
D. Lightfoot and C. Szyperski (Eds.): JMLC 2006, LNCS 4228, pp. 287 – 305, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Component Plug-In Architecture for the .NET
Platform*

Reinhard Wolfinger, Deepak Dhungana, Herbert Prähofer,
and Hanspeter Mössenböck

Christian Doppler Laboratory for Automated Software Engineering
Johannes Kepler University, 4040 Linz, Austria

{wolfinger, dhungana, praehofer, moessenboeck}@ase.jku.at

Abstract. Plug-in architectures and platforms represent a promising approach
for building software systems which are extensible and customizable to the par-
ticular needs of the individual user. For example, the Eclipse platform, as the
most prominent representative of plug-in systems, is based on a unique plug-in
and extensibility concept and has succeeded in establishing itself as the leading
platform for the development of tool environments. This paper introduces a new
plug-in architecture for the .NET platform which shows much resemblance to
Eclipse. However, whereas Eclipse is a Java-based system and uses XML to de-
scribe extensions, our architecture relies on .NET concepts such as custom at-
tributes and metadata to specify relevant information directly in the source code
of an application. We argue that this approach is more readable and easier to
maintain. As a case study for our plug-in architecture we present a new plug-in
platform for implementation of rich client applications in .NET.

1 Introduction

Originally made popular by Web browsers, plug-in platforms enable the extension of
a core application with new features implemented as components that are plugged
into the core at load time or even at run time and integrate seamlessly with it. Feature-
bloated applications like Microsoft Word evidence what happens if a monolithic ap-
plication follows the one-size-fits-all approach. Microsoft continues to receive user
feedback with requests for features that already exist in the product. Typical users
struggle to find their 10%-share of the feature set that they really want to use. The
plug-in approach on the other hand strives for compact application cores that can be
extended with plug-in components tailored to the users' needs. It improves focus and
reduces clutter by providing a customized user environment.

Eclipse [7] is certainly the most prominent representative of those plug-in plat-
forms and has driven the idea to its extreme: “Everything is a plug-in!” [1]. Moreover,
other interesting approaches exist (see related work below). For example, OSGi [16]
is a Java-based technology for deploying and managing coarse-grained components. It
also serves as the deployment technique for Eclipse plug-ins. Mozilla [13] represents

* This work has been conducted in cooperation with BMD Systemhaus GmbH, Austria, and has

been supported by the Christian Doppler Forschungsgesellschaft, Austria.

288 R. Wolfinger et al.

a further interesting plug-in platform where user interface contributions are defined in
the declarative language XUL. Despite their diverse technological foundations, all
those systems have in common the focus on extensibility of applications.

In addition to facilitating extensibility of applications, plug-in architectures and
platforms represent an interesting and promising approach for providing reusable
building blocks. Assembling systems from pre-fabricated building blocks has been
regarded as an appealing approach to software construction since the very early days
of software engineering [11]. Originally, object-oriented technology was supposed to
make systematic development of reusable building blocks and wide-scale reuse feasi-
ble [2]. Today, it is generally agreed that object-oriented technology as such has not
fulfilled those expectations [20]. Although we have seen much progress into this di-
rection in the last decades [19], [3], component-based software engineering still has
not reached a level of maturity that is taken for granted in other engineering disci-
plines.

We argue that plug-in approaches represent a significant progress for making a
component-based software development reality. So it seems that Eclipse has suc-
ceeded where previous approaches have failed, namely in establishing a real compo-
nent market. Today a huge community of developers and software vendors has com-
mitted itself to Eclipse as the technological basis for developing reusable components
and thousands of Eclipse plug-ins can be found on the Web.

The success of Eclipse and similar systems has many reasons, some of which go
far beyond pure technical considerations. However, there are several technical fea-
tures which have contributed to the success of plug-in systems:

 Plug-in components are coarse-grained, i.e., they are like small applications with
features which are of direct value for the user. In that, they are mainly self-
contained and have limited dependencies on other components.

 There are clear rules on how to specify dependencies and interactions between
components. This results in precise documentation on how systems can be ex-
tended and how plug-ins shall interact.

 Eclipse and similar systems have demonstrated ways how plug-in components
can be integrated seamlessly into working environments. Working environments
can grow in a disciplined and determined manner allowing the users to create
their individual working environments by selecting from a set of plug-ins.

This paper introduces a new plug-in architecture for the .NET platform which shows
much resemblance to Eclipse. However, whereas Eclipse describes extension points
and extensions with dedicated XML configuration files, our architecture relies on
.NET concepts such as custom attributes and metadata to specify relevant information
directly in the source code of an application. We argue that this approach is more
readable and easier to maintain. Moreover, it exploits .NET specific features for plug-
in deployment and discovery. As a case study for our plug-in architecture we present
a new plug-in platform for rich client applications called CAP.NET. We describe its
design as well as a prototypical implementation and show how it supports users as-
sembling their individual working environments.

