
D. Lightfoot and C. Szyperski (Eds.): JMLC 2006, LNCS 4228, pp. 211 – 229, 2006.
© Springer-Verlag Berlin Heidelberg 2006

MetaModelica: A Unified Equation-Based Semantical
and Mathematical Modeling Language*

Adrian Pop and Peter Fritzson

Programming Environment Laboratory
Department of Computer and Information Science
Linköping University, 58183 Linköping, Sweden

{adrpo, petfr}@ida.liu.se

Abstract. For a long time, one of the major research goals in the computer sci-
ence research community has been to raise the level of abstraction power of
specification languages/programming languages. Many specification languages
and formalisms have been invented, but unfortunately very few of those are
practically useful, due to limited computer support of these languages and/or
inefficient implementations. Thus, one important goal is executable specifica-
tion languages of high abstraction power and with high performance, good
enough for practical usage and comparable in execution speed to hand imple-
mentations of applications in low-level languages such as C or C++. In this pa-
per we briefly describe our work in creating efficient executable specification
languages for two application domains. The first area is formal specification of
programming language semantics, whereas the second is formal specification of
complex systems for which we have developed an object-oriented mathematical
modeling language called Modelica, including architectural support for compo-
nents and connectors. Based on these efforts, we are currently working on a uni-
fied equation-based mathematical modeling language that can handle modeling
of items as diverse as programming languages, computer algebra, event-driven
systems, and continuous-time physical systems. The key unifying feature is the
notion of equation. In this paper we describe the design and implementation of
the unified language. A compiler implementation is already up and running, and
used for substantial applications.

1 Introduction

For a long time, one of the major research goals in the computer science research
community has been to raise the level of abstraction power of specification lan-
guages/programming languages. Many specification languages and formalisms have
been invented, but unfortunately very few of those are practically useful, due to lim-
ited computer support of these languages and/or inefficient implementations.

In this paper we briefly describe our existing work in creating efficient executable
specification languages for two application domains and propose an integration of this
work within a unified language for mathematical and semantical modeling.

* This work was supported by the SSF RISE project, the Vinnova SWEBPROD project, and by

the CUGS graduate school.

212 A. Pop and P. Fritzson

Thus, the main goal of this work is the design and development of a general execu-
table mathematical modeling and semantics meta-modeling language. This language
should have a clean semantics as in the case of Modelica and Natural Semantics
(RML), and should be compiled to code of high performance. This language will
allow expressing mathematical models but also meta-models and meta-programs that
specify composition of models, transformation of models, model constraints, etc. This
language is based on Modelica extended with several new language constructs that
allows program language specification. The unified language is called MetaModelica.

The paper is structured as follows: In the next section we present the starting back-
ground for the development of the MetaModelica unified language. Section 3 presents
the proposed mathematical/semantical unified modeling language. In Section 4 we
present the implementation of the MetaModelica compiler for the unified language.
Section 5 presents performance evaluation of our generated code. Section 6 presents
future work. Conclusions and Future work are presented in Section 7.

2 Background

About sixteen years ago, our research group has selected two application domains for
research on high-level specification languages:

• Specification languages for programming language semantics. Much work has
been done in that area, but there is still no standard class of compiler-compiler
tools around, as successful as parser generators based on grammars in BNF form
like lex (flex), yacc (bison), ANTLR, etc.

• Equation-based specification languages for mathematical modeling of complex
(physical) systems.

In the following sections we briefly describe the main achievements of this work.

2.1 Natural Semantics and the Relational Meta-Language (RML)

Concerning specification languages for programming language semantics, compiler
generators based on denotational semantics (Pettersson and Fritzson 1992 [24])
(Ringström et al. 1994 [29]), were investigated and developed with some success.
However this formalism has certain usage problems, and Operational Seman-
tics/Natural Semantics started to become the dominant formalism in common litera-
ture. Therefore a meta-language and compiler generator called RML (Relational Meta
Language) (Fritzson 1998 [8], PELAB 1994-2005 [21], Pettersson 1995 [25], 1999
[26]) for Natural Semantics was developed, which we have used extensively for full-
scale specifications of languages like Java (object oriented), C subset with pointer
arithmetic, functional, and equation-based languages (Modelica). Generated imple-
mentations are comparable in performance to hand implementations. However, it
turned out that development environment support is needed also for specification
languages. Recent developments include a debugger for Natural Semantics specifica-
tions (Pop and Fritzson 2005 [28]).

Natural Semantics (Kahn 1988 [16]) is a specification formalism that is used to spec-
ify the semantics of programming languages, i.e., type systems, dynamic semantics,

 A Unified Equation-Based Semantical and Mathematical Modeling Language 213

translational semantics, static semantics (Despeyroux 1984 [4], Glesner and
Zimmermann 2004 [14]), etc. Natural Semantics is an operational semantics derived
from the Plotkin (Plotkin 1981 [27]) structural operational semantics combined with
the sequent calculus for natural deduction. There are few systems implemented that
compile or interpret Natural Semantics.

One of these systems is Centaur (Borras et al. 1988 [1]) with its implementation of
Natural Semantics called Typol (Despeyroux 1984 [4], 1988 [5]). This system is
translating the Natural Semantics inference rules to Prolog.

The Relational Meta-Language (RML) is a much more efficient implementation of
Natural Semantics, with a performance of the generated code that is several orders of
magnitude better than Typol. The RML language is compiled to highly efficient C
code by the rml2c compiler. In this way large parts of a compiler can be automatically
generated from their Natural Semantics specifications. RML is successfully used for
specifying and generating practically usable compilers from Natural Semantics for
Java, Modelica, MiniML (Clément et al. 1986 [3]), Mini-Freja (Pettersson 1995 [25])
and other languages.

