
Automatic Object Colocation Based

on Read Barriers�

Christian Wimmer and Hanspeter Mössenböck

Institute for System Software
Christian Doppler Laboratory for Automated Software Engineering

Johannes Kepler University Linz
Linz, Austria

{wimmer, moessenboeck}@ssw.jku.at

Abstract. Object colocation is an optimization that reduces memory
access costs by grouping together heap objects so that their order in
memory matches their access order in the program. We implemented this
optimization for Sun Microsystems’ Java HotSpotTM VM. The garbage
collector, which moves objects during collection, assigns consecutive ad-
dresses to connected objects and handles them as atomic units.

We use read barriers inserted by the just-in-time compiler to detect the
most frequently accessed fields per class. These “hot fields” are added to
so-called hot-field tables, which are then used by the garbage collector for
colocation decisions. Read barriers that are no longer needed are removed
in order to reduce the overhead. Our analysis is performed automatically
at run time and requires no actions on the side of the programmer.

We measured the impact of object colocation on the young and the
old generation of the garbage collector, as well as the difference between
dynamic colocation using read barriers and a static colocation strategy
where colocation decisions are done at compile time. Our measurements
show that object colocation works best for the young generation using a
read-barrier-based approach.

1 Introduction

Object-oriented applications tend to allocate large numbers of objects that refer-
ence each other. If these objects are spread out randomly across the heap, their
access is likely to produce a large number of cache misses. This can be avoided if
objects that reference each other are located consecutively. Changing the object
order so that related objects are next to each other is called object colocation.
It is conveniently implemented as part of garbage collection where live objects
are moved to new locations. In general, the access pattern of objects cannot be
determined statically because it depends on how the program is used and which
classes are dynamically loaded. Therefore the analysis of access patterns must
be done at run time.
� This work was supported by Sun Microsystems, Inc.

D. Lightfoot and C. Szyperski (Eds.): JMLC 2006, LNCS 4228, pp. 326–345, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Automatic Object Colocation Based on Read Barriers 327

Figure 1 shows an example of an object graph taken from the benchmark
227 mtrt of the SPECjvm98 benchmark suite [12]. Objects of the instance
classes OctNode, Face and Point as well as of the array classes Face[] and
Point[] form an access path that accounts for 70% of all reference field loads.
The objects have a size of 16 to 40 bytes, so up to four objects fit in a typical
cache line of 64 bytes. Colocating the objects reachable from an OctNode ob-
ject therefore reduces the memory access costs when a Point of an OctNode is
accessed.

x
y
z

Vertslength
[0]
[1]
...

Adjacent
OctFaces
Child

OctNode Face[] Face Point
length
[0]
[1]
...

Point[]

ObjList
NumObj

8

12

16

8

12

16

88

12

16

8

12

16

20

24

Fig. 1. Motivating example for object colocation

A static colocation strategy, e.g. one that always colocates the object ref-
erenced by the first field of another object, is only suitable for simple data
structures. For objects with more than one reference field, the first field is typ-
ically not the most frequently accessed one. For example, the field OctFaces
of OctNode objects has a 10 times higher access frequency than the first field
Adjacent.

We implemented a dynamic analysis for Sun Microsystems’ Java HotSpotTM

VM that identifies frequently accessed “hot fields” on a per-class basis using
read barriers. If a field counter reaches a certain threshold, the field is added to
the hot-field table of the according class. The read barriers are inserted into the
machine code by the just-in-time compiler. To minimize the run-time overhead,
read barriers that are no longer needed are removed.

The garbage collector uses the hot-field tables to decide which objects should
be colocated and assigns consecutive addresses to these objects when they are
moved during collection. This goes beyond previous approaches that modify only
the order in which a copying collector processes reference fields: We treat a set
of colocated objects as an atomic unit and guarantee that it is not separated in a
later garbage collection run. This paper contributes the following novel aspects:

– We implemented object colocation in a system with dynamic class loading
and different garbage collection algorithms.

– We use read barriers inserted by the just-in-time compiler to get a dynamic
field access profile with a negligible run-time impact.

– We evaluate our implementation and compare different configurations of the
garbage collector. We also compare the dynamic read-barrier-based approach
with a static colocation strategy.

328 C. Wimmer and H. Mössenböck

2 System Overview

Figure 2 shows the structure of the Java HotSpotTM VM with the relevant
subsystems. We modified the default configuration for interactive desktop ap-
plications, called the Client VM, which uses a fast just-in-time compiler and a
generational garbage collector with two generations. The Client VM is available
for Intel’s IA-32 and Sun’s SPARC architecture, but object colocation is cur-
rently only implemented for the IA-32 architecture because the code patterns
for the read barriers are platform dependent.

uses

bytecodes

heap

young generation

old generation

machine code

jit compilerinterpreter

garbage collector

stop-and-copy

mark-and-compact

class loader

nursery from to

old space

execution engine

loads
executes compiles generates

read barriers

access fields

increments
hot-field tables

generates
object colocation

fill

collects

collects

Fig. 2. System structure of the Java HotSpotTM VM

Methods are loaded by the class loader and start being executed by the in-
terpreter. Only frequently executed methods are compiled to minimize the com-
pilation overhead. Both interpreted and compiled methods access objects in the
heap, which is divided in a young and an old generation. The young generation
is collected using a stop-and-copy algorithm that copies live objects between
alternating spaces. A full collection of both generations is done using a mark-
and-compact algorithm [7]. Section 4 presents details of these algorithms.

The garbage collector accesses the hot-field tables that store parent-child rela-
tionships of classes whose objects should be colocated. The access profile of fields
is collected by read barriers, which are emitted by the just-in-time compiler into
the generated machine code and increment a counter for each field load. Fields
with high counter values are added to the hot-field tables. Section 3 presents the
code patterns used for the read barriers.

A parent object and the child object referenced by the parent’s most frequently
accessed field are placed next to each other in the heap. If a second field also
has high access counts, the corresponding child is placed consecutively to the
first one, and so on. Objects referenced by fields with low access counts are not
colocated because the optimization of rarely accessed data structures does not
pay off.