 A Component Plug-In Architecture for the .NET Platform 289

1.1 Related Work

One of the first runtime extensible systems was Emacs ("Editor MACroS") [18].
Emacs extensions are written in elisp – a Lisp dialect – and installed by setting paths
in an initialization file. In that, Emacs can be described as a readily extensible script-
ing framework, to which new scripts can be added at runtime.

Many Web browsers make use of the “plugging” concept. Mozilla [13], for exam-
ple, lets developers define new extensions and makes use of various technologies for
this purpose. In Mozilla the user interface is represented by an XML data model.
Plug-ins specify their user interface contributions in the declarative language XUL
(another XML language) and with the help of JavaScript and XPCOM one can add
dynamic behaviour to the UI elements. XPConnect bridges XPCOM [17] and
JavaScript by allowing JavaScript to access and manipulate XPCOM objects. Appli-
cations built with this technology are not limited to the Mozilla Web browser but
range from different Web browsers (FireFox, Mozilla Suite, Netscape), email clients
(Thunderbird), calendar applications (Sunbird) to integrated development environ-
ments (Kommodo) and Web-design applications (NVU).

OSGi [16] is a Java-based technology for deploying and managing coarse-grained
components. The Open Service Gateway Initiative (OSGi) defines several mecha-
nisms that are relevant for a plug-in framework. Lifecycle management of compo-
nents (referred to as bundles in OSGi) and hot update are possible using OSGi. Addi-
tionally, OSGi offers a service concept and a set of service standards for component
integration and interaction. Technically, the OSGi service framework can be boiled
down to a custom, dynamic Java class loader and a service registry that is globally
accessible within a single Java virtual machine [9].

The Eclipse Platform [7] is certainly the most prominent plug-in platform today.
Eclipse is built upon a small core and all further functionality is provided by a (usu-
ally huge) set of plug-ins. Plug-ins for Eclipse are written in Java and are delivered as
JAR libraries. Plug-ins declare their interconnections to other plug-ins using a mani-
fest in XML format. The idea is quite simple: a plug-in declares named extension
points and extensions to extension points in other plug-ins. The platform matches
extensions with their corresponding extension point declarations by name, discovers
plug-in dependencies in this way, and integrates the plug-ins to a comprehensive
working environment at start-up without actually loading the code. The resulting
plug-in registry is available via the platform API. Any problems, such as extensions to
missing extension points, are detected and logged. Eclipse evolved as it moved from
version 2.x to 3.0. In version 3.0.7 it adopted the OSGi Service Platform (SP) as a
foundation for plug-in management. Backed with OSGi it allows hot updates of plug-
ins, i.e., updating the code and reloading a plug-in while the Eclipse system keeps
running.

NetBeans [15], as the main competitor of the Eclipse Java development environ-
ment, has introduced a plug-in concept which differs significantly from that in
Eclipse. In NetBeans, plug-ins are referred to as modules and, as in Eclipse, are JAR
libraries contained in a plug-in directory within the NetBeans environment. However,
extension mechanisms and plug-in integration are based on a so-called virtual file
system that, in essence, represents the hierarchical structure of the application. Plug-
ins define their extensions in XML documents (called layer.xml) by specifying their

290 R. Wolfinger et al.

contributions to the virtual file system. For example, a plug-in which would like to
add a menu item “Format” in sub menu “Source” would simply specify that it has a
contribution to the virtual directory path “Menu/Source” with name “Format”.

1.2 Outline

This paper is structured as follows: Section 2 defines basic terms and concepts and
derives requirements for a plug-in architecture and a plug-in platform. In Section 3 we
will discuss some .NET features which have been important in our approach.
Section 4 introduces the basic concepts of our plug-in architecture, namely extension,
deployment, and discovery mechanisms. In Section 5 we validate our approach by a
prototypical implementation of a rich client platform. Finally Section 6 discusses our
approach and achievements and gives an outlook to future work.

2 Terms and Concepts

2.1 Basic Mechanisms of a Plug-In Platform

A plug-in platform enables components to plug into an application core at load time
or at run time. For that purpose the platform requires the following basic mechanisms:

(a) Plugging. An essential principle of a plug-in architecture is that system extensions
are carried out in controlled, restricted and determined manner. Therefore, in a plug-in
architecture there have to be means which allow specifying explicitly how a compo-
nent should be extended and how other plug-in components make their contributions.
In Eclipse, for example, this is done by extension point and extension specifications in
XML. We adopt a notion of extension slot, i.e., the specification how an extension
should occur, and the extension, i.e., the specification how a plug-in makes a contri-
bution to a particular slot. System integration, i.e., combining the set of plug-ins at
hand into a integrated running system, is solely accomplished by reading and exploit-
ing this information about extension slots and fitting extensions.

(b) Deployment. Plug-in components are like small applications that extend the appli-
cation core by new services. Nontrivial services may consist of multiple extensions
plugging into different slots defined by one or several extension hosts. Extensions that
belong together are merged into a single plug-in component that serves as a single
unit of deployment and versioning.