2.1.1 An Example of Natural Semantics and RML
As a simple example of using Natural Semantics and the Relational Meta-Language
(RML) we present a trivial expression (Exp1) language and its specification in Natu-
ral Semantics and RML. A specification in Natural Semantics has two parts:

• Declarations of syntactic and semantic objects involved.
• Groups of inference rules which can be grouped together into relations.

In our example language we have expressions built from numbers. The abstract syn-
tax of this language is declared in the following way:

in tegers:

exp ressions (abstract syn tax):

 :: | 1 2 | 1 2 | 1 * 2 | 1 / 2 |

v In t

e E xp v e e e e e e e e e

∈

∈ = + − −

The inference rules for our language are bundled together in a judgment e v=> in
the following way (we do not present here the similar rules for the other operators.):

1 1 2 2 v1+v2 v3

1 2 3

(1)

(2)
e v e v

e e v

v v

⇒ ⇒ ⇒

+ ⇒

⇒

RML modules have two parts, an interface comprising datatype declarations (abstract
syntax) and signatures of relations (judgments) that operate on such datatypes, fol-
lowed by the declarations of the actual relations which group together rules and axi-
oms. In RML, the Natural Semantics specification shown above is represented as
follows:

214 A. Pop and P. Fritzson

module Exp1:

 (* Abstract syntax of the language Exp1 *)
 datatype Exp = RCONST of real
 | ADD of Exp * Exp
 | SUB of Exp * Exp
 | MUL of Exp * Exp
 | DIV of Exp * Exp
 | NEG of Exp
 relation eval: Exp => real
end
(* Evaluation semantics of Exp1 *)
relation eval: Exp => real =

 (* Evaluation of a real node is the real number itself *)
 axiom eval(RCONST(rval)) => rval

 (* Evaluation of an addition node ADD is v3, if v3 is the result of
 adding the evaluated results of its children e1 and e2. *)

 rule eval(e1) => v1 & eval(e2) => v2 & v1 + v2 => v3
 --
 eval(ADD(e1, e2)) => v3

 rule eval(e1) => v1 & eval(e2) => v2 & v1 - v2 => v3
 --
 eval(SUB(e1, e2)) => v3

 rule eval(e1) => v1 & eval(e2) => v2 & v1 * v2 => v3
 --
 eval(MUL(e1, e2)) => v3

 rule eval(e1) => v1 & eval(e2) => v2 & v1 / v2 => v3
 --
 eval(DIV(e1, e2)) => v3

 rule eval(e) => v & -v => vneg

 eval(NEG(e)) => vneg

end (* eval *)

A proof-theoretic interpretation can be assigned to this specification. We interpret
inference rules as recipes for constructing proofs. We wish to prove that there is a
value v such that 1 2 v+ ⇒ holds for this specification. To prove this proposition
we need an inference rule that has a conclusion, which can be instantiated (matched)
to the proposition. The only proposition that matches is the second proposition (2),
which is instantiated as follows:

1 1 2 2 1 2

1 2

v v v v v

v

⇒ ⇒ + ⇒

+ ⇒

To continue the proof, we need to apply the first proposition (axiom) several times,
and we soon reach the conclusion. One can observe that debugging of Natural Seman-
tics comprise proof-tree understanding.

 A Unified Equation-Based Semantical and Mathematical Modeling Language 215

2.1.2 Specification of Syntax
Regarding the specification of lexical and syntatic rules for a new language, we use
external tools such as Lex, Yacc, Flex, Bison, etc., to generate those modules. The
parser builds abstract syntax by calling RML-defined constructors. The abstract syn-
tax is then passed from the parser to the RML-generated modules. We currently use
the same approach for languages defined using MetaModelica.

2.2 Modelica – An Object-Oriented Equation-Based Component Language

Starting 1989, we developed an equation-based specification language for mathemati-
cal modeling called ObjectMath (Viklund et al. 1992 [36]), using Mathematica as a
basis and a frontend, but adding object orientation and efficient code generation was
developed. Following this path our group joined effort with several other groups in
object oriented mathematical modeling to start a design-group for developing an in-
ternationally viable declarative mathematical modeling language. The language re-
sulted from this effort is called Modelica. Modelica (Elmqvist et al. 1999 [7], Fritzson
2004 [13], Fritzson and Engelson 1998 [9], Modelica-Association 1996-2005 [18],
Tiller 2001 [35]) is an object-oriented modeling language for declarative equation-
based mathematical modeling of large and heterogeneous physical systems. For mod-
eling with Modelica, commercial software products such as MathModelica
(MathCore [17]) or Dymola (Dynasim 2005 [6]) have been developed. Also open-
source implementations like the OpenModelica system (Fritzson et al. 2002 [10],
PELAB 2002-2005 [22]) are available.

The Modelica language has been designed to allow tools to generate efficient simu-
lation code automatically with the main objective of facilitating exchange of models,
model libraries and simulation specifications. The definition of simulation models is
expressed in a declarative manner, modularly and hierarchically. Various formalisms
can be combined with the more general Modelica formalism. In this respect Modelica
has a multi-domain modeling capability which gives the user the possibility to com-
bine electrical, mechanical, hydraulic, thermodynamic, etc., model components within
the same application model. Compared to most other modeling languages available
today, Modelica offers several important advantages from the simulation practitio-
ner’s point of view:

• Acausal modeling based on ordinary differential equations (ODE) and differential
algebraic equations and discrete equations (DAE). There is also ongoing research
to include partial differential equations (PDE) in the language syntax and seman-
tics (Saldamli et al. 2002 [31]), (Saldamli 2002 [30], Saldamli et al. 2005 [32]).