Automatic Object Colocation Based on Read Barriers 329

Accesses to array elements are counted in the same way as field accesses.
However, the colocation of objects referenced by array elements is more compli-
cated because all elements are usually accessed with similar frequencies. As a
pragmatic solution, we colocate only the object referenced by the first element.

2.1 Hot-Field Tables

A hot-field table is a VM-global data structure that is built for every class with
hot fields. It is rooted in the data structure maintained by the VM for each
loaded class, which already stores information such as super- and subclasses,
fields and methods of the class.

Figure 3 shows a fragment of the hot-field tables for our example benchmark
227 mtrt. The table for a parent class stores a list of child entries for its hot
fields. Each entry holds the offset (off) of the field as well as the field’s declared
child class. The order of the children is important: The first entry of the list is
processed first by the garbage collector, so the first child is placed consecutively
to the parent.

Face[]
OctNode[]
ObjNode
OctNode[]

12
16
20

8

Face-1 Point[]8 Point-1

OctNode

classes

hot-field tables

Face[] Face Point[] Point

off off off offclass class class class

Fig. 3. Example of hot-field tables

The list contains only frequently accessed children because optimizing rarely
accessed data structures only introduces overhead to the garbage collector. There
is no table for the class Point because this class only stores scalar fields. Since
array classes do not have a list of fields with according field offsets, the special
marker value -1 is used as the offset in the table. It is replaced by the index of
the first non-null array element when an actual object graph is constructed.

A hot-field table does not contain child entries for fields declared in a su-
perclass. Instead, the superclass has its own hot-field table. Similarly, a table
contains only direct children. Indirect children are only implicitly visible: the
class of a child entry also has its own hot-field table. In our example, a Face[]
object is a direct child of an OctNode object, while Face, Point[] and Point
objects are indirect children of this OctNode. During garbage collection, all di-
rect and indirect children of an object are captured by a separate table, which
is discussed in Sect. 4.1.

330 C. Wimmer and H. Mössenböck

2.2 Identifying Hot Field Loads

The hot-field tables are filled dynamically at run time. To achieve the best
results, they should contain only the most frequently accessed fields in the correct
order. We use read barriers emitted by the just-in-time compiler to detect hot
field accesses. Section 3.1 presents the code that is inserted by the compiler. We
count only field loads and not field stores because a high number of stores can
indicate a frequently changing data structure where object colocation is difficult
or even impossible. Furthermore, we ignore loads of scalar fields and emit read
barriers only for loads of reference fields.

We also experimented with a static approach to object colocation where the
just-in-time compiler fills the hot-field tables with all fields that are accessed
in compiled methods instead of emitting read barriers. The resulting hot-field
tables are bigger, but still useful because only a small fraction of methods is com-
piled and the tables do not contain fields that are accessed only by interpreted
methods. In Sect. 5.2 we compare the two approaches.

3 Read Barriers

Read barriers allow dynamic measurements of an application’s memory access
behavior. A read barrier is a piece of machine code that is inserted after the code
that performs the actual load of a reference field. We use two different kinds of
read barriers:

– A simple read barrier identifies frequently accessed fields that are worth
being optimized by object colocation.

– A detailed read barrier collects data for the analysis and verification of the
optimizations. It counts the number of field accesses where a parent object
and its child objects are colocated as well as in the same cache line.

Simple read barriers are a prerequisite of our object colocation and therefore
always enabled. In contrast, detailed read barriers are currently not intended for
production use. When analyzing the impact of object colocation, as presented
in Sect. 5.2, detailed read barriers are enabled via a VM flag.

The read barriers are inserted by the just-in-time compiler because it has
full information about fields: The instruction for a field access in the compiler’s
intermediate representation contains the class that declares the field (the par-
ent class), the field offset and the type of the field (the child class). With this
information, a unique counter is created for each field. When the same field is
accessed in different methods, the same counter is used. The few field accesses
that are performed by the interpreter are thus not counted, but this does not
affect the precision of the measurements.

The address of a counter is statically known and can be directly emitted into
the machine code. This allows a read barrier to be efficiently implemented as a

Automatic Object Colocation Based on Read Barriers 331

single increment instruction, which nevertheless counts only accesses to a par-
ticular field of a class. Section 3.1 shows the details of the emitted instructions.

Our read barriers take compiler optimizations into account: The compiler
eliminates a field load if the value of the field is known at compile time or if the
load is redundant, and also does not emit a read barrier for these loads. So the re-
sulting counter values can be lower than a naive counting using an instrumented
interpreter, but they better reflect the actual behavior of an application.

3.1 Code Patterns for Read Barriers

Figure 4 shows the code pattern for a simple read barrier that increments a
counter for a field load. Assume that the field at offset 8 is to be loaded, that
the object’s address is already in register eax, and that the counter is located at
the fixed address 5000h. The IA-32 instruction set allows instructions to operate
on memory operands [6], so it is not necessary to load the counter value into a
register. Only a single instruction is emitted for the increment.

 ... // eax: base address of object
mov ebx, ptr [eax+8] // access field at offset 8
inc ptr [5000h] // increment counter

 ... // ebx: result of field load

Fig. 4. Code pattern for a simple read barrier

A simple read barrier is sufficient for identifying hot fields, but for the evalua-
tion of object colocation we are also interested in statistical data about colocated
objects and the cache behavior. Figure 5 shows the code pattern for a detailed
read barrier that checks if a parent object and a child object are located in the
same cache line.

 ... // eax: base address of object
 mov ebx, ptr [eax+8] // access field at offset 8
 dec ptr [4000h] // decrement slowcase counter
 jle slowcase // slowcase if counter reaches 0
continue: ... // ebx: result of field load

slowcase: mov ptr [4000h], 1000 // reset slowcase counter
inc ptr [5000h] // increment total counter
lea esi, ptr [eax+8] // compute address of field
xor esi, ebx // check if address and value of
and esi, 0FFFFFFC0h // field are in same cache line
jne skip_inc
inc ptr [5004h] // increment cache line counter

skip_inc: ... // check for object colocation
jmp continue

Fig. 5. Code pattern for a detailed read barrier

332 C. Wimmer and H. Mössenböck

Executing the complete sequence of more than 15 instructions for each field
load would be too expensive. Therefore, the code is placed in a slow case [4] that
collects data only for every 1000th field load. A global counter is decremented
at each field load. Assume that the address of this counter is 4000h. When the
counter reaches 0, the slow case is executed.