(c) Discovery. Safe and easy plug-in activation should not require complicated and
error-prone configuration tasks. Therefore, plug-ins are simply moved to a central
place called a plug-in repository where they are discovered and activated automati-
cally at application load or run time. Accordingly, removing a plug-in from the re-
pository deactivates it.

2.2 Slots and Extensions

As discussed above, a plug-in is a deployable software unit which has explicit specifi-
cations of its slots and extensions. Slot specifications define how other plug-ins are

 A Component Plug-In Architecture for the .NET Platform 291

intended to extend the functionality of this plug-in, whereas extension specifications
define how this plug-in makes contributions to slots of others. Therefore, slots and
extension specifications have to match. In essence, slots declare the types of informa-
tion a plug-in expects and the extensions fill this information slots accordingly. In its
simplest form, a plug-in specification is a structured list of name/value-pairs where
the slot specifies the required names and value ranges and the extension specification
defines appropriate values for the extension at hand.

The component defining the slot is called the extension host and the component
implementing the extension is called the extension contributor. Extension contributors
again can define their own slots where other plug-ins can contribute allowing the
whole system to grow. A non-trivial plug-in can contain multiple extensions plugging
into different slots.

Usually, plug-in extensions will occur on the level of run-time behavior, i.e.,
plug-in host and contributor will communicate based on a defined protocol in order
to accomplish a particular task. The collaboration between the host and its contribu-
tor is defined in the form of required and provided interfaces. The host will define
the required interface and the extension contributor has to provide an implementa-
tion for it.

Fig. 1 depicts the structure of slot and extension specifications in host and con-
tributor plug-ins. The interface in the host and the implementation class in the con-
tributor specify the agreed collaboration protocol. Additional name/value pairs define
other properties that the host requires to make use of the extension.

2.3 Further Services of a Plug-In Platform

A plug-in platform built on the basic mechanisms presented above can also provide
the following services:

(a) Hot Plugging. Having to restart an application in order to install new components
leads to annoying interrupts of the user's work flow and should be avoided. Hot plug-
ging means the ability to add, update and remove plug-ins while the application is
running.

(b) Auto-Update. Patches are a common way of supplying small updates to pieces of
software in order to update it or to fix problems. If the update process is automated
users are relieved from this tedious and error-prone task. A plug-in platform can
therefore periodically scan the plug-in repository and compare version information
with an installation repository. If newer versions of plug-ins are available, they are
copied from the installation to the plug-in repository and are reactivated when the
application is restarted. If hot plugging is supported, no restart is required.

(c) Sandboxing. Malicious or unreliable plug-ins represent a security hazard for the
application. A sandbox is a secure environment for safely running plug-ins within
well-defined limitations to their possible set of actions.

292 R. Wolfinger et al.

Fig. 1. Slot and extension in host and contributor plug-in

3 .NET Framework Concepts

The .NET Framework offers advanced concepts which form a technological basis for
the plug-in approach presented. Those are .NET custom attributes, assemblies, meta-
data and reflection. We shortly discuss those topics now.

(a) Custom attributes

Custom attributes are pieces of meta-information that can be attached to language
constructs such as classes, interfaces, methods or fields in the source code of an appli-
cation. At run time the attributes attached to a language construct can be retrieved
using reflection [12]. In addition to pre-defined attributes programmers can declare
custom attributes by implementing attribute classes with arbitrary properties whose
values can be set when the attribute is attached to a language construct.

Adding custom metadata that can be evaluated by development tools is a common
usage scenario in .NET. A well-known example is the WebMethod attribute which
indicates that a method is exposed as part of an XML Web service.

public class StockTicker : WebService {
 [WebMethod]
 public double GetQuote(string symbol) { ... }
}

The Web Services Description Language tool (wsdl.exe) is an example of a develop-
ment tool that uses reflection to read out the WebMethod attribute for identifying a
method as a Web method and, from this information, creating contract files or proxy
code.

 A Component Plug-In Architecture for the .NET Platform 293

Our plug-in architecture makes similar use of attributes for representing informa-
tion about slots or extensions in plug-in code (see Section 4.1).

(b) Assemblies

An assembly is the basic packaging unit in .NET. It is the smallest unit for loading, de-
ployment, versioning and security. Assemblies can come as executables (*.exe) or as
library components (*.dll). They contain metadata describing types, resources and refer-
enced assemblies. Because assemblies are self-describing, assembly component deploy-
ment is as simple as an copy operation. There are no issues with class or type library regis-
tration as in traditional COM deployment. Lack of registry dependency and support for
side-by-side component deployment avoids the problem known as "DLL hell" [10].

Strong name identification and assembly version information are used to identify
components. An assembly version number is represented as a four-part number. For
example, version 1.5.1254.0 indicates 1 as the major version, 5 as the minor version,
1254 as the build number, and 0 as the revision number. To give an example a version
number is attached to the StockTicker program (see above) through the Assem-
blyVersion-Attribute.

[assembly: AssemblyVersion("1.5.1254.0")]
public class StockTicker { ... }

A component update service can acquire the component version using reflection like
this:

Version v =
 AssemblName.GetAssemblName("ticker.dll").Version;

In our plug-in architecture a dll assembly is used as a container for a plug-in compo-
nent. Strong name identification and assembly version information are used to iden-
tify plug-ins and to facilitate auto-update.