• Multi-domain modeling capability, which gives the user the possibility to combine
electrical, mechanical, thermodynamic, hydraulic etc., model components within
the same application model.

• A general type system that unifies object-orientation, multiple inheritance, and
generics templates within a single class construct. This facilitates reuse of compo-
nents and evolution of models.

• A strong software component model, with constructs for creating and connecting
components. Thus the language is ideally suited as an architectural description lan-
guage for complex physical systems, and to some extent for software systems.

216 A. Pop and P. Fritzson

• Visual drag & drop and connect composition of models from components present
in different libraries targeted to different domains (electrical, mechanical, etc).

The language is strongly typed and declarative. See (Modelica-Association 1996-
2005 [18]), (Modelica-Association 2005 [19]), (Tiller 2001 [35]), and (Fritzson 2004
[13]) for a complete description of the language and its functionality from the per-
spective of the motivations and design goals of the researchers who developed it.
Shorter overviews of the language are available in (Elmqvist et al. 1999 [7]), (Fritzson
and Engelson 1998 [9]), and (Fritzson and Bunus 2002 [12]).

2.2.1 An Example Modelica Model
The following is an example Lotka Volterra Modelica model containing two differen-
tial equations relating the sizes of rabbit and fox populations which are represented by
the variables rabbits and foxes: The rabbits multiply; the foxes eat rabbits. Even-
tually there are enough foxes eating rabbits causing a decrease in the rabbit popula-
tion, etc., causing cyclic population sizes. The model is simulated and the sizes of the
rabbit and fox populations as a function of time are plotted in Fig. 1.

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0
t

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

f o x e s

r a b b i t s

Fig. 1. Number of rabbits – prey animals, and foxes - predators, as a function of time simulated
from the PredatorPrey model

The notation der(rabbits) means time derivative of the rabbits (population)
variable.

class LotkaVolterra
 parameter Real g_r =0.04 "Natural growth rate for rabbits";
 parameter Real d_rf=0.0005 "Death rate of rabbits due to foxes";
 parameter Real d_f =0.09 "Natural deathrate for foxes";
 parameter Real g_fr=0.1 "Efficency in growing foxes from

 rabbits";
 Real rabbits(start=700) "Rabbits,(R) with start population

 700";
 Real foxes(start=10) "Foxes,(F) with start population 10";
equation
 der(rabbits) = g_r*rabbits - d_rf*rabbits*foxes;
 der(foxes) = g_fr*d_rf*rabbits*foxes - d_f*foxes;
end LotkaVolterra;

 A Unified Equation-Based Semantical and Mathematical Modeling Language 217

2.2.2 Modelica as a Component Language
Modelica offers quite a powerful software component model that is on par with hard-
ware component systems in flexibility and potential for reuse. The key to this increased
flexibility is the fact that Modelica classes are based on equations, i.e., acausal connec-
tions for which the direction of data flow across the connection is not fixed. Compo-
nents are connected via the connection mechanism, which can be visualized in connec-
tion diagrams. The component framework realizes components and connections, and
ensures that communication works and constraints are maintained over the connec-
tions. For systems composed of acausal components the direction of data flow, i.e., the
causality is automatically deduced by the compiler at composition time.

Two types of coupling can be established by connections depending on whether the
variables in the connected connectors are nonflow (default), or declared using the
flow prefix:

1. Equality coupling, for nonflow variables, according to Kirchhoff’s first law.

2. Sum-to-zero coupling, for flow variables, according to Kirchhoff’s current law.

For example, the keyword flow for the variable i of type Current in the Pin con-
nector class indicates that all currents in connected pins are summed to zero, accord-
ing to Kirchhoff’s current law.

pin1 pin2
+ +

pin2.i

pin2.vpin1.v

pin1.i

Fig. 2. Connecting two components that have electrical pins

Connection equations are used to connect instances of connection classes. A connec-
tion equation connect (pin1,pin2), with pin1 and pin2 of connector class Pin,
connects the two pins (Fig. 2) so that they form one node. This produces two equa-
tions, namely:

pin1.v = pin2.v
pin1.i + pin2.i = 0

The first equation says that the voltages of the connected wire ends are the same. The
second equation corresponds to Kirchhoff's second law, saying that the currents sum
to zero at a node (assuming positive value while flowing into the component). The
sum-to-zero equations are generated when the prefix flow is used. Similar laws apply
to flows in piping networks and to forces and torques in mechanical systems.

3 MetaModelica – A Unified Equation-Based Modeling Language

The idea to define a unified equation-based mathematical and semantical modeling
language started from the development of the OpenModelica compiler (Fritzson et al.

218 A. Pop and P. Fritzson

2002 [11]). The entire compiler is generated from a Natural Semantics specification
written in RML. The open source OpenModelica compiler has its users in the Mode-
lica community which have detailed knowledge of Modelica but very little knowledge
of RML and Natural Semantics. In order to allow people from the Modelica commu-
nity to contribute to the OpenModelica compiler we retargeted the development lan-
guage from RML to MetaModelica, which is based on the Modelica language with
several extensions. We already translated the OpenModelica compiler from RML to
the MetaModelica using an automated translator (Carlsson 2005 [2]) implemented in
RML. We also developed a compiler which can handle the entire OpenModelica com-
piler specification (~105000 lines of code) defined in MetaModelica. An evaluation of
the performance of the generated code is presented in section 6.

