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Abstract.  For a long time, one of the major research goals in the computer sci-
ence research community has been to raise the level of abstraction power of 
specification languages/programming languages. Many specification languages 
and formalisms have been invented, but unfortunately very few of those are 
practically useful, due to limited computer support of these languages and/or 
inefficient implementations. Thus, one important goal is executable specifica-
tion languages of high abstraction power and with high performance, good 
enough for practical usage and comparable in execution speed to hand imple-
mentations of applications in low-level languages such as C or C++. In this pa-
per we briefly describe our work in creating efficient executable specification 
languages for two application domains. The first area is formal specification of 
programming language semantics, whereas the second is formal specification of 
complex systems for which we have developed an object-oriented mathematical 
modeling language called Modelica, including architectural support for compo-
nents and connectors. Based on these efforts, we are currently working on a uni-
fied equation-based mathematical modeling language that can handle modeling 
of items as diverse as programming languages, computer algebra, event-driven 
systems, and continuous-time physical systems. The key unifying feature is the 
notion of equation. In this paper we describe the design and implementation of 
the unified language. A compiler implementation is already up and running, and 
used for substantial applications. 

1   Introduction 

For a long time, one of the major research goals in the computer science research 
community has been to raise the level of abstraction power of specification lan-
guages/programming languages. Many specification languages and formalisms have 
been invented, but unfortunately very few of those are practically useful, due to lim-
ited computer support of these languages and/or inefficient implementations.  

In this paper we briefly describe our existing work in creating efficient executable 
specification languages for two application domains and propose an integration of this 
work within a unified language for mathematical and semantical modeling.  

                                                           
*  This work was supported by the SSF RISE project, the Vinnova SWEBPROD project, and by 

the CUGS graduate school. 
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Thus, the main goal of this work is the design and development of a general execu-
table mathematical modeling and semantics meta-modeling language. This language 
should have a clean semantics as in the case of Modelica and Natural Semantics 
(RML), and should be compiled to code of high performance. This language will 
allow expressing mathematical models but also meta-models and meta-programs that 
specify composition of models, transformation of models, model constraints, etc. This 
language is based on Modelica extended with several new language constructs that 
allows program language specification. The unified language is called MetaModelica.    

The paper is structured as follows: In the next section we present the starting back-
ground for the development of the MetaModelica unified language. Section 3 presents 
the proposed mathematical/semantical unified modeling language. In Section 4 we 
present the implementation of the MetaModelica compiler for the unified language. 
Section 5 presents performance evaluation of our generated code. Section 6 presents 
future work. Conclusions and Future work are presented in Section 7.   

2   Background 

About sixteen years ago, our research group has selected two application domains for 
research on high-level specification languages: 

• Specification languages for programming language semantics. Much work has 
been done in that area, but there is still no standard class of compiler-compiler 
tools around, as successful as parser generators based on grammars in BNF form 
like lex (flex), yacc (bison), ANTLR, etc. 

• Equation-based specification languages for mathematical modeling of complex 
(physical) systems. 

In the following sections we briefly describe the main achievements of this work.  

2.1   Natural Semantics and the Relational Meta-Language (RML) 

Concerning specification languages for programming language semantics, compiler 
generators based on denotational semantics (Pettersson and Fritzson 1992 [24]) 
(Ringström et al. 1994 [29]), were investigated and developed with some success. 
However this formalism has certain usage problems, and Operational Seman-
tics/Natural Semantics started to become the dominant formalism in common litera-
ture. Therefore a meta-language and compiler generator called RML (Relational Meta 
Language) (Fritzson 1998 [8], PELAB 1994-2005 [21], Pettersson 1995 [25], 1999 
[26]) for Natural Semantics was developed, which we have used extensively for full-
scale specifications of languages like Java (object oriented), C subset with pointer 
arithmetic, functional, and equation-based languages (Modelica). Generated imple-
mentations are comparable in performance to hand implementations. However, it 
turned out that development environment support is needed also for specification 
languages. Recent developments include a debugger for Natural Semantics specifica-
tions (Pop and Fritzson 2005 [28]).  

Natural Semantics (Kahn 1988 [16]) is a specification formalism that is used to spec-
ify the semantics of programming languages, i.e., type systems, dynamic semantics, 
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translational semantics, static semantics (Despeyroux 1984 [4], Glesner and 
Zimmermann 2004 [14]), etc. Natural Semantics is an operational semantics derived 
from the Plotkin (Plotkin 1981 [27]) structural operational semantics combined with 
the sequent calculus for natural deduction. There are few systems implemented that 
compile or interpret Natural Semantics.  