The slow case resets the counter to 1000 and increments a total counter at
the address 5000h. The address of the referencing field is loaded to esi, and the
address of the referenced object is already in ebx. These addresses are in the
same cache line with a size of 64 bytes if all but their lower 6 bits are identical,
which is checked using the xor and and instructions. In this case the cache line
counter at the address 5004h is incremented. Dividing the cache line counter by
the total counter yields the percentage of objects that are in the same cache line.

The slow case also computes a colocation counter that counts the number of
cases in which the parent object and its child are colocated. This part of the code
has been omitted from Fig. 5 because it is similar to the code for computing the
cache line counter. If the base address of the parent object (which is in eax)
plus the size of the object (which is retrieved via the class pointer stored in the
object’s header) equals the address of the child object (which is in ebx), the
objects are colocated and the counter is incremented.

3.2 Processing of Counters

When the counter of a field has exceeded a certain threshold at the time of the
next garbage collection, the field is recorded in the hot-field table of the parent
class. The time between two garbage collections is used as the measurement
interval. We want to record fields that are accessed frequently in this period,
and to filter out the large number of fields that are accessed infrequently. As a
heuristic, a field is added to the hot-field table if it accounts for more than 6%
of all field loads in the last period.

The heuristic fills the tables iteratively: At the first garbage collection, fields
with an exceptionally high access frequency (and therefore a high percentage)
are added to the hot-field tables. Their read barrier counters are then invalidated
and ignored when computing the percentages at the second garbage collection,
so the next fields with still a high access frequency are added. This is repeated
until a stable state is reached where most fields have similar access frequencies,
so no single one is above 6%.

Incrementing a counter for each field load involves some run-time overhead.
Therefore, read barriers are removed as soon as they are no longer needed, i.e.
after the corresponding field was added to the hot-field table or if the access count
was low for a long time. This is done by recompiling all methods that increment
the read barrier’s counter. The machine code of those methods is marked so
that the compiler is invoked when the method is called the next time. Because
read barriers whose counters were invalidated are ignored during compilation,
the new code does not contain these read barriers anymore.

Automatic Object Colocation Based on Read Barriers 333

4 Modifications of Garbage Collection Algorithms

The Java HotSpotTM VM uses a generational garbage collection system with dif-
ferent collection algorithms. The default configuration uses two generations with
a stop-and-copy algorithm for the young generation and a mark-and-compact al-
gorithm for a full collection of both generations.

When the young generation is collected, live objects are copied between two
alternating spaces, called the from-space and the to-space. After several copying
cycles, an object is promoted to the old generation. New objects are allocated
in a separate nursery space of the young generation that is treated as a part of
the from-space during collection.

When the old generation is full, the entire heap is collected by a mark-and-
compact algorithm. All live objects are marked and then moved towards the
beginning of the heap in order to eliminate gaps between live objects. This takes
more time than a collection of the young generation, but it is only necessary if
no more space is available for the promotion of young objects.

We integrated our object colocation algorithm into both algorithms and allow
switching it on and off independently. This allows us to evaluate the benefits
of the optimization in both generations. However, enabling object colocation
for the young generation also affects the old generation: Groups of colocated
objects are promoted together, so the order of objects in the old generation
is also partly optimized. Because the unmodified mark-and-compact algorithm
does not change the object order, the optimized order is preserved.

4.1 Colocation Tables

The hot-field tables introduced in Sect. 2.1 are easy to maintain because they
store only direct children. However, it is expensive to detect all direct and indirect
children that should be colocated to a particular parent object. To limit the
overhead during garbage collection, an additional colocation table is created from
the hot-field table for each class. Figure 6 shows the colocation tables for the
running example of 227 mtrt.

Each table contains a flat list of all fields that should be colocated for a given
class. It is created once before garbage collection, and filled with objects multiple
times during garbage collection. The first entry stores the parent object for which
the table is filled; all other entries are direct or indirect children of this object.
The columns contain the following information:

– Field offset (off): The offset of the field whose value is stored in this entry,
or -1 as a marker for arrays.

– Parent entry (par): The index of this object’s immediate parent in the same
table. It is 0 for direct children and greater than 0 for indirect children of
the parent object for which the table is filled.

– Object (obj): The actual object that is referenced by this field. It is filled in
during garbage collection.

334 C. Wimmer and H. Mössenböck

12

16
20

8

-1
8

-1

off par

1

5

6

7

2

3

4

0

0

0
0
0

1
2
3

-1
8

-1

1

2

3

0

0
1
2

8
-1

1

2

0

0
1

obj
off par obj

off par obj
off par obj

1

0

-1 0

OctNode Face[] Face Point[]

classes

colocation tables

OctNode object
Face[] object
Face object
Point[] object
Point object

Fig. 6. Example of colocation tables used during garbage collection

In our example, all information required for the colocation of direct and in-
direct children of an OctNode object is contained in the colocation table for
OctNode: The entries with the indices 1, 5, 6 and 7 denote fields that reference
direct children of the OctNode object with the index 0. The entries 2, 3 and
4 denote indirect children of the OctNode object as shown in Fig. 1. They are
direct children of the entries 1, 2 and 3, respectively.

If a Face[] object is not colocated to an OctNode object, we need the coloca-
tion table of Face[]. This table is smaller because it contains only the objects
that are colocatable to a Face[] object. Similarly, there are colocation tables for
the classes Face and Point[]. These tables contain a part of the information of
the bigger tables, indicated by the dashed lines in Fig. 6.

The algorithm GetChildren of Fig. 7 is used during garbage collection to
fill a colocation table with the children of a specific parent: After the parent
object has been stored in the first entry, all its children are iterated. Because the
immediate parent of a child is always located before this child, c.par has already
been added to the table before c and the field with the offset c.off of the object
c.par.obj can be accessed.