The basic idea behind the unified language is to use equations as the unifying fea-
ture. Most declarative formalisms, including functional languages, support some kind
of limited equations even though people often do not regard these as equations, e.g.
single-assignment equations.

Using the meta-programming facilities, usual tasks like generation, composition
and querying of Modelica models can be automated.

The MetaModelica language inherits all the strong component capabilities Mode-
lica. Components can be reused in different contexts because the causality is not fixed
in equations and is up to the compiler to decide it.

3.1 The Types of Equations in the Unified Language

In the following we present the current types of equations already present in Modelica
and detail the addition of the equations that support the definition of semantic specifi-
cations.

3.1.1 Mathematical Equations
Mathematical models almost always contain equations. There are basically four main
kinds of mathematical equations in Modelica which we detail below.

Differential equations contain time derivatives such as dt
dx , usually denoted x& :

3+⋅= xax& (1)

Algebraic equations do not include any differentiated variables:

222 Lyx =+ (2)

Partial differential equations also contain derivatives with respect to other variables
than time:

2

2

z

a

t

a

∂
∂=

∂
∂ (3)

Difference equations express relations between variables, e.g. at different points in
time:

2)(3)1(+=+ txtx (4)

 A Unified Equation-Based Semantical and Mathematical Modeling Language 219

3.1.2 Conditional Equations and Events
Behavior can develop continuously over time or as discrete changes at certain points
in time, usually called events. It is possible to express events and discrete behavior
solely based on conditional equations. An event in Modelica is something that hap-
pens that has the following four properties:

• A point in time that is instantaneous, i.e., has zero duration.
• An event condition that switches from false to true for the event to happen.
• A set of variables that are associated with the event, i.e., are referenced or explic-

itly changed by equations associated with the event.
• Some behavior associated with the event, expressed as conditional equations that

become active or are deactivated at the event. Instantaneous equations are a special
case of conditional equations that are active only at events.

Modelica has several constructs to express conditional equations, e.g. if-then-else
equations for conditional equations that are active during certain time durations, or
when-equations for instantaneous equations.

timeevent 1 event 2 event 3

y

z

y,z

Fig. 3. A discrete-time variable z changes value only at event instants, whereas continuous-time
variables like y may change both between and at events

3.1.3 Single-Assignment Equations
A single-assignment equation is quite close to an assignment, e.g.:

x = eval_expr(env, e);

but with the difference that the unbound variable (here x) which obtains a value by
solving the equation, only gets its value once, whereas a variable in an assignment
may obtain its value several times, e.g.:

x := eval_expr(env, e); x := eval_expr2(env, x);

3.1.4 Pattern Equations in Match Expressions
In this section we present our addition to the Modelica language which allows defini-
tions of semantic specifications. The new language features are pattern equations,
match expressions and union datatypes.

220 A. Pop and P. Fritzson

Pattern equations are a more general case than single-assignment equations, e.g.:

Env.BOOLVAL(x,y) = eval_something(env, e);

Unbound variables get their values by using pattern-matching (i.e., unification) to
solve for the unbound variables in the pattern equation. For example, x and e might
be unbound and solved for in the equations, whereas y and env could be bound and
just supply values.

The following extension to Modelica is essential for specifying semantics of lan-
guage constructs represented as abstract syntax trees:

• Match expressions with pattern-matching case rules, local declarations, and local
equations.

It has the following general structure:

match expression optional-local-declarations
 case pattern-expression opt-local-declarations
 optional-local-equations then value-expression;
 ...
 else optional-local-declarations
 optional-local-equations then value-expression;
end match;

The then keyword precedes the value to be returned in each branch. The local decla-
rations started by the local keyword, as well as the equations started by the equa-
tion keyword are optional. There should be at least one case...then branch, but
the else-branch is optional.

A match expression is closely related to pattern matching in functional languages,
but is also related to switch statements in C or Java. It has two important advantages
over traditional switch statements:

• A match expression can appear in any of the three Modelica contexts: expressions,
statements, or in equations.

• The selection in the case branches is based on pattern matching, which reduces to
equality testing in simple cases, but is unification in the general case.

Local equations in match expressions have the following properties:

• Only algebraic equations are allowed as local equations, no differential equations.
• Only locally declared variables (local unknowns) declared by local declarations

within the case expression are solved for, or may appear as pattern variables.
• Equations are solved in the order they are declared (this restriction may be re-

moved in the future, allowing more general local algebraic systems of equations).
• If an equation or an expression in a case-branch of a match-expression fails, all

local variables become unbound, and matching continues with the next branch.

We also need to introduce the possibility to declare recursive tree data structures in
Modelica, e.g.:

uniontype Exp
 record RCONST Real x1; end RCONST;
 record PLUS Exp x1; Exp x2; end PLUS;

 A Unified Equation-Based Semantical and Mathematical Modeling Language 221

 record SUB Exp x1; Exp x2; end SUB;
 record MUL Exp x1; Exp x2; end MUL;
 record DIV Exp x1; Exp x2; end DIV;
 record NEG Exp x1; end NEG;
end Exp;

A small expression tree, of the expression 12+5*13, is depicted in Fig. 4. Using the
record constructors PLUS, MUL, RCONST, this tree can be constructed by the expres-
sion PLUS(RCONST(12), MUL(RCONST(5), RCONST(13)))

PLUS

MULRCON

RCONS RCONST12

5
13

Fig. 4. Abstract syntax tree of the expression 12+5*13

The uniontype construct has the following properties:

• Union types can be recursive, i.e., reference themselves. This is the case in the
above Exp example, where Exp is referenced inside its member record types.