One of these systems is Centaur (Borras et al. 1988 [1]) with its implementation of 
Natural Semantics called Typol (Despeyroux 1984 [4], 1988 [5]). This system is 
translating the Natural Semantics inference rules to Prolog.  

The Relational Meta-Language (RML) is a much more efficient implementation of 
Natural Semantics, with a performance of the generated code that is several orders of 
magnitude better than Typol. The RML language is compiled to highly efficient C 
code by the rml2c compiler. In this way large parts of a compiler can be automatically 
generated from their Natural Semantics specifications. RML is successfully used for 
specifying and generating practically usable compilers from Natural Semantics for 
Java, Modelica, MiniML (Clément et al. 1986 [3]), Mini-Freja (Pettersson 1995 [25]) 
and other languages. 

2.1.1   An Example of Natural Semantics and RML  
As a simple example of using Natural Semantics and the Relational Meta-Language 
(RML) we present a trivial expression (Exp1) language and its specification in Natu-
ral Semantics and RML. A specification in Natural Semantics has two parts:  

• Declarations of syntactic and semantic objects involved.  
• Groups of inference rules which can be grouped together into relations.  

In our example language we have expressions built from numbers. The abstract syn-
tax of this language is declared in the following way: 

in tegers: 

   

exp ressions (abstract syn tax ): 

    :: | 1 2 | 1 2 | 1 * 2 | 1 / 2 |

v In t

e E xp v e e e e e e e e e

∈

∈ = + − −

 

The inference rules for our language are bundled together in a judgment e v=>  in 
the following way (we do not present here the similar rules for the other operators.): 

1 1 2 2  v1+v2 v3

1 2 3

(1)   

(2)  
e v e v

e e v

v v

⇒ ⇒ ⇒

+ ⇒

⇒

 

RML modules have two parts, an interface comprising datatype declarations (abstract 
syntax) and signatures of relations (judgments) that operate on such datatypes, fol-
lowed by the declarations of the actual relations which group together rules and axi-
oms. In RML, the Natural Semantics specification shown above is represented as 
follows: 



214 A. Pop and P. Fritzson 

module Exp1: 
 
  (* Abstract syntax of the language Exp1 *) 
  datatype Exp =  RCONST of real 
               |  ADD    of Exp * Exp 
               |  SUB    of Exp * Exp 
               |  MUL    of Exp * Exp 
               |  DIV    of Exp * Exp 
               |  NEG    of Exp       
  relation eval: Exp => real 
end 
(* Evaluation semantics of Exp1 *) 
relation eval: Exp => real  = 
 
 (* Evaluation of a real node is the real number itself *)  
 axiom eval(RCONST(rval)) => rval  
  

    (* Evaluation of an addition node ADD is v3, if v3 is the result of 
       adding the evaluated results of its children e1 and e2. *) 

 rule  eval(e1) => v1 & eval(e2) => v2 &  v1 + v2 => v3 
       ------------------------------------------------ 
       eval( ADD(e1, e2) ) => v3 
 
 rule  eval(e1) => v1 & eval(e2) => v2 &  v1 - v2 => v3 
       ------------------------------------------------ 
       eval( SUB(e1, e2) ) => v3 
 
 rule  eval(e1) => v1 & eval(e2) => v2 &  v1 * v2 => v3 
       ------------------------------------------------ 
       eval( MUL(e1, e2) ) => v3 
 
 rule  eval(e1) => v1 & eval(e2) => v2 &  v1 / v2 => v3 
       ------------------------------------------------ 
       eval( DIV(e1, e2) ) => v3 
 
 rule  eval(e) => v & -v => vneg 
       ------------------------- 
       eval( NEG(e) ) => vneg 
 
end (* eval *) 
 

A proof-theoretic interpretation can be assigned to this specification. We interpret 
inference rules as recipes for constructing proofs. We wish to prove that there is a 
value v  such that 1 2 v+ ⇒  holds for this specification. To prove this proposition 
we need an inference rule that has a conclusion, which can be instantiated (matched) 
to the proposition. The only proposition that matches is the second proposition (2), 
which is instantiated as follows:  

1 1 2 2 1 2

1 2

v v v v v

v

⇒ ⇒ + ⇒

+ ⇒
 

To continue the proof, we need to apply the first proposition (axiom) several times, 
and we soon reach the conclusion. One can observe that debugging of Natural Seman-
tics comprise proof-tree understanding. 
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2.1.2   Specification of Syntax 
Regarding the specification of lexical and syntatic rules for a new language, we use 
external tools such as Lex, Yacc, Flex, Bison, etc., to generate those modules. The 
parser builds abstract syntax by calling RML-defined constructors. The abstract syn-
tax is then passed from the parser to the RML-generated modules. We currently use 
the same approach for languages defined using MetaModelica. 

