13: if inf count(Cuv, j) > impactu(v) then
14: impactu(v)← inf count(Cuv, j)
15: end if
16: end for
17: impactu ← impactu + impactu(v)
18: end for
19: if (|safe-regsu| > 0) ∨ (|impactu| < |options(u)|) then
20: colourable← true
21: else
22: colourable← false
23: end if

problem domain is known, RN reductions based on heuristics are highly efficient and
effective.

To find an optimal solution exhaustive enumeration was employed in [11]. The un-
derlying idea of exhaustive enumeration is to use the ideas of the heuristic approach,
i.e., R0, RI and RII reductions are applied until the problem is trivially solvable or an
RN reduction needs to be applied. Instead of choosing a single solution for a discrete
variable reduced by RN, all possible assignments of the discrete variable are enumer-
ated. The complexity of exhaustive enumeration grows exponentially with the number
of discrete variables reduced by RN. Despite the fact that for smaller problems with
a small number of RN reductions this approach works sufficiently well, it becomes
intractable for huge register allocation problems.

For PBQP a branch-and-bound approach is superior to an exhaustive enumeration ap-
proach because many assignments of discrete variables reduced by RN will be pruned.
Furthermore, the solving techniques for PBQP allow a natural formulation of a branch-
and-bound algorithm: A sub-problem is a PBQP problem which (1) cannot be further
reduced by R0, RI and RII, and (2) is not trivially solvable. To each sub-problem we
associate the discrete variable xl which is selected by the RN reduction in the next
reduction step and its concrete assignment.

Nearly Optimal Register Allocation with PBQP 355

A fragment of a search tree is depicted in Figure 2. The root of the tree represents
the overall problem to be solved. If a problem has no RN reduction, the problem has
no sub-problems and the tree consists of the root node only. Otherwise the reduced
discrete variable xi1 and its possible assignments ranging from 1 to mi1 of the first RN
reduction constitute the children of the root node. The discrete variable of the second
RN reduction and its assignments constitute the grandchildren of the root node and so
forth.

Note that a child of a sub-problem is a new sub-problem for which the discrete
variable of its parent sub-problem was reduced, and R0, RI and RII reductions had been
applied until the problem became irreducible. For the branch-and-bound algorithm we
need to find lower and upper bounds of sub-problems, denoted by 〈f l

ik
, fu

ik
〉.

Before discussing the specific problem of finding lower and upper bounds of sub-
problems, we derive the computation of lower and upper bounds of a general PBQP
problem in matrix notation (see Eq. (2)). More formally, we want to find a lower bound
f l and upper bound fu of f such that

f l < f(x1, . . . , xn) < fu (7)

holds for all possible assignments for discrete variables xi ∈ Di, (1 ≤ i ≤ n). Bounds
can be simply derived by the observation that only one element of a cost vector ci and
matrix Cij respectively, contributes to the objective function. Thus, lower and upper
bounds of f are given by

f l =
∑

1≤i≤n

min ci +
∑

1≤i<j≤n

min Cij (8)

fu =
∑

1≤i≤n

max ci +
∑

1≤i<j≤n

maxCij , (9)

where min ci is the smallest element in ci and in Cij , respectively, and max ci is the
greatest element in ci and in Cij , respectively.

The bounds for a sub-problem are computed by reducing the node xl. We choose
a concrete element for vector xl as assignment in Dl. For a given assignment of xl a
sub-problem represented in matrix notation as given in Eq. (2) reduces to

s.t. ∀1 ≤ i ≤ n, i = l : xi ∈ {0, 1}|Di|

∀1 ≤ i ≤ n, i = l : xT
i 1 = 1

min f = α +
∑

1≤i≤n,i�=l

xT
i (ci + Δi) +

∑

1≤i<j≤n,i�=l,j �=l

xT
i Cijxj , (10)

where α is a constant, i.e., α = xT
l cl, and Δi is a cost vector, i.e.,

Δi =

{
Cilxl, if i < l

xT
l Cli, otherwise.