• Record declarations declared within a union type are automatically inherited into
the enclosing scope of the union type declaration.

• Union types can be polymorphic
• A record type may currently only belong to one union type. This restriction may be

removed in the future, by introducing polymorphic variants.

This is a preliminary union type design, which however is very close (just different
syntax) to similar datatype constructs in declarative languages such as Haskell, Stan-
dard ML, OCaml, and RML. The uniontypes can model any abstract syntax tree while
the match expressions are used to model the semantics, composition or transformation
of the specified language.

3.2 Solution of Equations

The process of solving systems of equations is central for the execution of equation-
based languages. For example:

• Differential equations are solved by numeric differential equation solvers.
− Differential-algebraic equations are solved by numeric DAE solvers.
− Algebraic equations are solved by symbolic manipulation and/or numeric solution
• Single-assignment equations are solved by performing an assignment.
• Pattern equations are solved by the process of unification which assigns values to

unbound variables in the patterns.

222 A. Pop and P. Fritzson

The first three solution procedures are used in current Modelica. By the addition of
local equations (Section 3.1.4) in match expressions to be solved at run-time, we
generalize the allowable kinds of equations in Modelica.

3.3 Evaluator for the Exp1 Language in the Unified Language

As an example of the meta-modeling and meta-programming capabilities of the
MetaModelica we give a very simple example. The semantics of the operations in the
small expression language Exp1 follows below, expressed as an interpretative lan-
guage specification in Modelica in a style close to Natural and/or Operational Seman-
tics, see Exp1 specified in RML in Section 2.1.1. Such specifications typically consist
of a number of functions, each of which contains a match expression with one or
more cases, also called rules. In this simple example there is only one function, here
called eval, since we specify an expression evaluator.

function eval
 input Exp in_exp;
 output Real out_real;
algorithm
 out_real :=
 match in_exp
 local Real v1,v2,v3; Exp e1,e2;
 case RCONST(v1) then v1;
 case ADD(e1,e2) equation
 v1 = eval(e1); v2 = eval(e2); v3 = v1 + v2; then v3;
 case SUB(e1,e2) equation
 v1 = eval(e1); v2 = eval(e2); v3 = v1 - v2; then v3;
 case MUL(e1,e2) equation
 v1 = eval(e1); v2 = eval(e2); v3 = v1 * v2; then v3;
 case DIV(e1,e2) equation
 v1 = eval(e1); v2 = eval(e2); v3 = v1 / v2; then v3;
 case NEG(e1) equation
 v1 = eval(e1); v2 = -v1; then v2;
 end match;
end eval;

As usual in Modelica the equations are not directional, e.g. the two equations v1 =
eval(e1) and eval(e1) = v1 are equivalent. The compiler will select one of the
forms based on input/output parameters and data dependencies.

There are some design considerations behind the above match-expression construct
that may need some motivation.

• Why do we have local variable declarations within the match-expression? The
main reason is clear and understandable semantics. In all three usage contexts
(equations, statements, expressions) it should be easy to understand for the user
and for the compiler which variables are unknowns (i.e., unbound local variables)
in pattern expressions or in local equations. Another reason for declaring the types
of local variables is better documentation of the code – the modeler/programmer is
relieved of the burden of doing manual type-inference to understand the code.

• Why the then keyword before the returned value? The code becomes easier to
read if there is a keyword before the returned value-expression. Note that most
functional languages use the in keyword instead in this context, which is less

 A Unified Equation-Based Semantical and Mathematical Modeling Language 223

intuitive, and would conflict with the set or array element membership meaning the
Modelica in keyword.

4 Details of the Compiler Implementation

The current compiler for the MetaModelica language is based on OpenModelica
compiler which was extended with code from the RML compiler (for meta-
modeling/meta-programming facilities like pattern matching, unification, higher order
functions, optimizations, etc). In the current version the meta-programming code can
appear only in functions which can be called by Modelica code in the way an external
function is called.

 MetaModelica
Source Code

Translator

Analyzer

Optimizer

Code
Generator

C Compiler

Simulation

MetaModelica
models

Flat model

Sorted equations

Optimized sorted
equations

C Code

Executable

Translator Phases:
- Static Elaboration
- Type Checking
- Optimization to reduce
 nondeterminism within
 match constructs
- Pattern Matching compilation
- Translation of meta functions
 to continuation passing style
 (CPS)

Optimizer Phases:
- local CPS optimizations
- equation optimizations
- translation of CPS to Code
- Code optimizations

Fig. 5. The stages of translation and execution of a MetaModelica model

All variable values are boxed to be distinguished by the garbage collector. Every
boxed value has a small integer as a header. Composite values are boxed structures.
The structure header contains a small integer tag which is used for pattern matching.
Logical variables are represented as boxed references. A different header is used to
represent unbounded or bounded logical variables.

The MetaModelica source code is first translated into a so-called “flat model”. This
phase includes type checking, performing all object-oriented operations such as in-
heritance, modifications, compilation of pattern matching, translation of meta
functions to continuation passing style. The flat model includes a set of equations
declarations, functions and meta functions, with all object-oriented structure removed,

224 A. Pop and P. Fritzson

apart from the dot notation within the names. This process is called the “partial in-
stantiation” of the model.