2.2   Modelica – An Object-Oriented Equation-Based Component Language 

Starting 1989, we developed an equation-based specification language for mathemati-
cal modeling called ObjectMath (Viklund et al. 1992 [36]), using Mathematica as a 
basis and a frontend, but adding object orientation and efficient code generation was 
developed. Following this path our group joined effort with several other groups in 
object oriented mathematical modeling to start a design-group for developing an in-
ternationally viable declarative mathematical modeling language. The language re-
sulted from this effort is called Modelica. Modelica (Elmqvist et al. 1999 [7], Fritzson 
2004 [13], Fritzson and Engelson 1998 [9], Modelica-Association 1996-2005 [18], 
Tiller 2001 [35]) is an object-oriented modeling language for declarative equation-
based mathematical modeling of large and heterogeneous physical systems. For mod-
eling with Modelica, commercial software products such as MathModelica 
(MathCore [17]) or Dymola (Dynasim 2005 [6]) have been developed. Also open-
source implementations like the OpenModelica system (Fritzson et al. 2002 [10], 
PELAB 2002-2005 [22]) are available.  

The Modelica language has been designed to allow tools to generate efficient simu-
lation code automatically with the main objective of facilitating exchange of models, 
model libraries and simulation specifications. The definition of simulation models is 
expressed in a declarative manner, modularly and hierarchically. Various formalisms 
can be combined with the more general Modelica formalism. In this respect Modelica 
has a multi-domain modeling capability which gives the user the possibility to com-
bine electrical, mechanical, hydraulic, thermodynamic, etc., model components within 
the same application model. Compared to most other modeling languages available 
today, Modelica offers several important advantages from the simulation practitio-
ner’s point of view: 

• Acausal modeling based on ordinary differential equations (ODE) and differential 
algebraic equations and discrete equations (DAE). There is also ongoing research 
to include partial differential equations (PDE) in the language syntax and seman-
tics (Saldamli et al. 2002 [31]), (Saldamli 2002 [30], Saldamli et al. 2005 [32]). 

• Multi-domain modeling capability, which gives the user the possibility to combine 
electrical, mechanical, thermodynamic, hydraulic etc., model components within 
the same application model. 

• A general type system that unifies object-orientation, multiple inheritance, and 
generics templates within a single class construct. This facilitates reuse of compo-
nents and evolution of models. 

• A strong software component model, with constructs for creating and connecting 
components. Thus the language is ideally suited as an architectural description lan-
guage for complex physical systems, and to some extent for software systems. 
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• Visual drag & drop and connect composition of models from components present 
in different libraries targeted to different domains (electrical, mechanical, etc).   

The language is strongly typed and declarative. See (Modelica-Association 1996-
2005 [18]), (Modelica-Association 2005 [19]), (Tiller 2001 [35]), and (Fritzson 2004 
[13]) for a complete description of the language and its functionality from the per-
spective of the motivations and design goals of the researchers who developed it. 
Shorter overviews of the language are available in (Elmqvist et al. 1999 [7]), (Fritzson 
and Engelson 1998 [9]), and (Fritzson and Bunus 2002 [12]). 

2.2.1   An Example Modelica Model 
The following is an example Lotka Volterra Modelica model containing two differen-
tial equations relating the sizes of rabbit and fox populations which are represented by 
the variables rabbits and foxes: The rabbits multiply; the foxes eat rabbits. Even-
tually there are enough foxes eating rabbits causing a decrease in the rabbit popula-
tion, etc., causing cyclic population sizes. The model is simulated and the sizes of the 
rabbit and fox populations as a function of time are plotted in Fig. 1. 