(11)

356 L. Hames and B. Scholz

Problem

xi1 = 1
〈f l

i1 , fu
i1〉

xi2 = 1

〈f l
i2 , fu

i2〉
. . .

xi2 = mi2

〈f l
i2 , fu

i2〉

. . .
xi1 = mi1

〈f l
i1 , fu

i1〉

Fig. 2. Search Tree for PBQP

Because the discrete variable xl is set to a concrete value, quadratic forms involving
xl become scalar products. Applying the lower and upper bounds of Eq. (8) and Eq. (9),
we can deduce the following lower and upper bounds for a sub-problem.

f l = α +
∑

1≤i≤n,i�=l

min(ci + Δi) +
∑

1≤i<j≤n,i�=l,j �=l

min Cij (12)

fu = α +
∑

1≤i≤n,i�=l

max(ci + Δi) +
∑

1≤i<j≤n,i�=l,j �=l

max Cij (13)

The PBQP branch-and-bound algorithm is a standard branch-and-bound algorithm:
sub-problems are classified in live and dead nodes in the search tree. Live nodes are leafs
of sub-problems, which are not solved yet (i.e., lower and upper bound do not coincide).
Dead nodes are nodes whose children have been already expanded. For running the
algorithm we need an upper bound for the global minimum of the PBQP problem. The
upper bound of the global minimum is initialised with infinity.

The live nodes are stored in a priority queue where the priority is determined by
the lower bound of the sub-problem. The live node with the smallest lower bound is
expanded first. The expansion of a node includes two steps. First, the children of the
sub-problem are added to the tree and inserted to the priority queue if their lower bound
is smaller than the upper bound of the global minimum. Second, the node is removed
from the priority queue and it becomes dead. The branch-and-bound algorithm termi-
nates if there are no nodes left in the priority queue, or if the upper bound of the global
minimum is smaller then the smallest element in the priority queue.

We improved the standard algorithm by using the solution of a heuristic algorithm. In
a pre-processing phase the search tree is expanded according to the solution of a given
heuristic. Before running the canonical expansion the branch-and-bound algorithm has
a tight upper bound for the global minimum and the search space becomes significantly
smaller if the heuristic used is close to the optimum.

5 Experiments

In our experiments we compared the performance of three different PBQP solvers, i.e. a
PBQP solver using the MDMS heuristic introduced in [8], a PBQP solver using our new

Nearly Optimal Register Allocation with PBQP 357

Table 1. Number of Functions in SPEC2000

Benchmark Total Pairs Empty Remaining

164.gzip 89 1 14 74
175.vpr 266 4 47 215
176.gcc 1965 46 367 1552
181.mcf 26 0 2 24
186.crafty 109 39 9 61
197.parser 323 0 27 296
252.eon 1257 0 570 687
253.perlbmk 1015 1 208 806
254.gap 852 6 122 724
255.vortex 923 10 93 820
256.bzip2 74 0 14 60
300.twolf 191 0 17 174
total 7090 107 1490 5493

heuristic (see Sec. 3), a PBQP solver using branch-and-bound (see Sec. 4), and a state-
of-the-art graph colouring method described in [5]. The four approaches are compared
in terms of number of spills, spill costs, and solve time. We do not consider the effects
of register allocation on code size nor on runtime of benchmark programs since register
allocation works in concert with other standard compiler optimisations. Measuring the
genuine effects of register allocation on code size and runtime would be overlayed with
noise. Taking the spill cost as a measurement gives a solid mathematical comparison.

To obtain a comparison of our methods each solver was used to produce allocations
for the SPEC2000 benchmarks. The interference graphs, annotated with spill costs and
register constraints, were obtained from the GCC 3.3.6 compiler, and passed to the
solvers. Empty interference graphs and graphs requiring register pairs were not taken
into account, leaving 5493 graphs for our experiments. A quantitative summary of the
interference graphs is given in Table 1. Each solver calculates an allocation and pro-
duces a raw assignment of registers and spills to symbolic registers, as well as timing
information. Our raw allocations were processed to check for correctness and to extract
spill costs and other information.

The cost model used for our experiments is highly regular. Our solvers assign only
registers of the same size as the allocation candidate (in contrast to GCC’s allocator
which stores all non-spilled symbolic registers in 32-bit registers). All valid register
options are assumed to have zero cost (except the spill option, whose cost is given
by GCC’s spill cost estimator), and only interference constraints are modelled. Such a
regular cost model represents a worst-case scenario for PBQP, which performs better
on more constrained architectures.