The next step is to solve the system of equations. First the equations need to be
transformed into a suitable form for the numerical solvers. This is done by the sym-
bolic and the numerical module of the compiler. The simulation code generator takes
as input the flattened form of the equations. The equations are mapped into an internal
data structure that permits simple symbolic manipulations such as: common subex-
presions elimination, algebraic simplifications, constant folding, etc. These symbolic
operations decrease substantially the complexity of the system of equations. After
this stage the Block Lower Triagular form of the system of equations is computed.

Finally, in the last phase, the procedural code (in our implementation C code), is
generated based on the previously computed BLT blocks when each block is linked to
a numerical solver and the runtime for the meta functions. Within the C code the meta
functions are called like normal functions.

5 Performance Evaluation of the MetaModelica Compiler

We are not aware of any language that is similar with the MetaModelica language.
However, the meta-modeling and meta-programming parts of the MetaModelica lan-
guage are close to a logic/functional language. Backtracking is used within the match
construct to select the correct case and the specifications can contain logical variables.
The uniontypes are similar with the SML datatype definitions, however MetaMode-
lica functions have multiple inputs and outputs not just one argument like in SML.
Also, because a reordering phase is applied to the MetaModelica code there is no need
to explicitly declare mutually recursive types and functions.

All the information, the test code and the files needed to reproduce our results are
available online at: http://www.ida.liu.se/~adrpo/jmlc2006. Please contact the au-
thors for any additional information regarding the performance evaluation tests.

We have compared the execution speed of our generated code with SWI-Prolog
5.6.9 (SWI-Prolog [34]), SICStus Prolog 3.11.2 (Science [33]), Maude MSOS Tool
(MMT) on top of Maude 2.1.1 (Illinois [15]). The Maude MSOS Tool (MMT) is an
execution environment for Modular Structural Operational Semantics (MSOS)
(Mosses 2004 [20]) specifications that brings the power of analysis available in the
Maude system to MSOS specifications. The Maude MSOS Mini-Freja translation was
implemented by Fabricio Chalub and Christiano Braga and is available as a case study
together with sources from http://maude-msos-tool.sourceforge.net/. SWI-Prolog is a
widely known open source implementation of Prolog. SICStus Prolog is a commercial
Prolog implementation.

The closest match to the meta-modeling and meta-programming facilities of the
MetaModelica compiler is the Maude MSOS Tool.

The test case is based on an executable specification of the Mini-Freja language
(Pettersson 1999 [26]) running a test program based on the sieve of Eratosthenes.
Mini-Freja is a call-by-name pure functional language. The test program calculates
prime numbers.

The Prolog translation (mf.pl) was implemented by Mikael Pettersson and this
author corrected a minor mistake.

 A Unified Equation-Based Semantical and Mathematical Modeling Language 225

Table 1. Execution time in seconds. The – sign represents out of memory.

MetaModelica

SICStus

SWI

Maude MSOS Tool

8 0.00 0.05 0.00 2.92

10 0.00 0.10 0.03 5.60
30 0.02 1.42 1.79 226.77
40 0.06 3.48 3.879 -
50 0.13 - 11.339 -

100 1.25 - - -
200 16.32 - - -

The comparison was performed on a Fedora Core4 Linux machine with two AMD
Athlon(TM) XP 1800+ processors at 1500 MHz and 1.5GB of memory.

The memory consumption was at peak 9Mb for MetaModelica and the others
consumed the entire 1.5Gb of memory and aborted at arround 40 prime numbers.
With this test we stressed only the meta-programming and meta-modeling part of the
compiler. The Modelica part of the compiler was already able to handle huge models
with thousands of equations.

6 Related Work

As related work we can consider the Unified Modeling Language (UML). Modeling
in the UML sense has more emphasis on graphical notation for modeling rather than
precise mathematical model definitions as in the modeling languages mentioned in the
previous section. Initially, execution support was lacking, but during recent years
code generators from UML2 has appeared. Also, during recent years, there has been
an increased interest in model-driven developments and the OMG has launched
model-driven architectures, primarily based on UML models. The idea of meta-
modeling has attracted increased interest: a meta-model describes the structure of
models at the next lower abstraction level. Meta-modeling and meta-programming
allows transformations and composition of models and programs, which is becoming
increasingly relevant in order to specify and manage complex industrial software and
system applications. However, UML has developed into a rather heterogeneous col-
lection of modeling notations. Also, precise mathematically defined semantics is not
always available for these graphical notations. By contrast, MetaModelica is defined
exclusively based on equations, functions and meta functions. Similar meta-
programming facilities are present in functional languages like SML, Haskell and
OCaml but the execution strategy is different in these languages as they do not sup-
port backtracking to select cases.

In the area of mathematical modeling the most important general de-facto stan-
dards for different dynamic simulation modes are:

226 A. Pop and P. Fritzson

• Continuous: Matlab/Simulink, MatrixX/SystemBuild, Scilab/Scicos for general
systems, SPICE and its derivates for electrical circuits, ADAMS, DADS/Motion,
SimPack for multi-body mechanical systems.

• Discrete: general-purpose simulators based on the discrete-event GPSS line,
VHDL- and Verilog simulators in digital electronics, etc.

• Hybrid (discrete + continuous): Modelica/Dymola, AnyLogic, VHDL-AMS and
Verilog-AMS simulators (not only for electronics but also for multi-physics prob-
lems).

