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Preface

On behalf of the Steering Committee we are pleased to present the proceedings
of the 2006 Joint Modular Languages Conference (JMLC), organized by Oxford
Brookes University, Oxford, UK and held at Jesus College, Oxford. The mission
of JMLC is to explore the concepts of well-structured programming languages
and software and those of teaching good design and programming style. JMLC
2006 was the seventh in a series of successful conferences with themes including
the construction of large and distributed software systems, and software engi-
neering aspects in new and dynamic application areas.

We were fortunate to have a dedicated Program Committee comprising 41
internationally recognized researchers and industrial practitioners. We received
36 submissions and each paper was reviewed by at least three Program Com-
mittee members (four for papers with an author on the Program Committee).
The entire reviewing process was supported by the OpenConf system. In total,
23 submissions were accepted along with two invited papers and are included in
this proceedings volume.

For the successful local organization of JMLC we thank Muneera Masterson,
Ali McNiffe and Fiona Parker and other staff and student helpers of Oxford
Brookes University as well as Rosemary Frame and Jo Knighton and other staff of
Jesus College, Oxford. The proceedings you now hold were published by Springer
and we are grateful for their support. Finally, we must thank the many authors
who contributed the high-quality papers contained within these proceedings.

September 2006 David Lightfoot
Clemens Szyperski
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2000 in Zürich, Switzerland;
2003 in Klagenfurt, Austria.

Steering Committee
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Separating Concerns with Domain Specific Languages 

Steve Cook 

Microsoft UK Ltd, Cambridge 
steve.cook@microsoft.com 

Abstract. I’ll talk about the separation of concerns in the development of large 
distributed enterprise systems, how to manage it using domain specific 
languages, and how to build these languages.  This brief note outlines some of 
the topics I’ll cover. 

1   Separation of Concerns 

Most developments in programming language design are intended to improve the 
ability of the programmer to separate the expression of different concerns.  This has 
progressively led to the development of language features such as procedures, abstract 
data types, objects, polymorphic type systems, aspects, and so on. 

We’re now moving into an era when the normal case of software development is 
distributed and heterogeneous, with the internet playing a pivotal role.  It’s simply not 
practical today to use a single programming language to create all aspects of a large 
and complex computing system.  Different technologies are used to implement user-
interfaces, business subsystems, middleware, databases, workflow systems, sensors, 
etc.  Enterprise programming stacks include as first-class participants a variety of 
inter-related programming and scripting languages, databases, metadata and 
configuration files.  Most programming projects involve interoperating with what is 
already there, which requires interfacing to existing technology stacks. 

In such a world, concerns such as the structure and organization of business data 
and processes inherently span multiple technologies.  A given business concept will 
show up in the user interface, in the formats used to communicate between 
components, in the interfaces offered from one component to another, in the schemas 
for databases where business data is stored, and in the programming logic for 
manipulating all of the above.  Even the simplest change, such as changing the name 
of the business concept, impacts all of these pieces.  Such concerns cannot possibly be 
effectively separated by improving programming language design. How then can we 
approach this problem? 

2   Development Using Domain Specific Languages 

A promising approach has been described variously as “Language-Oriented 
Programming” [1], “Language Workbenches” [2], “Generative Programming” [3] and 
“Model Driven Engineering” [4].  All of these phrases essentially describe the same 
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pattern: given a class of problems, design a special-purpose language – a Domain 
Specific Language or DSL - to solve it. 

A simple (and old) example of this pattern is the language of regular expressions.  
For example, using the .Net class System.Text.RegularExpression.Regex, the regular 
expression “(?<user>[^@]+)@(?<host>.+)” applied to a string of characters will find 
email addresses in it, and for each address found, appropriately extract the user and 
host variables.  Programming such a procedure directly in a general-purpose language 
is a significantly larger and more error-prone task. 

In developing complex enterprise systems, it is increasingly the case that graphical 
languages can be used to express certain concerns most effectively.  Business 
workflows, business data, and system, application and data centre configuration are 
obvious candidates for graphical representation.  Also textual languages, while 
effective for inputting large programs, may not be the most effective medium for 
displaying, analyzing and interpreting these programs. 

Putting these ingredients together provides the motivation for an emerging class of 
graphical language-processing tools, which includes the DSL Tools from Microsoft 
[5], the Generic Modeling Environment (GME) from Vanderbilt University [6], and 
commercial examples from MetaCase, Xactium and others.  These tools enable the 
language author to design and implement the abstract and concrete syntax for a DSL, 
together with the ancillaries needed to integrate the language into a development 
process. 

Of course it is not sufficient simply to design what a DSL looks like; it is also 
necessary to give its expressions meaning, which in practical terms means to generate 
executable artifacts from it: these will most likely be programs in more general-
purpose languages, together with configuration files, scripts and metadata, that can be 
deployed together to implement the intention of the developer. 

As soon as generation is introduced into the development process, there is the 
possibility of developers changing the generated artifacts.  Uncontrolled, this will 
break the process: the source form of the DSL will become out of date and useless.  
Alleviating this issue is one of the main challenges of making DSLs successful.  Not 
all artifacts can be generated from DSLs, so it is essential to be able to interface 
generated artifacts with hand-coded ones: various language techniques such as partial 
classes [7] can enable this. 

3   Software Factories 

A DSL can provide a means to simplify the development of one area of concern.  But 
the development of large distributed applications involves the integration of multiple 
areas of concern, with multiple stakeholders manipulating the system via multiple 
different viewpoints. 

Managing the complexity of such a development involves delivering appropriate 
languages, tools and guidance to individual participants in the process at the right 
place and time.  Enabling this is the province of Software Factories [8], an approach  
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to software development that focuses on the explicit identification of viewpoints in 
the development process, the definition of DSLs, tools and guidance to support these 
viewpoints, and the delivery of these capabilities to individuals during the enactment 
of the process. 
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Event-Based Programming Without Inversion of

Control

Philipp Haller and Martin Odersky

École Polytechnique Fédérale de Lausanne (EPFL)
1015 Lausanne, Switzerland

1 Introduction

Concurrent programming is indispensable. On the one hand, distributed and
mobile environments naturally involve concurrency. On the other hand, there
is a general trend towards multi-core processors that are capable of running
multiple threads in parallel.

With actors there exists a computation model which is especially suited for
concurrent and distributed computations [16,1]. Actors are basically concur-
rent processes which communicate through asynchronous message passing. When
combined with pattern matching for messages, actor-based process models have
been proven to be very effective, as the success of Erlang documents [3,25].

Erlang [4] is a dynamically typed functional programming language designed
for programming real-time control systems. Examples of such systems are tele-
phone exchanges, network simulators and distributed resource controllers. In
these systems, large numbers of concurrent processes can be active simultane-
ously. Moreover, it is generally difficult to predict the number of processes and
their memory requirements as they vary with time.

For the implementation of these processes, operating system threads and
threads of virtual machines, such as the Java Virtual Machine [22], are usually
too heavyweight. The main reasons are: (1) Over-provisioning of stacks leads
to quick exhaustion of virtual address space and (2) locking mechanisms often
lack suitable contention managers [12]. Therefore, Erlang implements concurrent
processes by its own runtime system and not by the underlying operating system
[5].

Actor abstractions as lightweight as Erlang’s processes have been unavailable
on popular virtual machines so far. At the same time, standard virtual machines
are becoming an increasingly important platform for exactly the same domain of
applications in which Erlang–because of its process model–has been so successful:
Real-time control systems [23,27].

Another domain where virtual machines are expected to become ubiquitous
are applications running on mobile devices, such as cellular phones or personal
digital assistants [20]. Usually, these devices are exposed to severe resource con-
straints. On such devices, only a few hundred kilobytes of memory is available
to a virtual machine and applications.

This has important consequences: (1) A virtual machine for mobile devices
usually offers only a restricted subset of the services of a common virtual machine

D. Lightfoot and C. Szyperski (Eds.): JMLC 2006, LNCS 4228, pp. 4–22, 2006.
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for desktop or server computers. For example, the KVM1 has no support for re-
flection (introspection) and serialization. (2) Programming abstractions used by
applications have to be very lightweight to be useful. Again, thread-based con-
currency abstractions are too heavyweight. Furthermore, programming models
have to cope with the restricted set of services a mobile virtual machine provides.

A common alternative to programming with threads are event-driven pro-
gramming models. Programming in explicitly event-driven models is very diffi-
cult [21].

Most programming models support event-driven programming only through
inversion of control. Instead of calling blocking operations (e.g. for obtaining user
input), a program merely registers its interest to be resumed on certain events
(e.g. an event signaling a pressed button, or changed contents of a text field).
In the process, event handlers are installed in the execution environment which
are called when certain events occur. The program never calls these event han-
dlers itself. Instead, the execution environment dispatches events to the installed
handlers. Thus, control over the execution of program logic is “inverted”.

Virtually all approaches based on inversion of control suffer from the following
two problems: First, the interactive logic of a program is fragmented across
multiple event handlers (or classes, as in the state design pattern [13]). Second,
control flow among handlers is expressed implicitly through manipulation of
shared state [10].

To obtain very lightweight abstractions without inversion of control, we make
actors thread-less. We introduce event-based actors as an implementation tech-
nique for lightweight actor abstractions on non-cooperative virtual machines such
as the JVM. Non-cooperative means that the virtual machine provides no means
to explicitly manage the execution state of a program.

The central idea is as follows: An actor that waits in a receive statement is not
represented by a blocked thread but by a closure that captures the rest of the
actor’s computation. The closure is executed once a message is sent to the actor
that matches one of the message patterns specified in the receive. The execution
of the closure is “piggy-backed” on the thread of the sender. If the receiving
closure terminates, control is returned to the sender as if a procedure returns. If
the receiving closure blocks in a second receive, control is returned to the sender
by throwing a special exception that unwinds the receiver’s call stack.

A necessary condition for the scheme to work is that receivers never return
normally to their enclosing actor. In other words, no code in an actor can de-
pend on the termination or the result of a receive block. We can express this
non-returning property at compile time through Scala’s type system. This is not
a severe restriction in practice, as programs can always be organized in a way so
that the “rest of the computation” of an actor is executed from within a receive.
To the best of our knowledge, event-based actors are the first to (1) allow reactive
behavior to be expressed without inversion of control, and (2) support arbitrary
blocking operations in reactions, at the same time. Our actor library outper-
forms other state-of-the-art actor languages with respect to message passing

1 See http://java.sun.com/products/cldc/.
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speed and memory consumption by several orders of magnitude. Our implemen-
tation is able to make use of multi-processors and multi-core processors because
reactions can be executed simultaneously on multiple processors. By extending
our event-based actors with a portable runtime system, we show how the essence
of distributed Erlang [31] can be implemented in Scala. Our library supports vir-
tually all primitives and built-in-functions which are introduced in the Erlang
book [4]. The portability of our runtime system is established by two working
prototypes based on TCP and the JXTA2 peer-to-peer framework, respectively.

All this has been achieved without extending or changing the programming
language. The event-based actor library is thus a good demonstrator of Scala’s
abstraction capabilities. Beginning with the upcoming release 2.1.7, it is part of
the Scala standard distribution3.

Other Related Work. Actalk [8] implements actors as a library for Smalltalk-80
by extending a minimal kernel of pure Smalltalk objects. Their implementa-
tion is not event-based and Smalltalk-80 does not support parallel execution of
concurrent actors on multi-processors (or multi-core processors).

Actra [29] extends the Smalltalk/V virtual machine with an object-based
real-time kernel which provides lightweight processes. In contrast, we implement
lightweight actors on unmodified virtual machines.

Chrysanthakopoulos and Singh [11] discuss the design and implementation
of a channel-based asynchronous messaging library. Channels can be viewed
as special state-less actors which have to be instantiated to indicate the types
of messages they can receive. Instead of using heavyweight operating system
threads they develop their own scheduler to support continuation passing style
(CPS) code. Using CLU-style iterators blocking-style code is CPS-transformed
by the C# compiler.

SALSA (Simple Actor Language, System and Architecture) [30] extends Java
with concurrency constructs that directly support the notion of actors. A pre-
processor translates SALSA programs into Java source code which in turn is
linked to a custom-built actor library. As SALSA implements actors on the
JVM, it is somewhat closer related to our work than Smalltalk-based actors or
channels. Moreover, performance results have been published which enables us
to compare our system with SALSA, using ports of existing benchmarks.

Timber is an object-oriented and functional programming language designed
for real-time embedded systems [6]. It offers message passing primitives for both
synchronous and asynchronous communication between concurrent reactive ob-
jects. In contrast to event-based actors, reactive objects cannot call operations
that might block indefinitely. Instead, they install call-back methods in the com-
puting environment which executes these operations on behalf of them.

Frugal objects [14] (FROBs) are distributed reactive objects that commu-
nicate through typed events. FROBs are basically actors with an event-based
computation model, just as our event-based actors. The goals of FROBs and

2 See http://www.jxta.org/.
3 Available from http://scala.epfl.ch/.
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����� Counter ������� Actor {
	
������ �� run(): unit = loop(0)

�� loop(value: int): unit = {
Console.println("Value:�" + value)
receive {
���� Incr() => loop(value + 1)
���� Value(a) => a ! value; loop(value)
���� Lock(a) => a ! value

receive { ���� UnLock(v) => loop(v) }
���� _ => loop(value)

}
}

}

Fig. 1. A simple counter actor

event-based actors are orthogonal, though. The former provide a computing
model suited for resource-constrained devices, whereas our approach offers a
programming model (i.e. a convenient syntax) for event-based actors, such as
FROBs. Currently, FROBs can only be programmed using a fairly low-level
Java API. In the future, we plan to cooperate with the authors to integrate our
two orthogonal approaches.

The rest of this paper is structured as follows. Section 2 shows how conven-
tional, thread-based actors are represented as a Scala library. Section 3 shows
how to modify the actor model so that it becomes event-based. Section 4 out-
lines Scala’s package for distributed actors. Section 5 evaluates the performance
of our actor libraries. Section 6 concludes.

2 Decomposing Actors

This section describes a Scala library that implements abstractions similar to
processes in Erlang. Actors are self-contained, logically active entities that com-
municate through asynchronous message passing. Figure 1 shows the definition
of a counter actor. The actor repeatedly executes a receive operation, which
waits for three kinds of messages:

– The Incr message causes the counter’s value to be incremented.
– The Value message causes the counter’s current value to be communicated

to the given actor a.
– The Lock message is thrown in to make things more interesting. When re-

ceiving a Lock, the counter will communicate its current value to the given
actor a. It then blocks until it receives an UnLock message. The latter mes-
sage also specifies the value with which the counter continues from there.
Thus, other processes cannot observe state changes of a locked counter until
it is unlocked again.
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Messages that do not match the patterns Incr(), Value(a), or Lock(a) are
ignored. A typical communication with a counter actor could proceed as follows.

��� counter = ��� Counter
counter.start()
counter ! Incr()
counter ! Value(���	)
receive { 
�	� cvalue => Console.println(cvalue) }

This creates a new Counter actor, starts it, increments it by sending it the
Incr() message, and then sends it the Value query with the currently executing
actor this as argument. It then waits for a response of the counter actor in a
receive. Once some response is received, its value is printed (this value should
be one, unless there are other actors interacting with the counter).

Messages in this model are arbitrary objects. In contrast to channel-based
programming [11] where a channel usually has to be (generically) instantiated
with the types of messages it can handle, an actor can receive messages of any
type.

In our example, actors communicate using instances of the following four
message classes.


�	� 
��		 Incr()

�	� 
��		 Value(a: Actor)

�	� 
��		 Lock(a: Actor)

�	� 
��		 UnLock(value: int)

All classes have a 
�	� modifier which enables constructor patterns for the class
(see below). Neither class has a body. The Incr class has a constructor that
takes no arguments, the Value and Lock classes have a constructor that takes
an Actor as a parameter, and the UnLock class has a constructor that takes an
integer argument.

A message send a!m sends the message m to the actor a. The communication
is asynchronous: if a is not ready to receive m, then m is queued in a mailbox of
a and the send operation terminates immediately.

Messages are processed by the receive construct, which has the following
form:

receive {

�	� p1 => e1
. . .

�	� pn => en

}

Here, messages in an actor’s mailbox are matched against the patterns p1, . . . , pn.
Patterns consist of constructors and variables. A constructor pattern names a
case class; it matches all instances of this class. A variable pattern matches every
value and binds the value to the variable. For example, the pattern Value(a)
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matches all instances v of the Value class and binds the variable a to the con-
structor argument of v.

A receive will select the first message in an actor’s mailbox that matches any
of its patterns. If a pattern pi matches, its corresponding action ei is executed.
If no message in the mailbox matches a pattern, the actor will suspend, waiting
for further messages to arrive.

Looking at the example above, it might seem that Scala is a language spe-
cialized for actor concurrency. In fact, this is not true. Scala only assumes the
basic thread model of the underlying host. All higher-level operations shown in
the example are defined as classes and methods of the Scala library. In the rest
of this section, we look “under the covers” to find out how each construct is
defined and implemented.

An actor is simply a subclass of the host environment’s Thread class that
defines methods ! and receive for sending and receiving messages.

�������� ����� Actor ����	
� Thread {
������ �� mailbox: List[Any]

�� !(msg: Any) = ...

�� receive[a](f: PartialFunction[Any, a]): a = ...
...

}

The ! method is used to send a message to an actor. The send syntax a!m
is simply an abbreviation of the method call a.!(m), just like x+y in Scala is
an abbreviation for x.+(y). The method does two things. First, it enqueues
the message argument in the actor’s mailbox, which is represented as a private
field of type List[Any]. Second, if the receiving actor is currently suspended
in a receive that could handle the sent message, the execution of the actor is
resumed.

The receive { ... } construct is more interesting. Here, the pattern match-
ing expression inside the braces is treated in Scala as a first-class object that
is passed as an argument to the receive method. The argument’s type is an
instance of PartialFunction, which is a subclass of Function1, the class of
unary functions. The two classes are defined as follows.

�������� ����� Function1[-a,+b] {

�� apply(x: a): b

}
�������� ����� PartialFunction[-a,+b] ����	
� Function1[a,b] {

�� isDefinedAt(x: a): boolean

}

So we see that functions are objects which have an apply method. Partial func-
tions are objects which have in addition a method isDefinedAt which can be
used to find out whether a function is defined at a given value. Both classes are



10 P. Haller and M. Odersky

parameterized; the first type parameter a indicates the function’s argument type
and the second type parameter b indicates its result type4.

A pattern matching expression { ���� p1 => e1; ...; ���� pn => en }
is then a partial function whose methods are defined as follows.

– The isDefinedAt method returns ���� if one of the patterns pi matches
the argument, ����� otherwise.

– The apply method returns the value ei for the first pattern pi that matches
its argument. If none of the patterns match, a MatchError exception is
thrown.

The two methods are used in the implementation of receive as follows. First,
messages m in the mailbox are scanned in the order they appear. If receive’s
argument f is defined for some of the messages, that message is removed from
the mailbox and f is applied to it. On the other hand, if f.isDefinedAt(m) is
����� for every message in the mailbox, the thread associated with the actor is
suspended.

This sums up the essential implementation of thread-based actors. There is
also some other functionality in Scala’s actor libraries which we have not cov-
ered. For instance, there is a method receiveWithin which can be used to
specify a time span in which a message should be received allowing an actor to
timeout while waiting for a message. Upon timeout the action associated with a
special TIMEOUT() pattern is fired. Timeouts can be used to suspend an actor,
completely flush the mailbox, or to implement priority messages [4].

Thread-based actors are useful as a higher-level abstraction of threads, which
replace error-prone shared memory accesses and locks by asynchronous message
passing. However, like threads they incur a performance penalty on standard
platforms such as the JVM, which prevents scalability. In the next section we
show how the actor model can be changed so that actors become disassociated
from threads.

3 Recomposing Actors

Logically, an actor is not bound to a thread of execution. Nevertheless, virtu-
ally all implementations of actor models associate a separate thread or even an
operating system process with each actor [8,29,9,30].

In Scala, thread abstractions of the standard library are mapped onto the
thread model and implementation of the corresponding target platform, which
at the moment consists of the JVM and Microsoft’s CLR [15].

To overcome the resulting problems with scalability, we propose an event-
based implementation where (1) actors are thread-less, and (2) computations
4 Parameters can carry + or - variance annotations which specify the relationship

between instantiation and subtyping. The -a, +b annotations indicate that functions
are contravariant in their argument and covariant in their result. In other words
Function1[X1, Y1] is a subtype of Function1[X2, Y2] if X2 is a subtype of X1 and
Y1 is a subtype of Y2.
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between two events are allowed to run to completion. An event in our library
corresponds to the arrival of a new message in an actor’s mailbox.

3.1 Execution Example

First, we want to give an intuitive explanation of how our event-based imple-
mentation works. For this, we revisit our counter example from section 2.

Let c be a new instance of a lockable counter (with an empty mailbox). After
starting c it immediately blocks, waiting for a matching message. Consider the
case where another actor p sends the message Lock(p) to c (c ! Lock(p)).
Because the arrival of this Lock message enables c to continue, send transfers
control to c. c resumes the receive statement that caused it to block. Instead
of executing the receiving actor on its own thread, we reuse the sender’s thread.

According to the semantics of receive, the new message is selected and re-
moved from the mailbox because it matches the first case of the outer receive.
Then, the corresponding action is executed with the pattern variables bound to
the constituents of the matched message:

{ ���� Incr() => loop(value + 1)
���� Value(a) => a ! value; loop(value)
���� Lock(a) => a ! value

receive { ���� UnLock(v) => loop(v) }
���� _ => loop(value)

}.apply(Lock(p))

Intuitively, this reduces to

p ! value
receive { ���� UnLock(v) => loop(v) }

After executing the message send p ! value, the call to receive blocks as
there are no other messages in c’s mailbox. Remember that we are still inside
p’s original message send (i.e. the send did not return, yet). Thus, blocking the
current thread (e.g., by issuing a call to wait()) would also block p.

This is illegal because in our programming model the send operation (!) has
a non-blocking semantics. Instead, we need to suspend c in such a way that
allows p to continue. For this, inside the (logically) blocking receive, first, we
remember the rest of c’s computation. In this case, it suffices to save the closure
of

receive { ���� UnLock(v) => loop(v) }

Second, to let p’s call of the send operation return, we need to unwind the
runtime stack up to the point where control was transferred to c. We do this by
throwing a special exception. The ! method catches this exception and returns
normally, keeping its non-blocking semantics.

In general, though, it is not sufficient to save a closure to capture the rest
of the computation of an actor. For example, consider an actor executing the
following statements:
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��� x = receive { ���� y => f(y) }
g(x)

Here, receive produces a value which is then passed to a function. Assume
receive blocks. Remember that we would need to save the rest of the compu-
tation inside the blocking receive.

To save information about statements following receive, we would need to
save the call-stack, or capture a (first-class) continuation. Virtual machines such
as the JVM provide no means for explicit stack management, mainly because
of security reasons. Thus, languages implementing first-class continuations have
to simulate the run-time stack on the heap which poses serious performance
problems [7]. Moreover, programming tools such as debuggers and profilers rely
on run-time information on the native VM stack which they are unable to find
if the stack that programs are using is allocated on the heap. Consequently,
existing tools cannot be used with programs compiled using a heap-allocated
stack.

Thus, most ports of languages with continuation support (e.g. Scheme [18],
Ruby [24]) onto non-cooperative virtual machines abandon first-class continu-
ations altogether (e.g. JScheme [2], JRuby5). Scala does not support first-class
continuations either, primarily because of compatibility and interoperability is-
sues with existing Java code.

To conclude, managing information about statements following a call to
receive would require changes either to the compiler or the VM. Following
our rationale for a library-based approach, we want to avoid those changes.

Instead, we require that receive never returns normally. Thus, managing in-
formation about succeeding statements is unnecessary. Moreover, we can enforce
this “no-return” property at compile time through Scala’s type system which
states that statements following calls to functions (or methods) with return type
Nothing will never get executed (“dead code”) [26]. Note that returning by
throwing an exception is still possible. In fact, as already mentioned above, our
implementation of receive relies on it.

Using a non-returning receive, the above example could be coded like this:

receive { ���� y => x = f(y); g(x) }

Basically, the rest of the actor’s computation has to be called at the end of each
case inside the argument function of receive (“continuation passing” style).

3.2 Single-Threaded Actors

As we want to avoid inversion of control receive will (conceptually) be executed
at the expense of the sender. If all actors are running on a single thread, sending
a message to an actor A will resume the execution of receive which caused
A to suspend. The code below shows a simplified implementation of the send
operation for actors that run on a single thread:

5 See http://jruby.sourceforge.net/.
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��� !(msg: Any): unit = {
mailbox += msg
�� (continuation != ���� && continuation.isDefinedAt(msg))
��	 { receive(continuation) }

��
� {

�� Done => // do nothing

}
}

The sent message is appended to the mailbox of the actor which is the target of
the send operation. Let A denote the target actor. If the continuation attribute
is set to a non-null value then A is suspended waiting for an appropriate message
(otherwise, A did not execute a call to receive, yet). As continuation refers
to (the closure of) the partial function with which the last blocking receive was
called, we can test if the newly appended message allows A to continue.

Note that if, instead, we would save receive(f) as continuation for a blocking
receive(f) we would not be able to test this but rather had to blindly call the
continuation. If the newly appended message would not match any of the defined
patterns, receive would go through all messages in the mailbox again trying to
find the first matching message. Of course, the attempt would be in vain as only
the newly appended message could have enabled A to continue.

If A is able to process the newly arrived message we let A continue until it
blocks on a nested receive(g) or finishes its computation. In the former case,
we first save the closure of g as A’s continuation. Then, the send operation that
originated A’s execution has to return because of its non-blocking semantics. For
this, the blocking receive throws a special exception of type Done (see below)
which is caught in the send method (!). Technically, this trick unwinds the call-
stack up to the point where the message send transferred control to A. Thus,
to complete the explanation of how the implementation of the send operation
works, we need to dive into the implementation of receive.

The receive method selects messages from an actor’s mailbox and is respon-
sible for saving the continuation as well as abandoning the evaluation context:

��� receive(f: PartialFunction[Any, unit]): Nothing = {
mailbox.dequeueFirst(f.isDefinedAt) ���
� {

�� Some(msg) => continuation = ����

f(msg)

�� None => continuation = f

}
����� ��� Done

}

Naturally, we dequeue the first message in our mailbox which matches one of
the cases defined by the partial function which is provided as an argument to
receive. Note that f.isDefinedAt has type Any => boolean. As the type of
the resulting object is Option[Any] which has two cases defined, we can se-
lect between these cases using pattern matching. When there was a message
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dequeued we first reset the saved continuation. This is necessary to prevent a
former continuation to be called multiple times when there is a send to the
current actor inside the call f(msg).

If we didn’t find a matching message in the mailbox, we remember the contin-
uation which is the closure of f. In both cases we need to abandon the evaluation
context by throwing a special exception of type Done, so the sender which orig-
inated the call to receive can continue normally (see above).

3.3 Multi-threaded Actors

To leverage the increasingly important class of multi-core processors (and also
multi-processors) we want to execute concurrent activities on multiple threads.
We rely on modern VM implementations to execute concurrent VM threads on
multiple processor cores in parallel.

A scheduler decides how many threads to spend for a given workload of concur-
rent actors, and, naturally, implements a specific scheduling strategy. Because of
its asychronous nature, a message send introduces a concurrent activity, namely
the resumption of a previously suspended actor. We encapsulate this activity in a
task item which gets submitted to the scheduler (in a sense this is a rescheduling
send [28]):

��� send(msg: Any): unit = synchronized {
�� (continuation != ����

&& continuation.isDefinedAt(msg)
&& !scheduled) {

scheduled = ����

Scheduler.putTask(��	 ReceiverTask(�
��, msg))
} ���� mailbox += msg

}

If a call to send finds the current continuation of the receiving actor A to be
undefined, A is not waiting for a message. Usually, this is the case when a task for
A has been scheduled that has not been executed, yet. Basically, send appends
the argument message to the mailbox unless the receiving actor is waiting for a
message and is able to process the argument message. In this case, we schedule
the continuation of the receiving actor for execution by submitting a new task
item to the scheduler.

The scheduler maintains a pool of worker threads which execute task items. A
ReceiverTask is basically a Java java.lang.Runnable that receives a specified
message and has an exception handler that handles requests for abandoning the
evaluation context:

���� ReceiverTask(actor: Actor, msg: Any) ������� Runnable {
��� run(): unit =
��� { actor receiveMsg msg }
���
 {
��� Done => // do nothing

}
}
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receiveMsg is a special form of receive which processes a given message ac-
cording to the actor’s continuation.

Actors are not prevented from calling operations which can block indefinitely.
In the following we describe a scheduler which guarantees progress even in the
presence of blocking operations.

3.4 Blocking Operations

The event-based character of our implementation stems from the fact that (1)
actors are thread-less, and (2) computations between the reception of two mes-
sages are allowed to run to completion. The second property is common for
event-driven systems [17] and reflects our assumption of a rather interactive
character for most actors. Consequently, computations between arrival of mes-
sages are expected to be rather short compared to the communication overhead.

Nevertheless, we also want to support long-running, CPU-bound actors. Such
actors should not prevent other actors from making progress. Likewise, it would
be unfortunate if a single blocking actor could cause the whole application to
stop responding, thereby hindering other actors to make progress.

We face the same problems as user-level thread libraries: Processes yield con-
trol to the scheduler only at certain program points. In between they cannot
be prevented from calling blocking operations or executing infinite loops. For
example, an actor might call a native method which issues a blocking system
call.

In our case, the scheduler is executed only when sending a message leads
to the resumption of another actor. Because send is not allowed to block, the
receiver (which is resumed) needs to be executed on a different thread. This way,
the sender is not blocked even if the receiver executes a blocking operation.

As the scheduler might not have an idle worker thread available (because all
of them are blocked), it needs to create new worker threads as needed. However,
if there is at least one worker thread runnable (i.e. busy executing an actor), we
do not create a new thread. This is to prevent the creation of too many threads
even in the absence of blocking operations.

Actors are still thread-less, though: Each time an actor is suspended because
of a blocking (which means unsuccessful) receive, instead of blocking the thread,
it is detached from its thread. The thread now becomes idle, because it has
finished executing a receiver task item. It will ask the scheduler for more work.
Thereby, threads are reused for the execution of multiple actors.

Using this method, an actor-based application with low concurrency can be
executed by as few as two threads, regardless of the number of simultaneously
active actors.

Implementation. Unfortunately, it is impossible for user-level code to find out
if a thread running on the JVM is blocked. We therefore implemented a simple
heuristic that tries to approximate if a worker thread which executes an actor is
blocked, or not.
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��� execute(item: ReceiverTask): unit = synchronized {
�� (idle.length > 0) {
��� worker = idle.dequeue
executing.update(item.actor, worker)
worker.execute(item)

} ���� {
��� iter = workers.elements
��� foundBusy = �����

	
��� (iter.hasNext && !foundBusy) {
��� worker = iter.next
ticks.get(worker) ���
 {
��� None => foundBusy = ����

��� Some(ts) => {
��� currTime = System.currentTimeMillis
�� (currTime - ts < TICKFREQ)

foundBusy = ����

}
}

}
�� (!foundBusy) {
��� worker = ��	 WorkerThread(�
��)
workers += worker
executing.update(item.actor, worker)
worker.execute(item)
worker.start()

} ���� tasks += item
}

}

Fig. 2. Scheduling work items

The basic idea is that actors provide the scheduler with life-beats during their
execution. That is, the send (!) and receive methods call a tick method of
the scheduler. The scheduler then looks up the worker thread which is currently
executing the corresponding actor, and updates its time stamp. When a new
receiver task item is submitted to the scheduler, it first checks if all worker
threads are blocked. Worker threads with “recent” time stamps are assumed not
to be blocked. Only if all worker threads are assumed to be blocked (because
of old time stamps), a new worker thread is created. Otherwise, the task item
is simply put into a queue waiting to be consumed by an idle worker thread.
Figure 2 shows the main part of the scheduler implementation.

Note that using the described approximation, it is impossible to distinguish
blocked threads from threads that perform long-running computations. This
means basically that compute-bound actors execute on their own thread.

For some applications it might be worth using a scheduler which optimizes
the number of spare worker threads depending on runtime profiles. User-defined
schedulers are easy to implement and use with our library.

In summary, additional threads are created only when needed to support
(unexpected) blocking operations. The only blocking operation that is handled
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without thread support is receive. Thus, a large number of non-cooperative ac-
tors (those using blocking operations other than what our library provides), may
lead to a significant increase in memory consumption as the scheduler creates
more and more threads.

On the other hand, our approach adds significant flexibility, as the library
does not need to be changed when the user decides to use a blocking operation
which has no special library support. This also means that actors and standard
VM threads can be combined seamlessly. We discovered an important use case
when porting our runtime system to use JXTA as transport layer: Providing an
actor-based interface to a thread-based library.

4 Distributed Actors

With the help of a portable runtime system actors can be executed in a dis-
tributed fashion. More specifically, message sends are location transparent and
actors can be spawned on remote nodes. As we also target resource-constrained
devices, runtime services need to be runnable on virtual machines which offer
only a subset of the functionality of standard desktop virtual machines. For ex-
ample, the KVM6 does not support reflection. Thus, our serialization mechanism
is not based on a general reflective scheme. Instead, we provide a combinator
library which allows efficient picklers for custom datatypes to be constructed
easily. The pickler combinators are based on Kennedy’s library for Haskell [19].
The generated byte arrays are compact because of (1) structure sharing, and (2)
base128 encoded integers.

Our runtime system is portable in the sense that network protocol dependent
parts are isolated in a separate layer which provides network services (connec-
tion management, message transmission, etc.). Two working prototype imple-
mentations of the service layer based on TCP and JXTA, respectively, establish
portability in practice. TCP and JXTA are protocols different enough that we
expect no difficulties porting our runtime system to other network protocols in
the future.

We are currently working on the addition of the SOAP7 XML-over-HTTP
protocol as transport layer. One of the goals is to provide an actor-based inter-
face to web services such as the publicly exposed APIs of Google and Amazon.
Moreover, we want to build web services in terms of actors.

5 Performance Evaluation

In this section we examine performance properties of our event-based imple-
mentation of actors. In the process, we compare benchmark execution times
with SALSA [30], a state-of-the-art Java-based actor language, as well as with

6 See http://java.sun.com/products/cldc/.
7 See http://www.w3.org/2000/xp/Group/.
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a thread-based version of our library. As a reference we also show the perfor-
mance of a straight-forward implementation using threads and synchronized data
structures. In addition to execution time we are also interested in scalability with
respect to the number of simultaneously active actors each system can handle.

Experimental Set-Up. We measure the throughput of blocking operations in
a queue-based application. The application is structured as a ring of n produc-
ers/consumers (in the following called processes) with a shared queue between
each of them. Initially, k of these queues contain tokens and the others are empty.
Each process loops removing an item from the queue on its right and placing it
in the queue on its left.

The following tests were run on a 1.60GHz Intel Pentium M processor with 512
MB memory, running Sun’s Java HotSpot Client VM 1.5.0 under Linux 2.6.12.
We set the JVM’s maximum heap size to 256 MB to provide for sufficient physical
memory to avoid any disk activity. In each case we took the median of 5 runs.

The execution times of three equivalent actor-based implementations written
using (1) our event-based actor library, (2) a thread-based version of a similar
library, and (3) SALSA, respectively, are compared.

Benchmark Results. Figure 3 shows start-up times of the ring for up to 2000
processes (note that both scales are logarithmic). For event-based actors and the
näıve thread-based implementation, start-up time is basically constant. Event-
based actors are about 60% slower than pure threads. However, we have reasons
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Fig. 4. Throughput (number of token passes per second) for a fixed number of 10
tokens

to suggest that this is due to the different benchmark implementations. In all
actor-based implementations, start-up time is measured by starting all actors
and letting them wait to receive a special “continue” message. In contrast, the
thread-based implementation only creates all required threads without starting
them. Our measurements suggest that the used JVM optimizes thread creation,
potentially creating required runtime structures lazily on start-up. For thread-
based actors, start-up time increases exponentially when the number of processes
approaches a thousand. With 4000 processes the JVM crashes because of exhaus-
tion of maximum heap size.

Using SALSA, the VM was unable to create 2000 processes. As each actor has
a thread-based state object associated with it, the VM is unable to handle stack
space requirements at this point. In contrast, using event-based actors the ring can
be operated with up to 310000 processes that are created in about 10 seconds.

Looking at the generated Java code shows that SALSA spends a lot of time
setting up actors for remote communication (creating locality descriptors, name
table management, etc.), whereas in our case, an actor must announce explicitly
that it wants to participate in remote communications (by calling alive()).
Creation of locality descriptors and name table management can be delayed up
to this point. Also, when an actor is created in SALSA, it sends itself a special
“construct” message which takes additional time.

Figure 4 shows the number of token passes per second depending on the ring
size. We chose a logarithmic scale for the number of processes to better depict
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effects which are confined to a high and strongly increasing number of processes.
For up to 1000 processes, increase in throughput for event-based actors com-
pared to pure threads averages 22%. As blocking operations clearly dominate,
overhead of threads is likely to stem from context switches and contention for
locks. Interestingly, overhead vanishes for a small number of processes (10 and 20
processes, respectively). This behavior suggests that contention is not an issue
in this case, as uncontended lock management is optimized in Sun’s HotSpot
VM 1.5. Contention for locks becomes significant at about 2000 processes. Fi-
nally, when the number of processes reaches 4000, the threads’ time is consumed
managing the shared buffers rather than exchanging tokens through them. At
this point throughput of event-based actors is about 3 times higher.

For SALSA, throughput is about two orders of magnitude lower compared to
event-based actors. The average for 10 to 1000 processes amounts to only 1700
token passes per second. Looking at the generated Java source code revealed
that every message send involves a reflective method call. We found reflective
method calls to be about 30 times slower than JIT-compiled method calls on
our testing machine.

For thread-based actors, throughput is almost constant for up to 200 processes
(on average about 38000 token passes per second). At 500 processes it is already
less than half of that (15772 token passes per second). Similar to pure threads,
throughput breaks in for 2000 processes (only 5426 token passes per second).
Again, contended locks and context switching overhead are likely to cause this
behavior. The VM is unable to create 4000 processes, because it runs out of
memory.

Performance Summary. Event-based actors support a number of simulta-
neously active actors which is two orders of magnitude higher compared to
SALSA. Measured throughput is over 50 times higher compared to SALSA.
A näıve thread-based implementation of our benchmark performs surprisingly
well. However, for high numbers of threads (about 2000), lock contention causes
performance to break in. Also, the maximum number of threads is limited due
to their memory consumption.

6 Conclusion

Scala is different from other concurrent languages in that it contains no language
support for concurrency beyond the standard thread model offered by the host
environment. Instead of specialized language constructs we rely on Scala’s gen-
eral abstraction capabilities to define higher-level concurrency models. In such
a way, we were able to define all essential operations of Erlang’s actor-based
process model in the Scala library.

However, since Scala is implemented on the Java VM, we inherited some of the
deficiencies of the host environment when it comes to concurrency, namely low
maximum number of threads and high context-switch overhead. In this paper
we have shown how to turn this weakness into a strength. By defining a new
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event-based model for actors, we could increase dramatically their efficiency and
scalability. At the same time, we kept to a large extent the programming model
of thread-based actors, which would not have been possible if we had switched
to a traditional event-based architecture, because the latter causes an inversion
of control.

The techniques presented in this paper are a good showcase of the increased
flexibility offered by library-based designs. It allowed us to quickly address prob-
lems with the previous thread-based actor model by developing a parallel class
hierarchy for event-based actors. Today, the two approaches exist side by side.
Thread-based actors are still useful since they allow returning from a receive op-
eration. Event-based actors are more restrictive in the programming style they
allow, but they are also more efficient.

In future work we plan to extend the event-based actor implementation to
other communication infrastructures. We are also in train of discovering new
ways to compose these actors.
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Abstract. Multimedia application development requires features and concepts 
currently not supported by common systems programming languages. This 
paper introduces two new minimal language extensions increasing expressive 
power, safety and optimization possibilities in multimedia programming. New 
loop statements are presented to shorten multidimensional array access and 
optimize its execution. Furthermore, a new data type concept is presented to 
allow quality of service (QoS) definition on data type declaration level. Both 
have been implemented in Modula-3 and C#.  

1   Introduction 

Substantial parts of programs processing multimedia data follow some very common 
patterns: 

1. In the compression/decompression/transformation part of such programs, large 
multidimensional numerical arrays are partitioned into small independent blocks 
and processed by algorithms, like the Discrete Cosine Transformation (DCT).  

2. In the video streaming and play-back part, long sequences of data (e.g. video 
frames) are processed and/or transmitted periodically, under so-called "soft real-
time" constraints. 

The manually created code for these recurring patterns is typically cumbersome, 
error-prone and inefficient. These observations suggest that we could give good 
support for multimedia programming on the level of a programming language. A vast 
number of multimedia query languages resp. language extensions exist [15], 
nevertheless, to our knowledge, no language support for multimedia systems-
programming exists. We argue in our paper that such a support is advantageous and 
easily possible. 

The first pattern obviously calls for a simple, automatic parallelization. To handle 
the second pattern, we need a notion of time, and a way to express Quality of Service 
(QoS) constraints. Instead of defining a brand new language, we investigated the 
possibilities of extending some existing programming languages with the minimal 
necessary features, considering the following basic principles: Add an extension to a 
language only if the following conditions are fulfilled: 

1. The new feature enhances the expressive power of the language considerably. 
2. The safety of programs using the new feature is enhanced. 
3. The new feature enables some automatic optimizations. 
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Everything else should rather be put into a library than applied as a language 
extension. Under these premises we suggest the following extensions for general 
purpose programming languages: 

1. A foreach and a forall statement enabling compact and safe expression, and 
automatic parallelization of typical video transformation code, operating on 
independent blocks of data. 

2. A time dimension, which can be added to any existing scalar or array type as an 
n+first dimension. 

3. A very simple first-order logic based language extension, enabling to express QoS 
constraints. 

The actual language extensions were designed both in Pascal- and C-style and were 
implemented in two well-known representatives of these language families: Modula-3 
[13] resp. C# [11].  The parallel development helped us a lot to separate the essence 
of a new construct from the syntactic sugar and it was - by the way - the source of a 
lot of fun. 

2   Related Work 

2.1   Parallelism 

Generally, two different approaches exist to introduce parallelism. In the synchronous 
approach one instruction is used to work on multiple data elements. The asynchronous 
approach on the other hand allows the execution of different instruction streams 
simultaneously. 

In [3] Philipsen and Tichy implement a machine independent forall loop both in a 
synchronous and asynchronous version targeting multiple architectures with shared 
and distributed memory. Furthermore they showed in [4] that with the use of an 
adequate working environment debugging of parallel programs written with forall 
loops is feasible and does not pose a big problem. 

In [2] Knudsen introduces a queue to distribute the workload of an asynchronous 
forall loop on multiple execution units of a shared memory system as provided by 
multi processor and multi core computers. Implementing dynamic workload 
generation via distributing nested procedures by a queue causes very little overhead in 
the range of a few percents. This approach reaches a high utilization even in the last 
loop iterations without the need of static analysis. 

We have adopted his approach both in our Modula-3 and C# implementation. In 
the latter, however, we pass objects instead of using nested procedures because nested 
procedures are not supported in C#. Supplying an asynchronous forall seems to be 
sufficient in most cases of multimedia programming. Asynchronous foralls are also 
open to vectorization thus allowing a further possibility for speedups.  

In [14] Zima presents how dependence analysis can be used by compilers to 
automatize vectorization and parallelization. Source to source transformation using  
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forall loops as a target construct is suggested. Explicit synchronization barriers are 
used rather than implicitly inserted barriers at the end of each parallel loop. The 
described techniques can also be used to verify the mutual independence of different 
loop iterations, a condition which is demanded but not yet checked by Knudsens 
approach, nor by ours. Loop carried dependencies would require explicit assumptions 
about loop behavior. 

2.2   Quality of Service 

Quality of service (QoS) is another important aspect of multimedia applications. A lot 
of different notations and specifications can be found to express QoS-related 
mechanisms like resource reservation, admission control, and adaptation. Jin and 
Nahrstedt provide a classification over existing QoS specification languages [9]. 
These specification languages try to cover most aspects of QoS and are defined on 
application-, user-, or resource-level to allow a user-friendly notation. 

To apply QoS constraints directly at the programming language level not all 
aspects of QoS have to be met. When applying QoS on displaying of a video the most 
important QoS constraints are frame rate, delay, and jitter. These timing limitations 
can be expressed using temporal logic. In [1] Blair and Stefani introduce the first 
order logic based language QL to define and formally analyze QoS constraints. QL is 
based on an event model basically identified by three components: event types (1) , 
events (2) and histories (3).  

1. Event types represent a particular state transition in a system (e.g. the arrival of a 
frame of video). 

2. An event is an occurrence of an event type (e.g. the arrival of a particular frame of 
video).  

3. The history represents a discrete sequence of events of the same event type.  

To reflect a special occurrence of an event in the history the function ( )n,ετ  is used, 

where n represents the nth occurrence and ε  the event type. By applying this model, 
we can express a wide range of quality of service constraints. E.g. the throughput of 

video can be expressed ( rε stays for frame reception): 

( ) ( ) δετετ ≤−+∀ nknn rr ,,,  

To be precise, this formula specifies that for all video frames, the difference in time 
between the arrival of the frame n + k and the frame n is less than a given value δ . 

The next example shows the definition of bounded execution time ( eε  stays for the 

emission, rε  for the arrival of a frame): 

( ) ( ) δετετ ≤−∀ nn rne ,, ,  

In this case, the maximum allowed delay between two different event types is 
specified for all of their occurrences.  

In [1] Esterel is used for QoS monitoring. It is an imperative language specifically 
developed in order to assert the QoS compliance of networked applications. An 
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Esterel program consists of a set of parallel processes which execute synchronously 
and communicate with each other. Apart from its fancy signaling concept Esterel is 
quite minimalistic. Programmers may prefer a better integrated approach that is easy 
in practical deployment and that allows them to make use of their existing knowledge. 
However, we chose a different approach, see QoS Monitoring. 

Our work concerning QoS is based on the event model of QL. It can describe most 
of the QoS constraints required in multimedia applications. Nevertheless it is limited 
and some constraints cannot be expressed like general reliability requirements such as 
Mean Time Between Failure or Mean Time To Repair. 

3   Parallelism and Loops 

3.1   Extended Loop Statement 

Pixel manipulations can be implemented using multidimensional arrays. A lot of 
encoder or decoder implementations make use of such data structures. In 
programming languages like Modula or C/C++, such arrays are iterated using simple 
for statements. In Java and C# new loop statements have been developed in order to 
iterate over collections or arrays.  

In C# the foreach statement [11] is used to iterate over expressions that can be 
evaluated to a type that implements the IEnumerable interface, or a type that declares 
a GetEnumerator method which then returns an object of type IEnumerator [8]. 

foreach ( type identifier in expression )  

 embedded-statement 

These enumerators iterate over the stored elements. For each element the 
embedded statement is executed. 

In multimedia applications we often want to refer to the index of the elements 
accessed. Therefore we extended the foreach statement to define the expression for 
retrieving the elements of the array. This enables the programmer to define index 
variables which can be accessed during the loop. To avoid unpredictable side effects 
index access is read only.   

foreach ( type identifier = expression in expression ) 

  embedded-statement 

The following example represents a simple implementation of the discrete cosine 
transformation (DCT) as used for JPEG implementations [10] implemented in C#. 

double value = 0; 

  for (int u = 0; u < 8; u++) {    
 for (int v = 0; v < 8; v++) { 

    for (int i = 0; i < 8; i++) {    
 for (int j = 0; j < 8; j++) { 



 Programming Language Concepts for Multimedia Application Development 27 

      value += (source[i,j] – 128)    
   * Math.Cos(((2*i + 1) * u * Math.PI) / 16) 
   * Math.Cos(((2*j + 1) * v * Math.PI) / 16); 

     }             
 }     

  coefficients[u,v] = value / 4;   

   }             
 } 

Instead of using four conventional nested for statements the code fragment can be 
reimplemented by applying two extended foreach loops without considering the size 
of the array being iterated over. 

  foreach (double c = coefficients[u,v]   
   in source) { 

   foreach (int p = source[i,j] in source) { 

      value += (p – 128)      
   * Math.Cos(((2*i + 1) * u * Math.PI) / 16) 
   * Math.Cos(((2*j + 1) * v * Math.PI) / 16); 

   } 

   coefficients[u,v] = value / 4; 

  } 

The extended foreach has been implemented in Modula-3 too. 

 FOREACH c = coefficients[u,v] IN coefficients VIA u,v DO 

  FOREACH p = source[i,j] IN source VIA i,j DO 

     value := value + ( FLOAT(p-128,LONGREAL)   
   * cos(FLOAT((2*i+1)*u,LONGREAL)*Pi/16.0D0) 
   * cos(FLOAT((2*j+1)*v,LONGREAL)*Pi/16.0D0)); 

  END 

  coefficients[u,v] := value / 4.0D0; 
 
 END 

The extended foreach loop expresses more clearly how elements are assigned within 
the loop. Furthermore, no array ranges have to be considered. The compiler internally 
generates the correct code for iteration and therefore provides more safety. No infinite 
loops can be created and the statement enables the programmer to express index based 
calculations with arrays. Like the original foreach in C#, the current element of  the 
loop can be directly accessed. 

3.2   Parallel Loop Execution 

To optimize performance, parallelism can be added to the loop to distribute its 
execution into several threads. This executional optimization can be reached due to 
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the fact that a foreach statement as defined in [11] does not necessarily guarantee a 
special order of execution. The semantic only defines that each element of the given 
collection or array is accessed. This fact can be used to implement a foreach loop in 
which each of the iterations can be executed simultaneously. The syntax is very 
similar to the shown foreach or the extended foreach statement, but the semantics 
differ. 

forall ( type identifier in expression )  

 embedded-statement 

forall ( type identifier = expression in expression )  

 embedded-statement 

The block executed each time the loop iterates is embedded into a job class. The 
instance of this class represents a job which is executed for each loop iteration. 
Instead of executing the jobs in sequential order, they are put into a queue to feed 
workers which can operate in parallel. These workers are controlled by a management 
framework which observes the execution of all workers. Furthermore, it ensures that 
sequential execution follows after all parallel work is done. The compiler itself 
generates code to fork the workers, distribute the work to each worker and 
synchronize all workers when all work has been completed. After all parallel work is 
done, the program continues normally. 

3.3   Parallel Processing Framework and Results 

The default worker pool implementation is integrated into the system class library of 
Mono [7]. To give programmers the ability to implement their own worker pools the 
default behavior of jobs and the worker pool is defined by the interfaces IJob and 
IworkerPool (see figure 1). The worker pool can be exchanged during runtime by 
replacing the default worker pool implementation with the WorkerPoolFactory.  

Each time a forall statements loop body is executed, an IJob object is created and 
added to the worker pool. At the end of the loop the waitTillFinished method is called 
to ensure that work has been done before continuing. The implementation uses the 
default multithreading libraries. The same behavior can be achieved using 
asynchronous method invocation. This feature of the Common Language Runtime 
[12] can be used to inherently introduce concurrency into a program. The forall 
statement has also been implemented in Modula-3 using nested procedures [5,  6, 16] 
instead of passing objects. 

But parallelism is not without issues. The programmer has to consider the overhead 
for thread creation, control and the cost of object initialization. Normal loops can be 
terminated using return or break statements. This cannot be easily achieved when 
using parallelized execution. So the use of these statements has been forbidden, 
because of the misleading semantics. If break or return is used, the programmer wants 
the execution of the loop to stop, but the parallel execution disables immediate loop 
termination. Another problem is exception handling within the loop. This is achieved 
by catching exceptions within the worker threads, and throw them at the end of the 
execution to allow the programmer to use the default exception handling mechanisms 
of the language. 
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Fig. 1. Classes involved in the parallel loop statement 

The performance enhancement is demonstrated using the simple block based DCT  
(see prior example). The forall statement is applied to parallelize the processing of 
blocks where the number of threads and the number of blocks are varied. The 
measurement was done on a quad processor machine showing linear scalability and 
little overhead (see figure 2 and 3).  

The execution time of the forall statement using one single thread is only a few 
percents higher than the execution time of an implementation using for statements. 
This overhead is caused by object initialization and thread control. When increasing 
the number of threads, the execution time decreases significantly, but when the 
number of threads reaches the number of processors, the management overhead grows 
considerably. Similar results are presented in [2] which proofs the efficiency of our 
implementation. 

At this point the presented concept will be evaluated according to the criteria 
defined at the beginning of this paper: 

1. The expressive power of the extended foreach statement has been demonstrated by 
rewriting a DCT. The new statement tries to express the array loops with more 
simplicity in syntax but of course higher complexity in semantics. 

2. The safety of the programs is enhanced due to the fact that the loop termination 
condition is hidden in the compiler generated code and guarantees that the loop 
comes to an end after it has accessed all elements of the data structure.  

3. The forall loop can be used to optimize the execution time of the program 
(demonstrated by examples and graphs), where the loop body is separated into 
work packages and put into an efficient parallel processing framework. 
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Fig. 2. The amount of time needed to process a given number of blocks using a set of threads 

Fig. 3. The efficiency of the distribution to multiple workers 

4   Monitoring QoS Constraints 

4.1   Quality Aware Data Types 

Instead of implementing QoS monitoring with Esterel as shown in [1], we introduce 
the concept of quality aware data types. The declaration of said types allows the 
programmer to specify the quality of service contract for a simple data type. A special 
assignment operation is used to examine declared constraints and cause exceptions in 
case of constraint violations. 
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The intent of quality aware data types is not to enforce a specified  constraint. To 
achieve this, real time systems have to be used. In case of multimedia applications 
users might agree to quality of service changes if the cost is reduced, so we just have 
to check possible violations and inform about their occurrence. 

Quality aware data types are declared by an additional dimension of time. This 
n+first dimension is declared using the token [~]. 

type [~] identifier 

The dimension of time can be parameterized to specify quality of service 
constraints. The initialization of the type can be expressed in a static way for primitive 
data types with a constant constraint or using the new command to allow dynamic 
creation. The dynamic way provides exchangeability of the quality of service object 
to implement adaptive quality of service features.  

type[~(IQoSObject)Identifier] 

type[~] identifier = new type                      
                [~(IqoSObject)identifier] 

The quality of service parameter definition is encapsulated within an IQoSObject. 
This interface is used to implement QL like quality of service constraints, which are  
controlled automatically by compiler generated code. The programmer may use 
available implementations of QoS constraints and can also add own code.  

4.2   Implementation Issues 

Quality aware data types are implemented using event histories. Such events can be 
evaluated by an IQoSObject which then decides whether the given constraint can be 
held or not. The event happens at the assignment statement and is recorded in the 
history. In order to distinguish between an assignment and a QoS monitored 
assignment we define the timed assignment operation “~=”. 

Each time a quality aware data type is assigned using the timed assignment 
operation, its currently embedded constraints are checked. If the check fails a 
QoSException is thrown, which is used to react upon constraint violation. This allows 
easy implementation of adaptive quality of service constraints, e.g. the frame rate can 
be changed or the size of frames can be reduced. The definition of an additional 
assignment statement is advantageous because it allows the programmer to decide if 
the quality aware data type is monitored for the current assignment or not. This can be 
compared to video processing. If we playback a video, we monitor QoS constraints to 
achieve correct frame rate, jitter and delay. In case of management operations on 
videos, e.g. format conversion or video analysis for meta data retrieval, we do not 
necessarily need to monitor QoS.  

The first example demonstrates a quality aware numerical type which is assigned 
within a for statement to values of a given array. The quality aware variable value is 
defined with the constraint QoSDelay. This object is initialized with the variable to be 
monitored and a numerical value expressing the delay in milliseconds to slow down 
execution.  Each time value is assigned using the timed assignment statement the 
execution is delayed to print one value per second to the console. The numerical value 
is streamed. 
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int[~new QoSDelay("value", 1000)] value; 

int[] data = {1,2,3,4,5,6,7,8,9}; 

for (int i = 0; i < data.Length; i++) { 

 value ~= data[i]; 

 Console.WriteLine(value); 

} 

The control structure for video transcoding applications is implemented using 
quality aware data types. The variable output is declared as a quality aware data type 
and initialized with th QoS constraint QoSThroughPut. The QoS constraint is used to 
monitor the throughput of frames. It is initialized to monitor that every 1000 
milliseconds 25 frames are processed. The short code for transcoding ensures that the 
quality of service constraint for display is held if not, an exception is thrown to 
terminate the execution of the loop. If the programmer implements the quality of 
service check manually, the code would be much more complicated. The quality 
aware variable output limits its execution time while being assigned using the timed 
assignment statement. 

public void transcode(FrameIterator frames) { 

 IQoSObject constraint =      
   new QoSThroughput(“output”, 1000, 25); 

 Frame[~] output = new Frame[~constraint]; 

 try { 

  foreach(Frame f in frames) { 

   output ~= transcodeFrame(f); // transcoding function 

   display(output); // display output 

  } 

 } catch (QoSException e) { 

  Console.WriteLine(“QoS Constraint Violation!”); 

 } 

} 

4.3   QoS Management Framework 

The history of the events are recorded with the implementation of the 
IQoSHistoryManager (see figure 4). This class registers events, assigns quality of 
service constraints to these events, and stores their histories within a time frame. The 
default implementation available in the system class library is used by the compiler by 
default. To enable the programmer to provide its own implementation, the default 
history manager can be exchanged using the QoSHistoryManagerFactory. 
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Fig. 4. Classes involved in quality of service management used in the default implementation 

As the history manager can observe many events, we can define quality of service 
constraints applying these events. The bounded execution time of video frame 
processing can be used to demonstrate the implementation of a quality of service 
object. 

private string input, output; 

private long execTime; 

public int CheckQoS() { // bounded execution time 

 int delta =       
 (int)((TimeSpan)(this.manager          
.GetSignalHistoryCurrent(this.output) -   
          this.manager                                
       .GetSignalHistoryLastOccurrence(this.input)))
        .TotalMilliseconds; 

   // check if delay can be held,                             
 // if not throw exception 

 if (delta > this.execTime) { 

  throw new QoSException(            
      "Bounded execution time of "  
      + delta + "ms exceeds limit of "  
        + this.execTime + "ms!"); 

 }  

 return 0; // go on normally  

} 

The quality of service constraints are specified by implementing the interface 
definition IQoSObject. The method CheckQoS must implemented which monitors the 
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QoS constraint. It throws an exception if the constraint cannot be held or slows down 
execution by returning a numerical value. This values is interpreted as time in 
milliseconds to wait after the timed assignment. If zero is returned, the code following 
the timed assignment statement is executed without delay. 

The history manager is used to calculate time ranges between events and compare 
these ranges to specified values. Predefined constraint implementations are provided 
by a system class library and can be used by the programmer. 

private string signal; 

private int count, delay; 

public int CheckQoS() { // throughput 

   int delta =     
 (int)((TimeSpan)(this.manager                   
       .GetSignalHistoryCurrent(this.signal)-             
                  this.manager                            
       .GetSignalHistory(this.signal,                     
                  this.manager                            
       .GetSignalHistoryCount() - this.count)))           
       .TotalMilliseconds; 

 // check if delay can be held        
 // if not throw exception,     
 // otherwise delay execution to 

 // reach expected delay value 

 if (delta > this.delay) { 

  throw new QoSException( 
        "Throughput of " + this.count  
        + " exceeds limit of " 
        + this.execTime + "ms!"); 

   } 

   return delta - this.delay; // slow down execution  

} 

4.4   Results 

To justify the concept of quality aware data types it is evaluated against the criteria 
defined at the beginning of this paper: 

1. The expressive power is enhanced because quality of service constraints can be 
expressed on the data type declaration level. This allows the developer to use 
embedded QoS without worrying about the implementation. Although the system 
libraries should include lots of default constraints that can just be used, the 
developer is enabled to express a new constraint by just implementing a simple 
interface which emphasizes the extensibility in case of constraint implementation.  
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    Furthermore, one can use polymorphism or other object oriented language concepts 
to implement, extend, or vary given quality of service constraints. Moreover, we 
consider the possibility to access a history not only as an aid for the 
implementation but as something that imposes a basic structure upon QoS 
monitoring thus improving readability. With the use of a history manager it 
becomes possible to write programs that are quite close to a specification. 

2. The automatic and implicit generation of events triggered at every assignment to 
the QoS monitored structure increases the safety of the program. Instead of the 
error-prone task of registering every event manually, this is done by compiler 
generated code. 

3. Optimization of the code can be seen by comparing length and simplicity. 
Currently no further optimization possibilities can be presented. More 
investigations are needed to show how the concept of quality aware data types can 
help to generate more efficient code. 

However, our concept is non interruptive in comparison to Esterel. Esterel allows to 
terminate the execution of a code block prematurely if the result is outdated before its 
calculation finishes. We claim that this is only a minor restriction. The time gain of 
immediate cancellation will be small in many cases, whereas subsequently inserting 
test operations for the case that no sufficient operating system support should be given 
could slow down the overall performance drastically. 

5   Conclusion and Future Work 

The aim of this paper is to introduce two new minimal language extensions to 
improve multimedia application development. New loop statements are presented 
which can be applied when accessing large multidimensional arrays often used in 
parts of encoder or decoder software. The extended foreach statement is used to allow 
index access during the loop, and the forall loop inherently introduces parallelization 
to the loop execution. Furthermore the concept of quality aware data types is shown to 
define QoS monitoring on a data type declaration level which helps us to implement 
QoS based streaming. These extensions are justified by three basic principles: 
expressive power, safety and optimization possibilities. This is emphasized by 
examples of the current implementations in Modula-3 and C#. 

Both Modula-3 and C# and their actually used language environments show a lot 
of pleasant features, and none of the two languages can be declared as a definite 
winner. Despite of the well-known stylistic differences, the existence of nested 
procedures in Modula-3 eased the implementation of some features considerably. 

In the search towards a multimedia language we want to identify challenges in 
current programming languages and their embedded concepts. The concepts described 
in this document still raise a lot questions. Our aim is to define quality of service 
constraints not directly with code, but with syntax extensions to allow a compact and 
declarative definition. Furthermore, we want to analyze the possibility of compile 
time optimizations on code generation based on the compile time knowledge of such 
constraints. 
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Abstract. Implicit and dynamic parameters are proposed as a general
means to reduce the length of argument lists of function calls without re-
sorting to dangerous global variables. In C++, these new kinds of param-
eters constitute a generalization of parameters with default arguments,
whose values can be omitted in function calls. In contrast to the latter,
however, the values of implicit and dynamic parameters are not obtained
from a function’s definition context, but rather from its different calling
contexts. This is in turn similar to so-called dependent names in function
templates, but offers a higher degree of flexibility and comprehensibility.

1 Introduction

There are basically two ways to pass information from one procedure or function
of a program to another: parameters and global variables. Even though the for-
mer are usually preferred for good reasons and use of the latter for this purpose is
generally discouraged, there are circumstances where parameters turn out to be
inconvenient and cumbersome and therefore the use of global variables becomes
tempting. In particular, if functions require large numbers of parameters, most
of which are simply passed down to other functions, providing this information
via global variables could significantly reduce the size of many parameter and
argument lists. Furthermore, if major parts of this information usually remain
unchanged during a program execution, the use of global variables is even more
appealing. Finally, if it becomes necessary to retroactively extend the parameter
list of some deeply nested function, each call of this function must be augmented
with additional arguments, which usually requires the parameter lists of all func-
tions containing these calls to get extended, too, etc.

On the other hand, using global variables to pass information between func-
tions is dangerous, especially in multi-threaded programs, where one thread
might inadvertently change the value of variables needed by other threads. But
even in single-threaded applications, it might happen that global variables re-
quired by a particular function are modified by a subordinate function called
from it. Finally, if exceptions cause unexpected and premature terminations of
functions, temporary modifications to global variables performed by these func-
tions might not be undone as expected.

To dissolve this longstanding tension between using parameters and global
variables, implicit parameters [7] and dynamic variables [3] have been proposed
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earlier as different means to provide the benefits of global variables, i. e., short
and comprehensible parameter and/or argument lists, without suffering from
their drawbacks. While the former are specifically tailored to functional pro-
gramming languages and provide static type checking, the latter also address
imperative languages, but lack static type safety. Building on these approaches,
the main contribution of this paper is their combination into a single coher-
ent framework for imperative languages, i. e., implicit and dynamic parame-
ters, that provides a large degree of flexibility combined with static type safety.
More specifically, language extensions for C++ are proposed which generalize
its notion of parameters with default arguments and also provide a superior re-
placement for dependent names in templates. Nevertheless, the basic concept of
implicit and dynamic parameters is actually language-independent and might be
incorporated into many other languages, too.

After reviewing in Sec. 2 the basics of functions, overloading, and default ar-
guments in C++, the concept of implicit and dynamic parameters is introduced
and developed in Sec. 3. Its basic implementation ideas as a precompiler-based
language extension for C++ are described in Sec. 4, before concluding the paper
with a discussion of related work in Sec. 5.

2 Functions, Overloading, and Default Arguments in
C++

Even though C++ provides a large number of different function kinds, including
global functions, virtual, non-virtual, and static member functions, constructors,
and function call operators [10], their basic principle is always the same: a func-
tion consists of a name, a parameter list, a (possibly void) result type, and a
body. Therefore, examples will be limited to global functions and constructors
in the sequel.

All kinds of functions can be statically overloaded by defining multiple func-
tions of the same name (in the same scope) with different parameter lists, e. g.:

int max (int x, int y) { return x > y ? x : y; }
double max (double x, double y) { return x > y ? x : y; }

When resolving a call to such a function, the static types of all arguments are
used to determine the best viable function at compile time. If no viable function
is found at all or several viable functions remain where none is better than the
others, the call is ill-formed. For example, max(1, 2) and max(1.0, 2.0) will
call the first resp. second version of max defined above, while max("a", "b") and
max(1, 2.0) cannot be resolved due to missing resp. ambiguous definitions.1

The trailing parameters in a function definition might have default arguments,
i. e., associated expressions whose values will be used to initialize these parame-
ters if corresponding arguments are missing in a call, e. g.:

1 Note that in C++ an int value is implicitly convertible to double and vice versa,
and both conversions are equally ranked.
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// Print floating point number d on standard output stream
// with minimum field width w and precision p.
void print (double d, int w = 10, int p = 5) { ...... }

This function can be called with one, two, or three arguments, where print(d)
and print(d, w) are equivalent to print(d, 10, 5) and print(d, w, 5), re-
spectively. Therefore, the single definition of print above is similar in effect to
the following three definitions:

// Print d with field width w and precision p.
void print (double d, int w, int p) { ...... }

// Print d with field width w and precision 5.
void print (double d, int w) { print(d, w, 5); }

// Print d with field width 10 and precision 5.
void print (double d) { print(d, 10, 5); }

In the first case, however, a single function is defined which might be called with
different numbers of arguments, while in the second case, there are actually three
different overloaded functions.

A default argument is not restricted to a simple value such as 10, but might be
any expression, which is evaluated each time it is used in a call. Names appearing
in such an expression are interpreted and bound in the context of its definition,
not in the context of a call, e. g.:

int width = 10;
void print (double d, int w = max(width, 20), int p = 5);

If print is called with a single argument d, its second argument w is initialized
with the value of the expression max(width, 20), where width corresponds to
the global variable defined before, even if the calling function contains a local
variable of the same name that basically hides the global one. Therefore, literally
adding a default argument expression to a function call might lead to a quite
different result than omitting the argument.

Default arguments might be specified later on, after a function has been de-
clared or defined for the first time, and it is even possible to specify different
default arguments for the same function in different local scopes, e. g.:

// Initial definition without default arguments.
void print (double d, int w, int p) { ...... }

// Later declaration with one default argument.
void print (double d, int w, int p = 5);

// Client function.
void client (double d) {
// Local declaration with two default arguments.
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void print (double d, int w = 10, int p = 4);

// Call equivalent to: print(d, 10, 4).
print(d);

}

When an overloaded function is called, only the explicitly specified arguments are
considered to determine the best viable function. However, functions possessing
more parameters than arguments given will be included in the set of candidate
functions if the missing arguments could be provided by default arguments. If
the selected function actually has more parameters than arguments given, the
corresponding default arguments will be supplied afterwards, e. g.:

void f (int x, int y);
void f (double x, int y = 0);

Here, a call such as f(0) would select the second function since the explicitly
specified argument 0 of type int is compatible with its first parameter of type
double and the second parameter can be satisfied from its default argument,
while the first function cannot be called with only one argument. On the other
hand, f(0, 0) would select the first function since the arguments (0, 0) ex-
actly match its parameters, while the second function would require a conversion
of the first argument from int to double. Again, literally adding a default argu-
ment expression to a function call might lead to a different result than omitting
the argument. Furthermore, if a member function has default arguments, these
expressions might refer to private or protected members of the class, which are
inaccessible to clients calling the function; in that case, literally adding a default
argument expression could even lead to a compile time error.

3 Implicit and Dynamic Parameters

This section introduces implicit and dynamic parameters as language extensions
to C++. Their basic idea is similar to parameters with default arguments, as
corresponding arguments can be omitted in function calls, too. However, the way
to obtain values for missing arguments is quite different.

Implicit and dynamic parameters as well as parameters with default argu-
ments will be collectively called optional parameters in the sequel, and the origi-
nal C++ rules for parameters with default arguments are generalized to all kinds
of optional parameters, i. e.:

– If a particular parameter of a function is declared optional, all subsequent
parameters must be optional, too.

– Parameters might be declared optional later on, and the same function might
have different optional parameters in different scopes.

– During overload resolution, only the arguments which are explicitly specified
in a call are used to select the best viable function. Afterwards, if the selected
function has more parameters than arguments given, values for optional
parameters will be added as required.
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3.1 Implicit Parameters

Function parameters are declared implicit by prefixing their declaration with the
C++ keyword using2, e. g.:

void print (double d, using int width, using int prec);

If an argument corresponding to an implicit parameter is missing in a call, an
entity with the same name as the parameter from the calling context is sub-
stituted. If no such entity is found there, or if its type is incompatible with
the parameter’s type, the call is rejected by the compiler. For instance, the call
print(d) is equivalent to print(d, width, prec) where the names width and
prec are looked up and bound in the calling context. This implies that the names
of implicit parameters are mandatory in declarations and significant for callers,
in contrast to ordinary parameters whose names are irrelevant for clients and
might even be omitted in function declarations.

According to the general rules about optional parameters stated above, it is
possible to declare a parameter implicit later on, possibly in a different scope, and
it is also possible to change its name on that occasion, including the possibility
to introduce a name for a formerly anonymous parameter, e. g.:

void print (double d, int w, int);
......
void print (double d, using int width, using int prec);

Usually, the “entity” that is used to satisfy an implicit parameter of a called
function is some kind of variable, including local variables and parameters of the
calling function, member variables of an enclosing class, and global variables. In
particular, the calling function might itself possess an implicit parameter of the
same name (and a compatible type). If the implicit parameter has a function
pointer or reference type, however, the entity might also be a function of an
appropriate type, e. g.:

// Sort vector v using function less to compare its elements.
void sort (vector<string>& v,
using bool less (const string&, const string&)) { ...... }

// Namespace N1 containing a definition of less
// and a client function calling sort with the latter.
namespace N1 {
bool less (const string& s1, const string& s2) { ...... }
void client (vector<string>& v) {

sort(v); // calls: sort(v, N1::less)
}

2 At first sight, a different keyword such as implicit might be more appropriate.
However, to avoid incompatibilities with C++ code using this as an identifier, the
existing keyword using has been “re-used.”
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}

// Namespace N2 containing a different definition of less
// and a client function calling sort with the latter.
namespace N2 {
bool less (const string& s1, const string& s2) { ...... }
void client (vector<string>& v) {

sort(v); // calls: sort(v, N2::less)
}

}

3.2 Constructors with Implicit Parameters

If a constructor has implicit parameters, their values are also supplied from the
calling context if necessary, no matter whether the constructor is called directly
in so-called functional notation or indirectly in variable initializations (or member
initializers of other constructors), e. g.:

// Hash table for strings.
class HashTable {
......

public:
// Create hash table with given size and hash function.
HashTable (using int size, using int hash (const string&));

};

// Preferred hash table size and hash function.
int size = 193;
int hash (const string& s) { ...... }

// Direct constructor call.
HashTable t1 = HashTable(101); // calls: HashTable(101, hash)

// Indirect constructor call.
HashTable t2; // calls: HashTable(size, hash)

In this example, the direct constructor call HashTable(101) used in the dec-
laration of t1 is equivalent to HashTable(101, hash), using the definition of
hash given before, while the declaration of t2 contains an indirect call to the de-
fault constructor HashTable() (because the variable is not explicitly initialized),
which is equivalent to HashTable(size, hash).

In other contexts, however, where constructor calls are completely invisible,
these calls must not depend on implicit parameters in order to avoid too much
implicitness and consequent incomprehensibility. This includes implicit copy and
conversion constructor calls as well as implicit default constructor calls in ctor-
initializers [10]. For example, even though the HashTable constructor defined
above may be called with a single argument of type int if the second parameter
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hash can be satisfied from the calling context (as shown in the declaration of
t1), this constructor cannot be used as a conversion constructor to implicitly
convert an int value to a HashTable object.

3.3 Dynamic Parameters and Environment Variables

EEven though implicit parameters need not be specified explicitly in function
calls, the compiler checks that corresponding entities are found in the calling con-
text and rejects calls otherwise. While this avoids run time errors or undefined
behaviour due to missing parameter values, it leads to a rather tight coupling
between callers and callees. In particular, it is not generally possible to trans-
parently add another parameter to an existing function, even if it is declared
implicit, because an entity of the same name must be present in every calling
context.