Summaries of the allocations produced by each of our solvers are given in Table 2.
The first three columns describe the total spill cost for each benchmark individually and
overall, using each heuristic solver. The next three columns give the number of spills
produced by the solvers. The final three columns show the time taken to produce the
allocations.

358 L. Hames and B. Scholz

Table 2. Raw Allocation Results for the SPEC2000 Benchmarks

Spill Cost Spills Allocation Time (ms)
Benchmark MDMS New GrCo MDMS New GrCo MDMS New GrCo

164.gzip 120438 60175 60838 121 114 118 6.9 9.2 3.1
175.vpr 521770 330724 328358 690 710 704 27.5 39.8 12.4
176.gcc 1431081 720548 728731 3078 3341 3335 322.6 532.4 133.2
181.mcf 98796 69440 69445 81 82 83 2.4 3.2 1.1
186.crafty 73491 27978 28267 149 153 153 10.5 15.1 4.9
197.parser 221732 162962 168847 508 525 525 35.9 52.9 15.1
252.eon 446646 366810 367965 815 826 816 34.7 53.0 16.6
253.perlbmk 758888 323161 334957 910 925 921 93.4 126.4 38.8
254.gap 1873241 1090693 1099054 1822 1929 1947 118.8 163.9 49.5
255.vortex 424300 238188 239328 972 983 977 49.9 64.8 23.6
256.bzip2 67531 26944 27349 134 146 146 7.1 10.1 3.2
300.twolf 1085151 560064 564956 1110 1194 1203 91.7 155.7 33.1
total 7123065 3977687 4018095 10390 10928 10928 801.5 1226.5 334.5

It can be seen from the final row of Table 2 that our new heuristic produces a spill
cost 44% lower than that of the MDMS heuristic, and 1% lower than graph colouring.
This result represents a large improvement over the previous heuristic, and places PBQP
on a par with graph colouring in terms of the allocations generated.

The poor performance, in terms of spill cost, of the MDMS heuristic compared to
graph colouring has not been observed before. Previous work on PBQP for register allo-
cation using this heuristic, given in [8], was carried out using embedded systems bench-
marks. These benchmarks have smaller interference graphs than those of SPEC2000.
For such graphs the RN reduction rule is seldom invoked, and the choice of RN heuris-
tic has less impact upon the final result.

The MDMS heuristic generates fewer spills overall than either of the other methods,
despite producing a worse allocation overall. This occurs because the MDMS heuristic
always reduces the node of highest degree, regardless of whether the node is colourable.
Choosing such a node lowers the degree of the maximum number of neighbours, reduc-
ing the chance of further spills. No effort is made to decide whether this is a good spill
decision however, which leads to a poor final allocation.

Both PBQP heuristics are considerably slower than graph colouring. The MDMS
heuristic takes a factor of 2.4 times longer than graph colouring over all benchmarks.
An original naive implementation of our heuristic required a factor of 25 times longer
than graph colouring. We determined however that most of this time was spent in un-
necessary re-evaluations of matrices. By implementing a caching strategy for per-matrix
information and using lazy evaluation to update these caches we were able to reduce
the time taken to the present factor of 3.7 times longer than graph colouring. Previous
work on register allocation [12] showed that the time taken to solve the graph colouring
problem is only a small fraction of the overall allocation time. As such we would not
expect our method to significantly increase the total compile time.

Table 3 gives the results produced by each solver for those functions which we were
able to solve optimally. The first column gives the number of functions solved optimally

Nearly Optimal Register Allocation with PBQP 359

Table 3. Optimal Costs, Spills and Comparisons

Functions Spill Cost Spills
Benchmark Optimal New GrCo Optimal New GrCo

164.gzip 73 47603 47605 48268 105 104 108
175.vpr 207 286466 291553 289036 600 605 599
176.gcc 1491 595785 602444 611952 2212 2281 2272
181.mcf 24 69404 69440 69445 81 82 83
186.crafty 59 23702 23789 24078 120 121 123
197.parser 280 144464 148540 154400 320 329 329
252.eon 686 366613 366723 367874 775 782 775
253.perlbmk 800 429530 441131 451981 795 825 833
254.gap 710 1033923 1042452 1049729 1634 1672 1688
255.vortex 815 225461 228250 229673 862 875 869
256.bzip2 58 23179 24344 27349 92 99 97
300.twolf 149 368726 375961 378710 528 544 547
total 5352 3614856 3662232 3699885 8124 8319 8323

for each benchmark and overall. The next three columns give the spill costs for the
optimal solution, PBQP using our new heuristic, and graph colouring. The final three
columns give the number of spills generated by each of the methods.