(c) Metadata.

An assembly does not only store code but also metadata describing the symbolic in-
formation of all types, methods, fields and other entities in the assembly. An assem-
bly's metadata is generated automatically by the compiler from the source code. .NET
makes it possible to retrieve the metadata of an assembly at run time using reflection
[10]. The sample code below demonstrates how a tool can search the StockTicker
class (see above) for methods with the WebMethod attribute attached. For all the
methods in the StockTicker class it will retrieve all the attributes of type Web-
MethodAttribute using the reflection method GetCustomAttributes. If the
length of the array returned is greater than 0, the first array element is accessed and
casted to the WebMethodAttribute type.

foreach(MethodInfo mi in
typeof(StockTicker).GetMethods()) {
 object[] webMethodAttrs = mi.GetCustomAttributes(
 typeof(WebMethodAttribute),
true);

294 R. Wolfinger et al.

 if(webMethodAttrs.Length > 0) {
 WebMethodAttribute webMethodAttr =
 (WebMethodAttribute) webMethodAttrs[0];
 // use WebMethodAttribute
 }
}

Our plug-in platform uses reflection for discovery. The discovery service scans the
plug-in repository and activates extensions by reading their extension definition from
metadata.

4 A Plug–In Architecture for .NET

In this section we will show how the .NET-specific concepts described in Section 3
can be used to implement the basic mechanisms of a plug-in platform as described in
Section 2. In particular, we show

 how to define slots and extensions with .NET attributes,
 how to use .NET assemblies for plug-in packaging and deployment, and
 how to use reflection for plug-in discovery and activation.

We will showcase this approach with two sample extensions. The first example de-
fines an extension slot for pluggable logging functionality. An extension contributor
will receive logging information from the host and logs this information in its specific
way. The second extended example introduces an additional custom property to dif-
ferentiate various message types (e.g. error, warning, info).

4.1 Defining Slots and Extensions with .NET Attributes

Our specification of slots and extensions is based on .NET attributes. In Section 2 we
have seen that a slot can specify one or more interfaces, which have to be imple-
mented by the extension. In our first example the extension host defines an interface
ILog and applies the attribute Slot with a name "Log" to the interface.

[Slot("Log")]
public interface ILog {
 void Write(string msg);
}

Fig. 2. Simple logger slot and extension

 A Component Plug-In Architecture for the .NET Platform 295

The Slot attribute is predefined by our plug-in platform. It is used to tag any pro-
gram elements which belong to a particular slot. The slot is identified by a unique
name. In the example above, the Slot attribute simply says that the ILog interface
is an interface of the slot with the name "Log". The following code shows the defini-
tion of the Slot attribute.

class SlotAttribute : Attribute {
 public SlotAttribute(string name) { ... }
 private string name;
}

The interface ILog declares a method Write which the host calls to log messages
and which has to be implemented by contributor plug-ins. The sample extension
Logger writes messages to the console. The class Logger provides an implementa-
tion for the required interface ILog.

[Extension("Log")]
public class Logger : ILog {
 public void Write(string msg) {
 Console.WriteLine(msg);
 }
}

Extensions in contributor plug-ins have to be tagged by the custom attribute Exten-
sion which is also predefined in the platform. The same name as in the slot is used
to uniquely identify the slot to be extended. The following code shows the definition
of the Extension attribute.

class ExtensionAttribute : Attribute {
 public ExtensionAttribute(string name) { ... }
 private string name;
}

In the example above, the class Logger is now referred to as an extension of the slot
"Log" because it is associated to this slot by the attribute Extension. Further-
more, it is a valid extension that conforms to the requirements of the Slot declara-
tion as it implements the interface ILog.

Logger with a Custom Property

The previous example is now extended to demonstrate the use of custom properties.
In this example, we assume that the host allows the extension to choose between dif-
ferent message types which should be logged. For example, if the extension specifies
Info, Warning or Error as its message types, the host will forward only the re-
spective logging information.

The host defines a custom attribute class MessageType. The standard Attrib-
uteUsage attribute specifies that MessageType can only be attached to class
definitions. The Slot attribute defines that MessageType is associated to a "Log"
slot.

296 R. Wolfinger et al.

public enum MessageTypeEnum {Info, Warning, Error}

[Slot("Log")]
[AttributeUsage(AttributeTargets.Class)]
public class MessageType : Attribute {
 public MessageType(MessageTypeEnum type) { ... }
 private MessageTypeEnum type;
}

Fig. 3. Logger with custom property

A contributor plug-in can use this custom attribute in the extension implementation.
In the following ErrorLogger implementation the Slot attribute is used to spec-
ify that this class is an extension to the "Log" slot and the MessageType attribute
is used to specify that this logger implementation is intended to accept error logs only.