To relax this strict rule and to support more loose couplings between callers
and callees, dynamic parameters are introduced. Syntactically, dynamic parame-
ters look like implicit parameters with default arguments, i. e., their declaration
is preceded by the keyword using and followed by an equals sign and an accom-
panying expression, e. g.:

void print (double d,
using int width = 10, using int prec = 5);

As with implicit parameters, the value for a dynamic parameter is retrieved
from the calling context if the corresponding argument is missing in a call. In
contrast to implicit parameters, however, the value need not be provided by the
direct caller, but might also come from an indirect caller, i. e., from the complete
dynamic scope of the call.

However, since the compiler normally does not know the set of all callers of
a function (and recursively their callers etc.), it can no longer check statically
whether a value required for a dynamic parameter is actually provided. There-
fore, dynamic parameters always possess a default argument which will be used
in cases where no value can be found in the dynamic scope of the call. As with
normal default arguments, the corresponding expression is evaluated each time it
is used, i. e., whenever a call is made that neither provides an explicit argument
nor an implicit value for the parameter, and names appearing in the expression
are interpreted and bound in the context of its definition.

As another significant difference to implicit parameters, entities intended to
provide values for dynamic parameters must be explicitly marked as such to
avoid accidental matches with local variables defined in indirect callers, which
might not even know about a particular dynamic parameter. The underlying
model employed for that purpose is quite similar to the concept of environment
variables found in operating systems: At any point in time during the execution
of a program (or a single thread within a multi-threaded program) there is a
dynamic scope or environment containing variables which have been declared by
so-called export declarations described below.
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To give an example, if print(d) is called (with the declaration of print
given above), this call is always accepted by the compiler and will actually call
print(d, width, prec) if variables width and prec are found in the current
environment, or print(d, 10, 5) if no such variables are found (or a combina-
tion of these if only one of the variables is found).

Because the compiler cannot and does not check whether the value for a
dynamic parameter will be actually present at run time, it is indeed possible to
transparently add additional parameters to existing functions without needing
to check or change their direct callers.3 Of course, to be actually useful, values
for such parameters should be exported to the environment by some indirect
caller.

3.4 Export Declarations

An export declaration is a definition of a global or local variable prefixed by the
keyword export4, e. g., export int width = 10;
The environment variable declared that way is initialized just like a regular
variable by evaluating the optional initializer expression and/or executing an
appropriate constructor. Furthermore, the variable is destroyed in the same way
as a regular variable by executing its destructor when it gets out of scope, i. e.,
when the statement block containing the export declaration terminates (either
normally or abruptly by executing a jump statement or throwing an excep-
tion) or (for a globally declared environment variable) when the entire program
terminates.

In contrast to a regular variable, however, the variable is not inserted into any
static scope at compile time (i. e., it will not be found by normal static name
lookup), but rather added to the current dynamic scope (i. e., the environment)
when the declaration is executed at run time. It is automatically removed from
there immediately before it is destroyed, i. e., at the end of the enclosing state-
ment block (if it is declared locally) or at the end of the program (if it is declared
globally). If a variable of the same name and type as a newly exported variable
is already present in the environment, the former is hidden by the latter until
the latter is removed again, i. e., the environment is organized in a stack-like
manner, and a dynamic parameter always receives the value of the top-most
matching variable, if any. For example:

void print (double d,
using int width = 10, using int prec = 5);

void client1 (double d) { print(d); }

void client2 (double d) {

3 It will depend on the implementation strategy whether or not it is necessary to
recompile the callers.

4 Again, an existing C++ keyword is re-used, which is used for a similar purpose in
Unix shells.
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client1(d); // client1 calls print(d, 10, 5)
{ export int width = 20;

client1(d); // client1 calls print(d, 20, 5)
{ export int width = 30, prec = 10;
client1(d); // client1 calls print(d, 30, 10)

}
client1(d); // client1 calls print(d, 20, 5)

}
client1(d); // client1 calls print(d, 10, 5)

}

3.5 Environment Variables with Constant and Reference Types

The type of an environment variable might be any suitable C++ type including
const-qualified and/or reference types. Accordingly, dynamic parameters might
possess such types, and an environment variable is said to match a dynamic
parameter if the following conditions hold:

– the names of the variable and the parameter are equal;
– the core types, i. e., the types without any top-level const or & qualifier, of

the variable and the parameter are identical;
– if the common core type is T and the parameter’s type is T&, the variable’s

type is T or T&, but not const T or const T&.

The last rule is in accordance with normal C++ rules, which do not allow to
bind a constant object to a non-constant reference via which it could be modi-
fied inadmissibly. On the other hand, the rule about identical core types is much
stricter than normal C++ type compatibility rules, as it completely excludes any
implicit type conversions such as standard conversions between numeric types
or conversions from derived classes to base classes. The main reason for not al-
lowing such conversions is to avoid confusion and unpleasant surprises due to
unexpected or unintended conversions, which already happen occasionally with
normal parameters. Combined with the loose coupling between dynamic parame-
ters and environment variables, the danger of an accidental match would become
even greater. Furthermore, when exporting a variable to the environment, one
should have a clear conception about the dynamic parameters this variable is
intended to match, and thus it should be easily possible to choose the appro-
priate type exactly, without relying on any implicit conversions. (And if really
necessary, one might export several variables of the same name with different
types.) Finally, an efficient implementation of more flexible matching rules would
be extremely difficult, since it would actually require to perform extensive anal-
yses at run time which are normally carried out at compile time. (For the same
reason, the C++ rules for finding a matching handler for a thrown exception do
not allow the full range of implicit type conversions either. However, to support
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the typical idiom of catching exceptions of multiple classes with a single handler
for a common base class, conversions from derived to base classes are considered
in this context.)

Declaring an environment variable of some core type T with or without const
or & qualifiers has important consequences for its usage and actually sets up
different “access rights” for it:5

– If its type is simply T, it will match dynamic parameters with all kinds of
qualification. In particular, it will be possible to change the variable’s value
indirectly via dynamic reference parameters of type T&, even though direct
manipulations of the variable are impossible since it is not part of any static
scope!

– To forbid such indirect modifications of an environment variable, a const-
qualified type, i. e., const T or const T&, can be chosen, because a variable
of such a type does not match a parameter of type T&. In the former case
(const T), the variable becomes completely immutable.

– When using a reference type, i. e., T& or const T&, the environment variable
can be initialized with a regular variable of type T in both cases and then
actually constitutes an alias for the latter. Therefore, modifications to the
regular variable are immediately reflected in the environment variable, i. e.,
the latter can be directly manipulated through the former, no matter whether
its type is T& or const T&. However, the distinction between these types
decides whether indirect manipulations via dynamic parameters are possible
or not: A variable of type T& matches a parameter of the same type which
allows such manipulations, while a variable of type const T& does not match
such a parameter and therefore cannot be modified indirectly.

3.6 Correspondence to Checked and Unchecked Exceptions

The conceptual distinction between implicit and dynamic parameters exhibits
interesting parallels with checked and unchecked exceptions in Java [2].

If the signature of a Java method declares a checked exception, the compiler
checks that each caller of this method either catches the exception or declares
it in its own signature. Likewise, if a function declares an implicit parameter,
the compiler checks that each caller of this function either passes an explicit
argument for it or provides an entity to satisfy it, including an implicit parameter
of its own. Therefore, both scenarios are statically safe: a checked exception is
guaranteed to be caught somewhere, while an implicit parameter is guaranteed
to receive a value.

On the other hand, since unchecked exceptions need not be declared, the com-
piler cannot and does not check that they will be caught somewhere. Likewise,
the compiler cannot and does not check that a dynamic parameter always re-
ceives a value from the current environment. However, the default value provided
5 For experienced C++ programmers, the following considerations are quite obvious,

since they are completely in line with standard C++ rules about constant and refer-
ence types. For less experienced or novice C++ programmers, however, they might
require some time of accommodation.
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for such cases guarantees well-defined behaviour anyway, while an uncaught ex-
ception leads to program termination.

In the same way as both checked and unchecked exceptions have useful ap-
plications in practice (even though some programmers tend to avoid the former
to circumvent the strict checks performed by the compiler), both implicit and
dynamic parameters turn out to be useful for different kinds of applications: If
it is essential that a value for a particular parameter is provided (e. g., the com-
parison function for a sort routine) – and there is no reasonable general default
value –, an implicit parameter should be used. If, on the other hand, a value is
dispensable and/or a reasonable default value can be specified (e. g., the field
width for a print function), a dynamic parameter is usually more appropriate as
it allows greater flexibility.

3.7 Replacing Dependent Names in C++ Templates

If a normal C++ function such as max calls another function such as less, the
latter must have been declared earlier, e. g.:

bool less (int x, int y) { return x < y; }
int max (int x, int y) { return less(x, y) ? y : x; }

For functions called from function templates, however, this simple declare-before-
use rule is replaced with rather complicated rules about dependent names, the
point of instantiation of a template, etc. [10]. For example, the following generic
definition of max is accepted by the compiler without any preceding definition of
less, since the latter is a dependent name because its arguments x and y depend
on the template parameter T:

template <typename T>
T max (T x, T y) { return less(x, y) ? y : x; }

If, however, max is actually called with arguments x and y of a particular type T0,
a definition of less accepting these arguments must be found, either in the def-
inition context of max or in the current instantiation context, i. e., in the calling
context of the function. In this regard, dependent names are similar to implicit
parameters, which are also interpreted in the calling context of a function. There-
fore, the fact that max requires a matching definition of less, which is hidden in
its body above, can be specified explicitly in its signature by means of an implicit
parameter:

template <typename T>
T max (T x, T y, using bool less (T, T)) {
return less(x, y) ? y : x;

}

Similar to the original definition of max shown before, this function is also ac-
cepted by the compiler without any preceding definition of less, and a match-
ing definition is required only when max is called. This time, however, no special
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rules about dependent names are required, since the usage of less in the func-
tion’s body obviously refers to the parameter declared in its signature, whose
context-dependent binding is achieved by the much simpler rules for implicit
parameters. Furthermore, using an implicit parameter is actually more flexible
than a dependent name, since it might naturally be bound to different functions
less in different calling contexts (cf. Sec. 3.1), whereas a dependent name is
required to refer to the same function in all instantiation contexts, even across
multiple translation units.6 Finally, it is even possible to pass a function with a
different name as an explicit argument.

In summary, implicit parameters constitute a superior replacement for de-
pendent names in function templates, since they reveal hidden dependencies by
moving their names from a function’s body to its signature and provide more
flexible means for their context-dependent binding. On the other hand, calling a
function such as less that is passed as an argument to another function such as
max might be less efficient than a direct, inlined call to less in max. However, if
the code of both max and less is visible, a call such as max(x, y, less) might
be completely inlined by an optimizing compiler, too, yielding, e. g., x < y ? y
: x if less is defined as shown above.

4 Prototypical Implementation

Implicit and dynamic parameters have been implemented prototypically in a pre-
compiler for C++ that is based on the EDG C++ Front End (cf. www.edg.com).
In contrast to a real implementation in a compiler, a precompiler-based ap-
proach has the advantage that it is independent of any particular compiler and
requires much less implementation time and effort. Both of these aspects im-
prove the possibility to experiment with the new language constructs early and
quickly and thus gain important practical experience, which might help to im-
prove the concepts before hard-wiring them in real implementations. Of course,
a precompiler-based approach does usually not achieve the same performance as
a direct implementation in a compiler, but for typical experimental applications
this does not really constitute a problem.

4.1 Dynamic Parameters and Environment Variables

Conceptually, the environment or dynamic scope of a program (or a single thread
within a multi-threaded program) can be represented by a stack whose entries
each contain a pointer or reference to a variable plus information about the vari-
able’s name and type, where the name could be stored as a string of characters,
while the type could be represented by its typeid [10]. To find the topmost
variable that matches a given dynamic parameter, the stack must be searched
in top-down order for the first entry whose name and type are equal to the
parameter’s name and type.

6 And to make things worse, a compiler is not forced to diagnose violations of this
rule!
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Although possible in principle, this representation of the environment suffers
from both unnecessary storage consumption for the name and type of each vari-
able and unnecessary run time overhead to find the topmost matching variable.
To reduce these costs, the environment can be represented by a set of stacks,
where each stack contains only references to variables of the same name and
type. In this case, the topmost variable matching a given dynamic parameter is
directly referenced by the topmost entry of the appropriate stack, which can be
found rather quickly, e. g., with binary search or hashing, if names and types are
still represented as strings and typeids, respectively.

Even though much better than the initial solution, this approach still suf-
fers from avoidable run time overhead to find the appropriate stack matching
a dynamic parameter. To completely eliminate these costs, the name of a vari-
able can be encoded statically as a (dummy) type, which can be used as one of
two template arguments for a template class Dyn, where the actual type of the
variable is used as the second argument:

// Entry of stack identified by Name and Type.
template <typename Name, typename Type>
struct Dyn {
Type& var; // Reference to variable.
Dyn* prev; // Pointer to previous stack entry.

// Pointer to topmost stack entry (initially null).
static Dyn* top;

// Constructor pushing variable v on the stack.
Dyn (Type& v) : var(v), prev(top) { top = this; }

// Destructor popping topmost stack entry.
~Dyn () { top = prev; }

};

// Dummy template class to encode variable names as types.
template <char head, typename Tail = void>
struct Name {};

Using the template class Name, a variable name such as x or xyz is uniquely identi-
fied (even across different namespaces and translation units) by the dummy type
Name<’x’> and Name<’x’, Name<’y’, Name<’z’> > >, respectively. Therefore,
the stack containing all references to variables of type int and name x (more pre-
cisely, the pointer to its topmost element) is statically identified by
Dyn<Name<’x’>, int>::top. Consequently, the topmost variable matching a
dynamic parameter of type int and name x can be immediately accessed as
Dyn<Name<’x’>, int>::top ->var, without any overhead for comparing strings
or typeids at run time.

Since variable export operations are performed explicitly by means of
export declarations, while the corresponding remove operations shall happen
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automatically when the enclosing statement block (or the entire program) ter-
minates (cf. Sec. 3.4), it is advantageous to embed these operations in the con-
structor resp. destructor of class Dyn, as already shown above. Then, an export
declaration such as

export int x = expr;

can be transformed to a corresponding declaration of a regular variable with
some unique internal name such as x 1234 (internal, since the original name x
shall not appear in any static scope, and unique, since multiple environment
variables of the same name might be defined), followed by a declaration and
initialization of an additional dummy variable x 1234 of the corresponding
Dyn class:

int x__1234 = expr;
Dyn<Name<’x’>, int> _x__1234(x__1234);

When the control flow of the program reaches these declarations, x 1234 is
initialized with expr and afterwards the constructor of x 1234 is called, re-
ceiving a reference to x 1234 as an argument and pushing it onto its stack. The
corresponding destructor performing the matching pop operation is automati-
cally executed when the enclosing statement block (or the entire program) is
terminated.

By implementing the stacks as linked lists whose elements are global or lo-
cal variables of type Dyn<...> declared at the corresponding export points, no
dynamic storage management is necessary for maintaining the stacks. Instead,
they are “threaded” through the normal run time stack and possibly the global
data segment of the program.

Based on this representation of the environment, a dynamic parameter dec-
laration as in the following example:

void print (double d, int w, using int prec = 5);

is transformed to an ordinary parameter declaration with a default argument:

void print (double d, int w, int prec =
Dyn<Name<’p’, Name<’r’, ...> >, int>::top ?
Dyn<Name<’p’, Name<’r’, ...> >, int>::top->var : 5);

If the function print is called with three arguments, the default argument is
simply ignored. If it is called with only two arguments, the default argument
is evaluated as follows: If the pointer top of the stack identified by the name
prec and the type int is not null, i. e., if this stack is not empty, the variable
referenced by its topmost entry is used; otherwise, the original default argument
of the dynamic parameter (which is simply 5 in the example) is evaluated. In
particular, the original default argument is evaluated only if necessary, i. e., if
no suitable value is found in the environment.
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To simplify the presentation, the above description has ignored two details:
First, if the type of an environment variable is const T or const T&, it must not
match a dynamic parameter with a non-const reference type T&. To accomplish
this, all Dyn classes actually have a second static data member nctop as well
as a second link field ncprev that points to the topmost resp. previous stack
entry referencing a non-const variable. Furthermore, two different constructors
for pushing a const resp. non-const variable are provided which do not resp. do
modify the nctop pointer. To find the topmost variable matching a non-const
reference type T&, the nctop pointer is used instead of top, while for all other
kinds of types (i. e., T, const T, and const T&) top is used as described above.

Second, if multi-threaded programs shall be supported, the static data mem-
bers top and nctop must not directly point to stack entries, but rather refer
to some kind of thread-local objects which contain such pointers, in order to
maintain a separate environment for each thread.

4.2 Implicit Parameters

While the implementation of dynamic parameters is rather simple and straight-
forward – and the conceptual decoupling between export declarations and func-
tion calls using exported entities leads to an analogous decoupling in the imple-
mentation –, the precompiler-based implementation of implicit parameters turns
out to be more difficult.

A rather obvious idea is to simply add missing arguments to function calls,
e. g., to transform a call such as print(d, w) to print(d, w, prec) if print’s
third parameter prec is implicit. If the identifier prec is not known in the calling
context or has an incompatible type, this approach would naturally lead to a
corresponding compiler error message in that case.

However, there are two important problems with this approach, which have
already been pointed out in Sec. 2: First, the process of overload resolution might
lead to different results if an argument for any kind of optional parameter is ei-
ther explicitly specified or omitted. Second, if an implicit parameter is preceded
by a parameter with a default argument (including a dynamic parameter), and
the corresponding argument is also omitted in a call, it would have to be explic-
itly added, too. However, this is generally difficult for a precompiler operating
on source code for two reasons: First, the meaning of names occurring in the
default argument expression might be different when it is evaluated in the call-
ing context instead of its definition context; second, some of these names might
be inaccessible in the calling context if they refer to private or protected data
members of a class (if the function to be called is a member function of this class).

The problem regarding overload resolution can be solved as follows: Similar
to a dynamic parameter, an implicit parameter is also transformed to a param-
eter with a (dummy) default argument. This allows overload resolution to be
performed before adding any missing arguments, i. e., by considering only the
explicitly specified arguments. Afterwards, any implicit type conversions which
are necessary to convert the arguments to the exact parameter types of the se-
lected function are made explicit. (In the example given at the end of Sec. 2, the
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call f(0), which will be resolved to the second definition of f and thus requires
an implicit conversion of its argument 0 from int to double, would be trans-
formed to f((double)0).) Finally, missing arguments corresponding to implicit
parameters are added to the call, again using explicit conversions to the corre-
sponding parameter types. (If the second parameter y of f would be implicit,
the resulting call would be f((double)0, (int)y).) By inserting explicit type
conversions for all arguments of the augmented call, the process of overload res-
olution will in fact resolve it to the same function as the original call without
any additional arguments.7

The problem regarding preceding parameters with default arguments can be
solved in principle by encapsulating default argument expressions into parame-
terless auxiliary functions with unique compiler-generated internal names. Call-
ing such a function will always execute the encapsulated expression in the context
of its definition, without any interference of the calling context. Furthermore, if
a default argument belongs to a member function of a class, the corresponding
auxiliary function can be defined as a member function of the same class in or-
der to have access to private and protected members of the class. By using these
auxiliary functions, it is in fact possible to explicitly add all missing arguments
to a function call, no matter whether they belong to parameters with default
arguments, to dynamic parameters, or to implicit parameters.

However, since the actual generation of these auxiliary functions is amazingly
complicated in practice (in particular for function templates, where the auxil-
iary functions must be templates, too, and for member functions defined outside
their class, where the auxiliary functions must be predeclared in the class), it has
not actually been implemented yet. As a consequence, the current prototypical,
precompiler-based implementation does not allow parameters with default ar-
guments (including dynamic parameters) to appear in a parameter list before a
dynamic parameter. For practical applications, this does not constitute a severe
restriction, since it is always possible to place implicit parameters before any
other kind of optional parameter. Of course, in a real compiler, the problems
discussed above do not exist at all, since it is always possible to appropriately
add missing arguments to a function call in assembly or machine code.

Based on the preceding considerations, a function declaration such as

void print (double d, using int width, int p = 5);

will be transformed to

void print (double d, int width = *(int*)0, int p = 5);

where *(int*)0 is a dummy expression of type int, actually dereferencing a null
pointer of type int*. A call to print such as print(d) will be transformed to
print((double)d, (int)width), i. e., by explicitly adding an argument for the
second parameter width, its default argument expression will never get executed

7 Except in very strange situations where multiple functions with the same parameter
types defined in different namespaces are visible simultaneously.



Implicit and Dynamic Parameters in C++ 53

at run time. Furthermore, by not adding an explicit argument for the third
parameter p, its default argument will be used correctly as expected.8

To summarize, the transformation of a function call generally proceeds as fol-
lows: First, the normal process of overload resolution is performed to select the
best viable function according to the explicitly specified arguments. (For that
purpose, a complete semantic analysis of the source program is necessary, which
is indeed performed by the EDG C++ Front End.) Then, it is checked whether
the selected function has implicit parameters whose values are not provided by
the explicit arguments. If this is the case, the names and types of these param-
eters are used to add corresponding arguments to the call. If one of these names
is not known in the calling context, or its type is incompatible with the type of
the parameter, this automatically causes the Front End to issue a corresponding
error message.9 Furthermore, implicit type conversions of the explicitly speci-
fied arguments are made explicit to guarantee (in most circumstances) that the
process of overload resolution will select the same function as for the original call.

In contrast to dynamic parameters, where an exact match of core types is
required (cf. Sec. 3.5), implicit parameters naturally allow implicit type conver-
sions: If the type of the entity denoted by the respective name x in the calling
context is different from the type T of the implicit parameter, a corresponding
conversion is performed automatically (if possible) when the augmented argu-
ment expression (T)x is evaluated.

4.3 Constructor Calls with Implicit Parameters

Constructor calls depending on implicit parameters can be transformed in ex-
actly the same manner as calls to ordinary functions, i. e., by adding correspond-
ing arguments, no matter whether they appear directly in so-called functional
notation [10] or indirectly in variable and member initializers. For example, the
declarations of t1 and t2 shown in Sec. 3.2 will be transformed as follows:

HashTable t1
= HashTable((int)101, (int (*) (const string&))hash);

HashTable t2((int)size, (int (*) (const string&))hash);

In the same way, so-called mem-initializers of constructors can be transformed.

4.4 Invisible Constructor Calls

If a constructor call is completely invisible, it must not rely on implicit parame-
ters in order to avoid too much implicitness and consequent incomprehensibility
8 Basically, this could cause overload resolution to fail for the transformed call, if

another definition print (double, int) accepting the same arguments is visible.
Since such a function is not directly callable due to ambiguity, such cases are not
expected to be practically relevant. In the worst case, the programmer must specify
all arguments explicitly in order to select the desired function.

9 In particular, no attempt is made in such a case to find a worse matching function
that does not require these implicit parameters.
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(cf. Sec. 3.2). Therefore, an appropriate error message is produced by the pre-
compiler if such a constructor call is encountered.

5 Related Work and Discussion

The most obvious related work to implicit parameters as proposed in this paper
are implicit parameters as proposed by Lewis et al. [7]. Even though the moti-
vation for introducing such a concept as well as the basic idea is very similar in
both cases, there are several differences in detail, however: Most obviously, Lewis
et al. present their work in the realm of functional programming languages, while
this paper specifically addresses imperative languages. Apart from that, Lewis
et al. draw a clear syntactic distinction between implicit and regular parameters
of a function: The former are not specified in the function’s parameter list, but
simply used in its body, where they are distinguished from other identifiers by
prefixing their name with a question mark. Nevertheless, the type of a function,
which is usually inferred from its body by the interpreter or compiler, but might
also be specified explicitly in an additional signature, contains the information
about implicit parameters. By that means, a function calling another function
with implicit parameters implicitly inherits the latter’s implicit parameters in its
own type. Furthermore, since implicit parameters do not belong to the regular
parameter list of a function, special syntax is required to explicitly pass their
values in a call.

In contrast, implicit and regular parameters are treated uniformly in our ap-
proach, i. e., both are explicitly declared in a function’s parameter list and both
are used homogeneously in a function’s body. In fact, since the implicitness of a
parameter might be declared later on, there is no distinction whatsoever between
implicit and regular parameters in a function’s body. As a consequence of this
uniformity, explicit values for implicit parameters are passed in the same way as
values for regular parameters, i. e., via the normal argument list of a call.

The fact that implicit parameters are part of a function’s type in both ap-
proaches enables static type checking and guarantees that functions cannot be
called without directly or indirectly supplying values for all implicit parameters.
The other side of the coin, i. e., the drawbacks of this tight coupling between
calling and called functions, is also pointed out by Lewis et al.: If another im-
plicit parameter is added to a function later on, its own signature as well as
the signatures of all direct and indirect callers have to be modified if they have
been specified explicitly. To avoid this bother, they suggest as a compromise to
use ellipses to obtain signatures with only partially specified context informa-
tion. However, since the type of a function that is inferred by the compiler still
contains complete information about all implicit parameters, this approach does
not really relax the tight coupling mentioned above.

For exactly this reason, dynamic parameters and environment variables are
proposed in this paper as a dual concept to implicit parameters, that allows a
more loose coupling between callers and callees. This part of our proposal is
similar to dynamic variables as proposed by Hanson and Proebsting [3], again
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with some important differences, however: First of all, dynamic variables have
no relationship with function parameters; they are created and “exported” to
the environment with a set statement corresponding to our export declarations,
and accessed anywhere in a program with a matching use statement. Therefore,
similar to the implicit parameters of Lewis et al., the uses of dynamic variables
are “hidden” in function bodies, i. e., a function’s dependency on the value of a
dynamic variable is not documented in its signature. In contrast, dynamic pa-
rameters in our approach integrate the effect of a use statement with a parameter
declaration and therefore explicitly reveal the uses of environment variables in
a function.

Furthermore, in the C++ implementation of dynamic variables, their types are
restricted to pointers to “polymorphic” classes [10], i. e., pointers which might be
used in dynamic cast operations, while dynamic parameters and environment
variables might possess any C++ type. In particular, the different combinations
of const and reference types described in Sec. 3.5 allow a very fine-grained
control of “access rights” to an environment variable, ranging from completely
immutable variables to those that can be modified (directly or indirectly) both
in their export context and in any using context. On the other hand, dynamic
variables support a more flexible matching between set and use statements
by allowing a pointer to a derived class object to match a pointer to a base
class, while the types of dynamic parameters and environment variables are
required to match exactly except for differing const and reference qualifiers. In
addition to the conceptual reasons for this restriction outlined in Sec. 3.5, this
enables a maximally efficient implementation that does not require any kind of
searching for matching variables at run time. In contrast, any implementation
of dynamic variables, whether straightforward or more sophisticated, requires a
linear search through the environment stack (which might be threaded through
the normal run time stack) to find the first variable with a matching name and
type. Even if variable names would be encoded as dummy types and used as
template arguments as described in Sec. 4.1 (which is even better than any kind
of hashing proposed in [3]), a search for a matching type cannot be avoided if a
pointer to a derived class object shall match a pointer to a base class.

Similar to Sec. 3.6, Hanson and Proebsting also point out that dynamic vari-
ables are a data construct based on dynamic scoping, while exception handling
is actually a dynamically scoped control construct. We add the observation,
that the distinction between checked and unchecked exceptions has conceptual
parallels to our distinction between implicit and dynamic parameters.

Other control constructs based on dynamic scoping include control flow join
points in aspect-oriented languages [6, 8], Costanza’s dynamically scoped func-
tions [1], and the author’s local virtual functions [4, 5]. As shown in [4], the latter
can actually be used to simulate both exception handling and dynamically scoped
variables (called semi-global variables there), even though the latter is somewhat
cumbersome in practice.

The general concept of dynamically scoped variables can be traced back to
early implementations of Lisp, where it was actually a bug instead of an intended
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feature. Nevertheless, since it is still considered a useful concept in addition to
the usual static scoping, the basic idea has survived in Common Lisp’s special
variables [9]. Similarly, scripting languages such as PostScript, Tcl, Perl, etc. also
provide similar concepts. Finally, as already mentioned in Sec. 3.3, environment
variables found in operating systems are another embodiment of basically the
same idea.

Of course, any kind of implicitness in a program bears the danger of ob-
scuring important details and thus making programs harder to understand and
debug. On the other hand, however, explicitly passing around large numbers of
parameters also bears the danger of obscuring a few important ones with many
unimportant ones. Therefore, just like any other language construct, implicit
and dynamic parameters should be used with care and perceptiveness to make
programs easier to read and understand in the end.
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Abstract. Type abstraction in object-oriented languages mainly embodies two
techniques with different strenghts and weaknesses. The first technique is ex-
tension, yielding abstraction mechanisms with good support for gradual speci-
fication; the prime example is inheritance. The second technique is functional
abstraction, yielding more precise knowledge about the outcome; the prime ex-
ample is type parameterized classes. This paper argues that they should be clearly
separated to work optimally. We have applied this design philosophy to a lan-
guage based on an extension mechanism, namely virtual classes. As a result, a
kind of type parameters have been introduced, but they are simple and only used
where they excel. Conversely, final definitions of virtual classes have been re-
moved from the language, thus making virtual classes more flexible. The result-
ing language presents a clearer and more flexible trade-off between extensibility
and predictability, empowering programmers to choose the right balance.

1 Introduction

Sometimes the world is full of possibilities to explore, and sometimes it is like a danger-
ous mountain precipice where every step must be secured. Ideally, one should be able
to explore freely when that is safe, and watch every step when that need arises, but the
two modes should not be mixed at all times. Common type abstraction mechanisms ac-
tually force developers to mix the two. This paper describes a language design process
in which virtual classes are optimized for unrestricted extensibility and complemented
by a simple kind of type parameters providing stricter predictability, thus improving the
separation of the two modes.

Extensibility lies at the heart of inheritance. Traditional inheritance is hardly power-
ful enough to express statically typed contemporary software, but enhanced with virtual
classes it is a viable platform. Virtual classes [13] were invented along with the language
BETA [14] in the seventies and, briefly, they apply late binding to inner classes such that
the meaning of a class name can depend on the object from which it is obtained. Func-
tional abstraction over types has been known since the sixties in the shape of parametric
polymorphism [22]. In System F [10], Girard explicitly applied functions to types, but
even in languages such as Standard ML [17] where these applications are implicit, the
properties of the type system are highly influenced by it. Recently such mechanisms
have become main-stream in statically typed object-orientation, due to the inclusion
of type parameterized classes in Java 1.5 [11] and C# 2.0 [16]. However, these two
mechanisms have a different fundamental structure.

An extension mechanism takes a value from a given domain A, extends it with a
value from a different domain B, and produces a new value from A, i.e., A → B → A.

D. Lightfoot and C. Szyperski (Eds.): JMLC 2006, LNCS 4228, pp. 57–72, 2006.
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The prototypical example is that inheritance produces a new class (e.g., ColorPoint)
by extending a given class (Point) with an incremental entity (a class body {String
color;...} or, with a slight generalization, a mixin [1,9]). A is here the domain of
classes and B the domain of incremental entities. The crucial point is that the outcome
belongs to the same domain as the entity being extended, such that the process can be
repeated.

Functions used for type abstraction apply a value from a domain A to a value from
a different domain B, producing a value in B, i.e., A → B → B. The prototypical
example is that a parameterized type may be applied to a type, yielding a type. There is
often a shortcut such that parameterized classes are applied to type arguments to pro-
duce a class, but an implicit coercion from classes to types preserves the functionality
A → B → B. Note that this is in fact required in order to allow nested type applica-
tions such as List<List<String>>. The crucial point is that the outcome belongs
to a different domain than the entity being applied, which makes it a one-step process.

Extension mechanisms are inclusive because they allow for repeated extensions and
it is generally only known that at least some specific extensions are present; in return
for this freedom it is both hard and inappropriate to try to establish guarantees about ex-
tensions which are not present. Conversely, type parameterization is exclusive because
it allows for just one explicit step from the parameterized type to the resulting type; in
return for this strict discipline, information about the type arguments can safely be used
to reason about the outcome.

This is the ideal situation. In reality, the mechanisms have been polluted by attempts
to give each of them the qualities which come naturally for the other, and it is a main
point of this paper that they should be allowed to coexist in a clean form rather than
overstretching each of them to do it all. The contributions of this work are as follows:

– Identifying the fundamental structural difference between type abstraction based
on extension and on function application, and concluding that the former should
aim for flexibility and the latter should focus on predictability.

– Revising the semantics and type system of the full-fledged programming language
gbeta to follow these guidelines; introducing a new mechanism in this process,
namely virtual constraints.

– Implementing the revised language design, and rewriting several hundred programs
to use the revised language.

The next section presents the two mechanisms, and the following section outlines some
well-known problems. Section 4 describes how simple parameterized types are added
as a complement to virtual classes, and Sect. 5 describes how this allows for simpler
virtual classes. The following section shows that the expressive power of the language
is preserved. Finally, the implementation status is described in Sect. 7, related work is
described in Sect. 8, and Sect. 9 concludes.

2 Existing Type Abstraction Mechanisms

We use Java 1.5 genericity to illustrate type parameterization. It supports type parame-
ters for classes, constrained by bounds including recursive ones known as F-bounds [4],
and co-/contra-variance in type applications by means of wildcards [11,25].
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class Box<X> {
X x;
X getX() { return x; }
void setX(X x) { this.x=x; }

}

class BoxBox<X extends BoxBox<X>> extends Box<X> {
void selfwrap() { setX((X)this); }

}

class ColoredBoxBox<X extends ColoredBoxBox<X>>
extends BoxBox<X> {

String color;
}

class BoxBoxF extends BoxBox<BoxBoxF> { }

<X extends BoxBox<X>> X unwrap(X cb) {
return cb.getX();

}

Fig. 1. Boxes, expressed using Java parameterized classes

Figure 1 shows a parameterized class Box with a type parameter X. BoxBox
is a subclass of Box, which is able to contain a BoxBox. It propagates the type
parameter to its superclass and also constrains it with an F-bound. Hence, all type
applications BoxBox<T> are checked to ensure that the actual type argument T
is a subtype of BoxBox<T>, which is useful because classes instantiated from this
parameterized class have a certain recursive structure, namely that the type X is “sim-
ilar” to BoxBox. ColoredBoxBox shows how this technique can be extended to
handle inheritance.

The method unwrap illustrates that the F-bound succeeds in expressing that getX
returns an object of similar type as its argument, e.g., that the return value from unwrap
applied to a ColoredBoxBox has a color. However, the method selfwrap in
BoxBox, which makes the receiver wrap itself, must use a dynamic cast ‘(X)this’
because the F-bound does not ensure that this is of type X.1

The class BoxBoxF is a subclass of BoxBoxwith type argument is BoxBoxF. This
idiom is known as “taking the fixed point” of the parameterized class because it appears
as the type argument to itself. This is a standard technique (presented in [2]) for using
F-bounds to establish mutual recursion which can be preserved under inheritance.

1 In current Java implementations, this cast is ‘unchecked’ because the representation of types
does not support a run-time check, but this is a problem with the type erasure implementation
strategy, not with parameterized classes as such. E.g., C# does not use type erasure.
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This paper uses virtual classes in gbeta [5,6,7,8] as the target of the language re-
design process. At this point virtual classes are briefly introduced, with examples in the
language before the redesign.2 Later examples show the redesigned language.

Figure 2 mimics Fig. 1 using virtual classes for type abstraction. As mentioned, vir-
tual classes were introduced in BETA, but they have been generalized in the language
gbeta, and adapted to a Java-like context and in some ways clarified in the language
Caesar [15]. A virtual class is a feature, similar to an inner class because it is a class
and it is nested in an instance of the enclosing class; it is similar to a (virtual) method
because it is accessed using late binding. A virtual class is introduced by the keyword
virtual. Subclasses of the enclosing class may redefine an inherited virtual class,
and it must then be marked with the keyword extended. The effect is that the value
of that virtual class becomes a subclass of its inherited value, computed by adding the
contributions in the extended definition. This often amounts to the application of a
mixin to the inherited value of the virtual class; in general it is a class combination
operation defined by linearization. Redefinition of a virtual class replaces it with a sub-
class of its inherited value, so we use the word ‘extension’ rather than ‘redefinition’.
If the extension definition is marked with final then further extension of that vir-
tual class in subclasses of the enclosing class is prohibited. This paper is intended to
be self-contained, but because of the limited space we must refer to additional litera-
ture [5,6,7,8] for more details about virtual classes.

Virtual classes provide type abstraction because a virtual class name (such as X inside
Box in Fig. 2) denotes some subclass of its statically known value (here Object), but
the actual value is determined at run-time. To establish the recursive structure we make
BoxBox a virtual class and refer to itself in the extension of X. As a result, BoxBox is
now a subclass of Box whose X is BoxBox itself. Note that this is the case for inherited
usages of X as well as newly added ones. The selfwrap method corresponds to the
one in Fig. 1, but it does not need a dynamic cast because the receiver is known to have
type BoxBox or a subtype. (BoxBox is not a ‘MyType’ [3], but it is known to be a
supertype thereof). Next, BoxBox is equal to X, because the extension of X is final.
Finally, X is the argument type of setX, so setX(this) is type safe.

The enclosing class CB is needed in order to make BoxBox a virtual class such that
the relation between BoxBox and its virtual X is preserved for extended versions of
BoxBox, e.g., the one in ColoredCB. The recursive structure need not be redeclared
when the color is added, as opposed to the situation with parameterized classes. In-
stances of CB and subclasses can be used to specify the type of BoxBox, with whatever
extensions the given subclass of CB has added. This phenomenon is known as family
polymorphism [6,21,18]. For instance, the method unwrap accepts an argument aCB
of type CB, and an argument cb of type aCB.BoxBox, and the return value is of the
same type. In particular, it is again possible to access the color of the return value
from unwrap applied to a BoxBox from an object known to be a ColoredCB.

Note that the type of the second argument cb depends on the object aCB. Such a
type would not be well-defined if it were possible to change aCB during the life-time
of cb, and the return type of the method also depends on aCB remaining unchanged

2 For main-stream readability, the syntax of gbeta examples has been changed to follow the Java
style.
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class Box {
virtual class X extends Object;
X x;
X getX() { return x; }
void setX(X x) { this.x=x; }

}

class CB {
virtual class BoxBox extends Box {
final extended class X extends BoxBox;
void selfwrap() { setX(this); }

}
}

class ColoredCB extends CB {
extended class BoxBox { String color; }

}

aCB.BoxBox unwrap(final CB aCB, aCB.BoxBox cb) {
return cb.getX();

}

Fig. 2. Boxes, expressed using gbeta virtual classes (transformed to a Java-style syntax)

throughout the method invocation. Because of this aCB is final, which means that
it cannot be changed after initialization. An object used in the type of a variable or
method argument is a family object, and the immutability restriction applies to all family
objects. If a mutable variable were used as a family object then types declared from it
would be useless, because no object can be shown to have such a type.

3 Problems with Existing Mechanisms

The given examples exhibit some problems characteristic of the two mechanisms. First,
the method selfwrap in Fig. 1 has a dynamic cast because the F-bound does not en-
sure any particular relation between X and the type of the receiver. Next, the type bound
of the methodunwrap in Fig. 1 must re-declare the recursive structure ofBoxBox. It is
a case of bad encapsulation that this supposedly internal recursive structure of BoxBox
must be restated whenever it is used or passed on to another piece of code.

In comparison, the method selfwrap in Fig. 2 is safe and does not need the dy-
namic cast. The method unwrap receives the extra argument aCB which—like a “dy-
namic package”—provides the other types used in the method signature. This extra
argument often causes objections, but the notion of a dynamic package is quite simple
after getting used to it, and it remains equally simple no matter how complex the con-
tained structure is. In contrast, restating the recursive structure grows in complexity with
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the square of the number of members of the class family. Moreover, virtual classes are
more flexible because one can use family-polymorphic references to BoxBox objects:

... final CB myCB = ...
myCB.BoxBox cb1,cb2;
... cb1 = new myCB.BoxBox(); cb2.setX(cb1); ... Ex.

1

In Ex. 1 a family object myCB is in scope—it could be a final argument to a method, or
a final instance variable of an enclosing object. By ordinary reference polymorphism it
could be an instance of CB, ColoredCB, or any other subclass of CB. Using the type
myCB.BoxBox it is possible to declare variables of that specific BoxBox type and
operate safely on them because it is known to always be the same version of BoxBox,
namely the one in myCB. Hence, myCB works like a package because it provides access
to a set of classes. There is no corresponding “package polymorphism” with parame-
terized classes, because the class families consist of individual classes with no common
identity. It is, however, possible to create a polymorphic reference using Java wildcards
which is capable of referring to BoxBox<T> objects with varying type argument T , as
in the following example:

BoxBox<?> cb1,cb2; /* type arg variation is allowed */
...cb2.setX(cb1); /* not type correct! */
...cb1 = new BoxBox<?>(); /* cannot use ? here! */

Ex.
2

But there is no way wildcards in the type of these variables can express that the type
argument of cb1 and cb2 is the same at run-time. Consequently, expressions like
cb2.setX(cb1) in Ex. 2 are not type safe. It is also impossible to create new in-
stances of BoxBox in “the right family” because the ‘?’ denotes an arbitrary type
rather than the type argument given to BoxBox in the type of cb2 or any such thing.

In summary, type parameterized classes with F-bounds can go a long way to describe
recursive type structures, but some problems remain, especially because the recursive
structure is imposed from the outside rather than built-in.

Turning to the world of virtual classes, there are also some well-known problems.
Collection classes using virtual classes for type abstraction have distinct type for each
subclass created just in order to specify its element type. The Box class could be seen
as a very simple collection class, and we could create some boxes to hold numbers:

class NumBox extends Box {
final extended class X extends Number;

}
NumBox nb = new NumBox();
... nb.setX(new Integer(3)); ...

class NumBox2 extends Box {
final extended class X extends Number;

}
NumBox2 nb2 = new NumBox2();
... nb2.setX(new Double(.5)); ... Ex.

3
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It is important that X is final in Ex. 3, to ensure that it is safe to insert elements into
the “collection”, i.e., to call setX(). Large projects would have many locations where
a collection of a given type is created. Each time a class like NumBox is created the
result is a distinct class, unrelated to all the other classes which are also boxes holding
numbers. Consequently, we cannot write generic code that polymorphically accesses a
NumBox or a NumBox2, preserving the information that the elements are Numbers.

This is a nontrivial problem because it is hard to reconcile virtual classes with
structural type equivalence. In [23] it was in fact proposed to support a kind of struc-
tural equivalence for virtual classes, and Fig. 8 in that paper shows a family of mutu-
ally recursive classes with this kind of structural equivalence. However, no details are
given, and several years of experience with the static analysis of gbeta suggests that
the entire environment of enclosing scopes all the way out to the global namespace
must be included in the structure which represents a type for this to work. In that
case, two distinct declarations would hardly ever be structurally equivalent unless
they are declared in the same scope. Obviously, this eliminates most of the benefits
of structural equivalence.

Another hard problem with virtual classes is that their inherently extensional na-
ture makes it hard to reconcile them with lower bounds. In particular, it is difficult
to use virtual classes to describe contravariance, i.e., that supertypes of a type ar-
gument create subtypes in type applications. Essentially, contravariance is useful in
order to achieve polymorphism over a type parameter X of a data structure that ac-
cepts method arguments of type X (an “X sink” data structure). E.g., if List is a
parameterized type in Java and objects of type T should be inserted into such a list,
but the actual type argument of the list should be allowed to vary within the bounds
of type safety, the proper type would be List<? super T> which uses super
to specify contravariance and is allowed to refer to instances of List<S> for all
types S such that T is a subtype of S. A detailed example of non-trivial and useful
contravariance which can easily be expressed using wildcards has been given in a
solution to the so-called expression problem [24]. The feature described in the next
section is able to express this solution directly.

4 Adding Lightweight Type Parameters

This paper solves the problems described in the previous section by adding a simple
version of type parameterization to virtual classes. As a consequence of this, virtual
classes are simplified and made more flexible, as described in the next section.

The new type abstraction mechanism is based on constraints on virtual classes. It is
only applicable to types, i.e., the declared type of an instance variable, a local variable,
or a method argument, and in particular they cannot be applied to class definitions.
They are not higher-order, there is no support for aliasing, and they do not allow F-
bounds. The rationale for these design choices is that virtual constraints should be able
to express certain typing properties known from parameterized classes with wildcards
as in Java, but they should not be used for the specification of recursive type structures,
because virtual classes are better at that anyway. Syntactically, virtual constraints are
similar to type applications in Java:
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class List {
virtual class X extends Object;
...

}

List<X extends Number> ro_nums; // covariance
List<X super Number> wo_nums; // contravariance
List<X equals Number> rw_nums; // invariance Ex.

4

To check these types for correctness, it is required that List is statically known to
contain a virtual class named X and the right hand side of each constraint is again a
correct type. The main difference to Java type applications is that the constrained virtual
is mentioned by name, e.g. X in the example, whereas wildcards are denoted by question
marks and identified with specific type arguments by their position in the argument
list. This is a natural consequence of the fact that virtual constraints are not passing
arguments, they specify relations that must be verified to hold for the actual virtual
classes in question. This also makes it possible to give multiple constraints on the same
virtual class, and it enables constraining a subset of the virtual classes. When there is
exactly one virtual class, an equality constraint on that virtual class is the default; e.g.,
the last line in Ex. 4 could have used List<Number>. The names of the declared
variables have been chosen to support a useful intuition about variance, namely that a
covariant data structure is read-only, a contravariant data structure is write-only, and
only an invariant data structure allows both writing and reading.

These variables can be assigned to each other according to the rules for use-site
variance [12] which can also be used to explain the treatment of wildcard types in the
Java programming language (when disregarding wildcard capture [25]). These rules
allow assignment among variables of the same type and from an invariant type to both
variant types (e.g., from rw nums to wo nums and from rw nums to ro nums), and
prohibits all other combinations.

We can also verify that constraints are satisfied based on direct knowledge about
virtual classes, especially because creation of a new object is as monomorphic as the
class denotation (e.g., ‘new C()’ is known to be an instance of C whereas the value of
a variable of type C is only known have type C or a subtype). In particular, the following
assignments are type correct (assuming that Integer is a subtype of Number which
is again a subtype of Object):

ro_nums = new List() {
extended class X extends Integer

};

wo_nums = new List() {
extended class X extends Object

};

rw_nums = new List() {
extended class X extends Number

}; Ex.
5
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We need not make the virtual class final, because the new object is known to be an
instance of the denoted anonymous class, so X cannot be further extended.

Virtual constraints solve the problem of accidentally incompatible collection types,
because the constrained types are structurally equivalent even though the classes are
distinct. Virtual constraints can also express contravariance as with super bounded
wildcard types. Finally, constraints can of course be nested as in the following example:

List<List<Number>> numss;
List<X extends List<X super Number>> ro_wo_numss; Ex.

6

This declares numss to be a list of list of Number, and ro wo numss to be a read-
only list of write-only lists of numbers. With the latter it is possible to iterate over
the outer list and insert numbers into each of the inner lists. In fact, an inner list
might be a LinkedList<Object> because the outer list might actually be a list
of LinkedList<X super Number>, which can hold a LinkedList<Object>.

The constrained virtual classes are looked up in the base class of the nearest enclos-
ing type—e.g., X is looked up in List in the examples—and the right hand side of the
constraints are looked up in the same scope as the entire type. This rule is simple and
ensures that recursion (F-bounds) cannot occur inside a virtual constraint, thus avoid-
ing the abovementioned problems with F-bounds as well as others such as the lack of
principal types.

The decision to add virtual constraints to a language with virtual classes can now
be evaluated and motivated. First, note that type parameterization of classes does not
interact well with inheritance because the two mechanisms are fundamentally different:
inheritance is based on extension and class parameterization is based on type functions.
Hence, it did not seem attractive to add type parameters to classes, which would also
produce a very complex and redundant language design. However, a coercion from class
to type takes place—implicitly, but at well-known locations—for the declared type of
each instance variable, local variable, and method parameter, and this process fits very
well with type functions because it is inherently a single step process. Moreover, the
addition of virtual constraints does not add much complexity to gbeta; the static analysis
already computed the information needed to determine whether virtual constraints are
satisfied in connection with types without virtual constraints, and the variance rules used
to determine subtyping among types with virtual constraints are very simple. It adds
complexity to the grammar, but the new constructs should be quite easy to understand
for most programmers, and they are (even in the actual gbeta syntax) modeled to be
syntactically similar to type application in main-stream languages.

As a result, a useful amount of structural type equivalence is now available, in a fa-
miliar syntax, with variance that corresponds to Java wildcards, and the new features are
tightly integrated with virtual classes because it is virtual classes which are constrained,
and because the right hand sides of constraints can also refer to virtual classes.

5 Simplifying Virtual Classes

It is tempting to consider language design as a matter of designing new language fea-
tures. However, it has always been a core design criterion for BETA that there should
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be few language features; each of them should be powerful; they should work well to-
gether; and they should be orthogonal, i.e., their application areas should not overlap.
The language gbeta was created in the same spirit. Hence, we consider it useful to re-
move features during a language design process, and this is exactly what is described
in this section: final extensions of virtuals are removed from the language. The reason
why this is so important is that it removes constraints from an extension mechanism,
hence enabling unrestricted usage of extensions—with final extensions, dynamic class
combination will inevitably be unsafe.

As mentioned in Sect. 2, a final virtual class extension implies that no more ex-
tensions to this virtual class can be made in subclasses of the enclosing class. This
implies that more information can be established about the value of this virtual class:
Normally, a virtual class is only known by upper bound when the class of the enclosing
object is not known exactly; for instance, in the class body of Box in Fig. 2 it is known
that X denotes some subclass of Object, but it cannot be assumed that any given type
is a subtype of X because it is only bounded from above. (The type of null may be
considered a ‘bottom’ type, but that is the only exception). Consequently, a variable or
method argument of type X cannot be assigned any value unless this value is already of
type X. For a collection, e.g., this means that we can reorganize contained objects, but
we cannot insert objects obtained from elsewhere. Final definitions of virtual classes
thus play an important role of making it safe to assign externally provided objects to
variables or method arguments whose type is a virtual class. For instance, a list is not
so useful if we cannot put anything into it (except null).

However, adding virtual constraints as described in Sect. 4 solves this problem in
almost all cases: Collections and other objects for which it is important to have a lower
bound on a virtual class should be accessed via variables whose type has a lower bound
on the virtual, e.g., List<X super Number> or List<X equals Number>. Us-
ing an equals bound is the typical choice for important references to such an object,
because it preserves the possibility to both deliver and receive objects whose type is the
virtual class (e.g., giving method arguments, and receiving method return values).

The remaining—hard—case is exemplified by BoxBox in Fig. 2. In this case it is not
possible to use a type with virtual constraints to establish the required typing properties
because the constraints are concerned with an object rather than virtual classes of an
object, and that object is the current object, this.

The final extension of X ensures that it is exactly equal to BoxBox. This is be-
cause the contributions to X are known to be Object and BoxBox, and the combina-
tion of these two contributions is statically known to be BoxBox, even though this is a
virtual class and its actual value is not known statically (just like ∅ ∪A = A for any set
A). Since the current object this in any class body on the right hand side of a virtual
class definition is an instance of that virtual class or a subclass thereof, we conclude
that this has type BoxBox and hence also type X.

If we remove final from the extension of X in BoxBox, it is no longer known that
this has type X, which means that the method call setX(this) would be rejected
by the compiler because it would not be type safe. It is easy to create an example show-
ing that it would be unsound to consider it type safe, so this is an essential difference
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rather than a matter of improving the type analysis. A dynamic cast would have to be
used, and the situation would then be just as bad as it is with parameterized classes.

However, there is a quite general approach which makes it possible to achieve the ef-
fect of a final declaration of a virtual class, and this is the topic of the next section. Based
on this opening, virtual classes were simplified as follows: It is no longer possible to use
final in a virtual class extension; a language mechanism known as ‘disownment’ [5,
p.197] which was used to avoid multiple conflicting final extensions of virtual classes
is no longer needed and is removed from the language. Finally, the implementation of
the type checker has been simplified.

6 Emulating Final Declarations

Final extensions of virtual classes can be emulated based on a surprisingly simple mech-
anism, namely that of binding a final instance variable to an object, i.e., binding a name
to a simple, opaque run-time value which is an address in the heap.

Binding a name to a simple value is inherently a one-step process, so extension is
wasteful because there will not be “multiple extensions”. The language gbeta has had
a one-step binding mechanism for several years [5, p.193], known as ‘virtual objects’.
This mechanism is in fact what is used to express final method arguments such as
aCB in Fig. 2 in the original gbeta syntax, but the semantics is simply that of binding
a name immutably to a value. Syntactically, virtual objects are different from method
arguments, because they are class features. The class and method concepts are in fact
unified to one concept in BETA and in gbeta, namely patterns. So virtual objects are re-
ally features of objects created as instances of patterns, and it is a matter of taste whether
one wants to consider a given pattern as a class or as a method, and correspondingly its
instances as objects or as method activation records. For simplicity, virtual objects will
be shown as class features, and the relation to methods is not made explicit.

A virtual object is introduced in a declaration marked with virtual, and for each
virtual object introduction there must be at most one virtual object final declaration. If
there is no final declaration of a virtual object, the declared class of the object given
in the introduction is used to create a new instance (it turns out to be convenient to get
fresh objects by default). If there is a final declaration then it specifies an object, which
must be of the type given in the declaration or a subtype thereof, e.g.:

myCB.BoxBox myBoxBox;

class StickyBox {
virtual object bx isa Box;
bx.X x;

}

class MyStickyBox extends StickyBox {
final object bx is myBoxBox;

} Ex.
7

Instances of StickyBox contain a virtual object of type Box or a subtype thereof, as
well as an ordinary mutable instance variable x. The subclass MyStickyBox contains
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a corresponding final declaration of the virtual object, which binds the name bx in
instances of that class to the objectmyBoxBox (assuming myCB is declared as in Ex. 1).
It is essential for the typing that a virtual object is immutable, because this makes it
possible to use it as a family object. For example, x is declared to have the type bx.X,
which means that it is known to be safe to execute statements like x=new bx.X(),
bx.setX(x), and x=bx.getX().

Moreover, x has type myBoxBox.X in MyStickyBox , which establishes that it is
also safe to execute x.setX(x) . . . except that this only holds when the extension of
X in BoxBox is final, and we are in the middle of reconstructing that property after
having removed final extensions from the language.

// Original Code
class C {

virtual class X extends Number;
X x;
...

}
class D extends C {

final extended class X extends Integer;
...

}

// Transformed Code
class Xholder { virtual class X extends Number; }
class C {

virtual object Xh isa Xholder;
Xh.X x;
...

}
class D extends C {

final object Xh is new Xholder() {
extended class X extends Integer;
...

}
}

Fig. 3. Emulation of a final extension

The emulation uses the transformation shown in Fig. 3. Assume that a class C is
given that introduces a virtual class X and uses it (in the example: as the type of an
instance variable x). The subclass D of C contains a final extension of X. There are
no ordinary (non-final) extensions of X. The transformation expresses an equivalent
situation without using final extensions of virtual classes. Transformed declarations
use a virtual object, and the virtual class will then be looked up in that virtual object, as
shown in the transformed code.
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The only difference is that the virtual class is now wrapped inside a virtual object. For
the virtual object, the transition from unbound to bound is registered by the type analysis
and will occur exactly once (by a final declaration or by default). Hence, any given
final declaration of a virtual object is the only such declaration for that attribute,
and hence whatever is known about that particular object will hold for the attribute. In
particular, it is known for all instances of D or subclasses thereof that their Xh virtual
object is an instance of the given anonymous class (and not a subtype thereof!), and this
means that Xh.X is exactly Integer. In other words, Xh.X was introduced as being
some (unknown) subtype of Number in C and then fixed to be exactly Integer in D
and its subclasses, just like X in the original code. Note that the default binding of the
virtual object corresponds to using the declared bound as a default for a type parameter
in type parameterized classes.

In essence, we use a virtual object to achieve strict two-phase abstraction, then use
it as a family object to provide the virtual class. The technique can be used to emulate
all cases where a virtual class is used for introduction and final extension, which
corresponds closely to the two-phase abstraction of a type parameter—first declaration
of the formal, later passing actual arguments. Note that one virtual object may provide
several virtual classes, possibly a mutually recursive family.

Trying this out in practice, several hundred small gbeta programs (about 20.000 lines
of code in total) were redesigned to use the revised language, and this technique was
sufficient to remove all usages of final virtual extension.

Static checking of virtual objects in the gbeta compiler is currently based on consid-
ering every program location where two classes are combined (including the degenerate
case where a single mixin is added to a class). This includes every virtual extension dec-
laration and every explicit class combination operation (explicit class combination is a
kind of multiple inheritance that gbeta supports). If the two classes being combined
are statically known then the combination can be performed statically and the result
checked directly. If one of the classes is statically known and does not contain any
final virtual object declarations then the combination cannot create conflicts, and the
operation is accepted. In the remaining cases a warning is issued, and the merging op-
eration is checked dynamically. Note that every gbeta program in this paper (expressed
in the original gbeta syntax) compiles without warnings.

7 Implementation Status

Apart from the fact that the original gbeta syntax has been transformed to a style similar
to the Java programming language and all directives concerned with the module system
have been left out, the example programs in this paper are actual, running gbeta code.
The design and implementation of virtual constraints took place in 2003, but some
adjustments were made more recently, particularly in the handling of nested constraints.
About 20.000 lines of gbeta code in about 650 programs (most of them small, but up
to 2500 lines of code) have been updated along the way to use the revised language,
thereby helping to evaluate the new language design. The implementation is available
at http://www.daimi.au.dk/∼eernst/gbeta/.
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8 Related Work

Several related research efforts have been mentioned already, so at this point we just
add a few extra remarks.

In [2] the relation between type parameterized classes and virtual classes is described
as if the significant difference in the treatment of families of mutually recursive classes
is in the verbosity of parameterized classes (and type safety, but that discussion has
changed since then). This paper demonstrates that there are also some deeper differences
between the abilities of these two approaches to express complex typing structures.

We mentioned that virtual constraints are similar to wildcards [11,25], but deferred
discussion of wildcard capture. Wildcard capture is a mechanism that enables invoca-
tion of a polymorphic method on an argument whose type includes a wildcard as a
type argument, effectively giving a name to the type argument which is otherwise only
known as ‘?’. In fact, this capability is just a special case of the general ability of ac-
cessing “type arguments” (virtual classes) in a language with virtual classes—in such a
language the type argument is never nameless and access is as simple as obj.X.

The language SCALA [19,20] features abstract type members which share many
properties with virtual classes. However, abstract type members must always have a
final declaration; introductory and overriding declarations are subtype and/or supertype
constraints, and only when the type member is finally bound to a concrete class (which
must satisfy all the constraints) it can be used for such things as creating new objects.
Hence, this mechanism is clearly divided into two phases. Moreover, it is possible in
Scala to specify types by means of a combination of names and structural refinements,
which may override declarations of abstract type members in the named type. This
mechanism is similar in nature to the virtual constraints of gbeta, but based on a strict
two-phase model rather than the extension based model of gbeta virtual classes.

9 Conclusion

This paper argues that virtual classes and type parameterized classes are fundamentally
different kinds of type abstraction mechanisms, and that they should be kept separate
in order for each of them to work optimally. Starting from the language gbeta which
is based on virtual classes, this philosophy is applied in a language redesign process.
A simple use-site type parameter mechanism is added, based on constraints on vir-
tual classes, and virtual classes themselves are simplified by removing final definitions
of virtual classes from the language. As a result, the support for variance and struc-
tural type equivalence is improved due to the virtual class constraints, and the powerful
extension support provided by inheritance and virtual class extensions is made more
flexible because the potential for final definition conflicts has disappeared.
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Abstract. Oberon Script is an experimental scripting language and runtime sys-
tem for building interactive Web Client applications. It is based on the Oberon 
programming language and consists of a compiler that translates Oberon Script 
at load-time into JavaScript code, and a small runtime system that detects and 
compiles script sections written in Oberon Script. 

1   Introduction 

Oberon is the name of a modular, extensible operating system for single user worksta-
tions [19], and also of an object-oriented programming language specifically devel-
oped to implement the former [17]. Although originally designed as the native operat-
ing system for custom built workstations, Oberon was subsequently ported to various 
different computing platforms including personal computers [2][4] and Unix worksta-
tions [1][14][15]. 

With the recent emergence and proliferation of sophisticated Web client applica-
tions, the Web browser has become a computing platform on its own. It offers the 
Web application programmer scripting facilities based on the JavaScript language [3] 
to programmatically interact with a Web server, and to manipulate the Web page in-
place and without reloading. It thus allows the construction of rich Web application 
user interfaces that are not limited to the page-based hypertext model anymore and 
approach those of desktop applications. 

As the Web browser morphs into a runtime system and operating platform for Web 
client applications, the question arises whether it can provide a suitable target plat-
form for another installment of Oberon, especially in light of all previous porting 
efforts that have shown Oberon’s demands of the host platform to be very limited. 
While attempting to answer this question we can explore in particular the suitability 
of JavaScript as a “portable object code” to compile Oberon to, and the feasibility of 
performing the compilation online, i.e. on the browser itself. Oberon promises to 
strike the right balance between being simple enough to make this experiment feasible 
and powerful enough to make it meaningful. 

In this paper we present Oberon Script, an experimental effort to develop a simple 
and lightweight application programming framework for building complex Web client 
applications in Oberon. The system consists of a load-time Oberon-to-JavaScript 
compiler and a small runtime system to process and run script sections written in 
Oberon Script. 
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2   Web Client Programming 

The page based hypertext model of the Web is unsuitable for rich Web applications 
user interfaces because the unit of interaction – the execution of a link and the corre-
sponding loading of a new page even for simple interactions – is too coarse to provide 
a smooth and pleasant user experience. Simple interactions such as attaching a file to 
an email message in a Web based email client require as many as 3 page loads. Re-
cently, however, Script-based Web applications have started to emerge, that employ a 
so-called Ajax-style of application design. Ajax stands for Asynchronous JavaScript 
and XML [10]. In applications built using these techniques the page is modified on-
the-fly by programs written in browser-run scripting languages, thus avoiding the 
reloading of the page even for complex user activities or display updates. This appli-
cation style was popularized by Google through their e-mail [7] and mapping [8] 
services, although neither was pioneering in relying on Ajax techniques. 

2.1   Ajax 

The Ajax-style of Web application programming is usually recognized by the use of 
the following techniques: HTML DOM [16] manipulation via client-side scripting 
languages, mainly JavaScript [3], and the use of XML as the data exchange format 
between server and client. The core foundation of Ajax, however, is a built-in browser 
component called XMLHttpRequest [10] that allows JavaScript code to interact with a 
Web server “behind the scenes” and without having to reload the page. The use of 
XML is not essential, and other data formats are commonly employed, including plain 
text or a linearization of JavaScript objects (JSON) [12]. 

2.2   JavaScript 

JavaScript is an object-based scripting language for the Web. Originally developed 
under the name of LiveScript it was later re-branded as JavaScript because of its su-
perficial syntactical similarities with the programming language Java [9], but also in 
order to benefit from the publicity around the then new language. JavaScript is now 
standardized as ECMAScript [3], and all modern Web browsers support the language 
using different brand names, such as JScript or JavaScript. 

JavaScript does not support classes. Instead, it supports a prototype-based inheri-
tance model with shared properties (fields and methods). Objects are created using a 
constructor function that initializes the object’s instance variables. Fields and methods 
that were defined via the constructor function’s prototype property are subsequently 
available as instance fields and methods. 

JavaScript objects are implemented as hash tables, and instance fields are stored as 
entries in those tables. The following ways of accessing instance fields are therefore 
interchangeable: obj.field (field access), obj[field] (hash table access). 

The JavaScript runtime system also features a small collection of predefined ob-
jects such as strings, arrays, regular expression objects, and so on, some of which also 
have a correspondence in the language (e.g. string constants in the language are in-
stances of the String object). 
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3   Oberon Script 

3.1   Language 

Oberon Script is a subset of the Oberon programming language as defined in [17]. 
“Subset” is to be understood not so much with respect to language as to semantics. 
Indeed, the Oberon Script compiler compiles the full language as specified in the 
language report referenced above, i.e. the language Oberon and some of the additions 
introduced by Oberon-2 [13]. However, for reasons of simplicity and compactness, 
and also to be compatible with the underlying runtime system that is based on 
JavaScript, some of the rules are relaxed. Thus, some of what would be syntactical 
errors in Oberon is permissible in Oberon Script. 

The decision to support the full language was based chiefly on the following prin-
ciples: First, we consider an effort to port a language to a new computing environment 
to be incomplete as long as the full language is not supported. Changing the language 
to simplify its porting is tantamount to adjusting a question to fit an answer. Problems 
encountered during such an endeavor should be regarded as challenges, and not op-
portunities to shortcut. Dropping or adjusting features later for purposes of optimiza-
tion or simplicity are acceptable but only once the system has proved working. Sec-
ond, we believe the Oberon language to be sufficiently concise such that stripping it 
down any further will likely harm its expressiveness. The language report specifying 
the syntax and semantics of Oberon is one of the shortest around (28 pages). The 
JavaScript language specification, in comparison, covers 188 pages [3]. Third, by 
basing our experiment on the full language Oberon instead of a cut-down toy lan-
guage we can assess more accurately the limits of a language’s complexity that can be 
reasonably compiled and processed in the browser on-the-fly. 

3.2   Compiler 

The Oberon Script compiler is a simple one-pass recursive-descent parser [18] that 
performs very basic syntax analyses and emits JavaScript constructs as a side-effect. 
Manual translation of Oberon constructs into JavaScript revealed that many features 
and constructs of the former have a structure that is very similar to those in the latter. 
For example, designators, expressions, statements, and control structures look basi-
cally the same in both languages, apart from trivial differences such as the symbols 
used to express them. This similarity suggests employing regular expressions to trans-
late Oberon’s syntax into that of JavaScript. However, after some initial experiments 
we decided against it. Apart from very simple expressions, most syntactical elements 
require the translator to have a certain minimal understanding of their structure in 
order to translate them into correct JavaScript. For instance, a simple designator, such 
as a local variable, can be discovered using regular expressions, but a moderately 
complex one, e.g. one involving arrays, type tests, or even a combination of these, 
requires at least some (recursive) parsing to establish its extent. But if some parsing is 
required in any case for any moderately complex program, it stands to reason that we 
can as well parse the whole program. 

While the syntactical differences of Oberon with the resulting JavaScript code are 
too big to allow using regular expressions to translate one into the other, they are 
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small enough to greatly simplify the compiler. For example, in many places it is only 
necessary to identify syntactical patterns instead of their details. The same parsing 
routine can therefore be employed in different places in our compiler where the dif-
ferent semantics of such constructs would require different routines in a regular com-
piler. Consider for example the following syntactical constructs: 

FieldList = [IdentList ":" type]. 
VariableDeclaration = IdentList ":" type. 
FPSection = [VAR] ident {"," ident} ":" FormalType. 
 
IdentList = identdef {"," identdef}. 
identdef = ident ["*"]. 

Although it is obvious that field lists (of record type declarations), variable declara-
tions, or formal parameter sections (FPSection) are different syntactical constructs 
and require different processing in a regular compiler (such as different allocation 
methods), for our purposes they are simply lists of identifiers followed by a type. 
Their different processing requirements can easily be accommodated for by passing 
an appropriate handler method, but the compiler doesn’t need to parse them differ-
ently. A single parser method thus suffices for all three. 

For reasons of simplicity and compactness of the compiler – and interoperability 
with regular JavaScript – only very minimal semantics analyses are performed, and 
only where it is necessary to establish a certain condition in order to proceed with the 
parsing. Designators, for example, are fully developed, including the type of the cur-
rent selector, in order to determine certain features of the designated object, e.g. to 
distinguish procedure calls from type tests, or to handle reference parameters cor-
rectly. Expressions, as a counter example, are not developed at all, and are simply 
output to the JavaScript generator. Therefore, a standard procedure call such as the 
following (where s is a string variable): 

INC(s, "hello world") 

which is illegal in Oberon, is not only permissible in Oberon Script, its translation in 
JavaScript actually makes perfect sense: 

s+="hello world"  //concatenation 

3.2.1   Modules 
Oberon modules can be described in object-oriented terms as singleton objects [6], 
with static fields and methods representing the global variables and procedures. This 
is also the approach used in Oberon Script to implement modules. 

An Oberon Script module is translated into a JavaScript object constructor function 
bearing the name of the module. In the body of that function, all exported items, in-
cluding (record) types, constants, variables, and procedures are assigned as static 
members of the function object. They can thus be accessed from the “outside” (other 
Oberon Script modules or regular JavaScript) using the familiar “dotted” qualified 
identifier notation consisting of the module name and that of the object in the form 
Module.Object.  



 Oberon Script: A Lightweight Compiler and Runtime System for the Web 77 

Example of an Oberon Script module and its representation as JavaScript object. 

(*Oberon Script module*) 
MODULE Mod; 
 
CONST 
  N*=1024; 
 
TYPE 
  Point*=RECORD x,y:INTEGER END; 
  
VAR 
  pt*, pt0:Point; 
 
PROCEDURE Move*(dx,dy:INTEGER); 
BEGIN INC(pt.x,dx); INC(pt.y,dy) 
END Move; 
 
PROCEDURE SetOrg*(x,y:INTEGER); 
BEGIN pt0.x := x; pt0.y := y 
END SetOrg; 
 
BEGIN pt0.x := 0; pt0.y := 0; pt := pt0 
END Mod. 

//JavaScript translation 
function Mod 
{ 
  Mod.N=1024; 
  Mod.Point=function(){this.x=0;this.y=0} 
  Mod.pt=new Mod.Point(); 
  var pt0=new Mod.Point(); 
  Mod.Move=function(dx,dy){pt.x+=dx;pt.y+=dy} 
  Mod.SetOrg=function(x,y){pt0.x=x;pt0.y=y} 
  pt0.x=0; 
  pt0.y=0; 
  _cpy(pt,pt0); //value copy 
} 
Mod(); //execute body 

Non-exported objects (variables, types and procedures) are translated as local func-
tions and/or variables in the body of the constructor function that represents the mod-
ule. Note that this use of local objects (variables, functions) as “private global”  
objects is perfectly legal in JavaScript, and possible due to its execution contexts in 
which a local function can reference objects of an outer scope and keep them alive 
even if their containing scope dies. The global variable pt0 the example above is ref-
erenced in the exported (hence static) procedure SetOrg and thus kept alive even if the 
body of the function Mod terminates. If SetOrg were not exported both it and the 
global variable pt0 would disappear (i.e. be garbage collected) when Mod terminates. 
However, this is perfectly valid, since objects that are not referenced need not be kept 
alive, irrespective of whether they are dynamic data structures, or functions and 
global variables. 
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3.2.2   Record Types 
JavaScript distinguishes only a few type classes (e.g. numbers, objects, and strings), 
but doesn’t support types. Objects in JavaScript are considered compatible if they 
support the same fields. 

An Oberon record type is represented in JavaScript by a constructor function that 
initializes the record’s fields and thus renders it “compatible” with one of equal or 
extended type. The identity of the type (as opposed to its compatibility) is only re-
quired for type tests. It is represented by a (static) array of constructor functions that 
encodes the record’s extension hierarchy. The constructor function also gets as part of 
its prototype properties (remember that those are shared by all instances of the object) 
a base-type initializer function and a type check function that implements the IS op-
erator. Those features are assigned to the constructor function by a runtime extension 
initializer function called _ext. 

TYPE 
  R0=RECORD x,y: INTEGER END; 
  R1=RECORD(R0) b:BOOLEAN END; 
 
VAR 
  r:RECORD(R0)k:INTEGER END; 
  r1:R1; 

function R0(){this.x=0;this.y=0} 
_ext(R0); 
 
function R1(){this._b();this.b=false} 
_ext(R1,R0); 
 
var r=new function(){this._b=R0;this._b();this.k=0}(); 
var r1=new R1(); 

The example above illustrates a named record type declaration, a named type exten-
sion and an anonymous record declaration. The field _b holds the base-type initial-
izer. In the example above the value of _b in R1 is R0, and will initialize the inherited 
fields x and y of R1. In multi-level extensions, the corresponding base-type initializer 
call will cascade through all levels until all fields are initialized. 

The anonymous record type (3rd example above) does not get an extension list be-
cause it cannot appear on the right-hand side of a type test (left-hand side appearances 
can be checked by the compiler). Therefore, the extension initializer _ext is not called 
for the record type, and the base-type initializer _b needs to be assigned in-place be-
fore it can be called. 

As a consequence of records being JavaScript objects special care is required to 
handle record assignments correctly. Assignments to record variables and value pa-
rameters require copying the record contents (recursively if necessary). A generic 
runtime function is provided for that purpose. It copies all fields of the source record 
for which there is a correspondence in the target record, by enumerating all target 
field names and then using them to copy the corresponding source values to the re-
spective target fields. This is not the most efficient way of handling record assign-
ments, but record value assignments are relatively rare in Oberon. For reference pa-
rameters (see below) passing the pointer of the record object is sufficient. 
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3.2.3   Reference Parameters 
In Oberon, reference parameters (var parameters in Oberon lingo) allow addresses of 
variables to be passed to functions instead of their values. This usually serves one of 
two purposes: either to return structured and/or multiple values from functions (return 
values are scalar in Oberon), or to pass complex sizeable structures to functions even 
if there’s no intention to modify (any of) their values, in order to save the computing 
effort of copying the structures onto the argument stack. In JavaScript arguments are 
always passed to functions by value. 

In contrast to their conceptual simplicity, implementing reference parameters in an 
environment that does not support them natively often requires a disproportionate 
effort to handle them correctly under any circumstances [11]. The reason is the rare 
but non-negligible possibility of aliasing, i.e. the possibility that the variable (memory 
location) referenced using a reference parameter might be changed using a different 
designator. For instance, a field of a record might be passed as a reference parameter 
to a function that later overwrites the complete record (and hence also the field). Al-
though such aliasing effects are rare, they need to be provided for because they are 
almost impossible to detect by the compiler. 