GETCHILDREN(obj)
tab = colocation table for class of obj
if tab not found then

return empty table

tab[0].obj = obj // initialize first entry, which holds the parent
for i = 1 to tab.length - 1 do // iterate all entries except the first

c = tab[i] // get the entry of the current child
c.obj = c.par.obj.fieldAt(c.off) // access the field at the specified offset

return tab

Fig. 7. Algorithm for filling a colocation table during garbage collection

Automatic Object Colocation Based on Read Barriers 335

4.2 Stop-and-Copy Collection of the Young Generation

Figure 8 shows the basic StopAndCopy algorithm. First, all objects referenced
by root pointers are copied from the from-space to the to-space using CopyOb-
ject. Allocating memory in the to-space requires only an increment of the end
pointer. Each object of the from-space that has been copied stores a forwarding
pointer to its new location. All objects referenced by copied objects are also alive
and must therefore be copied as well. The algorithm uses the to-space as a queue
and scans all copied objects in sequential order. The forwarding pointer is used
to prevent copying an object twice.

STOPANDCOPY
toSpace.end = toSpace.begin
for each root pointer r do

r = COPYOBJECT(r)

obj = toSpace.begin
while obj < toSpace.end do

for each reference r in obj do
r = COPYOBJECT(r)

obj += obj.size

COPYOBJECT(obj)
if obj is forwarded then

return obj.forwardee

newObj = toSpace.end
toSpace.end += obj.size
memmove(obj, newObj, obj.size)
obj.forwardee = newObj
return newObj

Fig. 8. Stop-and-copy algorithm used for collection of the young generation

This breath-first copying scheme is simple and efficient, but it leads to a
random order of copied objects in the to-space. An object is copied when the
first reference to it is scanned. A depth-first copying scheme, where all referenced
objects are copied immediately after the object itself, would result in a better
object order, but it would require an explicit stack of objects to be scanned.

We extended the breath-first copying so that it processes groups of objects
instead of individual objects. When a parent object has to be copied, the colo-
cation table is filled using the algorithm GetChildren. All child objects in the
table are copied together with their parent object. The necessary memory for
the object group is allocated at once. Figure 9 shows the modified algorithm for
CopyObject. The handling of child objects that are already in the old gener-
ation has been omitted from the algorithm; such children are simply ignored.

The root pointers are processed in an arbitrary order. If both the parent
object and a child object are referenced by a root pointer, it can happen that
the child object is copied before the parent. Because an object must not be
copied twice, the two objects cannot be colocated in this garbage collection run.
This is checked in the algorithm before colocating a child.

To avoid children that are copied before their parent, objects that were once
detected to be colocation children are tagged with a dedicated bit in the object
header, referred to as isColocationChild in the algorithm. The copying of tagged
objects is delayed until the parent object is processed, so the colocation succeeds.
Because all children keep the tag for their entire lifetime, objects are guaranteed
to stay colocated even if new root pointers to children are introduced.

336 C. Wimmer and H. Mössenböck

COPYOBJECT(obj)
if obj is forwarded then

return obj.forwardee // prevent copying an object twice
if obj.isColocationChild then

return fixupMarker // delay copying; a fixup is done when obj is copied later

tab = GETCHILDREN(obj) // get children of obj (may return empty table)
allocSize = obj.size // computation of total allocation size
for i = 1 to tab.length - 1 do

tab[i].obj.isColocationChild = true // tagging of object as colocation child
if tab[i].obj is not forwarded then

allocSize += tab[i].obj.size // only non-forwarded objects can be colocated

newObj = toSpace.end // allocate memory for parent and all children
toSpace.end += allocSize

memmove(obj, newObj, obj.size) // copy and forward parent object
obj.forwardee = newObj
offset = obj.size
for i = 1 to tab.length - 1 do // copy and forward all children

if tab[i].obj is not forwarded then
memmove(tab[i].obj, newObj + offset, tab[i].obj.size)
tab[i].obj.forwardee = newObj + offset
offset += tab[i].obj.size

return newObj

Fig. 9. Object colocation for the stop-and-copy algorithm

When the copying of a child object is delayed, the references to the child
require a later fixup. CopyObject returns a fixup marker and the reference is
added to a list. When the scan of the to-space is completed, these references
are updated to the forwarding pointer of the child object that was set during
the colocated copying. In rare cases it can happen that the parent object died,
but the child object is still alive because another object holds a reference to the
child. Similarly, a field update of the parent object can install a new child object
and leave the old one without a parent. Such objects are still uncopied in the
fixup phase, so they are copied before the fixup and the colocation bit is cleared.

4.3 Mark-and-Compact Collection of the Old Generation

The stop-and-copy collection of the young generation also affects the old gener-
ation because colocated objects are promoted together and are therefore already
partly colocated in the old generation. However, a collection of the young gen-
eration can only colocate a group of objects if all members of this group are
still in the young generation. If a child has already been promoted, it cannot be
colocated. In contrast, a collection of the entire heap can colocate all objects.

The mark-and-compact algorithm processes all live objects of the old and
the young generation. Because it places all objects contiguously into the old
generation, this is called a collection of the old generation. It requires four phases:

Automatic Object Colocation Based on Read Barriers 337

1. Mark live objects: The heap is traversed recursively starting with the root
pointers to mark all live objects.

2. Compute new addresses : In a linear walk through the heap each object is
assigned a new address, which is stored in the object’s forwarding pointer.
Because gaps between live objects are removed, objects move towards the
beginning of the heap.

3. Adjust pointers : All root pointers and inner pointers of objects are updated to
point to the new addresses stored in the forwarding pointers of the referenced
objects.

4. Move objects: In another linear walk through the heap the objects are copied
to their new locations. Because objects move only towards the beginning
of the heap, the memory of the new location can be overwritten without
precautions.