[Extension("Log")]
[MessageType(MessageTypeEnum.Error)]
public class ErrorLogger: ILog {
 public void Write(string msg){
 // do something
 }
}

In summary, specifying slots and extensions works as follows. In an extension host a
slot is specified in the following way:

 There is a Slot attribute which is used to tag program elements of the host, i.e.
interfaces and custom attribute classes, which belong to a particular slot that is
identified by a unique name.

 The host will define one or several interfaces which are intended to be imple-
mented by the extension contributors. They are marked with the Slot attribute.

 In most cases the host will also define one or several custom attribute classes
which are intended to be used by the extension contributors to provide static in-
formation. That means, custom attributes are used to embody the name/value
pairs. Again the Slot attribute is used to assign the attribute class to a particular
slot.

 A Component Plug-In Architecture for the .NET Platform 297

In an extension contributor the extension is specified as follows:

 There is an Extension attribute that is used to tag the class of the contributor
in order to make a contribution to a particular slot. Thereby, the unique slot iden-
tifier given in the Slot attribute is used.

 For a slot interface there is a class implementing that interface in the contributor.
This class is tagged with the Extension attribute denoting that it is an exten-
sion of a particular slot.

 The custom attributes defined in the slot specification will be used in the con-
tributor to provide the respective static extension information. They are also at-
tached to the extending class.

4.2 Deployment and Update

The class that provides an extension is packed into a plug-in assembly for deploy-
ment. To prepare for automatic plug-in update, we need to add version information to
the plug-in assembly. We continue with the error logger example from the previous
section and add version information.

using System;
using System.Reflection;

[assembly: AssemblyVersion("0.1.*")]

[Extension("Log")]
[MessageType(MessageTypeEnum.Error)]
public class ErrorLogger : ILog {
 public void Write(string msg) {
 // do something
 }
}

Major version is 0, minor version is 1, and by specifying a wildcard for build and
revision number, the compiler will insert adequate values. The following command
builds the error logger plug-in.

csc /reference:platform.dll /target:library
/out:errorlogger.dll errorlogger.cs

The plug-in errorlogger.dll contains the extension and version information
and is ready for deployment. Deployment means to move the plug-in into the reposi-
tory. A repository is a folder in the file system that contains all active plug-ins for an
extension host. When a plug-in is moved to the repository, the plug-in platform will
automatically discover the newly installed plug-in and activate it (see Section 4.3).

Plug-in providers may provide updates with new features or fixes for problems.
The Auto-Update service uses reflection to acquire the version info of plug-ins in the
repository. It compares the version number of the currently installed plug-in and com-
pares it to a installation repository that provides updated plug-ins. If updates are avail-
able, the update service replaces the plug-in in the repository with the newer version
from the server.

298 R. Wolfinger et al.

Version v1 = AssemblyName.
 GetAssemblyName("errorlogger.dll").Version;
Version v2 = AssemblyName.
 GetAssemblyName("\\install\errorlogger.dll").Version;
if(v2 > v1) {
 // do update
}

The update process requires the plug-in platform to be restarted. An active plug-in
means that its assembly is load in an application domain. As of .NET 2.0, assemblies
cannot be individually unloaded. Consequently the update service shuts down the exten-
sion host, installs updated plug-in in the repository and restarts the extension host.

4.3 Discovery and Activation

At start-up the extension host searches the plug-in repository to discover plug-ins. It
uses reflection to browse all classes in plug-in assemblies to look for Extension
attributes. Classes with that attribute attached contain extensions. A conformance test
checks if the extension provides the required interfaces and properties. Valid plug-ins
are represented in the plug-in registry, which is a data structure that represents rela-
tions between slots and extensions, as well as inter-extension dependencies. The
source code below shows a simplified discovery routine.

foreach(string filename in Directory.GetFiles(
 "plugins", "*.dll")) {
 Assembly a = Assembly.ReflectionOnlyLoadFrom(filename);
 foreach(Type t in a.GetTypes()) {
 object[] attrs = t.GetCustomAttributes(
 typeof(ExtensionAttribute),true);
 if(attrs.Length > 0) {
 // check conformance
 // add it to the registry
 }
 }
}

Discovery uses the reflection-only context, which means that none of the plug-ins are
actually loaded yet. Our plug-in platform supports lazy-loading, which means that
extensions are loaded at the latest possible point in time. For example, when lazy-
loading is applied to user interface elements, the plug-in is not loaded until the user
performs an action on the user interface element and activates the respective function.

The code sample below shows how a plug-in is loaded and an extension is instanti-
ated and used.

Assembly a = Assembly.LoadFrom("plugin\\errorlogger.dll");
ILog log = a.CreateInstance("ErrorLogger");
log.Write("Hello world!");

 A Component Plug-In Architecture for the .NET Platform 299

5 CAP.NET: A Rich Client Application Platform in .NET

CAP.NET (Client Application Platform .NET) is a platform for the realization of rich
client applications in .NET and has been developed primarily for the validation of the
plug-in architectural concepts as presented in Section 4. The idea of CAP.NET is to
lay a basis for the realization of plug-in components for rich client workbenches, to
allow the selection of an individual set of plug-in components by a user, and the inte-
gration of this set into a comprehensive and seamless user interface.