JavaScript offers a relatively simple way to simulate passing a variable instead of 
its value to a function, but care has to be taken that the passed value behaves correctly 
under possible aliasing effects. The basic idea is to pass an execution context as the 
actual reference parameter to the function rather than the value. The execution context 
is that of an anonymous function defined in-line, that contains a reference to the vari-
able, such that all modifications prompted through the execution context affect the 
original variable. Assuming the following declarations in Oberon Script and a call to 
procedure P: 

PROCEDURE P(VAR x:INTEGER); 
 
VAR k: INTEGER; 
... 
P(k);  //procedure call 

The translation to JavaScript looks as follows: 

function P(x) {...} 
... 
var k=0; 
P(function(v){return(v?k=v:k)});  

Note that the body of the function passed to P in above example operates on the k of 
the outer, i.e. calling scope. If the passed function is called without an argument, it 
returns the value of k, and if it’s called with an argument it sets the value of k. For all 
scalar values (including pointers) above solution is resistant to aliasing effects. 

The situation is a bit more involved for complex designators denoting instance 
fields, values accessed via pointers, and arrays. In these cases the “access path” to the 
variable must be evaluated like in a regular compiler to determine the “final” variable 
that is passed to the function by reference. To use the technique introduced above the 
variable must be referenced in the execution context. To avoid passing a copy instead 
of the variable itself, the last selector must be evaluated in the execution context. In 
case of arrays, this means that the last array dimension must be evaluated in the  
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execution context using a cached index expression. The following code segment illus-
trates passing arguments by reference using multi-selector designators. The three 
situations shown are the following: (1) a pointer dereferencing chain, (2) a field of a 
multidimensional array of records, and (3) an element of a multidimensional array. 
They are based on the type declarations below. The examples list alternately the call 
in Oberon and then the translation in JavaScript. 

TYPE 
  PR=POINTER TO R; 
  R=RECORD k:INTEGER; ptr:PR END; 
VAR 
  ptr:PR; 
  a:ARRAY N,N,N OF R; 
  b:ARRAY N,N,N OF INTEGER; 

P(ptr.ptr.ptr.k);     // Oberon (1) 

var _0= ptr.ptr.ptr;  //JavaScript (1) 
P(function(v){return(v?:_0.k=v:_0.k}); 

P(a[i,j,k].k);        // Oberon (2) 

var _0= a[i][j][k];     //JavaScript (2) 
P(function(v){return(v?:_0.k=v: _0.k}); 

P(b[i,j,k]);          // Oberon (3) 

var _0= b[i][j];_1=k; //JavaScript (3) 
P(function(v){return(v?:_0[_1]=v: _0[_1]}); 

From the discussion above it is obvious that the complexity of handling reference 
parameters can hardly be justified in light of the simplicity of the original concept. 
Reference parameters are therefore likely candidates for being discarded if an effort to 
simplify Oberon Script is ever considered. Structured return values could provide an 
alternative to reference parameters that are far simpler to realize in JavaScript. 

3.2.4   Code Quality 
The compiler is effectively a syntax translator that transforms code written in Oberon 
into equivalent JavaScript code. It specifically does not emit JavaScript that resembles 
artificial “assembly code”. Therefore, the resulting code carries no significant runtime 
overhead compared to equivalent manually written JavaScript (disregarding the dif-
ferent “styles” of programming in the different languages). Furthermore, the most 
salient transformations required when compiling Oberon to JavaScript are those that 
deal with declarations, especially those that have no counterparts in JavaScript (mod-
ules, records). These incur only an insignificant execution overhead. With regard to 
statements there is more or less a one to one correspondence of Oberon’s features to 
those of JavaScript. Their respective execution times are therefore equivalent. The 
most significant additional execution costs can be expected for features not present 
natively in JavaScript that therefore need to be simulated with extra code. These in-
clude type tests, reference parameters, and local record variables which must be allo-
cated each time a procedure is entered. 
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3.3   Runtime System 

The runtime system consists of the above Oberon-to-JavaScript compiler and a small set 
of utility functions that includes JavaScript and DOM bindings, and a facility that detects 
script sections written in Oberon Script and subjects them to the compilation process. 

Oberon Script is activated on a Web page by specifying in the header section of the 
page a link to the Oberon runtime scripts using a <script> element, and a call to 
Oberon.Init() in the onload event handler of the Web page body. As part of the ini-
tialization process, the runtime system identifies all code sections that contain Oberon 
Script. These need to be specified using the type attribute on the <script> element. 
Oberon Script is specified by the experimental MIME [5] type of “text/x-
oberonscript”. The runtime system then extracts the code from these sections and 
compiles them one after the other using the compiler, resulting in a collection of 
JavaScript sections. The compiler then replaces the original <script> elements con-
taining Oberon Script code with new ones containing the compiled JavaScript code. 
Control is then passed to the compiled code. The following code illustrates the core of 
the Oberon Script detector and compiler. 

function findLang(scp,typ) 
{ 
  var code=[]; 
  for(var i=0;i<scp.length;++i){ 
    if(scp[i].type.toLowerCase()==typ){ 
      code.push(scp[i].text) 
    } 
  } 
  return code 
} 
 
function addScript(par,code) 
{ 
  var scp=document.createElement("script"); 
  scp.text=code; 
  par.appendChild(scp)//this will also execute the code 
} 
 
function compileAll(typ,compile) 
{ 
  var scp=document.getElementsByTagName("script"); 
  if(scp.length>0){ 
    var par=scp[0].parentNode; 
    var code=findLang(scp,typ); 
    for(var i=0;i<code.length){ 
      var res=compile(code[i]); 
      if(res)addScript(par,res)//else error 
    } 
  } 
} 
 
compileAll("text/x-oberonscript",Oberon.Compile); 
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Although the compiler is usually not needed after it has finished compiling all Oberon 
Script sections, it stays around, in case further Oberon Script is created programmati-
cally, and then compiled and executed on-the-fly. 

4   Summary and Conclusions 

In this paper we have presented an experimental runtime system called Oberon Script 
for using Oberon as a scripting language in the Web environment. It consists of an 
Oberon Script detector and a simple compiler that translates Oberon into JavaScript as 
a portable runtime code. We have shown that it is possible to process and compile the 
full language albeit with some effort to handle the few features in Oberon that are 
difficult to port without native support such as its reference parameters. 

For a scripting language it is acceptable to sacrifice some of the parent language’s 
features to simplify its implementation. Supporting the full language, however, makes 
it possible in theory to port the whole Oberon system to the browser, thus turning the 
latter into a virtual machine. How difficult it is to accomplish this task – and whether 
it is sensible to attempt it in the first place – needs to remain the subject of further 
study. 

The current version of the Oberon Script compiler which is not optimized for effi-
ciency or code size consists of 1081 lines of JavaScript code (24452 bytes). On a 
personal computer equipped with a 1.2 GHz CPU and 512 Mbytes of RAM it com-
piles an Oberon module of 268 lines (7933 bytes) in 783 ms (average of 10 runs). 

References 

1. Brandis, M., Crelier, R., Franz, M., Templ, J.: The Oberon System Family. Tech. Report 
ETH 174, (1992) 

2. Disteli, A. R.: Oberon for PC on an MS DOS Base. Tech. Report ETH 203, (1993) 
3. ECMA International, ECMAScript Language Specification, Standard ECMA-262, 3rd ed. 

(1999) 
4. Franz, M.: Emulating an Operating System on Top of Another. Software - Practice and 

Experience, Vol. 23:6, 677-692, (1993) 
5. Freed, N., Borenstein, N.: Multipurpose Internet Mail Extensions (MIME) Part Two: Me-

dia Types, RFC 2046 (1996) 
6. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable 

Object-Oriented Software, Addison-Wesley (1994) 
7. Google Mail, http://gmail.google.com 
8. Google Maps, http://maps.google.com 
9. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Language Specification, 3rd edition. 

Addison-Wesley (2005) 
10. Garrett, J. J.: Ajax: A New Approach to Web Applications, http://www.adaptivepath.com/ 

ublications/essays/archives/000385.php 
11. Gough, K. J., Courney, D.: Evaluating the Java Virtual Machine as a Target for Languages 

Other Than Java. Proc. Joint Modular Languages Conf. (JMLC 2000), Zurich, Switzer-
land. Lecture Notes in Computer Science Vol. 1897, 278-290, Springer (2000) 

12. JavaScript Object Notation (JSON), http://www.json.org 



 Oberon Script: A Lightweight Compiler and Runtime System for the Web 83 

13. Mössenböck, H., Wirth N.: The Programming Language Oberon-2. Structured Program-
ming, Vol. 12:4, 179-196. (1991) 

14. Supcik, J.: HP-Oberon (TM). The Oberon Implementation for HP 9000 Series 700. Tech. 
Report ETH 212, (1994) 

15. Templ, J.: Design and Implementation of SPARC-Oberon. Structured Programming, Vol. 
12, 197-205. (1991) 

16. W3C: Document Object Model (DOM). http://www.w3.org/DOM/ 
17. Wirth, N.: The Programming Language Oberon. Software  - Practice and Experience, Vol. 

18, 671-690. Springer-Verlag, Berlin Heidelberg New York (1989) 
18. Wirth, N.: Compiler Construction. Addison-Wesley (1996) 
19. Wirth, N., Gutknecht, J.: The Oberon System. Software  - Practice and Experience, Vol. 

19, 857-893. Springer-Verlag, Berlin Heidelberg New York (1989) 
 



Efficient Layer Activation

for Switching Context-Dependent Behavior

Pascal Costanza1, Robert Hirschfeld2, and Wolfgang De Meuter1

1 Vrije Universiteit Brussel, Programming Technology Lab, B-1050 Brussels, Belgium
{pascal.costanza, wdmeuter}@vub.ac.be

2 Hasso-Plattner-Institut, Universität Potsdam, D-14482 Potsdam, Germany
hirschfeld@hpi.uni-potsdam.de

Abstract. Today’s programming platforms do not provide sufficient
constructs that allow a program’s behavior to depend on the context
in which it is executing. This paper presents the design and implemen-
tation of programming language extensions that explicitly support our
vision of Context-oriented Programming. In this model, programs can be
partitioned into layers that can be dynamically activated and deactivated
depending on their execution context. Layers are sets of partial program
definitions that can be composed in any order. Context-oriented Pro-
gramming encourages rich, dynamic modifications of program behavior
at runtime, requiring an efficient implementation. We present a dynamic
representation of layers that yields competitive performance characteris-
tics for both layer activation/deactivation and overall program execution.
We illustrate the performance of our implementation by providing an al-
ternative solution for one of the prominent examples of aspect-oriented
programming.

1 Introduction

In Context-oriented Programming, programs consist of partial class and method
definitions that can be freely selected and combined at runtime to enable pro-
grams to change their behavior according to their context of use. In [18], we have
introduced this idea and presented the programming language ContextL which
is among the first language extensions that explicitly realize this vision.1 As a
motivating example in that paper, an alternative implementation of the model-
view-controller framework is illustrated that avoids any secondary non-domain
classes and thus increases understandability and flexibility at the same time.

Context-oriented Programming encourages continually changing behavior of
programs according to the context of use, and employs repeated changes to class
and method definitions at runtime. Therefore, efficient implementation strategies
are needed for Context-oriented Programming to become practical.

The contribution of this paper is a novel design and implementation that
addresses these needs, yielding the desired efficiency characteristics.
1 For example, we are also working on similar extensions to Smalltalk and Tweak

called ContextS and ContextT respectively.
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2 Context-Oriented Programming

2.1 Motivation

In the following, we present examples that motivate the need to be able to write
code with a meaning that is not fully self contained, but partially depends on
the context in which it is deployed and executed.

– Mobile applications running on mobile devices might need to dynamically
adjust their behavior according to the geographical context in which they
are used [12].

– Mobile code typically depends on the context of the runtime environment in
which it is executed, such as applets or software agents [21].

– Exploration environments create safe contexts in which to execute applica-
tions and can considerably help users to learn how to use them, as has been
shown by research in the field of Human-Computer Interaction [46].

foo

System

void doThis (Context ctx) {
  if (ctx == foo) {
    doThisInFooStyle(...)
  } else if (ctx == bar) {
    doThisInBarStyle(...)
  } ...
}

ThisClass

void doThat (Context ctx) {
  if (ctx == foo) {
    doThatInFooStyle(...)
  } else if (ctx == bar) {
    doThatInBarStyle(...)
  } ...
}

ThatClass

bar

doThis (foo)

doThis (bar)

Fig. 1. Context-dependent behavior through if statements

With contemporary mainstream programming languages, the only way to in-
troduce context-dependent behavior into a program is either by inserting if
statements everywhere that check for the context in which a program is running
(Fig. 1), violating one of the fundamental principles of object-oriented program-
ming, namely to avoid if statements for achieving polymorphic behavior, or
else by factoring out the context-dependent behavior into separate objects that
can be substituted according to the context in which a program is used. Both
approaches lead to unnecessarily complicated code that is hard to comprehend
and even harder to maintain. Furthermore, they can only be applied for context
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dependencies that are anticipated in the software development process. There
are cases in which it is clearly not possible to foresee all context-dependent issues
and without explicit support, it is difficult to write maintainable and robust code
that handles them well. With Context-oriented Programming on the other hand,
we can factor out partial class definitions into separate layers. As illustrated in
Fig. 2, we can then, depending on the context of use, select different layers
for further program execution. The principal notion of such layers as partial
program definitions has been suggested before ([3,40], cf. the section on related
work in this paper). In our approach, we extend this idea with the notion of
dynamically scoped layer activation (see Sect. 2.4), resulting in a viable approach
for expressing context-dependent behavior.

foo

System

void doThis () {
  ...
}

ThisClass <foo>

void doThat () {
  ...
}

ThatClass <foo>

bar

doThis ()

doThis ()

void doThis () {
  ...
}

ThisClass <bar>

void doThat () {
  ...
}

ThatClass <bar>

Fig. 2. Context-oriented Programming with layers

2.2 ContextJ/ContextL

ContextL is one of our first programming language extensions that explicitly
support a context-oriented programming style [18]. While it is an extension to
the Common Lisp Object System (CLOS, [4]), the features we describe are con-
ceptually independent of that particular object model. In order to ease the ac-
cessibility of this paper, code examples are given in a Java-style syntax instead
of the original Lisp syntax. This is possible because in this paper, we only deal
with a subset of CLOS that is compatible with a similar subset of Java. Con-
sequentially, we call this hypothetical Java-style language extension ContextJ,
which we refer to in this paper when we discuss Java-specific issues. Since we
are concerned with illustrating ContextL features using a Java-style syntax, we
do not consider advanced Java language constructs that are not available or
necessary in CLOS, like inner classes or generic types, but restrict ourselves to
essentially the feature set of JDK 1.0. Adapting Java-specific features, like its
static type system, to match the new constructs can be a topic for future work.
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2.3 The Figure Editor Example

The figure editor [42] is a popular example widely used to motivate aspect-
oriented programming. It is a variation of a similar example used to illustrate
the notion of jumping aspects [8]. In this example, there is a class hierarchy for
graphical objects of which instances are to be presented on a display. Some of
these graphical objects are implemented by other, simpler graphical objects. So
for example, a line is described by two end points. In order to move such objects
to a different location, the contained simpler objects must be moved individually.
Whenever the description of a graphical object is changed, its presentation on
the screen should be updated accordingly.

The basic class hierarchy can be implemented in a plain object-oriented lan-
guage as shown in Fig. 3: A figure element is described by an interface which
is implemented by concrete classes, such as Point and Line.2 Note that the
required update of the display is not part of the code yet, but will be added in
the following.

2.4 Layers

Layers are the essential extension provided by ContextL on which all subsequent
features of ContextL are based. Layers can be defined by the layer construct:

layer DisplayLayer { /*...*/ }

Layers have a name and comprise partial class definitions, as shown in Sect.
2.5. There exists a predefined root layer. All class definitions that are not explic-
itly placed in a particular layer are by default associated with the root layer.

Layers can be activated and deactivated in the dynamic scope of a program:

with (DisplayLayer) { /* ... contained code ... */ }
without (DisplayLayer) { /* ... contained code ... */ }

Dynamically scoped layer activation/deactivation has the effect that the layer
is active/inactive during execution of the contained code, including all the code
that the contained code executes directly or indirectly. When the control flow
returns from the dynamically scoped layer activation/deactivation, a layer’s ac-
tivation state is reverted to the previous state. This time interval between acti-
vation/deactivation of a layer and subsequent reversal to the previous activation
state is also called the dynamic extent of the with/without block.

Layer activation can be nested, meaning that a layer can be activated/deacti-
vated more than once in an individual flow of control. Furthermore, dynamically
scoped layer activation/deactivation only affects the activity state of layers ap-
plied in the context of the current thread. The activity state of layers in other
threads will remain unaffected.
2 Since ContextJ would not need to change any of the existing Java language con-

structs, we can define and use interfaces, classes, fields, and methods as before.



88 P. Costanza, R. Hirschfeld, and W. De Meuter

interface FigureElement {
void move (int dx, int dy);

}

class Point implements FigureElement {
int x, y;

Point(int newX, int newY) { this.x=newX; this.y=newY; }

void setX(int newX) { this.x=newX; }
void setY(int newY) { this.y=newY; }
int getX() { return this.x; }
int getY() { return this.y; }

void move(int dx, int dy) { /*...*/ }
}

class Line implements FigureElement {
Point p1, p2;

Line(Point newP1, Point newP2) { this.p1=newP1; this.p2=newP2; }

void setP1(Point newP1) { this.p1=newP1; }
void setP2(Point newP2) { this.p2=newP2; }
Point getP1() { return this.p1; }
Point getP2() { return this.p2; }

void move(int dx, int dy) { /*...*/ }
}

Fig. 3. A basic implementation of the figure editor example

2.5 Layered Classes

A class definition, or parts of it, can be associated with a specific layer:

layer DisplayLayer {
class Display { /*...*/ }
// ...

}

Here, such an association does not have a useful effect yet: The class can still be
instantiated from any other layer. However, placing a class definition in a specific
layer gets interesting when we use layers to add to the definition of a class that is
already defined in another layer. In Fig. 4, we add the display update mechanism:
The layer DisplayLayer contains a class Display that implements the code for
updating the graphical representation of an object on a screen (not shown here).
It also contains additional definitions for our classes Point and Line as well as
the interface FigureElement, introducing after methods for the state changing
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layer DisplayLayer {
class Display {

// ...
static void update(FigureElement elm) { /*...*/ }

}

interface FigureElement {
after void move (int dx, int dy) {
Display.update(this);

}
}

class Point { class Line {
after void setX (int newX) { after void setP1 (Point newP1) {
Display.update(this); Display.update(this);

} }

after void setY (int newY) { after void setP2 (Point newP2) {
Display.update(this); Display.update(this);

} }
} }

}

Fig. 4. The DisplayLayer for the figure editor example

methods setX, setY, setP1, setP2 and move. All these after methods contain
calls to the update method of the Display class.

It is important to observe that the original classes Point and Line, and the
interface FigureElement are not replaced. They still have their original defi-
nitions. The fact that the new extensions are placed in the DisplayLayer en-
sures that the respective after methods are executed when and only when the
DisplayLayer is active. So an update of the display is just visible when the
figure elements are changed in the dynamic extent of a with (DisplayLayer)
{...} activation.

ContextJ would have to add before,after and aroundmethod qualifiers along
the lines of before, after and around methods in CLOS.3 They are methods of
their own and are combined with other methods of the same signature. This is
different from the advice-construct in AspectJ. AspectJ-style advice code adds
behavior to pointcuts, that is collections of join-points, which are not necessarily
methods, and not necessarily of the same signature. In our example, the after
methods are all executed after the respective primary methods associated with
the “root” layer in Fig. 3, but only if the DisplayLayer is active.

Due to the fact that layer activation/deactivation is confined to the current
thread, display updates occur only in threads in which DisplayLayer is active,
but not in other threads unless DisplayLayer is utilized within them as well.
3 Indeed, the corresponding before, after and around methods in ContextL are just

taken over from CLOS of which ContextL is an extension.
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2.6 Nested Layer Activation/Deactivation

ContextL does not automatically activate layer definitions. Layers must be ex-
plicitly activated via the with construct to take effect. Indeed, layer activation
is provided as a base-level language construct, so layers can be activated any-
where in a ContextL program, including layers that are loaded while a program
is already running and also in classes that are loaded after a program is al-
ready running. One especially interesting case is the nesting of activation and
deactivation of the same layer within the same control flow because this allows
solving the phenomenon of jumping aspects without using AOP-style pointcuts,
as shown below.

The figure editor example has been introduced in [8,42] to illustrate the jump-
ing aspects phenomenon: Whenever we change the state of a simple graphical
object, we can immediately update its presentation on the screen. However, when
we change the state of a complex object that consists of other, simpler objects,
the change has to be propagated to those simpler objects, but screen updates
should be deferred and combined until all objects are changed that the complex
object comprises. This has led to the introduction of cflow-style constructs in
AspectJ and subsequent AOP approaches [31].

ContextL’s with and without are base-level language constructs that allow us
to achieve the effect of deferring the update on the screen by providing around
methods instead of the above after definitions. Figure 5 contains a revised ver-
sion of the DisplayLayerwhere after methods are replaced by around methods
that deactivate the DisplayLayer before they proceed4 to the respective pri-
mary method. This has the effect that the method definitions of the DisplayLay-
er are not executed during the extent of these calls to proceed, so no display
update will take place here. Only after leaving the without block, the update
method is called eventually, and only once.

Now, a crucial question is whether continually activating and deactivating
layers is a reasonable approach with regard to efficiency considerations. Sect. 4
discusses this question after the presentation of our implementation approach.

3 Implementation

This section presents an implementation of the language constructs introduced
in the previous section. ContextL is an extension to CLOS. In our description we
focus on the implementation strategy that is reusable in other languages, without
going too much into the CLOS-specific details. The general idea is this:5

– Layers are implemented internally as classes.
– Combinations of currently active layers are represented as classes that inherit

from the primary layer classes using multiple inheritance.
4 Similar to proceed in AspectJ and call-next-method in CLOS.
5 Some of these building blocks do not exist in languages like Java and C#, especially

multiple dispatch and multiple inheritance. However, Section 3.4 refers to existing
approaches that can be used for implementing them in those languages.
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layer DisplayLayer {
class Display {

// ...
static void update(FigureElement elm) { /*...*/ }

}

interface FigureElement {
around void move (int dx, int dy) {
without (DisplayLayer) { proceed(); }
Display.update(this);

}
}

class Point { class Line {
around void setX (int newX) { around void setP1 (Point newP1) {
without (DisplayLayer) without (DisplayLayer)

{ proceed(); } { proceed(); }
Display.update(this); Display.update(this);

} }

around void setY (int newY) { around void setP2 (Point newP2) {
without (DisplayLayer) without (DisplayLayer)

{ proceed(); } { proceed(); }
Display.update(this); Display.update(this);

} }
} }

}

Fig. 5. The DisplayLayer with around methods to defer the update of the display

– A dynamically scoped variable contains a prototype instance of such a layer
combination class.

– Multiple dispatch is used to dispatch on both the currently active combina-
tion of layers and the receiver of a message.

– Efficiency is gained by providing fast caches for layer combinations and
reusing efficient implementations for multiple inheritance and multiple dis-
patch.

3.1 Layers as Classes

Primary layers. Layers which are explicitly introduced by a programmer are
called primary layers. For example, the following declaration defines a primary
layer.

layer DisplayLayer { /*...*/ }

In the ContextL implementation, such primary layers are internally supple-
mented by dynamically generated layers which programmers cannot directly
refer to (see below).
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Layers are implemented as classes. Each layer declaration is represented in-
ternally by a corresponding class. So for example, the above DisplayLayer is
internally represented by the following class.

class DisplayLayer { /*...*/ }

Active layers are combinations of such primary layers. Active layers are repre-
sented by dynamically generated combination classes which are ordinary classes
that inherit from the classes that represent primary layers. Multiple inheritance
is used to connect the various static and dynamic layer representations to create
a chain of active layers. In Fig. 6, a combination of Layer1, Layer2, Layer3,
and the RootLayer is realized as a combination class named Layer1+2+3* that
inherits both from Layer1 and a combination class named Layer2+3* that rep-
resents Layer2, Layer3, and the RootLayer. The latter combination class is in
turn formed by inheriting from both Layer2 and a combination class named
Layer3* that represents Layer3 and the RootLayer, and so forth.

Multiple inheritance typically results in the possible occurence of conflicting
inherited members and thus in the need to determine a linearization of all super-
classes [2]. However, in our case the linearization of layers is trivial: Each dynam-
ically generated combination class has exactly two superclasses, one static layer
representation (such as DisplayLayer, Layer1, Layer2, etc.) and one previous
dynamic layer representation (such as Layer1+2+3*, etc.). For each combination
class, the static layer representation takes precedence over the previous dynamic
layer representation. Therefore after each layer activation, the most recent com-
bination class comes first, followed by the most recently activated layer, followed
by the previous combination class, and so on, which naturally leads to the re-
quired ordering of layers. For example in the combination illustrated in Fig. 6, the
linearization of the class hierarchy starting from Layer1+2+3* is Layer1+2+3*,
Layer1, Layer2+3*, Layer2, Layer3*, Layer3, RootLayer in that order.

Different layer combinations can coexist in the same program. Figure 7 illus-
trates how both a combination of layers Layer1 and Layer3 and a combination
of layers Layer1 and Layer2 can exist at the same time. Indeed, any combina-
tion can be built without interfering with other combinations. Note that this
allows the implementation to reflect the order in which layers are activated and
deactivated: Whenever a layer is activated, it is ensured that it will be placed
in front of all other already active layers. When it is already active itself, it will
nevertheless be placed in front of all other already active layers from which it is
implicitly removed beforehand as part of the activation process.

For example, assume layers Layer1 and Layer3 are already active in that
order. An activation of layer Layer2 will lead to a chain of layers Layer2, Layer1
and Layer3 in that order. Given that latter order, an activation of the (already
active) layer Layer1 will internally lead to first a deactivation and a subsequent
reactivation of layer Layer1, and thus to a chain of layers Layer1, Layer2 and
Layer3 in that order.

The various possible combinations do not have to be determined at compile
time, but can be created on demand at runtime if the given language allows for
creating classes at runtime (as is possible in CLOS, Smalltalk, Java, and so on)
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Layer1

Layer2

Layer3

RootLayer

Layer3*

Layer2+3*

Layer1+2+3*

static layer 
representations
(primary layers)

dynamic layer 
representations
(active layers)

Fig. 6. Static and dynamic layers

Layer1

Layer2

Layer3

RootLayer

Layer3*

Layer1+3* Layer1+2*

Layer2*

primary
layers

active layers
thread B

active layers
thread A

Fig. 7. Different layer combinations in different threads
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so that only the actually required combinations are ever created. Layer combi-
nations only need to be created once, because when they have been created they
can be cached and reused. Layers are always activated/deactivated relative to
the currently active layer combination. Therefore, such caches can be associated
with the dynamically generated classes that represent layer combinations and
only need to include the new combinations relative to those combinations. This
enables the use of very small and fast caches.

3.2 Dynamic Scoping

The with and without constructs activate/deactivate layers with dynamic ex-
tent, that is, they effectively implement dynamic scoping for layers, including
the fact that activations/deactivations are confined to the current thread and so
do not interfere with activations/deactivations in other threads.

Such a dynamically scoped activation scheme can be easily implemented if
the underlying language offers dynamically scoped variables which can already
be rebound without affecting other threads [15]. We can then instantiate the
class that represents the currently active combination of layers and store it in
a dynamically scoped variable. By default, that variable contains an instance
of the root layer representation, and can later be rebound to contain instances
of the corresponding layer combinations. Such instances are called prototypical
because they do not contain any state or behavior of their own, but are just used
to select the correct behavior for layered classes and methods (see below).

Common Lisp provides dynamically scoped variables directly [41] and Java
allows their simulation by storing a stack data structure in a thread-local variable
[11]. Thread locality ensures non-interference with other threads, and the stack
allows shadowing a previous layer combination with a new one by pushing the
new layer combination at the beginning of the execution of a with/without
block, and by popping it at the end.

3.3 Method Invocation

Having modelled layers as classes and layer combinations as dynamically gener-
ated classes, we turn to the question of which methods to execute in response to a
message. It becomes obvious that this depends on both the class that represents
the currently active layer combination and the class of the message receiver. In
other words, we need multiple dispatch. Common Lisp already has multimeth-
ods, and it is possible to add multimethods to Java – see for example MultiJava
[13]. To illustrate this further, Figure 8 shows how the method move from our
figure editor example can be understood to be internally mapped to a multi-
method definition using a combination of MultiJava and ContextJ syntax. The
Layer@SomeLayer notation used in Fig. 8 is taken from MultiJava and specifies
that the corresponding parameter is of the (static) type Layer but further spe-
cialized to be applicable only when the respective parameter is an instance of



Efficient Layer Activation 95

// in the root layer
class Point implements FigureElement {
// ...
void move (Layer@RootLayer layer, int dx, int dy)
{ /*...*/ }

}

layer DisplayLayer {
// ...
class Point {

// ...
around void move (Layer@DisplayLayer layer, int dx, int dy)
{ /*...*/ }

}
}

Fig. 8. Internal mapping of layered methods to multimethods

SomeLayer at runtime. How multimethods in MultiJava are translated into Java
bytecode on a per-compilation-unit basis is described in [13].6

3.4 Putting It All Together

We have implemented ContextL as an extension to CLOS in a relatively straight-
forward way. This is because CLOS provides all the necessary ingredients de-
scribed above, namely dynamic class generation, multiple inheritance, dynami-
cally scoped variables, and multiple dispatch. As indicated, a similar implemen-
tation could in principle be achieved in a Java-based implementation as well:
Classes can indeed be generated at runtime [20], a variant of dynamically scoped
variables is already present in the form of thread-local variables [11], and it has
already been described how to add multiple dispatch [13]. Currently, it is not
obvious to us how to incorporate the required multiple inheritance mechanism
into Java. However, subsets of multiple inheritance and their implementation
have already been described, for example, for C# based on traits [37] and for
Java based on interfaces with default implementations [35]. It is likely that such
subsets are sufficient to support our model, but this needs to be explored further
to be answered appropriately.

Note that the implementation we describe is only one possible implementa-
tion of layers and dynamically scoped layer activations. For example, we have
a prototypical implementation of a minimal version of ContextL that is solely
based on dynamically scoped instance variables, a construct of ContextL not de-
scribed here (“special slots”, see [18]). However, the implementation described

6 Note that MultiJava implements symmetric dispatch while CLOS implements asym-
metric dispatch by default. This issue would need to be addressed in an implemen-
tation of ContextJ. In the current ContextL implementation, the layer argument in
a layered function/method has least priority with regard to argument precedence
order.
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in this paper yields competitive performance characteristics because multiple
active layers are always represented by exactly one generated class. In compar-
ison, straightforward implementation techniques for cflow-style constructs in
aspect-oriented language implementations introduce if-tests for each pointcut
that contains a cflow expression which is reported to lead to substantial run-
time overheads [19]. In our approach, computational overhead occurs exclusively
on the first activation/deactivation of a previously unused combination of layers
and on the first message send in a previously unused combination of methods
[30]. After that, both lookups of layer combinations and method dispatches take
advantage of highly efficient caches.

4 Benchmarks

We have used the figure editor example described in Sect. 2.3 as the basis for
a benchmark that measures the effect of layer activation and deactivation. In
order to measure only the method dispatch and layer activation/deactivation
overhead, no actual updates on the screen are implemented, but instead a global
counter is incremented on each call of the Display.update() method to check
the correct number of issued updates at the end of a test run.

We have implemented the benchmark in ContextL and have run the bench-
mark on six different Common Lisp implementations. We have run two versions
of the benchmark, one without and one with layer activations/deactivations.
In other words, we have compared the program in Fig. 3 that does not issue
any display updates with the program in Fig. 5 that continually switches the
DisplayLayer on and off: on to enable display updates and off to disable dis-
play updates for calls to proceed in the around methods of the DisplayLayer.
The main loop of the latter version looks as follows:

for (int i=0; i<1000; i++) {
for (Line line: lines) {

with (DisplayLayer) {
line.move(5, -5);

}
}
for (Line line: lines) {

with (DisplayLayer) {
line.move(-5, 5);

}
}

}

The main loop of the version without layer activations/deactivations just omits
the with blocks around the line.move() calls. It is important to note that the
version without layer activations/deactivations is essentially just a plain CLOS
program.

The results of the various runs on different Common Lisp implementations is
presented in Fig. 9. Each run creates a collection of 100 lines, with each line being
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Implementation Platform Without Layers With Layers Overhead
Allegro CL 7.0 Mac OS X 2.292 secs 2.540 secs 10.82% slower

CMUCL 19b Mac OS X 0.7812 secs 0.7361 secs 7.8% faster
LispWorks 4.4 Mac OS X 3.0928 secs 3.1768 secs 2.72% slower

MCL 5.1 Mac OS X 2.3506 secs 2.6412 secs 12.36% slower

OpenMCL 0.14.3 Mac OS X 2.2448 secs 2.5066 secs 11.66% slower

SBCL 0.9.4 Mac OS X 0.8363 secs 0.7795 secs 7.29% faster
CMUCL 19a Linux x86 0.76 secs 0.836 secs 10% slower

SBCL 0.9.4 Linux x86 0.5684 secs 0.638 secs 12.24% slower

Fig. 9. The results of running the figure editor example in various Common Lisp im-
plementations

moved 1000 times. Time required for creating the collection of lines and filling it
is not taken into account. The entries in Table 9 are average measurements of five
runs. The respective platforms are an Apple PowerBook 1.67 GHz PowerPC G4
running Mac OS X 10.4.2 and a Dell PowerEdge 1600SC dual Xeon 2.8 Ghz run-
ning Linux 2.6.12. The overheads in runtime range from very moderate 2.72% in
LispWorks for Macintosh to still reasonable 12.36% in Macintosh Common Lisp
(MCL), especially when taking into account that we have an additional update
of a global counter for each call of line.move(). Two implementations show
the anomaly that the runs that repeatedly switch layers on and off are actually
faster than the runs without layers: On CMUCL 19b, the runs without layers
are on average 7.8% slower, and on SBCL 0.9.4 they are 7.29% slower. These two
environments are based on the same Common Lisp compiler, so this provides
an explanation for them showing similar efficiency characteristics. The perfor-
mance anomaly as such may seem surprising, but in fact such anomalies occur
frequently in performance benchmarks [25]. Obviously, factors beyond layer ac-
tivation/deactivation and method dispatch play a more important role for the
overall performance of our test program. Since applications typically spend less
than 10% of the overall time in call overhead [28], our numbers suggest an overall
estimated cost of 0.3% to 1.3% for inclusion and repeated switching of layers.
This is a noteworthy result, despite the fact that, of course, more benchmarks
are necessary to measure the effects of, for example, combinations of multiple
layers.

This excellent performance is evidently the result of a combination of find-
ing an appropriate runtime representation of layers and reusing existing opti-
mizations for implementing object-oriented language constructs as described in
the previous section. It stems from folding all active layers into a single class
that represents current combination of active layers, and specializing the in-
volved methods on an implicit argument in addition to the receiver of a mes-
sage. Ultimately, our implementation relies on efficient multiple dispatch as
provided by modern CLOS implementations. See [30] for a discussion of im-
plementation techniques for multiple dispatch in CLOS, and [10] for a general
overview.
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5 Related Work

5.1 Dynamic Aspect Weaving

The only aspect-oriented technologies we are aware of approaching our notion of
dynamically scoped activation of partial program definitions are AspectS [26,27],
LasagneJ [43], CaesarJ [34] and the Steamloom virtual machine [6]. They all
add constructs for thread-local activation of partial program definitions at the
base-program level. However, CaesarJ is limited in that it does not provide a
corresponding thread-local deactivation construct, and LasagneJ is even further
limited in that it restricts the use of thread-local activation to the main method
of a Java program [36]. Their lack of thread-local deactivation constructs makes
cflow-style constructs necessary in those approaches to implement the figure
editor example. Our approach allows its modular implementation without us-
ing AOP-style pointcuts. Global (non-thread-local) activation/deactivation con-
structs, like in CaesarJ and ObjectTeams [45] are not sufficient in this regard.
Steamloom provides undeployment of thread-local aspects, but cannot thread-
locally undeploy a globally active aspect.

With regard to efficiency considerations, it is important to note that the
straightforward technique to implement activation/deactivation by using thread-
local flags that are subsequently checked for each message impose a substan-
tial runtime overhead, as is reported in [19]. We are aware of two approaches
that specifically address efficiency improvements for cflow-style constructs and
thread-local aspect activation/deactivation respectively.

In [1], optimizations are described that reduce the number of flags to be
checked at runtime, with considerable efficiency improvements for cflow-style
pointcuts. However, the basic implementation as described above remains the
same. The main disadvantage of their approach is its reliance on a time-consum-
ing static global program analysis.7

In contrast, we gain high runtime performance without limiting applicabil-
ity of layers to those that have already been available at compile time. In our
approach, no dedicated global analysis is required.

The Steamloom virtual machine [6] is another attempt to reduce the overhead
of cflow-style poincuts. It implements a deploy statement that can be used to
activate aspects in its dynamic extent by modifying the Jikes virtual machine
for Java. It avoids the use of flags for checking applicability of aspects by recom-
piling the program at each context switch. That paper reports a considerable
efficiency improvement for the remaining part of the program execution in the
dynamic extent of a deploy block when compared to traditional implementation
strategies for similar cflow-style constructs. However, the deploy statement as
such is extremely expensive since it recompiles all parts of the program that
are affected by such aspect deployment. The benchmark results provided in
that paper suggest a performance decrease by a factor of 30, compared to their

7 For example, a simple AspectJ program that takes less than 5 secs to be compiled
with the plain AspectJ compiler can easily take more than 5 mins with their compiler.
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original example program without any aspects. 8 The Steamloom manual dis-
cusses these “remarkable performance penalties” [5] in conjunction with the
display updating aspect in their version of the figure editor example which is
triggered by frequently entered and exited control flows.

The latest implementation of Steamloom explicitly addresses the above issues
and is described in [7]. That paper reports considerable performance gains of
cflow-style constructs, and would therefore be a viable candidate for an im-
plementation of ContextJ. As future work, we plan to explore this option and
compare the implementation approaches of ContextL and Steamloom.

5.2 Delegation Layers

Delegation layers, as in the prototype-based languages Slate [39] and Us [40] and
also combined into a class-based programming language in [38], are very similar
to our approach. As in ContextL, delegation layers define layers that group be-
havior for sets of objects in [39,40] and for sets of classes in [38]. However, the
hierarchy of layers is globally fixed in [38]. One can select a layer from which
to start a specific message send, but all the other layers below are then prede-
termined by the original configuration of layers. In [39] and [40], the selection
and ordering of layers is not fixed but layers can be arbitrarily recombined in
the control flow of a program. However, layer selection and combination has
to be done manually, there are no dedicated with/without constructs like in
ContextL. Providing these constructs as high-level abstractions allows for less
straightforward, but more efficient implementation strategies.

5.3 Other Related Work

Related work for special functions, precursors for combinations of methods from
different layers, is discussed in [15,16]. Related work for special slots is discussed
in [16,17]. Related work for delegation is discussed in [18].

The term Context-oriented Programming has already been used in two other
contexts. Gassanenko [22,23] describes an approach to add object-oriented pro-
gramming concepts to Forth without turning it into an actual object-oriented
programming language. Instead, a notion of context is added that essentially
comes down to some form of first-class environments [24]. This allows code to
behave differently when executed in different environments. The description in
Gassanenko’s papers focuses on Forth-specific details and it is very hard to tell
how much overlap, if any, exists with our approach. For example, it is not clear
whether Gassanenko’s contexts must be fully defined or can be partial and com-
binable. The examples provided in [23] only cover fully specified, but no partial
contexts. Furthermore, Gassanenko’s contexts seem to cover functions only, nei-
ther state nor class definitions, the latter due to the explicit goal not to turn
Forth into a fully object-oriented programming language. Therefore, it seems

8 See column “no aspect” compared to column “cflow/dynamic” in the Steamloom
row of Table 2 in that paper.
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that those contexts are most likely similar to dynamically scoped functions [15],
one of our own precursors to ContextL.

Keays and Rakotonirainy [29] use the term context-oriented programming for
an approach that separates code skeletons from context-filling code stubs that
complete the code skeleton to actually perform some behavior. The claimed ad-
vantage is that the code stubs can vary depending on the context, for example
the device some code runs on. A proof-of-concept implementation using Python
and XML is described. Their approach appears to be a reverse macro expan-
sion framework in which code skeletons and code stubs need to be combined
at runtime. Furthermore, there is no mention whether different combinations of
skeletons and stubs can coexist at the same time.

In contrast, ContextL is essentially an extension to an object-oriented ap-
proach that does not rely on runtime source code transformation. ContextL’s
root layer, whose behavior can be altered in other layers, can already be fully
operational, and different combinations of different layers can be simultaneously
active in multiple threads.

6 Conclusions

Several examples suggest the need for programming language constructs that
allow explicit association of the meaning of code not only with its position in
a static hierarchy, but also with the context in which it is running. This is
what we call Context-oriented Programming. The essential ideas are exemplified
by ContextL’s layers which are presented using a Java-style syntax. ContextL
allows for partial class definitions that belong to individual layers. Layers can
be activated and deactivated with dynamic extent.

We present an implementation of ContextL that relies on CLOS’s multiple
dispatch, and an analysis on how ContextL constructs can be implemented in
more mainstream programming languages such as Java. The experiments with
ContextL show that the concepts presented in the paper can be implemented
efficiently. A ContextL program with repeated activations and deactivations of
layers is about as efficient as one without.

We show that context-dependent layers can be used to implement the pop-
ular figure editor example in an elegant and very efficient way, without using
aspect-oriented features. Most notably, no cflow-style construct is necessary to
implement the full example because ContextL includes constructs not only for
thread-local activation, but also for thread-local deactivation of layers.
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Abstract. Compiler architecture often follows an imperative layout. Different 
actions in the compiler are modeled as functions that operate over defined data 
structures. In this work, we present existing methodologies for writing object-
oriented language-processing tools. As a contribution, we explore possibilities 
of writing a compiler based on recursive descent parsing in an object-oriented 
way. As a proof of the concept, we present a parser generator that employs the 
presented constructs both in its internal structure and in generated output. 

1   Introduction 

Object-oriented design has been available to programmers and designers for decades. 
Compiler reference architectures, however, usually follow an imperative paradigm, as 
the architecture presented in most text books, such as Aho, Sethi and Ullman [1], 
discuss in terms of data structures and a stream of modules (scanning, parsing, seman-
tic analysis, etc.) that operate on the data. 

We feel that modeling a language processor in an object-oriented way gives bene-
fits in implementation easiness, understandability, and maintenance operations. In our 
understanding, the object-oriented design for compilers is most beneficial for small, 
special-purpose languages that are embedded inside a larger object-oriented applica-
tion, as there already exist many fine and powerful tools for full-scale compiler con-
struction. 

2   Background 

When given a task of designing and implementing a domain-specific language proc-
essor for some application, the individual in question has multiple choices of how to 
proceed. Choosing an object-oriented implementation is natural if the surrounding 
application is already written in a language that supports object orientation. Within 
the language subsystem, choosing the right path depends on trade-offs in many di-
mensions, such as performance requirements, amount of maintenance work expected, 
and general knowledge on language processors available within the organization. 

Even a small language implementation requires some amount of theory knowledge 
in areas of context-free languages and compiler writing. Because different developers 
have different specialization areas, it is not expected that there would be too many 
compiler specialists available in the development project. For this reason, it would be 
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beneficial if the interface to the domain-specific language for the regular application 
developer (‘user of the language’) would be as simple as possible. On the other hand, 
for the case of modification of the target language and/or compiler, we would wish to 
provide structures that allow modification with minimal knowledge related to com-
piler construction.  

As an illustrative example, we will carry on with a simple language of single-digit 
numbers with two operators, as expressed as a context-free grammar in Figure 1. 

Expression  -> Digit | ParenthExpr 
Digit       -> '0' | '1' | '2' | .. | '8' | '9' 
ParenthExpr -> '(' Expression Operator Expression ')' 
Operator    -> '+' | '*' 

Fig. 1. A context-free grammar for a limited desktop calculator 

For processing this kind of language inside another application, there would be few 
basic operations in the exposed interface: transmitting input from the application to 
language processor and evaluation of the input. Other additional tasks could be e.g. 
code generation for faster execution or automatic documentation in the spirit of liter-
ate programming. The language processor provides a programmatic interface to the 
application developer. 

The ideal case for the application developer is that the programming interface of a 
language processor is no different than any other object handling on the application 
side. Language constructs could be instantiated using regular object construction 
methods and the programmatic interface would expose methods for efficient usage. 
So, for the example grammar above, the client code accessing this language would be 
similar to the one shown in Figure 2. 

Expression expr   = new Expression(“1+2”); 
int        result = expr.eval(); 
 
System.out.println(result);                 // prints 3 

Fig. 2. Example application code using the desktop calculator 

Depending on the chosen implementation language and parsing method, the inter-
nal structure of the language processor gets different forms. This simple example also 
introduces a problem with evaluation of expression trees. The return type of expr is 
defined to be an int. Integrating a type system over the host language type system will 
be briefly discussed in section 4. It still remains a problem, which we have not been 
able to find a clean solution to. 

2.1   Object-Oriented Context–Free Grammars 

In the example grammar, we see that an Expression is either a Digit or a Par-
enthExpr. The other type of grammar rule, for ParenthExpr, is a concatenation 
rule, which states that such production consists of all the symbols on the right-hand 
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side. This grammar is in an example of object-oriented context-free grammar [2], OO-
CFG for short, which allows the implementing class hierarchy to mirror the original 
grammar. In OO-CFGs, the grammar productions are either or-rules or and-rules, 
having the meanings of selection between one of possible forms and catenation of 
terminals and nonterminals, correspondingly1. 

In object terminology an or-rule can be called an IS-A -relationship, which can be 
implemented using inheritance. Correspondingly, an and-rule is implemented using 
object composition, as it is a HAS-A -relationship. 

2.2   Top–Down Parsing 

Recursive-descent parsing is a well-known technique for parsing, as discussed in 
every compiler textbook, e.g. [1, 3, 5, 6]. A grammar in LL(1) form can be straight-
forwardly converted into a set of mutually recursive functions that handle parsing. For 
every nonterminal A, there exists a routine for parsing the nonterminal in question. 
When the production’s right-hand side definition contains another nonterminal B, the 
corresponding routine is called.  

In the object-oriented world, Grune et al. [3] present a methodology for construct-
ing an object-oriented compilation and interpretation system. In this system, the 
grammar rules are systematically converted into classes in the implementation lan-
guage. Each class contains methods for processing the language structure in question, 
e.g. how to evaluate the parsed expression. A snippet of class hierarchy for the exam-
ple grammar is shown in Figure 3. 

 

Fig. 3. Class hierarchy for the example grammar 

There exists a small problem when expressing object constructors in this system. 
The authors would like to start parsing using the regular object construction system, 
by writing new Expression(input); This, however is problematic because the 

                                                           
1 See exact definition in the appendix. 
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language operator new is responsible for allocating enough space for the created ob-
ject. However, on entry to the constructor for the Expression class, it is not known 
whether the object to be instantiated should be a Digit or a ParenthExpr. 

To express this problem another way, we can say that the semantics of the operator 
new in most object languages statically binds the name of the instantiated object’s 
class. In this situation, the class of the parsed structure is not known until parsing has 
proceeded far enough to determine which class to instantiate. 

To work around this problem, the authors use static factory methods [4] that are 
parameterized according to the grammar specification to handle instantiation of  
objects during parsing. This way, the recursion strategy is reduced to two standard 
templates, one for and-productions, and another for or-productions. For example, 
pseudo-code for parsing the production Expression is shown in Figure 4. 

// in class Expression 
public static Expression parseOr() { 
    // try to parse a digit 
    Digit d = new Digit(); 
    if(d.parseAnd()) return d; 
 
    // try a parenthesized expression 
    ParenthExpr pe = new ParenthExpr(); 
    if(pe.parseAnd()) return pe; 
 
    return null; 
} 

// in class Digit 
public boolean parseAnd() { 
    if(Lexer.tokenClass == DIGIT) { 
        digit = Lexer.tokenValue; 
        Lexer.nextToken(); 
        return true; 
    } 
    return false; 
} 
 
// Conceptually similar parseAnd()  
// in class ParenthExpr 

Fig. 4. Code following parsing template 

While this solution works, the authors are not satisfied by it because they do not think 
it as a natural way of constructing objects.  

2.3   Bottom-Up Parsing 

When using a bottom-up parsing method, this problem disappears. As the bottom-up 
parser does a reduction once all components of a grammar structure are available and 
recognized, there is no confusion about which class should be instantiated. 

Maybe for this reason, existing language implementation systems that employ 
object-oriented context-free grammars, such as TOOLS [5] use bottom-up parsing. 
Another systematic approach of using bottom-up parsing for constructing an inter-
preter/compilation system is shown in [6]. Their approach is to employ YACC [7] 
to automatically generate the parser and C++ [8] to program semantic actions to  
the system. To the application programmer, their approach looks very similar to  
this work, as only a simple interface with few operations is exposed to the client 
code.  
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3   Parsing in Object Constructors 

In this section, we show how it is possible to write recursive descent parsing of an 
object-oriented context-free grammar into object constructors. While using bottom-up 
parsers solves the problem, implementation of a bottom-up parser is generally consid-
ered harder to understand than a top-down parser [1, pp. 216, 6 pp. 117]. In the code 
generated by most parser generators, the structure of the parser is encoded into pars-
ing tables that are driven through a generic driver algorithm. While the representation 
of the parser is compact, it is rather hard for the human reader to comprehend at first 
sight. For this reason, we feel that studying top-down parsing is viable. 

Using object constructors as the recursive descent parsing routines is not a new 
idea. An early suggestion of this for C++ appears in [9]. However, this discussion 
stops at the idea of making object constructors to replace regular methods as the pars-
ing routines. Because he considers only the case of simple production rules, the ap-
proach is only of little use. 

We approach the problem by concentrating on the contract between the client of an 
object and the object itself. The client of the object does not care how the serving object 
implements the requested service (the main idea of encapsulation and information hid-
ing). Depending on features offered by the implementation language, the service inter-
face of an object can be directly or indirectly changed during the lifetime of an object. 

In the example setting, an object that promises to be of type Expression can 
delegate its actual operations to another object that knows which kind of expression 
was encountered during parsing.  

3.1   Class-Based Languages 

In class-based languages, such as C++ and Java [10], using this kind of delegation is 
known as applying the Bridge design pattern [4]. The implementation for delegation 
requires additional work in the object constructing code, because the target of the 
message ‘new’ is statically bound, and is required to return an object of its own class. 
An example of class hierarchy for a bridge-based solution is presented in Figure 5. 

 

Fig. 5. Class hierarchy for bridge-based parsing 
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In bridge-based parsing, the base class that implements an or-rule in the grammar 
contains a reference to another object of the same class. By convention, an instance of 
the correct subclass is assigned to this attribute. In each method that belongs to the 
public interface of the language processor, there is a delegating method call. This 
makes this particular instance of the base class behave like an instance of the subclass 
it is delegating to.  

 
class Expression { 
    private Expression ref = null; 
 public Expression(){// for subclasses } 

 
    public Expression(Lexer lex) { 
        try { 
             ref = new ParenthExpr(lex); 
             return; 
        } catch(ProductionException pe) { 
             ref = new Digit(lex); 
             return; 
        } 
    } 

void print(PrintStream out) { 
      ref.print(out); 
} 
 
void eval() { 
      ref.eval(); 
} 
 
void generateClass(PrintStream out) { 
      ref.generateClass(out); 
} 
 
}  // of class Expression 

Fig. 6. Class Expression in bridged parsing 

An example of the Expression class in Java when using bridged parsing is 
shown in Figure 6. In this implementation, failure to recognize a grammar structure is 
signaled by raising an exception, ProductionException. A simple optimizing 
and clarifying change would be to change the parsing constructor to use LL(1)-
lookahead tokens to predict the subclass which should be instantiated; this has been 
left out in order to retain semantic compatibility with the listing presented in Figure 5.  

3.1.1   Prototype–Based Languages 
Some object languages allow this kind of bridging to be done on the language level. 
Languages such as JavaScript and Ruby [11, 12] allow redefinition of methods of an 
object during runtime. In a prototype-based solution, each of the methods defined in 
the interface are redefined once the concrete type of the grammar construct gets 
known.  The idea is the same as in the bridging solution – to have an object change its 
behavior – but redefinition of the object’s methods and attributes makes the solution 
much cleaner.  

Figure 7 shows a sketch of an implementation of the operator production in the ex-
ample grammar. The idea is that the object that represents a calculation operation in 
the grammar can be either an addition or a multiplication operation. This information 
becomes known during parsing. Once this happens, the same object is redefined to 
contain routines that are associated with the corresponding mathematical operation. 

When comparing prototypical and bridged implementations of parsing in object 
constructors, it is interesting to see how the differences in structures created by each 
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// object ‘operator’ 
abstract eval();  
expression lhs, rhs; 
operator() { 
    if (token == '+') { eval ⇐ plus.eval; } 
    else if (token == '*') { 
       eval ⇐ times.eval; 
   } 
} 

// methods plus.eval and times.eval 
plus.eval() { 
    return lhs.eval() + rhs.eval(); 
} 
 
times.eval() { 
    return lhs.eval() * rhs.eval(); 
} 

Fig. 7. Prototypical implementation of the Operator production 

of the methods resemble the differences between a parse tree and an abstract syntax 
tree (AST). A parse tree is a structure that shows which derivations were chosen dur-
ing parsing, while the abstract syntax tree drops the ‘unnecessary’ intermediate nodes. 
In prototypical implementation the rules of this dropping are written into method 
redefinition parts of the parsing code. Once the behavior of an object gets fixed with 
meaningful operation, the object in question is a node in the abstract syntax tree. For 
this reason, there is only one level of indirection regardless of the complexity of the 
grammar.  

 

Fig. 8. A bridging parse structure for expression (1 + (2*3)) 

In a bridged solution, illustrated in Figure 8, there exists an object for each deriva-
tion step. When interpreting this kind of a structure, each call gets delegated through a 
series of nodes. In this solution, it is possible to leave out grammar symbols that are 
only used to guide parsing (e.g. left and right parenthesis in ParenthExpr). When 
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these symbols are included, the resulting structure of the object tree is very similar to 
a parse tree. 

4   A Case Study 

In order to assess the feasibility of the presented language processor architecture, a 
real world case study has been made. It is an OO-CFG parser generator that reads an 
input specification (an OO-CFG) and outputs the class hierarchy with parsing con-
structors.   

4.1   A Recursive Descent–Parser Generator 

As a testing tool for the concepts presented in this paper, we have implemented a 
small parser generator for object-oriented context-free grammars.  Given an OO-CFG, 
the tool constructs a stub program in Java that encodes the corresponding class hierar-
chy and parsing routines. The input language for the tool is written as an OO-CFG, as 
illustrated in Figure 9.  

RULENAME "->" (OR_PROD “|”)* OR_PROD 
RULENAME "->" (AND_PROD)* 

Fig. 9. OO-CFG for the parser generator input language 

Classes that implement this grammar offer only two operations to the client: 
print() and generateClass().  The first operation is used to (re)print the 
input grammar, mostly for testing purposes. The second operation writes out the 
specified class hierarchy along with constructors for parsing the specified language. 

Grammar specifications for this tool tend to be very compact. For example, the 
limited desktop calculator grammar shown in Figure 1 can be given to the tool just as 
it is, in four lines. For comparison, a similar specification for the JavaCC tool [13] 
takes from 50 to 100 lines of specification. On the other hand, a parser generated by 
JavaCC allows semantic actions to be associated with parsed constructs directly. This 
approach is powerful for languages that have exactly one semantic interpretation in 
the client side. 

For situations where multiple interpretations, such as both evaluation and code gen-
eration are needed, additional constructs are required. In our approach, this is achieved 
by defining a sound interface method for each of the operations. Unfortunately, finding 
a clean solution to generating interface methods for anything more complicated than a 
desktop calculator with one data type is a non-trivial task. An alert reader has noticed 
that while in Figure 2 we specified that writing  
int result = expression.eval(); 

is the way to evaluate the parsed structure, in every other Figure we have avoided 
specifying the interface of that method. This is because we have not been able to find 
a good way to specify evaluation interfaces for generated objects. In the example 
above, the return type of integer would imply that every expression evaluated would 
have a return type of integer – which clearly is not the case. 
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Other compilation/interpretation systems such as [6] and HotScheme [14] take the 
approach of defining one base class (e.g. SchemeObject) for all values that can be 
passed within interpreting methods. This solution is unfavorable for multiple reasons. 
It is quite heavyweight in terms of object creation and destruction rate. If the domain-
specific language requires only integer arithmetic, forcing the evaluation system to 
capsulate every value into an object seems an unclean solution. Also any type check-
ing that could be done on the host-language’s type system cannot be utilized effi-
ciently, as the type information is obscured into a class hierarchy of its own. 

Another problem in the traditional view of object-oriented interfaces gets exposed 
along with the usage of a parser generator. Once the object-oriented grammar has 
been successfully translated to a class hierarchy, the semantic methods for e.g. evalua-
tion should be inserted into stubs provided by the generator. This works as long as 
there is no need to change the grammar of the input language, because re-running the 
generator will overwrite any changes made to the classes generated on the previous 
run.  The generator tool could employ sophisticated analysis to target code generation 
only to constructors of the classes in the generated hierarchy. 

Our solution is simpler. We have defined an interface for objects that follow the 
Visitor pattern [4]. When generating the class hierarchy we also generate a visitor 
base class Walkabout that mirrors the structure of the grammar, as characterized by 
[15]. This organization gives surprisingly good robustness against different kinds of 
changes both in semantic actions and in grammar rules. Because the structure of the 
traversed structures is known, there is no need to rely on runtime reflection techniques 
in the Walkabout base class. This greatly improves performance during execution. 

Adapting the Visitor pattern and a Walkabout class to OO-CFGs happens by defining 
a new method, Accept(Visitor v) to the object interface of the language proces-
sor. For each production in grammar, a callback to the visitor is added. For the grammar 
in Figure 1, the accept method for production ParenthExpr is shown in Figure 10. 

 
// accepting a visitor for ParenthExpr 
public void accept(Visitor guest) { 
    expr.accept(guest); 
    oper.accept(guest); 
    expr2.accept(guest); 
 
    guest.visitParenthExpr(this); 
} 

Fig. 10. Accept method of class ParenthExpr 

The Walkabout base class defines virtual callback methods with no-operations for 
every production in the grammar. Overriding suitable methods by the subclassed 
visitor does the adaptation of the Walkabout class for certain interpretation of the 
grammar.  

For example, a visitor that generates Java virtual machine bytecode for a given Ex-
pression structure is shown in Figure 11.  
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class JVM extends Walkabout { 
    void visitDigit(Digit d) { 
        emit("iconst"+ d.value); 
    } 
 
    Void visitParenthExpr(ParenthExpr pe)  

    { 
        pe.expr.accept(this); 
        pe.expr2.accept(this); 
        pe.oper.accept(this); 
    } 

public void visitOperator(Operator oper) 
{ 
    if("+".equals(oper.value))  
    { 
        emit(" iadd"); 
    } else if(“*”.equals(oper.value)) { 
        emit(" imul"); 
    } 
} 
 
}  // class JVM  

Fig. 11. Java bytecode generating visitor 

Whenever a parenthesized expression is visited, the visiting order is changed to 
follow reverse polish order. Otherwise, bytecodes for corresponding operations are 
emitted: imul for multiplication and iadd for addition. 

This separation of structure-defining Walkabout base class and semantics-defining 
Visitor-class is surprisingly robust to changes. In case of modifications that add pro-
ductions to the grammar, the base class is re-generated, but no changes are required in 
the subclass. When a definition of production changes and there is a reference to that 
particular production in the visitor, the host language compiler (Java in this case) 
gives an error message stating which part of the system has experienced the incom-
patible modification. The same applies to removal of productions that are used within 
the semantics providing visitors. 

5   Conclusions 

Originally it was believed that recursive descent parsing could not be performed in 
any object-oriented language using object constructors [3, pp. 708]. We have shown a 
possible way of constructing language processors that can provide a suitable pro-
gramming interface that sufficiently hides implementation details from an application 
developer. Although the technique is not applicable to speed-sensitive production 
compilers, it might be possible to use the presented structures for writing domain-
specific processing systems and/or for educational use. 

A small-scale recursive descent parser generator was constructed and its most im-
portant aspects were discussed. As the generated parser is in human-readable form 
instead of driver code that executes parsing tables, we believe that the constructed 
parser is easier to understand for an application developer without former knowledge 
of language technologies. 

The discussion of the work finds some surprising connections between concepts 
previously thought unrelated. When a recursive descent parser is written by using 
object constructors and bridges, the resulting object reference web can be a straight 
representation of a parse tree. This compares to a prototypical implementation, which 
constructs an abstract syntax tree during parsing.  
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Appendices 

Context-Free Grammars 

A Context-free grammar is a 4-tuple, G = (V, T, P, S) where 
- V is a finite set of terminals 
- T is a finite set of nonterminals 
- P is a finite set of production rules 
- S is an element of Vn, the distinguished starting non-terminal. 
- elements of P are of the form Vn -> (T ∪ V)* 

Object-Oriented Context–Free Grammars 

An object-oriented context-free grammar is a context-free grammar with the follow-
ing definitions and restrictions (as defined in [5, pp 64]): 



 Object-Oriented Language Processing 115 

 

- G is cycle-free if for each nonterminal NT the derivation NT  +NT is impossible 
(a class cannot be its own base class).  
- G is reduced if each symbol X is used in some derivation S  +αXβ * ω,  ω ∈ T. 
- A production NT ->  α is a chain production if α ∈ N. 
 

A CFG is an OO-CFG if it is reduced and cycle-free and for each nonterminal A 
either 

1) there is only one A-production and this production is not a chain production 
2) all the A-productions are chain productions 
3) all the A-productions have only terminal symbols on their right-hand sides 
additionally, each nonterminal appears on the right-hand side of a chain production at 
most once.  
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Abstract. The successful assembly of large programs out of software compo-
nents depends on modular reasoning. When the linking of component code is
modular, components can be compiled and type checked separately, deployed
in binary form, and are easier to reuse. Unfortunately, linking is not modular in
many mainstream OO languages such as Java. In this paper we propose an in-
tuitive and formal framework for enhancing a language with modular linking,
which is applied to the specific problem of making linking in Java modular. In
our proposed framework, the degree to which components can be reasoned about
modularly is adversely affected by language features that limit abstraction. We
show that most of Java’s core language features, such as inheritance, permit a
high degree of modular linking even in the presence of cyclic dependencies.

1 Introduction

Reasoning is modular if it can be divided into separate reasoning of a system’s parts,
all of which can be combined into a reasoning of the entire system. General modu-
lar reasoning is indispensable in developing large programs out of third-party software
components [24], because developers do not need to understand the implementations
of the components they reuse. Modular linking is a specific kind of modular reasoning
where component code can be compiled, linked, and statically type checked separately.
Modular linking avoids many “DLL hell” problems related to the link-time binary com-
patibility [9,18] of components. Although modular linking is a common feature of func-
tional languages because of the elegance and simplicity of functions, modular linking
in object-oriented (OO) languages is problematic because of complex language features
related to classes and objects.

The degree to which components can be separated by modular reasoning depends
on what can be hidden, or “abstracted,” between components. Abstraction in Java is
complicated by inheritance: reasoning about a class defined in a component separate
from its inherited superclasses is similar to reasoning about a mixin [4,14]. Mixins have
well-known type-checking challenges related to ambiguous methods, where a subclass
may “introduce” a method that conflicts with a method unknowingly provided by a
superclass, and cyclic inheritance, where mixins are applied recursively. As a result,
statically-typed OO languages that support modular linking have done so by restricting
inheritance [3], disallowing cyclic dependencies between components [12,17], or by
severely limiting abstraction [3,12].

D. Lightfoot and C. Szyperski (Eds.): JMLC 2006, LNCS 4228, pp. 116–135, 2006.
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In this paper, we propose a framework that intuitively and formally describes how
linking can be made modular independent of a specific language. We apply this frame-
work to the problem of making compilation, linking, and type checking, modular in
the Java language, which models our design and implementation of Jiazzi [19]. Jiazzi
enhances Java with support for externally linked and separately compiled components
based on program units [13].

Issues related to modular linking in OO languages have been previously explored
in the areas of managing virtual method namespaces [22,25], merging module systems
and OO languages [3,12,17], and reasoning about mixins [4,14]. The work presented in
this paper is the first to show how modular linking can be added to a language using a
general framework, which directly considers the effects of a language’s features, such
as OO inheritance. We show that inter-module inheritance restricts abstraction in a way
that does not significantly decrease the degree of modular reasoning.

Section 2 motivates modular linking in the Java language. Section 3 describes an
intuitive and formal framework for adding modular linking to a language that does not
already support it. Section 4 shows how this framework is used to add modular link-
ing to the Java language, and describes how we have dealt with inheritance and cyclic
dependencies. Section 5 briefly discusses how our modular linking framework can be
used to evaluate language features other than inheritance, such as abstract methods and
symmetric multi-methods. Section 6 discusses related work and Section 7 summarizes
our conclusions.

2 Motivation

Programs can be assembled out of separately developed and deployed containers of
code, which we refer to as components. Such components in Java can be physically
realized as Java archive (JAR) files that contain compiled classes. The linking of com-
ponents is important in the development of a program. During linking, type checking is
performed to ensure that safety properties are not violated that could result in segmenta-
tion faults or circumvent security of the program. When compared to other mainstream
languages, Java’s support for program linking is advanced: linking always guarantees
program type safety, can occur dynamically, and supports laziness. Unfortunately, the
linking of components in Java is not modular: the entire code of all components linked
into a program is always type checked together. Because the linking of components in
Java is not modular, interactions between components can result in errors that can only
be debugged by inspecting the source code for all components involved.

In Java, the source code of each component is compiled in an environment where the
implementations of all used classes are available, even if those classes are implemented
in other components. These classes that originate from other components can differ
between compile-time and link-time. For example, the component icon illustrated in
Figure 1 uses the class Cowboy, which is provided by the component cowboy cmpl
when component icon is compiled but later is provided by the component cowboy lnk
when component icon is linked.

The fact that the class Cowboy is different between the compile-time and link-time of
the component icon is significant because the class Icon, provided by the component
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icon cowboy_lnk

Cowboy

draw(),
duel()

Icon

draw(),
paint()

cowboy_cmpl

Cowboy
duel()

Fig. 1. The components icon, cowboy cmpl, and cowboy lnk; throughout this paper, com-
ponents are illustrated as gray-filled rounded rectangles; classes are clouds whose names are
underlined over their methods; clear arrows point from a class to its direct superclass as its con-
taining component is compiled; solid arrows point from a class to its direct superclass as its
containing component is linked

uc
A

C

ub_cmpl

B

ud_cmpl

D

ub_lnk

B

ud_lnk D

Fig. 2. The components uc, ub cmpl, ub lnk, ud cmpl, and ud lnk

icon, is a subclass of Cowboy. The class Icon implements a draw method, as in “draw-
ing an icon.” When the component icon is compiled against the component cowboy-
cmpl, the class Cowboy does not have a draw method, but when the component icon

is linked against the component cowboy lnk, a draw method, as in “drawing guns in a
cowboy duel,” exists in the class Cowboy. Assuming both draw methods are public and
have the same signature, the draw method in the class Icon should not override the
draw method in the class Cowboy: the draw method was not visible when the compo-
nent icon was compiled so overriding was not the programmer’s intention. However,
unintended overriding occurs in Java because unmodular linking disregards compile-
time intentions.

Changes in the inheritance hierarchies that occur between compilation and linking
can also “break” programs in Java. In Figure 2, the component uc is compiled against
the component ub cmpl, but it is linked against component ub lnk, and the component
ub lnk is compiled against the component ud cmpl, but linked against the component
ud lnk. When component uc is compiled against the component ub cmpl, class B

appears as a direct subclass of the class A, so it is safe for the class C, implemented
in component uc, to subclass the class B. However when the component uc is linked
against ub lnk, the class B is an indirect subclass of the class C, so an inheritance cycle
is created. Although linking in Java rejects this program, “blame” to one component
cannot be assigned for this error. Instead to understand why this error occurs, and thus
be able to fix it, the changes that occur from the component ub cmpl to ub lnk and
from the component ud cmpl to ud lnk must be understood together.
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The problems in linking the components illustrated in Figures 1 and 2 are created by
inheritance between classes across component boundaries. In Figure 1, the class Icon
inherits from the class Cowboy; in Figure 2, the class C inherits from the class B. The
superclasses, the classes Cowboy and B, are implemented in components that change
between compile-time and link-time. Such changes can lead to the typing problems of
mixins [4,14], which are classes with explicitly parameterized superclasses. Compared
to mixins, the superclasses of classes Icon and C are implicitly parameterized through
linking.

In Java, differences between a component’s compile-time and link-time environment
are governed by special binary compatibility [9,18] guidelines, which specify what
changes to components can occur after compile-time that will still allow linking to
succeed. Additive changes between link-time and compile-time, such as adding new
methods or new superclasses to a class, are generally considered safe according to bi-
nary compatibility. In Figure 1 a method is added to the class Cowboy, while in Figure 2,
the class D is added as superclasses of the class B.

Even though the changes in Figures 1 and 2 are additive, linking in these examples
still breaks. In Figure 1, linking is technically type safe; the components are linked
in Java without errors even though programmer intent is not be adhered to. In Fig-
ure 2, the components have cyclic dependencies: they each use each other’s classes and
their dependency graph contains a cycle. Binary compatibility primarily accommodates
changes to libraries, such as AWT, which cannot have cyclic dependencies with pro-
grams. Adding a new superclass to a class is always safe if the containing component
does not have any cyclic dependencies with other components in the system, which is
not the case in Figure 2.

Perhaps inheritance of classes should be restricted across component boundaries or
perhaps cyclic dependencies between components should be disallowed. However, in-
heritance is an essential mechanism in using the OO paradigm to develop entire pro-
grams, not just individual components. The use of cyclic dependencies is the most nat-
ural way to codify two-way interactions that commonly occur between classes in dif-
ferent components. Restricting either inheritance or cyclic dependencies disallows the
language-supported use of OO design throughout a program. Mixin-style inheritance
of classes across component boundaries and cyclic dependencies between components
also enables open classes [6], which are classes that can be extended with new fields
and methods without breaking their existing subtypes.

Modular linking of components can be used to implement open classes with what
we call an open class pattern [19]. The components illustrated in Figure 3 demonstrate
the mechanics of the open class pattern. The class BButton is a subclass of the class
BWidget in the component base, but rather than directly subclass the class BWidget,
the class BButton is a direct subclass of the class FWidget from the componentfixed.
This creates a cyclic dependency between the components base and fixed, because
the class FWidget is also an indirect subclass of the class BWidget. The class in the
inheritance hierarchy between classes FWidget and BWidget depends on whether the
components base and fixed are linked with the component color 1 or the com-
ponents color 2 and font. With the former linking, one new method setColor is
visible in the class FWidget, while in the latter linking two new methods setColor
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font

DWidget
setFont

color_2

color_1

CWidget
setColor

base

BWidget
paint

BButton
setLabel

fixed

FWidget
CWidget
setColor

Fig. 3. The components base, color 1, color 2, font, and fixed; double-head arrows
point from classes to direct superclasses in an alternative way to link these components together

and setFont are visible in the class FWidget. Regardless of which linking occurs, the
class BButton inherits any new methods added because it subclasses the class FWidget
rather than the class BWidget.

In Java, the components illustrated in Figure 3 can be linked together into a valid
program. However, the linking is fragile because type checking is not performed in a
modular way. Jiazzi, our enhancement to Java that supports modular linking of compo-
nents, supports the open class pattern with additional renaming mechanisms, not dis-
cussed in this paper, so that components can be “mixed-and-matched” to form classes
with a desired feature set [19].

3 Modular Linking

When modular reasoning is applied to the linking of component code, type checking
is “solved” in two phases: first when the component code is initially compiled, and
later when the component code is linked with the code of other components to create a
program. Type checking performed during compilation is not duplicated during linking.
The benefit of modular linking is that the phases of compilation and linking are truly
separate: they occur at separate times and can be performed by different parties.

To better understand modular linking, we propose a formal framework that describes
how modular linking can be implemented in an arbitrary language. An intuition of how
our framework works is illustrated in Figure 4. Linking that is not modular, which we
refer to as whole linking, is shown in the top part of Figure 4: the code of components
are compiled directly against the code of other components. In our framework, the key
to making linking modular is to provide an abstraction between the compilation of a
component and its linking with other components in a system. Rather than compile a
component against other components in a system, a component is compiled against its
abstraction, as shown in the bottom part of Figure 4. The abstractions of components
are then used during linking to ensure they are compatible. Because components are not
compiled directly against each other, as in whole linking, modular linking can reuse the
results of compilation to avoid inspecting component code when ensuring static type
safety of the system during linking.

A formal description of our framework is expressed over systems written in some
language L, where linking of a system ensures the system conforms to the static type
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Compile

Compile

Code
Linking

Compile
Code

Code Abstraction
Linking

Compile
CodeAbstraction

Modular
Linking

Whole
Linking

Fig. 4. A comparison between whole linking (top) and modular linking in our framework (bot-
tom); single directed arrows labeled “compile” point from code being compiled to what the code
is being compiled against

safety properties of L. Before modular linking is formally described, a corresponding
whole linking can be formally described with the definition of the rule WHOLE-OK:

�L ENV-OK
−−→‖ c ‖ −−→‖ c ‖ �L

−−−−−−−−→
IMPL-OK c

�L WHOLE-OK p = −→c

Notation: Lower-case letters designate instances of constructs, and the same letters
(differing only with subscripts) are used to designate instances of the same construct.
Rules are in small caps; e.g., RULE-OK. Directed overbars are vectors that designate
unordered sets; e.g., −→c is a set of construct instances designated by c. A rule within
a vector applies to all elements of any sets under the same vector, but any elements
adjacent to the rule not within the same vector are duplicated as the rule is applied to
these elements; e.g., if −→c = c0, c1, c2 then enforcement of −→s −−−−−−−−→

RULE-OK c expands to
enforce −→s RULE-OK c0, −→s RULE-OK c1, and −→s RULE-OK c2.