The basic mark-and-compact algorithm preserves the order of objects. This
simplifies object colocation because the correct order needs to be established
only once. We extended the basic algorithm by modifying the phases 1, 2 and 4
in the following way:

In phase 1, all parents and children are detected. For each object whose class
has a colocation table, we use GetChildren (see Fig. 7) to fill the table with
the actual children of this object. The children are then tagged as in the stop-
and-copy algorithm.

When a parent object is processed in phase 2, GetChildren must be called
again because there is only one colocation table per class. All children of this
object get consecutive addresses assigned. This may change the order of objects
in the heap. With the help of the tags that are set in phase 1, the processing of
a child is delayed when it would be processed before its parent. So a child object
never gets a new address assigned before its parent. As a result, child objects
can now move also towards the end of the heap.

Since objects can now also move towards the end of the heap, phase 4 must
take precautions to rescue such objects. They are first copied into a scratch area
and then copied back to their final location after all other objects were processed.
However, this is only necessary for a small number of objects because at the next
collection the object order is already correct, so no reordering and no rescuing
is necessary.

5 Evaluation

We integrated our object colocation algorithm in the Java HotSpotTM VM of Sun
Microsystems, using a development snapshot of the upcoming Java SE 6 called
Mustang [14]. Currently, we work with the Mustang build 66 from January 2006.
Compared with the current JDK 5.0, the VM of this build includes optimiza-
tions such as a new object locking scheme called biased locking, and an improved

338 C. Wimmer and H. Mössenböck

just-in-time compiler using an intermediate representation in static single as-
signment form and a linear scan register allocator [16].

All measurements were performed on an Intel Pentium D processor 830 with
two cores running at 3.0 GHz. Each core has a separate L1 data cache of 16 KByte
and an L2-cache of 1 MByte. The cache line size is 64 bytes for both caches.
The main memory of 2 GByte DDR2 RAM is shared by the two cores. Microsoft
Windows XP Professional was used as the operating system. Both garbage col-
lection algorithms are neither parallel nor concurrent. Therefore, the second core
of the processor is idle during garbage collection. We evaluated our work with
the SPECjbb2005 benchmark [13] and the SPECjvm98 benchmark suite [12].

The SPECjbb2005 benchmark1 emulates a client/server application. The re-
sulting metric is the average number of transactions per second executed on a
memory-resident database. Since the default maximum heap size of the
HotSpotTM VM is too small for this benchmark, the heap was enlarged to 512
MByte via a VM flag.

The SPECjvm98 benchmark suite2 consists of seven benchmarks derived from
real-world applications, which cover a broad range of scenarios where Java appli-
cations are deployed. They are executed repeatedly until there is no significant
change in the execution time any more. The speedup of the fastest run compared
to a reference platform is reported as the metric for each benchmark, and the
geometric mean of all metrics is computed.

Scientific applications usually operate on large arrays, so no performance gain
can be expected from object colocation. However, there should also be no slow-
down due to read barriers or additional garbage collection overhead. In order to
verify this, we performed all measurements of the next sections also for SciMark
2.0 [11], a benchmark for scientific applications that executes several numeri-
cal kernels. All configurations of read barriers and object colocation showed the
same results.

5.1 Read Barriers

Read barriers impose a run-time overhead because additional code must be ex-
ecuted for each field load. Table 1 compares the baseline version where all our
changes are disabled, simple read barriers as described in Sect. 3.1 that are al-
ways enabled, and simple read barriers that are removed when the counters reach
the threshold as described in Sect. 3.2. Object colocation was disabled for all
measurements, so no optimizations were performed.

Counting all field loads leads to an average overhead of 30%, with a maximum
slowdown of nearly 80% for the field-access-intensive benchmark 227 mtrt. This
shows that such a naive read barrier is unfeasible, so we have to remove unneces-
sary read barriers. When read barriers are removed, the slowdown is reasonably
small, with an average of 1%.
1 All SPECjbb2005 results were valid runs according to the run rules. The measure-

ments were performed with one JVM instance.
2 All SPECjvm98 results are not approved metrics, but adhere to the run rules for

research use. The input size 100 was used for all measurements.

Automatic Object Colocation Based on Read Barriers 339

Table 1. Benchmark results for read barriers (higher is better)

SPECjvm98 mean
_227_mtrt
_202_jess
_201_compress
_209_db
_222_mpegaudio
_228_jack
_213_javac

SPECjbb2005

baseline always enabled
216.6 150.2 -30.6%

with removal
214.4 -1.0%

591.9 119.6 -79.8% 583.1 -1.5%
267.2 222.1 -16.9% 260.9 -2.4%
217.7 165.1 -24.1% 219.3 0,7%

56.7 53.1 -6.4% 56.7 0.1%
389.5 323.3 -17.0% 386.8 -0.7%
234.9 208.7 -11.1% 232.1 -1.2%
125.2 110.0 -12.1% 122.8 -1.9%

14,292 9,179 -35.8% 14,152 -1.0%

read barriers read barriers

The maximum slowdown is 2.4% for 202 jess. This benchmark loads a large
number of fields with a low frequency, so the corresponding read barriers are
not removed because the recompilation overhead would be too high. The slight
speedup of some benchmarks is the result of improved optimizations during the
recompilation, e.g. a better inlining of methods.

The recompilation of methods increases the total number of method compi-
lations by 23.4% (from 1005 to 1240) for SPECjvm98 and by 48.5% (from 540
to 802) for SPECjbb2005. The additional compilation time has no significant
impact on the overall performance, especially for long-running applications.

5.2 Access Counts of Colocated Fields

Object colocation can be performed independently for the young and for the
old generation. This allows us to experiment with different scenarios: We mea-
sured the impact of object colocation when it is performed only for the young
generation, only for the old generation, or for both generations. We also experi-
mented with different strategies for filling the hot-field tables and compared our
read-barrier-based approach with a static colocation strategy: Instead of emit-
ting read barriers, the just-in-time compiler adds all fields accessed in compiled
code directly to the hot-field tables.

To assess the quality of our object colocation, we counted the number of field
accesses where the parent and the child object were colocated and where they
were in the same cache line. We use this as an approximation of the memory
access costs: When a reference field is loaded, the result of the load is typically
used for another field load in the near future. So it is beneficial if the address of
a loaded field and the value of the field are in the same cache line. In that case,
the subsequent load accesses a memory location that has already been put into
the cache during the first load.