The insufficient power and generality of the former modeling languages stimulated
the development of Modelica (as a true object-oriented, multi-physics language) and
VHDL-AMS/Verilog-AMS (multi-physics but strongly influenced by electronics).

The rapid increase in new requirements to handle the dynamics of highly complex,
heterogeneous systems requires enhanced efforts in developing new language features
(based on existing languages!). Especially the efficient simulation of hardware-
software systems and model structural dynamics are yet unsolved problems. In elec-
tronics and telecommunications, therefore, the development of SystemC-AMS has
been launched but these attempts are far from the multi-physics and multi-domain
applications which are addressed by Modelica.

7 Conclusions and Future Work

We have presented two executable specification languages: RML for Natural Seman-
tics specifications of programming languages, and Modelica for equation-based se-
mantics and mathematical modeling of complex systems. We have also described
MetaModelica as a unified mathematical and semantical modeling language by gen-
eralizing the concept of equation and introducing local equations and match expres-
sions in the Modelica language. This gives interesting perspectives for the future
regarding meta-modeling, model transformations and compositions during simulation,
etc.

The current status of this work is that the OpenModelica compiler has been ported
to the new unified Modelica modeling language, resulting in ~105000 lines of code
expressed in the unified language. A compiler for MetaModelica has been completed
at the time of this writing. We have also developed an integrated development envi-
ronment based on Eclipse which facilitates writing and debugging of MetaModelica
code (PELAB 2006 [23]). The MetaModelica language can be used to write semantic
specifications for a broad spectrum of languages ranging from functional to impera-
tive languages. We have also translated all our RML specification examples to
MetaModelica in order to provide teaching material for the new language. The current
specifications include imperative, functional, equation-based, and object-oriented
languages.

The unified MetaModelica language gives new perspectives for a broad range of
items, from programming and modeling languages to physical systems, but also in-
cluding model transformations and composition. Apart from language specification to
generate interpreters and compilers, symbolic differentiation rules for differentiating
expressions and equations have been specified in MetaModelica and is in use.

 A Unified Equation-Based Semantical and Mathematical Modeling Language 227

Our near future plans are to extend MetaModelica with exceptions and reflection.
The long term goal for MetaModelica is to achieve the generation of compilers for
any language by drag and drop semantic components from libraries and connect them
together in a similar way the physical systems are modeled today in Modelica.

References

[1] Patrik Borras, Dominique Clement, Thierry Despeyroux, Janet Incerpi, Gilles Kahn, Ber-
nard Lang, and Valérie Pascual. CENTAUR: The System. ed. P. Henderson, Proceedings
of ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software
Development Environments, February, 1988, vol. 24 of SIGPLAN, p.: 14-24

[2] Emil Carlsson, Translating Natural Semantics to MetaModelica, Department of Com-
puter and Information Science. 2005, Linköping University, Linköping, Master's Thesis.

[3] Dominique Clément, Joëlle Despeyroux, Thierry Despeyroux, and Gilles Kahn. A Simple
Applicative Language: Mini-ML, Proceedings of the ACM Conference on Lisp and Func-
tional Programming, August, 1986. also available as research report RR-529, INRIA,
Sophia-Antipolis, May 1986.

[4] Thierry Despeyroux. Executable Specification of Static Semantics. ed. Gilles Kahn, Pro-
ceedings of Semantics of Data Types, 1984. Berlin, Germany, Springer-Verlag, Lecture
Notes in Computer Science, vol. 173, p.: 215-233

[5] Thierry Despeyroux, TYPOL: A Formalism to Implement Natural Semantics, INRIA,
Sofia-Antipolis, Report: RR 94, 1988, www: http://www.inria.fr/rrrt/rt-0094.html.

[6] Dynasim, Dymola, Last Accessed: 2005, www: http://www.dynasim.se/.
[7] Hilding Elmqvist, Sven Erik Mattsson, and Martin Otter. Modelica - A Language for

Physical System Modeling, Visualization and Interaction, Proceedings of IEEE Sympo-
sium on Computer-Aided Control System Design, August 22-27, 1999. Hawaii, USA

[8] Peter Fritzson, Efficient Language Implementation by Natural Semantics. 1998,
http://www.ida.liu.se/~pelab/rml.

[9] Peter Fritzson and Vadim Engelson. Modelica, a general Object-Oriented Language for
Continuous and Discrete-Event System Modeling and Simulation, Proceedings of 12th
European Conference on Object-Oriented Programming (ECOOP'98), July 20-24, 1998.
Brussels, Belgium

[10] Peter Fritzson, Peter Aronsson, Peter Bunus, Vadim Engelson, Levon Saldamli, Henrik
Johansson, and Andreas Karstöm. The Open Source Modelica Project, Proceedings of
Proceedings of The 2th International Modelica Conference, March 18-19, 2002. Munich,
Germany

[11] Peter Fritzson, Peter Aronsson, Peter Bunus, Vadim Engelson, Levon Saldamli, Henrik
Johansson, and Andreas Karstöm. The Open Source Modelica Project, Proceedings of the
2nd International Modelica Conference, March 18-19, 2002. Munich, Germany, Modelica
Association, www: http://www.modelica.org/events/Conference2002/, Open Modelica
System: http://www.ida.liu.se/~pelab/modelica/

[12] Peter Fritzson and Peter Bunus. Modelica, a General Object-Oriented Language for Con-
tinuous and Discrete-Event System Modeling and Simulation, Proceedings of 35th Annual
Simulation Symposium, April 14-18, 2002. San Diego, California

[13] Peter Fritzson, Principles of Object-Oriented Modeling and Simulation with Modelica
2.1. 2004, Wiley-IEEE Press. 940 pages, ISBN:0-471-471631, Book home page:
http://www.mathcore.com/drmodelica.