For the rule WHOLE-OK, a system p consists of syntactically separated, but not mod-
ular, parts designated by c and written in the language L. We refer to these parts as
L-parts, which have shapes that can be used to reason about interactions between L-
parts. An L-part shape can be extracted from an L-part using the double bar operator
(‖ c ‖). L-part shapes are combined to form a typing environment, which is used to rea-
son about the type correctness of a group of L-parts. A typing environment can be used
to ensure the type correctness of L-part implementations, which is enforced by the rule
IMPL-OK, if it is closed and well-formed, which is enforced by the rule ENV-OK. The
rules ENV-OK and IMPL-OK depend on the language L. In Section 4, each L-part mod-
els a Java class and definitions for the rules ENV-OK and IMPL-OK model type checking
for the Java language.

In the definition of rule WHOLE-OK, only a single “whole” typing environment
formed from the shapes of all the system’s L-parts (

−−→‖ c ‖) is used to type check the
system. Linking according to the rule WHOLE-OK is not modular because type check-
ing occurs over a single whole typing environment. For linking to be modular in our
framework, the system’s L-parts are placed inside special kinds of components referred
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Imports

Exports

Imports

Exports

Exports

Imports

L-parts

L-parts

L-parts

Fig. 5. An illustration of how abstraction enables modular linking in a system of three units;
abstraction relationships are solid directed lines from what is being abstracted to the abstraction

to as unit constructs, designated by u. Modular linking is then defined in our framework
as follows:

�L
−−−−−−−−−−−→
COMPILE-OK u �L LINK-OK

−−→‖ u ‖
�L MODULAR-OK p = −→u

For the rule MODULAR-OK, a system p consists of a set of units −→u , where each unit
has a signature, designated by ‖ u ‖, which describes the unit’s interactions with other
units in the system without revealing the unit’s implementation. The units of a system
each undergo separate compile-time typing that is performed by the rule COMPILE-OK.
Compile-time typing can examine the private implementation of a unit, but does not
look at how the unit is used in a system. All units of a system also collectively undergo
link-time typing that is performed by the rule LINK-OK. Link-time typing only examines
the signatures of the system’s units (

−−→‖ u ‖).
To bridge type checking between the compile-time and link-time typing phases, the

signature of each unit abstracts its interactions with other units in the system. The ab-
straction process is illustrated in Figure 5. A unit signature is divided into two sections:
exports that abstract the unit’s L-parts to other units in the system for use in link-time
typing; and imports that abstract the exports of other units in the system to the unit for
use in its compile-time typing. As a result, the use of a foreign L-part in a unit is ab-
stracted twice: first, when it is exported from its originating unit; and second, when it is
imported into the unit.

An L-part c can be described in a signature by an L-part shape designated by s. The
format of a unit is u = U −→si

−→se
−→c , where U uniquely identifies the unit u in a system, −→si

describes u’s imports, −→se describes u’s exports, and −→c are the L-parts that make up u’s
private implementation. The signature of a unit only consists of its identifier, imports,
and exports, and does not include its private implementation, so ‖ U−→si

−→se
−→c ‖ = U−→si

−→se .
The definitions of the rules COMPILE-OK and LINK-OK are as follows:
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�L ENV-OK −→si ∪ −−→‖ c ‖ �L ENV-OK −→si ∪ −→se
−→si ∪ −−→‖ c ‖ �L

−−−−−−−−→
IMPL-OK c

�L
−→si ∪ −→se ABSTRACTS-OK −→si ∪ −−→‖ c ‖
�L COMPILE-OK u = U −→si

−→se
−→c

� UNIQUE
−→
U �L ENV-OK

−→−→se �L

−−−−−−−−−−−−−−−−−−→−→si ∪ −→se ABSTRACTS-OK
−→−→se

�L LINK-OK
−−−−−−−−−−→‖ u ‖ = U −→si

−→se

More notation: Multiple sets can be combined into a larger set with the union (∪)
operator. A set of structures is designated by adjacent elements under the same overbar,
where an element of the structure can be pulled out to form its own set; e.g.,

−−→
U −→si can

be used to form −→
U and

−→−→si . The construct
−→−→s is not a set of s sets; it is a single set that is

formed by unioning the s sets together.
The definition of the rule COMPILE-OK combines a unit’s imports (−→si ) with the

shapes of the L-parts in its internal implementation (
−−→‖ c ‖) to form a compile-time typing

environment, which is used to reason about the unit’s internal implementation using the
rules ENV-OK and IMPL-OK. These rules are the same as those used in the definition of
whole linking (WHOLE-OK), whose definitions only depend the language L, and do not
depend on whether linking is modular or not. The rule LINK-OK combines the exports
of all units (

−→−→se) in the system to create an link-time typing environment, which is used
to type check interactions between units in the system.

The key to modular linking in our framework is an abstraction relationship that is
symmetrically enforced between compile-time and link-time typing environments. We
say that a unit’s imports and exports (−→si ∪ −→se) “abstracts” a typing environment cor-
rectly if the two following criteria hold: the imports and exports collectively specify a
subset of the abstracted typing environment; and the imports and exports do not hide
anything about the abstracted typing environment that could confuse or create ambigu-
ity in modular linking. “Correctly abstracts” is enforced by the rule ABSTRACTS-OK,
whose definition depends on how type checking can be made modular in language L.

The rule ABSTRACTS-OK represents only part of the extra work that must occur to
make linking modular; the rest of the extra work is performed by link reduction, which
transforms a system of units into a linked system of just L-parts. Link reduction rewrites
the L-parts of units so that no ambiguities in typing occur over the resulting linked
system. Names locally used in a unit must be renamed so that they do not conflict with
the names used in other units of the system. In our framework, link reduction allows
a modular system to be subjected to program evaluation, and allows us to express a
necessary relationship between whole and modular linking as Lemma 1:

Lemma 1 (MODULAR-IMPLIES-WHOLE)

�L MODULAR-OK pu = −→u −−→‖ u ‖ �L

−−−−−→
u → −→c ⇒ �L WHOLE-OK pc =

−→−→c

Link reduction occurs with the arrow ( → ) operator, and only depends on the signa-
tures of a system’s units (

−−→‖ u ‖) when linking each unit. Lemma 1 states that if modular
linking ensures that a modular system of units (pu ) is statically type safe, then whole
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linking ensures that the corresponding linked system (pc ) is statically type safe. It is
possible that the linked system is statically type safe when modular linking has deter-
mined that the modular system of units is not; modular linking is more conservative
than whole linking.

When Lemma 1 can be proven, modular linking is sound when the corresponding
whole linking is sound. A proof of Lemma 1 depends on link reduction and the rule
ABSTRACTS-OK, where more than one set of definitions may be able to facilitate a
proof of Lemma 1. ABSTRACTS-OK can be defined in a trivial way that always ensures
a proof of Lemma 1:

−→si ∪ −→se == −→sr

�L
−→si ∪ −→se NO-ABSTRACTS-OK −→sr

−−−−−−→
Ua

−→sia
−→sea �L U −→si

−→se
−→c → −→c

The definition of the rule -ABSTRACTS-OK forces a unit’s imports and exports to always
be equivalent to the unit’s compile-time and the system’s link-time typing environment,
which means no abstraction occurs at all! The entire shape of every L-part in the system
would be exposed in the imports and exports of each unit, and any trivial change of any
unit in the system would invalidate linking of the entire system. Modular linking is only
useful if a sufficient amount of abstraction can be supported. How much abstraction can
be supported depends on the features of the core language L.

4 MiniJiazzi

The modular linking framework in Section 3 can be applied to the task of modular link-
ing of programs written in a small Java-like core language, which models the addition
of modular linking into Java. Language L is bound to language J , where J is our small
Java-like language called core MiniJiazzi. We refer to the resulting language enhanced
with modular linking as MiniJiazzi because it models Jiazzi [19]; Jiazzi enhances the
full Java language with modular linking. Our experience with Jiazzi is the primary basis
for our modular linking framework.

4.1 Core language

Core MiniJiazzi is similar to other small Java-like languages; e.g., ClassicJava [14] or
Featherweight Java [16]. The syntax and type-checking rules of core MiniJiazzi are
shown in Figure 6. So that we can focus our discussion on how modular type check-
ing must deal with inheritance and virtual methods, core MiniJiazzi does not support
fields, constructors, or casting. Besides class implementations (c) and class shapes (s)
(the L-parts and L-part shapes in our modular linking framework), the syntax of core
MiniJiazzi also defines method implementations (m), method shapes (n), types (t), and
expressions in methods (e). Expressions can instantiate classes, access arguments and
this, and call virtual methods on objects. The extends operator (�) is used to specify a
class’s apparent direct super type, which is either another class or the root type Object.

To aid in our reasoning, we have added two features to the MiniJiazzi core language
that do not have equivalent support in the Java language but are easily derived from con-
ventional Java class definitions. First, a class shape describes only the “fresh” methods
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s = C[U] � tsuper
−−−→nfresh n = treturn M[U](

−−−→
targ x)

c = ssig
−−−→mimpl m = nsig { ereturn }
t = Object | C[U]
e = new C[U] | x | this| e.M[Ua](

−→ex)

� UNIQUE
−−→
C[U] �

−−−−−−−−−→
UNIQUE

−−→
M[Ua]

−→s �m

−−−−−−→−−−−→
M[Ua] �∈ ts

−→s �t

−−−−−−−−−→
ts ∪ −−→

tret ∪
−→−→
tx

−→s �t

−−−−−−−−−−→
C[U] < Object

�J ENV-OK
−−−−−−−−−−−−−−−−−−−−−−−−→
s = C[U] � ts

−−−−−−−−−−−−−−→
n = tret M[Ua](

−−→
tx x)

−→s �m

−−−−−−−−−−−→
tr M[Ua](

−−→
tx x) ∈ C[U] −−−→nfresh ⊆

−−−−−−−−−→
tr M[Ua](

−−→
tx x)

−−−−−−−→−−−−−−−→
Γ (x) = tx

−−−−−−→
Γ (this) = C[U] −→s , Γ �e

−−−−→
er ∈ t −→s �t

−−−−→
t ≤ tr

−→s �J IMPL-OK C[U] � ts
−−−→nfresh

−−−−−−−−−−−−−−−−−→
m = tr M[Ua](

−−→
tx x) { er }

−→s �t C[U] < Object
−→s , Γ �e new C[U] ∈ C[U]

−→s , Γ �e x ∈ Γ (x)
−→s , Γ �e this ∈ Γ (this)

−→s , Γ �e e ∈ Cb[Ub]
−→s �m tr M[Ua](

−−→
tx x) ∈ Cb[Ub]

−→s , Γ �e
−−−−−→
ex ∈ ty

−→s �t
−−−−−→
ty ≤ tx

−→s , Γ �e e.M[Ua](
−→ex) ∈ tr

Fig. 6. The syntax and type-checking rules of core MiniJiazzi; evaluation reduction is not shown

of a class, which must not exist in the class’s superclass. Next, to accommodate link
reduction, class and method names are enhanced with linking offsets. Linking offsets
are significant parts of class and method names; e.g., C[Ua] and C[Ub] identify different
classes when Ua �= Ub. Linking offsets are used during link reduction to distinguish
names that may clash after linking.

The type-checking rules of core MiniJiazzi consists of definitions for the rules
ENV-OK and IMPL-OK. The rule ENV-OK ensures the following (in the top part of the
judgment that defines ENV-OK; from left to right, top to bottom):

1. The names of all classes, taking into account their linking offsets, are unique in the
typing environment;

2. The shapes of fresh methods are unique in each class;
3. No fresh methods of a class exist in the class’s superclasses, which ensures that a

method can always be unambiguously referred to in a class by its name;
4. All types referred to in a class shape are defined in the typing environment;
5. Each class is a subtype of Object, which ensures there are no inheritance cycles

in the typing environment.
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For simplicity, the definition of rule ENV-OK does not allow for method overload-
ing; overloading can always be handled through renaming. Typing relationships (�t)
and method relationship (�m) are used in the definition of ENV-OK but are not defined
in Figure 6. They have their traditional meanings: subtyping (≤) is reflexive and tran-
sitive (≤ adds associative); the ∈ operator queries whether or not a method is visible
in a class. Both typing relationships and method relationships depend only on a typing
environment.

The definition for rule IMPL-OK ensures the following (again top to bottom, left to
right): all methods implemented by a class are declared by the class or one of its super-
classes; all fresh methods of the class are implemented; and all implemented methods
are well-typed; Γ (. . .) = . . . defines an expression typing environment.

Expression-level typing (�e) is a judgment over recursive expression structures that
determines the static compile-time types of expressions. It takes the form −→s , C[U], Γ �e

e ∈ t. The typing of expressions is standard; e.g., typing of method calls at the bottom
of Figure 6 only ensures that the method exists in the statically determined type of
the calling expression, and that the argument expressions are typed as subtypes of the
argument types.

The evaluation reduction rules and the proof that shows that whole type checking in
core MiniJiazzi is sound are similar to those in other ClassicJava [14] and Featherweight
Java [16]. In this paper, we concentrate on a proof of Lemma 1 from Section 3. To do
this, we apply our modular linking framework to core MiniJiazzi by defining the rule
ABSTRACTS-OK and link reduction.

4.2 Modular Linking

MiniJiazzi is a small model of Jiazzi, which enhances Java with program units [13]. We
focus on how Jiazzi units make linking in Java modular and not the novel features of
Jiazzi units, such as externally-specified linking and hierarchical structuring.

Modular linking is implemented in MiniJiazzi as follows. MiniJiazzi specifies an ab-
straction relationship that allows for the modular detection inheritance cycles and name
clashes, but also allows for enough hiding to permit expressive linking organizations,
such as those that use the open class pattern. In MiniJiazzi, potential name clashes
(method and class name ambiguity) that could occur with modular type checking are
prevented through link reduction.

The structure of units is described in Section 3 as U −→si
−→se

−→c . The class shapes de-
scribed by a unit and the classes in a unit’s private implementation initially have empty
linking offsets ([◦]). Linking offsets will not be specified until link reduction of the
modular system occurs. The fact that linking offsets are empty does not have any effect
on the rules ENV-OK or IMPL-OK.

At minimum, abstraction in MiniJiazzi must ensure that the signature of a unit is a
“subset” of the compile-time and link-time typing environments of its unit. This criteria
is described by the definition for weak abstraction:

−−−−→
si ∪ se =

−−−−−−−→
C[◦] � ts

−→n −−→
C[◦] ⊆ −→|sr| −→sr �m

−−−−−→−−→
n ∈ C[◦] −→sr �t

−−−−−−→
C[◦] < ts

�J
−→si ∪ −→se WEAK-ABSTRACTS-OK −→sr
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The unit’s typing environment abstraction is designated by −→si ∪ −→se , which is the
imports and exports of a unit. The abstracted typing environment is designated by −→sr ,
which is either the compile-time typing environment of the unit or a link-time typing
environment of a system. The single bar operator takes a class shape and returns its class
identifier; e.g.,

−→|sr | is a set of class identifiers for classes described in the abstracted
typing environment −→sr .

The definition of the rule WEAK-ABSTRACTS-OK ensures the following (top to bot-
tom, left to right):

1. Every class described by the abstraction is described by a same-named class in the
abstracted typing environment;

2. The methods of each class described by the abstraction exists in a class with the
same identifier or its superclass of the abstracted typing environment;

3. The superclass of each class described by the abstraction is a superclass of a class
with the same identifier in the abstracted typing environment.

The definition of the rule WEAK-ABSTRACTS-OK does not enable modular type
checking to detect irresolvable method ambiguity or inheritance cycles, and so cannot
be used in a proof of Lemma 1. The problem is that the abstracted typing environment
contains the superclass relationships specified by the abstraction (−→sr �t

−−−−−−→
C[◦] < ts), but

the abstraction is free to hide any superclass relationships expressed by the abstracted
typing environment. Take as an example the components illustrated in Figure 2 from
Section 2, where an inheritance cycle occurs because the fact that class B is a subclass
of class C at link-time can be hidden from component uc during its compile-time. A
stronger definition of abstraction, which does not allow for the hiding of subclassing
relationships, is as follows:

−−−−→
si ∪ se =

−−−−−−−→
C[◦] � ts

−→n −−→
C[◦] ⊆ −→|sr| −→sr �m

−−−−−→−−→
n ∈ C[◦] −−−−−−−−→

C[◦] � ts . . . ⊆ −→sr

�J
−→si ∪ −→se STRONG-ABSTRACTS-OK −→sr

The definition of the rule STRONG-ABSTRACTS-OK differs from WEAK-ABSTRACTS-OK

only in that it prevents the hiding of superclass relationships in the abstracted typing
environment by the abstraction with

−−−−−−−−→
C[◦] � ts . . . ⊆ −→sr . While this stronger abstraction

does enable modular type checking—it rejects the linking in Figure 2 and can be used in
a proof of Lemma 1—it does not permit enough information hiding through abstraction;
e.g., it prevents useful applications of the open class pattern.

In Figure 3 from Section 2, the class DWidget may or may not be one of the su-
perclasses of class FWidget, depending on whether or not the components color 2
and font are linked with the components base and fixed in a system. With the
rule STRONG-ABSTRACTS-OK, the fact that the class DWidget is a superclass of class
FWidget, and indirectly a superclass of class BButton, would have to be apparent
during the compile-time of the components base and fixed. Unfortunately, this also
eliminates the possibility of linking components base and fixed with the component
color 1 instead, where the class DWidget is not provided.

We have discovered an effective compromise between the weakest and strongest
abstraction relationships: superclass relationships are hidden by the abstraction of a
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Fig. 7. An example of how the inheritance graph of an abstraction can hide inheritance relation-
ships of classes in compile-time and link-time typing environments not visible in the abstractions

unit if and only if the classes involved are hidden by the abstraction. With help from an
auxiliary rule SUPER-OK, this best definition of the rule ABSTRACTS-OK is as follows:

C[◦] � ts . . . ∈ −→sr

−→si ∪ −→se ,−→sr �J C[◦] SUPER-OK ts

C[◦] � Ca[◦] . . . ∈ −→sr Ca[◦] �∈ −→|si| ∪ −→|se|
−→si ∪ −→se ,−→sr �J Ca[◦] SUPER-OK ts

−→si ∪ −→se,
−→sr �J C[◦] SUPER-OK ts

−−−−→
si ∪ se =

−−−−−−−→
C[◦] � ts

−→n −−→
C[◦] ⊆ −→|sr|

−→sr �m

−−−−−→−−→
n ∈ C[◦] −→si ∪ −→se ,−→sr �J

−−−−−−−−−−−−−→
C[◦] SUPER-OK ts

�J
−→si ∪ −→se ABSTRACTS-OK −→sr

This definition of rule ABSTRACTS-OK permits the hiding of classes between units
even if the classes occur in the middle of the inheritance hierarchy of two classes that
are visible in the unit; e.g., class DWidget can be hidden from the components base
and fixed in Figure 3. However, it also prevents the hiding of subtyping relationships
between visible classes; e.g., a subtyping relationship between the Cowboy and Icon

classes cannot be hidden if these classes are visible in the same scope.
The rule SUPER-OK ensures that a unit’s abstraction (−→si ∪ −→se) expresses every di-

rect and indirect inheritance relationship in the abstracted typing environment (−→sr) for
classes visible in the abstraction. This relationship is illustrated in Figure 7, where the
inheritance graph of the abstraction (center) expresses the proper inheritance relation-
ships of classes A, B, and C, but ignores classes D and E, which are not visible in the
abstraction. The relationship just discussed in English is expressed as Lemma 2, whose
proof follows directly from the definition of rule SUPER-OK:

Lemma 2 (SUPER-ABSTRACTION)

−→si ∪ −→se =
−−−−−−−−→
C[◦] � ts . . .

−−→
C[◦] ⊆ −→|sr| −→si ∪ −→se ,−→sr �J

−−−−−−−−−−−−−→
C[◦] SUPER-OK ts ⇒

∀Ca[◦] ∈ −→|si| ∪ −→|se|,∀Cb[◦] ∈ −→|si| ∪ −→|se| . −→si ∪ −→se �t Ca[◦] < Cb[◦] ↔ −→sr �t Ca[◦] < Cb[◦]
Our chosen definition of the rule ABSTRACTS-OK can be used in a proof of Lemma 1
in Section 3 and allows for a sufficient amount of abstraction to make modular type
checking useful.
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When units are combined together into a linked program, linking must ensure that
name clashes between unit implementations do not cause ambiguities during evalua-
tion of the program. Name clashes in OO languages result from classes from different
units with the same name, or distinct methods with the same names that are defined in
compatible classes that originate from different units. While modular type checking can
detect name clashes between units if the names involved are exposed in unit signatures,
MiniJiazzi’s abstraction relationship permits hiding between units. Classes and methods
hidden within a unit’s implementation should not clash with classes and methods from
other units. MiniJiazzi’s definition of link reduction ensures that references to hidden
classes and methods are disambiguated during linking.

MiniJiazzi achieves disambiguation with linking offsets. Every class and method ref-
erence within a unit implementation is qualified with a linking offset that is used dis-
ambiguate these references. Method implementations also have linking offsets to en-
sure that they implement or override the appropriate method from a superclass. Linking
offsets are always treated as parts of class and method names. Unlike names, however,
linking offsets are not provided by the programmer; they are assigned during link reduc-
tion, in much the same way as branch offsets are rewritten when a dynamically-linked
library (DLL) is loaded into memory. Before link reduction occurs, all linking offsets of
a unit’s implementation are empty. Link reduction then binds linking offsets according
to the unit that the class or method originates from.

The core judgments of link reduction specify class and method linking offsets. Other
judgments are merely used to traverse the structure of a unit and are not shown in this
paper. The following pair of judgments determines how linking offsets are bound for
class references:

C[◦] �∈ −−→|sia|
−−−−→
U −→si

−→se , Ua
−→sia

−→sea
−→ca �J C[◦] → C[Ua]

C[◦] ∈ −−→|sia| C[◦] ∈ −→seb Ub
−→seb ∈ −−→

U −→se

−−−−→
U −→si

−→se, Ua
−→sia

−→sea
−→ca �J C[◦] → C[Ub]

These judgments are used to specify linking offsets of any class referred to in a unit.
References to classes that are not imported into the unit must be to classes that originate
in the unit, so such references are assigned the linking offset of the referring unit, which
is identified in the judgments as Ua. References to imported classes are resolved to the
unit that exports those classes in a system. Linking offsets for method reference are
bound using a similar but more complicated pair of judgments:

−→sia ∪ −−→‖ca‖ �m M[◦] ∈fresh Cb[◦] −→sia ∪ −−→‖ca‖ �t C[◦] ≤ Cb[◦] Cb[◦] �∈ −−→|sia|
−−−−→
U −→si

−→se , Ua
−→sia

−→sea
−→ca �J C[◦]:M[◦] → M[Ua]

−→sia ∪ −−→‖ca‖ �m M[◦] ∈fresh Ca[◦] −→sia ∪ −−→‖ca‖ �t C[◦] ≤ Ca[◦] Ca[◦] ∈ −−→|sia|
Ub

−→seb ∈ −−→
U se

−→−→se �m M[◦] ∈fresh Cb[◦] Cb[◦] ∈ −−→|seb|
−→−→se �t Ca[◦] ≤ Cb[◦]

−−−−→
U −→si

−→se , Ua
−→sia

−→sea
−→ca �J C[◦]:M[◦] → M[Ub]

Each method reference (C[◦]:M[◦]) is associated with a class (C[◦]) that must implement
the method being referred to. To determine the method’s linking offset, the class that
introduces the method must be first found in the compile-time typing environment of
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unit cowboy {
import
export class Cowboy[◦] � Object
{ Object draw[◦](), Object dual[◦]() }
} {
class Cowboy[cowboy] � Object
{ Object draw [cowboy ]() { /* a gun duel */ },
Object dual[cowboy ]() { this.draw [cowboy ]() } }

}
unit icon {
import class Cowboy[◦] � Object { }
export class Icon[◦] � Cowboy { Object paint[◦]() }
} {
class Icon[icon] � Cowboy[cowboy ]
{ Object paint[icon]() { this.draw [icon]() },
Object draw [icon]() { .../* draw icon */ } }

}
unit main {
import class Icon[◦] � Object
{ Object paint[◦](), Object draw[◦]() }
export class Main[◦] � Object { Object main[◦]() }
} {
class Main[main] � Object
{ Object main[main]() { this.draw [cowboy ]() } }
}

Fig. 8. The units cowboy , icon, and main that are linked together into a system; linking offsets
that result from link reduction are shown

the unit. In the top judgment, the introducing class is not an import of the unit, so
the method must originate from the referring unit (Ua). In the bottom judgment, the
introducing class is an import, so the class that introduces the method must be found
with respect to the link-time typing environment. The unit that the introducing class is
exported from is used as the method’s linking offset.

The MiniJiazzi units shown in Figure 8, based on the illustration of Figure 1 from
Section 2, demonstrate how link reduction resolves method ambiguity. The unit icon
specifies what it expects from other units through its imports. Since the unit icon does
not import the method draw from the cowboy unit, link reduction binds the linking
offset of the call to method draw in class Icon to the unit icon. Since the unit cowboy
exports the method draw , whereas the unit icon does not, link reduction binds the
linking offset of the call to draw within the class Main to the unit cowboy .

In Java, method scope is established by packages and access flags. If the above ex-
ample was written in normal Java using packages and access flags (the method draw
in a package cowboy would be public, and the method draw in a package icon would
be package-only), ambiguity between the draw methods could not be avoided and the
Java source compiler would even reject such a construction. In this MiniJiazzi program
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a source compiler error does not occur: the scopes of the draw methods are separated
by abstraction and the unintended ambiguity is avoided through link reduction.

Rather than use linking offsets, other approaches [22,23,25] disambiguate between
methods using dictionaries that are based on unit-like scopes. With dictionaries, a link
reduction phase is not necessary; rather dictionaries are queried during evaluation. The
advantage of using link reduction is the ability to easily express Lemma 1, which would
be much more complicated if the evaluation of a modular system were different from
the evaluation of a non-modular system.

Link reduction only binds linking offsets and does not need to otherwise change
the structure of class expressions within a unit. The abstraction relationship ensures
that referenced classes and methods exist within the program typing environment and
that method implementations override methods correctly. The only nontrivial aspect of
proving Lemma 1 is showing that the typing environment formed by the shapes of the
resulting link-reduced classes is well-formed. We express this as Lemma 3:

Lemma 3 (LINK-REDUCED-ENV-OK)

p =
−−−−−−−−−−→
u = U −→si

−→se
−→cx �J ENV-OK

−−−−−−−→−→si ∪ −−−→‖ cx ‖, −−−−→−→si ∪ −→se ,
−→−→se

�J

−−−−−−−−−−−−−−−−−−−−−−−−−−→−→si ∪ −→se ABSTRACTS-OK −→si ∪ −−−→‖ cx ‖ �J

−−−−−−−−−−−−−−−−−−→−→si ∪ −→se ABSTRACTS-OK
−→−→se

� UNIQUE
−→
U

−−→‖ u ‖ �J

−−−−−−→
u → −→cy ⇒ �J ENV-OK

−−−→−−−→‖ cy ‖
The proof of Lemma 3 primarily depends on using Lemma 2 to show that the signature
of each unit abstracts the inheritance graph of the link-reduced classes. That is, the link-
ing typing environment of the modular system forms an inheritance graph that abstracts

the inheritance graph formed by the non-modular system (
−−−→−−−→‖ cy ‖), which is expressed

as Lemma 4 that has the same antecedents as Lemma 3:

Lemma 4 (MODULAR-WHOLE-SUBTYPING)

... ⇒ ∀Ua −→sia
−→sea

−→ca, Ub
−→sib

−→seb
−→cb ∈ −−−−−−→

U −→si
−→se

−→cx,∀Ca ∈ |−→sea|, ∀Cb ∈ |−→seb|.
−→−→se �t Ca[◦] < Cb[◦] ↔

−−−→−−−→‖ cy ‖ �t Ca[Ua] < Cb[Ub]

The last consequent of Lemma 4 states that all subtyping relationships in the linking
environment between pre-linked classes (Ca[◦] and Cb[◦]) must be preserved in the post-
linked classes (Ca[Ub] and Ca[Ub]). Lemma 4 represents the core of our proof of Lemma 1
for MiniJiazzi.

Proof sketch: Our proof of Lemma 4 proceeds by using induction and showing that
contradictions necessarily occur if this consequent does not hold. Our inductive base
case is based on the fact that segments in the inheritance hierarchy remain unchanged
between pre-linking and post-linking as long as they do not contain imported or ex-
ported classes. As a result, the following two implications always hold:

−→−→se �t Ca[◦] � Cb[◦] →
−−−→−−−→‖ cy ‖ �t Ca[Ua] < Cb[Ub]

−−−→−−−→‖ cy ‖ �t Ca[Ua] �< Cb[Ub] →
−→−→se �t Ca[◦] � � Cb[◦]
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These base cases will be reached reached as long as the the post-linked inheritance
graph is acyclic, which is given by ENV-OK already being enfrorced on the linking
environment.

4.3 Comparisons with Jiazzi

MiniJiazzi formally describes Jiazzi linking system that was introduced in [19]. Jiazzi
contains many features that make linking more convenient. Jiazzi supports package sig-
natures that describe the shapes for a package of classes and can be reused between
units. Package signatures are used to generate import class stubs that enable unit com-
pilation to occur with a standard Java complier. When implementing a unit from scratch,
package signatures can also be used to generate skeletons for exported classes. Alter-
natively, package signatures can be inferred automatically from existing Java classes
by assuming public and protected classes and methods should appear in the signatures.
Linking occurs after compilation with Java bytecode rewriting of method and class
names to implement linking offsets. Unit imports and exports are supported with ex-
tension that simplifies usage of the open class pattern that was described in Section 2.
Using this mechanism, a unit can extended a package of classes without creating new
subtypes. For this purpose, the abstraction we have shown to be safe and possible with
MiniJiazzi is very essential as it makes the open class pattern possible.

5 Beyond Inheritance

When considering modular linking, inheritance in Java permits a sufficient amount of
abstraction; e.g., the open class pattern as illustrated in Figure 3 from Section 2 can
be expressed. Abstract methods in Java, however, cannot be abstracted, despite their
name: abstract methods can never be hidden in visible classes and Java interfaces, be-
cause modular type checking must ensure concrete subclasses implement all abstract
methods. This becomes a significant expressiveness problem when abstract methods
are used aggressively in “framework classes,” or when components evolve to provide
new functionality that require adding new abstract methods to classes.

Binary compatibility in Java allows new abstract methods to be added to library
classes. It also allows concrete classes to have abstract methods that are not imple-
mented [18]; e.g., the AWT class Graphics is often enhanced with new abstract meth-
ods as the AWT library evolves. This is only safe when there are assurances that unim-
plemented abstract methods are never invoked; e.g., a program compiled against the
old AWT library will not cause the new abstract methods added to the class Graphics
to ever be called. Such assurances cannot be automatically verified with static type
checking, so Java uses run-time type checking to detect and reject attempts to invoke
unimplemented abstract methods.

Our proposed modular linking framework can be used to reason about modular link-
ing in other languages, OO or otherwise. It can also be used as a metric for new ex-
perimental language features. Consider symmetric multi-methods, which support dis-
patch over arbitrary arguments. Compilation and linking of symmetric multi-methods
require the detection of cases where a multi-method is overridden ambiguously [21],
that is, where two or more specializations of the multi-method are equally applicable
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to a combination of argument bindings. When this is enforced in the most direct way,
multi-methods cannot support much abstraction under our modular linking framework
because any class used in the specialization of a visible multi-method can never be hid-
den within a component. However, like inheritance, there is probably a middle ground
similar to the rule SUPER-OK, where class hiding can be permitted if ambiguous multi-
method overriding is type checked more conservatively.

6 Related Work

Separate compilation and modular linking are explored extensively by Cardelli [5] with
linksets. In comparison, the work presented in this paper tackles modular linking from
a different direction: rather than build modular linking into a newly designed language,
we show how modular linking can be added to an existing language after it has been
designed. Cardelli also does not address mutually-dependent modules or language fea-
tures such as inheritance. On the other hand, Cardelli’s correctness criteria are more
rigorous including issues such as non-termination. In another direction, MTAL (mod-
ular typed-assembly language) [15] explores the low-level implications of binaries and
modular linking. In contrast, our framework does not deal with low-level details such as
Java bytecode, and instead focuses on high-level language abstractions. Effective mod-
ular systems must deal with both issues. Our modular linking framework is based on
program units, which initially were conceived for Scheme and ML [10], and have been
considered in OO extensions of Scheme [10]. With Jiazzi, we have shown how program
units can be added to statically-typed OO languages.

Drossopoulou et al. extensively explore and formalize binary compatibility [9] and
linking [8] in Java. Jiazzi eschews Java’s binary compatibility in favor of modular link-
ing, which we believe is more appropriate for component software. Both modular link-
ing in Jiazzi and binary compatibility in Java address the technical “fragile base class
problem.” Ancona et al. [1] use a notion of a compilation schema to explore separate
source code compilation and runtime linking in Java. The task of separate compilation
in Jiazzi, as modeled by MiniJiazzi, is simplified because compile-time and link-time
typing environments are explicitly separated by our modular linking framework.

The language JavaMod [3] explores adding a module system to the Java language,
while the ML-like language Moby [11,12] explores modular linking for a class-based
core language. Unlike Jiazzi, neither JavaMod nor Moby support mixin-style inheri-
tance with abstraction. In JavaMod, methods hidden in a superclass are not visible in a
subclass, while in Moby, methods provided by a superclass can only be invoked by ex-
plicitly specifying the superclass. Like most ML-like languages, Moby does not support
modules with cyclic dependencies. MiniJiazzi is the first formalization of a statically-
typed module system that supports cyclic dependencies, full mixin-style inheritance, and
abstraction for an OO language. The language SmartJavaMod [2] enhances JavaMod
with a form of signature inferencing and class overriding. It is an open question whether
signature inferencing is feasible in a MiniJiazzi-like system because of abstraction.

The languages Dubious [21] and EML [20] explores modular type checking of sym-
metric multi-methods, while MultiJava [6,7] explores how symmetric multi-methods
can be added to Java in a modular way. The hiding of abstract methods is also restricted
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in these languages to preserve modular type checking. Imports are not expressed in the
module interfaces of these languages, which leads to a different definition of abstraction
than we model in our modular linking framework. Even without multi-methods in the
Java language, Jiazzi can implement the open class idiom that multi-methods enable, as
illustrated in Figure 3 from Section 2.

Enforcing the privacy of methods in OO languages has been explored extensively in
the literature. Riecke and Stone [22] formally explore method privacy in structurally
typed OO languages by using method dictionaries, while this work is extended by
Stone [23] and Vouillon [25] in the context of class and mixin-based languages. Mini-
Jiazzi differs by using linking offsets rather than dictionaries to enforce method scopes
and disambiguate between method namespaces.

7 Conclusion and Future Work

We have shown how modular linking can be added to statically-typed OO languages
such as Java while allowing several expressive features: cyclic dependencies between
components, inheritance across component boundaries, and non-trivial abstraction be-
tween components. Our modular linking framework provides the intuitive and formal
foundation for our work, and we have used this framework to formally reason about
how modular linking can be added to Java with MiniJiazzi. MiniJiazzi models Jiazzi,
which is an enhancement of Java whose implementation is available for download:
http://www.cs.utah.edu/plt/jiazzi

Although we have shown that inheritance is a modular language feature because it
permits an adequate amount of abstraction, abstract methods are problematic, while
multi-methods are still an open question. Future work should explore how our modular
linking framework and language features such as abstract methods and multi-methods
can be made to support more abstraction.

Modular reasoning is what makes developing software out of components possible.
This reasoning goes beyond linking, compilation, and type checking to also include
execution, testing, debugging, semantic correctness, and so on. Future work should ex-
plore how these other kinds of reasoning can be made modular through a more general
modular reasoning framework.
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Abstract. We define a framework of components based on Java-like lan-
guages, where components are binary mixin modules. Basic components
can be obtained from a collection of classes by compiling such classes in
isolation; for allowing that, requirements in the form of type constraints
are associated with each class. Requirements are specified by the user
who, however, is assisted by the compiler which can generate missing
constraints essential to guarantee type safety.

Basic components can be composed together by using a set of expres-
sive typed operators; thanks to soundness results, such a composition is
always type safe.

The framework is designed as a separate layer which can be instan-
tiated on top of any Java-like language; a prototype implementation is
available for a small Java subset.

Besides safety, the approach achieves great flexibility in reusing com-
ponents for two reasons: (1) type constraints generated for a single com-
ponent exactly capture all possible contexts where it can be safely used;
(2) composition of components is not limited to conventional linking,
but is achieved by means of a set of powerful operators typical of mixin
modules.

1 Introduction

It has been argued that the notion of software component is so general that
cannot be defined in a precise and comprehensive way [12]. For instance, [20]
provides three different definitions, that adopt different levels of abstraction.
However, most researchers would agree that the following features are essential
prerequisites for component technology: modularity, type safety, and indepen-
dence from a particular programming language.

Modules and components share several common characteristics. The impor-
tant software engineering principle of maximizing cohesion and minimizing de-
pendencies of code applies as well to modules and to components. Furthermore,
both modules and components are meant as units of composition which can be
developed independently.
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Type safety is an important property which guarantees a correct integration
between components; separate development of components requires explicit in-
terfaces not only for the provided services, but also for the requirements which
ensure safe assembly of components. In order to maximize reuse, required inter-
faces should capture as many as possible contexts where a component can be
safely used.

While modules are often tied to a specific programming language, compo-
nents are usually meant as binary units, and therefore should not depend on a
particular language; of course, basic components still need to be constructed by
using some language. For instance, .NET assemblies do not strongly rely on any
particular language, but can be created, for instance, from both C# and Haskell
code. However, assembling components is a process which should involve only
binary units and, therefore, is expected to be language independent. The benefits
of this independence are a better integration and interoperability of components,
especially when the binary form is some kind of intermediate language.

Among the several varieties of modules which can be found in programming
languages or have been proposed in literature, mixin modules are one of the
closest approximations of the notion of software component.

Module systems based on the notion of mixin module offer a framework largely
independent from the core language with well-established and clean foundations
[7,6,14]. Differently to parametric modules, like, for instance, ML functors, which
offer only one composition operator roughly corresponding to function applica-
tion, mixin modules are equipped with a richer set of operators that support
mutual recursion across module boundaries and declaration of virtual entities
which can be redefined via an overriding operator. For this reason, mixin mod-
ules seem a good starting point for defining a language independent framework
for flexible composition and reuse of components in a type safe way. The main
difference between a mixin module and a component is that the former is mod-
eled as a collection of classes in source form, while the latter is modeled as a
collection of classes in binary form. Of course, in practice there are other differ-
ences which we deliberately do not model in this paper: for instance, in general
a component is a collection of more heterogeneous entities including not only
code, but also resources like, for instance, multimedia data.1

Nowadays component technology is mainly based on mainstream
object-oriented languages; nevertheless, object-oriented languages alone fail to
provide important features for developing and assembling components. Compo-
sitional compilation is not supported by mainstream object-oriented languages,
even though this property is important for allowing separate development of
components: users should be able to obtain a basic component from a collec-
tion of classes by simply compiling such classes in total isolation. Furthermore,
linking is the only available mechanism for manipulating and assembling binary
components.

In this paper, we investigate how to build a framework for component-oriented
programming based on Java-like languages. The framework is meant as a

1 We refer to [20], Section 4.1.4, for more details.
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logically separate layer constructed on top of the Java-like language used for
creating basic components.

In the framework, components are modeled as mixin modules in binary form,
by following and further developing the approach presented in [5]. Furthermore,
separate development of components is possible by adopting the type technology
we have developed for Java-like languages in a previous work [2]. Thanks to
this technology it is possible to specify the minimal requirements needed by
a component for being safely used by a set of polymorphic type constraints.
Compilation in total isolation of classes into components is supported by the
notion of polymorphic bytecode, a bytecode annotated with type variables which
can be instantiated according to the context where a component is deployed.

The framework allows separate compilation of classes into basic components
starting from the declarations of such classes in a Java-like language and from
the specification of the requirements needed by the classes. Then, components
in polymorphic bytecode can be assembled together in a type safe way by means
of five composition operators: bind, merge, renaming, unbind, and restrict.

Other interesting features of the framework are the following:

– Since specifying the requirements needed by a class can be a tedious activity,
the framework assists the programmer by generating those constraints which
have not been explicitly specified by the user, but are nevertheless necessary
for guaranteeing a type safe composition. The interface obtained in this
hybrid way is then permanently associated with the polymorphic bytecode
of the class in the components.

– Classes in a component are all implicitly considered virtual, that is, their
definition can be later replaced when composing the component with others.

– In addition to composition operators typical of mixin modules [7,6], the
framework provides two novel operators2 bind and unbind , designed for bet-
ter supporting unanticipated software evolution.

The paper is organized as follows. Section 2 is a gentle introduction to the frame-
work; some examples are used for explaining its main features and its ability to
support software reuse and unanticipated software evolution. In Section 3 we
formally define syntax and reduction semantics of the framework, by listing the
ingredients the underlying Java-like language should provide. Section 4 is de-
voted to the implementation of the framework: a prototype is available3 for test-
ing all the examples shown in Section 2. Finally, Section 5 outlines related work,
summarizes paper contribution and draws directions for future developments.

A preliminary presentation of the ideas developed in this paper can be found
in [3]. The full formal definition of the framework can be found in [4], notably
including the definition of the type system modeling compilation of component
expressions into binary components and soundness results. Moreover, [4] provides

2 Which, however, can be encoded in lower-level operators of module calculi such as
CMS [6].

3 http://www.disi.unige.it/person/LagorioG/SmartJavaComp/
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the formal description of an instantiation of the framework on top of Feather-
weight Java [15], and more examples.

2 A Gentle Introduction to Components

This section is a brief introduction to our component-oriented system: its main
features are presented through some simple, but still meaningful, examples show-
ing its expressive power. A more involved example showing how to deal with the
classical expression problem (or extensibility problem) [21] can be found in [4].

Even though our operators handle components in binary form (more precisely,
in polymorphic bytecode), in the examples we write components in source format
for readability. In particular, we choose Java as source language, but all code
could be easily rewritten in, say, C#.

2.1 Basic Components

Let us start our introduction with an example4 of declaration of basic component:

component LinkedList = {
deferred class N;
class List {
requires { N(N); }
N first;
void addFirst() {
first=new N(first);

}
}
class Node {
requires { & N; }
N next;
Node(N n) { next=n; }
N getNext() { return next; }

}
}

A basic component is a collection of declarations of classes which are either de-
ferred , that is, whose definition has to be imported later, like N, or defined inside
the component, like List and Node. Class definitions are those in the Java-like
language under consideration, enriched by a requires part which specifies type
constraints on deferred classes, which of course also depend on the language. In
the example, constraint N(N) means that class N is required to have a constructor
applicable to an argument of type N, whereas constraint &N means that class N
must exist. Other forms of constraints are subtyping constraints and constraints
requiring a class to have a field of a certain type or a method applicable to

4 For simplicity, we will avoid access modifiers.
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certain argument types; moreover, constraints are polymorphic in the sense that
types can be type variables, as will be illustrated below.

As it will be shown, deferred classes can be bound to a definition by means of
the bind and merge operators. Within this example, the intuition is that N could
be Node; indeed, if we replaced all occurrences of N with Node, then we would
obtain the classic example of single-linked lists with a header node. However,
having used a deferred class instead of the already defined class Node allows
us to bind N to something more specific than Node later, for instance a class
DoubleNode (which, presumably, extends Node).

This particular use of a deferred class allows one to simulate the idea of type
mytype [10], or ThisClass of LOOJ [9], where inside a class, say Node, we can
use mytype instead of Node with the effect that in any subclass of Node, say
DoubleNode, this type will be interpreted by DoubleNode rather than Node.

However, our approach allows a step further: N can be bound to any class that
satisfies the type constraints declared in class List and Node. For instance, class
Node simply requires an existing declaration for N, since N is used in Node only
as a type, while the correctness of List relies on a stricter constraint5 asking N
to provide a constructor which takes an argument of type N (hence, with a single
parameter whose type is a supertype of N).

Note that constraints are declared at the level of each class definition, rather
than at the level of the component declaration. As we will see, this is due to
the fact that classes declared in components are all virtual: for instance, a new
component could be derived from LinkedList by overriding the declaration
of Node. In this case, the constraints associated to Node, and only those, are
analogously replaced.

ComponentLinkedListsupportsanimportantfeatureforpromotingcomponent-
oriented programming: each class is explicitly equipped not only with the interface
of the provided services, (what is usually, and improperly, called the provided in-
terface), but also with the interface of the required features. (what is usually, and
improperly, called the required interface). Indeed, provided and required interfaces
for classes List and Node can be easily extracted from their code:

class List {
requires { N(N); }
provides { N first;

void addFirst();
}

}
class Node {
requires { & N; }
provides { N next;

Node(N n) ;
N getNext() ;

}
}
5 Indeed, the constraint N(N) implies & N.
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Providing the required interface should allow compilation of a component in
total isolation (no other sources or binary files are needed) and composition with
other components (already in binary form) in a type safe manner. To this end,
the required interface should specify, on the one hand, all the requirements on
deferred classes which are needed to compile the component; on the other hand,
it should not specify requirements which are not strictly necessary, in order to
allow safe composition with as many other components as possible. For Java-
like languages, this can be achieved by using the approach we propose based on
type constraints, whereas cannot be achieved by using other forms of required
interfaces. For instance, compilation in isolation of the component above cannot
be achieved by using the approach based on only subtyping constraints adopted
for Java generics [8]; there is no way to guarantee that class N has a constructor
which is type compatible with the call in method addFirst by simply requiring
class N to extend some already defined class or interface.

Conversely, an approach where the required interface has to specify for each
deferred class its expected signature (that is, constructor, field and method sig-
natures), as done, e.g., in our previous work [5], is too restrictive, since it rejects
components which do not match this type but can still be linked in a safe way
with the given component. We will illustrate better this point in the following
when introducing the merge operator.

Since specifying required interfaces by listing all the needed type constraints
may be a tedious and error prone activity, the specification of required interfaces
is assisted by the compiler: the most general constraints which are required by a
component, but are not explicitly specified by the programmer, are automatically
generated and added to the required interface. In this way the compiled code
will contain the complete required interface, including both the user constraints
and the missing ones inferred by the compiler. Of course, the user can always
specify constraints which are not strictly necessary to guarantee type safety, but
that are needed for contractual reasons.

For instance, in class List the user could specify the requirement N <= Node
which requires N to be a subclass of Node, even though this condition is not
necessary for the type safety of the code of the class. However, the required
interface generated with the code will contain both the user-defined constraint
N <= Node and the inferred constraint N(N).

As shown in the following, the generated required interface will be used to-
gether with the provided interface, to check type safety of component
composition.

2.2 Open and Closed Components

A component with deferred classes, as LinkedList, is called open; analogously,
a component with no deferred classes is called closed. Classes declared inside an
open component, as List and Node, cannot be accessed through qualified names
(see 2.5).

LinkedList.List l=new LinkedList.List(); // type error
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The qualified name LinkedList.List is used for denoting class List at com-
ponent LinkedList.6 An unqualified class name is called a simple class name.
A soft link to a class is any of its unqualified occurrences except those which
introduce the declaration of either the class itself, or any of its constructors.
Analogously, qualified occurrences are called hard links (see more in Section2.5).

There are two different composition operators for deriving closed components
from open ones: bind and merge.

Bind. A closed component can be obtained by binding the deferred classes of
some open component to definitions in the same component. For instance, a new
component ClosedLinkedList could be obtained from LinkedList by binding
N to Node, since class Node satisfies all required constraints on N:

component ClosedLinkedList=bind(LinkedList,N->Node);

The component we obtain in this way is equivalent to (that obtained compiling)
the following, where we have copied the definition of LinkedList and replaced
each occurrence of N by Node.

component ClosedLinkedList = {
class List {
requires { Node(Node); }
Node first;
void addFirst() {
first=new Node(first);

}
}
class Node {
requires { & Node; }
Node next;
Node(Node n) { next=n; }
Node getNext() { return next; }

}
}

Now classes List and Node can be used:

ClosedLinkedList.List l=new ClosedLinkedList.List();

When closing a component, all type constraints in the class types must be
verified, otherwise a type error is issued.

For instance, the expression bind(LinkedList,{N->List}) is not type cor-
rect, since List does not satisfy the constraint List(List).
6 For simplicity, we use here the dot notation for qualified class names since it is

likely the most natural choice for Java programmers. However, while this poses no
ambiguity problems for the simple Java subset we have implemented so far, this
would be the case in an extension to full Java.



Flexible Type-Safe Linking of Components for Java-Like Languages 143

Note that the constraints in ClosedLinkedList cannot be removed by the
compiler even though they are clearly satisfied. Indeed, a closed component is
not permanently “sealed”, but can be reopened using operators restrict and
unbind , which will be discussed in Section 2.4.

Merge. Assume we want to extend the code in LinkedList in order to support
doubly linked lists. This extension can be isolated in a separate component:

component Double = {
deferred class N, List, Node;
class DoubleList extends List {
requires { N(N,N);

’a List.first;
N<=’a;
’a N.next;
’a ’a.prev; }

N last;
void addLast() {
N n = new N(last, null);
if (first==null) first = n;
if (last!=null) last.next = n;
last = n;

}
void addFirst() {
N n=new N(null, first);
if (first!=null)

first.prev = n;
first = n;
if (last==null) last=n;

}
}
class DoubleNode extends Node {
requires { Node(N); }
N prev;
DoubleNode(N n) { super(n); }
DoubleNode(N p,N n) {
super(n); prev=p; }

N getPrev() { return prev; }
}

}

Before explaining how the merge operator behaves, let us focus on the user
requirements in DoubleList: the type variable ’a is used for expressing the
general7 requirement that class List must provide the field first with a type

7 For sake of simplicity we have omitted to specify the most general requirements as
they would be inferred by the compiler.
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’a such that ’a is a supertype of N (N<=’a), and provides a field prev having
the same type ’a (’a ’a.prev). Note that, as anticipated above, we could not
achieve the same effect by using a required interface which specifies for each
deferred class its expected signature. Indeed, in this case we should have fixed
for instance the type of field f in List, e.g., requiring this type to be N, whereas
in fact any supertype of N would work as well.

A new component DoubleLinkedList can be defined by merging LinkedList
with Double:

component DoubleLinkedList=merge(LinkedList,Double);

In DoubleLinkedList the two deferred classes List and Node of component
Double are bound to the corresponding classes declared in LinkedList, whereas
class N remains deferred (indeed binding of deferred classes is by name matching).
Note that, while it is possible to merge components with deferred classes having
the same name, name conflicts for defined classes are not allowed.
Finally, it is possible to bind N to DoubleNode in DoubleLinkedList:

component ClosedDoubleLinkedList = bind(DoubleLinkedList,N->DoubleNode);

2.3 Renaming Facilities

Since binding of deferred classes is by name matching, a renaming operator might
be useful in some circumstances.

For instance, if in Double the two deferred classes List and Node were named
L and Nd, respectively, then a renaming would be necessary before merging
LinkedList with Double.

component DoubleLinkedList =
merge(LinkedList,rename(Double,{L->List,Nd->Node}));

The rename operator allows renaming of a single class name at time, therefore the
expression rename(Double,{L->List,Nd->Node}) is just a convenient shortcut
for the more verbose one:

rename(rename(Double,L->List),Nd->Node)

Renaming of more classes is accomplished sequentially from left to right. Both
deferred and defined classes can be renamed. Since the operator allows only
bijective renamings, the newly introduced name must be unused in order to
avoid conflicts.

2.4 Unbind and Restrict

Let us consider again component ClosedLinkedList as defined in Section 2.2. As
already noted, the constraints on class Node cannot be removed by the compiler
without compromising type safety. This is due to the fact that it is possible to
derive an open component from a closed one by making some class deferred.
This can be accomplished by using either the unbind or the restrict operator.
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Unbind. The unbind operator can be considered the inverse of bind; for instance,
as ClosedLinkedList could be derived from LinkedList with the bind operator,
the opposite could be obtained by deriving LinkedList from ClosedLinkedList
with the unbind operator.

component LinkedList=unbind(ClosedLinkedList,Node->N)

The class to be unbound (Node in the example) must be defined in the component
while the new name (N in the example) must be unused. The effect consists in
adding the deferred class N and replacing all soft links to Node with N.

This example shows also that in general requirements cannot be safely removed
by the compiler; indeed, requirements on Node specified in ClosedLinkedList
cannot be simplified, since after applying the unbind operator, soft links to the
defined class Node could be redirected to some deferred class (N in the example).
The unbind operator offers an effective way to deal with unanticipated code
modification due to poor component design; although unanticipated code modi-
fication should be better addressed when designing and developing components,
unbind gives a chance to recover from this problem when components are as-
sembled and are not available in source form.

Restrict. The restrict operator provides another mean for opening closed com-
ponents. It is mainly used jointly with the merge operator to override class defini-
tions. For instance, a new component could be obtained from ClosedLinkedList
by overriding the definition of Node with that contained in component
AnotherNode:

component AnotherNode = {
class Node {
Node next;
int elem;
Node(Node n) { next=n; }
Node(Node n,int e) { next=n; elem=e; }
Node getNext() { return next; }
int getElem() { return elem; }

}
}
component ClosedIntLinkedList =

merge(AnotherNode,restrict(ClosedLinkedList, Node));

First, the restrict operator makes class Node in ClosedLinkedList deferred by
removing its definition. Then the new definition of Node in AnotherNode is added
by the merge operator.

Note the difference between the unbind and the restrict operator: for class C
defined in component Comp, unbind(Comp, C->U) does not remove the defini-
tion of C, but redirects soft links to C to an unused class U; restrict(Comp,C),
instead, makes class C deferred by removing its definition, but does not redirect
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soft links to C. Hence rename(restrict(Comp,C),C->U) is still different from
unbind(Comp, C->U) since in the latter the definition of C is kept.

As for renaming, convenient shortcuts are provided for unbinding and restrict-
ing multiple classes.

2.5 Qualified Class Names

As already explained, references to classes defined in other components are al-
lowed by using qualified class names:

component AnotherList = {
class List {
requires { AComponent.Node(AComponent.Node); }
AComponent.Node first;
void addFirst() { first=new AComponent.Node(first); }

}
}

Component AnotherList directly depends on component AComponent which is
expected to define a class Node satisfying the constraint specified in class List.
While soft links can always be redirected by the composition operators, hard
links cannot and establish direct dependencies between components. However,
these dependencies are always made explicit by the required interface. The same
consideration applies to hard links to classes declared in the same component.

component YetAnotherList = {
class List {
requires { YetAnotherList.Node(YetAnotherList.Node); }
YetAnotherList.Node first;
void addFirst(){first=new YetAnotherList.Node(first);}

}
class Node{
requires { & YetAnotherList.Node; }
YetAnotherList.Node next;
Node(YetAnotherList.Node n){next=n;}
YetAnotherList.Node getNext(){return next;}

}
}

In component YetAnotherList all hard links to Node are permanently bound to
the definition of Node in the same component and can no longer be unbound.

While it is not possible to transform a hard link into a soft link, the opposite
can be achieved via the bind operator. For instance, YetAnotherList could be
equivalently obtained from ClosedLinkedList:

component YetAnotherList =
bind(ClosedLinkedList,Node->YetAnotherList.Node);
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3 A Framework of Components

The full formal definition of the framework of components we have introduced
through examples in the previous section is given in [4]. In this paper, for lack of
space, we only report syntax and reduction rules, to give the reader a precise, yet
rather intuitive, definition of the behaviour of the operators. However, in the real
scenario (see Section 4) a component expression is not reduced at the source level,
but rather generates a binary component in a context where binary components
for component names used inside the expression are already available. This is
modeled by the type system given in [4].

The framework is parametric, in the sense that syntax and reduction rules
can be instantiated on top of a programming language providing some syntactic
categories and judgments. We use a Java-oriented terminology, since our aim
is to instantiate the framework on Java-like languages (in particular, in [4] we
present an instantiation on Featherweight Java [15]). However, the framework
could in principle be applied more in general, thinking of “class” as “language
entity”.

In order to define syntax and reduction semantics of our component lan-
guage, we first list the syntactic categories the used programming languages must
provide.

– Simple class names (c). A qualified class name has the shape M.c, where c
is a simple class name, and M is a component name. The meta-variable n
ranges over both the sets of simple and qualified class names.

– (Source) class definitions (cds). We assume that each source class definition
introduces a simple class name c that can be extracted by a function out.
Sequences of source class definitions cds

1 . . . cds
n will also be denoted by S.

The syntax used for creating and composing components is given in Fig.1. We
assume that order in sequences is immaterial and use a bar notation for se-
quences following the same conventions as in [15] (for instance, c stands for
c1 . . . cn).

An application program corresponds to an executable application obtained
by assembling together and deploying some components as specified in the envi-
ronment MDS, and by providing a main expression es from which execution must
start in the context of components MDS.

A component environment is a sequence of component declarations (possibly
mutually dependent), each one associated with a distinct name.

A basic component BM is a sequence of class names (the deferred classes), fol-
lowed by a sequence of class definitions. We assume that all class names (deferred
or defined) introduced in BM are distinct.

Moreover, we assume that class definitions can only contain soft links to classes
which are explicitly declared in BM, either in c or in S. If S = cds

1 . . . cds
n, then

out(S) = out(cds
1) ∪ . . . ∪ out(cds

n) denotes the set of all classes defined in S,
whereas in(S), whose definition depends on the used language, is expected to
denote the set of all soft links in S. Recall that a soft link to a class is any of its
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P ::= (MDS, es) application program
MDS ::= MD (source) component environment
MD ::= M = ME component declaration
ME ::= M | BM | merge(ME1, ME2) | restrict(ME, c) | component expression

rename(ME, c → c′) |
bind(ME, d → n) | unbind(ME, c → d)

BM ::= {c; S} basic component

where: component/class names declared in MDS/BM are distinct;
in(S) ⊆ c ∪ out(S) in BM

Fig. 1. Syntax

unqualified occurrences except those which introduce the declaration of either
the class itself, or any of its constructors.

For instance, in component M={class C{ C(){...} M.C m(C arg){...}}}
only the last occurrence of C is a soft link to C, whereas M.C is a hard link, that
is, a link permanently anchored to the declaration of C inside M.

Defined class names are not associated permanently with a class definition in
the component, but their definition can be changed later when composing the
component with others. In other words, classes are all considered virtual.

Composition operators include merge, restrict, rename, bind, and unbind.
The reduction relations over programs, component environments, declarations
and expressions are defined by the rules in Figure 2. For simplicity, we use the
same symbol for the reduction relations over the four different sets of terms,
since such sets are mutually disjoint.

Values for component expressions are basic components BM, whereas a com-
ponent declaration M = ME is expected to reduce to a declaration of a basic
component M = BM. Analogously, component environments are expected to re-
duce to environments of basic components M = BM.

Rule (prog) corresponds to the intuition that the component environment of
the program needs first to be reduced to a collection of declarations of basic
components; then, the reduced component environment is closed by completing
simple class names with their corresponding qualified version, and, finally, in
the context of the class definitions extracted from the elaborated component
environment, the reduction of es can start (prog2 ) according to the reduction
relation →core at the level of the programming language.

The auxiliary functions classes and close are trivially defined by

classes(M = {c;S}) = S

close(M = {c;S}) = M = {c; closeM(S)}

The definition of closeM, though trivial (simple class names are qualified by
M), depends on the used language; the instantiation for FJ can be found in [4].
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(prog)
MDS → MDS′

(MDS, es) → (MDS′, es)

(prog2)
(S, es) →core (S, es′)

(M = BM, es) → (M = BM, es′)
S ≡ classes(close(M = BM))

(mdecs)
MD → MD′

M = BM MD MDS → M = BM MD′ MDS

(mdecs2)
M = BM MD MDS → M = BM MD′ MDS

MD′ ≡ MD[BM/M]
MD′ �≡ MD

(mdec)
ME → ME′

M = ME → M = ME′

(merge)
merge({c1; S1}, {c2; S2}) → {c; S1S2} c = c1c2 \ out(S1S2)

out(S1) ∩ out(S2) = ∅

(restrict)
restrict({c; S cds}, c) → {c c; S} out(cds) = c

(rename)
rename({c; S}, c → c′) → {c; S}[c′/c]

c ∈ c ∪ out(S)
c′ �∈ c ∪ out(S)

(bind)
bind({c d; S}, d → n) → {c; S[n/d]} n qualified or n ∈ out(S)

(unbind)
unbind({c; S}, c → d) → {c d; S[d/in c]}

c ∈ out(S)
d �∈ c ∪ out(S)

Fig. 2. Reduction rules

In a component environment, component declarations are sequentially pro-
cessed from left to right. The leftmost declaration MD which is not fully reduced
yet is selected, and, either a reduction step can be applied to MD (mdecs), or some
name Mi of previously declared components can be substituted with the corre-
sponding basic expression (mdecs2 ). Note that even though the two rules are not
mutually exclusive, the reduction relation turns out to be confluent. The side
condition MD′ �≡ MD avoids loops, whereas MD[BM/M] denotes parallel substitution
of Mi with BMi, for i ∈ 1..n, in MD. The inductive definition of such substitution is
standard, except for the following case: {c;S}[BM/M] = {c;S}. Substitution is not
propagated inside components, since hard links are allowed to establish mutual
dependencies between components.

Rule (mdec) is straightforward.
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We denote by S[c′/in c] the class definitions obtained from S by replacing
every soft link to c by c′. Recall that references to c are all occurrences of c
except those which either occur in qualified names, or introduce the declaration
of either c, or one of its constructors.

Finally, c[c′/c] denotes the replacement of c with c′ in c, if present, and S[c′/c]
denotes the replacement of simple class name c (but not of qualified names of
shape M.c) with c′. That is, S[c′/c] differs from S[c′/in c] since it also replaces
declaring occurrences. Again, the precise definitions of [ /in ] and [ / ] depend
on the core language.

The reduction relation for component expressions is defined as the compatible
closure of the corresponding rules, since, for brevity, we have omitted the usual
congruence rules. Even though it is not deterministic, the reduction relation is
clearly confluent by orthogonality.

Merging two basic components (merge) corresponds to just putting together
their class definitions (S1 S2), provided that there are no conflicts (out(S1) ∩
out(S2) = ∅), whereas the deferred classes are those of the two components
which do not match with a defined class (c1c2 \ out(S1S2)); note that deferred
classes are shared.

The restrict operator (restrict) removes the definition of a class c in a basic
component, and makes c a deferred class.

The rename operator (rename) performs a bijective renaming of a class c into
c′ in a basic component BM: c must be either a deferred or a defined class in BM,
whereas c′ must be new, that is, neither deferred nor defined in BM. Recall that
qualified names are not affected by the substitution.

The bind operator (bind) replaces all soft links to a deferred class8 with the
name of a defined class of the same component or with a qualified class name.
Conversely, the unbind operator (unbind) replaces all soft links to a defined class
with a new deferred class.

As final remark, note that all the composition operators can be expressed as
a combination of operators in (mixin) module calculi, such as CMS [6]. Indeed,
merge (called link in [6]) and restrict are exactly the corresponding operators
of the CMS version with virtual components, whereas rename, bind and unbind
can all be obtained as special instances of the CMS reduct operator which al-
lows independent renaming of input and output names (in rename names which
are both input and output are renamed in the same way, and only bijective re-
namings are considered; in bind an input name is renamed to an output name;
finally, in unbind an input name is renamed to a fresh name). Hence, the seman-
tics of our component language could be equivalently given by translation into
CMS. However, we preferred here a direct semantics since it is more intuitive
for most readers. Note also that unbind operator, which seems at a first sight
to change the inner structure of a component, actually can safely be expressed
by module operators which consider a component as a black box, relying on
the CMS distinction between (external) names and (internal) variables which

8 Note that all soft links to a deferred class are just all unqualified occurrences of c,
hence S[n/d] and S[n/in d] coincide here.
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we have omitted here for simplicity: that is, only the input name is changed,
whereas the variable used in internal code is kept. This model exactly reflects
what happens at the implementation level.

4 Implementation

In this section we discuss how we have implemented a prototype compiler for the
framework we have presented; it can be downloaded (along with its sources and
some examples) at: http://www.disi.unige.it/person/LagorioG/SmartJavaComp/
This compiler supports a small Java subset, which extends the language used
in the instantiation of the framework described in [4]; in addition to some syn-
tactic shortcuts it supports primitive types, assignments, implicit use of this,
the literal null, void methods, constructor overload and basic statements. All
examples shown in the paper can be tested.

Our prototype consists of two programs: the compiler and the deployer. The
former generates .bc component binary files from .sjc component source files,
and the latter assembles component binary files into standard .jar files. These
resulting JAR files are directly executable on any JVM (Java Virtual Machine).
A .sjc file contains a single component declaration MD as in Fig.1, where the
language used for writing class definitions is the small Java subset described
above. A .bc file (a binary component) is (roughly) a collection of Java classes
in polymorphic bytecode format, each one equipped with its constraints. A basic
component is compiled by compiling in isolation any class definition, by imple-
menting the type system for separate compilation defined in [2], extended to the
considered language.

Component declarations where unbound component names appear only in
qualified names can be compiled in total isolation. On the other hand, component
declarations which depend on other components can be compiled only if these
components are already available in binary form. In this case, our compiler acts
also as a linker, that is, it generates a new .bc file by also using those binary
files.

When components are compiled, type constraints are checked for consistency;
unfortunately, some errors could be undetected as long as components remain
open. Luckily, verification of constraints is complete in case of closed compo-
nents [2].

Because binary components contain polymorphic bytecode, they cannot be
directly loaded, much less executed, by a standard JVM. In order to obtain a
standard Java “executable” (that is, a JAR archive containing a proper manifest)
from a set of .bc binary files, we must deploy them.

The deployer can assemble components into a single executable, after having
checked that these components complete each other without clashing; that is,
when the collection of Java class signatures extracted from these components
is well-formed9 and all type constraints of components can be simplified in this
environment of class signatures.
9 The class hierarchy is acyclic and there is no bad overriding/overloading.
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5 Conclusion

We have presented a parametric framework of components for Java-like lan-
guages where a component is a collection of (binary) classes, each one equipped
with type constraints on used classes. These type constraints guarantee safe
linking of components; moreover, linking is flexible, in the sense that type con-
straints are abstract enough to never reject safe compositions, and components
can be combined by a set of powerful (mixin) module operators.

A concrete instantiation of the framework can be provided by giving a suitable
intermediate language: Java bytecode or .NET intermediate language does not
allow fully adaptive components since, roughly speaking, they do not abstract
away from all the possible contexts where open components can be safely used.
However, as shown in [2], it is possible to define more abstract binary languages
which are adequate to this aim. Our work until now, both in [2] and in the
prototype accompanying this paper, has focused on extending Java bytecode,
by adding type variables and type constraints. However, instantiations based on
.NET intermediate language are feasible and interesting as well; moreover, they
would be even more appealing, being .NET an intermediate language which does
not rely on a particular source language, so the corresponding component frame-
work would allow interoperability among components written in any language
which targets .NET. We plan to investigate this possibility further.

Basic components are constructed, as mentioned above, in a particular lan-
guage. Again, the framework can be instantiated on any source language which
allows compilation in isolation of classes in the given binary language.

The semantics of the component language is defined in terms of reduction into
basic components, that is, collection of class declarations.

To show the effectiveness of the approach, we have provided in [4] a complete
formal description of an instantiation of the framework on Featherweight Java
[15], which uses the type system for compositional compilation in [2]. Moreover,
we have developed a prototype implementation on a small Java subset, which
implements a large extension of this type system.

In literature there exist several proposals to better support component pro-
gramming in object-oriented languages.

MzScheme [13] and Jiazzi [17] components are mixins which can be statically
linked, in a way similar to our approach. MzScheme is built on top of Scheme
and is not statically typed; Jiazzi is inspired by MzScheme, but is defined on
top of Java, and is statically typed.

Other related papers propose language level abstractions for component-
oriented programming allowing components to be first-class entities. Compo-
nentJ [18], ArchJava [1], and ACOEL [19] are Java-like component-oriented lan-
guages, where components can be dynamically composed by explicitly connecting
their ports. Ports basically play the role of required and provided interfaces in
our framework.

ComponentJ promotes black-box object-oriented component programming
style, by avoiding inheritance in favor of object composition.
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ArchJava is an extension of Java with component classes; its type system
allows for static checking of structural conformance between architecture and
implementation.

ACOEL is an extensional language for supporting black-box components
which uses mixins and virtual types to build adaptable applications.

Finally, Zenger [22] follows a more scalable approach, by proposing a compo-
nent model where components are composed by type-safe high-level composition
operators.

Differently to our approach, all the works above are less focused on the prob-
lem of programming language independence and interoperability of binary com-
ponents. There are several short term enhancements on the design of the com-
ponent language which could be considered: for instance, adding the possibility
of hiding classes in components by making them private, or allowing non virtual
classes (classes statically bound).

Long term future work includes at least two important directions. First, our
binary components are linkable units, but not loadable units, that is, they cannot
be replaced or serviced after application execution has started. Hence, we plan
to study the possibility of considering a different semantics for the composition
operators based on dynamic rather static linking, following the approach taken in
[11,16] where models for virtual machines able to execute polymorphic bytecode
have been defined.

Another limitation of the approach is that mutual consistency of components
only means that type correctness is guaranteed, but of course does not imply that
components satisfy some expected behaviour. To go more towards preservation
of also semantic properties, one should develop an assertion-based version of
both required and provided interfaces.
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Abstract. This paper ascribes a formal semantics to advice weaving
in AspectJ. Since the version 1.1, AspectJ language is developed us-
ing bytecode weaving, which combines aspects and classes to produce
“.class” files that run in a Java Virtual Machine (JVM). In AspectJ,
advice weaving is done statically by inserting the advice functionality in
some regions of the code. These regions are join points that are declared
using pointcuts. In this paper, we focus only on static pointcuts, i.e.,
pointcuts that correspond directly to locations in the bytecode. AspectJ
dynamic pointcuts such as target, this, and cflow are not in the focus
of this paper.

1 Motivations and Background

Aspect Oriented Programming (AOP) [1] is a new computational paradigm that
complements the Object Oriented Programming (OOP) paradigm by supporting
modular implementation of a range of crosscutting concerns such as security and
synchronization.

The acceptance of this new approach is growing rapidly due to the popularity
of AspectJ [2], an aspect oriented extension to the Java programming language.
The fundamental concepts of AspectJ approach are: Join points, pointcuts, and
advices. A join point is an identifiable point in the execution of a program. A
pointcut is a constructor that designates a set of join points. Advices are pieces
of code attached to pointcuts and executed when the join points satisfying their
pointcuts are reached. This is made possible thanks to the process of “advice
weaving” that combines the base functionality of the application with advices.
The process of advice weaving is implemented differently in the AOP languages.
In AspectJ, it is done statically by inserting the advice functionality in certain
regions of the program that correspond to the join points that are matched by
the advice pointcut. These regions are called join points shadows and represent
the textual part of the program executed during the considered join points. Since
� This research is the result of a fruitful collaboration between Concordia University,

the Canadian Department of National Defense and Bell Canada under an NSERC
DND Research Partnership Program.
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AspectJ-1.1, the advice weaving is based on bytecode transformation rather than
on source code transformation. In this case, the AspectJ compiler is composed of
two components. The first component (front-end compiler) is implemented as an
extension to the Java compiler and compiles applications and aspects into pure
Java bytecode that is enriched with additional annotations to handle non-pure
Java information as advices and pointcuts. The second component (back-end
compiler) weaves compiled aspects with compiled applications producing woven
class files.

AOP is a very appealing approach, however most of the research contributions
target practical implementation efforts rather than theoretical underpinnings.
Furthermore, in spite of the fact that AspectJ is the defacto standard for AOP
in Java, only one paper [3] described its advice weaving implementation.

In this paper, we present a formal description for AspectJ advice weaving. We
are interested only in static pointcuts. A static pointcut operates and uses only
compile-time information. Such pointcuts can be directly mapped to code and
the advice weaving is represented by a direct call to the advice functionality.
Contrarily to static pointcuts, dynamic pointcuts cannot be mapped to places
in code but include some conditional logic (called residuals) in order to check
some dynamic properties. This is the case of the dynamic pointcuts: cflow,
cflowbelow, if, this, target, and args and the implementation of the residuals
can be less or more complex depending on the pointcut in question. We plan
to extend the proposed semantics in the near future by taking into account the
dynamic pointcuts as well.

The rest of the paper is organized as follows. Section 2 discusses the state of
the art on AspectJ semantics. Section 3 presents the syntax of a subset of JVML
(Java Virtual Machine Language) and Section 4 is devoted to the description of
the static pointcuts, the join points shadows, and the advices that we consider.
Section 5 describes the ingredients that are used in the semantic description. The
weaving semantics is given in Section 6 and finally some concluding remarks are
reported in Section 7.

2 Related Work

The most relevant research contribution on this topic is the one advanced by
Hilsdale and Hugunin in [3] where a complete description of the advice weaving
implementation in AspectJ is reported. It was the first discussion of the imple-
mentation concerns in AspectJ. However, this description is not formal and the
purpose of our paper is the formalization of this work.