Table 2 shows the number of fields and array elements that were loaded for
the benchmarks as well as the percentages of the loads that were colocated and
that were in the same cache line. The numbers were collected using the detailed
read barriers presented in Sect. 3.1. With object colocation the percentages are

340 C. Wimmer and H. Mössenböck

Table 2. Field loads of colocated objects and objects in same cache line

SPECjvm98 mean
_227_mtrt
_202_jess
_201_compress
_209_db
_222_mpegaudio
_228_jack
_213_javac

SPECjbb2005

2,078,900 7%
coloc. cache

6%

num. loads
(x 1,000)

baseline young gen. old gen. young gen.
coloc. cache coloc. cache coloc. cache coloc. cache

both gen.

21% 17% 18% 13% 21% 16% 20% 17%
167,000 7% 5% 59% 42% 58% 41% 59% 42% 52% 37%
171,100 19% 13% 39% 29% 19% 13% 39% 29% 41% 31%
774,900 4% 6% 4% 6% 4% 6% 4% 6% 4% 6%
356,800 0% 0% 40% 32% 37% 29% 43% 34% 41% 32%
436,500 9% 5% 9% 5% 9% 5% 9% 5% 9% 5%

61,400 22% 19% 29% 25% 26% 22% 32% 27% 36% 28%
111,200 9% 7% 24% 20% 15% 13% 26% 19% 24% 17%

— 2% 3% 33% 21% 23% 16% 33% 21% 32% 21%

read barriersread barriers read barriers static

significantly higher for most benchmarks. This shows that object colocation im-
proves both the locality of objects and the cache behavior. The detailed read
barriers collect data only for every 1000th field load, so all results are approximate
numbers. Because of the large number of loads they are nevertheless significant.

SPECjbb2005 uses a large memory-resident database implemented as trees
of objects. Object colocation succeeds to optimize these trees and increases the
percentage of colocated objects from 2% to 33%. Performing object colocation
in the young generation outperforms object colocation in the old generation
because the benchmark accesses a high number of objects located in the young
generation. Enabling object colocation in both generations does not improve
the numbers further. The number of field loads is not reported because the
benchmark does not execute a fixed workload, but runs for a fixed time.

For the benchmark 227 mtrt the percentage of colocated objects increases
from 7% to nearly 60%. Table 3 lists the most frequently accessed fields of the
benchmark. Four fields form the hot access path and account for 70% of all
field loads. These are the fields that were used in the running example of this
paper. Object colocation succeeds to colocate a high percentage of them. For the
array class Face[], only 18% (about 1/6) of the array accesses load a colocated
element because all six elements are accessed with the same frequency and only
the first element is colocated.

All three garbage collection configurations basically show the same results.
The static colocation strategy leads to the same results as the dynamic strategy
for classes with only one reference field. However, it fails to colocate the field
OctNode.OctFaces because it is not the first one.

The seven fields listed in Table 3 for the benchmark 209 db account for 99.9%
of all field loads. In the hot path a Vector of Strings that is stored in an Entry
of a Database is accessed. Colocation is possible for three of the seven fields.
The other four fields are typical examples where object colocation is not possible:
large arrays (Entry[]), frequently changing fields (Database.index), fields or
arrays of the type Object or Object[], and fields of short-living temporary
objects such as iterators (Vector$1.this$0).

Automatic Object Colocation Based on Read Barriers 341

Table 3. Frequently accessed fields of 227 mtrt and 209 db

_227_mtrt

Face.Verts
Point[]
OctNode.OctFaces

_209_db
Entry[]
Database.index

33,200 0%

coloc. cache

0%

num. loads
(x 1,000)

baseline
coloc. cache coloc. cache coloc. cache coloc. cache

18% 9% 17% 9% 18% 6% 18% 9%Face[]

Vector.elementData
Object[]
Entry.items
String.value

167,000 7% 5% 59% 42% 58% 41% 59% 42% 52% 37%

356,800 0% 0% 40% 32% 37% 29% 43% 34% 41% 32%

Vector$1.this$0

32,900 2% 2% 100% 88% 100% 87% 100% 88% 100% 89%
32,600 0% 0% 99% 61% 98% 61% 99% 61% 99% 62%
15,700 0% 0% 93% 58% 91% 56% 92% 60% 0% 0%

66,400 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
61,100 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
54,900 0% 0% 87% 74% 89% 68% 100% 80% 88% 74%
54,500 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
51,100 0% 0% 100% 79% 88% 74% 100% 84% 100% 79%
45,500 0% 0% 100% 75% 87% 65% 100% 75% 100% 75%
23,200 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

young gen. old gen. young gen.both gen.
read barriersread barriers read barriers static

For 202 jess and 213 javac, performing object colocation in the young gener-
ation outperforms object colocation of the old generation. The collection of the
old generation comes too late because the benchmarks primarily access objects
in the young generation. Enabling object colocation in both generations leads to
the same results as performing colocation only in the young generation.

Object colocation cannot optimize applications that require no garbage col-
lection. Both 201 compress and 222 mpegaudio operate on a small, fixed set of
objects that are allocated at the beginning of the execution, so the percentages
are low for all configurations.

Each benchmark is executed once to collect the counters, so this run also in-
cludes the construction of the hot-field tables. For the benchmark 228 jack the
static colocation strategy has an advantage because the tables are filled when
methods are compiled and not when counters overflow. This is early enough to
optimize a larger data structure that is created at startup. However, both strate-
gies show the same results starting with the second execution of the benchmark.

5.3 Run-Time Impact of Object Colocation

Table 4 shows the run-time results of the various object colocation scenarios.
Some benchmarks are very sensitive to garbage collection time. Because object
colocation requires additional operations for each object copied during garbage
collection, the improved cache behavior is countervailed by the garbage collec-
tion overhead. The old generation contains much more objects than the young
generation, so the overhead is higher when performing object colocation for the
old generation. However, there is still potential for optimizing the garbage col-
lection algorithms so that the slowdown for these benchmarks can probably be
eliminated in the future.