228 A. Pop and P. Fritzson

[14] Sabine Glesner and Wolf Zimmermann, Natural semantics as a static program analysis
framework. ACM Transactions on Programming Languages and Systems (TOPLAS),
2004. vol: 26(3), p.: 510-577.

[15] University of Illinois, The Maude System Website, Last Accessed, www:
http://maude.cs.uiuc.edu/.

[16] Gilles Kahn, Natural Semantics, in Programming of Future Generation Computers, ed.
Niva M. 1988, Elsevier Science Publishers, North Holland. p. 237-258.

[17] MathCore, MathModelica, Last Accessed: 2005, MathCore, www:
http://www.mathcore.se/.

[18] Modelica-Association, Modelica: A Unified Object-Oriented Language for Physical Sys-
tems Modeling, Language Specification 2.2, Last Accessed: 2005, www:
http://www.modelica.org/.

[19] Modelica-Association, Modelica - A Unified Object-Oriented Language for Physical Sys-
tems Modeling - Tutorial and Design Rationale Version 2.0, Last Accessed: 2005, www:
http://www.modelica.org/.

[20] Peter D. Mosses, Modular structural operational semantics. Journal of Functional Program-
ming and Algebraic Programming. Special issue on SOS., 2004. vol: 60-61, p.: 195-228.

[21] PELAB, Relational Meta-Language (RML) Environment, Last Accessed: 2005, Pro-
gramming Environments Laboratory (PELAB), www: http://www.ida.liu.se/~pelab/rml.

[22] PELAB, Open Modelica System, Last Accessed: 2005, Programming Environments
Laboratory, www: http://www.ida.liu.se/~pelab/modelica.

[23] PELAB, Modelica Development Tooling (MDT), Last Accessed: April, 2006, PELAB,
www: http://www.ida.liu.se/~pelab/modelica/OpenModelica/MDT/.

[24] Mikael Pettersson and Peter Fritzson. DML - A Meta-language and System for the Gen-
eration of Practical and Efficient Compilers from Denotational Specifications, Proceed-
ings of the 1992 International Conference on Computer Languages, April 20-23, 1992.
Oakland, California

[25] Mikael Pettersson, Compiling Natural Semantics, Department of Computer and Informa-
tion Science. 1995, Linköping University, Linköping, PhD. Thesis.

[26] Mikael Pettersson, Compiling Natural Semantics. Lecture Notes in Computer Science
(LNCS). Vol. 1549. 1999, Springer-Verlag.

[27] Gordon Plotkin, A structural approach to operational semantics, Århus University, Re-
port: DAIMI FN-19, 1981

[28] Adrian Pop and Peter Fritzson. Debugging Natural Semantics Specifications, Proceedings
of Sixth International Symposium on Automated and Analysis-Driven Debugging, Sep-
tember 19-21, 2005. Monterey, California

[29] Johan Ringström, Peter Fritzson, and Mikael Pettersson. Generating an Efficient Compiler
for a Data Parallel Language from Denotational Specifications, Proceedings of Int. Conf.
of Compiler Construction, April, 1994. Edinburgh, Springer Verlag, vol. LNCS 786

[30] Levon Saldamli, PDEModelica - Towards a High-Level Language for Modeling with
Partial Differential Equations, Department of Computer and Information Science. 2002,
Linköping University, Linköping, Licenciate Thesis.

[31] Levon Saldamli, Peter Fritzson, and Bernhard Bachmann. Extending Modelica for Partial
Differential Equations, Proceedings of 2nd International Modelica Conference, March.
18-29, 2002. Munich, Gernany

[32] Levon Saldamli, Bernhard Bachmann, Peter Fritzson, and Hansjürg Wiesmann. A
Framework for Describing and Solving PDE Models in Modelica. ed. Gerhard Schmitz,
Proceedings of 4th International Modelica Conference, 2005. Hamburg-Harburg, Mode-
lica Association, www: http://www.modelica.org/events/Conference2005/

 A Unified Equation-Based Semantical and Mathematical Modeling Language 229

[33] SICS - Swedish Institute of Computer Science, SICStus Prolog Website, Last Accessed:
April, 2006, www: http://www.sics.se/sicstus/.

[34] SWI-Prolog, SWI-Prolog Website, Last Accessed: April, 2006, University of Amsterdam,
www: http://www.swi-prolog.org/.

[35] Michael M. Tiller, Introduction to Physical Modeling with Modelica. 2001, Kluwer Aca-
demic Publishers.

[36] Lars Viklund, Johan Herber, and Peter Fritzson. The implementation of ObjectMath - a
hight-level programming enviornment for scientific computing. ed. Uwe Kastens and Pe-
ter Pfahler, Proceedings of Compiler Construction - 4th International Conference
(CC'92), 1992, Springer-Verlag, Lecture Notes in Computer Science (LNCS), vol. 641,
p.: 312-318

	Introduction
	Background
	Natural Semantics and the Relational Meta-Language (RML)
	Modelica – An Object-Oriented Equation-Based Component Language

	MetaModelica – A Unified Equation-Based Modeling Language
	The Types of Equations in the Unified Language
	Solution of Equations
	Evaluator for the Exp1 Language in the Unified Language

	Details of the Compiler Implementation
	Performance Evaluation of the MetaModelica Compiler
	Related Work
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