2 0 0  4 0 0 6 0 0 8 0 0 1 0 0 0
t  

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

f o x e s  

r a b b i t s  

 

Fig. 1. Number of rabbits – prey animals, and foxes -  predators, as a function of time simulated 
from the PredatorPrey model 

The notation der(rabbits) means time derivative of the rabbits (population) 
variable. 

class LotkaVolterra 
  parameter Real g_r =0.04    "Natural growth rate for rabbits"; 
  parameter Real d_rf=0.0005  "Death rate of rabbits due to foxes"; 
  parameter Real d_f =0.09    "Natural deathrate for foxes"; 
  parameter Real g_fr=0.1     "Efficency in growing foxes from 

    rabbits"; 
  Real     rabbits(start=700) "Rabbits,(R) with start population 

    700"; 
  Real     foxes(start=10)    "Foxes,(F) with start population 10"; 
equation 
  der(rabbits) = g_r*rabbits - d_rf*rabbits*foxes; 
  der(foxes)   = g_fr*d_rf*rabbits*foxes - d_f*foxes; 
end LotkaVolterra; 
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2.2.2   Modelica as a Component Language 
Modelica offers quite a powerful software component model that is on par with hard-
ware component systems in flexibility and potential for reuse. The key to this increased 
flexibility is the fact that Modelica classes are based on equations, i.e., acausal connec-
tions for which the direction of data flow across the connection is not fixed. Compo-
nents are connected via the connection mechanism, which can be visualized in connec-
tion diagrams. The component framework realizes components and connections, and 
ensures that communication works and constraints are maintained over the connec-
tions. For systems composed of acausal components the direction of data flow, i.e., the 
causality is automatically deduced by the compiler at composition time. 

Two types of coupling can be established by connections depending on whether the 
variables in the connected connectors are nonflow (default), or declared using the 
flow prefix: 

1. Equality coupling, for nonflow variables, according to Kirchhoff’s first law. 

2. Sum-to-zero coupling, for flow variables, according to Kirchhoff’s current law. 

For example, the keyword flow for the variable i of type Current in the Pin con-
nector class indicates that all currents in connected pins are summed to zero, accord-
ing to Kirchhoff’s current law. 

 

pin1 pin2 
+ + 

pin2.i 

pin2.vpin1.v

pin1.i 
 

Fig. 2. Connecting two components that have electrical pins 

Connection equations are used to connect instances of connection classes. A connec-
tion equation connect (pin1,pin2), with pin1 and pin2 of connector class Pin, 
connects the two pins (Fig. 2) so that they form one node. This produces two equa-
tions, namely: 

pin1.v = pin2.v  
pin1.i + pin2.i = 0  

The first equation says that the voltages of the connected wire ends are the same. The 
second equation corresponds to Kirchhoff's second law, saying that the currents sum 
to zero at a node (assuming positive value while flowing into the component). The 
sum-to-zero equations are generated when the prefix flow is used. Similar laws apply 
to flows in piping networks and to forces and torques in mechanical systems. 

3   MetaModelica – A Unified Equation-Based Modeling Language 

The idea to define a unified equation-based mathematical and semantical modeling 
language started from the development of the OpenModelica compiler (Fritzson et al. 



218 A. Pop and P. Fritzson 

2002 [11]).  The entire compiler is generated from a Natural Semantics specification 
written in RML.  The open source OpenModelica compiler has its users in the Mode-
lica community which have detailed knowledge of Modelica but very little knowledge 
of RML and Natural Semantics. In order to allow people from the Modelica commu-
nity to contribute to the OpenModelica compiler we retargeted the development lan-
guage from RML to MetaModelica, which is based on the Modelica language with 
several extensions. We already translated the OpenModelica compiler from RML to 
the MetaModelica using an automated translator (Carlsson 2005 [2]) implemented in 
RML. We also developed a compiler which can handle the entire OpenModelica com-
piler specification (~105000 lines of code) defined in MetaModelica. An evaluation of 
the performance of the generated code is presented in section 6.  

The basic idea behind the unified language is to use equations as the unifying fea-
ture. Most declarative formalisms, including functional languages, support some kind 
of limited equations even though people often do not regard these as equations, e.g. 
single-assignment equations.  

Using the meta-programming facilities, usual tasks like generation, composition 
and querying of Modelica models can be automated.  

The MetaModelica language inherits all the strong component capabilities Mode-
lica. Components can be reused in different contexts because the causality is not fixed 
in equations and is up to the compiler to decide it.    

3.1   The Types of Equations in the Unified Language 

In the following we present the current types of equations already present in Modelica 
and detail the addition of the equations that support the definition of semantic specifi-
cations. 

3.1.1   Mathematical Equations 
Mathematical models almost always contain equations. There are basically four main 
kinds of mathematical equations in Modelica which we detail below.  