342 C. Wimmer and H. Mössenböck

Table 4. Benchmark results for object colocation (higher is better)

SPECjvm98 mean
_227_mtrt
_202_jess
_201_compress
_209_db
_222_mpegaudio
_228_jack
_213_javac

SPECjbb2005

baseline young gen. old gen. young gen.
230.0 +6.2%

both gen.
224.3 +3.6% 227.8 +5.2% 229.5 +6.0%216.6

591.9
267.2
217.7

56.7
389.5
234.9
125.2

14,292

620.0 +4.8% 582.9 -1.5% 613.3 +3.6% 613.3 +3.6%
264.4 -1.1% 259.5 -2.9% 263.7 -1.3% 267.3 +0.0%
217.4 -0.1% 214.6 -1.4% 214.5 -1.5% 217.4 -0.1%

86.6 +52.8% 83.5 +47.2% 86.8 +53.1% 86.7 +53.0%
386.8 -0.7% 387.9 -0.4% 388.5 -0.3% 388.9 -0.1%
230.7 -1.8% 230.7 -1.8% 227.6 -3.1% 229.3 -2.4%
123.5 -1.3% 117.8 -6.0% 119.6 -4.5% 121.9 -2.7%

14,599 +2.1% 14,260 -0.2% 14,512 +1.5% 14,394 +0.7%

read barriers read barriers read barriers static

The benchmark 209 db benefits most from object colocation. The speedup
of more than 50% shows that the cache behavior has a major influence on the
total performance of the application. 227 mtrt also shows a significant speedup
in most scenarios. As shown in Table 3, both benchmarks have a hot path of
frequently accessed fields that can be optimized.

SPECjbb2005 shows a speedup of 2.1%, which proves that object colocation
also succeeds to optimize a large heap of a long-running application. The over-
head of object colocation is influenced by the number of children that are colo-
cated to a parent. Because the static colocation strategy identifies much more
children than the dynamic read-barrier-based approach, the dynamic approach
has a lower overhead and outperforms the static one.

For SPECjbb2005, the percentages of colocated objects (see Table 2) are sim-
ilar for the dynamic and the static approach, but the speedup (see Table 4)
is 2.1% for the dynamic approach and 0.7% for the static approach. Using the
static approach, there are 113 hot-field tables, with a maximum of 23 hot chil-
dren for the table of a class with 25 reference fields. In the dynamic approach,
there are only 38 tables with a maximum of 4 hot children per table. This shows
that the static colocation strategy does not scale well for larger applications, so
the read-barrier-based approach is inevitable.

5.4 Summary

All in all, the results show that the read-barrier-based object colocation of the
young generation leads to the best results. Optimizing only the old generation
finds less colocatable objects because the old generation is collected infrequently.
Optimizing both generations increases the overhead, but does not improve the
heap layout significantly because colocated objects are promoted and the old
generation preserves this optimized object order.

The static colocation strategy does not yield information about the most
frequently accessed fields. Therefore, too many parent-child relationships are
added to the tables, which increases the garbage collection overhead. The impact
is evident especially for larger applications such as SPECjbb2005.

Automatic Object Colocation Based on Read Barriers 343

6 Future Work

The evaluation showed that our algorithm improves the object order of the heap,
but the speedup of some benchmarks is lower than one would expect. Therefore,
we plan to extend our object colocation algorithm to do object inlining, which will
eliminate the field loads for colocated objects and lead to an additional speedup.
The counters collected by the detailed read barriers show that for many fields
the referenced objects can always be colocated. In such cases, the address of a
child object needs not be read from a field, but can be computed by adding a
fixed offset to the address of the parent object.

Eliminating field loads can be implemented easily in the just-in-time compiler.
However, a safe execution of the optimized code requires additional effort: While
failing to colocate a small number of objects of a class is acceptable for object
colocation because it does not have a negative impact on the cache behavior,
object inlining requires that all objects of a class are colocated.

To guarantee this, object allocation must be modified so that colocated ob-
jects are already allocated together. Currently, objects are only colocated after
the first garbage collection run. Object inlining also requires that field stores
which change a parent-child relationship do not happen. Because fields can also
be changed via reflection or by native code using the Java Native Interface,
these subsystems must be instrumented to detect such cases. Recent research on
optimizations in the Java HotSpotTM VM showed that the safe execution of ag-
gressively optimized code requires extensive support of the run-time system [9].

7 Related Work

Huang et al. describe a system similar to ours called online object reordering,
implemented for the Jikes RVM [5]. They use the adaptive compilation system
of Jikes that periodically records the currently executed methods. Hot fields
accessed in these methods are traversed first in their copying garbage collector
and thus reordered. The decision which field of a method is hot is based on a
static analysis of the method, so it is not as precise as our dynamic numbers
obtained from the read barriers. By using the existing interrupts of Jikes, their
analysis has a low run-time overhead of 2% to 3%.

Chilimbi et al. use generational garbage collection for cache-conscious data
placement [3] and present results for the object-oriented programming language
Cecil. They use a profiling technique similar to read barriers to construct an ob-
ject affinity graph that guides a copying garbage collector and report an overhead
of about 6% for the profiling. They do not distinguish different fields within the
same object, which suffices only for small objects and does not allow colocating
the most frequently accessed field of bigger objects.

Lhoták et al. compare different algorithms for object inlining and report how
many field accesses they optimize [10]. All described algorithms are implemented
in static compilers and do not handle dynamic class loading. However, the dy-
namic class loading of the Java HotSpotTM VM asks for algorithms that do not
require a global data flow analysis.

344 C. Wimmer and H. Mössenböck

The algorithm for object combining by Veldema et al. puts objects together
that have the same lifetime [15]. It is more aggressive than object inlining be-
cause it also optimizes unrelated objects if they have the same lifetime. This
allows the garbage collector to free multiple objects together. Elimination of
pointer accesses is performed separately by the compiler. However, the focus is
on reducing the overhead of memory allocation and deallocation. This is benefi-
cial for their system because it uses a mark-and-sweep garbage collector where
the costs of allocation and deallocation are higher.