Other relevant frameworks present a formalization of the AOP paradigm.
Wand, Kiczales and Dutchyn [4] present a denotational semantics for point-
cuts and advices for an AOP language defined in the Aspect Sand Box (ASB)
project [5]. Jagadeesan, Jeffrey and Riely [6] present an operational semantics
for an un-typed base language with multithreads, classes and objects. They en-
rich the syntax of the base language to handle aspects. Walker, Zdancewic and
Ligatti [7] present an operational semantics for a simply-typed lambda calculus
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extended with two central new abstractions: Explicitly labelled program points
and advices. The labels serve to trigger advice and to mark continuations that
the advice may return to. The system is not intended to model constructs di-
rectly like AspectJ, but it is a calculus into which source-level AOP constructs
can be translated. It could be considered more general than the existing AOP
languages. Douence, Motelet and Sudholt present an operational semantics of
an AOP system [8]. They describe a domain specific language for the definition
of crosscuts. The system is based on a monitor that observes the behavior of
the programs. The monitored program calls the monitor when an event is emit-
ted and the monitor will then check if there is any crosscut at this point. This
approach is called EAOP for Event Aspect Oriented Programming.

In contrast to all this research, our aim is to develop a formal semantics that
describes the aspectJ back-end compiler task. The semantics that we propose
shows how the back-end compiler uses the front-end compiler information in
order to produce pure JVML code that can be executed by a JVM.

3 JVML Syntax

This section describes a concrete syntax for our JVM set of instructions. It
contains simple instructions such as local variable access and stack manipulation
as well as other more tricky instructions like thread creation, mutual exclusion
and exceptions.

Table 1. JVML Bytecode Grammar

JVMLInstruction ::= aload i | iload i | astore i
| istore i | pop | push n
| dup | iadd | new i
| ifeq adr | ifne adr | goto adr
| return | ireturn | areturn
| athrow i | monitorenter | monitorexit
| invokevirtual i | invokespecial i | invokestatic i
| invokeinterface i,n | getstatic i | putstatic i
| getfield i | putfield i

4 Pointcuts, Joinpoint Shadows and Advices

This section presents the join points, the join points shadows and the pointcuts
considered in this paper. A join point is a point in the control flow graph of a
running application whereas a pointcut determines a set of join points. A join
point shadow represents the textual part of the program executed during the
execution of the corresponding join point. AspectJ provides a number of base
pointcuts that can be logically combined, using boolean operations, to construct
more complex ones. An AspectJ pointcut is either a static pointcut or a dynamic
pointcut. A static pointcut describes join points that can be determined by a
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static analysis whereas a dynamic pointcut describes join points that cannot
be determined statically. The following AspectJ pointcut is a static one and
describes all the join points that are in the class A and call the void method
“logging” of class B.

pointcut callLoggingFromAtoB(): call(void B.logging()) && within(A);
whereas the next pointcut depends on the type of the executing object. A call

of a void method “logging” in a superclass of A might be a valid join point if
the object is an instance of A.

pointcut callLoggingFromA(): call(void *.logging()) && this(A);

In this paper, we address only AspectJ static pointcuts because they do not
require adding conditional logic (called residuals) in order to check the dynamic
properties. More precisely, we consider eight base pointcuts: “Method call”,
“method execution”, “advice execution”, “within method code”, “field get”,
“field set”, “static class initialization” and “within class”1. These base point-
cuts can be combined with boolean operators as described in the formal syntax
in Table 2. The set of corresponding join points and join point shadows where
advice weaving may intervene is given in Table 3. As we can notice, there are two
cases of join point shadows: The case where the shadow is exactly one instruc-
tion and the case where the shadow is an entire method. Notice also that the
pointcuts “within method code” and “within class” do not by themselves define
new shadows. They use the shadows defined by the other six static pointcuts.

In this paper, we consider an advice as either a Before advice or an After ad-
vice. The shadows that correspond to a method execution (including the “clinit”
method) or advice execution are entire methods and we need to delimit the be-
ginning and the end of such shadows. For this purpose, we will assume that
the front-end compiler has inserted a special code impdep12 to mark the start
of a method or advice execution. The end of method or advice execution are
determined by the “return” instructions. For this reason, we introduce the no-
tions of “before shadow” and “after shadow”. We consider that an instruction
in the code of the pre-compiled application can be a before shadow, an after
shadow or none of them. In case of a Before advice, all the before shadows are
checked for an eventual matching with the advice pointcut. In case of an After
advice, all the after shadows are checked for matching with the advice pointcut.
Each instruction among: invokevirtual, invokestatic, invokeinterface,
invokespecial, getfield,
getstatic, putfield, or putstatic is both a before shadow and an after
shadow because it can be a candidate for a weaving either for a Before ad-
vice or an After advice and should be considered in both cases. The mnemon-
ics impdep1 are before shadows and all return methods return or ireturn or
areturn are after shadows.

1 In order to ease the semantics reading, we do not use any regular expression patterns
for pointcuts, such as m(..) or *.

2 AspectJ compiler inserts idemp1 mnemonics before and after all the join points
shadows. In our case, we insert this code just before the execution shadow.
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Table 2. Pointcut Syntax

Pcut ::= BasePcut | BooleanPcut
BasePcut ::= mcall(MethodPattern) | mexecution(MethodPattern)

aexecution() | withincode(MethodPattern)
get(FieldPattern) | set(FieldPattern)
staticInit(ComponentType) | within(ComponentType)

BooleanPcut ::= Pcut or Pcut | not Pcut
Pcut and Pcut

MethodPattern ::= 〈 methodModifiers: (MethodModifier)-set,
methodSignature: MethodSignature,
componentType: ComponentType 〉

FieldPattern ::= 〈 fieldModifiers:(FieldModifier)-set,
fieldSignature:FieldSignature,
componentType: ComponentType 〉

MethodSignature ::= 〈 name:Identifier,
argumentsType:(Type)-list,
resultType:Type 〉

FieldSignature ::= 〈 name:Identifier,
type:Type 〉

MethodModifier ::= public | private | static | synchronized
FieldModifier ::= public | private | static
ComponentType ::= ReferenceType | AspectType
ResultType ::= Type

| void
Type ::= PrimitiveType

| ReferenceType
ReferenceType ::= ClassType

| InterfaceType
ClassType ::= Identifier
InterfaceType ::= Identifier
AspectType ::= Identifier

Table 3. Join Points Shadows

Dynamic Join Point Join Point Shadow

Method call invokevirtual i
invokespecial i (for private methods)

invokestatic i
invokeinterface i,n

Field get getfield i
getstatic i

Field set putfield i
putstatic i

Method execution Entire method’s code

Advice execution Entire advice’s code

Static initialization Entire clinit method code
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5 Semantics Ingredients

In this section, we define the ingredients that are used in the semantic descrip-
tion. Accordingly, we introduce and define the notions of environment and con-
figurations. We will use the following notation along this paper.

Notation

– Given two sets A and B, A−→
m

B denotes the set of all mappings (maps for

short) from A to B (partial functions from A to B). A map m ∈ A−→
m

B

could be defined by extension as [a0 �→ b0 . . . an−1 �→ bn−1] to denote the
association of the elements bi’s to ai’s, where ai ∈ A et bi ∈ B.

– Given a map m from X to Y , the domain of m, X , is written Dom(m).
– Given a partial map f , we write f [x �→ v] to denote the updating operation

of f that yields a map that is equivalent to f except that x is from now on
associated with v.

– Given a record space D = 〈f1 : D1, f2 : D2, . . . , fn : Dn〉 and an element e
of type D, the access to the field fi of e is written e.fi and the update of
the fields fi1, . . . , fik in e by the values vi1, . . . , vik ∈ Di1, . . . , Dik is written
e[fi1 ← vi1, . . . , fik ← vik].

– Given a type τ , we write (τ)-list to denote the type of lists having elements
of type τ .

– Given a type τ , we write (τ)-set to denote the type of sets having elements
of type τ .

– The type Identifier classifies identifiers whereas NoneType classifies the
unique value None.

5.1 Environment

We define hereafter the environment as prepared by the front-end stage of the
compiler. We assume that the reader is familiar with the class file format as
described in the official specification of JVML [9]. The environment as described
in Table 4 models the different program declarations and is represented as a
record containing a Java environment and advices.

The Java environment is quite similar to the dynamic environment under
which the execution will be done after the weaving. The only difference is the
existence of the idemp1 code in the method codes. The front-end compiler in-
jects at the beginning of all methods (or advices) an idemp1 code to mark the
beginning of the method (or advice) execution. After the weaving, the idemp1
codes are removed from the method and advice codes.

The Java environment is a map that associates a set of classes to a set of
component types. We consider that an aspect can be viewed as a class and its
advices are represented by the methods of the class. A class is a record contain-
ing a constant pool, a super-class, a set of interfaces, a list of fields, a map that
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associates values to static fields, a list of methods, three flags that indicate
whether the class is initialized or not, is an interface or not, is an aspect or
not and a monitor. A constant pool is a map that associates a set of integers
with a set of constant pool entries. A constant pool entry can be a class type,
a pair of a method signature and a supposed class, or a pair of a field signa-
ture and a supposed class. Whenever a constant pool entry is a class type, this
means it has been created when the compiler encountered a Java instruction
of the form A a = new B(). The compiler then generates the corresponding new
and invokespecial instructions and a class constant pool entry initialized to
B. In the two other cases of constant pool entries, the supposed class represents
the class in which the method or the field is supposed to be found. The value
None for the super class indicates that the class does not have a super class. The
monitor associated with a class is a record of three components: threadOwner,
depth and a waitList. If the class is not locked the monitor is set to the value
〈None, 0, [ ]〉. Otherwise the monitor contains the thread identifier that locked
the class, the number of times this class has been locked by the same thread
and a list of all the threads blocked waiting for this class. A method consists of
a method signature, a class name in which the method has been defined, a set
of modifiers, an initial code idemp1 followed by a bytecode sequence, and a list
of method variables. A method signature is a record that contains the method
name, the types of arguments and the result type. The list of the method vari-
ables contains the default values of all local variables defined inside the method.
The method parameters are not considered in the method variables. A field is
represented by a record that contains a field signature, a class type to which
the field belongs to, and a set of modifiers. An advice is represented by a record
containing its kind, its pointcut, its signature, and the aspect where the advice
has been defined.

5.2 Configurations

The operational semantics is based on the evolution of configurations that are
defined hereafter. Weaving a class with some aspects is the result of weaving all
its methods with the considered aspects. For this reason, we restrict ourselves to
describe only the weaving inside one method and a configuration will then have
the following form:

〈E , m, pc, ads, nextpc〉
where:

– E represents the environment.
– m is the current method.
– pc represents the program counter that contains the address of the instruc-

tion to be advised in the method m.
– ads represents the advices to consider.
– nextpc represents the program counter for the next instruction to consider.
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Table 4. Environment Before Weaving

Environment ::= 〈 javaEnvironment: JavaEnvironment,
advices: (AdviceInfo)-list 〉

JavaEnvironment ::= ComponentType −→
m

Class

Class ::= 〈 constantPool: ConstantPool,
superClass: ClassType | NoneType,
interfaces: (ClassType)-set,
fields: (Field)-list,
staticMap: Field −→

m
Value,

methods: (Method)-list,
initialized: Int,
interface: Int,
aspect: Int,
monitorClass: Monitor 〉

ConstantPool ::= Int −→
m

ConstantPoolEntry

ConstantPoolEntry ::= ClassType | MethodPoolEntry | FieldPoolEntry
MethodPoolEntry | 〈 methodSignature: MethodSignature,

supposedClass: ClassType 〉
FieldPoolEntry | 〈 fieldSignature: FieldSignature,

supposedClass: ClassType 〉
Monitor ::= 〈 threadOwner: ThreadOwner,

depth: Nat,
waitList: WaitingList 〉

ThreadOwner ::= ThreadId | NoneType
WaitingList ::= (ThreadId)-list
ThreadId ::= Nat
Field ::= 〈 fieldSignature: FieldSignature,

fromClass: ComponentType,
fieldModifiers: (FieldModifier)-set 〉

Method ::= 〈 methodSignature: MethodSignature,
fromClass: ComponentType,
methodModifiers: (MethodModifier)-set,
code: Code,
methodVariables: MethodVariables 〉

AdviceInfo ::= 〈 kind: {Before, After},
pointcut: Pcut,
fromClass: AspectType,
adviceSignature: MethodSignature 〉

Code ::= ProgramCounter −→
m

Instruction

Instruction ::= JVMLInstruction | impdep1

ProgramCounter ::= Nat
MethodVariables ::= (Value)-list
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6 Weaving Semantics

This section is devoted to the description of the semantics, which contains five
rules. All the utility functions used inside the rules are described in the appendix
of this paper.

The first rule of the semantics describes the case where the instruction in the
method m at the program counter pc is not a shadow or the advice list is empty
(all the advices have been treated for this instruction). In such cases, the current
instruction is skipped and the list of advices is reset to its initial value (all the
advices of the environment).

(¬isBeforeShadow(m, pc) ∧ ¬isAfterShadow(m, pc)) ∨ ads = [ ]
〈E , m, pc, ads, nextpc〉 −→

〈E , m, nextpc, E .advices, nextpc + 1〉
The second rule fires in the case where the head of the advice list is a Before

advice but is not applicable to the current instruction. This advice is then re-
moved and we reconsider the possibility of weaving the same instruction with
the remaining list of advices.

head(ads).kind = Before
¬isBeforeAdviceApplicable (E , m, pc, head(ads))

〈E , m, pc, ads, nextpc〉 −→
〈E , m, pc, tail(ads), nextpc〉

The third rule of the semantics represents the case where the head of the
advice list is a Before advice and is applicable to the current instruction. In
this case, the method and the environment are changed because of the Before
advice merging. The program counter of the current instruction will change also
because of the Before advice injection.

head(ads).kind = Before
isBeforeAdviceApplicable(E , m, pc, head(ads))

(E ′, m′, pc′) = insertBeforeAdvice(E , m, pc, head(ads))
〈E , m, pc, ads, nextpc〉 −→
〈E ′, m′, pc′, tail(ads), pc′ + 1〉

The fourth rule depicts the case where the head of the advice list is an After
advice but is not applicable to the current instruction. The head of the advice list
is then removed and we reconsider the possibility of weaving with the remaining
list of advices.

head(ads).kind = After
¬isAfterAdviceApplicable (E , m, pc, head(ads))

〈E , m, pc, ads, nextpc〉 −→
〈E , m, pc, tail(ads), nextpc〉

The fifth and last rule of the semantics represents the case where the head of
the advice list is an After advice and is applicable to the current instruction.
In this case, the method and the environment are changed because of the After
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advice merging. The program counters of the current instruction and next in-
struction will change also because of the After advice injection.

head(ads).kind = After
isAfterAdviceApplicable(E , m, pc, head(ads))

(E ′, m′, pc′, nextpc′) = insertAfterAdvice(E , m, pc, head(ads), nextpc)
〈E , m, pc, ads, nextpc〉 −→

〈E ′, m′, pc′, tail(ads), nextpc′〉
We assume that the operational semantics stops when there are no more

instructions in the method to be treated.

7 Conclusion and Future Work

In this paper, we reported a formalization of the static weaving in AspectJ.
More precisely, the semantics allows to describe the weaving in presence of static
pointcuts. To handle the case where join points shadows are complete methods as
for method-execution, advice execution, and static initialization, we introduce
two kinds of shadows “before shadow” and “after shadow”. This allows us to
delimit the start of the shadow and its end. We believe that our work is a first
step in developing a formal semantics for AspectJ weaving. As future work, we
intend to extend this semantics in order to take into account dynamic pointcuts
as cflow.
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APPENDIX: Utility Functions

1. The function changeMethods changes a given method contained in a given list by
another given method:

changeMethods : (Method)-list×Method×Method → (Method)-list
changeMethods(l,m,m′) = head(l)::changeMethods(tail(l),m,m′)

if head(l).signature �= m.signature
changeMethods(l,m,m′) = m′::tail(l)

if head(l).signature = m.signature

2. The function head returns the first element in a given list:

head : (τ)-list → τ
head(v::l) = v, ∀ (v, l) ∈ τ×(τ)-list

3. The function insertAfterAdvice takes an environment, a method, a program counter,
an advice and the program counter of the next instruction as arguments and re-
turns a new environment, a new method (where the advice has been injected), and
the program counters of the two next instructions to treat. It injects the advice in
the method by injecting two JVML instructions: The call to the static “aspectOf”
method of the advice aspect, and the advice call itself. This corresponds to the
injection of two bytecodes: invokestatic i and invokevirtual j where i and j are
added as new entries to the constant pool of the method class. It is necessary to
call the static “aspectOf” method of the aspect to obtain an instance for use as
the receiver of the advice call. The “aspectOf” method is automatically generated
when compiling the aspect into a class:

insertAfterAdvice : Environment×Method×ProgramCounter×AdviceInfo×
ProgramCounter→Environment×method×ProgramCounter×ProgramCounter

insertAfterAdvice(E ,m,pc,ad,nextpc) =(E ’,m’,pc’,nextpc’) if⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

¬isReturn(m, pc)
∧ J E = E .javaEnvironment
∧ c = JE(m.fromClass)
∧ cpool = c.constantPool //Getting the Constant pool of the class of m.
∧ ms = signatureAspectOf(ad)
∧ cpool1 = cpool[i → newPoolEntry(ms, ad.fromClass)], i /∈ Dom(cpool)
∧ cpool2 = cpool1[j → newPoolEntry(ad.adviceSignature, ad.fromClass)]

j /∈ Dom(cpool1)
∧ code1 = m.code[k + 2 → m.code(k)], ∀ k ∈ Dom(m.code) / k >= pc + 1
∧ code2 = code1[pc + 1 → invokestatic i ] //Adding invokestatic i to m.
∧ code3 = code2[pc + 2 → invokevirtual j ] //Adding invokevirtual j to m.
∧ m′ = m[code ← code3] //Setting the code of m with the updates.
∧ c1 = c[constantPool ← cpool2,

methods ← ChangeMethods(c1.methods, m,m′)]
∧ J E1 = J E [m.fromClass → c1] //Updating the class where m is defined.
∧ pc′ = pc //Considering the same instruction for next advice weaving.
∧ netxtpc′ = nextpc + 2 //Shifting next instruction.
∧ E ′ = E [javaEnvironment ← JE1]
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insertAfterAdvice : insertAfterAdvice(E ,m,pc,ad,nextpc) =(E ’,m’,pc’,nextpc’) if⎧⎨
⎩

isReturn(m, pc)
∧ (E ′, m′, pc′) = insertBeforeAdvice(E ,m, pc, ad)
∧ nextpc′ = nextpc + 2

4. The function insertBeforeAdvice takes an environment, a method, a program
counter, and an advice as arguments and returns a new environment, a new
method, and a new program counter after injecting the advice in the method. It
works as the insertAfterAdvice except that the injection is done before the shadow:

insertBeforeAdvice : Environment×Method×ProgramCounter×AdviceInfo →
Environment×method×ProgramCounter

insertBeforeAdvice(E ,m,pc,ad) =(E ’,m’,pc’) if⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

J E = E .javaEnvironment
∧ c = JE(m.fromClass)
∧ cpool = c.constantPool
∧ ms = signatureAspectOf(ad)
∧ cpool1 = cpool[i → newPoolEntry(ms, ad.fromClass)] i /∈ Dom(cpool)
∧ cpool2 = cpool1[j → newPoolEntry(ad.adviceSignature, ad.fromClass)]

j /∈ Dom(cpool1)
∧ code1 = m.code[k + 2 → m.code(k)] ∀ k ∈ Dom(m.code)/k >= pc
∧ code2 = code1[pc → invokestatic i ]
∧ code3 = code2[pc + 1 → invokevirtual j ]
∧ m′ = m[code ← code3]
∧ c1 = c[constantPool ← cpool2,

methods ← ChangeMethods(c1.methods, m, m′)]
∧ J E1 = J E [m.fromClass → c1]
∧ pc′ = pc + 2
∧ E ′ = E [javaEnvironment ← JE1]

5. The function isAfterAdviseApplicable returns true if the given After advice is ap-
plicable in the method m at the program counter pc:

isAfterAdviseApplicable : Environment×Method×ProgramCounter×AdviceInfo
→ Boolean

isAfterAdviseApplicable(E ,m,pc,ad) =true if{
isAfterShadow(m,pc)

∧ matchAfterPcut(E ,ad.pointcut,m,pc)
isAdviseApplicable(m,pc,ad) =false otherwise

6. The function isAfterShadow returns true if the instruction at the position pc in the
method m can be a join point shadow for an After advice:

isAfterShadow : Method×ProgramCounter → Boolean
isAfterShadow(m,pc) =true if⎧⎪⎪⎨
⎪⎪⎩

isBeforeOrAfterShadow(m,pc)
∨ m.Code(pc) = return
∨ m.Code(pc) = ireturn
∨ m.Code(pc) = areturn

isAfterShadow(m,pc) =false otherwise
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7. The function isBeforeAdviseApplicable returns true if the given Before advice is
applicable in the method m at the program counter pc. We distinguish between
the case of execution shadow and the other shadows:

isBeforeAdviseApplicable : Environment×Method×ProgramCounter×AdviceInfo
→ Boolean

isBeforeAdviseApplicable(E ,m,pc,ad) =true if{
(m.Code(pc) = impdep1 ∧ matchBeforeExecut(ad.pointcut, m))

∨ matchBeforeOtherExecut(E ,ad.pointcut,m,pc)
isBeforeAdviseApplicable(E ,m,pc,ad) =false otherwise

8. The function isBeforeOrAfterShadow returns true if the instruction at the position
pc in the method m can be a join point shadow for either a Before advice or an
After advice:

isBeforeOrAfterShadow : Method×ProgramCounter → Boolean
isBeforeOrAfterShadow(m,pc) =true if⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m.Code(pc) = invokevirtual i
∨ m.Code(pc) = invokespecial i
∨ m.Code(pc) = invokestatic i
∨ m.Code(pc) = invokeinterface i,n
∨ m.Code(pc) = getstatic i
∨ m.Code(pc) = putstatic i
∨ m.Code(pc) = getfield i
∨ m.Code(pc) = putstatic i

isBeforeOrAfterShadow(m,pc) =false otherwise

9. The function isBeforeShadow returns true if the instruction at the position pc in
the method m can be a join point shadow for a Before advice:

isBeforeShadow : Method×ProgramCounter → Boolean
isBeforeShadow(m,pc) =true if{

isBeforeOrAfterShadow(m, pc)
∨ m.Code(pc) = impdep1

isBeforeShadow(m,pc) =false otherwise

10. The function isFpatternMatched returns true if a given field matches a given field
pattern:

isFpatternMatched :FieldPattern×Field→ Boolean
isFpatternMatched(fp,f) = true if⎧⎨
⎩

fp.fieldSignature = f.fieldSignature
∧ fp.componentType = f.fromClass
∧ fp.fieldModifiers = f.fieldModifiers

isFpatternMatched(mp,m) = false otherwise.

11. The function isMpatternMatched returns true if a given method matches a given
method pattern:
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isMpatternMatched :MethodPattern×Method→ Boolean
isMpatternMatched(mp,m) = true if⎧⎨
⎩

mp.methodSignature = m.methodSignature
∧ mp.componentType = m.fromClass
∧ mp.methodModifiers = m.methodModifiers

isMpatternMatched(mp,m) = false otherwise.

12. The function isReturn returns true if the instruction in the method m at the position
pc is one of the “return” JVML instructions:

isReturn :Method×ProgramCounter → Boolean
isReturn(m,pc) = true if⎧⎨
⎩

m.code(pc) = return
∨ m.code(pc) = areturn∨
∨ m.code(pc) = ireturn

isReturn(m,pc) = false otherwise.

13. The function matchAfterAexecut returns true if the given method is an advice and
the instruction at the given program counter is a “return” instruction:

matchAfterAexecut :Method×ProgramCounter → Boolean
matchAfterAexecut(m,pc) = true if{

(m.fromClass).aspect = 1
∧ isReturn(m, pc)

matchAfterAexecut(m,pc) = false otherwise.

14. The function matchAfterMexecut returns true if the given method pattern argu-
ment matches with the given method and the instruction at the given program
counter is one of the “return” JVML instructions:

matchAfterMexecut : MethodPattern×Method×ProgramCounter → Boolean
matchAfterMexecut(mp,m,pc) = true if{

isMpatternMatched(mp,m)
∧ isReturn(m, pc)

matchAfterMexecut(mp,m,pc) = false otherwise.

15. The function matchAfterPcut returns true if the given After advice is applicable
in the method m at the program counter pc:

matchAfterPcut : Environment×Pointcut×Method×ProgramCounter → Boolean
matchAfterPcut(E ,pcut1 and pcut2,m,pc) =

matchAfterPcut(E ,pcut1,m,pc)∧ matchAfterPcut(E ,pcut2,m,pc)
matchAfterPcut(E ,pcut1 or pcut2,m,pc) =

matchAfterPcut(E ,pcut1,m,pc)∨ matchAfterPcut(E ,pcut2,m,pc)
matchAfterPcut(E ,not pcut,m,pc) = ¬ matchAfterPcut(E ,pcut,m,pc)
matchAfterPcut(E ,pcut,m,pc) = matchPcut(E ,pcut,m,pc)

if (pcut ∈ BasicPcut) ∧ (pcut <>mexecution(mp)) ∧
(pcut <>staticInit(ct)) ∧ (pcut <>aexecution())
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matchAfterPcut(E ,mexecution(mp),m,pc) = matchAfterMexecut(mp,m,pc)
matchAfterPcut(E ,staticInit(ct),m,pc) = matchAfterStaticInit(ct,m,pc)
matchAfterPcut(E ,aexecution(),m,pc) = matchAfterAexecut(m,pc)

16. The function matchAfterStaticInit is called when the advice is an After advice and
its pointcut is staticInit(ct). The function returns true if the given method is
the “clinit” method of the class ct and the instruction in the method m at the
position pc is one of the “return” JVML instructions:

matchAfterStaticInit :ComponentType×Method×ProgramCounter→ Boolean
matchAfterStaticInit(ct,m,pc) = true if⎧⎨
⎩

m.fromClass = ct
∧ (m.methodSignature).name = “clinit”
∧ isReturn(m, pc)

matchAfterStaticInit(ct,m,pc) = false otherwise.

17. The function matchBeforeExecut returns true if the given pointcut pcut of a Before
advice matches as a method or advice execution of the given method :

matchBeforeExecut :Pointcut×Method → Boolean
matchBeforeExecut(pcut1 and pcut2,m) =

matchBeforeExecut(pcut1,m)∧ matchBeforeExecut(pcut2,m)
matchBeforeExecut(pcut1 or pcut2,m) =

matchBeforeExecut(pcut1,m)∨ matchBeforeExecut(pcut2,m)
matchBeforeExecut(not pcut,m) = ¬ matchBeforeExecut(pcut,m)
matchBeforeExecut(mcall(mp),m) = false
matchBeforeExecut(get(fp),m) = false
matchBeforeExecut(set(fp),m) = false
matchBeforeExecut(withincode(mp),m) = isMpatternMatched(mp,m)
matchBeforeExecut(within(ct),m) = (m.fromClass=ct)
matchBeforeExecut(mexecution(mp),m) = isMpatternMatched(mp,m)
matchBeforeExecut(staticInit(ct),m) =

( (m.fromClass=ct)∧ ((m.methodSignature).name=“clinit”) )
matchBeforeExecut(aexecution(),m) = ((m.fromClass).aspect=1)

18. The function matchBeforeOtherExecut returns true if the given pointcut pc of a
Before advice matches with the instruction at the position pc in the method m
not as method or advice execution:

matchBeforeOtherExecut :Environment× Pointcut×Method×ProgramCounter →
Boolean

matchBeforeOtherExecut(E ,pcut1 and pcut2,m) =
matchBeforeOtherExecut(E ,pcut1,m,pc) ∧ matchBeforeOtherExecut(E ,pcut2,m,pc)

matchBeforeOtherExecut(E ,pcut1 or pcut2,m) =
matchBeforeOtherExecut(E ,pcut1,m,pc)∨ matchBeforeOtherExecut(E ,pcut2,m,pc)
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matchBeforeOtherExecut(E ,not pcut,m,pc) =
¬ matchBeforeOtherExecut(E ,pcut,m,pc)

matchBeforeOtherExecut(E ,pcut,m,pc) = matchPcut(E ,pcut,m,pc)
if (pcut ∈ BasicPcut) ∧ (pcut <>mexecution(mp)) ∧
(pcut <>staticInit(ct)) ∧ (pcut <>aexecution())

matchBeforeOtherExecut(E ,mexecution(mp),m,pc) = false
matchBeforeOtherExecut(E ,staticInit(ct),m,pc) = false
matchBeforeOtherExecut(E ,aexecution(),m,pc) = false

19. The function matchPcut is called from the functions matchBeforeOtherExecut,
matchAfterPcut. The pointcut argument is one of the the following base pointcuts:
mcall(mp), get(fp), set(fp), withincode(mp) and within(ct). The function re-
turns true if the given pointcut matches with the instruction at the position pc in
the method m:

matchPcut :Environment×Pointcut×Method×ProgramCounter→ Boolean
matchPcut(E ,pcut,m,pc) = true if⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pcut = mcall(mp); mp ∈ MethodPattern
∧ (m.code(pc) = invokevirtual i ∨

m.code(pc) = invokestatic i ∨
m.code(pc) = invokeinterface i n ∨
(m.code(pc) = invokespecial i)

∧ J E = (E .javaEnvironment)
∧ mPoolEntry = J E(m.fromClass).constantPool(i)
∧ msign = mPoolEntry.methodSignature
∧ calledm = retrieveM(msign,

J E(mPoolEntry.supposedClass).methods)
∧ ((m.code(pc) = invokespecial i) ⇒ (isPrivate(calledm)

∧ calledm.methodSignature.name <> “init”))
∧ isMpatternMatched(mp, calledm)

matchPcut(E ,pcut,m,pc) = true if⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pcut = get(fp); fp ∈ FieldPattern
∧ m.code(pc) = getfield i ∨ m.code(pc) = getstatic i
∧ J E = (E .javaEnvironment)
∧ fPoolEntry = J E(m.fromClass).constantPool(i)
∧ fsign = fPoolEntry.fieldSignature
∧ getF = retrieveF(fsign,

J E(fPoolEntry.SupposedClass).fields)
∧ isFpatternMatched(fp, getF )

matchPcut(E ,pcut,m,pc) = true if⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pcut = set(fp); fp ∈ FieldPattern
∧ m.code(pc) = putfield i ∨ m.code(pc) = putstatic i
∧ J E = (E .javaEnvironment)
∧ fPoolEntry = J E(m.fromClass).constantPool(i)
∧ fsign = fPoolEntry.fieldSignature
∧ setF = retrieveF(fsign,

J E(fPoolEntry.supposedClass).fields)
∧ isFpatternMatched(fp, setF )
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matchPcut(E ,pcut,m,pc) = true if⎧⎨
⎩

pcut = winthincode(mp); mp ∈ MethodPattern
∧ isBeforeOrAfterShadow(m,pc)
∧ isMpatternMatched(mp,m)

matchPcut(E ,pcut,m,pc) = true if⎧⎨
⎩

pcut = winthin(ct); ct ∈ ComponentType
∧ isBeforeOrAfterShadow(m,pc)
∧ m.fromClass = ct

matchPcut(E ,pcut,m,pc) = false otherwise.

20. The function newPoolEntry returns a constant pool entry for a method given the
signature of the method and its class:

newPoolEntry : MethodSignature×Class → ConstantPoolEntry
newPoolEntry(ms,c) = c if{

c.methodSignature = ms
∧ c.supposedClass = c

21. The function retrieveF searches for a field contained in a list of fields given its sig-
nature:

retrieveF : FieldSignature×Fields → Field
retrieveF(fs,l) = head(l) if head(l).fieldSignature = fs
retrieveF(fs,l) = retrieveF(fs,tail(l)) if head(l).fieldSignature �= fs

22. The function retrieveM searches for a method contained in a list of methods given
its signature:

retrieveM : MethodSignature×Methods → Method
retrieveM(ms,l) = head(l) if head(l).methodSignature = ms
retrieveM(ms,l) = retrieveM(ms,tail(l)) if head(l).methodSignature �= ms

23. The function signatureAspectOf returns the signature of the method “aspectOf”
of the advice aspect:

signatureAspectOf : AdviceInfo → MethodSignature
signatureAspectOf(ad) = ms if⎧⎨
⎩

ms.name = “aspectOf”,
∧ ms.argumentsType = [ ],
∧ ms.resultType =ad.fromClass

24. The function tail returns the tail of a given list:

tail : (τ)-list → (τ)-list
tail([ ]) = [ ]
tail(v::l) = l, ∀ (v, l) ∈ τ×(τ)-list
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1 integer::u,v; valu valv
2 read (u,v); u v
3 u := u + v; u+v v
4 v := u - v; u+v u
5 u := u - v; v u

Fig. 1. Simple Statement Sequence

Symbolic analysis [17,29,23] uses symbolic expressions to describe computa-
tions as algebraic formulæ over a program’s problem space. Symbolic analysis
consists of two steps:

(1) the computation of symbolic expressions that describe all valid variable bind-
ings of a program at a given program point, and

(2) the formulation of a specific static analysis problem in terms of the computed
variable bindings.

As an example, consider the statement sequence depicted in Fig. 1. After the
declaration of two scalar variables, the read statement in line 2 assigns both
variables a new value. The subsequent assignment statements change the values
of both variables. Symbolic analysis applies symbolic values for program vari-
ables. Assuming that the read statement in line 2 yields the symbolic value u for
variable u, and v for variable v, then a simple sequence of forward substitutions
and simplifications computes the symbolic values depicted in the table at the
right of Fig. 1. Each row in the table denotes the symbolic values valu and valv
of variables u and v after execution of the corresponding statement. These sym-
bolic values describe the variable bindings that are valid at the corresponding
program points. Comparing the variable bindings depicted with line 2 and line 5,
it is clear that the values of the variables u and v are swapped in the example in
Fig. 1. Due to the symbolic nature of the analysis this is true irrespective of the
concrete input values for u and v. Based on the computed variable bindings an
optimising compiler can derive that the expression u−v in line 4 of the example
program will always yield u, which makes an overflow check of this expression
redundant. (Note that variables u and v are of the same type!)

The above example reflects the clear-cut division of symbolic analysis into
(1) the computation of valid variable bindings, and (2) the formulation of the
specific analysis problem under consideration (e.g., range check elimination) in
terms of those variable bindings.

In this paper we propose a generic symbolic analysis framework that auto-
mates step (1) above. The need for such a generic symbolic analysis framework
stems from the observations

– that step (1) is a prerequisite common to all static analysis problems to be
solved by symbolic analysis, and

– that existing approaches to this problem are of limited applicability (i.e.,
they cannot compute a solution for program points within loops, they are
not applicable to irreducible control flow graphs, and they are often tailored
to a specific application).
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Our generic symbolic analysis framework extends the applicability of existing
symbolic analysis applications to a larger class of programs. It allows the appli-
cation of symbolic analysis to other static analysis problems.

Our symbolic analysis framework accurately models the semantics of imper-
ative programming languages. We introduce a new representation of symbolic
analysis information called supercontext , which is a comprehensive and com-
pact algebraic structure describing the complete control and data flow analysis
information valid at a given program point.

We encode the side-effect of a single statement’s computation as a function
from supercontexts to supercontexts. We then extend this functional description
from single statements to program paths and sets of program paths. By doing so,
we gain a functional description of the input program in the symbolic domain.

With our approach the control flow information of the input program is mod-
elled by means of path expressions first introduced in [34]. A path expression
is a regular expression whose language is the set of paths emanating from the
start node of a control flow graph to a given node. We provide a natural ho-
momorphism that maps the regular expressions representing path sets into the
symbolic domain. We define these mappings by reinterpreting the ·, +, and ∗
operations used to construct regular expressions. The technical part of our work
shows that these mappings are indeed homomorphisms and that the symbolic
functional representation is correct.

With our approach we represent the infinitely many program paths arising
due to a loop by means of a closure context, which is an extension of a program
context (cf. [17]) that incorporates symbolic recurrence systems. In this way a
supercontext consists of a finite number of closure contexts. Symbolic analysis at
this stage reduces to the application of the functional representation of the input
program to a closure context representing the initial execution environment.

The contribution of our paper is as follows: Our approach is the first to prove
the semantic correctness of symbolic analysis with respect to the underlying
standard semantics. Second, we show the correctness of the meet over all paths
solution and the modelling of loops as symbolic recurrence systems. Third, our
approach does not restrict symbolic analysis to reducible flowgraphs, and it can
derive solutions for arbitrary graph nodes (even within nested loops). Fourth,
our approach is purely algebra-based and fully automated. It closes the gap
between static program analysis and computer algebra systems, which makes
supercontexts an ideal intermediate representation for all domain-specific static
program analyses. Fifth, the feasibility of our approach was proven by conducting
experiments with the SPEC95 benchmark suite. A high portion (i.e. 94%) of the
functions in SPEC95 has less than 105 closure contexts to analyse, with the
majority of those 94% involving even fewer than 4000 closure contexts.

The paper is organised as follows: In Sect. 2 we outline notations and back-
ground material. In Sect. 3 we define syntax and semantics of a flow language
that we use to develop our symbolic analysis methodology. In Sect. 4 we intro-
duce the symbolic analysis domain and the notion of symbolic execution along
program paths. Section 5 describes the main contribution of this paper, namely
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the mapping to the symbolic domain through path expressions. In Sect. 6 we
discuss experimental results of the SPEC95 benchmark suite. Section 7 surveys
related work. Finally, in Sect. 8 we draw our conclusions and outline future work.
The proofs of the theorems stated in the paper have been made available in [11].

2 Background and Notation

We use N to denote the natural numbers, Z to denote the integers, and B =
{true, false} to denote the truth values from Boolean algebra. The finite set of
program variables is denoted by V. Dom denotes the domain of a function. A
control flow graph (CFG) is a directed labelled graph G = 〈N, E, ne, nx〉 with
node set N and edge set E ⊆ N × N . Each edge e ∈ E has a head h(e) ∈ N
and a tail t(e) ∈ N . The set of incoming edges for a given node n ∈ N is defined
as in(n) = {e ∈ E : t(e) = n}. Likewise we define the set of outgoing edges for
a node n ∈ N as out(n) = {e ∈ E : h(e) = n}. Entry (ne) and Exit (nx) are
distinguished CFG nodes used to denote the start and terminal node. The start
node ne has no incoming edges (in(ne) = ∅), whereas the terminal node nx has
no outgoing edges (out(nx) = ∅). We require that every node n is contained in
a program path from ne to nx, where a program path π = 〈e1, e2, . . . , ek〉 is a
sequence of edges such that t(er) = h(er+1) for 1 ≤ r ≤ k − 1.

It is shown in [34] how program paths can be represented as regular expres-
sions: Let Σ be a finite alphabet disjoint from {Λ, ∅, (, )}. A regular expression
is any expression built by applying the following rules:

(1a) “Λ” and “∅” are atomic regular expressions; for any a ∈ Σ, “a” is an atomic
regular expression.

(1b) If R1 and R2 are regular expressions, then (R1 +R2), (R1 ·R2), and (R1)∗

are compound regular expressions.

In a regular expression, Λ denotes the empty string, ∅ denotes the empty set,
+ denotes union, · denotes concatenation, and ∗ denotes reflexive, transitive
closure under concatenation. We use L(R) to denote the set of strings defined
by the regular expression R over Σ. A regular expression R is simple if R = ∅
or R does not contain ∅ as a subexpression. Given a CFG G = 〈N, E, ne, nx〉,
we can regard any path π in G as a string over E, but not all strings over E
are paths in G. A path expression P of type (v, w) is a simple regular expression
over E such that every string in L(P ) is a program path from node v to node w.
Standard algorithms such as Gaussian elimination can be applied to compute
path expressions from a CFG (cf. e.g., [25,34]).

The following notational convention is used throughout the paper: to distin-
guish between corresponding entities from the standard semantic and symbolic
domain, we subscript the first with the letter c and the latter with the letter s.

3 Standard Semantic Program Execution

An environment env of our Flow language maps a program variable v ∈ V

to its value z ∈ Z. The set of possible environments can be represented by a
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pred : Predicate assign : Assignment
pred : := true | false |not pred |pred or pred assign : := id := exp

| pred and pred | exp rel-op exp

Fig. 2. Syntactic Domain of the Flow Language

function class Env ⊆ {env : V → Z}. Functions predc : E → (Env → B
)

and
σc : E → (Env → Env) associate with each edge e ∈ E a branch-predicate and
a side-effect. The syntax of Flow branch predicates and side-effects is depicted
in Fig. 2.

The valuation functions predc : Predicate → (Env → B) and assignc :
Assignment → (Env → Env) map predicates and side-effects to the semantic
domain; due to space considerations we refer to [11, Sect. 3] for their definitions.

Control progresses from node h(e) to t(e) iff predc

(
e
)
(env) = true, which

means that the predicate associated with edge e evaluates to true within envi-
ronment env. We require that for every node n �= nx and environment env the
branch-predicate of exactly one outgoing edge evaluates to true.

The transition function δ is of arity (N × Env) → (N × Env). Execution of
a transition (n, env) → (n′, env′) via an edge e is defined as

(n, env) →(n′, env′) :(∃e ∈ out(n) : t(e) = n′ ∧ predc(e)(env)
)

⇒ env′ = σc(e)(env),

(1)

where ⇒ denotes implication. The iterated transition function δ∗ : (N ×Env) →
(N ×Env) is defined by δ∗(nx, env) = (nx, env) and δ∗(n, env) = δ∗(δ(n, env)).
For any graph G = 〈N, E, ne, nx〉 the environment envx of the terminal node nx

represents the result of standard semantic program execution along the sequence
of transitions (ne, enve)

∗→ (nx, envx). Depending on the structure of G and the
initial environment enve such a transition sequence may not exist. Deciding on
its existence is in general equivalent to the halting problem.

4 Semantics of Symbolic Program Execution

The representation of variable values constitutes the main difference between
standard semantics and symbolic semantics. Whereas with standard semantics
the value of a variable is described by a concrete value z ∈ Z, symbolic semantics
employs symbolic expressions. The relation between standard semantics and
semantics of symbolic program execution is depicted in (2).

The standard semantics of a program P is derived by the valuation func-
tion Scon that takes a program P as argument and returns a standard-semantic
functional description of the side-effect of P . The side-effect Scon[[P ]] is a function
that maps a concrete input to a concrete output, written as Scon[[P ]](In) = Out,
where In, Out ∈ Env. Given the standard semantics of Flow programs from
Sect. 3, the computation of Scon[[P ]](In) is equivalent to an application of the
iterated transition function δ∗ to start node ne and environment In.
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In Ins

Out Outs

sym

Ssym[[P ]]Scon[[P ]]

con

(2)

Similarly we derive the semantics of symbolic program execution for pro-
gram P , denoted by Ssym[[P ]]. It is the purpose of function Ssym to transform P
into a representation that is based on symbolic values instead of concrete ones.
The side-effect Ssym[[P ]] of this representation is therefore a function that maps a
symbolic input Ins to the corresponding symbolic output Outs. Symbolic input
and output belong to the class Envs of symbolic environments that replaces the
concrete environments env : V → Z which are not able to bind identifiers to
symbolic expressions.

The diagram in (2) contains two additional functions, sym and con, that we
need in order to relate input and output of the functional descriptions Scon[[P ]]
and Ssym[[P ]]. Function sym transfers a concrete environment to the symbolic
domain, whereas function con instantiates a symbolic environment with a con-
crete one. The commutation of concrete and symbolic execution depicted in (2)
can then be formalised as

Scon[[P ]](In) = con
(
In, Ssym[[P ]]

(
sym(In)

))
, (3)

which means that the result of the symbolically executed program Ssym[[P ]] over
input Ins = sym(In) and instantiated by In must be the same as the result
from standard semantic program execution Scon[[P ]](In).

4.1 The Domain for Symbolic Program Execution

To be able to distinguish between a variable and its initial value, we introduce
the set V of initial value variables. This set is isomorphic to V. Its purpose is to
represent the initial values for the variables in V. The initial value operator :
V → V maps a variable v ∈ V to the corresponding variable in V. As a shorthand
notation we write v for the application of the initial value operator to variable v.

The standard semantic model of the Flow language is based on integer arith-
metics. Transferring this property to the symbolic domain requires symbolic
expressions to be integer-valued as well.

Given the operations of addition and multiplication it follows that the multi-
variate polynomials from the ring Z[x], with indeterminates x = (x1, . . . , xν) ∈
V

ν , are integer-valued expressions.
To support division, the ring Z[x] is extended to the quotient field Q(Z[x])

(cf. [18]). By means of the rounding operation Rnd we can “wrap” a ratio-
nal function x/y to obtain an integer-valued expression Rnd(x/y)1. Hence we
can model the integer division of two symbolic expressions x and y, y �= 0, as
1 Simplifications of expressions involving operation Rnd have been investigated in [11,

Sect. 4.1], they are however outside the scope of this paper.
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x divs y = Rnd
(
x / y
)
, where the symbolic division operator divs denotes the

counterpart of the integer division operator div of the Flow standard semantics.
Let f (n) ∈ {+(2),−(2),−(1), ·(2)} denote functions corresponding to the Flow

arithmetic operations, where (n) denotes the respective arity. They constitute
the corresponding operations on multivariate polynomials and rational func-
tions, with the only extension that they do accept arguments “wrapped” by the
rounding operator Rnd.

Definition 1. The set of integer-valued symbolic expressions of the domain
SymExpr is inductively defined by

– Z[x] ⊂ SymExpr
– for all f (n) and all e1, . . . , en ∈ SymExpr, f (n)(e1, . . . , en) ∈ SymExpr (i.e.,

application of functions f (n) to symbolic expressions yields symbolic expres-
sions),

– for all e1, e2 ∈ SymExpr, we have e1/e2 ∈ SymExpr, iff e1/e2 is an integer-
valued symbolic expression,

– for all e1, e2 ∈ SymExpr, we have Rnd(e1/e2) ∈ SymExpr.

Let f ∈ {<,≤, =,≥, >} denote functions corresponding to the relational connec-
tives of the Flow language. They are extensions of their standard semantic coun-
terparts which operate on values of the symbolic expression domain SymExpr,
and return values of the symbolic predicate domain SymPred, e.g., ≤: SymExpr×
SymExpr → SymPred. Moreover, let l(n) ∈ {∧(2),∨(2),¬(1)} denote the logical
connectives of conjunction, disjunction and negation. They are extensions of
their standard semantic counterparts that operate on values of the symbolic
predicate domain SymPred.

Definition 2. The set of symbolic predicates of SymPred, the symbolic predicate
domain, is inductively defined as

– B ⊂ SymPred (i.e., true and false are symbolic predicates),
– for all f and all e1, e2 ∈ SymExpr, we have f(e1, e2) ∈ SymPred (i.e., ap-

plication of relational connectives to symbolic expressions yields symbolic
predicates),

– for all l and all e1, . . . en ∈ SymPred, we have l(e1, . . . , en) ∈ SymPred (i.e.,
application of logical connectives to symbolic predicates yields symbolic pred-
icates).

It is shown in [11, Sect. 4.1] that the domain SymPred constitutes a Boolean
algebra.

Definition 3. A state s ∈ S is a function that maps a program variable to
the corresponding symbolic expression. The set of possible states can be repre-
sented by a function class S ⊆ {f : V → SymExpr}. A clean slate state s
maps all variables in its domain to the corresponding initial value variables:
∀v ∈ Dom(s) : s(v) = v. Note that if we restrict our interest to a subset of V

then states are partial functions.
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Definition 4. A context c ∈ C ⊆ [S × SymPred] is defined by an ordered tu-
ple [s, p] where s denotes a state, and pathcondition p ∈ SymPred describes the
condition for which the variable bindings specified through s hold (cf. [4,17]).
We make use of the functions pc : C → SymPred and st : C → S to access a
context’s pathcondition and state. A clean slate context consists of a clean slate
state and a true pathcondition.

Standard semantic and symbolic side-effects and branch-predicates share the
syntactic domain depicted in Fig. 2. Due to space considerations we refer to [11,
Sect. 4.2] for an exhaustive description of the valuation functions into the sym-
bolic domain that are introduced in brief below. Equation (4) defines valuation
function assigns which maps the derivation tree of an assignment statement to
the corresponding side-effect in the symbolic domain. This side-effect is a func-
tion that transforms its argument context [s, p] by updating the state s with a
new symbolic expression at id[[id]].

assigns : Assignment → (C → C)

assigns[[id:=exp]](c) = λ
[
s, p
]
.
[
λs1.s1

[
id[[id]] �→ exps[[exp]](s1)

]
(s), p

]
(c)

(4)

Branch-predicates are treated according to (5). The valuation function preds

maps the derivation tree t of a branch-predicate to a function f : C → C.
Application of f to the argument-context [s, p] results in a context [s, p ∧ p′],
where p′ ∈ SymPred is a symbolic predicate corresponding to tree t.

preds : Predicate → (C → C)
· · ·
preds[[pred1 and pred2]](c) =

λ
[
s, p
]
.
[
s, p ∧ (pc

(
preds[[pred1]]

(
[s, true ]

))
∧ pc
(
preds[[pred2]]

(
[s, true ]

)))]
(c)

(5)

4.2 Single-Edge Symbolic Execution

We express the effect of a computational step associated with a single edge e
by a member of the function class Fs ⊆ {f : C → C}. Fs contains the identity
function ι which can be envisioned as a null-statement without any computa-
tional effect. We require Fs to be closed under composition, which allows us to
compose the computational steps of edges along program paths.

An edge transition function Ms : E → Fs assigns a function f ∈ Fs to
each edge e ∈ E of the CFG. The valuation function edges[[. . .]] maps syntactic
constructs associated with CFG edges to the respective valuation functions for
branch predicates and side-effects, which allows us to specify functions f ∈ Fs

as follows.
f = Ms(e)(c) = σs(e) ◦ preds(e)(c) =

= edges[[e : pred ⇒ assign]](c) =

= assigns[[assign]]
(
preds[[pred]](c)

) (6)
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ne [{(u, u), (v, v)}, true]

n1 [{(u, u + v), (v, v)}, u �= v]

n2 [{(u, u + v), (v, u)}, u �= v]

nx [{(u, v), (v, u)}, u �= v] = cx

e1 : u <> v ⇒ u := u+v

e4 : u = ve2 : true ⇒ v := u-v

e3 : true ⇒ u := u-v

Fig. 3. Symbolic Execution along Path π1 = 〈e1, e2, e3〉

It follows immediately from the preceding denotational definitions of side-effects
and branch predicates that functions specified in the above way fulfil the prop-
erties required for function class Fs.

Figure 3 depicts our running example for which we determine the transition
function f for edge e1. Applying (6) and the valuation functions for branch
predicates and side-effects, we get

f = Ms(e1)(c) = edges[[e1 : u <> v ⇒ u := u+v]](c) =

= assigns[[u := u+v]]
(
preds[[u <> v]](c)

)
=

= λ
[
s, p
]
.
[
s
[
u �→ s(u) + s(v)

]
, p ∧ s(u) �= s(v)

]
(c).

4.3 Single-Path Symbolic Execution

For a forward data-flow problem we can extend the transition function Ms from
edges e to program paths π as follows.

Ms(π) =

{
ι, if π is the empty path
Ms(ek) ◦ · · · ◦ Ms(e1), if π = 〈e1, . . . , ek〉 (7)

As a shorthand notation we may also use fe for Ms(e) and fπ for Ms(π). Clearly
if the computational effect of a single statement of a Flow program is described
by a function f ∈ Fs, the computational effect of program execution along a
path π is defined by Ms(π)(ce), where ce denotes the initial context on entry
to π. (Proof by induction on the length of π omitted.)

In the previous example we determined the result of the transition func-
tion Ms(e1) which represents the effect of symbolic program execution along
edge e1 of our running example. After evaluation of all edge transition functions
along the program path π1 = 〈e1, e2, e3〉 we use function Ms(π1) to calculate the
effect of symbolic execution along path π1. We assume that the initial context ce

passed as argument to Ms(π1) contains two program variables u and v holding
their initial values u and v. Then the contexts depicted in Fig. 3 illustrate the
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transformation of the initial context ce during symbolic execution along program
path π1

2. The context shown with node nx represents the result for Ms(π1)(ce).

4.4 Multi-path Symbolic Execution

In the preceding example we have omitted symbolic execution along edge e4. As
long as we cannot decide that this path is infeasible, we have to analyse it for
our symbolic solution to be complete. Symbolic execution along edge e4 yields a
further program context c′x = [{(u, u), (v, v)}, u = v].

As can be seen from this example, the description of the symbolic solution in
terms of contexts increases with the number of program paths through a CFG;
each program path from the entry node ne to a given node n contributes one
context to the symbolic solution at node n. As long as CFGs are acyclic, the
number of contexts of this symbolic solution is finite. With the introduction of
cycles the number of program paths from the entry node to a given node n,
and hence the number of contexts of the symbolic solution at node n, becomes
infinite. In order to describe the joint effects of execution along several program
paths, we introduce a structure that allows us to aggregate contexts.

Definition 5. A supercontext sc ∈ SC is a collection of contexts c ∈ C and
can be envisioned as a (possibly) infinite set

sc =
{
c1, . . . , ck, . . .

}
=
{
[s1, p1], . . . , [sk, pk], . . .

}
.

We write c ∈ sc to denote that context c is an element of the supercontext sc.
For supercontexts sc1, sc2 ∈ SC the supercontext union operation sc1 ∪ sc2 con-
tains those contexts that are either in sc1, or in sc2, or in both. If we regard
single contexts as one-element supercontexts, we can use the supercontext union
operation to denote a supercontext sc through union over its context elements,
arriving at the following notation for supercontexts.

sc ∈ SC =

[ ∞⋃
k=0

[sk, pk]

]
(8)

Note that supercontexts correspond to the notion of symbolic environments used
in the introduction of this section.

Because a supercontext consists of an arbitrary (even infinite) number of
contexts, it can represent the result of symbolic execution along an arbitrary
(even infinite) number of program paths. According to [24] the meet over all paths
(MOP) solution for a given CFG node n is the maximum information, relevant
to the problem at hand, which can be derived from every possible execution
path from the entry node ne to n. The MOP-solution of symbolic execution for
a given node n can then be written as

mop(n) =
⋃

π∈Path(ne,n)

Ms(π)(ce), (9)

2 As a notational convention we depict the graphs of the contained states instead of
the states themselves.
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with Path(ne, n) denoting the set of all program paths from node ne to node n,
∪ denoting supercontext union, and ce denoting the initial argument context. A
correctness proof for the symbolic MOP-solution is given in [11].

5 Symbolic Evaluation

The symbolic execution approach of Sect. 4 is capable of computing the MOP-
solution for arbitrary CFG nodes. It is however not constructive in the sense that
we have not specified a method to obtain the set of program paths needed by this
approach. Furthermore, the MOP-solution delivered is infinite. In this section
we define a method to compute the MOP-solution that is both constructive and
finite. It is based on the regular expression algebra of Sect. 2, which we use to
model the program paths of a given CFG. The structure of regular expressions
imposes a horizontal functional decomposition of the CFG in contrast to the
approach of the previous section in which our functional decomposition was ver-
tically along whole program paths. As a consequence we have to extend domain
and codomain of the function class Fs introduced in Sect. 4.2 from contexts to
supercontexts, yielding a new function class Fsc:

Fsc ⊆ {fsc : SC → SC}. (10)

We achieve this extension with the help of the wrapping operator wrap which
constructs a function fsc ∈ Fsc of arity SC → SC from a function fs ∈ Fs

of arity C → C in passing each context of the supercontext-argument of fsc
through fs:

wrap : (C → C) → (SC → SC)

wrap
(
fs

)
(sc) : : = fsc

([ ∞⋃
i=0

[si, pi]

])
=

[ ∞⋃
i=0

fs

(
[si, pi]

)]
.

The function class Fsc has the following properties, which are easily verified
from the definition of the wrapping operator, the properties of supercontexts
(cf. Definition 5), and the properties of the function class Fs on which Fsc is
based.

F1) Fsc contains the identity function ι.
F2) Fsc is closed under ∪: ∀f, g ∈ Fsc : (f ∪ g)(x) = f(x) ∪ g(x).
F3) Fsc is closed under composition: ∀f, g ∈ Fsc : f ◦ g ∈ Fsc.
F4) Fsc is closed under iterated composition (with f0 = ι and f i = f i−1 ◦ f):

f∗(x) =
[⋃

i≥0

f i(x)
]
. (11)

F5) Continuity of f ∈ Fsc across supercontext union ∪:

∀f ∈ Fsc and X ⊆ SC : f(∪X) =

[ ⋃
x∈sc

f(x)

]
.



Symbolic Analysis of Imperative Programming Languages 183

Based on the edge transition function Ms (cf. Sect. 4.2) we define a new edge
transition function Msc that encapsulates the wrapping operator inside:

Msc : E → Fsc

Msc(e) : : =wrap
(
Ms(e)

)
.

(12)

We can compose edge transition functions from function class Fsc along program
paths in the same way shown for function class Fs in (7). In a similar way we
use the shorthand notation fe for Msc(e), and fπ for Msc(π).

Let P �= ∅ be a path expression of type (v, w). For all x ∈ SC, we define a
mapping φ as follows.

φ(Λ) = ι, (13)
φ(e) = Msc(e) = fe, (14)
φ(P1 +P2) = φ(P1) ∪ φ(P2), (15)
φ(P1 ·P2) = φ(P2) ◦ φ(P1), (16)
φ(P ∗

1 ) = φ(P1)∗. (17)

Lemma 1. Let P �= ∅ be a path expression of type (v, w). Then for all x ∈ SC,

φ(P )(x) =
[ ⋃

π∈L(P )

fπ(x)
]
.

Proof in [11]. Based on Lemma 1 we establish that the mapping φ is a homo-
morphism from the regular expression algebra to the function class Fsc of (10),
and that the computed solution corresponds to the MOP-solution for symbolic
execution of (9).

Theorem 1. For any node n let P (ne, n) be a path expression representing all
paths from ne to n. Then mop(n) = φ

(
P (ne, n)

)
(ce), where ce denotes the initial

context3 valid at entry node ne.

Proof in [11]. It should be noted that Theorem 1 does not impose a restriction
on path expression P (ne, n). As a consequence, Theorem 1 holds for path ex-
pressions corresponding to CFGs with irreducible graph portions. Furthermore
it holds for arbitrary graph nodes, even within loops and nested loops.

5.1 Finite Supercontexts

It has been pointed out in Sect. 4.4 that the MOP solution becomes infinite
with the introduction of CFG cycles. CFG cycles induce ∗ operators in path ex-
pressions; due to the iterated composition that is implied by the right-hand side
of (17), each ∗ operator induces an infinite number of contexts in the resulting
supercontext.
3 Since program contexts are one-element supercontexts, ce is a valid argument for

functions from class Fsc.
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In changing the mapping φ by replacing (17) with

φ(P ∗
1 ) = φ(P1)�, (18)

we introduce a new operation � which replaces the iterated composition opera-
tion from (11) by a composition operation that generates a finite representation
for the result of symbolic evaluation of the CFG cycle corresponding to path ex-
pression P1. This finite representation is an extension of a context by a system
of symbolic recurrences [26] and is called a closure context . As will be pointed
out below, a system of symbolic recurrences makes a closure context an exact
representation of the infinite set of contexts that is due to a CFG cycle. In this
way (18) changes our representation of a supercontext from an infinite set of
contexts to a finite set of closure contexts . The purpose of this change is to have
a compact representation of supercontexts that facilitates domain-specific static
program analyses and that can be implemented with CASs.

The remainder of this section is devoted to the definition of closure contexts
and the � operation.

In analogy to the set V of program variables we define the set L, V ∩ L = ∅,
of loop index variables. We use lowercase letters, e.g., l, m, n, to denote elements
from L. Conceptually a loop index variable can be envisioned as an artificial
program variable that is assigned the value 0 upon entry of the loop body. After
each iteration of the loop body, its value is increased by one.

ne

n1 n2

nx

e1 : true ⇒
b := b+1 e3 : true ⇒ j := j+b

e4 : j > m e2 : j ≤ m
⇒ d := 2∗d

1 b := b + 1;
2 l := 0;
3 while j <= m loop
4 d := 2∗d;
5 j := j+b;
6 l := l+1;
7 end loop;

Fig. 4. Example Loop: Implicit vs. Explicit Loop Index Variable

Figure 4 depicts a Flow example loop together with a textual representation
where the loop index variable has been made explicit (cf. line 2 and 6). Associated
with a loop index variable l is a symbolic upper bound, denoted by lω. This
symbolic upper bound represents the number of loop iterations4. Specifically,
an upper bound of lω = 0 implies zero loop iterations, as can be inferred from
Fig. 45. Endless loops can be modelled by defining lω = +∞.

4 Computing a symbolic upper bound for the number of loop iterations is beyond the
scope of this paper. It is discussed, among others, in [17,5].

5 This contrasts the notion of range expressions in contemporary programming lan-
guages, where range L..U denotes the interval [L, U] .
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Definition 6. The set of symbolic expressions (cf. Definition 1) is extended by

– L ⊂ SymExpr (i.e., loop index variables are symbolic expressions), and
– for all vi ∈ V, and l ∈ L, vi(0) ∈ SymExpr, vi(l) ∈ SymExpr, vi(l + 1) ∈

SymExpr, and vi(l−1) ∈ SymExpr (i.e., dereferencing the value of a program
variable to specify a recurrence relation yields a symbolic expression).

Definition 7. A range expression is a symbolic expression of the form 0 ≤ l ≤
lω, with loop index variable l ∈ L, and lω being the symbolic upper bound of l. We
extend the set of symbolic predicates of the domain SymPred (cf. Definition 2)
by the following rule to include range expressions: for all l ∈ L, 0 ≤ l ≤ lω ⊂
SymPred (i.e., range expressions constitute symbolic predicates).

We denote a recurrence system over loop index variable l by rs(l). We can
construct a recurrence system set r of k recurrence systems by

r : : =
⋃

1≤j≤k

rs(lj).

Recurrence system sets can be nested, and the set of all recurrence system sets
is denoted by R. For our purpose it is furthermore beneficial to impose a to-
tal order ≤ on the elements of a recurrence system set in order to obtain the
semantics of a list.

Definition 8. A closure context c is an element of the set C = S × SymPred×
R, denoted by [s, p, r]. For a clean slate closure context the state s is a clean
slate state, p is a true pathcondition, and r is the empty set. A context can
be considered a special case of a closure context with r = ∅. A supercontext
consisting of a finite number of closure contexts is denoted by sc, for the set of
all such finite supercontexts we write SC.

Definition 9. We define operation � of (18) in terms of the input/output-
behaviour of the function resulting from the application of operation � to φ(P1),
that is, φ(P1)�. Let f = φ(P1) be a functional description of the accumulated
side-effect of one iteration of the loop body represented by the path expression P1.
For a given closure context cin = [sin, pin, rin] we define the properties of the clo-
sure context cout = [sout, pout, rout] resulting from the application of f� to cin,
that is,

cout = φ(P ∗
1 )(cin) = φ(P1)�(cin) = f�(cin). (19)

One iteration of the loop body determines the recurrence system that is due
to the induction variables of the loop body. Hence we start with a clean slate
closure context c0 = [s0, p0, r0] and compute the result of symbolic evaluation of
one iteration of the loop body, denoted by c1.

c1 = [s1, p1, r1] = f(c0). (20)

A substitution σs,e for a given state s and an expression e ∈ SymExpr is
defined such that σs,e = {v1 �→ v1(e), . . . , vj �→ vj(e)}, with vi

1≤i≤j
∈ Dom(s).

What follows is the description of cout in terms of its state sout, its pathcondi-
tion pout, and its recurrence system set rout.
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State: The state sout is computed from sin by replacing the symbolic expressions
that describe the values of the variables vi by the value of the recurrence relation
for vi over loop index variable l.

∀vi ∈ Dom(sin) : sout : : = sin[vi �→ vi(l)] (21)

Hence we get graph(sout) = {(v1, v1(l)), . . . , (vn, vn(l))}.
Pathcondition: The pathcondition pout of closure context cout has the form

pin ∧ (0 ≤ l ≤ lω) ∧
∧

1≤l′≤l

p(l′ − 1). (22)

Therein the term pin constitutes the pathcondition of closure context cin. The
second term is a range expression according to Definition 7. It defines the value
of the loop index variable l to be in the interval [0, lω]. The third term denotes
the pathcondition accumulated during l iterations of the loop. It is actually
a conjunction of l instances of the pathcondition p1 from (20), where the l′th

instance corresponds to σsin,(l′−1)(p1).
An example will illustrate this. Assume the pathcondition p1 = j ≤ m from

Fig. 4. After l > 0 iterations the third term in the above equation will read

j(0) ≤ m(0) ∧ j(1) ≤ m(1) ∧ · · · ∧ j(l − 1) ≤ m(l − 1)

=
∧

1≤l′≤l

(
j(l′ − 1) ≤ m(l′ − 1)

)
.

Recurrence System: Let IV denote the set of induction variables of the loop
under consideration. We set up a recurrence system over the loop index variable l,
from which we construct a recurrence system set r as follows.

r =

⎧⎨
⎩
⎡
⎣∀vi ∈ IV :

{
vi(0) : : = sin(vi)
vi(l + 1) : : =σsin,l

(
s1(vi)

) (1)

rc : : = σsin,l(p1) (2)

⎤
⎦
⎫⎬
⎭ (23)

Part (1) denotes the recurrence for induction variable vi. The boundary value of a
variable upon entry of the loop body is the variable’s value from the “incoming”
context (cin in our case). We derive the recurrence relation for variable vi as
follows. State s1 contains the variable bindings after the first iteration of the
loop body. In replacing all occurrences of the initial value variables vi ∈ V by
their recursive counterpart vi(l), we obtain the bindings after iteration l + 1,
denoted by vi(l +1). If we can derive a closed form for the recurrence relation of
variable vi, Part (1) consists only of a symbolic closed form expression over loop
index variable l. Part (2) holds the recurrence condition rc for this recurrence
system. The condition is basically a symbolic predicate obtained by replacing
the initial value variables in the pathcondition p1 (cf. (20)) by their recursive
counterparts.

Having set up the recurrence system set r according to (23), the recurrence
system set rout of closure context cout is derived from rin by appending r to it.

A recurrence system set can be simplified if we are able to derive closed forms
for the recurrence relations of the involved induction variables. There exists a
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vast body of literature on this topic, e.g., [21,26,37,36,22,19]. These methods
are directly applicable to the recurrence system sets of our symbolic analysis
framework. Modern CASs such as Mathematica [38] provide an ideal platform
for the implementation of these methods.

Due to space limitations we refer to [11] for the details involved with the
construction of recurrence system sets for nested loops.

Returning to the running example of Fig. 4, we seek the MOP-solution for
node n1. The MOP-solution of this node is due to the path expression e1 ·(e2 · e3)∗

of type (ne, n1). Starting with the clean slate closure context ce = [s, p, r] =[{(b, b), (d, d), (j, j), (m, m)}, true , ∅], we compute φ(e1 ·(e2 · e3)∗)(ce) = (fe3 ◦
fe2)� ◦ fe1(ce). Function application fe1(ce) yields the closure context cin =[{(b, b+1), (d, d), (j, j), (m, m)}, true , ∅], which reduces our computation to (fe3◦
fe2)�(cin). To apply operation � we proceed according to Definition 9. Due
to (20) we have to compute the result of symbolic evaluation of one iteration of
the loop body to derive the underlying recurrence relations. For this we can reuse
the clean slate closure context ce by defining c0 : : = ce and proceed with the cal-
culation of c1 = (fe3 ◦ fe2)(c0) =

[{(b, b), (d, 2 · d), (j, j + b), (m, m)}, j ≤ m , ∅].
The closure context cout resulting from the computation of cout = (fe3◦fe2)�(cin)
can then be described in terms of its state sout, its pathcondition pout, and its
recurrence system set rout. The loop index variable for this loop is l.
State: The state of cout is obtained from the state of cin by replacing the symbolic
expressions that describe the values of the induction variables vi ∈ IV = {d, j}
by the value of the recurrence relation for vi over loop index variable l. Hence
we get sout = {(b, b + 1), (d, d(l)), (j, j(l)), (m, m)}.
Pathcondition: According to (22) we get the pathcondition pout = true ∧ (0 ≤
l ≤ lω) ∧ ∧

1≤l′≤l

(
j(l′ − 1) ≤ m

)
.

Recurrence System: According to (23) we arrive at the one-element recurrence
system set r′, with sin = st(cin) and s1 = st(c1) already substituted.

r′ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎣

{
d(0) : : = d
d(l + 1) : : = 2 ·d(l) (1a){
j(0) : : = j
j(l + 1) : : = j(l) + b + 1 (1b)

rc : : = j(l) ≤ m (2)

⎤
⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

Applying standard methods to solve the recurrence relations for the induction
variables d and j, we arrive at

r =

⎧⎪⎨
⎪⎩
⎡
⎢⎣
{

d(l) : : = 2l ·d (1a){
j(l) : : = j + l ·(b + 1) (1b)

rc : : = j(l) ≤ m (2)

⎤
⎥⎦
⎫⎪⎬
⎪⎭ .

Combining state sout, pathcondition pout and the recurrence system set r yields[{(b, b + 1), (d, d(l)), (j, j(l)), (m, m)}, (0 ≤ l ≤ lω) ∧
∧

1≤l′≤l

(
j(l′ − 1) ≤ m

)
, {r}]
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as the solution for the closure context cout, which is also the MOP-solution for
node n1. The intuitive meaning of this closure context unveils if we consider the
range expression (0 ≤ l ≤ lω) that is part of its pathcondition: as loop index
variable l ranges from 0 to lω, the recurrence system r generates the variable
bindings of the respective context6 cl valid after l loop iterations, i.e. cl = (fe3 ◦
fe2)

l ◦ fe1(ce). Hence the closure context cout represents a total number of lω +1
contexts valid at node n1. Formally the closure context cout can be viewed as a
predicate ∀b∀d∀j∀m∀l : cout, where the set {x | 0 ≤ x ≤ lω)} ⊆ N is the universe
of discourse for loop index variable l.

The above closure context describes all variable bindings valid at node n1 of
Fig. 4. It yields important information for static program analysis, e.g.,

– at node n1 the variables b and m assume the values b+1 and m respectively
during all loop iterations,

– the induction variables d and j assume monotonically increasing/decreasing
sequences of values (depending on the initial values of variables d and b),

– the symbolic values of the induction variables d and j during each iteration
of the loop,

– a symbolic upper bound lω for the number of loop iterations (computed from
the recurrence condition as described in [17]), and therefore

– symbolic lower and upper bounds for the induction variables d and j.

It is instructive to consider a closure context once the associated loop L
has been exited. Upon exit of a loop via a given edge e, the pathcondition p
associated with e implies that l = lω. In other words, the conjunction of p
and the pathcondition of a closure context from node h(e) collapses the set of
contexts represented by the resulting closure context to the single context valid
after execution of the loop.

Returning to the example of Fig. 4, once we exit the loop via edge e4, the fact
that l = lω simplifies the closure context valid at node nx to[{(b, b + 1),(d, d(lω)), (j, j(lω)), (m, m)},

∧
1≤l′≤lω

(
j(l′ − 1) ≤ m

) ∧ j(lω) > m, {r}],
which represents the single context valid after execution of the loop. It should be
noted that the determination of loop exit edges is done based on path expressions,
which makes the above simplification a purely mechanical step in our symbolic
analysis method.

6 Experiments

The prototype implementation of our symbolic analysis framework constitutes
a term rewrite system based on OBJ3 ([3,20]) and Mathematica [38]. Together
with the analysis results of Flow sample programs, we have made it available
at [14].
6 Not to be mistaken with a closure context.
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Since the practicality of our symbolic analysis method critically depends on
the size of the path expressions occurring in practice, we have surveyed the
problem sizes arising from the programs of the complete SPEC95 benchmark
suite (cf. [33]). The SPEC95 benchmark suite consists of 18 benchmark programs
with GCC and the Perl interpreter among them. Overall, we investigated all 5053
procedures, in an attempt to make the survey representative both in quantity
and in the problem sizes of the investigated programs.

The technical part of this survey comprised the definition of a metric to com-
pute the symbolic analysis problem sizes (i.e., the number of closure contexts
resulting from a given path expression), and to apply this metric to the path
expressions of the procedures from the SPEC95 benchmark code.

We compute the number of program paths of a path expression corresponding
to an acyclic CFG through the mapping ncc(e) = 1, ncc(P1 + P2) = ncc(P1) +
ncc(P2), and ncc(P1 ·P2) = ncc(P1) · ncc(P2). Every such program path induces
the generation of one closure context during symbolic analysis7. Our accumulated
ncc metric (ancc) starts with the innermost nested loop of a path expression P
and computes the ncc count for its body. Thereafter the subexpression in P
that corresponds to this loop is replaced by a single edge and the ancc metric is
applied to the resulting expression. This is done for all loops across all nesting
levels, and for the topmost remaining loopless path expression itself. The ancc-
value for P then equals the sum of the calculated ncc counts.
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Fig. 5. Quantile Plot for SPEC95 Programs

In our survey each SPEC95 procedure has been accounted for through its path
expression of type (ne, nx). Figure 5 contains a quantile plot of the ancc values
of the SPEC95 procedures. It has been scaled to exclude outliers with an ancc-
value above 106. It shows that the distribution of ancc values starts at the lowest
possible value (1) and increases modestly up to the 0.94 quantile. Thereafter we

7 Hence the name ncc which stands for number of closure contexts.
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can observe an excessive increase of quantiles which indicates that the final 6
percent of the distribution represent costly outliers. The two distinguished data
points in the upper right corner represent the 0.9 quantile and the 0.94 quantile.
It follows from those data points that 90 percent of the SPEC95 procedures show
an ancc-value below 3238, and for 0.94 percent it is still below 100, 000. This
means that the problem sizes of more than 94 percent of the procedures from
the SPEC95 benchmark suite constitute no problem at all for symbolic analysis,
and that the ancc values for 90 percent of all procedures are indeed very small.
Due to space limitations we refer to [12] for a description of the whole range of
experiments carried out on the SPEC95 benchmark suite.