Differential equations contain time derivatives such as dt
dx , usually denoted x& : 

3+⋅= xax&  (1) 

Algebraic equations do not include any differentiated variables: 

222 Lyx =+  (2) 

Partial differential equations also contain derivatives with respect to other variables 
than time: 

2

2

z

a

t

a

∂
∂=

∂
∂  (3) 

Difference equations express relations between variables, e.g. at different points in 
time: 

2)(3)1( +=+ txtx  (4) 



 A Unified Equation-Based Semantical and Mathematical Modeling Language 219 

3.1.2   Conditional Equations and Events 
Behavior can develop continuously over time or as discrete changes at certain points 
in time, usually called events. It is possible to express events and discrete behavior 
solely based on conditional equations. An event in Modelica is something that hap-
pens that has the following four properties: 

• A point in time that is instantaneous, i.e., has zero duration. 
• An event condition that switches from false to true for the event to happen. 
• A set of variables that are associated with the event, i.e., are referenced or explic-

itly changed by equations associated with the event. 
• Some behavior associated with the event, expressed as conditional equations that 

become active or are deactivated at the event. Instantaneous equations are a special 
case of conditional equations that are active only at events. 

Modelica has several constructs to express conditional equations, e.g. if-then-else 
equations for conditional equations that are active during certain time durations, or 
when-equations for instantaneous equations. 

timeevent 1 event 2 event 3

y

z

y,z 

 

Fig. 3. A discrete-time variable z changes value only at event instants, whereas continuous-time 
variables like y may change both between and at events 

3.1.3   Single-Assignment Equations 
A single-assignment equation is quite close to an assignment, e.g.: 

x = eval_expr(env, e); 

but with the difference that the unbound variable (here x) which obtains a value by 
solving the equation, only gets its value once, whereas a variable in an assignment 
may obtain its value several times, e.g.: 

x := eval_expr(env, e); x := eval_expr2(env, x); 

3.1.4   Pattern Equations in Match Expressions  
In this section we present our addition to the Modelica language which allows defini-
tions of semantic specifications. The new language features are pattern equations, 
match expressions and union datatypes. 
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Pattern equations are a more general case than single-assignment equations, e.g.: 

Env.BOOLVAL(x,y) = eval_something(env, e); 

Unbound variables get their values by using pattern-matching (i.e., unification) to 
solve for the unbound variables in the pattern equation. For example, x and e might 
be unbound and solved for in the equations, whereas y and env could be bound and 
just supply values.  

The following extension to Modelica is essential for specifying semantics of lan-
guage constructs represented as abstract syntax trees: 

• Match expressions with pattern-matching case rules, local declarations, and local 
equations. 

It has the following general structure: 

match expression  optional-local-declarations 
  case pattern-expression opt-local-declarations 
    optional-local-equations then value-expression; 
  ... 
  else optional-local-declarations  
    optional-local-equations then value-expression; 
end match; 

The then keyword precedes the value to be returned in each branch. The local decla-
rations started by the local keyword, as well as the equations started by the equa-
tion keyword are optional. There should be at least one case...then branch, but 
the else-branch is optional. 

A match expression is closely related to pattern matching in functional languages, 
but is also related to switch statements in C or Java. It has two important advantages 
over traditional switch statements: 

• A match expression can appear in any of the three Modelica contexts: expressions, 
statements, or in equations. 

• The selection in the case branches is based on pattern matching, which reduces to 
equality testing in simple cases, but is unification in the general case. 

Local equations in match expressions have the following properties: 

• Only algebraic equations are allowed as local equations, no differential equations. 
• Only locally declared variables (local unknowns) declared by local declarations 

within the case expression are solved for, or may appear as pattern variables. 
• Equations are solved in the order they are declared (this restriction may be re-

moved in the future, allowing more general local algebraic systems of equations). 
• If an equation or an expression in a case-branch of a match-expression fails, all 

local variables become unbound, and matching continues with the next branch. 

We also need to introduce the possibility to declare recursive tree data structures in 
Modelica, e.g.: 

uniontype Exp 
  record RCONST Real x1; end RCONST; 
  record PLUS  Exp x1; Exp x2; end PLUS; 
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  record SUB   Exp x1; Exp x2; end SUB; 
  record MUL   Exp x1; Exp x2; end MUL; 
  record DIV   Exp x1; Exp x2; end DIV; 
  record NEG   Exp x1;         end NEG; 
end Exp; 

A small expression tree, of the expression 12+5*13, is depicted in Fig. 4. Using the 
record constructors PLUS, MUL, RCONST, this tree can be constructed by the expres-
sion PLUS(RCONST(12), MUL( RCONST(5), RCONST(13))) 

PLUS

MULRCON

RCONS RCONST12

5
13  

Fig. 4. Abstract syntax tree of the expression 12+5*13 

The uniontype construct has the following properties: 

• Union types can be recursive, i.e., reference themselves. This is the case in the 
above Exp example, where Exp is referenced inside its member record types. 