Overall we were able to solve 97.4% of the functions in the SPEC2000 benchmarks
optimally over a period of about a day. From the final row it can be seen that the optimal
spill cost is 1.3% lower than that produced by our heuristic, and 2.3% lower than that
of graph colouring. Our heuristic never generated spill costs more than 3% above the
optimal for any benchmark (the highest was perlbmk at 2.7%). Graph colouring never
generated an allocation more than 7% above the optimal for any benchmark (the highest
was parser at 6.9%). The small margins between the optimal spill costs and the heuris-
tics show that there is little room for improvements for a fairly regular architecture such
as IA-32.

6 Related Work

Graph colouring approaches [2,3] are a success story for RISC architectures with large
register banks and an orthogonal instruction set. However, attempts to adapt graph
colouring to irregular architectures have produced ad-hoc modifications which fail to
provide a unified method for dealing with irregularities. Each of these methods is able
to deal with a certain subset of irregularities at the expense of breaking from the simple
graph colouring analogy.

Smith et al. [5] introduced a new colourability criterion for irregular architectures
which is able to determine colourability for architectures featuring register classes and
aliasing. However, their approach cannot deal with complex constraints between two
symbolic registers such as pairing or dedicated registers. Runeson and Nyström [13]
present a retargetable graph-colouring register allocator based on the 〈p, q〉 test, which
is similar to the work in [5]. Other techniques for graph colouring such as the technique

360 L. Hames and B. Scholz

introduced by Koseki et al. [14] modifies the selection phase to increase the likelihood
that symbolic registers are given their preferred registers. However, their algorithm can
only deal with certain aspects of irregular architectures.

Register allocation based on Integer Linear Programming (ILP) was introduced by
Goodwin and Wilken [15]. The approach maps the register allocation problem to an
integer linear program, which is solved by CPLEX, a commercial solver for generic
ILP problems. The work was extended by Kong and Wilken [6] for irregular architec-
tures. Recently, in [16], an approach was introduced which uses a progressive solver for
solving register allocation problems based on multi commodity network flows. With
their approach not all possible constraints occurring in irregular architectures can be
modelled.

Recently, register allocation approaches exploiting the tree structure of SSA graphs
have been investigated [17] stating that the graph colouring problem is solvable in
polynomial time without considering coalescing costs at phi-nodes. However these ap-
proaches do not consider any irregularities.

Most of the work in this paper builds on work described in [8,11]. The PBQP opti-
misation problem accommodates for the needs of solving the register allocation prob-
lem for a wide range of irregularities. It is a fairly comprehensive approach. However,
the exhaustive enumeration approach introduced in [11] is intractable for larger bench-
marks and the approach introduced in [8] has a poorly performing heuristic for larger
benchmarks and more regular architectures. Both problems have been resolved by this
work.

7 Future Work and Conclusion

In this paper we have presented a new PBQP heuristic for register allocation. For larger
benchmarks and moderately irregular architectures the new heuristic performs signif-
icantly better than the MDMS heuristic introduced in [8]. We also describe a new al-
gorithm for PBQP based on branch-and-bound. The branch-and-bound algorithm was
extended to use a heuristic to find a tight upper bound for its global minimum. With
this technique we show that 97.4% of the register allocation problems in the SPEC2000
integer benchmark suite can be solved optimally in less than a day.

With the given framework there is still the algorithmic challenge to solve every reg-
ister allocation problem in SPEC2000 optimally. This challenge might be achieved by
exploring some decomposition properties of PBQP, i.e. a PBQP problem disintegrates
into independent sub-problems during the reduction phase. By solving the sub-problems
independently the search space of the branch-and-bound solver will be significantly
reduced.

We plan to integrate this method into a modern optimising compiler in order to eval-
uate our method’s effects on code size and execution speed. Given the closeness of the
spill costs we have seen we do not expect significant deviation between our method and
graph colouring for IA-32 using these metrics. However we plan to apply both methods
to more irregular architectures where we would expect a greater variation.