7 Related Work

P. and R. Cousot [16] pioneered abstract interpretation as a theory of semantic
approximation for semantic data and control flow analysis. The main differences
between abstract interpretation and our symbolic analysis are as follows: our
symbolic analysis framework precisely represents the values of program variables
whereas abstract interpretation commonly approximates a program’s computa-
tions. Second, path conditions guarding conditional variable values are not in-
cluded in abstract interpretation. Third, applications of abstract interpretation
are faced with a trade-off between the level of abstraction and the precision of
the analysis, and its approximated information may not be accurate enough to
be useful.

Haghighat and Polychronopoulos [22] base their symbolic analysis techniques
on abstract interpretation. The information of all incoming paths to a node
is intersected at the cost of analysis accuracy. Their method does not maintain
predicates to guard the values of variables and it is restricted to reducible CFGs.
No correctness proof of the used algorithms is given.

Van Engelen et al. [37,36] use chains of recurrences [39,2] to model symbolic
expressions. Analysis is carried out directly on the CFG, with loops being anal-
ysed in two phases. In the first phase recurrence relations are collected, whereas
in the second phase the recurrence relations are solved in CR form. The anal-
ysis method is restricted to reducible CFGs, which makes it less general than
our approach. In comparison, our algebra-centered approach uses only standard
mathematical methods instead of specialised analysis algorithms. It provides for
a seamless integration of the chains of recurrences algebra to solve recurrence
relations, but it is not restricted to it.

The algorithms developed with both Haghighat’s and van Engelen’s appro-
aches are tailored around the intended application (i.e., analysis problem). In
contrast we advocate a generic method that allows the formulation of arbitrary
domain-specific static analysis problems based on the MOP-solution.

In [4] symbolic evaluation is used for estimating the worst-case execution time
of sequential real-time programs. Symbolic evaluation is set up as a data-flow
problem, with equations describing the solutions at the respective CFG nodes.
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In [17] a symbolic representation for contexts is introduced. Closure contexts are
an extension of this algebraic structure.

Tu and Padua [35] developed a system for computing symbolic values of ex-
pressions using a demand-driven backward analysis based on G-SSA form. Their
analysis can be more efficient than our approach if local analysis information suf-
fices to obtain a result, otherwise they may have to examine large portions of a
program. Tu and Padua require additional analysis to determine path conditions
in contrast to our approach that directly represents path conditions in the con-
text. For recurrences, Tu and Padua cannot directly determine the corresponding
recurrence system from a given G-SSA form. With our approach the extraction
of recurrence systems is an integral operation provided in the symbolic domain.

Menon et al. [27] describe a technique for dependence analysis that verifies the
legality of program transformations. They apply symbolic analysis to establish
equality of a program and its transformation. Their symbolic analysis engine is
limited to affine symbolic expressions and predicates consisting of conjunctions
and disjunctions of affine inequalities. Blume and Eigenmann [10] apply symbolic
ranges to disprove carried dependences of permuted loop nests. They use abstract
interpretation to compute the ranges for variables at each program point. Gerlek
et al. [19] describe a general induction variable recognition method based on a
demand-driven SSA form. Rugina and Rinard [31] carry out symbolic bounds
analysis for accessed memory regions. With their method they set up a system of
symbolic constraints that describe the lower and upper bounds of pointers, array
indices, and accessed memory regions. This system of constraints is then solved
using ILP. The Omega test [28] developed by W. Pugh is an integer programming
method that operates on a system of linear inequalities to determine whether
a dependence between variables exists. It has been extended to nonlinear tests
in [30,29].

8 Conclusions and Future Work

In this paper we have presented a generic symbolic analysis framework for imper-
ative programming languages. At the center of our framework is a comprehensive
and compact algebraic structure called supercontext. Supercontexts describe the
complete control and data flow analysis information valid at a given program
point. This information is invaluable for all kinds of static program analyses,
such as memory leak detection [32], program parallelisation [17,22,37,10], detec-
tion of superfluous bound checks, variable aliases and task deadlocks [31,13,6,7],
and for worst-case execution time analysis [4,8].

At present our framework accurately models assignment statements, branches,
and loop constructs of imperative programming languages. It can easily be ex-
tended to the inter-procedural case (as discussed in [17,6]).

Our approach is more general than existing methods because it can derive
solutions for arbitrary nodes (even within loops) of reducible and irreducible
CFGs.
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We proved (cf. also [11]) the correctness of our symbolic analysis method using
a two-step verification based on the MOP-solution for symbolic execution and
path-expression-based symbolic evaluation.

Our approach is based purely on algebra and is fully automated. The detec-
tion of recurrences is decoupled from the process of finding closed forms. This
separation facilitates the extension of our recurrence solver with new classes of
recurrence relations. Our novel representation of program semantics closes the
gap between program analysis and computer algebra systems, which makes su-
percontexts an ideal intermediate representation for all domain-specific static
program analyses.

The experiments conducted with our prototype implementation showed that
the problem sizes of real-world programs such as those from the SPEC95 bench-
mark suite are tractable for our symbolic analysis framework. It has been shown
in [9] that symbolic analysis has a vast improvement potential in the area of
contemporary data-flow based analyses of sequential and concurrent programs.
We are therefore facing two research tiers that we plan to pursue in the future,
namely (1) the extension of our method to incorporate concurrent programming
language constructs, and (2) the application of our method to domain-specific
static program analysis problems.
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Abstract. In this paper a concept for structured mathematical pro-
gramming within an object-oriented language is presented. It leads to
better readable, more natural and more compact code in typical linear
algebra applications and provides options for optimized implementation.
We also discuss the realization of this concept as an extension of the
programming language Active Oberon.

We define new built-in array types that provide a slight modifica-
tion of classical arrays in Oberon. By introducing range-valued indices
as array designators, we permit the use of regular sub-domains of ar-
rays as parameters of operators and procedures. The built-in types are
complemented by custom array structured object types. The latter can
be specified by the programmer and are designed to be syntactically
compatible with the former. They provide the needed flexibility for the
language.

1 Introduction

There are already concepts for mathematical programming proposed both in
multi-purpose languages, such as Fortran, Zpl and Chapel, and in special purpose
packages like Matlab, Mathematica and R, just to mention a few. Concepts
in common mathematical languages are too specific and functionality is too
complex for a general purpose language. However, these approaches must not be
ignored but rather be used for inspiration.

Besides other advantages of the programming language Oberon, its clarity
and readability is undoubtedly a good reason to go for it. Because it is more
abstract and closer to mathematics than system near languages such as C/C++,
Java etc., it permits to implement mathematical algorithms in very clear and
structured form. However, by experience and inspection of code, in particular
for linear algebra and imaging applications, we discovered that a small extension
of the language can significantly increase efficiency and readability.

We cannot present a solution that satisfies all possible needs. Although it is
tempting to implement as much functionality as possible, we aim at a coherent,
self-contained concept that avoids redundant language constructs and program-
ming pitfalls. To achieve such a lean model, we attach equally much importance
to constructs that we provide and to functionality that we deliberately omit.
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We believe that a programmer can enhance an implementation considerably
without having to deal with system near constructs: The ideal case is of course
the development of theoretically better algorithms providing lower complexity
and lower run-times. But also using the structure inherent to a problem in the
implementation can be of high value. For instance, in the context of array op-
erations, existing code can be made considerably clearer and more efficient by
exploiting that certain operations can be performed block-wise. We are not aim-
ing at an automatic enhancement on the code generation level (as, for instance,
in ATLAS, cf. [2]) but want to give the programmer tools at hand with which
he can incorporate his expert knowledge about the structure of the matter.

The objective of this paper is to establish an object oriented concept of (multi-
dimensional) array-structured types. Purpose is intuitive and efficient mathemat-
ical programming. The paper is organized as follows: Section 2 has a motivating
nature. It provides some preliminary examples of our language extensions and
contains conceptional considerations. The new language constructs are then pre-
sented in Section 3 in detail. This last part comprises the formal specification
of built-in and custom array types, of operators on and between them, of range-
valued indices used as array designators and some implementation specific notes.
The paper ends with a conclusion.

2 Preliminary Conceptual Considerations

The first part of this section contains examples providing a quick insight to our
new language constructs. In the second part we will give reasons for the design
that is then particularized in Section 3. The current state of the art in Oberon
is recapitulated in the third part.

2.1 Illustration

In this paragraph, we examine code from a typical Oberon linear algebra imple-
mentation and illustrate our approach by ways of these examples. The examples
are not exhaustive and anticipate notions that will be explained in Section 3.

Operators: Matrix Multiplication. The most prominent example of a linear
algebra operation is certainly the multiplication of two matrices. A näıve Oberon
version is displayed in Fig. 1 and a version with elimination of the inner loop is
depicted in Fig. 2. It is obvious that, having readability in mind, this construct
in general has to be replaced by a call to a procedure or better by a language-
integrated multiplication operator as displayed in Fig. 3. But not only this can
be learned from the displayed algorithm: If L and R are large matrices then
cache misses are highly probable in the inner loop, since R is processed column-
wise. Operators between arrays and dimensions-permuted storage formats are of
benefit here and possible in the new approach.
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VAR A,B,Res: POINTER TO ARRAY OF ARRAY OF REAL;
i,j,k: LONGINT;
temp: REAL;

(* ... *)
(* check shapes *)
FOR i := 0 TO LEN(L,0)-1 DO
FOR j := 0 TO LEN(R,1)-1 DO
temp := 0;
FOR k := 0 TO LEN(R,0)-1 DO
temp := temp + L[i,k]*R[k,j];
END;
Res[i,j] := temp;
END;
END;

Fig. 1. Näıve matrix multiplication

VAR A,B,Res: POINTER TO ARRAY OF ARRAY OF REAL;
i,j: LONGINT;

(* ... *)
(* check shapes *)
FOR i := 0 TO LEN(L,0)-1 DO
FOR j := 0 TO LEN(R,1)-1 DO
Res[i,j] := L[i,..]+*R[..,j]; (* pseudo scalar product *)
END;
END;

Fig. 2. Näıve matrix multiplication,inner loop eliminated

VAR A,B,Res: ARRAY [..,..] OF REAL;
(* ... *)
Res := A*B;

Fig. 3. Matrix multiplication with natural notation

Sub-array Structures. Very often operations are not performed on the com-
plete array but rather on sub-array structures, such as (parts of) columns or rows
of a matrix. A first example with operation on rows and columns of a matrix
has already been displayed in Fig. 2.

The singular value decomposition algorithm provided by LAPACK is one
prominent example consisting of many such operations. In Fig. 4 a small portion
of the code is displayed. Our approach includes range-valued indices that, applied
to an array, form a designator of certain substructures, see Fig. 5.
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VAR u: POINTER TO ARRAY OF ARRAY OF REAL;
s,h,f: REAL; i,j,k,l,m,n: LONGINT;

(* ... *)
FOR j := l TO n DO
s := 0.0;
FOR k := i TO m DO
s := s + u[k, i] * u[k, j]
END;
f := s / h;
FOR k := i TO m DO
u[k, j] := u[k, j] + f * u[k, i]
END;
END;

Fig. 4. Small part of SVD in classical notation

VAR u: ARRAY [..,..] OF REAL; s,h: REAL; i,j,l,m,n: LONGINT;
(* ... *)
FOR j := l TO n DO
S := u[i..m,i]+*u[i..m,j]; (* scalar product *)
u[i..m,j] := u[i..m,j] + s/h* u[i..m,i]; (* element-wise operations *)
END;

Fig. 5. Code from Fig. 4 using new approach

Custom Array Types. Since not all possible features can be implemented in
a built-in array type, we have made provision for the implementation of custom
array types. Figure 7 contains a sample implementation of a sparse matrix, i.e. a
two dimensional array that only has a small number of nonzero elements. In
Fig. 6 it is shown how such a new type harmonizes with the concept of ‘normal’
arrays. Note that the two dimensional array structure and the element type is
constituted in the (array) type declaration of SparseMatrix.

VAR A: ARRAY [10,10] OF REAL; B: SparseMatrix; i: LONGINT;
(* ... *)
A := 1; (* fill matrix A with ones *)
NEW(B,1000,1000); (* sparse matrix of size 1000x1000 *)
FOR i := 0 TO 999 BY 10 DO
B[i..i+9,i..i+9] := A; (* fill blocks along diagonal *)
END;

Fig. 6. Using custom array types. Implementation of SparseMatrix suggested in Fig. 7
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TYPE
SparseMatrix*= ARRAY [..,..] OF REAL (* 2d array structure with element type real *)
VAR d: Data; len0,len1: LONGINT; (* assume type Data is defined elsewhere *)

PROCEDURE NEW(i,j: LONGINT); (* allocation *)
BEGIN
(* create data structure *)
len0 := i; len1 := j;
END NEW;

PROCEDURE LEN(i: LONGINT): LONGINT; (* sizes, shape *)
(* ... *)
END LEN;

PROCEDURE "[]"(i,j: LONGINT): REAL;
BEGIN
(* range check *)
RETURN Get(d,i,j)
END "[]";

PROCEDURE "[]"(i,j: LONGINT; r: REAL);
BEGIN
(* range check *)
Put(d,i,j,r);
END "[]";

(* matrix extraction *)
PROCEDURE "[]"(a1..b1 BY c1,a2..b2 BY c2: LONGINT): ARRAY [..,..] OF REAL;
VAR A: ARRAY [..,..] OF REAL; (* in this implementation: extract block as built-in array *)
BEGIN
IF a1 = MIN(LONGINT) THEN a1 := 0 END; (* defaults *)
IF b1 = MAX(LONGINT) THEN b1 := len0-1 END; (* defaults *)
(* same for a2,b2 *)
(* range check *)
NEW(A,(b1-a1) DIV c1,(b2-va2) DIV c2);
Extract(d,A,a1..b1 BY c1; a2..b2 BY c2);
RETURN A;
END "[]";

(* submatrix assignment *)
PROCEDURE "[]"(a1..b1 BY c1,a2..b2 BY c2: LONGINT; VAR A:ARRAY [..,..] OF REAL);
BEGIN
(* defaults, range check *)
Insert(A,d,a1..b1 BY c1, a2..b2 BY c2);
END "[]";

END SparseMatrix;

(* Get, Set, Extract, Insert routines skipped *)

(* operator overloading *)
PROCEDURE ’*’ (A,B: SparseMatrix): SparseMatrix;
(* ... *)
END ’*’;

PROCEDURE ’*’ (A: SparseMatrix; VAR B: ARRAY [..,..] OF REAL): ARRAY [..,..] OF REAL;
(* ... *)
END ’*’;

(* ... *)

Fig. 7. Draft of a sparse matrix implementation
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2.2 Design Objectives

In this paragraph we state basic conditions and establish a concept that is in
compliance with them.

Requisites. Our goal is an approach that, in particular for arrays, supports the
following general key requirements.

1. Efficiency. It should be possible that expert knowledge about the structure
of an algorithm is incorporated into an implementation to achieve efficiency.

2. Notational simplicity. Mathematical programs must well be readable and
notation should conform with usual mathematical conventions.

3. Structural simplicity. A programmer must not need to handle system matters
like complicated pointer arithmetics and memory management.

4. Extensibility. The built-in features of a language cannot satisfy all possi-
ble needs. It should thus be possible to add arbitrary functionality on an
implementation level if it agrees with stipulated syntax and semantics.

5. Safety. Typical safety features, such as range- and type-checking must be
preserved by the extension of the language.

To achieve efficient implementations of array-based algorithms, fast single el-
ement accesses are obviously necessary in the first place. Also the availability of
optimized block-wise operations on sub-array configurations can improve speed
considerably in many cases. The most prominent example is the generalized
matrix multiplication identified to be the main performance kernel of the Basic
Linear Algebra Subprograms (BLAS), cf. [2], p. 10. Figure 8 illustrates the gain of
speed reached by using an optimized matrix multiplication using Intel’s Stream-
ing SIMD extensions (SSE), which add vector-oriented capabilities to general
purpose processors. The displayed measurements refer to inline assembler code
within an optimized Oberon module. Optimizations of this and similar kind will
be done by the compiler and can in principle be applied to any type of regular
array substructure. A discussion of optimization techniques in detail is beyond
the scope of this paper.

Another important issue for efficiency is the avoidance of cache missing and
cache trashing when dealing with large data, cf. [7]. Notational simplicity implies
that block-wise operations have to be denoted in a common form and that spe-
cific optimizations, such as the avoidance of cache missing, must happen behind
the scene and should not affect the notation. In the context of array handling,
extensibility implies the implementation facility of arrays that cannot be rep-
resented as a linear piece of memory. Typical examples are sparse matrices or
images with special boundary conditions such as ‘periodic’, ‘mirrored’ etc. Re-
garding safety, array range checks are indispensable as they are substantial for
debugging and vital for system safety.

2.3 Concepts of the New Array Types

To comply with the aforementioned requisites, we decided to extend the function-
ality of Oberon built-in arrays and complement them by compatible
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Fig. 8. Processor cycles of matrix multiplication. Oberon vs. C++ vs. optimized C++
vs. Oberon using SSE instructions, source: [14].

(programmer-definable) custom array-structured types. To explicitly discrimi-
nate the newly proposed built-in arrays from the classical array types in Oberon,
we will in this text now and then denote them as special arrays. Special arrays
permit the use of ranged indices as array designators. This construct allows to
pass regular sub-domains of arrays to procedures and to use them as operands
in expressions. This, together with the availability of efficient operators, leads
to more readable and efficient code in linear algebra applications. Moreover, it
allows the identification of independent pieces of code that can be optimized, for
example being executed in parallel. As a further positive side effect, the needed
array memory representation permits a dimension-permuted storage scheme that
can be utilized for the avoidance of cache missing. Range checks are performed
for each single element access and can be optimized to one single check for the
access to an entire sub-structure. Safety is thus preserved while efficiency can be
achieved by using the concept of ranges and operators.

For mathematical programming we generally prefer value semantics to refer-
ence semantics as it assures unambiguity of operations, in particular assignment
and test for equality. Consequently, special arrays are value types (like records),
rather than reference types (like objects). Memory allocation and pointer mech-
anisms are performed on behalf of the programmer behind the scenes. The pro-
grammer is only confronted with the definition and usage of fix- or variable-sized
arrays. As a consequence, dynamic arrays are not exposed as pointers to an ar-
ray structure: an array may well be of length zero but physically it invariably
consists at least of the descriptor containing information about its shape. The
decision for value semantics does not imply a severe restriction since arrays may
still be wrapped into records or objects. For shared access this would be neces-
sary anyway since concurrent access is managed by mutual exclusion on an object
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level in Oberon. Value semantics can also be regarded as additional protection
against unintentional concurrent access to an array.

Custom array types can be specified by the programmer and are designed to
be syntactically compatible with the built-in arrays. They provide the needed
flexibility for the language. For operations on and between array types we use
the already implemented operator concept of Oberon together with the facility
of overloading. Internally, a custom array type is designed like a value object
type whose signature explicitly contains the array structure. In this respect it
is not regarded as an extension of a built-in array, but merely as a custom
type that mimics the behavior of an array. Custom array types are abstract
data types that may contain variables and procedures, but cannot be extended.
The most important difference to the indexer concept of C# is that the array
access structure of a custom array type is provided and fixed by its signature.
We regard array structure as not only a property but merely as very immanent
feature that must be statically tied to the respective object. In particular it
allows to define substructures of object types in a clean way and prevents the
misuse of mathematical ‘indexers’ for general purposes.

The dimension of an array is statically determined, i.e. cannot be changed at
runtime, neither for built-in types nor in the programmer-definable form.

We repeat the main achievements of this concept. It permits

1. notational compactness in linear algebra applications,
2. optimizations by utilizing block-wise operations while preserving safety,
3. a clean implementation of (non-contiguous) custom array structures.

Discarded Ideas. Arrays in general stand for data of the form ES , where E
is a set of possible single states and S is a subset of Z

d. Thus the specification
of an array type A requires the definition of an element type B (referring to the
set of single states E), a specification of the index set S and access patterns
for elements of A. Although it somehow reflects the mathematical nature of ES ,
for the sake of simplicity we do not introduce a separate type for the domain S
as for example done in the programming language Chapel [4] and (partially) in
ZPL [5].

The following features are of interest in some applications and can be im-
plemented with custom array types. For built-in types, however, we decided
against them: Customizable lower bounds for arrays provide potential pitfalls in
programming, therefore built-in arrays have a fixed lower bound of zero. Free
boundary conditions, such as “mirrored”, “wrapped” etc., cannot be set for the
built-in arrays, because it would generally prohibit efficiency for single element
access. Built-in arrays do not permit the appending, insertion and deletion of
elements since this requires a complex data type. (A reasonable implementa-
tion is provided by the software package Voyager, cf. [16]). The same holds for a
built-in type of a sparse array representation. Having a common type for both
‘normal’ and sparse arrays would represent a dilemma for efficiency. Moreover,
there are various forms of matrix storage schemes, such as Compressed Row/-
Column Storage, Jagged Diagonal Storage etc., cf. [8]. We therefore decided to
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provide the flexible and efficient sparse matrix specification according to [3] as
sample implementation using custom array-structured types.

Another approach that we discussed was the support of properties (built-in
attributes) of arrays / matrices such as ‘diagonal’, ‘symmetric’ etc. on a language
level. For example, the (dynamic) array structure could be taken into account to
optimize the execution speed of operators like multiplication. On a static level
this is already possible using custom array types. However we decided that the
rare cases where a dynamic optimization would be possible are not worth the
enormous computational effort and discarded this idea.

We also discarded the uses of indexers, as for instance provided by C#, be-
cause taking substructures would not be possible in a clean way, compare pre-
vious paragraph.

3 Specification of the Language Extension

In this section the syntax of the new built-in arrays and custom array types
in Oberon is provided. Further some implementation specific notes are stated.
We first recapitulate the status quo of Oberon: In classical Oberon it is not
possible to address sub-arrays that do not form a contiguous block. New array
types with different element access rules, such as sparse matrices, cannot be
added to the system. The dimension order in memory coincides with that of
the notation. From the view of mathematical programming the pointer notation
used in Oberon for dynamic arrays is somewhat unnatural.

3.1 Built-In Arrays

Special arrays do not replace the classical arrays of Oberon but are added to the
language. A special array type is determined by a statement that is compliant
with the EBNF rule

ARRAY "[" Length{"," Length} "]" OF Type ";". (1)

where Length is either given by an expression or two periods:

Length = ".." | Expression. (2)

The index set of an array is a rectangular d-dimensional set. The lower
bound is zero in each dimension. Special arrays can be defined statically, semi-
dynamically, dynamically and open. They are regarded as value types. Unallo-
cated dynamic arrays have zero length dimensions. Constant arrays can also be
specified like displayed in Fig. 9.

Operators. There are unary and binary operators predefined. Binary operators
apply to two arrays or an array and a base type. Most important is the opera-
tor ‘:=’: Special arrays may be assigned to each other. Since they are of value
type, assignment infers copy of content. For any operation on two arrays with
a compatibility requirement, such as assignment, the shape of the arrays must
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A: ARRAY [..,..] OF REAL (* declaration of dynamic size matrix *)
B: ARRAY [3,5] OF REAL (* declaration of static size matrix *)
LEN(B,i) (* length of dimension i, LEN(B)=LEN(B,0) *)
NEW(A,3,5) (* allocation of dynamic size matrix *)
[[1,2,3],[4,5,6]] (* constant array *)
r := A[i,j] (* element read access *)
A[i,j] := r (* element write access *)

Fig. 9. Some examples regarding the notation of special arrays

match, that is dim(A)=dim(B) and LEN(A,i)=LEN(B,i) for all 0 ≤ i < dim(A),
and the element types must be compatible w.r.t. the operation. The predefined
operators on and between arrays are displayed in Fig. 10 and 11. With respect
to efficiency, the objective of having operators is to leave open the possibility
of fast (potentially parallel) execution of operations that usually require many
single element accesses. The displayed operators (together with the special cases
for matrices, see below) are chosen from typical applications in linear algebra
and are promising with respect to significant speed-up of most frequently used
routines. The notation is deliberately designed to be near to that of MatLab.

operator operand result meaning

’-’ array of number array element-wise negation
’∼’ array of boolean array element-wise inversion
’ABS’ array of number array element-wise absolute value
’MIN’ , ’MAX’ array of number scalar minimal and maximal element
’SUM’ array of number scalar sum of elements
’PRODUCT’ array of number scalar product of elements

Fig. 10. Unary array operators

operator operands result meaning

’:=’ scalar,array array assignment of value to each element
’:=’ array,array array assignment of same sized arrays
’+’ , ’-’ , ’*’ array,scalar array element-wise scalar operation
’/’ , ’MOD’ , ’DIV’
’+’ , ’-’ , ’.*’ array,array array element-wise operation
’/’ , ’MOD’ , ’DIV’
’+*’ array,array scalar pseudo scalar product
’=’ array,array boolean test of equality

Fig. 11. Binary array operators

For arrays of non-arithmetic types, the operators are still undefined (but can
be overloaded). The definition of the (pseudo-) scalar product A +* B is nec-
essary for performance reasons: SUM(A .* B) requires array allocation while



Array-Structured Object Types for Mathematical Programming 205

VAR A,B: ARRAY [..,..] OF REAL; r: REAL; b: BOOLEAN;
(* ... *)
B:= -A; (* element wise negative of A *)
B:= ABS(A); (* element wise absolute value of A *)
MIN(A), MAX(A) (* minimal / maximal element of A *)
A + B, A - B (* sum and difference *)
A .* B, A./ B (* element-wise product and quotient *)
A +* B (* (pseudo) scalar product *)
b := A=B; (* equality *)

Fig. 12. Operators on and between special arrays

A +* B does not. Examples regarding notation of operators are displayed in
Fig. 12.

Special Case: Matrix Operators. According to [1] and [2], the most impor-
tant and time-critical operation in the Basic Linear Algebra Subroutines (BLAS)
package is the one for generalized matrix multiplication. Moreover, the solution
of matrix equations as displayed below is also a prominent example, again the
notation follows MatLab. The following operators are defined for two dimen-
sional arrays. The unary operator ”’” does not create a copy of the data but
only a designator to the same array with toggled dimensions. This is possible
due to the internal format of the array references, cf. paragraph 3.3. Examples
are given in Fig. 14.

Remark: "/" and "\" will not necessarily be provided as built-in operators.

operator operands result meaning

’ (postfix) 2d array 2d array transposed of matrix
* 2d array,2d array 2d array matrix product
/ 2d array,2d array 2d array solution of equation system
\ 2d array,2d array 2d array solution of equation system

Fig. 13. Operators on two dimensional arrays

VAR A,B,C,X: ARRAY [..,..] OF REAL;
C := A * B; (* matrix product *)
X := B / A; (* solution of equation X*A=B, read: B*A^(-1) *)
X := A \ B; (* solution of equation A*X=B, read: A^(-1)*B *)
A := B’; (* B’ is reference to transposed of B, copy by ":=" *)

Fig. 14. Operators on and between two dimensional arrays

Ranges. A range is denoted by an expression of the form

[Expression]..[Expression][BY Expression]. (3)
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Consider the range a..b BY c. Here the symbols a, b and c (c > 0) must be
integer valued constants or integer variables. The range a..b BY c stands for
the set

{a + i · c : i ∈ N, 0 ≤ i · c ≤ b − a}.
The usage of this notation is limited to the call and declaration of procedures

and of the index operators ’[]’. If c is not specified, then a value of 1 is assumed.
If a or b is not given, then – depending on the context – the smallest or largest
appropriate value is imputed. If not specified but explicitly referred to, a value
of MIN(LONGINT) and MAX(LONGINT) is presumed on a or b, respectively. For
instance the call TestRange(..) of the procedure

PROCEDURE TestRange(a..b BY c: LONGINT)

results in a=MIN(LONGINT), b=MAX(LONGINT), c=1 in the procedure body.

Ranges on Arrays. Ranges can be applied to special arrays. A variable spec-
ified by the expression

Identifier[Range|ConstExpr{,Range|ConstExpr}] (4)

is formally of array type with dimension equal to the number of ranges given.
It is a designator and is therefore not necessarily materialized but only stands
for a certain part of the array. As in the case of ordinary indices, a designator is
applicable for read and write access.

Fig. 15. Illustrations of domain extraction

Note that there is a substantial difference between a number i and a range
a..b BY c in the specification of a sub-domain. A[a..b,c..d] stands for a
two dimensional array, even if a=b or c=d, while A[a..b,i] stands for a one
dimensional array and A[i,j] stands for a number.

Sub-domain specifications, such as A[a..b,c..d] refer to the same data as the
referenced object (A). So referring to A[a..b,c..d] in the procedure declaration
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with a VAR parameter allows to modify the content of A. However, the statement
sequence

B := A[..,..]; B[2,2]:= r

does not modify the content of A since the assignment operator ’:=’ stands for
copy operation. More examples are displayed in Fig. 16.

VAR V: ARRAY [..] OF REAL; A: ARRAY [..,..] OF REAL;
V[..10] (* stands for V[0..10], is of type ARRAY [..] OF REAL *)
V[3..] (* stands for V[3..LEN(A)-1] *)
V[.. BY 2] (* stands for V[0..LEN(A)-1 BY 2] *)
A[a1..b1 BY c1, a2..b2 BY c2] (* two dimensional subdomain of A *)
A[a1..b1,a2..b2] := [[1,2,3],[4,5,6],[7,8,9]]; (* assignment of const *)
V := A[a1..b1,a2]; (* copy of piece of column *)
V := A[a1,a2..b2]; (* copy of piece of row *)
(* assume PROCEDURE MyProc(v: ARRAY [..] OR REAL); *)
MyProc(A[..,5]); (* call procedure, pass 6th column of A as parameter *)

Fig. 16. Examples regarding use of ranges

3.2 Custom Array Types

Besides the built-in functionalities, provision is made for the free specification of
structured array types and operators. In this paragraph the syntax and semantics
are defined.

Definition of Custom Array-Structured Types. A custom array type may
be defined by the programmer like an object type. Inheritance and polymorphism
is not supported. Moreover, custom array types cannot have an (active) body in
Active Oberon. The reason for this decision is clearness of the language defini-
tion: built-in array types and custom array types must be handled equivalently
and the atomic evaluation of operators is not guaranteed for the first. Synchro-
nization has to be done on an object level if references are used for the arrays. As
mentioned previously, this is additionally ensured by the value semantics used.

A custom array is specified with the pattern

TYPE ident "=" ARRAY "[" ..{,..} "]" OF Type DeclSeq END ident.
(5)

The minimal ingredients that are usually implemented are the procedures NEW,
LEN and read- and write-access methods "[]" as displayed in Fig. 17.

Ranges on Custom Array Types. For custom array-structured types, typi-
cally the procedures depicted in Fig. 18 would be implemented to obtain range
accesses. The compiler discriminates between different forms of ’[]’ by their
different signatures. Generally, only the array specific operators LEN and the in-
dex operators are directly declared within array scope whereas other operators
have to be declared outside in module scope.
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TYPE SparseMatrix = ARRAY [..,..] OF REAL
VAR (* ... *) (* allocation variables etc. *)
PROCEDURE NEW(i,j: LONGINT); (* initialization, allocation *)
PROCEDURE "[]"(i,j: LONGINT): REAL; (* read access *)
PROCEDURE "[]"(i,j: LONGINT; r: REAL) (* write access *)
PROCEDURE LEN(i: LONGINT): LONGINT; (* shape *)

END SparseMatrix;

Fig. 17. Custom array type definition I

TYPE
Matrix= ARRAY [..,..] OF REAL;
Vector= ARRAY [..] OF REAL;

SparseMatrix = ARRAY [..,..] OF REAL
...
(* read access routines *)
PROCEDURE "[]"(a1..b1 BY c1, a2..b2 BY c2: LONGINT): Matrix;
PROCEDURE "[]"(a1..b1 BY c1, i: LONGINT): Vector;
PROCEDURE "[]"(i, a2..b2 BY c2: LONGINT): Vector;
(* write access routines *)
PROCEDURE "[]"(a1..b1 BY c1, a2..b2 BY c2: LONGINT; VAR A: Matrix);
PROCEDURE "[]"(a1..b1 BY c1, i: LONGINT; VAR A: Vector);
PROCEDURE "[]"(i, a2..b2 BY c2: LONGINT; VAR A: Vector);

END SparseMatrix;

Fig. 18. Custom array type definition II

Operators. Generic operators can also be defined for custom array types. As
mentioned, operators must be defined within the array type module scope. At
least one of the operands must be part of the current scope. The definition
of overloaded operators follows the current Active Oberon convention. For the
SparseMatrix example, operators would typically be defined as in Fig. 19.

PROCEDURE ":=" (VAR dest: ARRAY [..,..] OF REAL; src: SparseMatrix);
PROCEDURE "*" (src1,src2: SparseMatrix): ARRAY [..,..] OF REAL;
PROCEDURE "*" (l: SparseMatrix; r: REAL): SparseMatrix;
PROCEDURE "+*" (l,r: SparseMatrix): REAL;

Fig. 19. Overloading operators for custom array types

3.3 Notes on Implementation

The implementation of the compiler modifications necessary for providing all
language constructs presented in this paper is, at the time of submission, still
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work in progress. Nevertheless, in this paragraph we comment on some imple-
mentation specific details. For the built-in array types we decided – notionally -
for a consistent memory representation that does not depend on array allocation
kind such as dynamic, semi-dynamic, open or static. Since a special array is of
value type, it at least consist of an array descriptor that includes the informa-
tion about the array shape. An empty array A is characterized by LEN(A)=0. A
schematic view of the memory structure is displayed in Fig. 20. The increment
fields in the array descriptor are necessary for the sub-domain operations.

adr offset description

... type descriptor
+0 base address of data, points to dataaddr if array is on stack
+4 increment of dimension d-1
+8 length of dimension d-1
...
+8 · (d − 1) + 4 increment of dimension 0
+8 · (d − 1) + 8 length of dimension 0
... (padding)
+dataaddr data base-address if array is on stack

Fig. 20. Schematic memory layout of built-in arrays

We give a short example of how range-valued indices are implemented: con-
sider the assignment A[a..b] := B[c,a..b]. Both range valued indices A[a..b]
and B[c,a..b] are of (one dimensional) array type; After range checks, corre-
sponding increments I1 = Inc(A, 0) and I2 = Inc(A, 1), lengths L1 = L2 =
b− a + 1, and base addresses M1 = Adr(A) + a · Inc(A, 0) and M2 = Adr(B) + c ·
Inc(B, 0) + a · Inc(B, 1) are computed (according to the designators) and the two
array descriptors are pushed on the stack. These are then used as arguments for
the copy operation.

Note that it is not assumed that Inc(i) < Inc(j) for i < j. This permits
an arbitrary assignment of the contiguous part in the memory to a particular
index, which is potentially useful for avoidance of cache missing. By introducing
additional fields for an offset in each dimension, it would have easily, and without
significant loss of efficiency, been possible to offer customizable lower bounds in
arrays. However, for the given reasons (cf. Sect. 2), we decided against them.

Note that the displayed memory structure is only a very slight modification
of the memory structure of classical arrays in Oberon. This can be regarded as
confirmation of our maxims simplicity and efficiency.

4 Conclusion

The presented extension of the programming language Oberon is a further step
in the direction of more intuitive and efficient mathematical programming. The
introduction of a more flexible built-in array concept, including range-valued
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indices, leads to more compact and readable notation for computing with vectors,
matrices etc. Being still safe it also has a high potential w.r.t. efficiency for the
reasons of block-wise operations and the possible avoidance of cache missing.
Flexibility and extensibility is granted by the introduction of custom array types
that can be specified by the programmer and are syntactically compatible with
the built-in array constructs.
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Abstract.  For a long time, one of the major research goals in the computer sci-
ence research community has been to raise the level of abstraction power of 
specification languages/programming languages. Many specification languages 
and formalisms have been invented, but unfortunately very few of those are 
practically useful, due to limited computer support of these languages and/or 
inefficient implementations. Thus, one important goal is executable specifica-
tion languages of high abstraction power and with high performance, good 
enough for practical usage and comparable in execution speed to hand imple-
mentations of applications in low-level languages such as C or C++. In this pa-
per we briefly describe our work in creating efficient executable specification 
languages for two application domains. The first area is formal specification of 
programming language semantics, whereas the second is formal specification of 
complex systems for which we have developed an object-oriented mathematical 
modeling language called Modelica, including architectural support for compo-
nents and connectors. Based on these efforts, we are currently working on a uni-
fied equation-based mathematical modeling language that can handle modeling 
of items as diverse as programming languages, computer algebra, event-driven 
systems, and continuous-time physical systems. The key unifying feature is the 
notion of equation. In this paper we describe the design and implementation of 
the unified language. A compiler implementation is already up and running, and 
used for substantial applications. 

1   Introduction 

For a long time, one of the major research goals in the computer science research 
community has been to raise the level of abstraction power of specification lan-
guages/programming languages. Many specification languages and formalisms have 
been invented, but unfortunately very few of those are practically useful, due to lim-
ited computer support of these languages and/or inefficient implementations.  

In this paper we briefly describe our existing work in creating efficient executable 
specification languages for two application domains and propose an integration of this 
work within a unified language for mathematical and semantical modeling.  

                                                           
*  This work was supported by the SSF RISE project, the Vinnova SWEBPROD project, and by 

the CUGS graduate school. 
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Thus, the main goal of this work is the design and development of a general execu-
table mathematical modeling and semantics meta-modeling language. This language 
should have a clean semantics as in the case of Modelica and Natural Semantics 
(RML), and should be compiled to code of high performance. This language will 
allow expressing mathematical models but also meta-models and meta-programs that 
specify composition of models, transformation of models, model constraints, etc. This 
language is based on Modelica extended with several new language constructs that 
allows program language specification. The unified language is called MetaModelica.    

The paper is structured as follows: In the next section we present the starting back-
ground for the development of the MetaModelica unified language. Section 3 presents 
the proposed mathematical/semantical unified modeling language. In Section 4 we 
present the implementation of the MetaModelica compiler for the unified language. 
Section 5 presents performance evaluation of our generated code. Section 6 presents 
future work. Conclusions and Future work are presented in Section 7.   

2   Background 

About sixteen years ago, our research group has selected two application domains for 
research on high-level specification languages: 

• Specification languages for programming language semantics. Much work has 
been done in that area, but there is still no standard class of compiler-compiler 
tools around, as successful as parser generators based on grammars in BNF form 
like lex (flex), yacc (bison), ANTLR, etc. 

• Equation-based specification languages for mathematical modeling of complex 
(physical) systems. 

In the following sections we briefly describe the main achievements of this work.  

2.1   Natural Semantics and the Relational Meta-Language (RML) 

Concerning specification languages for programming language semantics, compiler 
generators based on denotational semantics (Pettersson and Fritzson 1992 [24]) 
(Ringström et al. 1994 [29]), were investigated and developed with some success. 
However this formalism has certain usage problems, and Operational Seman-
tics/Natural Semantics started to become the dominant formalism in common litera-
ture. Therefore a meta-language and compiler generator called RML (Relational Meta 
Language) (Fritzson 1998 [8], PELAB 1994-2005 [21], Pettersson 1995 [25], 1999 
[26]) for Natural Semantics was developed, which we have used extensively for full-
scale specifications of languages like Java (object oriented), C subset with pointer 
arithmetic, functional, and equation-based languages (Modelica). Generated imple-
mentations are comparable in performance to hand implementations. However, it 
turned out that development environment support is needed also for specification 
languages. Recent developments include a debugger for Natural Semantics specifica-
tions (Pop and Fritzson 2005 [28]).  

Natural Semantics (Kahn 1988 [16]) is a specification formalism that is used to spec-
ify the semantics of programming languages, i.e., type systems, dynamic semantics, 
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translational semantics, static semantics (Despeyroux 1984 [4], Glesner and 
Zimmermann 2004 [14]), etc. Natural Semantics is an operational semantics derived 
from the Plotkin (Plotkin 1981 [27]) structural operational semantics combined with 
the sequent calculus for natural deduction. There are few systems implemented that 
compile or interpret Natural Semantics.  

One of these systems is Centaur (Borras et al. 1988 [1]) with its implementation of 
Natural Semantics called Typol (Despeyroux 1984 [4], 1988 [5]). This system is 
translating the Natural Semantics inference rules to Prolog.  

The Relational Meta-Language (RML) is a much more efficient implementation of 
Natural Semantics, with a performance of the generated code that is several orders of 
magnitude better than Typol. The RML language is compiled to highly efficient C 
code by the rml2c compiler. In this way large parts of a compiler can be automatically 
generated from their Natural Semantics specifications. RML is successfully used for 
specifying and generating practically usable compilers from Natural Semantics for 
Java, Modelica, MiniML (Clément et al. 1986 [3]), Mini-Freja (Pettersson 1995 [25]) 
and other languages. 

2.1.1   An Example of Natural Semantics and RML  
As a simple example of using Natural Semantics and the Relational Meta-Language 
(RML) we present a trivial expression (Exp1) language and its specification in Natu-
ral Semantics and RML. A specification in Natural Semantics has two parts:  

• Declarations of syntactic and semantic objects involved.  
• Groups of inference rules which can be grouped together into relations.  

In our example language we have expressions built from numbers. The abstract syn-
tax of this language is declared in the following way: 

in tegers: 

   

exp ressions (ab stract syn tax ): 

    :: | 1 2 | 1 2 | 1 * 2 | 1 / 2 |

v In t

e E xp v e e e e e e e e e

∈

∈ = + − −

 

The inference rules for our language are bundled together in a judgment e v=>  in 
the following way (we do not present here the similar rules for the other operators.): 

1 1 2 2  v1+v2 v3

1 2 3

(1)   

(2)  
e v e v

e e v

v v

+
 

RML modules have two parts, an interface comprising datatype declarations (abstract 
syntax) and signatures of relations (judgments) that operate on such datatypes, fol-
lowed by the declarations of the actual relations which group together rules and axi-
oms. In RML, the Natural Semantics specification shown above is represented as 
follows: 
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module Exp1: 
 
  (* Abstract syntax of the language Exp1 *) 
  datatype Exp =  RCONST of real 
               |  ADD    of Exp * Exp 
               |  SUB    of Exp * Exp 
               |  MUL    of Exp * Exp 
               |  DIV    of Exp * Exp 
               |  NEG    of Exp       
  relation eval: Exp => real 
end 
(* Evaluation semantics of Exp1 *) 
relation eval: Exp => real  = 
 
 (* Evaluation of a real node is the real number itself *)  
 axiom eval(RCONST(rval)) => rval  
  

    (* Evaluation of an addition node ADD is v3, if v3 is the result of 
       adding the evaluated results of its children e1 and e2. *) 

 rule  eval(e1) => v1 & eval(e2) => v2 &  v1 + v2 => v3 
       ------------------------------------------------ 
       eval( ADD(e1, e2) ) => v3 
 
 rule  eval(e1) => v1 & eval(e2) => v2 &  v1 - v2 => v3 
       ------------------------------------------------ 
       eval( SUB(e1, e2) ) => v3 
 
 rule  eval(e1) => v1 & eval(e2) => v2 &  v1 * v2 => v3 
       ------------------------------------------------ 
       eval( MUL(e1, e2) ) => v3 
 
 rule  eval(e1) => v1 & eval(e2) => v2 &  v1 / v2 => v3 
       ------------------------------------------------ 
       eval( DIV(e1, e2) ) => v3 
 
 rule  eval(e) => v & -v => vneg 
       ------------------------- 
       eval( NEG(e) ) => vneg 
 
end (* eval *) 
 

A proof-theoretic interpretation can be assigned to this specification. We interpret 
inference rules as recipes for constructing proofs. We wish to prove that there is a 
value v  such that 1 2 v+  holds for this specification. To prove this proposition 
we need an inference rule that has a conclusion, which can be instantiated (matched) 
to the proposition. The only proposition that matches is the second proposition (2), 
which is instantiated as follows:  

1 1 2 2 1 2

1 2

v v v v v

v

+

+
 

To continue the proof, we need to apply the first proposition (axiom) several times, 
and we soon reach the conclusion. One can observe that debugging of Natural Seman-
tics comprise proof-tree understanding. 
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2.1.2   Specification of Syntax 
Regarding the specification of lexical and syntatic rules for a new language, we use 
external tools such as Lex, Yacc, Flex, Bison, etc., to generate those modules. The 
parser builds abstract syntax by calling RML-defined constructors. The abstract syn-
tax is then passed from the parser to the RML-generated modules. We currently use 
the same approach for languages defined using MetaModelica. 

2.2   Modelica – An Object-Oriented Equation-Based Component Language 

Starting 1989, we developed an equation-based specification language for mathemati-
cal modeling called ObjectMath (Viklund et al. 1992 [36]), using Mathematica as a 
basis and a frontend, but adding object orientation and efficient code generation was 
developed. Following this path our group joined effort with several other groups in 
object oriented mathematical modeling to start a design-group for developing an in-
ternationally viable declarative mathematical modeling language. The language re-
sulted from this effort is called Modelica. Modelica (Elmqvist et al. 1999 [7], Fritzson 
2004 [13], Fritzson and Engelson 1998 [9], Modelica-Association 1996-2005 [18], 
Tiller 2001 [35]) is an object-oriented modeling language for declarative equation-
based mathematical modeling of large and heterogeneous physical systems. For mod-
eling with Modelica, commercial software products such as MathModelica 
(MathCore [17]) or Dymola (Dynasim 2005 [6]) have been developed. Also open-
source implementations like the OpenModelica system (Fritzson et al. 2002 [10], 
PELAB 2002-2005 [22]) are available.  

The Modelica language has been designed to allow tools to generate efficient simu-
lation code automatically with the main objective of facilitating exchange of models, 
model libraries and simulation specifications. The definition of simulation models is 
expressed in a declarative manner, modularly and hierarchically. Various formalisms 
can be combined with the more general Modelica formalism. In this respect Modelica 
has a multi-domain modeling capability which gives the user the possibility to com-
bine electrical, mechanical, hydraulic, thermodynamic, etc., model components within 
the same application model. Compared to most other modeling languages available 
today, Modelica offers several important advantages from the simulation practitio-
ner’s point of view: 

• Acausal modeling based on ordinary differential equations (ODE) and differential 
algebraic equations and discrete equations (DAE). There is also ongoing research 
to include partial differential equations (PDE) in the language syntax and seman-
tics (Saldamli et al. 2002 [31]), (Saldamli 2002 [30], Saldamli et al. 2005 [32]). 

• Multi-domain modeling capability, which gives the user the possibility to combine 
electrical, mechanical, thermodynamic, hydraulic etc., model components within 
the same application model. 

• A general type system that unifies object-orientation, multiple inheritance, and 
generics templates within a single class construct. This facilitates reuse of compo-
nents and evolution of models. 

• A strong software component model, with constructs for creating and connecting 
components. Thus the language is ideally suited as an architectural description lan-
guage for complex physical systems, and to some extent for software systems. 
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• Visual drag & drop and connect composition of models from components present 
in different libraries targeted to different domains (electrical, mechanical, etc).   

The language is strongly typed and declarative. See (Modelica-Association 1996-
2005 [18]), (Modelica-Association 2005 [19]), (Tiller 2001 [35]), and (Fritzson 2004 
[13]) for a complete description of the language and its functionality from the per-
spective of the motivations and design goals of the researchers who developed it. 
Shorter overviews of the language are available in (Elmqvist et al. 1999 [7]), (Fritzson 
and Engelson 1998 [9]), and (Fritzson and Bunus 2002 [12]). 

2.2.1   An Example Modelica Model 
The following is an example Lotka Volterra Modelica model containing two differen-
tial equations relating the sizes of rabbit and fox populations which are represented by 
the variables rabbits and foxes: The rabbits multiply; the foxes eat rabbits. Even-
tually there are enough foxes eating rabbits causing a decrease in the rabbit popula-
tion, etc., causing cyclic population sizes. The model is simulated and the sizes of the 
rabbit and fox populations as a function of time are plotted in Fig. 1. 

2 0 0  4 0 0 6 0 0 8 0 0 1 0 0 0
t  

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

f o x e s  

r a b b i t s  

 

Fig. 1. Number of rabbits – prey animals, and foxes -  predators, as a function of time simulated 
from the PredatorPrey model 

The notation der(rabbits) means time derivative of the rabbits (population) 
variable. 

class LotkaVolterra 
  parameter Real g_r =0.04    "Natural growth rate for rabbits"; 
  parameter Real d_rf=0.0005  "Death rate of rabbits due to foxes"; 
  parameter Real d_f =0.09    "Natural deathrate for foxes"; 
  parameter Real g_fr=0.1     "Efficency in growing foxes from 

    rabbits"; 
  Real     rabbits(start=700) "Rabbits,(R) with start population 

    700"; 
  Real     foxes(start=10)    "Foxes,(F) with start population 10"; 
equation 
  der(rabbits) = g_r*rabbits - d_rf*rabbits*foxes; 
  der(foxes)   = g_fr*d_rf*rabbits*foxes - d_f*foxes; 
end LotkaVolterra; 
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2.2.2   Modelica as a Component Language 
Modelica offers quite a powerful software component model that is on par with hard-
ware component systems in flexibility and potential for reuse. The key to this increased 
flexibility is the fact that Modelica classes are based on equations, i.e., acausal connec-
tions for which the direction of data flow across the connection is not fixed. Compo-
nents are connected via the connection mechanism, which can be visualized in connec-
tion diagrams. The component framework realizes components and connections, and 
ensures that communication works and constraints are maintained over the connec-
tions. For systems composed of acausal components the direction of data flow, i.e., the 
causality is automatically deduced by the compiler at composition time. 

Two types of coupling can be established by connections depending on whether the 
variables in the connected connectors are nonflow (default), or declared using the 
flow prefix: 

1. Equality coupling, for nonflow variables, according to Kirchhoff’s first law. 

2. Sum-to-zero coupling, for flow variables, according to Kirchhoff’s current law. 

For example, the keyword flow for the variable i of type Current in the Pin con-
nector class indicates that all currents in connected pins are summed to zero, accord-
ing to Kirchhoff’s current law. 

 

pin1 pin2 
+ + 

pin2.i 

pin2.vpin1.v

pin1.i 
 

Fig. 2. Connecting two components that have electrical pins 

Connection equations are used to connect instances of connection classes. A connec-
tion equation connect (pin1,pin2), with pin1 and pin2 of connector class Pin, 
connects the two pins (Fig. 2) so that they form one node. This produces two equa-
tions, namely: 

pin1.v = pin2.v  
pin1.i + pin2.i = 0  

The first equation says that the voltages of the connected wire ends are the same. The 
second equation corresponds to Kirchhoff's second law, saying that the currents sum 
to zero at a node (assuming positive value while flowing into the component). The 
sum-to-zero equations are generated when the prefix flow is used. Similar laws apply 
to flows in piping networks and to forces and torques in mechanical systems. 

3   MetaModelica – A Unified Equation-Based Modeling Language 

The idea to define a unified equation-based mathematical and semantical modeling 
language started from the development of the OpenModelica compiler (Fritzson et al. 
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2002 [11]).  The entire compiler is generated from a Natural Semantics specification 
written in RML.  The open source OpenModelica compiler has its users in the Mode-
lica community which have detailed knowledge of Modelica but very little knowledge 
of RML and Natural Semantics. In order to allow people from the Modelica commu-
nity to contribute to the OpenModelica compiler we retargeted the development lan-
guage from RML to MetaModelica, which is based on the Modelica language with 
several extensions. We already translated the OpenModelica compiler from RML to 
the MetaModelica using an automated translator (Carlsson 2005 [2]) implemented in 
RML. We also developed a compiler which can handle the entire OpenModelica com-
piler specification (~105000 lines of code) defined in MetaModelica. An evaluation of 
the performance of the generated code is presented in section 6.  

The basic idea behind the unified language is to use equations as the unifying fea-
ture. Most declarative formalisms, including functional languages, support some kind 
of limited equations even though people often do not regard these as equations, e.g. 
single-assignment equations.  

Using the meta-programming facilities, usual tasks like generation, composition 
and querying of Modelica models can be automated.  

The MetaModelica language inherits all the strong component capabilities Mode-
lica. Components can be reused in different contexts because the causality is not fixed 
in equations and is up to the compiler to decide it.    

3.1   The Types of Equations in the Unified Language 

In the following we present the current types of equations already present in Modelica 
and detail the addition of the equations that support the definition of semantic specifi-
cations. 

3.1.1   Mathematical Equations 
Mathematical models almost always contain equations. There are basically four main 
kinds of mathematical equations in Modelica which we detail below.  

Differential equations contain time derivatives such as dt
dx , usually denoted x : 

3+⋅= xax  (1) 

Algebraic equations do not include any differentiated variables: 

222 Lyx =+  (2) 

Partial differential equations also contain derivatives with respect to other variables 
than time: 

2

2

z

a

t

a

∂
∂=

∂
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Difference equations express relations between variables, e.g. at different points in 
time: 

2)(3)1( +=+ txtx  (4) 
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3.1.2   Conditional Equations and Events 
Behavior can develop continuously over time or as discrete changes at certain points 
in time, usually called events. It is possible to express events and discrete behavior 
solely based on conditional equations. An event in Modelica is something that hap-
pens that has the following four properties: 

• A point in time that is instantaneous, i.e., has zero duration. 
• An event condition that switches from false to true for the event to happen. 
• A set of variables that are associated with the event, i.e., are referenced or explic-

itly changed by equations associated with the event. 
• Some behavior associated with the event, expressed as conditional equations that 

become active or are deactivated at the event. Instantaneous equations are a special 
case of conditional equations that are active only at events. 

Modelica has several constructs to express conditional equations, e.g. if-then-else 
equations for conditional equations that are active during certain time durations, or 
when-equations for instantaneous equations. 

timeevent 1 event 2 event 3

y

z

y,z 

 

Fig. 3. A discrete-time variable z changes value only at event instants, whereas continuous-time 
variables like y may change both between and at events 

3.1.3   Single-Assignment Equations 
A single-assignment equation is quite close to an assignment, e.g.: 

x = eval_expr(env, e); 

but with the difference that the unbound variable (here x) which obtains a value by 
solving the equation, only gets its value once, whereas a variable in an assignment 
may obtain its value several times, e.g.: 

x := eval_expr(env, e); x := eval_expr2(env, x); 

3.1.4   Pattern Equations in Match Expressions  
In this section we present our addition to the Modelica language which allows defini-
tions of semantic specifications. The new language features are pattern equations, 
match expressions and union datatypes. 
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Pattern equations are a more general case than single-assignment equations, e.g.: 

Env.BOOLVAL(x,y) = eval_something(env, e); 

Unbound variables get their values by using pattern-matching (i.e., unification) to 
solve for the unbound variables in the pattern equation. For example, x and e might 
be unbound and solved for in the equations, whereas y and env could be bound and 
just supply values.  

The following extension to Modelica is essential for specifying semantics of lan-
guage constructs represented as abstract syntax trees: 

• Match expressions with pattern-matching case rules, local declarations, and local 
equations. 

It has the following general structure: 

match expression  optional-local-declarations 
  case pattern-expression opt-local-declarations 
    optional-local-equations then value-expression; 
  ... 
  else optional-local-declarations  
    optional-local-equations then value-expression; 
end match; 

The then keyword precedes the value to be returned in each branch. The local decla-
rations started by the local keyword, as well as the equations started by the equa-
tion keyword are optional. There should be at least one case...then branch, but 
the else-branch is optional. 

A match expression is closely related to pattern matching in functional languages, 
but is also related to switch statements in C or Java. It has two important advantages 
over traditional switch statements: 

• A match expression can appear in any of the three Modelica contexts: expressions, 
statements, or in equations. 

• The selection in the case branches is based on pattern matching, which reduces to 
equality testing in simple cases, but is unification in the general case. 

Local equations in match expressions have the following properties: 

• Only algebraic equations are allowed as local equations, no differential equations. 
• Only locally declared variables (local unknowns) declared by local declarations 

within the case expression are solved for, or may appear as pattern variables. 
• Equations are solved in the order they are declared (this restriction may be re-

moved in the future, allowing more general local algebraic systems of equations). 
• If an equation or an expression in a case-branch of a match-expression fails, all 

local variables become unbound, and matching continues with the next branch. 

We also need to introduce the possibility to declare recursive tree data structures in 
Modelica, e.g.: 

uniontype Exp 
  record RCONST Real x1; end RCONST; 
  record PLUS  Exp x1; Exp x2; end PLUS; 
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  record SUB   Exp x1; Exp x2; end SUB; 
  record MUL   Exp x1; Exp x2; end MUL; 
  record DIV   Exp x1; Exp x2; end DIV; 
  record NEG   Exp x1;         end NEG; 
end Exp; 

A small expression tree, of the expression 12+5*13, is depicted in Fig. 4. Using the 
record constructors PLUS, MUL, RCONST, this tree can be constructed by the expres-
sion PLUS(RCONST(12), MUL( RCONST(5), RCONST(13))) 

PLUS

MULRCON

RCONS RCONST12

5
13  

Fig. 4. Abstract syntax tree of the expression 12+5*13 

The uniontype construct has the following properties: 

• Union types can be recursive, i.e., reference themselves. This is the case in the 
above Exp example, where Exp is referenced inside its member record types. 

• Record declarations declared within a union type are automatically inherited into 
the enclosing scope of the union type declaration. 

• Union types can be polymorphic  
• A record type may currently only belong to one union type. This restriction may be 

removed in the future, by introducing polymorphic variants. 

This is a preliminary union type design, which however is very close (just different 
syntax) to similar datatype constructs in declarative languages such as Haskell, Stan-
dard ML, OCaml, and RML. The uniontypes can model any abstract syntax tree while 
the match expressions are used to model the semantics, composition or transformation 
of the specified language. 

3.2   Solution of Equations 

The process of solving systems of equations is central for the execution of equation-
based languages. For example: 

• Differential equations are solved by numeric differential equation solvers. 
− Differential-algebraic equations are solved by numeric DAE solvers. 
− Algebraic equations are solved by symbolic manipulation and/or numeric solution 
• Single-assignment equations are solved by performing an assignment. 
• Pattern equations are solved by the process of unification which assigns values to 

unbound variables in the patterns. 
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The first three solution procedures are used in current Modelica. By the addition of 
local equations (Section 3.1.4) in match expressions to be solved at run-time, we 
generalize the allowable kinds of equations in Modelica.  

3.3   Evaluator for the Exp1 Language in the Unified Language 

As an example of the meta-modeling and meta-programming capabilities of the 
MetaModelica we give a very simple example. The semantics of the operations in the 
small expression language Exp1 follows below, expressed as an interpretative lan-
guage specification in Modelica in a style close to Natural and/or Operational Seman-
tics, see Exp1 specified in RML in Section 2.1.1. Such specifications typically consist 
of a number of functions, each of which contains a match expression with one or 
more cases, also called rules. In this simple example there is only one function, here 
called eval, since we specify an expression evaluator.  

function eval 
  input  Exp  in_exp; 
  output Real out_real; 
algorithm 
 out_real := 
  match in_exp 
    local Real v1,v2,v3;  Exp e1,e2; 
    case RCONST(v1) then v1;  
    case ADD(e1,e2) equation  
      v1 = eval(e1);  v2 = eval(e2); v3 = v1 + v2;  then v3; 
    case SUB(e1,e2) equation 
      v1 = eval(e1);  v2 = eval(e2); v3 = v1 - v2;  then v3; 
    case MUL(e1,e2) equation 
      v1 = eval(e1);  v2 = eval(e2); v3 = v1 * v2;  then v3; 
    case DIV(e1,e2) equation 
      v1 = eval(e1);  v2 = eval(e2); v3 = v1 / v2;  then v3; 
    case NEG(e1) equation 
      v1 = eval(e1); v2 =  -v1;  then v2; 
   end match; 
end eval;  

As usual in Modelica the equations are not directional, e.g. the two equations v1 = 
eval(e1) and eval(e1) = v1 are equivalent. The compiler will select one of the 
forms based on input/output parameters and data dependencies. 

There are some design considerations behind the above match-expression construct 
that may need some motivation. 

• Why do we have local variable declarations within the match-expression? The 
main reason is clear and understandable semantics. In all three usage contexts 
(equations, statements, expressions) it should be easy to understand for the user 
and for the compiler which variables are unknowns (i.e., unbound local variables) 
in pattern expressions or in local equations. Another reason for declaring the types 
of local variables is better documentation of the code – the modeler/programmer is 
relieved of the burden of doing manual type-inference to understand the code. 

• Why the then keyword before the returned value? The code becomes easier to 
read if there is a keyword before the returned value-expression. Note that most 
functional languages use the in keyword instead in this context, which is less  
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intuitive, and would conflict with the set or array element membership meaning the 
Modelica in keyword. 

4   Details of the Compiler Implementation 

The current compiler for the MetaModelica language is based on OpenModelica 
compiler which was extended with code from the RML compiler (for meta-
modeling/meta-programming facilities like pattern matching, unification, higher order 
functions, optimizations, etc). In the current version the meta-programming code can 
appear only in functions which can be called by Modelica code in the way an external 
function is called.  

 MetaModelica
Source Code

Translator

Analyzer

Optimizer

Code
Generator

C Compiler

Simulation

MetaModelica 
models 

Flat model

Sorted  equations 

Optimized  sorted 
equations

C Code

Executable

Translator Phases: 
- Static Elaboration 
- Type Checking 
- Optimization to reduce 
   nondeterminism within 
   match constructs  
-  Pattern Matching compilation 
- Translation of meta functions  
   to continuation passing style 
   (CPS) 
 
Optimizer Phases: 
- local CPS optimizations  
- equation optimizations 
- translation of CPS to Code 
- Code optimizations 
 

 

Fig. 5. The stages of translation and execution of a MetaModelica model  

All variable values are boxed to be distinguished by the garbage collector. Every 
boxed value has a small integer as a header. Composite values are boxed structures. 
The structure header contains a small integer tag which is used for pattern matching. 
Logical variables are represented as boxed references. A different header is used to 
represent unbounded or bounded logical variables.  

The MetaModelica source code is first translated into a so-called “flat model”. This 
phase includes type checking, performing all object-oriented operations such as in-
heritance, modifications, compilation of pattern matching, translation of meta  
functions to continuation passing style. The flat model includes a set of equations 
declarations, functions and meta functions, with all object-oriented structure removed, 
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apart from the dot notation within the names.  This process is called the “partial in-
stantiation” of the model.  

The next step is to solve the system of equations. First the equations need to be 
transformed into a suitable form for the numerical solvers. This is done by the sym-
bolic and the numerical module of the compiler. The simulation code generator takes 
as input the flattened form of the equations. The equations are mapped into an internal 
data structure that permits simple symbolic manipulations such as: common subex-
presions elimination, algebraic simplifications, constant folding, etc. These symbolic 
operations decrease substantially the complexity of the system of equations.  After 
this stage the Block Lower Triagular form of the system of equations is computed.  

Finally, in the last phase, the procedural code (in our implementation C code), is 
generated based on the previously computed BLT blocks when each block is linked to 
a numerical solver and the runtime for the meta functions. Within the C code the meta 
functions are called like normal functions.  

5   Performance Evaluation of the MetaModelica Compiler 

We are not aware of any language that is similar with the MetaModelica language. 
However, the meta-modeling and meta-programming parts of the MetaModelica lan-
guage are close to a logic/functional language. Backtracking is used within the match 
construct to select the correct case and the specifications can contain logical variables. 
The uniontypes are similar with the SML datatype definitions, however MetaMode-
lica functions have multiple inputs and outputs not just one argument like in SML. 
Also, because a reordering phase is applied to the MetaModelica code there is no need 
to explicitly declare mutually recursive types and functions. 

All the information, the test code and the files needed to reproduce our results are 
available online at: http://www.ida.liu.se/~adrpo/jmlc2006. Please contact the au-
thors for any additional information regarding the performance evaluation tests. 

We have compared the execution speed of our generated code with SWI-Prolog 
5.6.9 (SWI-Prolog [34]), SICStus Prolog 3.11.2 (Science [33]), Maude MSOS Tool 
(MMT) on top of Maude 2.1.1 (Illinois [15]).  The Maude MSOS Tool (MMT) is an 
execution environment for Modular Structural Operational Semantics (MSOS) 
(Mosses 2004 [20]) specifications that brings the power of analysis available in the 
Maude system to MSOS specifications. The Maude MSOS Mini-Freja translation was 
implemented by Fabricio Chalub and Christiano Braga and is available as a case study 
together with sources from http://maude-msos-tool.sourceforge.net/.  SWI-Prolog is a 
widely known open source implementation of Prolog. SICStus Prolog is a commercial 
Prolog implementation.  

The closest match to the meta-modeling and meta-programming facilities of the 
MetaModelica compiler is the Maude MSOS Tool.  

The test case is based on an executable specification of the Mini-Freja language 
(Pettersson 1999 [26]) running a test program based on the sieve of Eratosthenes. 
Mini-Freja is a call-by-name pure functional language. The test program calculates 
prime numbers.  

The Prolog translation (mf.pl) was implemented by Mikael Pettersson and this 
author corrected a minor mistake. 
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Table 1.   Execution time in seconds. The – sign represents out of memory. 

 
 

 
MetaModelica 

 

 
SICStus 

 
SWI  

 
Maude MSOS Tool 

 
8 0.00 0.05 0.00 2.92 

10 0.00 0.10 0.03 5.60 
30 0.02 1.42 1.79 226.77 
40 0.06 3.48 3.879 - 
50 0.13 - 11.339 - 

100 1.25 - - - 
200 16.32 - - - 

The comparison was performed on a Fedora Core4 Linux machine with two AMD 
Athlon(TM) XP 1800+ processors at 1500 MHz and 1.5GB of memory.  

The memory consumption was at peak 9Mb for MetaModelica and the others 
consumed the entire 1.5Gb of memory and aborted at arround 40 prime numbers. 
With this test we stressed only the meta-programming and meta-modeling part of the 
compiler. The Modelica part of the compiler was already able to handle huge models 
with thousands of equations.   

6   Related Work 

As related work we can consider the Unified Modeling Language (UML). Modeling 
in the UML sense has more emphasis on graphical notation for modeling rather than 
precise mathematical model definitions as in the modeling languages mentioned in the 
previous section. Initially, execution support was lacking, but during recent years 
code generators from UML2 has appeared. Also, during recent years, there has been 
an increased interest in model-driven developments and the OMG has launched 
model-driven architectures, primarily based on UML models. The idea of meta-
modeling has attracted increased interest: a meta-model describes the structure of 
models at the next lower abstraction level. Meta-modeling and meta-programming 
allows transformations and composition of models and programs, which is becoming 
increasingly relevant in order to specify and manage complex industrial software and 
system applications. However, UML has developed into a rather heterogeneous col-
lection of modeling notations. Also, precise mathematically defined semantics is not 
always available for these graphical notations. By contrast, MetaModelica is defined 
exclusively based on equations, functions and meta functions. Similar meta-
programming facilities are present in functional languages like SML, Haskell and 
OCaml but the execution strategy is different in these languages as they do not sup-
port backtracking to select cases.   

In the area of mathematical modeling the most important general de-facto stan-
dards for different dynamic simulation modes are: 
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• Continuous: Matlab/Simulink, MatrixX/SystemBuild, Scilab/Scicos for general 
systems, SPICE and its derivates for electrical circuits, ADAMS, DADS/Motion, 
SimPack for multi-body mechanical systems. 

• Discrete: general-purpose simulators based on the discrete-event GPSS line, 
VHDL- and Verilog simulators in digital electronics, etc. 

• Hybrid (discrete + continuous): Modelica/Dymola, AnyLogic, VHDL-AMS and 
Verilog-AMS simulators (not only for electronics but also for multi-physics prob-
lems). 

The insufficient power and generality of the former modeling languages stimulated 
the development of Modelica (as a true object-oriented, multi-physics language) and 
VHDL-AMS/Verilog-AMS (multi-physics but strongly influenced by electronics).  

The rapid increase in new requirements to handle the dynamics of highly complex, 
heterogeneous systems requires enhanced efforts in developing new language features 
(based on existing languages!). Especially the efficient simulation of hardware-
software systems and model structural dynamics are yet unsolved problems. In elec-
tronics and telecommunications, therefore, the development of SystemC-AMS has 
been launched but these attempts are far from the multi-physics and multi-domain 
applications which are addressed by Modelica. 

7   Conclusions and Future Work 

We have presented two executable specification languages: RML for Natural Seman-
tics specifications of programming languages, and Modelica for equation-based se-
mantics and mathematical modeling of complex systems. We have also described 
MetaModelica as a unified mathematical and semantical modeling language by gen-
eralizing the concept of equation and introducing local equations and match expres-
sions in the Modelica language. This gives interesting perspectives for the future 
regarding meta-modeling, model transformations and compositions during simulation, 
etc.  

The current status of this work is that the OpenModelica compiler has been ported 
to the new unified Modelica modeling language, resulting in ~105000 lines of code 
expressed in the unified language. A compiler for MetaModelica has been completed 
at the time of this writing. We have also developed an integrated development envi-
ronment based on Eclipse which facilitates writing and debugging of MetaModelica 
code (PELAB 2006 [23]). The MetaModelica language can be used to write semantic 
specifications for a broad spectrum of languages ranging from functional to impera-
tive languages. We have also translated all our RML specification examples to 
MetaModelica in order to provide teaching material for the new language. The current 
specifications include imperative, functional, equation-based, and object-oriented 
languages. 

The unified MetaModelica language gives new perspectives for a broad range of 
items, from programming and modeling languages to physical systems, but also in-
cluding model transformations and composition. Apart from language specification to 
generate interpreters and compilers, symbolic differentiation rules for differentiating 
expressions and equations have been specified in MetaModelica and is in use. 
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Our near future plans are to extend MetaModelica with exceptions and reflection. 
The long term goal for MetaModelica is to achieve the generation of compilers for 
any language by drag and drop semantic components from libraries and connect them 
together in a similar way the physical systems are modeled today in Modelica. 
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Abstract. Current programming languages are still underdeveloped for the con-
struction of well-structured concurrent software systems. They typically impose 
many unnecessary and unacceptable compromises and/or workarounds due to a 
multiplicity of different suboptimal concepts. With regard to object-orientation, 
one can identify references, methods and inheritance as such inappropriate con-
structs.  

To overcome this unfavourable situation, we have designed and 
implemented a substantially new programming language which integrates a 
general component notion. Three fundamental relations govern components in 
this language: (1) hierarchical composition, (2) symmetric connections with a 
dual concept of offered and required interfaces and, (3) communication-based 
interactions. With the use of various examples, the advantage of the new 
component language is demonstrated in this paper. 

1   Motivation 

The current trend within the field of software engineering is steadily evolving towards 
programming languages which possess an increasing number of different and 
unfortunately, counterproductive concepts. This growing conceptual incoherence 
often implicates such high complexity, that it decisively limits the flexible con-
struction of structured parallel programs. With regard to the current most prevalent 
object-oriented programming paradigm, we are confronted with three fundamental 
problems: 

• References 
References (or pointers) form semantically very weak constructs for 
describing relations between dynamically created object instances. Arbitrary 
interlinking of object instances is therewith promoted, leading to an object 
graph of non-hierarchical shape1. Clear program structures and general en-
capsulations remain unsupported: any abstraction that consists of a dynamic 
structure of sub-elements is not adequately representable as a hierarchically 
composed object. Instead, this has to be forcibly modelled as a reference-
linked conglomerate of elementary object instances, constituting an  

                                                           
1  C.A.R. Hoare unequivocally criticizes the unstructured nature of references and calls their 

introduction in high-level programming languages a step backwards [17, page 20]. 
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undifferentiated part in the common overall and flat object graph. As a con-
sequence, incautious reference copying may quickly lead to incorrect 
program dependencies (aliasing problems [16, 4, 11, 8, 22, 2]). Moreover, 
object exchangeability is strongly impacted by dependencies of outgoing 
object references which are unspecified in object interfaces2.  

• Methods 
Methods fail the realization of a true message passing paradigm, as they in 
fact only constitute procedures (with an implicit reference to the containing 
object). An object is not capable of maintaining an arbitrarily long state-full 
interaction with multiple clients individually, but can only hold a client-
specific context during a method invocation3. The pattern of a method for a 
client-specific interaction is however oversimplified, having only one 
parameterised input followed by one possible output, with generally only one 
value. Methods additionally obstruct concurrency by blocking the invocator 
during their entire execution, instead of running at the expense of the actual 
containing object. 

• Inheritance 
The main object-oriented mechanism for type polymorphism, known as 
inheritance, enforces a groundless hierarchisation and classification of object 
types at compile-time. Unlike a symmetric polymorphism, objects can not be 
represented by multiple, equally important facets, without artificially pre-
ferring some facets as sub-types of others. Inheritance also unsuitably 
combines the two antagonistic concerns of polymorphism and code reuse, 
often resulting in mutual imports of different classes. A special object class, 
which needs to be inherited from a general class for the purpose of type poly-
morphism, should not be obligated to also inherit the general implementation 
of the super-class, as the special class' code is naturally more specific than 
that of the general class4.  

This unfavourable situation demands a total revision of the conceptual basis of 
current programming languages. We are challenged to design new languages, which 
base on a new more powerful paradigm that uniformly enables structured, dynamic, 
and safe software development. Clearly, this requires the liberation of the language 
concepts from the often unreasonable close binding to a concrete machine model. 
Instead, there is a need for real high-level programming languages, which are still 
effectively implementable on different computer platforms. 

In order to achieve this ideal, we have designed and implemented a substantially 
new programming language, which integrates a general high-level component notion. 
Three simple but fundamental relations govern components in this language: (1) 

                                                           
2  Every element of public visibility in the object may be considered as part of the object’s 

interface. 
3  The iteration over a collection stands for a client-individual state-full interaction that can not 

be accurately expressed with methods (cf. 3.2). 
4  Clearly, the example of a rectangle and square shows this contradiction: a square is a 

geometrical special-case (modelled as a sub-class) of a rectangle but on the other hand, 
should not inherit the general rectangle implementation (with the two variables length and 
width). 
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hierarchical composition without use of explicit pointers, (2) symmetric connections 
with a dual concept of offered and required interfaces and, (3) communication-based 
interactions. The new component language takes a completely different path in com-
parison to existing component models, architecture description languages, and object 
structure specification models (see Section 5). As innovation, it provides a fully-
fledged programming language, which only features high-level concepts for the 
implementation of components. The component language inherently abolishes the 
fundamental deficiencies of current programming models and offers the following 
attractive features: 

• Hierarchical encapsulation 
A component is able to contain any (static or dynamic) structures of com-
ponents and program logic of any complexity. The hierarchically contained 
components and the relations among them are thereby fully encapsulated and 
exclusively managed by the surrounding component. 