CAP.NET focuses on user interface integration, plug-in component deployment
and life-cycle management. It is designed and built to meet the following require-
ments:

 integrate a variety of plug-ins for different tasks into a single rich client applica-
tion

 facilitate seamless integration of user interface elements contributed by different
plug-ins

 provide an update mechanism for plug-ins
 provide a framework for rapid application development of rich client compo-
nents.

In addition to the plug-in mechanism presented in Section 4 CAP.NET provides the
following features:

 a concrete plug-in discovery, deployment and update mechanism which uses a
Web-Service interface on the download server

 a workbench component based on a well-defined user interface paradigm which
provides several extension slots for plugging in user interface elements as plug-
in components.

Fig. 4 shows the architecture of the CAP.NET platform. The platform core imple-
ments the plug-in discovery and start-up mechanisms and contains the plug-in regis-
try. Additionally, the security component is responsible for managing rights and roles
of plug-ins.

Everything else in CAP.NET is a plug-in. The core provides one extension slot
"cap.ui.workbench", which is intended to be filled by a workbench component.

U
p

d
at

e
M

an
ag

er

Plug-ins

Workbench

S
ec

u
ri

ty

Platform Core + Plug-in Registry

Web Interface

Fig. 4. Architecture of CAP.NET

300 R. Wolfinger et al.

So far we have implemented just one kind of workbench component, but other work-
bench components following different UI paradigms could be implemented and
plugged in as well. The realized Workbench component has several extension slots
allowing further components to plug-in and in this way make contributions to the
overall working environment, as we will see in Section 5.4. The update manager is
also a plug-in and handles assembly deployment and update.

In the following we will present CAP.NET in some detail. First, we will outline the
platform core which implements the basic mechanisms. Then we will present the UI
paradigm and the workbench components as well as the workbench extension slots
and how the UI extensions are integrated. Finally, we will show some example plug-
ins and an example user workbench.

5.1 Platform Core

At start-up, the platform core discovers the available plug-ins. It looks in the installa-
tion directory for files named *.dll. These plug-in assemblies are loaded using
ReflectionOnlyLoad and scanned for slot and extension attributes.

The plug-ins discovered during this process are stored in the plug-in registry,
which is basically a set of Plugin objects. The platform core is responsible for reg-
istering and managing plug-in assemblies and allows easy access to data and re-
sources from the framework, including resources shared among plug-ins.

The plug-in registry simplifies the integration of extensions. A host component that
defines a certain slot can find out if extensions to this slot are available using the
plug-in registry which holds the static descriptions of the available extensions.

5.2 Update Manager

The update manager is also a plug-in. It periodically connects to an update Web Ser-
vice running on an installation server. This Web Service checks whether newer
versions of the installed plug-ins are available on the server and returns them to the
update manager which installs them into the client's plug-in directory. This makes the
update process extremely simple. The system administrator at the server side simply
copies new versions of plug-ins into the server's plug-in directory. Any clients relying
on these plug-ins detect the new versions automatically and copy them over.

5.3 User Interface Paradigm and Workbench Plug-In

User interface integration is about integrating different contributions into an overall
user interface. To make this work, user interface integration has to be based on a gen-
eral user interface paradigm, i.e. a general set-up and a general working principle that
all applications obey. We have defined such a user interface paradigm for rich client
applications. It focuses on the notion of user tasks, i.e., tasks that a user wants to work
on. Depending on the chosen tasks the working environment will present itself in
different ways. In general, a CAP.NET user interface consists of the following four
panes: task navigation, task content, task commands, and views (see Fig. 5).

 A Component Plug-In Architecture for the .NET Platform 301

Task Navigation

Task Content

Task Commands

Message Window

Menu and Toolbar

View

Fig. 5. CAP.NET Workbench

Task navigation
This is a UI element which allows navigation between different tasks in a hierarchical
manner and is usually placed on the left side of the working environment. It shows all
available tasks in a hierarchical arrangement and is always visible.

Task content
The task content window is the working window for a particular task. It will be either
some sort of editor or an input form allowing the manipulation of data and objects. It
can display the data graphically, textually, in forms etc. and can react on commands to
change the data. Task content elements are based on the model-view-controller
(MVC) pattern and allow the user to open, edit and save data objects. They follow an
open-save-close life cycle much like file-system-based tools.

Task commands
It is common to have a set of commands for every task (e.g. a search command and a
replace command for a text editor). These commands are displayed in task command
windows, which are little control panes usually placed to the right of the task content
window. There can be several task command windows for one task content.

Views
Views are UI elements which provide different views on a task's data. They can be
used for navigation but not for changing data. For example, in a development envi-
ronment there could be different views of the code that is being written. One view
could display the variables and methods while another view could display properties
and their values. A view may also augment other views by providing information
about the currently selected object.

In addition to these special UI elements there are standard menus and toolbars as
well as standard windows such as a message window or a to-do list. The Workbench
plug-in realizes this UI paradigm and provides extension slots for tasks, commands,
views and other elements, allowing custom plug-ins to make their UI contributions.

