
D. Lightfoot and C. Szyperski (Eds.): JMLC 2006, LNCS 4228, pp. 1 – 3, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Separating Concerns with Domain Specific Languages

Steve Cook

Microsoft UK Ltd, Cambridge
steve.cook@microsoft.com

Abstract. I’ll talk about the separation of concerns in the development of large
distributed enterprise systems, how to manage it using domain specific
languages, and how to build these languages. This brief note outlines some of
the topics I’ll cover.

1 Separation of Concerns

Most developments in programming language design are intended to improve the
ability of the programmer to separate the expression of different concerns. This has
progressively led to the development of language features such as procedures, abstract
data types, objects, polymorphic type systems, aspects, and so on.

We’re now moving into an era when the normal case of software development is
distributed and heterogeneous, with the internet playing a pivotal role. It’s simply not
practical today to use a single programming language to create all aspects of a large
and complex computing system. Different technologies are used to implement user-
interfaces, business subsystems, middleware, databases, workflow systems, sensors,
etc. Enterprise programming stacks include as first-class participants a variety of
inter-related programming and scripting languages, databases, metadata and
configuration files. Most programming projects involve interoperating with what is
already there, which requires interfacing to existing technology stacks.

In such a world, concerns such as the structure and organization of business data
and processes inherently span multiple technologies. A given business concept will
show up in the user interface, in the formats used to communicate between
components, in the interfaces offered from one component to another, in the schemas
for databases where business data is stored, and in the programming logic for
manipulating all of the above. Even the simplest change, such as changing the name
of the business concept, impacts all of these pieces. Such concerns cannot possibly be
effectively separated by improving programming language design. How then can we
approach this problem?

2 Development Using Domain Specific Languages

A promising approach has been described variously as “Language-Oriented
Programming” [1], “Language Workbenches” [2], “Generative Programming” [3] and
“Model Driven Engineering” [4]. All of these phrases essentially describe the same

2 S. Cook

pattern: given a class of problems, design a special-purpose language – a Domain
Specific Language or DSL - to solve it.

A simple (and old) example of this pattern is the language of regular expressions.
For example, using the .Net class System.Text.RegularExpression.Regex, the regular
expression “(?<user>[^@]+)@(?<host>.+)” applied to a string of characters will find
email addresses in it, and for each address found, appropriately extract the user and
host variables. Programming such a procedure directly in a general-purpose language
is a significantly larger and more error-prone task.

In developing complex enterprise systems, it is increasingly the case that graphical
languages can be used to express certain concerns most effectively. Business
workflows, business data, and system, application and data centre configuration are
obvious candidates for graphical representation. Also textual languages, while
effective for inputting large programs, may not be the most effective medium for
displaying, analyzing and interpreting these programs.

Putting these ingredients together provides the motivation for an emerging class of
graphical language-processing tools, which includes the DSL Tools from Microsoft
[5], the Generic Modeling Environment (GME) from Vanderbilt University [6], and
commercial examples from MetaCase, Xactium and others. These tools enable the
language author to design and implement the abstract and concrete syntax for a DSL,
together with the ancillaries needed to integrate the language into a development
process.

Of course it is not sufficient simply to design what a DSL looks like; it is also
necessary to give its expressions meaning, which in practical terms means to generate
executable artifacts from it: these will most likely be programs in more general-
purpose languages, together with configuration files, scripts and metadata, that can be
deployed together to implement the intention of the developer.

As soon as generation is introduced into the development process, there is the
possibility of developers changing the generated artifacts. Uncontrolled, this will
break the process: the source form of the DSL will become out of date and useless.
Alleviating this issue is one of the main challenges of making DSLs successful. Not
all artifacts can be generated from DSLs, so it is essential to be able to interface
generated artifacts with hand-coded ones: various language techniques such as partial
classes [7] can enable this.

3 Software Factories

A DSL can provide a means to simplify the development of one area of concern. But
the development of large distributed applications involves the integration of multiple
areas of concern, with multiple stakeholders manipulating the system via multiple
different viewpoints.

Managing the complexity of such a development involves delivering appropriate
languages, tools and guidance to individual participants in the process at the right
place and time. Enabling this is the province of Software Factories [8], an approach

 Separating Concerns with Domain Specific Languages 3

to software development that focuses on the explicit identification of viewpoints in
the development process, the definition of DSLs, tools and guidance to support these
viewpoints, and the delivery of these capabilities to individuals during the enactment
of the process.

References

1. Dimitriev, S. Language-Oriented Programming: The Next Programming Paradigm,
http://www.onboard.jetbrains.com/is1/articles/04/10/lop/

2. Fowler, M. Language Workbenches: The Killer App for Domain Specific Languages?
http://martinfowler.com/articles/languageWorkbench.html

3. Czarnecki, K. and Eisenecker, U.W. Generative Programming – Methods, Tools and
Applications. Addison-Wesley (2000).

4. Bézivin J., Jouault F, and Valduriez P. On the Need for Megamodels. Proceedings of the
OOPSLA/GPCE: Best Practices for Model-Driven Software Development workshop, 19th
Annual ACM Conference on Object-Oriented Programming, Systems, Languages, and
Applications (2004).

5. DSL Tools Workshop. http://msdn.microsoft.com/vstudio/DSLTools/
6. Akos Ledeczi, Miklos Maroti, Arpad Bakay, Gabor Karsai, Garrett, J., Thomason, C.,

Nordstrom, G., Sprinkle, J. and Volgyesi, P. The Generic Modeling Environment.
Proceedings of WISP'2001, May, 2001.
http://www.isis.vanderbilt.edu/Projects/gme/GME2000Overview.pdf

7. C# programming guide, http://msdn2.microsoft.com/en-us/library/wa80x488.aspx
8. Greenfield, J., Short, K., Cook, S., Kent, S. Software Factories: Assembling Applications

with Patterns, Models, Frameworks and Tools. Wiley (2004).

	Separation of Concerns
	Development Using Domain Specific Languages
	Software Factories
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