• Expressive structural relations 
All structures of components are described by semantically rich relations, 
such that classical references (and pointers) can be entirely abandoned 
without loss of expressiveness: each component contains its own arbitrary 
network of sub-components. This prohibits uncontrolled program dependen-
cies (such as aliasing problems).  

• Intrinsic concurrency 
Concurrency inherently results from the language model, in which all com-
ponents run fully autonomously and have their own intrinsic activities. 
Components only interact via bidirectional message communications (with 
non-blocking message sending). 

• Unrestricted polymorphism 
Components can be represented by an arbitrary set of independent interfaces, 
activating unrestricted symmetric polymorphism in total separation from 
implementation reuse. A new type description ensures the correct handling of 
polymorphic components. 

• Interoperability 
Although the component language is designed for general purposes (except 
machine-close programming) and common programs are entirely develop-
able in components, the language also permits safe interoperability due to the 
guaranteed encapsulation. Terminal components, which do not contain sub-
components, may be just as well implemented in any programming language, 
such as for the purpose of machine-specific implementations.  

1.1   Contributions 

The contributions of this paper can be summarised as follows: 

• The presentation of a new programming language with an integrated general 
component notion for structured parallel programming. 

• A comparison of the new language with classical object-orientation, showing 
the advantage by means of practical examples. 
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• The description of a complete implementation of the programming language, 
comprising compiler and runtime system. 

The remainder of the paper is organised as follows; Section 2 presents the concepts of 
the new programming language and explains them by means of illustrative examples. 
Section 3 shows practical examples of the new language and compares them with 
object-orientation. Section 4 describes the implementation of the programming 
language and also gives an experimental evaluation of the system. Section 5 discusses 
related work, which is finally followed by a conclusion. 

2   Component Language 

The new programming language follows the principle that any program forms a 
component which may be constructed again from an assembly of components and so 
on. With this paradigm of stepwise refinement, complex systems can be built with 
abstract program elements that hide detailed logic from a higher abstraction level.  

A component5 constitutes a closed program unit (black box) that encapsulates an 
arbitrary assembly of sub-components, together with runtime state and behaviour. 
Components are only allowed to have external program dependencies over explicitly 
defined interfaces. An interface represents an external facet of a component and thus 
establishes an explicit interaction point between the component and its exterior 
environment. Each component offers an arbitrary number of own interfaces and also 
requires an arbitrary number of foreign interfaces that belong to other external com-
ponents6.  

By way of a first example, let us consider a standard house, which has the external 
facets of a residence and a parking space, requiring both electricity and water supplies 
from outside. The house may be described as a component called StandardHouse, 
which offers both a Residence and ParkingSpace interface (see Fig. 1). In addition, 
the house requires the foreign Electricity and Water interfaces from other external 
components. Clearly, all interfaces of the component have equal rights, i.e. there is no 
artificially preferred interface. With regard to the example, this means that the 
characterizations of a residence and parking space are equally important facets of the 
house.  

INTERFACE Residence; (* … *) 
INTERFACE ParkingSpace; (* … *) 
INTERFACE Electricity; (* … *) 
INTERFACE Water; (* … *) 

COMPONENT StandardHouse  
  OFFERS Residence, ParkingSpace 
  REQUIRES Electricity, Water;  
  (* implementation *) 
END StandardHouse; 

                                                           
5 A component here always means a runtime instance of a component template.  
6 A variety of other component definitions can be found in [26, Chapter 11]. 
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Fig. 1. A component 

Arbitrarily many component instances (also simply called components) can be 
created from the same component template (also called component type7). In the 
example above, the program describes the component template, which can in turn be 
used to create as many house component instances as needed. One such possible 
instance of a house is depicted by the diagram in Fig. 1. 

The component language is based upon three fundamental relations between com-
ponents:  

• Hierarchical composition 
Each component can be hierarchically composed, by containing an arbitrary 
assembly of component instances. The contained sub-components are fully 
encapsulated by the surrounding super-component. 

• Interface connections 
An arbitrary network of components can be built by connecting the required 
interfaces of components to corresponding offered interfaces of other com-
ponents. A component only constructs the network of its sub-components. 

• Communication-based interactions 
Components can interact via interfaces by message communications. An 
individual communication channel is maintained between a component, 
which offers an interface, and each component, which uses the interface8. 

The component notion is designed to cover any conceivable encapsulated program 
unit and to enable higher generality than the classical component abstractions of 
objects and modules. For that reason, the general components establish the sole 
building units of the language. 

2.1   Component Instances 

Component instances must always be declared in the program scope of their 
containing super-component. The declaration of an instance requires a description of 
the corresponding component type (component template), in order to ensure the 
correct handling of instances. The concrete component type is one possibility for such 
a description. For example, house1 and house2 can be declared as two instances of the 
StandardHouse component type: 

house1, house2: StandardHouse 

In many cases, it is however necessary to declare component instances without 
statically fixing a specific type. Therefore, as another possibility, a component 

                                                           
7  A component instance has only one type, i.e. the concrete template from which it is created. 
8  Notably, the communication between components is fully symmetric and does not entail 

"inverse programming" by means of event-orientation. 
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instance is also declarable in abstract terms, by simply postulating a set of offered and 
required interfaces. The example below shows such an abstract declaration of a 
building component instance, with the postulated offered interfaces Residence and 
ParkingSpace, and the required interfaces Electricity and Water.  

building: ANY(Residence, ParkingSpace | Electricity, Water) 

Using this declaration, the component instance can be of any component type that 
fulfils the following requirements:  

1. The component type offers at least the interfaces which are postulated as 
offered by the declaration (i.e. Residence and ParkingSpace). These inter-
faces are always guaranteed to be provided by the declared component 
instance.  

2. The component type requires at most the interfaces which are postulated as 
required by the declaration (i.e. Electricity and Water). These interfaces have 
to be provided by the environment of the declared component instance, 
before the component’s offered interfaces can be used. 

Applying the rules above, the following townHouse component may well be of the 
StandardHouse type. Conversely, the oldHouse component can not represent a 
StandardHouse as no required Electricity interface is postulated. 

townHouse: ANY(Residence | Electricity, Water, CentralHeating); 
oldHouse: ANY(Residence | Water) 

A static declaration of component instances is not always applicable as in some 
cases, the number of component instances may be determined only at runtime. Hence, 
it is also possible to declare a dynamic collection of component instances with the 
same type description. An index, qualified by a list of comparable data values, thereby 
allows the dynamic identification of a component within the collection. For example, 
the following declaration defines a collection of components of the StandardHouse 
type, requiring a street number and name to identify an instance.  

house[number: INTEGER, street: TEXT]: StandardHouse 

With this declaration, the following component instances (amongst others) may be 
accessed.  

house[12, "Market Street"] house[3, "First Avenue"] house[100, "Grand Boulevard"] 

2.2   Hierarchical Composition 

A component can be hierarchically composed, by containing an arbitrary static or 
dynamic number of sub-components. The sub-components are fully encapsulated and 
exclusively managed by the surrounding super-component, such that the inner 
components are completely invisible and inaccessible outside the super-component. 

The program below delineates a hierarchical composition with the example of a 
StandardHouse component, which contains a garage and two floors as sub-
components (see Fig. 1). In this language, variables enable hierarchical compositions 
by representing separate containers, in which a component instance with a 
compatible type can be stored. 
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COMPONENT StandardHouse OFFERS Residence, ParkingSpace REQUIRES Electricity, Water; 
  VARIABLE garage: StandardGarage; groundFloor, firstFloor: ANY(Rooms | Electricity, Water);  
  BEGIN  
   NEW(garage); NEW(groundFloor, Floor); NEW(firstFloor, Floor) 
END StandardHouse; 

As a variable is empty by default, a component instance has to be created within it 
by the NEW-statement. If an abstract type description is declared for the variable 
(ANY-construct), the component type has to be explicitly specified as second 
parameter (see the two last NEW-statements in the example above). 

 
Fig. 2. A hierarchical composition of components 

Naturally, a variable is also capable of storing a dynamic collection of component 
instances:  

VARIABLE room[number: INTEGER]: HotelRoom; 
FOR i := 1 TO N DO NEW(room[i]) END 

Variables are only defined locally in a program scope, such that they directly imply a 
hierarchical lifetime dependency between the surrounding instance and the internal 
components. 

2.3   Component Networks 

Components systematically decompose programs into separated logical parts, with 
precisely defined dependencies in the form of offered and required interfaces. 
Networks of component instances can be built by explicitly connecting each required 
interface to one with an equal name which is offered by another component. The 
following example of a small city demonstrates the construction of such a network of 
component instances. By means of the CONNECT-statement, the required Water 
interface of house1 is for instance connected to the offered Water interface of river1. 
(The offered interface is thereby implicitly defined by the first argument.) The 
resulting component network is visualised in Fig. 3. 

COMPONENT HydroelectricPowerPlant OFFERS Electricity REQUIRES Water; (* ... *) 
COMPONENT River OFFERS Water; (* ... *) 

VARIABLE 
  house1, house2: StandardHouse; 
  powerPlant: HydroelectricPowerPlant; 
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  river1, river2: River; 

BEGIN 
  NEW(house1); NEW(house2); NEW(powerPlant); NEW(river1); NEW(river2); 
  CONNECT(Water(house1), river1); CONNECT(Electricity(house1), powerPlant); 
  CONNECT(Water(house2), river2); CONNECT(Electricity(house2), powerPlant);    
  CONNECT(Water(powerPlant), river2) 

 

Fig. 3. A component network 

Component networks can of course also be constructed with a dynamic number of 
component instances, as illustrated by the following program9. 

VARIABLE 
  house[postalAddress: TEXT]: StandardHouse; 
  powerPlant: HydroelectricPowerPlant; 
  river[number: INTEGER]: River; 

BEGIN 
  FOR n := 1 TO N DO NEW(river[n]) END; (* N >= 1 *) 
  NEW(powerPlant); CONNECT(Water(powerPlant), river[1]); 
  REPEAT 
    location := postal address of the new house;  
    NEW(house[location]); CONNECT(Electricity(house[location]), powerPlant);  
    n := number of nearest river; 
    CONNECT(Water(house[location]), river[n]) 
  UNTIL no free building site available 

Furthermore, a component may also redirect the implementation of its own offered 
external interfaces to its sub-components. For this purpose, an offered external 
interface (e.g. ParkingSpace of the StandardHouse below) can be connected to an 
offered interface with the same name that belongs to a sub-component (e.g. garage). 
Analogously, a required interface of a sub-component (e.g. the Water interface of the 
groundFloor) is also connectable to a corresponding interface, which is required by 
the super-component from outside.      

COMPONENT StandardHouse OFFERS Residence, ParkingSpace REQUIRES Electricity, Water; 
  VARIABLE garage: StandardGarage; groundFloor, firstFloor: ANY(Rooms | Electricity, Water);  
  BEGIN 
    NEW(garage); NEW(groundFloor, Floor); NEW(firstFloor, Floor); 
 

                                                           
9 The elementary statements of the language are similar to the Oberon language [30, 31]. 
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    CONNECT(ParkingSpace, ParkingSpace(garage));  
    CONNECT(Electricity(groundFloor), Electricity); CONNECT(Water(groundFloor), Water); 
    CONNECT(Electricity(firstFloor), Electricity); CONNECT(Water(firstFloor), Water) 
END StandardHouse; 

Fig. 4 depicts the corresponding connections for the example above. As can be 
seen, hierarchical composition inherently enables implementation reuse. The 
StandardHouse component can be flexibly built by integrating the existing 
StandardGarage implementation as a sub-component and by redirecting the 
ParkingSpace interface correspondingly. In contrast to object-oriented inheritance, 
the concerns of reuse and polymorphism are fully separated here. 

 

Fig. 4. Redirected interfaces 

In the preceding examples, the pointer issue of ordinary programming languages is 
overcome: interface connections can arrange arbitrary component networks, which 
are always fully encapsulated by the surrounding component. This is due to the 
following two important distinctions: 

1. A connection only constitutes a link which is exclusively set and controlled 
by the surrounding component, whereas a pointer (and a classical reference) 
forms a data value that can be freely copied from one to another object. 

2. A connection establishes a symmetric link between a required and an offered 
interface, whereas a reference/pointer asymmetrically links a target from the 
reference holder and may not be visible outside the holder. 

2.4   Communication-Based Interactions 

Interfaces enable arbitrarily general communication-based interactions between 
components. Two components, which are connected by a required and offered inter-
face, can communicate over the interface by bidirectional message exchange. The 
feasible sequences of message transmissions during the communication have to be 
explicitly defined by a protocol in the interface. As an example, the HotelService 
interface below describes the protocol for the communication between a component, 
which offers this interface, and an external component, which uses it (see the scenario 
in Fig. 5). 
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INTERFACE HotelService; 
  {  
     IN CheckIn  
     (   
        OUT AssignedRoom(number: INTEGER)  
        { IN EnterRoom IN ExitRoom } 
        IN CheckOut OUT Bill(price: INTEGER) [ IN DirectPayment(m: Money) ]  
     |  OUT FullyBooked   
     )  
   } 
END HotelService; 

A protocol is specified as a regular expression in the Extended Backus Naur 
Formalism (EBNF) [29]10. The symbols in the protocol denote messages that are 
exchanged during the communication. Each message has a declared transmission 
direction (either IN or OUT), an identifier (e.g. CheckIn), and an optional list of 
parameters (e.g. number). The IN-direction defines that a message is sent to the 
component offering the interface, while the OUT-direction characterises the opposite 
direction of transmission. According to this, the communication protocol of the 
HotelService interface can be understood as the temporal series of messages outlined 
in Fig. 5.  

 

Fig. 5. Message communication via an interface 

The parameters of a message represent component instances that are carried within 
a message. Transmitted instances are always sent as copies which have the same 
internal state and network of sub-components like the original (deep copy), and can in 
turn be safely plugged into the receiver. Naturally, really huge instances (e.g. files) 
should not to be transmitted as copies but should be rather represented by unique 
identifiers (e.g. file descriptors or invariant file path expressions). Such identifiers 
however do not form inbuilt language constructs (such as classical pointers) but have 
to be explicitly defined by the programmer itself, using normal data values or 
components. Consequently, a unique identifier can be utilised to interact (via 
                                                           
10 In EBNF, a concatenation of expressions represents a sequence, square brackets [ ] indicate 

an optional expression, curly brackets { } describe a repetition of zero or arbitrary times, and 
a vertical bar | denotes an alternative between two expressions. By default, concatenation has 
a stronger binding than an alternative. The default binding order can be explicitly changed 
with round brackets ( ). 
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connected interfaces) with the component that contains the actual huge instance (e.g. 
with the file system). 

An offered interface of a component can be used in parallel by all the components 
which are connected to the corresponding interface, as well as by the containing super-
component itself. The component which offers the interface plays the role of the server 
of the interface, whereas the other components which use the interface act as clients of 
this interface. For each client of an interface, the server automatically maintains a 
separate state-full11 communication channel. Hence, some Customer components may 
simultaneously perform their individual hotel check-in, while other clients are in 
another state of communication with the same Hotel instance (see Fig. 6). 

 

Fig. 6. Multiple parallel client communications 

The following program code sketches the implementation of a communication 
between a Customer and a Hotel component. The Hotel component contains an 
implementation block for the offered HotelService interface. This implementation 
block is automatically incarnated as a separate process for each client and runs as an 
individual service agent for the client. Alternatively, the Customer component may 
directly communicate via its required interface.  

COMPONENT Customer REQUIRES HotelService;
BEGIN
  HotelService!CheckIn; (* send message *) 
  IF HotelService?AssignedRoom THEN(*receive test*) 
    HotelService?AssignedRoom(n) (*accept message*) 
    (* … *) 
  ELSE (* fully booked *) 
    HotelService?FullyBooked (* accept message *) 
  END 
END Customer; 

COMPONENT Hotel OFFERS HotelService;
  IMPLEMENTATION HotelService;
  BEGIN 
    WHILE ?CheckIn DO {EXCLUSIVE} 
        ?CheckIn; (* accept message *) 
        IF (*free room*) THEN !AssignedRoom(n) 
        ELSE !FullyBooked END 
    END 
  END HotelService; 
END Hotel;  

The send statement (denoted with "!"), delivers a message to the other 
communication side, by filling the message with copies of the specified parameter 
arguments. A copy forms an identical clone of the original, such that the clone 
contains the same internal state, which includes the network of sub-components. 
These internal components are again recursively copied. Conversely, the receive 
statement (denoted with "?") awaits the arrival of a specific message from the other 
communication side and accepts the message on arrival. The contained component 

                                                           
11 State-full means that the component saves the context for the interaction with each individual 

client. 
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instances of the received message are eventually assigned to the corresponding 
variables, which are specified as parameter arguments. A receive statement blocks the 
execution as long as the message is not received. The receive-test function (an 
expression denoted with "?")12, tests whether a specific message can be received from 
a specific interface by first awaiting any message input. The receive-test function 
hence blocks the execution until the arrival of any message from the interface but 
does not yet accept the message nor assign the message parameters13.  

Within the implementation block, the send- and receive-statements without 
specified interface directly refer to the corresponding client, which is served by the 
block. Conversely, for the communication in the role of a client, the interface has to 
be explicitly specified.  

It is dynamically checked that all required interfaces of a component are connected 
when a communication is initiated via one of its offered interface. During a com-
munication between a client and server, all messages have to be sent and received 
according to the defined protocol. The fulfilment of the protocol is dynamically 
monitored for each communication, and in the case of a violation, a runtime error is 
generated. When a client is disconnected from a component, the implicit END 
message (without parameters), is automatically delivered to the server side and may 
be optionally accepted by the server.  

In the course of the subsequent application of the component language, some of the 
aforementioned elements for component implementations will be explained in more 
detail when required. Those, who desire a complete specification of the component 
language, are referred to the language report [9]. 

3   Examples 

This section illustrates practical examples of the component language, by contrasting 
them to corresponding object-oriented solutions.   

3.1   Producer-Consumer 

The first example demonstrates a producer-consumer scenario, where both producer 
and consumer autonomously interact in parallel with a common bounded buffer.  

COMPONENT Producer REQUIRES DataAcceptor; 
  VARIABLE i: INTEGER; 
  BEGIN FOR i := 1 TO 100000 DO DataAcceptor!Element(i) END 
END Producer; 

INTERFACE DataAcceptor; 
  { IN Element(x: INTEGER) } 
END DataAcceptor; 

COMPONENT Consumer REQUIRES DataSource; 
  VARIABLE i: INTEGER; 
  BEGIN WHILE DataSource?Element DO DataSource?Element(i) END 
END Consumer; 

                                                           
12 Notably, a receive-test function is uniquely distinguishable from a receive-statement, as it 

forms a syntactical expression and not a statement. 
13 Additionally, there is also a non-blocking INPUT-function to check the arrival of a message. 
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INTERFACE DataSource; 
  { OUT Element(x: INTEGER) } 
END DataSource; 

COMPONENT BoundedBuffer OFFERS DataAcceptor, DataSource;  
  CONSTANT Capacity = 10;  
  VARIABLE a[position: INTEGER]: INTEGER; first, last: INTEGER; finished: BOOLEAN; 

  IMPLEMENTATION DataAcceptor; 
  BEGIN 
    WHILE ?Element DO {EXCLUSIVE} 
      AWAIT(last-first < Capacity); ?Element(a[last MOD Capacity]); INC(last) 
    END; 
    BEGIN {EXCLUSIVE} finished := TRUE END 
  END DataAcceptor; 
  

  IMPLEMENTATION DataSource; 
  BEGIN 
    REPEAT {EXCLUSIVE} 
      AWAIT((first < last) OR finished); 
      IF first < last THEN !Element(a[first MOD Capacity]); INC(first) END 
    UNTIL finished 
  END DataSource; 

  BEGIN first := 0; last := 0; finished := FALSE 
END BoundedBuffer; 

In the previous example, the component body of the BoundedBuffer initialises the 
buffer, before interactions over offered interfaces are accepted. The server-side 
processes (service agents) of the offered interfaces are internally synchronised by 
using an exclusive monitor lock on the component instance, in combination with 
AWAIT-statements. An AWAIT-statement blocks the execution until the fulfilment 
of a local condition, by temporarily releasing the monitor lock. This monitor-oriented 
synchronization is only applicable inside the component instance, and forms a 
supplement to inter-component interactions, which are merely communication-based. 
The consumer-producer program may consequently be set up as follows (see Fig. 7): 

COMPONENT Simulation; 
  VARIABLE buffer: BoundedBuffer; producer: Producer; consumer: Consumer; 
BEGIN 
  NEW(buffer); NEW(producer); NEW(consumer); 
  CONNECT(DataAcceptor(producer), buffer); CONNECT(DataSource(consumer), buffer) 
END Simulation; 

Producer and consumer immediately start to interact with the buffer, when the 
Simulation is created and the components have been appropriately connected. 
Naturally, one can also connect multiple producers and multiple consumers to the 
same buffer. 

 

Fig. 7. Producer-consumer scenario 

In object-orientated languages, such a scenario entails the explicit incarnation of 
threads, which run as concurrent procedural executions on the passive objects. 
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Concurrency is therewith not only poorly supported as a secondary programming 
element (mostly provided by a separate library) but thread interactions are also only 
insufficiently describable. Threads may only interact implicitly by operations on 
shared resources, whereas the autonomously running components of our language 
interact in a clearly defined way by bilateral message exchange according to a formal 
protocol.  

3.2   Digital Library 

By way of a second example, we program a digital library which contains a dynamic 
collection of books. In the library, generic books with the offered Book interface can 
be stored. The library is usable in parallel by an arbitrary number of connected 
customer components (see Fig. 8), which may request digital copies of books or may 
also list the book catalogue. Book references are directly modelled as what they really 
are: unique identities in the form of international standard book numbers (ISBNs). 
These real references do not involve any specific language concept but only form self-
defined identifiers of component instances. Hence, real references imply neither a 
direct access link nor an existence guarantee. An identified book can be transmitted as 
a copy within a message from the library to the corresponding customer. The program 
code for the digital library is: 

INTERFACE Library; 
   { IN RequestBook(isbn: TEXT) (OUT Book(b: ANY(Book)) | OUT Unavailable)  
   | IN ListCatalogue { OUT BookReference(isbn: TEXT) } OUT EndOfList } 
END Library; 

COMPONENT DigitalLibrary OFFERS Library; 
  VARIABLE book[isbn: TEXT]: ANY(Book); 

  IMPLEMENTATION Library; 
  VARIABLE isbn: TEXT; b: ANY(Book); 
  BEGIN 
    WHILE ?RequestBook OR ?ListCatalogue DO 
      IF ?RequestBook THEN {EXCLUSIVE} 
        ?RequestBook(isbn);  
        IF EXISTS(book[isbn]) THEN !Book(book[isbn]) ELSE !Unavailable END 
      ELSE {SHARED} 
        ?ListCatalogue; FOREACH isbn OF book DO !BookReference(isbn) END; !EndOfList 
      END 
    END 
  END Library; 
END DigitalLibrary; 

 

Fig. 8. Encapsulated library 

Again, a few explanatory remarks may be helpful. The books in the library are 
stored within a dynamic component collection (cf. Section 2.1). To identify the 
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contained instances in the collection, ISBNs are used as indexes. The inbuilt EXISTS-
function tests whether a defined element is contained in the dynamic collection. If 
present, a copy of the appropriate book is sent. Note that the case of an inexistent 
book can be accurately communicated by an alternative message (named 
Unavailable), whereas in object-orientation, an artificial null reference often 
represents this case. The state-full process of listing the book catalogue, involves a 
shared lock of the library, permitting concurrent iterations by other users. During 
iterations, any modification is however prevented by exclusive locks. The 
FOREACH-statement allows the iteration over all instances in a collection, where 
each iteration step assigns a valid index to the specified iteration variable.  

3.2.1   An Object-Oriented Library as Contrast 
Unlike our language, an object-oriented program can not accurately describe the 
encapsulation of dynamic object structures inside other objects, as object-orientation 
does not feature a hierarchical composition relation. Therefore, an object-oriented 
language can not guarantee the encapsulation of books in the library but compels the 
programmer to allocate the internal books of the library as normal objects in the 
system-wide flat object graph. Very cautious programming is then required to prevent 
passing out references to internal books of the library in error. The following object-
oriented program illustrates this situation:  

class Book { 
  string isbn; string content; Book[] references; 
  void Annotate(string note) { content += note; } 
} 

class Library { 
  Book[] books; 
  Book RequestBook(string isbn) { 
    for (int i = 0; i < books.Length; i++)   
      { if ((books[i] != null) && (books[i].isbn == isbn)) { return books[i].Clone(); }  } 
    return null; /* null means unavailable */  
  } 
} 

Analogous to the component-oriented program, the requested book objects are also 
transferred as copies between the library and the customer, as the client could 
otherwise modify the original book in the library. However, despite this precaution, 
the (directly or indirectly) referenced books in the library may then still be incorrectly 
accessed by an external customer (see following program fragment and also Fig. 9).  

class Customer { 
   Library library; 
   void IncorrectUse { 
      Book book = library.RequestBook("3-468-11124-2");  
      Book x = book.reference[0]; 
      read(x.content); /* forbidden reading use of an internal book of the library */ 
      x.Annotate("personal note"); /* forbidden modifying use of an internal book of the library */ 
   } 
} 
 
This demonstrates how vulnerable object-oriented programs are, by the fact that 

references can conceptually link arbitrary objects in the system and can be freely 
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Fig. 9. Incorrect referencing  

copied around. Hence, it may be argued that object-oriented references ought not to 
be used to represent book references in this example. Another approach of only 
passing read-only references [22], does not give any sustainable solution either, since 
books may still be read without permission. 

Catalogue listing is also only inadequately realizable in object-orientation, because 
the client-individual iteration process has to be forcibly outsourced to an artificial 
iterator object. As a consequence, the external iterator has to store then a reference 
(or other specific information) that directly breaks into the internal library structure 
(see Fig. 10). (This encapsulation breach is often considered as a counter-example for 
the proposed object-oriented encapsulation mechanisms [11, 22].)  

 

Fig. 10. Iterator object  

4   Language Implementation 

The presented component language has been completely implemented, comprising a 
compiler and runtime system, which are based on the Bluebottle operating system 
[10, 23]. The runtime system is designed as a stack-based virtual machine, supporting 
an intermediate language that consists of a sensibly selected combination of both 
primitive functionality (e.g. integer addition) and more complex functionality (e.g. 
message sending and receiving). These complex instructions directly correspond to 
fundamental high-level language abstractions. The compiler generates the inter-
mediate code, which is in turn automatically transformed to the backend machine 
code by the virtual machine. Backend code generation is only initiated at the time 
when the intermediate code is loaded. 

For hierarchical composition, component instances are dynamically organised in 
the linear heap memory with appropriate memory indirections. An internal data 
structure automatically manages an indexed collection of component instances. Here, 
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an adaptive data structure may be reasonable, e.g. a simple linear list for small 
collection sizes and a B-tree for larger sizes. Due to the hierarchical lifetime 
dependencies of compositions, automatic garbage collection for memory-safe runtime 
management is no longer needed. Components can be directly de-allocated on the 
disposal of the super-component, without suffering extensive (and generally system-
blocking) garbage collection. 

High and efficient parallelism is most critical for the adequate runtime support of 
component instances and their internal processes. For this purpose, the Active Object 
technology [23] of the Bluebottle operating system is advantageous, as it provides 
particularly light-weighted parallelism with low-cost context switches. Of course, 
there is still much potential and need for further improvement of concurrency.  

The communication between two components is implemented by an internal 
bidirectional message channel. These channels have bounded buffer sizes, to avoid 
dynamic memory allocations on message sending. The communication protocol is 
dynamically monitored by using a finite state machine, that is automatically generated 
by the backend compiler from the protocol specification.  

Table 1 gives an impression of the system's performance and scalability by means 
of experimental measurements with three test applications (available at [9]): (1) a 
producer-consumer scenario with 100,000 exchanged elements, (2) a small city 
simulation (as in Section 2) with 100 houses, each consuming 1,000 units of water 
and electricity, and (3) a large city simulation with 1,000 houses. Whereas the small 
city simulation only involves about 500 components and 300 processes, the large city 
requires more than 5,000 components and 3,000 processes. The results are first com-
pared to analogous programs written in Active C# [13] and to a Windows 
implementation of AOS (called WinAOS [12]). On a Intel P4, 2.6GHz with 2 logical 
processors, our component system shows a substantially higher performance than the 
Windows-based systems and also scales higher with regard to the number of parallel 
processes. The performance advantage is mainly due to the fast context switches of 
processes in the underlying Bluebottle system; direct context switches are for example 
performed on message sending and receiving, if the other communication partner is 
already waiting for a message transfer. Compared to the traditional thread-based 
systems, the higher scalability results from the lower stack overhead of the active 
object technology. To estimate the costs of the virtual machine of the component 
system, the performance is also measured with analogous Active Oberon programs, 
which directly run on the native Bluebottle system (whereon our virtual machine runs 
as well). As the difference between both systems shows, the overhead of component 
language is relatively small, i.e. not higher than about 10 percent. 

Table 1. Comparison of execution times (in seconds) 

Test application Component System Active C# WinAOS Native Bluebottle 

Producer-consumer 1.6 4.4 10 1.6 

Small city simulation 2.9 360 24 2.7 

Large city simulation 30 - (out of memory) - (out of memory) 28 
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5   Related Work 

The presented language is to our knowledge, the first general-purpose programming 
language which directly integrates a general component notion with only high-level 
programming concepts, and which is free of the classical problematic constructs of 
references, methods and inheritance (see Section 1). Some fundamental concepts of 
this language are however similar to previous works. 

Interface connections. The Microsoft COM [27, 28] wiring mechanism (see [26], 
Section 10.3) with incoming and outgoing interfaces has similarities to the offered 
and required interfaces in our language, but is only designed to support asynchronous 
events using classical method calls. Hence, conventional pointers (or references) still 
establish the typical component relations in COM. The model of provided and 
required interfaces is also often used in architecture description languages [3, 20, 21]. 
However, these languages do not form real programming languages but just allow the 
formal description and specification of software architectures. Dynamic structures of 
components are generally not describable, as the number of components is either 
static or fixed by a parameter. Moreover, interactions have to be either inadequately 
represented by method-based interfaces [21], or by low-level message channels 
(called ports), which are often even unidirectional (like electronic wires) [20]. Other 
architecture description languages [3] do not have dual provided and required inter-
faces, but instead necessitate artificial constraints (called glue) to bind a set of ports. 
With these low-level ports, each client requires a separate interface port for individual 
communication but a component is typically unable to support an arbitrary (dynamic) 
number of ports.  

Symmetric polymorphism. The symmetric support of offered interfaces is 
comparable to COM and Zonnon, but in our language, interfaces are merely com-
munication-oriented. Interfaces are also often provided together with a special 
concept of reusable implementation parts, such as mixins [5] or traits [24]. However, 
in our language, composition and interface redirection inherently permit flexible 
implementation reuse without needing such an artificial code mixing mechanism. 

Communication-based interactions. The paradigm of message communication 
has been introduced with CSP [18] and realised in Occam [19]. However, a decisive 
distinction to our language model is that a component (called process) in CSP/Occam 
can not interact with multiple interface clients individually, but has to explicitly 
handle all possible overlapping of client interactions via a time-multiplexed 
communication channel. The formal Actor model [15, 1], which also proposes 
communicating parallel components, requires the explicit identification of 
communication partners by means of references (called mail addresses). This does not 
only impede clearly described client-individual communications, but also implicates 
the elementary problems of references like in object-orientation. Our communication 
model with individual clients is rather influenced from the activity concept of Active 
C# [13] and Zonnon [14]. Though, in Active C# and Zonnon, clients have to 
explicitly invoke an activity and interact with the returned dialog, whereas this 
component language permits direct client-individual communications via interfaces. 
A further distinction can be made as the component language supports explicit 
messages with a set of data values and instances that are carried in parameters. 
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Conversely, data values and explicit tokens/tags have to be transmitted as single items 
in Zonnon, Active C#, CSP, and Occam. 

Component systems. A variety of other component models have been invented to 
enhance structuring, deployment, extendibility and reusability of software [26]. Java 
Beans, Enterprise Java Beans, CORBA, Microsoft COM, and the Microsoft .NET 
framework are only some representatives of popular component systems. All these 
models however have the same fundamental deficiencies with regard to references 
and methods (see Section 1). With the exception of COM, object-oriented component 
models also integrate the inheritance relation and its discussed disadvantages. 

Other related work. In addition, many efforts have been made to tackle the 
problems of references with visibility restrictions [8], ownership models [16, 4, 11, 
22, 6, 2], region models [7], encapsulation policies [24] and many more. The common 
problem of all these approaches is that they are still based on the classical low-level 
model of references and thus require complicated rule systems (mostly integrated in 
type systems), to ensure structural conditions. Moreover, these models can generally 
not describe state-full and client-individual interactions (c.f. iterators in Section 3.2), 
such that the encapsulation has to be forcibly broken up, by using read-only 
references [22], dynamic parameter aliasing [16, 4], or simply normal unrestricted 
references. As conventional references are still supported as standard constructs in 
these models, the majority of objects may nevertheless be exposed as part of the 
system-wide flat object graph.  

6   Conclusion 

The presented component language is a radically new approach for more powerful 
and structured programming. It integrates a general component notion with 
appropriate high-level programming concepts, to enable structural clarity, high 
dynamicity, together with inherent parallelism. As a result, immanent solutions to the 
various shortcomings of the currently prevalent object-oriented programming 
paradigm can be gained. The complete implementation and the detailed report of the 
component language can be found at [9]. 
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Abstract. We expect interfaces in programming languages to expose es-
sential parts of the objects’ internal synchronization as well as required
external synchronization. Clients need this information to provide re-
quired and avoid conflicting synchronization. We propose a mixed static
and dynamic token-based approach to uniformly specify internal and ex-
ternal synchronization in a simplified Java-like language. This concept
gives us much flexibility on token management, ensures race-free pro-
grams without any need for complete aliasing information, and supports
static type checking of synchronization using a rich notion of subtyping.

1 Introduction

Synchronization is essentially a means to enforce data dependences in control
flows: If there is a dependence between data accesses in two threads of control,
then one of the threads must wait until the other has caught up to meet at a syn-
chronization point where data are consistent. Providing proper synchronization
is difficult. Omitted synchronization statements can from time to time result in
reading inconsistent data (these are races). It is very difficult to catch such bugs.
Programmers often apply synchronization and restrict concurrency much more
than necessary to prevent the danger of races and because of missing knowledge
about data dependences. Unnecessary synchronization affects program efficiency
and increases the danger of deadlocks and other undesirable program behavior.

Good knowledge of the whole program and its synchronization structure re-
duces the problem. Many programs consist of independently developed compo-
nents, each treating synchronization in its own way. Component interfaces are
the best place to provide synchronization information. Substituting a component
for another one requires synchronization in the two components to be compat-
ible, this is, their interfaces must be in a subtype relationship. In this paper
we deal with synchronization information in interfaces and subtype relations as
well as static type checking to ensure race-free programs. We explore interfaces
of simple objects, but all results hold also for component interfaces.

Most programming languages support internal synchronization within objects,
while required external synchronization (to be provided by clients) can be ex-
pressed only as comments. Since especially required external synchronization is
important to clients and for subtyping, we propose language support for it.
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An important topic is the representation of synchronization information. Di-
rect representation of dependences is hardly tractable and exposes too many
implementation details to clients. Therefore, we prefer an abstract representa-
tion based on tokens as proposed for process types [1,2]. This type system allows
us to specify required external synchronization in types and statically ensures
that clients observe required dependences.

In Sect. 2 we analyze internal and external synchronization and introduce
a corresponding language. Next, in Sect. 3 we propose a concept of internal
synchronization resembling more conventional synchronization, and in Sect. 4
we address the problem of encoding changing synchronization information into
the types of instance variables. We consider synchronization information together
with subtyping in Sect. 5. A discussion of related work follows in Sect. 6.

2 The Basis: Synchronization, Tokens, and Language

We develop a simple Java-like language using tokens for synchronization as basis
for further analysis. First. we explore the synchronization information we need
in interfaces. Then, we introduce the language mainly by examples.

2.1 Responsibility for Synchronization

We use a broad notion of synchronization and distinguish between the following
kinds based on the roles of objects as clients and servers and their responsibilities:

Internal Synchronization: This is any means to enforce data dependences in
control flows within an object as server – synchronization in a narrow sense.
Thereby, the execution of a thread can be blocked. In Java we use syn-
chronized methods (or statements) together with wait and notify for internal
synchronization. For example, java.util.Hashtable uses internal synchroniza-
tion to ensure consistent updates of its instances. Internal synchronization
determines when an invoked method gets executed. Only the object itself is
responsible for providing this kind of synchronization.

Required External Synchronization: This is synchronization an object re-
quires to be provided by each client. A method can be invoked only if a
synchronization condition is satisfied, and within the method this condition
is regarded as satisfied. For example, java.util.HashMap requires external syn-
chronization to ensure consistent updates. Required external synchronization
determines when a method can be invoked. All clients are responsible for
providing required synchronization.

Provided External Synchronization: A client of the object under consid-
eration provides this synchronization. Regarded as server a client does so
by internal or external synchronization, or simply by invoking methods in a
specific order. Clients usually provide more synchronization than required.
Unrequired external synchronization can be in conflict with internal syn-
chronization. For example, we get a deadlock if a simple buffer with a single
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slot uses internal synchronization to ensure put and get to be executed only
in alternation, and clients provide external synchronization by invoking get
only after put has been executed twice. Provided external synchronization
determines if and when an invokable method actually is invoked.

Clients must know the server’s internal synchronization that can be in conflict
with provided synchronization. Fortunately, not every internal synchronization
can be in conflict with provided synchronization:

Simple Mutex Synchronization: This kind of internal synchronization en-
sures just that only a single thread can execute a critical section at any
time. The execution of the critical section must terminate, and the synchro-
nization condition must not depend on anything else than the number of
threads in the critical section. Examples are synchronized methods in Java
that do not invoke wait. It is a good idea to demand such critical sections
to terminate in a short period of time; otherwise the execution of the whole
system can be blocked. Simple mutex synchronization can delay execution,
but cannot prevent it. Hence, simple mutex synchronization is not in conflict
with provided external synchronization and need not be visible to clients.

Dependent Internal Synchronization: Synchronization conditions depend
on the program state in a more complex way. For example, synchronized
methods in Java invoking wait depend on an invocation of notify in another
thread. Clients must know about such dependences to avoid conflicting syn-
chronization (through simultaneous executions of methods invoking notify).

In simple cases like buffers we usually prefer internal synchronization where only
the server decides when to perform an operation. External synchronization gives
clients better control. Clients having sufficient information about dependences
can get better performance from external than from internal synchronization.

There are useful relationships between the different kinds of synchronization.
For example, a proxy as client of an object can convert the object’s required ex-
ternal synchronization into internal synchronization in the proxy. Programmers
can decide case by case whether they prefer direct access to an object with re-
quired external synchronization or indirect access through a proxy providing the
required synchronization. Because of such techniques servers requiring external
synchronization give clients all possibilities.

2.2 A Simple Language with Tokens

In our language we use tokens as proposed for process types [1,2]. This type
system statically ensures that users observe all required external synchronization
conditions without any need for complete aliasing information.

Fig. 1 shows the grammar of our language. Throughout this paper, u, . . . , z
(possibly quoted and indexed) denote names, t token specifications, c pre- and
post-condition pairs on tokens, d dependent tokens, τ types, p formal parameters,
s statements, e expressions, and i, . . . , n natural numbers (including zero and
the special symbol ∞). We differentiate between classes and interfaces as named
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P ::= gdef +

gdef ::= [t∗] interface u {decl∗} | [t∗] class u {ldef +}
decl ::= τ x(p∗) with c1 when c2 | void x(p∗) with c1 when c2

ldef ::= τ d∗ v | decl {s∗} | new(p∗) with → t∗ {s∗}
d ::= [t+1 for t+2 ]
p ::= u[c] v
c ::= t∗1 → t∗2
t ::= (n)x
τ ::= u[t∗]
s ::= v = e | v.x(w∗) | fork v.x(w∗) | with c {s∗} | return e
e ::= v | v.x(w∗) | u.new(w∗) | null

Fig. 1. Syntax of our Language

basic units in a program. Subtyping is inferred from the structure of classes and
interfaces; there are no explicit supertype specifications. For syntactic simplicity
we avoid commas and semicolons as separators. To create a new object we invoke
a constructor (beginning with new) in a class. As shown by the examples below,
initial internal tokens (those specified in front of the class or interface key word)
and when-clauses determine internal synchronization. Tokens associated with
types and with-clauses determine required external synchronization.

In our examples we take the liberty to omit with-clauses, when-clauses, and
square brackets not containing any tokens. We often write just x instead of (1)x
(one token of name x) and usually avoid to write down (0)x (no token of name
x). The first example shows how to specify required external synchronization:

interface Window {
void iconify() with displayed → iconified
void display() with iconified → displayed

}

We assume windows to be displayed on a screen or just represented by icons.
Two methods switch between these states. According to the with-clause we
can invoke iconify only if we have a token displayed; this token is removed
on invocation, and iconified is added on return. For a variable v of type Win-
dow[displayed] we can invoke v.iconify(). This invocation changes the type of v
to Window[iconified]. Afterwords we can invoke v.display(), then again v.iconify(),
and so on. Simple static type checking enforces the methods to be invoked only
in alternation. Typically a button causing an icon to be replaced with a displayed
window does not exist at the same time as one causing the window to become
an icon. In this case it is very natural to statically express the expected state of
the window in its type, and there is no need for synchronization at run time.

Types can be associated with several tokens. For example, let an instance of
Window[(8)displayed (7)iconified] be a window manager iconifying and displaying
any of its at least 15 windows. This object accepts iconify and display in all
sequences such that never more that 15 or less than zero windows are displayed.
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2.3 Moving Static Tokens Around

We handle tokens in parameter types in a similar way as in with-clauses:

class Parameters {
void foo(Window[displayed iconified → (2)displayed] w) {

w.iconify() w.display() w.display()
}

}
Arrows in parameter types relate tokens required on invocation with those avail-
able on return. Let v be a variable of type Window[(2)iconified (2)displayed] and
x one of Parameters. An invocation of x.foo(v) first iconifies a window and then
displays two of them. The variable w in foo is known to have at least a displayed
and a iconified token on invocation and two displayed tokens on return. Removing
the tokens to the left of the arrow on invocation causes the type of v to become
Window[displayed iconified], and adding those to the right on return causes it to
become Window[(3)displayed iconified]. Tokens move from argument types to for-
mal parameter types on invocation and vice versa on return. Only with-clauses
(and for this section when-clauses, see below) add and remove tokens. Each ob-
ject produces and consumes only its own tokens.

A statement ‘fork x.foo(v)’ spawns a new thread executing x.foo(v). Since
execution continues without waiting for termination of the new thread, fork
statements cannot return result values and tokens. The type of v changes on
invocation from just to Window[displayed iconified]. Everything to the right of
the arrow in the formal parameter type is ignored. Thereby, the old type of v is
split into two types – the new type of v and the type of the formal parameter
w. Both threads can invoke methods in the same object without affecting each
other concerning type information.

Assignment resembles parameter passing when spawning threads: We split
an assigned value’s type into two types. One type becomes the variable’s type,
and the other becomes the assigned value’s new type. Tokens move from the
value’s to the variable’s type. For example, if a variable w is expected to be of
type Window[(2)iconified] and v is of Window[(2)displayed (2)iconified], then the
execution of ‘w = v’ causes the type of v to become Window[(2)displayed].

With-clauses in constructors play an important role in introducing tokens:

class MyWindow {
int test
void iconify() with displayed → iconified { test = 0 }
void display() with iconified → displayed) { test = 1 }
new() with → displayed { test = 1 }

}
An invocation of MyWindow.new returns a new object with a single token. No
other token is available for this object. Since invocations of iconify and display
consume a token before they issue another one, there exists always at most one
token. This property ensures that each method invocation switches the value of
test between 0 and 1, and there cannot be simultaneous accesses of test.
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2.4 Simplified Internal Synchronization

For the rest of this section we use a simplified view of internal synchronization,
and we will reconsider it in the next section. We associate each object with a
dynamically manipulated pool of internal tokens. Classes and interfaces specify
initial internal tokens of new instances (in front of the key words class and
interface). Tokens to the left of the arrow in when-clauses must be available and
are removed from this pool before executing the method body, and tokens to the
right are added on return. If required tokens are not available, then the execution
is blocked until other threads cause the tokens to become available. Checks for
the availability of these tokens occur only at run time.

The following buffer example uses internal synchronization to ensure mutual
exclusion and to avoid buffer overflow and underflow:

[sync (10)empty] class BufferDyn {
ListElem head
new() { head = null }
void increment() when → (10)empty {}
void decrement() when (10)empty → {}
void put(Elem e) when sync empty → sync filled {/∗ add to list ∗/}
Elem get() when sync filled → sync empty {/∗ get from list ∗/}

}
Instances get some empty tokens and a single token sync on creation. Both put
and get remove sync at the begin and issue a new one on return and thereby
ensure exclusive access to head. Tokens filled and empty dynamically ensure that
a buffer never contains more than the maximum or less than zero elements.
Execution blocks until these conditions are satisfied. The maximum capacity of
the buffer can be changed by (repeatedly) invoking increment and decrement.

2.5 Usual Uses of Tokens and Infinity

The above examples use tokens as counters in a similar way as semaphores are
essentially counters, no matter whether we use internal or external synchroniza-
tion. More often we use tokens as binary semaphores where at most one token
of some name can exist for each object. Names of such tokens usually abstract
over (specific aspects of) the objects’ current states as in the next example:

class ShowStates {
new() with → justCreated {. . .}
void init1() with justCreated → partlyInitialized {. . .}
void init2() with partlyInitialized → (∞)ready {. . .}
void doSomething() with ready → {. . .}

}
Immediately after creation an instance is in state justCreated. On execution of
init1 (which can occur at most once) the state changes to partlyInitialized, and
on executing init2 (at most once) to (∞)ready – an unlimited number of tokens
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ready. We can invoke doSomething as often as we want, even simultaneously. As
with-clause of doSomething we can have (n)ready → (m)ready with any n ≥ 1
and m ≥ 0 without changing the semantics.

To meet our expectations we define (for all natural numbers n including 0 and
∞) ∞ ≥ n to be true, ∞ + n = ∞, and ∞− n = ∞ (implying ∞−∞ = ∞).

As in the example we usually use unlimited numbers of tokens to indicate that
corresponding (aspects of) object states do not change anymore. Major reasons
for using ∞ instead of 1 as token numbers include

– no limitation of simultaneous execution,
– and type splitting (for external synchronization) where each of the split types

has full information about available tokens.

In type splitting for assignment and forking we usually must decide which client
gets which tokens. With unlimited token numbers all clients can have complete
information. For example, ShowStates[(∞)ready] can be split into twice the same
type because of ∞−∞ = ∞.

3 Internal Synchronization Reconsidered

3.1 Atomic Actions and Their Problems

Token-based internal synchronization as introduced in the previous section and
in [3] has desired properties especially for dependent internal synchronization
(see Sect. 2.1) and some weaknesses for simple mutex synchronization and in
relating internal with required external synchronization:

Atomic Actions: When-clauses (and with-clauses) specify atomic actions. Syn-
chronization is guaranteed by removing tokens at the begin and adding new
tokens only at the end. Atomic actions are quite valuable in programming
because they clearly specify points in the program where we expect object
states to be consistent. Between these points we have to regard states as
inconsistent. This principle is enforced also for nested (possibly recursive)
method invocations. Unfortunately, if the when-clause of the outer method
invocation removed tokens needed by the inner invocation, then the execu-
tion can easily be in a deadlock: The outer invocation waits for termination
of the inner invocation, and the inner invocation waits for tokens to be added
at the end of the outer invocation. In general, such situations are erroneous:
We expect the object to be in a consistent state on invocation of the in-
ner method, but actually it is possibly in an inconsistent state. Therefore,
program termination or raising an exception is useful program behavior in
this case. However, if we use tokens just to ensure mutual exclusion (this is
simple mutex synchronization), then missing tokens do not imply inconsis-
tent states. Provided that the missing tokens were removed within the same
thread, we expect the execution to continue in this case. To improve the
model we must distinguish between dependent internal synchronization and
simple mutex synchronization.
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This: Tokens for internal and external synchronization are strictly separated:
Only with-clauses manipulate external tokens, and only when-clauses internal
tokens. The self-reference this naturally breaks the separation: This implic-
itly refers to an instance of the most specific type of the object it occurs
within. We can regard internal tokens to be at the same time tokens in the
implicit type of this. When invoking a method through this, the with-clause
of the invoked method takes required tokens from the pool of internal tokens
and puts added tokens back to this pool. The use of this as formal parameter
can also manipulate internal tokens. Unfortunately, requiring internal tokens
from the pool can block the execution (if required tokens are not available).
Thereby, synchronization points occur within atomic actions – not necessar-
ily at the begin of atomic actions. We regard such blocking as undesirable.
To improve the model we must statically ensure availability of all tokens
needed in the implicit type of this.

3.2 Thread-Specific Token Pools

With a more advanced concept of internal synchronization we treat both prob-
lems: In addition to the general pool of internal tokens in each object we use
a token pool per thread and object. We redefine the semantics of when-clauses
such that they just move tokens from the general token pool to the thread-
specific token pool on invocation and vice versa on return instead of removing
and adding them. There is no need to wait for the availability of tokens in the
general pool if they are already in the thread-specific pool. Only tokens in the
thread-specific pool are regarded as available in the implicit type of this. The
following abstract example demonstrates the new semantics of when-clauses:

[sync] class InternExtern {
void makeIntern() when sync → sync dep { . . . this.makeExtern() . . . }
void makeExtern() with → dep when sync → sync {. . .}
void useIntern() when sync dep → sync { . . . this.useExtern() . . . }
void useExtern() with dep → when sync → sync {. . .}
. . .

}
We assume that each of the four methods accesses a shared critical resource
protected by an internal token sync that ensures mutual exclusion. With a to-
ken dep we let useExtern only be invokable as often as makeExtern was invoked
before. An invocation of makeIntern causes the token produced in an invocation
of this.makeExtern to become available as internal token, and an invocation of
useIntern consumes an internal token dep in an invocation of this.useExtern.

On invocation of makeIntern the when-clause first looks if sync is available in
the thread-specific token pool. In this case execution immediately continues with
the method body. Otherwise execution is blocked until sync becomes available in
the general pool; then sync will be removed from the general pool and added to
the thread-specific pool before execution continues. When invoking makeExtern
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through this in the body of makeIntern, sync will be available in the thread-
specific pool and the body of makeExtern can be executed without delay. On
return from makeExtern a new token dep specified in the with-clause is added to
the thread-specific pool because the tokens in the implicit type of this correspond
to the thread-specific pool. On return from makeIntern the tokens sync and dep
must be available in the thread-specific pool as specified to the right of the arrow
in the when-clause. Then, dep is removed from the thread-specific pool and added
to the general pool in any case, and sync is removed from the thread-specific and
added to the general pool only if it was not available in the thread-specific pool
when invoking makeIntern; otherwise sync remains in the thread-specific pool.

On invocation of useIntern the token dep must be moved from the general
to the thread-specific pool even if there is already such a token: We expect
the thread-specific pool to contain the same tokens on invocation and return.
Since the execution of useIntern just removes dep, this token would not be in the
thread-specific pool on return if it was token from this pool.

Note that we use sync in makeExtern and useExtern only to demonstrate nest-
ing of when-clauses. We omit them where we need no mutual exclusion.

Quite often methods like makeExtern and useExtern need not be used from
outside. In this case we can simplify the syntax by using with-statements instead
of with-clauses in methods:

void makeIntern() when sync → sync dep { . . . with → dep {. . .} . . . }
void useIntern() when sync dep → sync { . . . with dep → {. . .} . . . }

With-statements are essentially syntactic sugar inlining methods that would
otherwise be invoked through this. Tokens in with-statements are taken from and
added to the thread-specific pool.

3.3 New Semantics of when-Clauses

We differentiate between three kinds of tokens in when-clauses:

Remove-Tokens occur only to the left of the arrow.
Add-Tokens occur only to the right of the arrow.
Through-Tokens occur on both sides of the arrow.

This is the new semantics of the when-clause in each method:

– On method invocation the when-clause moves these tokens from the general
to the thread-specific pool of the current thread:
• all remove-tokens and
• through-tokens not yet being in the thread-specific pool.

Execution blocks until all tokens to be moved are simultaneously available in
the general pool. Then, these tokens are moved atomically. To be concrete,
they must be removed from the global pool in an indivisible step while adding
them to the thread-specific pool need not be atomic.

– On return from the method the when-clause moves these tokens from the
thread-specific to the general pool (not necessarily atomically):
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• all add-tokens and
• through-tokens moved to the thread-specific pool on method invocation.

– Static type checking ensures that all tokens occurring to the right of the
arrow will be available in the thread-specific pool on return from the method
if tokens to the left were available on method invocation. To perform static
type checking we treat this as any other instance variable and assume the
tokens to the left of the arrow in the when-clause as being available in the
type of this at the begin of checking the method. After checking the method,
the type of this must contain at least all tokens to the right. Each instance
variable is assumed to have some tokens at the begin and some (other) tokens
at the end of method checking (see Sect. 4).

We regard tokens of some name as relevant for internal synchronization in
a class or interface if at least one token of this name occurs to the left of the
arrow in any when-clause in the class or interface. Accordingly we regard tokens
as relevant for required external synchronization if at least one token of this
name occurs to the left of the arrow in any with-clause. All tokens occurring in
when-clauses must be relevant for internal synchronization. Other tokens cannot
influence internal synchronization. In contrast, tokens (to the right of the arrow)
in with-clauses must be relevant for internal or required external synchronization:
Methods invoked through this can add such tokens to the internal token pool.

The semantics of when-clauses imposes a natural differentiation between to-
kens possibly relevant for dependent internal synchronization and those relevant
only for simple mutex synchronization: Tokens relevant for internal synchroniza-
tion are possibly relevant for dependent internal synchronization if they

– occur as remove-tokens,
– or are also relevant for required external synchronization.

Add-tokens are necessarily relevant for both internal and required external syn-
chronization; otherwise they cannot become available in the type of this. All
other tokens relevant for internal synchronization (they can only be through-
tokens) are relevant only for simple mutex synchronization. Such tokens need
not be considered in subtyping (see Sect. 5). In all examples used so far, sync is
relevant only for internal synchronization while internal tokens of other names
are possibly relevant for dependent internal synchronization.

The semantics of when-clauses is compatible with semantics of more conven-
tional synchronization concepts: Synchronized methods in Java correspond es-
sentially to methods with when-clauses containing only a single token relevant for
simple mutex synchronization (monitor concept). The wait-operation can easily
be simulated using remove-tokens, and the notify-operation with add-tokens.

4 Accessing Instance Variables

Instance variables are declared only once, but they can be accessed (possibly si-
multaneously) in several methods, each expecting different tokens to be available
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in the variables’ types at different points in time. Uses of variables can cause
changes of the tokens encoded into types. In this section we address correspond-
ing problems and show how to avoid races.

4.1 Read-Access to Instance Variables with Dependent Tokens

In Sect.2.1 we mentioned that a proxy can convert required external synchro-
nization into internal synchronization. When implementing such synchronization
proxy we face a problem: We need an instance variable referring to the object
requiring external synchronization. Tokens in the type of this variable change
over time as does the state of the object. Because of internal synchronization in
the proxy the tokens in the variable’s type depend on internal tokens available in
the proxy. The next example shows the implementation of a buffer and a proxy
using dependent tokens to connect the external tokens of the buffer with the
internal tokens of the proxy:

interface BufferStat {
void put(Elem e) with empty → filled
Elem get() with filled → empty

}
[sync] class BufferStatImpl {

ListElem head
new() { head = null }
void increment() with → (10)empty {}
void put(Elem e) with empty → filled when sync → sync {/∗ add to list ∗/}
Elem get() with filled → empty when sync → sync {/∗ get from list ∗/}

}
[(50)pe] class Proxy {

BufferStat[empty for pe][filled for pf] buffer
new(BufferStat[(50)empty →]) { buffer = b }
void put(Elem e) when pe → pf { with pe → pf { buffer.put(e) }}
Elem get() when pf → pe { with pf → pe { return buffer.get() }}

}
In class BufferStatImpl, internal synchronization ensures mutual exclusion, and
required external synchronization avoids over- and underflows. As we will see in
Sect. 5 BufferStatImpl is a subtype of BufferStat, an interface not showing simple
mutex synchronization.

Dependent tokens in the type of buffer specify that within each method in
Proxy we assume an empty to be available for each pe in the corresponding
with-clause, and a filled for each pf. In the with-statement in put the variable is
of type BufferStat[empty] at the begin and of BufferStat[filled] at the end. An
execution of buffer.put(e) causes the type change. In the with-statement in get
the type of buffer changes from BufferStat[filled] to BufferStat[empty]. On return
from the constructor, buffer must be of type BufferStat[(50)empty] because of the
initial internal tokens (and, in general, tokens in the constructor’s with-clause).
By strictly coupling tokens in the variable’s type to the containing object’s ini-
tial tokens and all changes through with-clauses we ensure the object’s tokens
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to actually reflect the variable’s tokens. Static type checking guarantees this
property.

We need with-statements in put and get because dependent tokens depend
only on tokens in with-clauses. It is impossible to assume dependences on tokens
in when-clauses since several atomic actions can see the same tokens (occurring
in a thread-specific pool) causing tokens in the variables’ types to be implicitly
duplicated. Token duplication would destroy soundness.

Dependent tokens support concurrent read accesses. For example, instances
of Proxy support up to 50 simultaneous executions of put and get, each reading
and changing the state encoded in the type of buffer.

We compute the tokens in the type of instance variables by repeatedly ap-
plying dependences (for-clauses) specified in variable declarations in arbitrary
ordering. We start with the multi-set of tokens in the with-clause. If we have the
tokens to the right of a for-clause in this multi-set, then we delete these tokens
from the multi-set and add the tokens to the left of the for-clause to the tokens
assumed to be available for the variable. We repeat this step as long as there
are appropriate for-clauses. To ensure the results to be unique we require that
if at least one token of some name occurs to the right of for in a dependence,
then no token of this name occurs in another dependence in the same variable
declaration. Furthermore, there must be at least one token to the right of for.

4.2 Write-Access to Instance Variables with Dependent Tokens

Dependent tokens require the absence of concurrent or overlapping accesses to
instance variables when writing them. Neither put nor get can write buffer. When
added to Proxy the following method writes buffer:

void update(BufferStat[(50)empty →] b) when (50)pe → (50)pe
{ with (50)pe → (50)pe { buffer = b }}

Because each instance of Proxy always has at most 50 tokens there are no tokens
left that would allow put, get, or another invocation of update to run simultane-
ously. Since each instance has at most 50 tokens it is sufficient for the assigned
value to provide 50 tokens empty. In general, we must find out

– that no concurrent access can occur when writing a variable (see Sect. 4.3),
– which tokens can be available for an object,
– and which tokens must be provided when writing to an instance variable.

There is a simple fixed-point algorithm to compute upper bounds of token
sets that can become available for an object [3]. It extends initial token sets to
upper bounds according to each pre-/post-condition pair in with-clauses where
the precondition is satisfied. For example, when applied to Proxy the algorithm
computes the set of token sets

{[(i)pe (50 − i)pf] | 0 ≤ i ≤ 50}
and applied to BufferStatImpl we get

{[sync (∞)empty (∞)filled]}.
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The algorithm uses as input only information available in a single class (and
hence supports separate compilation) and is accurate in the sense that

– if it generates a token set containing only a finite number of tokens, then we
can construct clients invoking methods such that this set of tokens actually
becomes available,

– and if it generates a token set containing an unlimited (∞) number of to-
kens, then we can select arbitrary numbers i and construct clients invoking
methods such that more than i of these tokens become available.

We apply this algorithm to find out which token sets can become available for
an instance of a class. From each of these sets we compute the tokens expected
to be available in the type of an instance variable at the end of an atomic action
(this is the end of a method or with-statement). Unfortunately, in general we do
not know exactly which one of the token sets applies in the current situation.
This is, we cannot know at compilation time (and probably we do not know at
run time, too) which tokens are available for the object within the whole system.
Thus, we use a conservative approximation to compute the tokens expected to
be available: We compute the maximum of tokens within all sets returned by our
algorithm that satisfy the precondition (this is, that contain all tokens to the
left of the arrow in the with-clause). Static type checking ensures corresponding
tokens to be available in the variable’s type at the end of the method.

In instances of Proxy we can write to buffer whenever we have 50 tokens –
any mixture of tokens pe and pf. For update we require (50)pe; hence, writ-
ing is actually possible. However, adding a method increment to Proxy (as in
BufferStatImpl) would cause update to be no longer type-safe since in this case
unlimited numbers of tokens can become available.

4.3 Variable Accesses and Race Avoidance

We must ensure not to write an instance variable simultaneously with other ac-
cesses of the same variable. A single criterion is sufficient to ensure this property:
No preconditions in with-clauses and when-clauses of two methods accessing the
same variable can be satisfied at the same time if at least one of the methods
writes to the variable. This criterion implies race-free programs.

As basis of a corresponding analysis we use again upper bounds of token sets
that can become available for an object. In contrast to the fixed-point algo-
rithm applied in Sect. 4.2 we compute these sets by extending initial token sets
according to each pre-/post-condition pair in with- and when-clauses (not just
with-clauses). Otherwise the algorithm remains unchanged.

For (1) each instance variable in the analyzed class, (2) each method writing
to this variable, and (3) each method accessing the variable (reading or writing,
including the method considered in (2)) we build the union of all tokens occurring
to the left of the arrow in the with- and when-clauses of the methods considered
in (2) and (3). If the resulting token set is covered by a token set returned by
the fixed-point algorithm, then it is possible that the methods considered in (2)
and (3) run concurrently. We regard this case as a program error. Otherwise
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writing of instance variables cannot occur simultaneously with other accesses to
the variable because there cannot exist enough tokens allowing us to do so. We
analyze each class separately. All needed information is available in the code of
the class, and we need no aliasing information.

By including information in when-clauses we get more flexibility. To ensure
the absence of races it is not necessary for atomic actions to run completely
in isolation: If an action A is executed in the same thread as another thread
B and B starts after A and terminates before B, then B is nested into A. In
contrast to with-clauses, when-clauses support nested actions. Values written to
instance variables in A before starting B are visible in B, and values written in B
are visible in A after termination of B. Nonetheless, type consistency is ensured
because dependent tokens depend only on preconditions of with-clauses which
do not support nesting. It is impossible to write to the same variable in A and
B because at most one of the actions can have got all tokens necessary to do so.

5 Subtyping

5.1 Definition of Subtyping with Tokens

Subtyping has to consider internal as well as required external synchronization
information. If we use an instance of a subtype where an instance of a supertype
was expected, then the instance of the subtype

– accepts at least all method invocations in all orders that clients of an instance
of the supertype can invoke, and

– the when-clause of an invoked method in the subtype can block execution
for a possibly unlimited amount of time only if also the corresponding when-
clause in the supertype can do so.

These conditions are necessary to ensure that clients knowing only supertypes
have enough information to provide all required external synchronization and
to avoid conflicting synchronization. Synchronization conditions in subtypes can
only be less restrictive than corresponding conditions in supertypes.

In Fig. 2 we give a formal definition of subtyping. A type τ1 is subtype of τ2
in a program P if P ; ∅ � τ1 ≤ τ2 holds. Beyond the usual conditions for subtype
relationships (contravariant formal parameter types, covariant result types, etc.)
we require

– subtypes to have at least the same (or more) internal and external tokens as
supertypes, respectively,

– when- and with-clauses in subtypes to contain at most the same (or less)
tokens to the left of the arrow as corresponding clauses in supertypes,

– and when- and with-clauses in subtypes to contain at least the same (or more)
tokens to the right of the arrow as corresponding clauses in supertypes.

Two exceptions from these rules improve the flexibility of subtyping:
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P ; Γ � τ ≤ τ

P ; Γ � τ1 ≤ τ2 P ; Γ � τ2 ≤ τ3

P ; Γ � τ1 ≤ τ3 P ; Γ, τ1 ≤ τ2 � τ1 ≤ τ2

RI u|v
P � Toku

P ≥ Tokv
P ∀dec2∈Sigv

P · ∃dec1∈Sigu
P · P ;Γ, u[] ≤ v[] � u.dec1 ≤ v.dec2

P ; Γ � u[] ≤ v[]
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P � t∗1 ≥ t∗2

P ; Γ � u[t∗1] ≤ v[t∗2]

P ; Γ � τ1 ≤ τ2 P ; Γ � p∗
2 ≤ p∗

1 REu|v
P � c2 ≥ c1 RI u|v

P � c4 ≥ c3

P ;Γ � u.τ1 x(p∗
1) with c1 when c3 ≤ v.τ2 x(p∗
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i )

R � (n1
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Toku
P = initial tokens declared in class u in program P

Sigu
P = set of method signatures in class u in program P

RI u|v
P = {tokens relevant for dependent internal synchronization in u and v in P}

REu|v
P = RI u|v

P ∩ {tokens relevant for external synchronization in u and v in P}

Fig. 2. Subtyping

– We consider only tokens relevant for external synchronization as well as to-
kens possibly relevant for dependent internal synchronization (see Sect. 3.3),
and we consider only tokens relevant for both the subtype and the super-
type. Tokens relevant only for simple mutex synchronization as well as tokens
relevant only in one of the two types need not be considered.

– If a when- or with-clause in a subtype does not contain some token to the left
of the arrow that occurs there in the corresponding clause in the supertype,
then the clause in the subtype need not contain this token also to the right of
the arrow. Invoking the method in the subtype where we expect to invoke the
method in the supertype simply does not touch this token while we expect
it to be removed on invocation and added on return.

According to this definition, BufferStat[empty] is subtype of BufferStat[(2)empty],
and BufferStatImpl[(i)empty)] is subtype of BufferStat[(j)empty) (k)filled] for all
i ≤ j. However, the types BufferStat[empty], BufferStat[filled], and BufferDyn are
not related by subtyping.

5.2 Semantics of Subtyping

Concerning required external synchronization, subtypes specify essentially the
same or more sets of acceptable message sequences (supported orders of method
invocations) than supertypes [2]. Subtypes cannot strengthen synchronization
constraints. This restriction is a direct consequence of the substitution principle:
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An instance of a subtype can be used where an instance of a supertype was
expected [4,5]. If a client provides the required external synchronization when
invoking a method in a supertype, then the required external synchronization of
all corresponding methods in subtypes are also satisfied.

We need not consider tokens irrelevant in the supertype because they can
be relevant in the subtype only for methods not invokable according to the
supertype. In this case the substitution principle does not apply. We need not
consider tokens irrelevant in the subtype because no method depends on them;
the subtype supports more orders of method invocations than the supertype.

Internal synchronization does not restrict message orders. Nonetheless sub-
types must not strengthen internal synchronization to get this property: If se-
quences of method invocations in an instance of a supertype do not enforce
synchronization conflicting with internal synchronization, then these sequences
of invocations do not enforce conflicting synchronization in an instance of a
subtype. For example, an internally synchronized buffer can safely substitute
another one with less slots, but substituting one with more slots can lead to un-
expected deadlocks because of stronger synchronization constraints. If two ob-
jects of two types execute the same method invocations in the same order, then
the instance of the subtype always contains at least the same (or more) internal
tokens than the instance of the supertype after executing the same methods.
This is because the instance of the subtype has at least the same initial internal
tokens, and each method removes the same or less tokens on invocation and adds
the same or more tokens on return than the instance of the supertype.

Of course, this property holds only for synchronization possibly conflicting
with the when-clauses in corresponding methods in sub- and supertypes. Sub-
typing cannot avoid that a different implementation of the method in the subtype
introduces errors like conflicting synchronization when invoking further methods.
Currently static type checking does not avoid conflicting synchronization.

For internal synchronization we consider only tokens relevant in both the
subtype and the supertype for essentially the same reason as for required ex-
ternal synchronization. However, we consider only tokens possibly relevant for
dependent internal synchronization. Simple mutex synchronization need not be
considered because from the client’s point of view its only effect is to delay
execution for a finite amount of time under the simplifying assumption that all
methods depending on these tokens terminate in finite (and for practical reasons
short) time. It is the programmer’s obligation to ensure termination.

Subtyping does not consider instance variables because they are only accessi-
ble within objects containing them (at the presence of dependent tokens). Oth-
erwise we would not be able to resolve dependences between tokens. It is always
possible to circumvent this restriction by using setter and getter methods.

6 Related Work and Contribution

A huge number of language features for synchronization has been proposed,
most of them concentrating on server synchronization [6,7]. Conventional
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synchronization concepts like semaphores express synchronization directly while
other concepts express what groups of operations must be executed in isolation
[8,9]. Petri Nets have been explored for nearly half of a century as a basis of token-
based synchronization [10]. External synchronization and especially static type
checking of external synchronization was addressed only recently [11,12,13,14,1].

With- and when-clauses in our approach resemble assertions in Eiffel [15]. Es-
pecially preconditions can be regarded as synchronization conditions (for internal
synchronization) that must be satisfied before entering a routine [16,17]. They
use Boolean expressions as synchronization conditions rather directly. Similar as
in our approach, synchronization conditions in subtypes can be less restrictive,
and unnecessary exposure of implementation details to clients can be avoided by
assigning names to synchronization conditions. There is no separation between
internal and required external synchronization. While preconditions require all
conditions to be explicit in program code (local to an object) they can remain
on a more abstract level in our approach. When-clauses (synchronization condi-
tions) of protected types in Ada [18] are similar to preconditions in Eiffel except
that Ada does not support subtyping on protected types.

The Fugue protocol checker [11] uses a different approach to specify client-
server protocols: Rules for using interfaces are recorded as declarative specifi-
cations. These rules can limit the order in which methods are called (implying
required external synchronization) as well as specify pre- and post-conditions.
Since there is no complete aliasing information and no concept resembling type
splitting (as in our approach), the checker cannot statically ensure all methods
to be invoked in specified orders. In these cases the checker introduces pre- and
post-conditions to be executed at run time.

Many proposals ensure race-free programs [19,6,20]. Some approaches depend
on explicit type annotations [20] while others perform type inference [19]. Usu-
ally only simple mutex synchronization is considered. Such techniques can lead
to more locks because no approach accurately decides between necessary and
unnecessary locks. Program optimization can remove some unnecessary locks
[21,22]. Unfortunately, we usually must analyze complete programs for good re-
sults.

Process types [14,1,2] were developed as abstractions over expressions in
object-oriented process calculi like Actors [23]. Static type checking ensures that
only acceptable messages can be sent and thereby enforces required external
synchronization. Process types allow us to specify arbitrary constraints on the
acceptability of messages. We consider types to be partial behavior specifica-
tions [4,24] especially valuable to specify the behavior of software components
[25,26,27].

There are several approaches similar to process types. Some approaches ensure
subtypes to show the same deadlock behavior as supertypes, but do not enforce
message acceptability [28,27]. Other approaches consider dynamic changes of
message acceptability, but do not guarantee message acceptability in all cases
[16,29,30]. Few approaches ensure all sent messages to be acceptable [12,13]. All
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of these approaches specify constraints on the acceptability of messages in a
rather direct way and do not make use of a token concept.

Recently several programming languages [31,32,33] were developed based on
the Join calculus [34]. For example, in Polymorphic C# [31] we combine methods
like put and get in a buffer to a chord to be executed as a single unit. Clients
can see how methods in a chord are synchronized. Since only one method in a
chord is executed synchronously and all other methods are asynchronous, only a
specific form of internal synchronization is supported. There is no way to express
required external synchronization. For example, it is easy to program a buffer
with unlimited capacity using chords, but a buffer with limited capacity (even
when using only internal synchronization) and a window changing state between
iconified and displayed (see Sect. 2) cannot easily be written. Communication in
Polymorphic C# and similar languages resembles that of the rendezvous concept
while our approach extends monitors.

The present work extends previous work on separating client synchronization
from server synchronization [3]. Major improvements over this work are the
proposal of a more advanced concept of internal synchronization, the support
of dependent types, and a richer notion of subtyping. These contributions are
important for the following reasons:

– We regard the new concept of internal synchronization as an extension of
more conventional synchronization concepts like that in Java. Synchronized
Java methods correspond to methods with a clause “when sync → sync”, and
wait and notify can be modelled by when-clauses and with-statements with
conditions of the form “token →” and “→ token”, respectively. This property
can be the basis for slow migration to the new concept which provides more
expressiveness and safety than conventional synchronization.

– Dependent types solve an old problem of process types together with instance
variables: They allow us to express states in types of variables depending on
the states of objects where the variables belong to. Thereby, the coupling
between the objects becomes evident, and corresponding type information
becomes usable in static type checking.

– It is well-known that subtyping has to consider object behavior to provide
substitutability [4]. However, it is still not clear which aspects of the be-
havior must be considered. Our notion of subtyping distinguishes between
simple mutex synchronization (that can be ignored) and dependent inter-
nal as well as required external synchronization (which must be considered).
Unfortunately, Java-like languages make essentially simple mutex synchro-
nization (through synchronized methods) clearly visible while dependent in-
ternal synchronization (through wait and notify) are less visible and required
external synchronization is not even expressible in program code.

Much work remains to be done. The most important work planed for the fu-
ture is an implementation of the proposed concept. Other future work includes
a rigorous formalization of the approach and the development of further consis-
tency checks (for example, to guarantee continuity and liveness properties) on
this basis.