302 R. Wolfinger et al.

5.4 Workbench Extension Slots

In the following we outline the extension slots of the Workbench plug-in and show
how contributor plug-ins can use them.

cap.ui.workbench.actions

Additions to the menu bar and the toolbar are referred to as actions. This is because
they represent some kind of user interaction, e.g. selecting a menu command or click-
ing a button in the toolbar.

In order to make a new menu or toolbar item available, the user has to provide
code that has to be called, whenever the user clicks on that item. For that purpose an
interface IAction has to be defined. This interface contains a method OnClick,
which is called when the menu or toolbar item is clicked.

Since this slot can serve two purposes, i.e. the installation of a menu item or a tool-
bar item, there are two different attributes (MenuAction and ToolBarAction)
that are used to provide the required information for UI integration. With the help of
these attributes, the framework can extract the static information required for user
interface integration without having to load the code.

The following code shows how a menu item is installed into the workbench. The
class UpdateMenuPlugin extends the slot cap.ui.workbench.actions.
The MenuAction attribute specifies the location where the new menu item should
be inserted into the menus of the workbench.

[Extension("cap.ui.workbench.actions")]
[MenuAction(MenuPath = "Settings/Web")]
class UpdateMenuPlugin : IAction {
 public void OnClick(object sender, EventArgs args) {
... }
}

This will insert a menu item “Web” into the “Settings” menu. If the user selects this
menu item the class UpdateMenuPlugin will be loaded and the OnClick method
will be called.

cap.ui.workbench.taskcontent

For contributing a new task content element there is the slot "cap.ui.work-
bench.taskcontent" as well as the interface ITaskContent which defines
methods for handling task content elements. Methods like OnNew, OnSave etc. are
intended to be called when the respective actions on the content element are carried
out. These operations apply to the currently active content. An extension to this slot
has to implement the following interface ITaskContent.

[Slot("cap.ui.workbench.taskcontent")]
public interface ITaskContent{
 void OnNew();
 void OnSave();
 void OnSaveAs();
 void OnOpen(String filename);

 A Component Plug-In Architecture for the .NET Platform 303

 void OnClose(object sender, FormClosingEventArgs e);
 void OnTitleChanged(object sender, EventArgs e);
}

A TaskContent attribute can be used to provide information such as the file exten-
sion the task content is related to. For example, for a text editor plug-in the Task-
Content attribute can be used as follows:

[Extension("cap.ui.workbench.taskcontent")]
[TaskContent(FileExtension="txt", Name="Text file")]
public class TextEditorContent : ITaskContent { ... }

The TaskContent attribute tells the workbench to create a menu item “Text file”. It
also notifies the framework about the capability of the plug-in to deal with .txt
files.

cap.ui.workbench.taskcommands

The "cap.ui.workbench.taskcommands" slot is intended to be used for
contributing a task command dialog for a particular task content. Task command
dialogs are implemented as extensions of .NET's Form class. As a task dialog refers
to a particular task content window, it is required to identify the task content. This is
done with the TaskCommandFor attribute. For example, the following code shows
a task command extension for the text editor plug-in.

[Extension ("cap.ui.workbench.taskcommands")]
[TaskCommandFor("at.dhungana.plugins.texteditor")]
public partial class TextEditorCommands : Form { ... }

cap.ui.workbench.views

In order to add new views to the workbench, clients have to use the extension slot
cap.ui.workbench.views. The attribute WorkbenchView is used to inform
the workbench about the availability of a new view. This attribute can be used to
specify the name of the view, which is then listed as a menu item in the menu where
all other views are listed.

[Extension("cap.ui.workbench.views")]
[WorkbenchView("CAP Clipboard")]
public class ClipboardView : Form { ... }

5.5 Example Plug-Ins and Working Environment

To test and demonstrate the platform, a set of plug-ins for a typical rich client work-
bench have been realized (see Fig. 5 for a sample screenshot) . These are:

 a simple text editor plug-in,
 a web browser plug-in (a public domain implementation has been wrapped and
packaged as a CAP.NET plug-in),

 a calendar plug-in,
 a diary plug-in,

304 R. Wolfinger et al.

 an email plug-in,
 a Sudoku game plug-in,
 and a registry view plug-in for browsing the plug-in registry.

By these plug-in developments it was possible to show that CAP.NET fulfills the
requirements of an integration platform for rich client applications and that the user
interface paradigm is a simple but appropriate interaction model for typical user tasks.

6 Summary and Discussion

In this paper we presented a plug-in architecture and a rich client platform for the
.NET platform. Adopting ideas similar to Eclipse, our approach relies on .NET-
specific features such as custom attributes, assemblies, metadata and reflection. We
argue that the use of these .NET features results in a better plug-in architecture. In
particular, we argue that our approach of specifying slots and extensions using custom
attributes is more readable and easier to maintain that the Eclipse approach using
XML specifications.