Escape analysis is another optimization that reduces the overhead of memory
accesses. It detects objects that can be eliminated or allocated on the method
stack. It is an orthogonal optimization to object colocation because it optimizes
short-living temporary objects, whereas object colocation optimizes long-living
data structures. Kotzmann implemented a new escape analysis algorithm for the
Java HotSpotTM VM [8]. It is fast enough for a just-in-time compiler and handles
all aspects of dynamic class loading. When a class is loaded that lets a previously
optimized object escape its scope, all affected methods are deoptimized and
recompiled using the same mechanism we use for removing read barriers.

Blackburn et al. measured the dynamic impact of various read and write
barriers on different platforms [2]. They focused on barriers that are necessary
for current garbage collection algorithms, so a barrier similar to ours that counts
field accesses is not measured. A complex conditional read barrier shows an
average slowdown of 16% on a Pentium 4 processor, with a maximum slowdown
of over 30%.

Arnold et al. presented a general framework for instrumentation sampling to
reduce the cost of instrumented code [1]. The framework dynamically switches
between the original uninstrumented code and the instrumented code in a fine-
grained manner. Instrumentation can be performed continuously with a reported
overhead of about 6%. This approach is more sophisticated than our detailed
read barriers that always collects data for every 1000th field load, but doubles
the code size.

8 Conclusions

We presented an object colocation algorithm implemented for the garbage col-
lector of the Java HotSpotTM VM. The most frequently loaded fields and thus
the most promising objects to be colocated are identified using read barriers that
are inserted into the machine code by the just-in-time compiler. The read bar-
riers yield precise information about the field access profile with a low run-time
overhead of just 1%.

In a generational garbage collection system, object colocation can be per-
formed independently for each generation. Our measurements show that it is
sufficient to optimize the young generation. When colocated objects are pro-
moted, they remain colocated in the old generation. A comparison with a static
colocation strategy shows that the overhead of optimizing infrequently accessed
objects is higher than the benefit.

Automatic Object Colocation Based on Read Barriers 345

Acknowledgments

We would like to thank the Java HotSpotTM compiler team at Sun Microsys-
tems, especially Kenneth Russell, Thomas Rodriguez and David Cox, for their
persistent support, for contributing many ideas and for helpful comments on all
parts of the Java HotSpotTM Virtual Machine.

References

1. Arnold, M., Ryder, B.G.: A framework for reducing the cost of instrumented code.
In: Proceedings of the ACM SIGPLAN 2001 conference on Programming language
design and implementation, ACM Press (2001) 168–179

2. Blackburn, S.M., Hosking, A.L.: Barriers: friend or foe? In: Proceedings of the 4th
international symposium on Memory management, ACM Press (2004) 143–151

3. Chilimbi, T.M., Larus, J.R.: Using generational garbage collection to implement
cache-conscious data placement. In: Proceedings of the 1st international sympo-
sium on Memory management, ACM Press (1998) 37–48

4. Griesemer, R., Mitrovic, S.: A compiler for the Java HotSpotTM virtual machine.
In Böszörményi, L., Gutknecht, J., Pomberger, G., eds.: The School of Niklaus
Wirth: The Art of Simplicity. dpunkt.verlag (2000) 133–152

5. Huang, X., Blackburn, S.M., McKinley, K.S., Moss, J.E.B., Wang, Z., Cheng, P.:
The garbage collection advantage: improving program locality. In: Proceedings
of the 19th annual ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, ACM Press (2004) 69–80

6. Intel Corporation: IA-32 Intel Architecture Software Developer’s Manual, Vol-
ume 1: Basic Architecture. (2006) Order Number 253665-018.

7. Jones, R., Lins, R.: Garbage Collection: Algorithms for Automatic Dynamic Mem-
ory Management. John Wiley & Sons (1996)

8. Kotzmann, T., Mössenböck, H.: Escape analysis in the context of dynamic compi-
lation and deoptimization. In: Proceedings of the 1st ACM/USENIX international
conference on Virtual execution environments, ACM Press (2005) 111–120

9. Kotzmann, T., Mössenböck, H.: Reallocation and garbage collection support for
scalar-replaced and stack-allocated objects. Technical report, Institute for System
Software, Johannes Kepler University Linz (2006)

10. Lhoták, O., Hendren, L.: Run-time evaluation of opportunities for object inlining in
Java. In: Proceedings of the 2002 joint ACM-ISCOPE conference on Java Grande,
ACM Press (2002) 175–184

11. Pozo, R., Miller, B.: SciMark 2.0. (1999) http://math.nist.gov/scimark2/.
12. Standard Performance Evaluation Corporation: The SPEC JVM98 Benchmarks.

(1998) http://www.spec.org/jvm98/.
13. Standard Performance Evaluation Corporation: The SPEC JBB2005 Benchmark.

(2005) http://www.spec.org/jbb2005/.
14. Sun Microsystems, Inc.: Java SE 6: Mustang Snapshot Releases. (2006)

https://mustang.dev.java.net/.
15. Veldema, R., Ceriel, J.H., Rutger, F.H., Henri, E.: Object combining: A new

aggressive optimization for object intensive programs. In: Proceedings of the 2002
joint ACM-ISCOPE conference on Java Grande, ACM Press (2002) 165–174

16. Wimmer, C., Mössenböck, H.: Optimized interval splitting in a linear scan register
allocator. In: Proceedings of the 1st ACM/USENIX international conference on
Virtual execution environments, ACM Press (2005) 132–141

	Introduction
	System Overview
	Hot-Field Tables
	Identifying Hot Field Loads

	Read Barriers
	Code Patterns for Read Barriers
	Processing of Counters

	Modifications of Garbage Collection Algorithms
	Colocation Tables
	Stop-and-Copy Collection of the Young Generation
	Mark-and-Compact Collection of the Old Generation

	Evaluation
	Read Barriers
	Access Counts of Colocated Fields
	Run-Time Impact of Object Colocation
	Summary

	Future Work
	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