• Record declarations declared within a union type are automatically inherited into 
the enclosing scope of the union type declaration. 

• Union types can be polymorphic  
• A record type may currently only belong to one union type. This restriction may be 

removed in the future, by introducing polymorphic variants. 

This is a preliminary union type design, which however is very close (just different 
syntax) to similar datatype constructs in declarative languages such as Haskell, Stan-
dard ML, OCaml, and RML. The uniontypes can model any abstract syntax tree while 
the match expressions are used to model the semantics, composition or transformation 
of the specified language. 

3.2   Solution of Equations 

The process of solving systems of equations is central for the execution of equation-
based languages. For example: 

• Differential equations are solved by numeric differential equation solvers. 
− Differential-algebraic equations are solved by numeric DAE solvers. 
− Algebraic equations are solved by symbolic manipulation and/or numeric solution 
• Single-assignment equations are solved by performing an assignment. 
• Pattern equations are solved by the process of unification which assigns values to 

unbound variables in the patterns. 



222 A. Pop and P. Fritzson 

The first three solution procedures are used in current Modelica. By the addition of 
local equations (Section 3.1.4) in match expressions to be solved at run-time, we 
generalize the allowable kinds of equations in Modelica.  

3.3   Evaluator for the Exp1 Language in the Unified Language 

As an example of the meta-modeling and meta-programming capabilities of the 
MetaModelica we give a very simple example. The semantics of the operations in the 
small expression language Exp1 follows below, expressed as an interpretative lan-
guage specification in Modelica in a style close to Natural and/or Operational Seman-
tics, see Exp1 specified in RML in Section 2.1.1. Such specifications typically consist 
of a number of functions, each of which contains a match expression with one or 
more cases, also called rules. In this simple example there is only one function, here 
called eval, since we specify an expression evaluator.  

function eval 
  input  Exp  in_exp; 
  output Real out_real; 
algorithm 
 out_real := 
  match in_exp 
    local Real v1,v2,v3;  Exp e1,e2; 
    case RCONST(v1) then v1;  
    case ADD(e1,e2) equation  
      v1 = eval(e1);  v2 = eval(e2); v3 = v1 + v2;  then v3; 
    case SUB(e1,e2) equation 
      v1 = eval(e1);  v2 = eval(e2); v3 = v1 - v2;  then v3; 
    case MUL(e1,e2) equation 
      v1 = eval(e1);  v2 = eval(e2); v3 = v1 * v2;  then v3; 
    case DIV(e1,e2) equation 
      v1 = eval(e1);  v2 = eval(e2); v3 = v1 / v2;  then v3; 
    case NEG(e1) equation 
      v1 = eval(e1); v2 =  -v1;  then v2; 
   end match; 
end eval;  

As usual in Modelica the equations are not directional, e.g. the two equations v1 = 
eval(e1) and eval(e1) = v1 are equivalent. The compiler will select one of the 
forms based on input/output parameters and data dependencies. 

There are some design considerations behind the above match-expression construct 
that may need some motivation. 

• Why do we have local variable declarations within the match-expression? The 
main reason is clear and understandable semantics. In all three usage contexts 
(equations, statements, expressions) it should be easy to understand for the user 
and for the compiler which variables are unknowns (i.e., unbound local variables) 
in pattern expressions or in local equations. Another reason for declaring the types 
of local variables is better documentation of the code – the modeler/programmer is 
relieved of the burden of doing manual type-inference to understand the code. 

• Why the then keyword before the returned value? The code becomes easier to 
read if there is a keyword before the returned value-expression. Note that most 
functional languages use the in keyword instead in this context, which is less  
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intuitive, and would conflict with the set or array element membership meaning the 
Modelica in keyword. 

4   Details of the Compiler Implementation 

The current compiler for the MetaModelica language is based on OpenModelica 
compiler which was extended with code from the RML compiler (for meta-
modeling/meta-programming facilities like pattern matching, unification, higher order 
functions, optimizations, etc). In the current version the meta-programming code can 
appear only in functions which can be called by Modelica code in the way an external 
function is called.  