In our approach the extension host uses a Slot attribute to tag any interfaces that
are to be implemented by the contributor. It also uses custom attributes for specifying
properties for which the contributor has to provide values. This makes it easy for a
contributor to describe an extension. The contributor has to implement the slot's inter-
face by a class and tag this class with the Extension attribute. Moreover, the con-
tributor can use the custom attributes defined for the slot to provide values for the
required properties. Slots and extensions are specified directly in the source code of
an application which makes it easier to keep them in sync with the implementation.

.NET assemblies, as the unit of deployment and versioning, are a most adequate and
natural means for the implementation of plug-in components. Furthermore, assemblies
can contain arbitrary metadata allowing us to include plug-in specific information. Plug-
in discovery is based on .NET metadata and reflection. In .NET 2.0 programmers can
load metadata of an assembly without actually loading the code (method Reflectio-
nOnlyLoad). This allowed us to realize a lazy loading strategy as in Eclipse, i.e., plug-
in integration occurs at start-up time based on metadata without actually loading the
code. The code is only loaded when it is activated for the first time.

Hot update means that an old version of a plug-in is unloaded and a new version of
it is loaded while the system keeps running. In Eclipse this is accomplished by the
OSGi implementation and by the fact that each plug-in is loaded by its own class
loader. When the plug-in should be unloaded, the class loader is just disposed and
with it the loaded plug-in. .NET works differently in this respect. In .NET, assemblies
are loaded into so-called application domains (objects of type AppDomain). To
unload code one would have to delete the AppDomain object. However, application
domains also represent memory boundaries and method calls between objects in dif-
ferent application domains have be done using remote method invocation. For that
reason, it would represent an unacceptable overhead to load each assembly into its
own application domain. Assemblies therefore cannot be unloaded individually. How
to realize hot updates in .NET remains an problem that is still to be solved.

 A Component Plug-In Architecture for the .NET Platform 305

References

1. Beck, K., and Gamma, E.: Contributing to Eclipse. Addison-Wesley, 2003.
2. Cox, B.J.: Planning the software industrial revolution. IEEE Software 7(6), 1990.
3. Crnkovic, I. et al. (eds.): Special Issue: Automated Component-based Software Engineer-

ing. Journal of Systems and Software, 74 (1), Elsevier, 2005.
4. Dean, D.: The Security of Static Typing with Dynamic Linking. In Proceedings of the

Fourth ACM Conference on Computer and Communications Security, Zurich, Switzer-
land, April 1997.

5. Dewan, P. and Choudhary, R.: Coupling the user interfaces of a multiuser program. ACM
Transactions on Computer Human Interaction, 1995

6. Dhungana, D.: CAP.NET – Client Application Platform in .NET. Master thesis, Johannes
Kepler University, Linz, Austria (2006).

7. Eclipse Platform Technical Overview. Object Technology International, Inc.,
http://www.eclipse.org, February 2003.

8. Ghezzi, C., Monga, M.: Fostering component evolution with C# attributes. International
Workshop on Principles of Software Evolution (IWPSE) 2002.

9. Hall, R. S, Cervantes H: An OSGi Implementation and Experience Report; Consumer
Communications and Networking Conference, 2004

10. Löwy, J.: Programming .NET Components. O'Reilly Media, Sebastopol (2003)
11. McIllroy, M. D.: Mass produced software components. In: Proceedings of the Nato Soft-

ware Engineering Conference. 1968, pp. 138-155.
12. Microsoft: Microsoft C# Language Specifications. Microsoft Press, Redmond (2001).
13. mozilla.org: An Introduction To Hacking Mozilla.

http://www.mozilla.org/hacking/coding-introduction.html.
14. Mössenböck, H., Beer W., Birngruber, D., Wöß, A.: .NET Application Development.

Pearson Addison Wesley, 2004.
15. NetBeans Project: http://www.netbeans.org/index.html
16. OSGi Service Platform, Release 3. The Open Services Gateway Initiative, March 2003,

http://www.osgi.org.
17. Shaver, M., and Ang, M.: Inside the Lizard: A Look at the Mozilla Technology and Archi-

tecture. http://www.mozilla.org, 2000.
18. Stallman, R.: EMACS: The Extensible, Customizable Display Editor. ACM Conference

on Text Processing, 1981.
19. Syperski, C.: Component Software, Beyond Object-Oriented Programming, 2nd edn. Ad-

dison-Wesley, 2002.
20. Udell, J.: Component Software. BYTE, 19 (5), 1994, pp. 46-55.

	Introduction
	Related Work
	Outline

	Terms and Concepts
	Basic Mechanisms of a Plug-In Platform
	Slots and Extensions
	Further Services of a Plug-In Platform

	.NET Framework Concepts
	A Plug–In Architecture for .NET
	Defining Slots and Extensions with .NET Attributes
	Deployment and Update
	Discovery and Activation

	CAP.NET: A Rich Client Application Platform in .NET
	Platform Core
	Update Manager
	User Interface Paradigm and Workbench Plug-In
	Workbench Extension Slots
	Example Plug-Ins and Working Environment

	Summary and Discussion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