With the optimal solution as a yardstick we have shown that current graph colour-
ing heuristics [5] for irregular architectures and the new PBQP heuristic introduced in

Nearly Optimal Register Allocation with PBQP 361

this work are on average 2% from the optimal solution. In future there will be very
little room for further progress in finding better optimisation heuristics for moderately
irregular architectures.

References

1. Moore, G.: 40th Anniversary of Moore’s Law. Press Conference (2005)
2. Chaitin, G.J., Auslander, M.A., Chandra, A.K., Cocke, J., Hopkins, M.E., Markstein, P.W.:

Register allocation via coloring. Computer Languages 6 (1981) 47–57
3. Briggs, P., Cooper, K.D., Torczon, L.: Improvements to graph coloring register allocation.

ACM Trans. Program. Lang. Syst. 16(3) (1994) 428–455
4. Briggs, P., Cooper, K.D., Torczon, L.: Coloring register pairs. ACM Lett. Program. Lang.

Syst. 1(1) (1992) 3–13
5. Smith, M.D., Ramsey, N., Holloway, G.: A generalized algorithm for graph-coloring register

allocation. In: PLDI ’04: Proceedings of the ACM SIGPLAN 2004 Conference on Pro-
gramming Language Design and Implementation, New York, NY, USA, ACM Press (2004)
277–288

6. Kong, T., Wilken, K.D.: Precise register allocation for irregular architectures. In: MICRO 31:
Proceedings of the 31st annual ACM/IEEE international symposium on Microarchitectures,
Los Alamitos, CA, USA, IEEE Computer Society Press (1998) 297–307

7. Koes, D., Goldstein, S.C.: A progressive register allocator for irregular architectures. In:
CGO ’05: Proceedings of the international symposium on Code generation and optimization,
Washington, DC, USA, IEEE Computer Society (2005) 269–280

8. Scholz, B., Eckstein, E.: Register allocation for irregular architectures. In: LCTES/SCOPES
’02: Proceedings of the joint conference on Languages, compilers and tools for embedded
systems, New York, NY, USA, ACM Press (2002) 139–148

9. Eckstein, E.: Code Optimizations for Digital Signal Processors. PhD thesis, Institute of
Computer Languages, Compilers and Languages Group, Vienna University of Technology
(2003)

10. Murty, K.G.: Operations Research: Deterministic Optimization Models. Prentice Hall (1995)
11. Hirnschrott, U., Krall, A., Scholz, B.: Graph -coloring vs.optimal register allocation for opti-

mizing compilers. Proceedings of the Joint Modular Language Conference (2003) 202–213
12. Briggs, P.: Register allocation via graph coloring. Technical Report TR92-183, Department

of Computer Science, Rice University (1998)
13. Runeson, J., Nyström, S.: In Software and Compilers for Embedded Systems (SCOPES). In:

Retargetable Graph-Coloring Register Allocation for Irregular Architectures. Volume 2826
of Lecture Notes in Computer Science. Springer Press, Klagenfurt, Austria. (2003) 240–254

14. Koseki, A., Komatsu, H., Nakatani, T.: Preference-directed graph coloring. In: PLDI ’02:
Proceedings of the ACM SIGPLAN 2002 Conference on Programming language design and
implementation, New York, NY, USA, ACM Press (2002) 33–44

15. Goodwin, D.W., Wilken, K.D.: Optimal and near-optimal global register allocations using
0–1 integer programming. Softw. Pract. Exper. 26(8) (1996) 929–965

16. Koes, D., Goldstein, S.C.: A global progressive register allocator. In: PLDI ’06: Proceedings
of the ACM SIGPLAN 1990 conference on Programming language design and implementa-
tion, Ottawa, ON, Canada, ACM Press (2006) (to appear)

17. Pereira, F.M.Q., Palsberg, J.: Register allocation via coloring of chordal graphs. In:
APLAS’05: Proceedings of APLAS’05, Asian Symposium on Programming Languages and
Systems, Springer Spress (2005) 315–329

	Introduction
	Background
	PBQP
	PBQP for Register Allocation

	PBQP Heuristic
	Branch-and-Bound for PBQP
	Experiments
	Related Work
	Future Work and Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