 MetaModelica
Source Code

Translator

Analyzer

Optimizer

Code
Generator

C Compiler

Simulation

MetaModelica 
models 

Flat model

Sorted  equations 

Optimized  sorted 
equations

C Code

Executable

Translator Phases: 
- Static Elaboration 
- Type Checking 
- Optimization to reduce 
   nondeterminism within 
   match constructs  
-  Pattern Matching compilation 
- Translation of meta functions  
   to continuation passing style 
   (CPS) 
 
Optimizer Phases: 
- local CPS optimizations  
- equation optimizations 
- translation of CPS to Code 
- Code optimizations 
 

 

Fig. 5. The stages of translation and execution of a MetaModelica model  

All variable values are boxed to be distinguished by the garbage collector. Every 
boxed value has a small integer as a header. Composite values are boxed structures. 
The structure header contains a small integer tag which is used for pattern matching. 
Logical variables are represented as boxed references. A different header is used to 
represent unbounded or bounded logical variables.  

The MetaModelica source code is first translated into a so-called “flat model”. This 
phase includes type checking, performing all object-oriented operations such as in-
heritance, modifications, compilation of pattern matching, translation of meta  
functions to continuation passing style. The flat model includes a set of equations 
declarations, functions and meta functions, with all object-oriented structure removed, 
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apart from the dot notation within the names.  This process is called the “partial in-
stantiation” of the model.  

The next step is to solve the system of equations. First the equations need to be 
transformed into a suitable form for the numerical solvers. This is done by the sym-
bolic and the numerical module of the compiler. The simulation code generator takes 
as input the flattened form of the equations. The equations are mapped into an internal 
data structure that permits simple symbolic manipulations such as: common subex-
presions elimination, algebraic simplifications, constant folding, etc. These symbolic 
operations decrease substantially the complexity of the system of equations.  After 
this stage the Block Lower Triagular form of the system of equations is computed.  

Finally, in the last phase, the procedural code (in our implementation C code), is 
generated based on the previously computed BLT blocks when each block is linked to 
a numerical solver and the runtime for the meta functions. Within the C code the meta 
functions are called like normal functions.  

5   Performance Evaluation of the MetaModelica Compiler 

We are not aware of any language that is similar with the MetaModelica language. 
However, the meta-modeling and meta-programming parts of the MetaModelica lan-
guage are close to a logic/functional language. Backtracking is used within the match 
construct to select the correct case and the specifications can contain logical variables. 
The uniontypes are similar with the SML datatype definitions, however MetaMode-
lica functions have multiple inputs and outputs not just one argument like in SML. 
Also, because a reordering phase is applied to the MetaModelica code there is no need 
to explicitly declare mutually recursive types and functions. 

All the information, the test code and the files needed to reproduce our results are 
available online at: http://www.ida.liu.se/~adrpo/jmlc2006. Please contact the au-
thors for any additional information regarding the performance evaluation tests. 

We have compared the execution speed of our generated code with SWI-Prolog 
5.6.9 (SWI-Prolog [34]), SICStus Prolog 3.11.2 (Science [33]), Maude MSOS Tool 
(MMT) on top of Maude 2.1.1 (Illinois [15]).  The Maude MSOS Tool (MMT) is an 
execution environment for Modular Structural Operational Semantics (MSOS) 
(Mosses 2004 [20]) specifications that brings the power of analysis available in the 
Maude system to MSOS specifications. The Maude MSOS Mini-Freja translation was 
implemented by Fabricio Chalub and Christiano Braga and is available as a case study 
together with sources from http://maude-msos-tool.sourceforge.net/.  SWI-Prolog is a 
widely known open source implementation of Prolog. SICStus Prolog is a commercial 
Prolog implementation.  

The closest match to the meta-modeling and meta-programming facilities of the 
MetaModelica compiler is the Maude MSOS Tool.  

The test case is based on an executable specification of the Mini-Freja language 
(Pettersson 1999 [26]) running a test program based on the sieve of Eratosthenes. 
Mini-Freja is a call-by-name pure functional language. The test program calculates 
prime numbers.  

The Prolog translation (mf.pl) was implemented by Mikael Pettersson and this 
author corrected a minor mistake. 
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Table 1.   Execution time in seconds. The – sign represents out of memory. 

 
 

 
MetaModelica 

 

 
SICStus 

 
SWI  

 
Maude MSOS Tool 

 
8 0.00 0.05 0.00 2.92 

10 0.00 0.10 0.03 5.60 
30 0.02 1.42 1.79 226.77 
40 0.06 3.48 3.879 - 
50 0.13 - 11.339 - 

100 1.25 - - - 
200 16.32 - - - 

The comparison was performed on a Fedora Core4 Linux machine with two AMD 
Athlon(TM) XP 1800+ processors at 1500 MHz and 1.5GB of memory.  

