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Abstract. I’ll talk about the separation of concerns in the development of large 
distributed enterprise systems, how to manage it using domain specific 
languages, and how to build these languages.  This brief note outlines some of 
the topics I’ll cover. 

1   Separation of Concerns 

Most developments in programming language design are intended to improve the 
ability of the programmer to separate the expression of different concerns.  This has 
progressively led to the development of language features such as procedures, abstract 
data types, objects, polymorphic type systems, aspects, and so on. 

We’re now moving into an era when the normal case of software development is 
distributed and heterogeneous, with the internet playing a pivotal role.  It’s simply not 
practical today to use a single programming language to create all aspects of a large 
and complex computing system.  Different technologies are used to implement user-
interfaces, business subsystems, middleware, databases, workflow systems, sensors, 
etc.  Enterprise programming stacks include as first-class participants a variety of 
inter-related programming and scripting languages, databases, metadata and 
configuration files.  Most programming projects involve interoperating with what is 
already there, which requires interfacing to existing technology stacks. 

In such a world, concerns such as the structure and organization of business data 
and processes inherently span multiple technologies.  A given business concept will 
show up in the user interface, in the formats used to communicate between 
components, in the interfaces offered from one component to another, in the schemas 
for databases where business data is stored, and in the programming logic for 
manipulating all of the above.  Even the simplest change, such as changing the name 
of the business concept, impacts all of these pieces.  Such concerns cannot possibly be 
effectively separated by improving programming language design. How then can we 
approach this problem? 

2   Development Using Domain Specific Languages 

A promising approach has been described variously as “Language-Oriented 
Programming” [1], “Language Workbenches” [2], “Generative Programming” [3] and 
“Model Driven Engineering” [4].  All of these phrases essentially describe the same 
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pattern: given a class of problems, design a special-purpose language – a Domain 
Specific Language or DSL - to solve it. 

A simple (and old) example of this pattern is the language of regular expressions.  
For example, using the .Net class System.Text.RegularExpression.Regex, the regular 
expression “(?<user>[^@]+)@(?<host>.+)” applied to a string of characters will find 
email addresses in it, and for each address found, appropriately extract the user and 
host variables.  Programming such a procedure directly in a general-purpose language 
is a significantly larger and more error-prone task. 

In developing complex enterprise systems, it is increasingly the case that graphical 
languages can be used to express certain concerns most effectively.  Business 
workflows, business data, and system, application and data centre configuration are 
obvious candidates for graphical representation.  Also textual languages, while 
effective for inputting large programs, may not be the most effective medium for 
displaying, analyzing and interpreting these programs. 

Putting these ingredients together provides the motivation for an emerging class of 
graphical language-processing tools, which includes the DSL Tools from Microsoft 
[5], the Generic Modeling Environment (GME) from Vanderbilt University [6], and 
commercial examples from MetaCase, Xactium and others.  These tools enable the 
language author to design and implement the abstract and concrete syntax for a DSL, 
together with the ancillaries needed to integrate the language into a development 
process. 

Of course it is not sufficient simply to design what a DSL looks like; it is also 
necessary to give its expressions meaning, which in practical terms means to generate 
executable artifacts from it: these will most likely be programs in more general-
purpose languages, together with configuration files, scripts and metadata, that can be 
deployed together to implement the intention of the developer. 

As soon as generation is introduced into the development process, there is the 
possibility of developers changing the generated artifacts.  Uncontrolled, this will 
break the process: the source form of the DSL will become out of date and useless.  
Alleviating this issue is one of the main challenges of making DSLs successful.  Not 
all artifacts can be generated from DSLs, so it is essential to be able to interface 
generated artifacts with hand-coded ones: various language techniques such as partial 
classes [7] can enable this. 

3   Software Factories 

A DSL can provide a means to simplify the development of one area of concern.  But 
the development of large distributed applications involves the integration of multiple 
areas of concern, with multiple stakeholders manipulating the system via multiple 
different viewpoints. 

Managing the complexity of such a development involves delivering appropriate 
languages, tools and guidance to individual participants in the process at the right 
place and time.  Enabling this is the province of Software Factories [8], an approach  
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to software development that focuses on the explicit identification of viewpoints in 
the development process, the definition of DSLs, tools and guidance to support these 
viewpoints, and the delivery of these capabilities to individuals during the enactment 
of the process. 
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