The memory consumption was at peak 9Mb for MetaModelica and the others 
consumed the entire 1.5Gb of memory and aborted at arround 40 prime numbers. 
With this test we stressed only the meta-programming and meta-modeling part of the 
compiler. The Modelica part of the compiler was already able to handle huge models 
with thousands of equations.   

6   Related Work 

As related work we can consider the Unified Modeling Language (UML). Modeling 
in the UML sense has more emphasis on graphical notation for modeling rather than 
precise mathematical model definitions as in the modeling languages mentioned in the 
previous section. Initially, execution support was lacking, but during recent years 
code generators from UML2 has appeared. Also, during recent years, there has been 
an increased interest in model-driven developments and the OMG has launched 
model-driven architectures, primarily based on UML models. The idea of meta-
modeling has attracted increased interest: a meta-model describes the structure of 
models at the next lower abstraction level. Meta-modeling and meta-programming 
allows transformations and composition of models and programs, which is becoming 
increasingly relevant in order to specify and manage complex industrial software and 
system applications. However, UML has developed into a rather heterogeneous col-
lection of modeling notations. Also, precise mathematically defined semantics is not 
always available for these graphical notations. By contrast, MetaModelica is defined 
exclusively based on equations, functions and meta functions. Similar meta-
programming facilities are present in functional languages like SML, Haskell and 
OCaml but the execution strategy is different in these languages as they do not sup-
port backtracking to select cases.   

In the area of mathematical modeling the most important general de-facto stan-
dards for different dynamic simulation modes are: 
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• Continuous: Matlab/Simulink, MatrixX/SystemBuild, Scilab/Scicos for general 
systems, SPICE and its derivates for electrical circuits, ADAMS, DADS/Motion, 
SimPack for multi-body mechanical systems. 

• Discrete: general-purpose simulators based on the discrete-event GPSS line, 
VHDL- and Verilog simulators in digital electronics, etc. 

• Hybrid (discrete + continuous): Modelica/Dymola, AnyLogic, VHDL-AMS and 
Verilog-AMS simulators (not only for electronics but also for multi-physics prob-
lems). 

The insufficient power and generality of the former modeling languages stimulated 
the development of Modelica (as a true object-oriented, multi-physics language) and 
VHDL-AMS/Verilog-AMS (multi-physics but strongly influenced by electronics).  

The rapid increase in new requirements to handle the dynamics of highly complex, 
heterogeneous systems requires enhanced efforts in developing new language features 
(based on existing languages!). Especially the efficient simulation of hardware-
software systems and model structural dynamics are yet unsolved problems. In elec-
tronics and telecommunications, therefore, the development of SystemC-AMS has 
been launched but these attempts are far from the multi-physics and multi-domain 
applications which are addressed by Modelica. 

7   Conclusions and Future Work 

We have presented two executable specification languages: RML for Natural Seman-
tics specifications of programming languages, and Modelica for equation-based se-
mantics and mathematical modeling of complex systems. We have also described 
MetaModelica as a unified mathematical and semantical modeling language by gen-
eralizing the concept of equation and introducing local equations and match expres-
sions in the Modelica language. This gives interesting perspectives for the future 
regarding meta-modeling, model transformations and compositions during simulation, 
etc.  

The current status of this work is that the OpenModelica compiler has been ported 
to the new unified Modelica modeling language, resulting in ~105000 lines of code 
expressed in the unified language. A compiler for MetaModelica has been completed 
at the time of this writing. We have also developed an integrated development envi-
ronment based on Eclipse which facilitates writing and debugging of MetaModelica 
code (PELAB 2006 [23]). The MetaModelica language can be used to write semantic 
specifications for a broad spectrum of languages ranging from functional to impera-
tive languages. We have also translated all our RML specification examples to 
MetaModelica in order to provide teaching material for the new language. The current 
specifications include imperative, functional, equation-based, and object-oriented 
languages. 

The unified MetaModelica language gives new perspectives for a broad range of 
items, from programming and modeling languages to physical systems, but also in-
cluding model transformations and composition. Apart from language specification to 
generate interpreters and compilers, symbolic differentiation rules for differentiating 
expressions and equations have been specified in MetaModelica and is in use. 
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Our near future plans are to extend MetaModelica with exceptions and reflection. 
The long term goal for MetaModelica is to achieve the generation of compilers for 
any language by drag and drop semantic components from libraries and connect them 
together in a similar way the physical systems are modeled today in Modelica. 
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