Internal and External Token-Based Synchronization 269

7 Conclusions

Differentiation between internal and required external synchronization allows
us to clearly specify who is responsible for which synchronization. Clients need
all synchronization information except of simple mutex synchronization to use
objects as expected. Subtyping considers dependent internal and required ex-
ternal synchronization, but ignores simple mutex synchronization. Dependent
tokens in types of instance variables give us the flexibility to use more avail-
able synchronization information in providing external synchronization. Static
type checking uses all kinds of synchronization information (without any need
for aliasing information) to ensure race-free programs while supporting separate
compilation.

References

1. Puntigam, F.: Coordination requirements expressed in types for active objects. In
Aksit, M., Matsuoka, S., eds.: Proceedings ECOOP’97. Number 1241 in Lecture
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Abstract. The idea of a connector, which explicitly describes the interactions 
among components, is one of the important contributions of the research on 
software architecture. The importance of the connector as a first-class entity in 
software architecture has been increasingly recognized. In this paper we argue 
that such an important abstraction also deserves first-class support from pro-
gramming languages. We present a new component-oriented programming lan-
guage, SAJ (Software Architecture based Java), which integrates some architec-
tural concepts such as the component, the port and particularly the connector 
into Java. The connector is treated as a first-class entity in SAJ as is the compo-
nent so that software architecture can be made more explicit at implementation 
level and the simultaneous reuse of the component and the connector can be re-
alized. The component model and the connector model underlying SAJ are also 
discussed in detail. We formalize our language giving both the type system and 
operational semantics and prove the type soundness property. 

1   Introduction 

The idea of a connector, which explicitly describes the interactions among compo-
nents, is one of the important contributions of the research on software architecture. 
The importance of the connector as a first-class entity in software architecture has 
been increasingly recognized. In this paper from another perspective, that of a com-
ponent-oriented programming language, we argue that such an important abstraction 
also deserves first-class support from programming languages. Our notion is based on 
the recognition that the interactions among components are as important as (even 
more important than) the components themselves and that the first-class treatment of 
the connector in a programming language can make these two concepts clear and 
improve their reusability. Providing the connector for explicitly specifying the inter-
actions among components in a programming language addresses the following prob-
lems: 

Making interactions (connectors) and computations (components) separate to 
increase the reusability of both components and connectors. When components 
with certain services are connected in order to interact, certain functionality is  
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inherently the responsibility of the connector and should not be in the component. The 
different responsibilities make it necessary to keep the connector separate from the 
component. Furthermore, keeping them separate favors the reuse of the component 
and the connector. Ideally, the components are independent of the different interac-
tions in which they could engage, and the same component can be used in a variety of 
environments with different connectors. Similarly, as we shall see, the same connec-
tor can provide communication and coordination services for different components. It 
is possible to increase the reusability of the component and the connector simultane-
ously by separating them. The straightforward way to keep them separate is to pro-
vide explicit support for the connector in a programming language which has direct 
influence on the implementation of the software system. However, up to now, the 
connector has not been considered as a first-class entity in any programming lan-
guage, to the best of our knowledge. Hence, the connector behavior is scattered in 
components, which greatly reduces reusability.   

Enforcing conformance between architectural specification and implementa-
tion to support more effective reengineering and evolution. During the phase of 
software architecture description, almost all the existing Architectural Description 
Languages (ADL) offer support for the connector and they can be used to describe, 
analyze and verify the connector formally[1][2][3]. However, description and design 
information about the connector are lost as it gets spread out into the participating 
components in the implementation. The loss of this information makes the implemen-
tation opaque with respect to the architecture specification, and traceability, intelligi-
bility and maintainability of the software system are lost to a great extent, while the 
constraints and non-functional properties that the ADL described, analyzed and veri-
fied are not likely to be held in the implementation, doing nothing for reengineering 
and evolution. Having a general-purpose programming language that more directly 
supports the connector will bring more explicit intuition about the architecture into 
the implementation, which will help make the realization phase a smooth continuation 
of the software architecture description and design process. 

Support for developing communication-centric (or interaction-centric) soft-
ware. In the age of web service and peer-to-peer computing, communication (interac-
tion, collaboration) among distributed software entities (distributed components) is 
crucial. New complexities, such as ensuring correct construction of complex commu-
nication from communication primitives and guaranteeing that a communication pro-
tocol is deadlock-free, have become significant. The first-class treatment of the con-
nector can be a first step towards communication-centric programming. 

To meet the above challenges, a new component-oriented programming language, 
SAJ—an extension of Java—has been designed and developed in which some archi-
tectural structures, such as the component, the port and particularly the connector are 
integrated into the Java language. 

It may be noted that even though special components called by communication 
components or connector components are sometimes used to represent particular 
connections among components instead of using a connector abstraction, which seems 
to blur the distinction between the component and the connector, there are other 
good reasons for the first-class treatment of the connector: (1) Interaction and compu-
tation are two different concepts, they should have different semantics and roles in a 
programming language. A programming language needs not only structures to specify 
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computation but also structures to specify interaction, which supports separation of 
concerns and software reuse. The emerging interaction-based formal models and 
programming languages have fully shown this [4] [5]. Using the special component to 
simulate the connector may lead to further obscuring their distinct nature and confu-
sion of the component definition which has not yet been reached a consensus; (2) 
Connectors enrich design vocabulary and directly support concepts embodied in sev-
eral design patterns; (3) The lack of the connector abstraction can lead to various 
problems, such as increase in the complexity of the components, etc [6]. 

The rest of this paper is organized as follows. In Sect.2, the component model and 
the connector model underlying SAJ are discussed. The SAJ language is introduced in 
Sect.3, where the syntax, semantics and type system of SAJ are presented in detail. In 
Sec.4, a case study is presented. Finally, in Sect.5 and Sect.6, we compare our ap-
proach with related work and discuss ongoing work. 

2    The Component and the Connector Model Underlying SAJ 

In the same way that a component model defines what a component is and how to 
construct a composite component, so a connector model defines what a connector is 
and how to construct a composite connector. 

There is a kind of consensus about what a component is: a component is a unit of 
composition with contractually specified interfaces and explicit context dependencies. 
A software component can be deployed independently and is subject to composition 
by third parties [7].Each component may have multiple interfaces called ports. Each 
port represents a logical point of interaction between the component and the external 
world. A port declares two kinds of interfaces: provided interfaces and required inter-
faces. Required interfaces clearly declared can make dependencies explicit, reduce 
coupling among components and promote understanding of the component in isola-
tion. The concept of the port is favorable for information hiding and the interface 
segregation principle, and we provide support for it in SAJ, which is different from 
other component-oriented programming languages. 

With regard to the connector, there is little consensus yet in its definition, or even 
on the necessity of making it a first-class model entity. Our connector model is based 
on the following definition of connectors: connectors mediate interactions among 
components; that is, they establish the rules that govern component interaction and 
specify any auxiliary mechanisms required [8]. Each connector has a group of roles 
and interaction protocols. A role, which represents the external behavior that the com-
ponent participating in the interaction should have, is the abstraction of the compo-
nent that is capable of playing the role: any component that can play the role (strictly 
speaking, any component that can play the role through a certain port) is able to con-
nect to the connector and participate in the interaction. An interaction protocol, which 
describes how roles collaborate, localizes information about the interaction: the inter-
action among components happens in the connector. In SAJ, the role is the interface 
in its general meaning, and the interaction is implemented by the isolated codes in the 
connector. 

In our connector model we distinguish two kinds of connectors according to the re-
lationship between the component and the connector: the active connector (or the 
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exogenous connector [9]) and the passive connector. The main difference between the 
active connector and the passive connector is that the former initiates and coordinates 
control whereas the latter does not. The active connector describes collaborations 
among roles, and the component connects to the connector to play the corresponding 
role through the port, which has substantively formed the active/passive relationship 
between the connector and the component. More importantly, it is active connectors 
rather than components themselves that initiate service invocations in the compo-
nents, and handle accompanying data flow, so that any control flow among compo-
nents is encapsulated by active connectors. More visibly, through separating control 
and computation with active connectors, the problem of mixing control and computa-
tion in components which occurs in existing component models is solved. Thereby, 
the coupling between components is reduced greatly, and simultaneously reusing 
components and connectors can be realized. Active connectors represent the long-
lived connection relationships among components though all the components have 
little knowledge about each other. This kind of connector suits to be used in the sys-
tems with centralized architecture, such as intra-enterprise applications. 

On the other hand, the passive connector represents short-lived binary interaction, 
and it can be created only when one component wants to invoke required services 
which are provided by another component and to be destroyed when all the interac-
tions between the two parties are completed. The passive connector is responsible for 
transparently delivering the services the component required to the corresponding port 
of another component and returning the result. In other words, the passive connector 
is a private channel that offers services of data and control transfer (i.e. encapsulates 
communication), while the component encapsulates control and computation. The 
passive connector is applicable to the dynamic systems with decentralized architec-
ture, such as p2p computing and web service. 

Table 1. The differences between active connectors and passive connectors 

    
                                  

   Active Connectors Passive Connectors 

Relationship with Component  active passive 
Lifetime long-lived mostly short-lived 
Control Flow  encapsulate control     control transfer 

Data Flow 
knowing the meaning 

of data 
not knowing the 
meaning of data 

Applicable Context centralized architec-
ture 

decentralized archi-
tecture 

 
The differences of active connectors and passive connectors are listed in Table 1.We 

believe that the interactions among components are various and apt to change and that 
two kinds of connectors which are complementary to each other suit to different envi-
ronments respectively. In SAJ, both of them are supported. 

SAJ also provides support for the concepts of the composite component and the 
composite connector. The composite component is different from the basic compo-
nent in that it has an internal architecture which consists of sub-components and con-
nectors, and that the services it provides for the external world are accomplished 
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through the collaborations among the sub-components connected by the connectors. 
In the composite component, the connector, particularly the active connector, is used 
as a composition operator which has much richer semantics than simple composition 
operators such as Mixin [10]. Although the composite connector also has internal 
architecture, the internals of it are composed of methods, component instances and 
connector instances, which are used to implement cross-cutting feature services, while 
most of these services, such as security, log and so on, are common services which 
are orthogonal to the business logic. 

A method of inheritance and incremental composition in constructing user-defined 
(composite) connectors is adopted in SAJ. According to the classification of connec-
tors [11], the primitive connectors (procedure call, pipeline, data stream and the like) 
are predefined in SAJ. We believe that however complex the interaction among com-
ponents is, it always belongs to a certain type as a whole. After the user-defined con-
nector inherits the pre-defined connector in such a type, various common services are 
added to it in order to implement complex interactions and communication protocols. 
These common services possess the property of universal applicability, so generic 
programming and aspect-oriented programming are adopted in the implementation of 
the common services.  

3    Formalization 

In this section, we formalize our language by giving both the type system and op-
erational semantics and prove the type soundness property. The core of SAJ is 
based on RelJ[12], a “middleweight” subset of Java. The reason for our choosing 
RelJ as our basis from a number of calculi proposed for Java [13] [14] [15] is that it 
is “big enough to include the essential imperative features of Java and yet small 
enough that formal proofs are still feasible” [12] (We should point it out that many 
definitions in the following sections are directly derived from RelJ). On the basis of 
RelJ, component, connector, port, role (interface) and some other architecture con-
cepts are added. 

3.1   Syntax 

The partial syntax of SAJ is given in Fig.1. We distinguish user syntax, i.e., source-
level code and runtime syntax, which includes runtime instance and heaps. The meta-
variable c ranges over component class names; d  ranges over connector class names; 

', , ,r r R P and I  range over interface names, where r and 'r  are typically used to 
represent role types; n ranges over component class names, connector class names and 
interface names; z  ranges over port names; t  ranges over types; f  ranges over fields; 
m  ranges over the set of method names; x ranges over the set of variable names 
which contains the element this that cannot be on the left-hand side of an assign-
ment; u  and v  range over values; e ranges over expressions; s ranges over statements; 
as a shorthand, an overbar is used to represent a sequence.  
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Program ::=com* con*
:: Component Class  extends { ,M, }com

' ':: Connector  Class extends ( , ) ,Mcon
Primtype :: int | boolean|void|.

p
'c c t f z

d d r r t f

     ∈  
=                      
=      { }                  

          = ...

RefType :: ( )

Type ::= Primtype| RefType 

:: ( ) M
MethBody :: { ;}

Methtype ::
' :: { : }, , , ,

n c|d|I interface-name

t

t m t x mb

mb s return e

mt t t
m mtr r R P I

     ∈  =
            ∈ 

=                      
 ∈  =   
   ∈ = →

= 

       

    
::={Required ,Provided }z
:: |null| ( )Value

PrimValue ::=  |  |....

:: | .

Expression ::= | |

Statement

R P

pv l addressu v

pv intvalue boolvalue

x e fvar
e v var se

se

                 
=         , ∈

   ∈
=                      

    ∈  
∈

  

1 1 2 3

1 1 2 2 1 1

Exp ::= | ( ) ( ) . . ( )|new ( ) new ( )

 | ;  | if ( )  then { } else{ };Statement
//

:: || : , : ,.... : | , ,Instance n n

'var e e.m e | e.z.m e |e r m e  c  |  d r,r

se s e s s ss
runtime syntax

c f v f v f v d l zo

ε
=  

::=      ∈  

=<< >> <<        ∈ 

   
 

2 2 1 1 2 2

1 1 2 2

, , || : , : ,.... :

:: { | ( )}

:: { }

:: { }

n nl z f v f v f v

l o l dom

l z l

 

z l

x v

σσ
ρ
λ

>>
=  → ∈                      
= × × × →                      
= →                      

      

    

        

   

 

   

 

 

Fig. 1. The partial syntax of SAJ 

As usual for such language formalizations, we assume that given a SAJ program P , 
the component class and connector class declarations give rise to component and 
connector tables that are denoted by pC and pD , respectively. A component (connec-

tor) table is a map from a component (connector) class name to a component (connec-
tor) definition. 

A component class definition is a tuple, '( , , , )c F M Z , where 'c  is the super-
class; F is a map from field names to field types; and M is a map from method names 
to method definitions. Z  is a map from port names to port definitions. Method defini-
tions are tuples '( , , )t y L t mb  , , where y is the parameter; t is the parameter type; L  is a 

map from local variable names to their types; 't  is the return type; and mb is the 
method body. For brevity, we write cF , cM and cZ  for the field, method and port 

definition maps of class c . 

A connector class definition is a tuple, ' '( , , , , )d r r F M , where 'd  is the super-

class, ',r r represent the role’s type in the connector (to be for simplicity, we assume 
that there are two roles in each connector and that each connector connects two com-
ponents). '( )r r  is represented by the pair ( , )c z  in which c represents the type of the 
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ComponentTable : CompontClassName CompontClassName FieldMap MethMap

PortMap

ConnectorTable : ConnectorClassName ConnectorClassNam

C

D

 ∈   → × ×
×

∈    →
                                                                

e RoleType RoleType

FieldMap MethMap

FieldMap : FldName Type

MethMap : MethName ParameterList LocalMap TypeList Type

F

M

×  ×  
× ×

          ∈     →
        ∈     → × × ×

                                                        

MethBody

PortMap PortName ReqInterface ProInterface

LocalMap : VarName Type

Z

L

×
          ∈     : → ×
        ∈     →

           

Fig. 2. Signatures of component and connector class tables 

component participating in the interaction and z  represents the port that is connected 
to the connector; ,F M are the same to the above. Signatures for these maps are pre-
sented in Fig. 2. 

Values represent irreducible computational results, including primitive values (e.g. 
literals such as true, false, 1, etc). Expressions include component-instance creation 
expressions, connector-instance creation expressions, field accesses, method invoca-
tions etc. For compactness, only conditional statements and statement sequences are 
considered. 

The runtime syntax extends the user syntax: it extends values to allow for address 
l and introduces runtime instances and heaps. Runtime instances, ranged over by o , 
are either component instances or connector instances. Component instances are writ-
ten as an annotated pair 1 1 2 2|| : , : ,.... :n nc f v f v f v<< >> , where c represents the dynamic 

type of component instance, if  and iv represent the name and the value of field re-

spectively. 
Connector instances are written as an annotated 6-tuple 

1 1 2 2 1 1 2 2, , , , || : , : .... :n nd l z l z f v f v f v<<  >> , d represents the dynamic type of connector 

instance; 1 2,l l  represent the addresses of the component instances participating in the 

connection, while 1 2,z z represent the ports through which the component instances 

work. 
A heap σ , is a map from addresses to instances (component instances and connec-

tor instances), while local variables are given values by a locals store λ . A connection 
relationship heap ρ maps connection-relationship tuples ( 1 1 2 2, , ,l z l z ) to addresses. 

3.2   Semantics 

This section presents the operational semantics of SAJ, which is inspired by the stan-
dard small step reduction of [13] [16] [17].We start by listing the evaluation contexts 
to specify evaluation order. 

     e e e e e e e e e

e e e e

s e e 1 2 3

E ::=[] | E | E . | E . | . E |E . ( ) | . ( ,E , ) | E . . ( ) | . . ( ,E , )

| E . . ( ) | E . . ( ,E , ) | E return ; return E

E ::=E ; | if E then s else{s };s

x f f e u f m e u m u e z m e u z m u e

r m e r m u e  e

s

 =  =   =    

               {  } | { ;}
   ( )  {  }  
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A program configuration config , , , ,sσ ρ λ< Γ >  in the semantics is a 5-tuple of typ-
ing environment Γ (which is a finite map from variables to types), heap σ , connec-
tion relationship heap ρ  , locals map λ , and a statement s . An error configuration is a 
configuration , , , , Errorσ ρ λ< Γ > , with an error in a statement sequence. Program exe-

cution is described with ' ' ' ' ', , , , , , , ,s sσ ρ λ σ ρ λ<Γ > <Γ >. 
Expression execution proceeds when a sub-expression may be reduced, as specified 

by OSContextE, and similarly for statements in OSContextS: 

          
'

'
e e

, , , , , , , , )
(OSContextE)

, , , ,E [ ] , , , ,E [ ]

e e

e e

σ ρ λ σ ρ λ
σ ρ λ σ ρ λ
< Γ > < Γ >     

< Γ > < Γ >
 

          
'

'
s s

, , , , , , , , )
(OSContextS)

, , , ,E [ ] , , , ,E [ ]

e e

e e

σ ρ λ σ ρ λ
σ ρ λ σ ρ λ
< Γ > < Γ >     

< Γ > < Γ >
 

In the following, the base cases for the operational semantics will be defined. Only 
the more interesting reduction rules in Fig.3 are discussed here. 

OSNewActCon gives the semantics to the creation of an active connector instance. 
The OSNewActCon rule reduces a new expression to a fresh address. The heap is 
updated at that address to refer to a new connector instance with its fields set to the 
initial values and its roles set to the pairs formed by the connected component and 
port. The connection-relationship heap is added an entry which represents the map 
from the newly created connection-relationship tuple to the address of the new con-
nector instance. A passive connector instance is created when one component wants 
to invoke a required service which is provided by another component and the seman-
tics of its creation are similar to that of the active connector except that 1l represents 

the value of this .However, as we shall see, the typing rule of the creation of the pas-
sive connector instance is different. 

The interactions among components begin after the connector instance has been 
created. We first consider the interactions between components connected by the 
passive-connector instance. The rule OSCallReqMeth gives the semantics for calling 
required methods in the port. Only the component instance itself is able to call the 
required methods in the connected port which is then delivered by the passive connec-
tor instance (rule OSTranReqMeth) to the corresponding port of another component 
instance. 

The OSCallProMeth rule is straightforward. The semantics for the method invoca-
tion of the component instance are given by OSCallComMeth. The rule OSCall-
ComMeth determines the correct method body to invoke. Then the method invocation 
is replaced with the appropriate method body. In the method body, all occurrences of 
the formal method parameters and this are replaced with the actual arguments and the 
receiver respectively.  

Finally, we consider method invocations in the active connector whose methods 
describe the interactions among components. The rule OSCallActConMeth of the 
active connector is the same as the rule OSCallComMeth except that the roles of the 
active-connector instance are replaced with actual component instances (when the 
component instance plays a role through a certain port, only its provided methods at 
this port can be invoked in the connector methods). Here, only the OSCallActCon-
Meth rule is given. 
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Fig. 3. Some more interesting reduction rules 

3.3   Type System 

Component is provided for the root of the component class hierarchy, and Connec-
tor as its counterpart in the connector class hierarchy. PassiveConnector and Ac-
tiveConnector are subtypes of Connector. The subtyping rules are omitted here 
because they are similar to those of [12] [14]. We type expressions and statements in 
the presence of a typing environment Γ and only some typing rules deserving particu-
lar attention are presented in Fig.4. 

When an active connector instance is created, each component instance connected 
by this connector instance is passed to the connector constructor. The typing rule 
TSNewActCon verifies that the type of the provided interface in the connected port of 
each component instance should be the subtype of role 'r s type and ' 'r s  type respec-

tively, while the type of the required interface should be the supertype of role  ' 'r s  
type and 'r s  type respectively. 

The typing rule TSNewPasCon for creation of a passive-connector instance is dif-
ferent, only checking that the type of the provided interface of one connected port 
needs to be subtype of the required interface of the other connected port and vice 
versa. The reason why we do not consider the role’s type in this rule is that the pas-
sive-connector instance has no special requirement about the role’s type, only requir-
ing two connected ports to be compatible. 
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TSCallMeth looks up the invoked method’s type using the mtype  function, and veri-
fies that the actual argument types are subtypes of the method’s parameter types. If 
the invocation is through a port and the invoked method belongs to the required inter-
faces, the rule TSCallPortMeth verifies that the instance expression must be this . 

' '

'
1 1 2 2 1 1 1 2 2 2

'
1 1 1
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Fig. 4. Typing rules for connector instance creation and method invocation  

Next, the rules for well-formed component class definition and connector class 
definition are given in Fig.5. Firstly, ports are checked in the presence of their enclos-
ing component class and then fields and methods are checked in the presence of their 
enclosing component class or connector class (Only the TSPort rule is presented 
here). 

TSPort checks that a port is well-formed by verifying that only a subclass of Com-
ponent can define new ports and that the intersection of the required interface and the 
provided interface at the same port is empty. 

TSCom specifies that a component class type is well-formed if its superclass is 
well-formed, its ports are well-formed, and if all of its methods and fields are well-
typed. TSActCon imposes many of the same restrictions as TSCom except without 
checking ports. TSActCon also requires that only a subclass of a pre-defined connec-
tor in SAJ can define new roles.  The rule for the passive connector is the same as 
TSActCon except without checking condition 1. 

It seems that too many restrictions are imposed on well-formed component class 
definition and connector class definition. For example, only a subclass of Component 
can define new ports and only a subclass of a pre-defined connector in SAJ can define 
new roles. There are two considerations for these restrictions: (1) we want SAJ to 
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Fig. 5. Port, component class, connector class and program typing 

have the type soundness property; (2) we favor composition over inheritance. In other 
words, we use component composition and connector composition to construct soft-
ware systems, and restrictions on inheritance have little influence on us. 

TSProg specifies that a program is well-formed if all of its component classes and 
connector classes are well-formed. 

Finally, the rules for the well-formed heap σ , the connection relationship heap ρ  
and the locals map λ are given. For the heap σ , we ensure all the runtime instances 
(component instance and connector instance) stored in it are well formed. The rule for 
the well-formed component instance is the same as WFOBJECT2 in RelJ. The rule 
for the well-formed active connector instance WFActConInst is presented below:    
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WFActConInst ensures that (1) all fields that the connector instance has, including 
those inherited from its superclasses, are well-formed (the rule for well-formed field 
is the same as that of RelJ);(2) component instances connected by the connector in-
stance are well-formed;(3) the type of the provided interface at the connected port of 
each component instance is a subtype of the type of the role that the component in-
stance plays. The WFPasConInst rule for the well-formed passive connector instance 
is the same as WFActConInst except without checking condition 3. 
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We then map the conditions for well-formed instances and local variables over the 
heap σ , the connection relationship heap ρ , and the locals map λ : 
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We consider a program configuration , , , ,sσ ρ λ< Γ >  to be well-formed when 
,σ ρ and λ are well-formed, and when s is type-correct. 

3.4   Soundness 

We prove type soundness using standard theorems of type preservation and progress, 
and the proofs for the two theorems are left for another paper due to limitations of 
space. 

Theorem 1 (Type Preservation). In a well-typed program, P, where configura-
tion , , , ,sσ ρ λ<Γ > executes to a new configuration ' ' ' ' ', , , , sσ ρ λ< Γ > , that configuration 

will be well-formed. Furthermore, all instances in σ  retain their dynamic type in 'σ . 

Theorem 2 (Progress). For all well-typed programs, P, all well-formed configura-
tions , , , ,sσ ρ λ<Γ >  execute to either an error configuration ' ' ' ', , , ,Errorσ ρ λ< Γ > or a 

new statement configuration ' ' ' ' ', , , , sσ ρ λ< Γ > .  

Together, progress and type preservation imply that well-typed programs do not go 
wrong. 

4   Case Study 

In this section, a simple ATM demo system is used to introduce how to construct a 
system with SAJ. The ATM is used to deal with the transactions between the ATM 
client and the bank, such as audit, deposit, withdraw and so on. After a customer in-
serts his card into the ATM client, the information in the card is read, and the ATM 
client will ask the customer to input the password. Then the bank server will check 
the correctness of the password. The customer who passes the check is able to go on 
with his audit and other transactions on the ATM client.  

The software architecture style of the ATM demo system is client-server (for sim-
plicity, we assume that both the ATM client and the bank are in the same machine.) 
As Fig.6 shows, the client and the server interact through procedure calls, so we 
choose the pre-defined procedure-call connector (ConProcCall) as the superclass of 
the ATM connector. The main components of the system include the ATM compo-
nent, the Bank component and so on. The ATM component had two ports, PA and 
PC, which respectively interact with the Bank component and the card. Port PA has 
two sets of interfaces: IBank (the interface that requires services) and IAtm (the inter-
face that offers services). PB, one of the ports of the Bank component, also has two 
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Fig. 6.    The ATM demo system 

sets of interfaces: IBank (the interface that offers services) and IAtm (the interface 
that requires services). Connector ATMCon, which extends ConProcCall, describes 
the interactions between the ATM component and the Bank component. This is the 
static model of the ATM demo system, the pseudo-code of which is in Fig.7.  

Interface IAtm { 
  CardInfo  GetCardInfo(); 
  String    GetPassWord(); 
  …… 
}
Interface IBank{……} 
Component Class ATM extends Component{ 
Public Port PA{ 

   Provided IAtm;
   Required IBank; 
}
Public CardInfo GetCardInfo {……} 
……

 } 
Component Class Bank extends Component{ 
Public Port PB{ 

   Provided IBank;
   Required IAtm ; 
}
……

 } 
Connector Class ATMCon extends ConProcCall { 
……
void ATMCon(IAtm atm,IBank bank){ 

    this.IAtm=atm;
    this.IBank=bank; 
}
Public void Transaction {……} 
……

}  

Fig. 7.   The static model of the ATM demo system  

The dynamic model of a software system is described by connector methods which 
describe how the roles cooperate to implement system services. In the ATM demo 
system, the instance of the ATM plays the IAtm role through port PA and the instance 
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of the Bank plays the IBank role through port PB. The interactions between the com-
ponent instance of the ATM and that of the Bank are described in the Transaction 
method of ATMCon, whose pseudo-code is in Fig.8. 

From the pseudo-code in Fig.8, we are able to determine that with the separating of 
control and computation by the connector, control is encapsulated in the connector 
ATMCon, while computation is encapsulated in the component ATM and Bank. 
Thus, the coupling between the component ATM and Bank is able to be reduced, and 
the simultaneously reuse of component and connector can be realized. 

In a real ATM system, the ATM and the Bank are distributed at different locations 
and it is better to use a passive connector than an active connector. Only when the 
customer inserts his card to require ATM service, is a passive connector instance 
created between the ATM and the Bank and it is destroyed when the customer com-
pletes his transactions. The passive connector instance offers services of data transfer 
and control transfer as a private channel between the ATM and the Bank.  

Public void Transaction {
   CardInfo Info=IAtm.GetCardInfo(); 
   String   PassWord=IAtm.GetPassWord(); 
   If (IBank.verfyPassWord(Info,PassWord)==Success) 
       { 
        If (IAtm.GetEvent()==Deposit) then 
            { 
             IBank.deposit(Info,IAtm.GetDepositMoney()); 
             …… 

}
           …… 

}
}

 

Fig. 8. The pseudo-code of the Transaction method 

5    Related Work 

In both the software architecture field and the component technology field, people 
have been focusing for a long time on component structure, component interface and 
some other aspects of the component, and research on the connector was completely 
ignored. Nowadays, people are becoming more and more concerned that for a large-
scale complex system, functional properties and non-functional properties of a system 
usually depend on the interactions among components. Research on the connector has 
been advanced rapidly in recent years, especially research on how to realize the con-
nector and how to use the connector has already been a hot topic. 

Aldrich proposed ArchJava as a programming language integrating architectural 
concepts into Java [18], which give us some inspirations. Aldrich also proposed an 
approach to support connector abstraction in ArchJava using a reflection mechanism 
[19]. User-defined connectors were derived from the pre-defined connectors offered 
by the ArchJava reflection library, while the “Invoke” function of the connector that 
described the dynamic semantics of interaction was overridden. Furthermore, it has 
been argued that offering support for the connector abstraction in a programming 
language has a flexibility which could greatly improve the reuse of the connector, 
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because almost all kinds of connectors listed in [11] could be realized with the con-
nector abstraction of ArchJava. The main problem of this approach lay in that it was 
difficult to guarantee the type soundness in the implementation of the connector ab-
straction by the reflection mechanism.  

Exogenous connectors were proposed to solve the problem of mixing computation 
and control in components [9]. The key distinguishing characteristic of exogenous 
connectors is that they encapsulate control totally, i.e. control originates from connec-
tors. Exogenous connectors are favorable for reusing components and connectors 
simultaneously. However, as we have said, exogenous connectors and passive con-
nectors are complementary to each other. Exogenous connectors alone can not solve 
all the problems. 

6    Conclusion 

In this paper, we present a new component-oriented programming, SAJ, in which the 
connector is a first-class entity as well as the component. We formalize our language 
giving both the type system and operational semantics and prove the type soundness 
property. Our first-class treatment of the connector is based on the recognition that 
interactions among components are as important as (even more important than) the 
components themselves and that the first-class treatment of the connector in a pro-
gramming language can favor making these two different concepts clear and increas-
ing the reusability of them. The problems mentioned in the introduction section also 
can be better solved by explicitly supporting the connector in the programming lan-
guage. 

The component model and the connector model underlying SAJ are also given in 
the paper. We distinguish two kinds of connectors, i.e., active connectors and passive 
connectors. The difference between them is discussed in detail, which would be help-
ful to using them correctly. 

Our work on SAJ is at a preliminary stage, however. Future tasks include further 
perfecting our component model and connector model and researching the technique 
of automatic connector creation. For perfecting the component model and the connec-
tor model, we are particularly interested in enriching component and connector speci-
fication and offering composition methods or appropriate composition operators to 
allow construction of the complex connector. Concerning automatic connector crea-
tion, we want to propose an approach of creating connectors automatically based on 
the enriched component and connector specification. 
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Abstract. Plug-in architectures and platforms represent a promising approach 
for building software systems which are extensible and customizable to the par-
ticular needs of the individual user. For example, the Eclipse platform, as the 
most prominent representative of plug-in systems, is based on a unique plug-in 
and extensibility concept and has succeeded in establishing itself as the leading 
platform for the development of tool environments. This paper introduces a new 
plug-in architecture for the .NET platform which shows much resemblance to 
Eclipse. However, whereas Eclipse is a Java-based system and uses XML to de-
scribe extensions, our architecture relies on .NET concepts such as custom at-
tributes and metadata to specify relevant information directly in the source code 
of an application. We argue that this approach is more readable and easier to 
maintain. As a case study for our plug-in architecture we present a new plug-in 
platform for implementation of rich client applications in .NET.  

1   Introduction 

Originally made popular by Web browsers, plug-in platforms enable the extension of 
a core application with new features implemented as components that are plugged 
into the core at load time or even at run time and integrate seamlessly with it. Feature-
bloated applications like Microsoft Word evidence what happens if a monolithic ap-
plication follows the one-size-fits-all approach. Microsoft continues to receive user 
feedback with requests for features that already exist in the product. Typical users 
struggle to find their 10%-share of the feature set that they really want to use. The 
plug-in approach on the other hand strives for compact application cores that can be 
extended with plug-in components tailored to the users' needs. It improves focus and 
reduces clutter by providing a customized user environment. 

Eclipse [7] is certainly the most prominent representative of those plug-in plat-
forms and has driven the idea to its extreme: “Everything is a plug-in!” [1]. Moreover, 
other interesting approaches exist (see related work below). For example, OSGi [16] 
is a Java-based technology for deploying and managing coarse-grained components. It 
also serves as the deployment technique for Eclipse plug-ins. Mozilla [13] represents 
                                                           
* This work has been conducted in cooperation with BMD Systemhaus GmbH, Austria, and has 

been supported by the Christian Doppler Forschungsgesellschaft, Austria. 
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a further interesting plug-in platform where user interface contributions are defined in 
the declarative language XUL. Despite their diverse technological foundations, all 
those systems have in common the focus on extensibility of applications.  

In addition to facilitating extensibility of applications, plug-in architectures and 
platforms represent an interesting and promising approach for providing reusable 
building blocks. Assembling systems from pre-fabricated building blocks has been 
regarded as an appealing approach to software construction since the very early days 
of software engineering [11]. Originally, object-oriented technology was supposed to 
make systematic development of reusable building blocks and wide-scale reuse feasi-
ble [2]. Today, it is generally agreed that object-oriented technology as such has not 
fulfilled those expectations [20]. Although we have seen much progress into this di-
rection in the last decades [19], [3], component-based software engineering still has 
not reached a level of maturity that is taken for granted in other engineering disci-
plines.  

We argue that plug-in approaches represent a significant progress for making a 
component-based software development reality. So it seems that Eclipse has suc-
ceeded where previous approaches have failed, namely in establishing a real compo-
nent market. Today a huge community of developers and software vendors has com-
mitted itself to Eclipse as the technological basis for developing reusable components 
and thousands of Eclipse plug-ins can be found on the Web.  

The success of Eclipse and similar systems has many reasons, some of which go 
far beyond pure technical considerations. However, there are several technical fea-
tures which have contributed to the success of plug-in systems:  

 Plug-in components are coarse-grained, i.e., they are like small applications with 
features which are of direct value for the user. In that, they are mainly self-
contained and have limited dependencies on other components.  

 There are clear rules on how to specify dependencies and interactions between 
components. This results in precise documentation on how systems can be ex-
tended and how plug-ins shall interact.  

 Eclipse and similar systems have demonstrated ways how plug-in components 
can be integrated seamlessly into working environments. Working environments 
can grow in a disciplined and determined manner allowing the users to create 
their individual working environments by selecting from a set of plug-ins.  

This paper introduces a new plug-in architecture for the .NET platform which shows 
much resemblance to Eclipse. However, whereas Eclipse describes extension points 
and extensions with dedicated XML configuration files, our architecture relies on 
.NET concepts such as custom attributes and metadata to specify relevant information 
directly in the source code of an application. We argue that this approach is more 
readable and easier to maintain. Moreover, it exploits .NET specific features for plug-
in deployment and discovery. As a case study for our plug-in architecture we present 
a new plug-in platform for rich client applications called CAP.NET. We describe its 
design as well as a prototypical implementation and show how it supports users as-
sembling their individual working environments.  
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1.1   Related Work 

One of the first runtime extensible systems was Emacs ("Editor MACroS") [18]. 
Emacs extensions are written in elisp – a Lisp dialect – and installed by setting paths 
in an initialization file. In that, Emacs can be described as a readily extensible script-
ing framework, to which new scripts can be added at runtime.  

Many Web browsers make use of the “plugging” concept. Mozilla  [13], for exam-
ple, lets developers define new extensions and makes use of various technologies for 
this purpose. In Mozilla the user interface is represented by an XML data model. 
Plug-ins specify their user interface contributions in the declarative language XUL 
(another XML language) and with the help of JavaScript and XPCOM one can add 
dynamic behaviour to the UI elements. XPConnect bridges XPCOM [17] and 
JavaScript by allowing JavaScript to access and manipulate XPCOM objects. Appli-
cations built with this technology are not limited to the Mozilla Web browser but 
range from different Web browsers (FireFox, Mozilla Suite, Netscape), email clients 
(Thunderbird), calendar applications (Sunbird) to integrated development environ-
ments (Kommodo) and Web-design applications (NVU). 

OSGi [16] is a Java-based technology for deploying and managing coarse-grained 
components. The Open Service Gateway Initiative (OSGi) defines several mecha-
nisms that are relevant for a plug-in framework. Lifecycle management of compo-
nents (referred to as bundles in OSGi) and hot update are possible using OSGi. Addi-
tionally, OSGi offers a service concept and a set of service standards for component 
integration and interaction. Technically, the OSGi service framework can be boiled 
down to a custom, dynamic Java class loader and a service registry that is globally 
accessible within a single Java virtual machine [9].  

The Eclipse Platform [7] is certainly the most prominent plug-in platform today. 
Eclipse is built upon a small core and all further functionality is provided by a (usu-
ally huge) set of plug-ins. Plug-ins for Eclipse are written in Java and are delivered as 
JAR libraries. Plug-ins declare their interconnections to other plug-ins using a mani-
fest in XML format. The idea is quite simple: a plug-in declares named extension 
points and extensions to extension points in other plug-ins. The platform matches 
extensions with their corresponding extension point declarations by name, discovers 
plug-in dependencies in this way, and integrates the plug-ins to a comprehensive 
working environment at start-up without actually loading the code. The resulting 
plug-in registry is available via the platform API. Any problems, such as extensions to 
missing extension points, are detected and logged. Eclipse evolved as it moved from 
version 2.x to 3.0. In version 3.0.7 it adopted the OSGi Service Platform (SP) as a 
foundation for plug-in management. Backed with OSGi it allows hot updates of plug-
ins, i.e., updating the code and reloading a plug-in while the Eclipse system keeps 
running.  

NetBeans [15], as the main competitor of the Eclipse Java development environ-
ment, has introduced a plug-in concept which differs significantly from that in 
Eclipse. In NetBeans, plug-ins are referred to as modules and, as in Eclipse, are JAR 
libraries contained in a plug-in directory within the NetBeans environment. However, 
extension mechanisms and plug-in integration are based on a so-called virtual file 
system that, in essence, represents the hierarchical structure of the application. Plug-
ins define their extensions in XML documents (called layer.xml) by specifying their 
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contributions to the virtual file system. For example, a plug-in which would like to 
add a menu item “Format” in sub menu “Source” would simply specify that it has a 
contribution to the virtual directory path “Menu/Source” with name “Format”.  

1.2   Outline 

This paper is structured as follows: Section 2 defines basic terms and concepts and 
derives requirements for a plug-in architecture and a plug-in platform. In Section 3 we 
will discuss some .NET features which have been important in our approach.  
Section 4 introduces the basic concepts of our plug-in architecture, namely extension, 
deployment, and discovery mechanisms. In Section 5 we validate our approach by a 
prototypical implementation of a rich client platform. Finally Section 6 discusses our 
approach and achievements and gives an outlook to future work.  

2   Terms and Concepts  

2.1   Basic Mechanisms of a Plug-In Platform 

A plug-in platform enables components to plug into an application core at load time 
or at run time. For that purpose the platform requires the following basic mechanisms: 

(a) Plugging. An essential principle of a plug-in architecture is that system extensions 
are carried out in controlled, restricted and determined manner. Therefore, in a plug-in 
architecture there have to be means which allow specifying explicitly how a compo-
nent should be extended and how other plug-in components make their contributions. 
In Eclipse, for example, this is done by extension point and extension specifications in 
XML. We adopt a notion of extension slot, i.e., the specification how an extension 
should occur, and the extension, i.e., the specification how a plug-in makes a contri-
bution to a particular slot. System integration, i.e., combining the set of plug-ins at 
hand into a integrated running system, is solely accomplished by reading and exploit-
ing this information about extension slots and fitting extensions.  

(b) Deployment. Plug-in components are like small applications that extend the appli-
cation core by new services. Nontrivial services may consist of multiple extensions 
plugging into different slots defined by one or several extension hosts. Extensions that 
belong together are merged into a single plug-in component that serves as a single 
unit of deployment and versioning.  

(c) Discovery. Safe and easy plug-in activation should not require complicated and 
error-prone configuration tasks. Therefore, plug-ins are simply moved to a central 
place called a plug-in repository where they are discovered and activated automati-
cally at application load or run time. Accordingly, removing a plug-in from the re-
pository deactivates it. 

2.2   Slots and Extensions  

As discussed above, a plug-in is a deployable software unit which has explicit specifi-
cations of its slots and extensions. Slot specifications define how other plug-ins are 
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intended to extend the functionality of this plug-in, whereas extension specifications 
define how this plug-in makes contributions to slots of others. Therefore, slots and 
extension specifications have to match. In essence, slots declare the types of informa-
tion a plug-in expects and the extensions fill this information slots accordingly. In its 
simplest form, a plug-in specification is a structured list of name/value-pairs where 
the slot specifies the required names and value ranges and the extension specification 
defines appropriate values for the extension at hand.  

The component defining the slot is called the extension host and the component 
implementing the extension is called the extension contributor. Extension contributors 
again can define their own slots where other plug-ins can contribute allowing the 
whole system to grow. A non-trivial plug-in can contain multiple extensions plugging 
into different slots. 

Usually, plug-in extensions will occur on the level of run-time behavior, i.e., 
plug-in host and contributor will communicate based on a defined protocol in order 
to accomplish a particular task. The collaboration between the host and its contribu-
tor is defined in the form of required and provided interfaces. The host will define 
the required interface and the extension contributor has to provide an implementa-
tion for it.  

Fig. 1 depicts the structure of slot and extension specifications in host and con-
tributor plug-ins. The interface in the host and the implementation class in the con-
tributor specify the agreed collaboration protocol. Additional name/value pairs define 
other properties that the host requires to make use of the extension. 

2.3   Further Services of a Plug-In Platform 

A plug-in platform built on the basic mechanisms presented above can also provide 
the following services: 

(a) Hot Plugging. Having to restart an application in order to install new components 
leads to annoying interrupts of the user's work flow and should be avoided. Hot plug-
ging means the ability to add, update and remove plug-ins while the application is 
running.  

(b) Auto-Update. Patches are a common way of supplying small updates to pieces of 
software in order to update it or to fix problems. If the update process is automated 
users are relieved from this tedious and error-prone task. A plug-in platform can 
therefore periodically scan the plug-in repository and compare version information 
with an installation repository. If newer versions of plug-ins are available, they are 
copied from the installation to the plug-in repository and are reactivated when the 
application is restarted. If hot plugging is supported, no restart is required. 

(c) Sandboxing. Malicious or unreliable plug-ins represent a security hazard for the 
application. A sandbox is a secure environment for safely running plug-ins within 
well-defined limitations to their possible set of actions. 
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Fig. 1. Slot and extension in host and contributor plug-in 

3   .NET Framework Concepts  

The .NET Framework offers advanced concepts which form a technological basis for 
the plug-in approach presented. Those are .NET custom attributes, assemblies, meta-
data and reflection. We shortly discuss those topics now. 

(a) Custom attributes 

Custom attributes are pieces of meta-information that can be attached to language 
constructs such as classes, interfaces, methods or fields in the source code of an appli-
cation. At run time the attributes attached to a language construct can be retrieved 
using reflection [12]. In addition to pre-defined attributes programmers can declare 
custom attributes by implementing attribute classes with arbitrary properties whose 
values can be set when the attribute is attached to a language construct.  

Adding custom metadata that can be evaluated by development tools is a common 
usage scenario in .NET. A well-known example is the WebMethod attribute which 
indicates that a method is exposed as part of an XML Web service. 

public class StockTicker : WebService { 
  [WebMethod] 
  public double GetQuote(string symbol) { ... } 
} 

The Web Services Description Language tool (wsdl.exe) is an example of a develop-
ment tool that uses reflection to read out the WebMethod attribute for identifying a 
method as a Web method and, from this information, creating contract files or proxy 
code. 
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Our plug-in architecture makes similar use of attributes for representing informa-
tion about slots or extensions in plug-in code (see Section 4.1). 

(b) Assemblies 

An assembly is the basic packaging unit in .NET. It is the smallest unit for loading, de-
ployment, versioning and security. Assemblies can come as executables (*.exe) or as 
library components (*.dll). They contain metadata describing types, resources and refer-
enced assemblies. Because assemblies are self-describing, assembly component deploy-
ment is as simple as an copy operation. There are no issues with class or type library regis-
tration as in traditional COM deployment. Lack of registry dependency and support for 
side-by-side component deployment avoids the problem known as "DLL hell" [10]. 

Strong name identification and assembly version information are used to identify 
components. An assembly version number is represented as a four-part number. For 
example, version 1.5.1254.0 indicates 1 as the major version, 5 as the minor version, 
1254 as the build number, and 0 as the revision number. To give an example a version 
number is attached to the StockTicker program (see above) through the Assem-
blyVersion-Attribute. 

[assembly: AssemblyVersion("1.5.1254.0")] 
public class StockTicker { ... } 

A component update service can acquire the component version using reflection like 
this: 

Version v =  
  AssemblName.GetAssemblName("ticker.dll").Version; 

In our plug-in architecture a dll assembly is used as a container for a plug-in compo-
nent. Strong name identification and assembly version information are used to iden-
tify plug-ins and to facilitate auto-update. 

(c) Metadata.  

An assembly does not only store code but also metadata describing the symbolic in-
formation of all types, methods, fields and other entities in the assembly. An assem-
bly's metadata is generated automatically by the compiler from the source code. .NET 
makes it possible to retrieve the metadata of an assembly at run time using reflection 
[10]. The sample code below demonstrates how a tool can search the StockTicker 
class (see above) for methods with the WebMethod attribute attached. For all the 
methods in the StockTicker class it will retrieve all the attributes of type Web-
MethodAttribute using the reflection method GetCustomAttributes. If the 
length of the array returned is greater than 0, the first array element is accessed and 
casted to the WebMethodAttribute type.  

foreach(MethodInfo mi in 
typeof(StockTicker).GetMethods()) { 
  object[] webMethodAttrs = mi.GetCustomAttributes(  
                           typeof(WebMethodAttribute), 
true); 
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  if(webMethodAttrs.Length > 0) { 
    WebMethodAttribute webMethodAttr =  
            (WebMethodAttribute) webMethodAttrs[0]; 
    // use WebMethodAttribute 
  } 
} 

Our plug-in platform uses reflection for discovery. The discovery service scans the 
plug-in repository and activates extensions by reading their extension definition from 
metadata. 

4   A Plug–In Architecture for .NET 

In this section we will show how the .NET-specific concepts described in Section 3 
can be used to implement the basic mechanisms of a plug-in platform as described in 
Section 2. In particular, we show  

 how to define slots and extensions with .NET attributes, 
 how to use .NET assemblies for plug-in packaging and deployment, and 
 how to use reflection for plug-in discovery and activation. 

We will showcase this approach with two sample extensions. The first example de-
fines an extension slot for pluggable logging functionality. An extension contributor 
will receive logging information from the host and logs this information in its specific 
way. The second extended example introduces an additional custom property to dif-
ferentiate various message types (e.g. error, warning, info). 

4.1   Defining Slots and Extensions with .NET Attributes  

Our specification of slots and extensions is based on .NET attributes. In Section 2 we 
have seen that a slot can specify one or more interfaces, which have to be imple-
mented by the extension. In our first example the extension host defines an interface 
ILog and applies the attribute Slot with a name "Log" to the interface.  

[Slot("Log")] 
public interface ILog { 
  void Write(string msg); 
} 

 

Fig. 2. Simple logger slot and extension  
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The Slot attribute is predefined by our plug-in platform. It is used to tag any pro-
gram elements which belong to a particular slot. The slot is identified by a unique 
name. In the example above, the Slot attribute simply says that the ILog interface 
is an interface of the slot with the name "Log". The following code shows the defini-
tion of the Slot attribute.  

class SlotAttribute : Attribute { 
  public SlotAttribute(string name) { ... } 
  private string name; 
} 

The interface ILog declares a method Write which the host calls to log messages 
and which has to be implemented by contributor plug-ins. The sample extension 
Logger writes messages to the console. The class Logger provides an implementa-
tion for the required interface ILog.  

[Extension("Log")] 
public class Logger : ILog { 
  public void Write(string msg) { 
    Console.WriteLine(msg); 
  } 
} 

Extensions in contributor plug-ins have to be tagged by the custom attribute Exten-
sion which is also predefined in the platform. The same name as in the slot is used 
to uniquely identify the slot to be extended. The following code shows the definition 
of the Extension attribute. 

class ExtensionAttribute : Attribute { 
  public ExtensionAttribute(string name) { ... } 
  private string name; 
} 

In the example above, the class Logger is now referred to as an extension of the slot 
"Log" because it is associated to this slot by the attribute Extension. Further-
more, it is a valid extension that conforms to the requirements of the Slot declara-
tion as it implements the interface ILog.  

Logger with a Custom Property 

The previous example is now extended to demonstrate the use of custom properties. 
In this example, we assume that the host allows the extension to choose between dif-
ferent message types which should be logged. For example, if the extension specifies 
Info, Warning or Error as its message types, the host will forward only the re-
spective logging information. 

The host defines a custom attribute class MessageType. The standard Attrib-
uteUsage attribute specifies that MessageType can only be attached to class 
definitions. The Slot attribute defines that MessageType is associated to a "Log" 
slot. 
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public enum MessageTypeEnum {Info, Warning, Error}  
 
[Slot("Log")] 
[AttributeUsage(AttributeTargets.Class)] 
public class MessageType : Attribute { 
  public MessageType(MessageTypeEnum type) { ... } 
  private MessageTypeEnum type; 
} 

 

Fig. 3. Logger with custom property 

A contributor plug-in can use this custom attribute in the extension implementation. 
In the following ErrorLogger implementation the Slot attribute is used to spec-
ify that this class is an extension to the "Log" slot and the MessageType attribute 
is used to specify that this logger implementation is intended to accept error logs only.  

[Extension("Log")] 
[MessageType(MessageTypeEnum.Error)] 
public class ErrorLogger: ILog { 
  public void Write(string msg){ 
    // do something  
  } 
} 

In summary, specifying slots and extensions works as follows. In an extension host a 
slot is specified in the following way:  

 There is a Slot attribute which is used to tag program elements of the host, i.e. 
interfaces and custom attribute classes, which belong to a particular slot that is 
identified by a unique name.  

 The host will define one or several interfaces which are intended to be imple-
mented by the extension contributors. They are marked with the Slot attribute.  

 In most cases the host will also define one or several custom attribute classes 
which are intended to be used by the extension contributors to provide static in-
formation. That means, custom attributes are used to embody the name/value 
pairs. Again the Slot attribute is used to assign the attribute class to a particular 
slot.  
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In an extension contributor the extension is specified as follows:  

 There is an Extension attribute that is used to tag the class of the contributor 
in order to make a contribution to a particular slot. Thereby, the unique slot iden-
tifier given in the Slot attribute is used.  

 For a slot interface there is a class implementing that interface in the contributor. 
This class is tagged with the Extension attribute denoting that it is an exten-
sion of a particular slot.  

 The custom attributes defined in the slot specification will be used in the con-
tributor to provide the respective static extension information. They are also at-
tached to the extending class. 

4.2   Deployment and Update 

The class that provides an extension is packed into a plug-in assembly for deploy-
ment. To prepare for automatic plug-in update, we need to add version information to 
the plug-in assembly. We continue with the error logger example from the previous 
section and add version information. 

using System; 
using System.Reflection; 
 
[assembly: AssemblyVersion("0.1.*")] 
 
[Extension("Log")] 
[MessageType(MessageTypeEnum.Error)] 
public class ErrorLogger : ILog { 
  public void Write(string msg) { 
    // do something  
  } 
} 

Major version is 0, minor version is 1, and by specifying a wildcard for build and 
revision number, the compiler will insert adequate values. The following command 
builds the error logger plug-in.  

csc /reference:platform.dll /target:library 
/out:errorlogger.dll errorlogger.cs 

The plug-in errorlogger.dll contains the extension and version information 
and is ready for deployment. Deployment means to move the plug-in into the reposi-
tory. A repository is a folder in the file system that contains all active plug-ins for an 
extension host. When a plug-in is moved to the repository, the plug-in platform will 
automatically discover the newly installed plug-in and activate it (see Section 4.3). 

Plug-in providers may provide updates with new features or fixes for problems. 
The Auto-Update service uses reflection to acquire the version info of plug-ins in the 
repository. It compares the version number of the currently installed plug-in and com-
pares it to a installation repository that provides updated plug-ins. If updates are avail-
able, the update service replaces the plug-in in the repository with the newer version 
from the server. 
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Version v1 = AssemblyName. 
  GetAssemblyName("errorlogger.dll").Version; 
Version v2 = AssemblyName. 
  GetAssemblyName("\\install\errorlogger.dll").Version; 
if(v2 > v1) { 
  // do update 
} 

The update process requires the plug-in platform to be restarted. An active plug-in 
means that its assembly is load in an application domain. As of .NET 2.0, assemblies 
cannot be individually unloaded. Consequently the update service shuts down the exten-
sion host, installs updated plug-in in the repository and restarts the extension host.  

4.3   Discovery and Activation 

At start-up the extension host searches the plug-in repository to discover plug-ins. It 
uses reflection to browse all classes in plug-in assemblies to look for Extension 
attributes. Classes with that attribute attached contain extensions. A conformance test 
checks if the extension provides the required interfaces and properties. Valid plug-ins 
are represented in the plug-in registry, which is a data structure that represents rela-
tions between slots and extensions, as well as inter-extension dependencies. The 
source code below shows a simplified discovery routine. 

foreach(string filename in Directory.GetFiles( 
        "plugins", "*.dll")) { 
  Assembly a = Assembly.ReflectionOnlyLoadFrom(filename); 
  foreach(Type t in a.GetTypes()) { 
    object[] attrs = t.GetCustomAttributes( 
                        typeof(ExtensionAttribute),true); 
    if(attrs.Length > 0) { 
      // check conformance 
      // add it to the registry 
    } 
  } 
} 

Discovery uses the reflection-only context, which means that none of the plug-ins are 
actually loaded yet. Our plug-in platform supports lazy-loading, which means that 
extensions are loaded at the latest possible point in time. For example, when lazy-
loading is applied to user interface elements, the plug-in is not loaded until the user 
performs an action on the user interface element and activates the respective function. 

The code sample below shows how a plug-in is loaded and an extension is instanti-
ated and used.  

Assembly a = Assembly.LoadFrom("plugin\\errorlogger.dll"); 
ILog log = a.CreateInstance("ErrorLogger"); 
log.Write("Hello world!"); 
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5   CAP.NET: A Rich Client Application Platform in .NET  

CAP.NET (Client Application Platform .NET) is a platform for the realization of rich 
client applications in .NET and has been developed primarily for the validation of the 
plug-in architectural concepts as presented in Section 4. The idea of CAP.NET is to 
lay a basis for the realization of plug-in components for rich client workbenches, to 
allow the selection of an individual set of plug-in components by a user, and the inte-
gration of this set into a comprehensive and seamless user interface.  

CAP.NET focuses on user interface integration, plug-in component deployment 
and life-cycle management. It is designed and built to meet the following require-
ments: 

 integrate a variety of plug-ins for different tasks into a single rich client applica-
tion  

 facilitate seamless integration of user interface elements contributed by different 
plug-ins 

 provide an update mechanism for plug-ins 
 provide a framework for rapid application development of rich client compo-
nents.  

In addition to the plug-in mechanism presented in Section 4 CAP.NET provides the 
following features:  

 a concrete plug-in discovery, deployment and update mechanism which uses a 
Web-Service interface on the download server  

 a workbench component based on a well-defined user interface paradigm which 
provides several extension slots for plugging in user interface elements as plug-
in components.  

Fig. 4 shows the architecture of the CAP.NET platform. The platform core imple-
ments the plug-in discovery and start-up mechanisms and contains the plug-in regis-
try. Additionally, the security component is responsible for managing rights and roles 
of plug-ins.  

Everything else in CAP.NET is a plug-in. The core provides one extension slot 
"cap.ui.workbench", which is intended to be filled by a workbench component.  
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Fig. 4. Architecture of CAP.NET 
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So far we have implemented just one kind of workbench component, but other work-
bench components following different UI paradigms could be implemented and 
plugged in as well. The realized Workbench component has several extension slots 
allowing further components to plug-in and in this way make contributions to the 
overall working environment, as we will see in Section 5.4. The update manager is 
also a plug-in and handles assembly deployment and update.  

In the following we will present CAP.NET in some detail. First, we will outline the 
platform core which implements the basic mechanisms. Then we will present the UI 
paradigm and the workbench components as well as the workbench extension slots 
and how the UI extensions are integrated. Finally, we will show some example plug-
ins and an example user workbench.  

5.1   Platform Core  

At start-up, the platform core discovers the available plug-ins. It looks in the installa-
tion directory for files named *.dll. These plug-in assemblies are loaded using 
ReflectionOnlyLoad and scanned for slot and extension attributes. 

The plug-ins discovered during this process are stored in the plug-in registry, 
which is basically a set of Plugin objects. The platform core is responsible for reg-
istering and managing plug-in assemblies and allows easy access to data and re-
sources from the framework, including resources shared among plug-ins.  

The plug-in registry simplifies the integration of extensions. A host component that 
defines a certain slot can find out if extensions to this slot are available using the 
plug-in registry which holds the static descriptions of the available extensions. 

5.2   Update Manager 

The update manager is also a plug-in. It periodically connects to an update Web Ser-
vice running on an installation server. This Web Service checks whether newer  
versions of the installed plug-ins are available on the server and returns them to the 
update manager which installs them into the client's plug-in directory. This makes the 
update process extremely simple. The system administrator at the server side simply 
copies new versions of plug-ins into the server's plug-in directory. Any clients relying 
on these plug-ins detect the new versions automatically and copy them over. 

5.3   User Interface Paradigm and Workbench Plug-In 

User interface integration is about integrating different contributions into an overall 
user interface. To make this work, user interface integration has to be based on a gen-
eral user interface paradigm, i.e. a general set-up and a general working principle that 
all applications obey. We have defined such a user interface paradigm for rich client 
applications. It focuses on the notion of user tasks, i.e., tasks that a user wants to work 
on. Depending on the chosen tasks the working environment will present itself in 
different ways. In general, a CAP.NET user interface consists of the following four 
panes: task navigation, task content, task commands, and views (see Fig. 5). 
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Fig. 5. CAP.NET Workbench 

Task navigation  
This is a UI element which allows navigation between different tasks in a hierarchical 
manner and is usually placed on the left side of the working environment. It shows all 
available tasks in a hierarchical arrangement and is always visible.  

Task content  
The task content window is the working window for a particular task. It will be either 
some sort of editor or an input form allowing the manipulation of data and objects. It 
can display the data graphically, textually, in forms etc. and can react on commands to 
change the data. Task content elements are based on the model-view-controller 
(MVC) pattern and allow the user to open, edit and save data objects. They follow an 
open-save-close life cycle much like file-system-based tools.  

Task commands  
It is common to have a set of commands for every task (e.g. a search command and a 
replace command for a text editor). These commands are displayed in task command 
windows, which are little control panes usually placed to the right of the task content 
window. There can be several task command windows for one task content. 

Views  
Views are UI elements which provide different views on a task's data. They can be 
used for navigation but not for changing data. For example, in a development envi-
ronment there could be different views of the code that is being written. One view 
could display the variables and methods while another view could display properties 
and their values. A view may also augment other views by providing information 
about the currently selected object.  

In addition to these special UI elements there are standard menus and toolbars as 
well as standard windows such as a message window or a to-do list. The Workbench 
plug-in realizes this UI paradigm and provides extension slots for tasks, commands, 
views and other elements, allowing custom plug-ins to make their UI contributions.  
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5.4   Workbench Extension Slots 

In the following we outline the extension slots of the Workbench plug-in and show 
how contributor plug-ins can use them.  

cap.ui.workbench.actions 

Additions to the menu bar and the toolbar are referred to as actions. This is because 
they represent some kind of user interaction, e.g. selecting a menu command or click-
ing a button in the toolbar.  

In order to make a new menu or toolbar item available, the user has to provide 
code that has to be called, whenever the user clicks on that item. For that purpose an 
interface IAction has to be defined. This interface contains a method OnClick, 
which is called when the menu or toolbar item is clicked.  

Since this slot can serve two purposes, i.e. the installation of a menu item or a tool-
bar item, there are two different attributes (MenuAction and ToolBarAction) 
that are used to provide the required information for UI integration. With the help of 
these attributes, the framework can extract the static information required for user 
interface integration without having to load the code. 

The following code shows how a menu item is installed into the workbench. The 
class UpdateMenuPlugin extends the slot cap.ui.workbench.actions. 
The MenuAction attribute specifies the location where the new menu item should 
be inserted into the menus of the workbench. 

[Extension("cap.ui.workbench.actions")] 
[MenuAction(MenuPath = "Settings/Web")] 
class UpdateMenuPlugin : IAction {  
  public void OnClick(object sender, EventArgs args) { 
... } 
} 

This will insert a menu item “Web” into the “Settings” menu. If the user selects this 
menu item the class UpdateMenuPlugin will be loaded and the OnClick method 
will be called.  

cap.ui.workbench.taskcontent 

For contributing a new task content element there is the slot "cap.ui.work-
bench.taskcontent" as well as the interface ITaskContent which defines 
methods for handling task content elements. Methods like OnNew, OnSave etc. are 
intended to be called when the respective actions on the content element are carried 
out. These operations apply to the currently active content. An extension to this slot 
has to implement the following interface ITaskContent.  

[Slot("cap.ui.workbench.taskcontent")] 
public interface ITaskContent{ 
  void OnNew();  
  void OnSave();  
  void OnSaveAs(); 
  void OnOpen(String filename); 
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  void OnClose(object sender, FormClosingEventArgs e);  
  void OnTitleChanged(object sender, EventArgs e);  
} 

A TaskContent attribute can be used to provide information such as the file exten-
sion the task content is related to. For example, for a text editor plug-in the Task-
Content attribute can be used as follows: 

[Extension("cap.ui.workbench.taskcontent")] 
[TaskContent(FileExtension="txt", Name="Text file")]  
public class TextEditorContent : ITaskContent { ... } 

The TaskContent attribute tells the workbench to create a menu item “Text file”. It 
also notifies the framework about the capability of the plug-in to deal with .txt 
files.  

cap.ui.workbench.taskcommands 

The "cap.ui.workbench.taskcommands" slot is intended to be used for 
contributing a task command dialog for a particular task content. Task command 
dialogs are implemented as extensions of .NET's Form class. As a task dialog refers 
to a particular task content window, it is required to identify the task content. This is 
done with the TaskCommandFor  attribute. For example, the following code shows 
a task command extension for the text editor plug-in.  

[Extension ("cap.ui.workbench.taskcommands")] 
[TaskCommandFor("at.dhungana.plugins.texteditor")] 
public partial class TextEditorCommands : Form { ... } 

cap.ui.workbench.views 

In order to add new views to the workbench, clients have to use the extension slot 
cap.ui.workbench.views. The attribute WorkbenchView is used to inform 
the workbench about the availability of a new view. This attribute can be used to 
specify the name of the view, which is then listed as a menu item in the menu where 
all other views are listed.  

[Extension("cap.ui.workbench.views")] 
[WorkbenchView("CAP Clipboard")] 
public class ClipboardView : Form { ... } 

5.5   Example Plug-Ins and Working Environment 

To test and demonstrate the platform, a set of plug-ins for a typical rich client work-
bench have been realized (see Fig. 5 for a sample screenshot) . These are: 

 a simple text editor plug-in, 
 a web browser plug-in (a public domain implementation has been wrapped and 
packaged as a CAP.NET plug-in), 

 a calendar plug-in, 
 a diary plug-in, 
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 an email plug-in, 
 a Sudoku game plug-in, 
 and a registry view plug-in for browsing the plug-in registry.  

By these plug-in developments it was possible to show that CAP.NET fulfills the 
requirements of an integration platform for rich client applications and that the user 
interface paradigm is a simple but appropriate interaction model for typical user tasks.  

6   Summary and Discussion 

In this paper we presented a plug-in architecture and a rich client platform for the 
.NET platform. Adopting ideas similar to Eclipse, our approach relies on .NET-
specific features such as custom attributes, assemblies, metadata and reflection. We 
argue that the use of these .NET features results in a better plug-in architecture. In 
particular, we argue that our approach of specifying slots and extensions using custom 
attributes is more readable and easier to maintain that the Eclipse approach using 
XML specifications. 

In our approach the extension host uses a Slot attribute to tag any interfaces that 
are to be implemented by the contributor. It also uses custom attributes for specifying 
properties for which the contributor has to provide values. This makes it easy for a 
contributor to describe an extension. The contributor has to implement the slot's inter-
face by a class and tag this class with the Extension attribute. Moreover, the con-
tributor can use the custom attributes defined for the slot to provide values for the 
required properties. Slots and extensions are specified directly in the source code of 
an application which makes it easier to keep them in sync with the implementation.  

.NET assemblies, as the unit of deployment and versioning, are a most adequate and 
natural means for the implementation of plug-in components. Furthermore, assemblies 
can contain arbitrary metadata allowing us to include plug-in specific information. Plug-
in discovery is based on .NET metadata and reflection. In .NET 2.0 programmers can 
load metadata of an assembly without actually loading the code (method Reflectio-
nOnlyLoad). This allowed us to realize a lazy loading strategy as in Eclipse, i.e., plug-
in integration occurs at start-up time based on metadata without actually loading the 
code. The code is only loaded when it is activated for the first time.  

Hot update means that an old version of a plug-in is unloaded and a new version of 
it is loaded while the system keeps running. In Eclipse this is accomplished by the 
OSGi implementation and by the fact that each plug-in is loaded by its own class 
loader. When the plug-in should be unloaded, the class loader is just disposed and 
with it the loaded plug-in. .NET works differently in this respect. In .NET, assemblies 
are loaded into so-called application domains (objects of type AppDomain). To 
unload code one would have to delete the AppDomain object. However, application 
domains also represent memory boundaries and method calls between objects in dif-
ferent application domains have be done using remote method invocation. For that 
reason, it would represent an unacceptable overhead to load each assembly into its 
own application domain. Assemblies therefore cannot be unloaded individually. How 
to realize hot updates in .NET remains an problem that is still to be solved.  
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Abstract. Interfaces rather than components carry component-based software 
architectures. This follows directly from the design of component interfaces and 
contractual obligations before the implementation of components. We suggest 
separating component interfaces and component services such as protocol 
checking, synchronization, parallelization and caching into dedicated compo-
nents which we call connectors. Connectors channel the communication so that 
components do not communicate directly with each other. Thus connectors fos-
ter the standardization of identifiable component contracts, accelerate the de-
velopment of complementing or competing components, and improve the test-
ability, portability and maintainability of component-based programs. 

1   Introduction 

Interfaces are core architectural constructs. Interfaces and contractual obligations are 
needed to build, analyze, test and configure programs. This holds especially for com-
ponent-based software architectures. Blurring classes and components—as today’s 
major component platforms like Java Beans and .NET do—impacts negatively on 
component architectures. This is best indicated by heavyweight, intrusive component 
containers; they attach component services directly to components (classes) via spe-
cial base classes, marker interfaces, and/or attributes (.NET) or annotations (Java). 
Thus components are coupled to the component container and so restrain testability, 
reusability and portability. 

Component-based programming remains exotic for many programmers because 
they have grown accustomed to object-oriented programming with its dominantly 
white-box style of reuse especially due to frameworks. In contrast, component-based 
programming extensively employs black-box reuse, interfaces (types) and contracts. 
The interplay between component-based programming and object-oriented program-
ming has not been clearly elaborated, as demonstrated by the prevalent confusion 
around key terms like component, class object and component objects. The confusion 
derives partly from object-orientated techniques being well-suited for component 
implementations. However, object-oriented languages lack constructs necessary for 
defining functional and nonfunctional properties in sharp, coherent component  
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interfaces. Whether language constructs are applied so as to reap the full benefits of 
component-based programs depends to a considerable degree on the skills of the  
programmer.  

It is fundamentally clear that components should be designed with high cohesion 
and low coupling. This leads to advantages well-known from proper class and method 
design. Functional diversity unfolded at component interfaces as lengthy or deeply 
structured public classes packed into large deployment units (.NET assemblies or Java 
jar-files) complicates the application and implementation of components. The re-
sulting problems are documented in complicated test procedures—most evidently for 
components wired into intrusive application servers (component containers). These 
components are loaded with operations that are foreign to their core business. To 
overcome these difficulties, lightweight component containers have been emerging. In 
the Java world, the Spring framework [8] serves as a prototypical example of promot-
ing testable program architectures that revolve around interfaces. 

Interfaces should be independent pivotal elements because they connect two or 
more communicating components. In practice, however, interfaces are attached either 
to service-providing components or to service-requiring components. This asymmetry 
impairs the specification, testing and development of independently installable and 
replaceable components. In the long run this hampers the widespread adoption of 
component technology. To overcome this obstacle, we propose an architectural style 
where every pair of interacting components is fully separated by independent, special-
purpose components called connectors that isolate component interfaces. Connectors 
optionally implement nonfunctional component services such as checking communi-
cation protocols, sequencing or branching operation requests, and distributing load. 
Components communicating across connectors can focus on domain-specific tasks. 
Components that do not need such services use type-compatible connectors that omit 
some or all component services. 

The paper is organized as follows: A presentation of related work in Section 2 
elaborates open issues. Section 3 details the goals that drive the proposed architecture 
style. Section 4 presents basic concepts of the connector/component style. Section 5 
sketches a typical connector application. Section 6 presents the basic design of con-
nectors. Section 7 sketches two variants of a configurable program for analyzing data 
streams and how they profit from the connector/component style. Discussion and 
consequences conclude the paper. We back the presentation with prototypical code 
snippets in .NET/C# and semantically rich diagrams documenting parts of real system 
implementations. 

2   Related Work 

Our work revolves around grouping related component interfaces in separate deploy-
ment units which we call connectors. Connectors as separate development and de-
ployment units of coherent programs are scarcely discussed in the literature. How-
ever, the basic idea of including interfaces in separate components is not new. Szyper-
ski et al. [15] emphasize the importance of viewing interfaces in isolation from any 
specific component that might implement or use such interfaces, but does not discuss 
further-reaching concepts or implementation techniques. In the context of .NET, 
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Löwy [9] suggests assemblies with interfaces to parallelize the development of adja-
cent components. Wienholt [16] proposes a similar technique for .NET to shorten load 
time of assemblies and to reduce the memory usage. He puts frequently and occasion-
ally used types of an assembly into different netmodules1 and separates them by netmo-
dules that consist only of interfaces, which leads to multi-module components. 

Connectors are broadly known as a means of communication. In the context of co-
herent programs, connectors occur at the abstraction level of a programming language 
as shared variables, buffers and procedure calls [10, 13]. In the context of distributed 
programs, connectors are manifested as parts of the underlying infrastructure, e.g., in 
the form of sockets, pipes, networking protocols, SQL links between a database server 
and a database application program, event buses, message brokers, and even as com-
plete middleware like COM+ or CORBA [2, 4, 10, 13]. Service–oriented architectures 
(SOA) provide the plumbing for the integration of components running on different 
technological platforms; component interfaces are published, queried and translated 
into executable code for calling services across the Internet [14]. 

UML 2.0 introduces connectors at the conceptual level as a means for wiring com-
ponents together based on interface compatibility [11]. Components can offer ports 
that enable the definition of named sets of interfaces either provided or required by a 
component. Delegation connectors link external contracts of a component (specified 
by its ports) to the internal realization parts. Assembly connectors are established 
between two components and define the services that one component provides and 
another component requires. UML blurs components and classes by defining a com-
ponent as a subtype of a class in order for a component to have operations and attrib-
utes and to be able to participate in associations and generalization/specialization 
hierarchies. Catalysis is a development method that applies components, ports and 
connectors in the UML sense for constructing component-based systems [4]. 

Component specification architectures as suggested by Cheesman and Daniels [1] 
adhere to a UML dialect that packs component specifications and interfaces in separate 
conceptual units. These units are defined and combined to software architectures before 
implementing them. Interface information models specify state changes of component 
objects (instances created from an installed component) caused by interface operations. 
Contractual obligations are specified with OCL (object constraint language). 

Interfaces play an important role in the realm of lightweight, non-intrusive compo-
nent containers. Spring [8] is a good example. It decouples components in the form of 
classes (beans) by externalizing object creation and injecting objects at dedicated 
points of collaborating classes (dependency injection). Collaborating classes an-
nounce these points with interfaces. Spring abandons subclassing for Spring-
compliant components because the Spring Core (the basic bean container) heavily 
applies reflective programming techniques for identifying, instantiating and binding 
classes. Spring hides the complexity of underlying J2EE environments, so that com-
ponents are almost like plain Java classes. Simple component services can be inter-
woven by means of an additional package supporting AOP (aspect-oriented  
programming). Spring does not treat interfaces as contracts that are independent of 
component implementations. 

                                                           
1  A netmodule is a raw module that must be associated with a full-fledged component (assem-

bly) prior to deployment. 



 Improve Component-Based Programs with Connectors 309 

 

3   Goals 

We seek an architectural style that enables components to focus on their business with-
out being distracted by intrusive component containers. Such a style must enable eco-
nomically feasible structuring of general-purpose programs as well as domain- or  
application-specific programs. Thereby a program is either self-contained or embedded 
in a component container (application server). The architectural style must facilitate 
separate specification, implementation, testing, guarding, installation, substitution and 
monitoring of components and their interactions. Component services must be transpar-
ent: the mechanisms enabling this architectural style must be configurable in a way that 
leaves components using these mechanisms completely untouched, i.e., even decorating 
components with attributes is not necessary. Thereby, these mechanisms shall cost only 
as much in resources as needed in various program variants or stages (e.g., develop-
ment, testing, launch, production). The architectural style must enable independent 
component evolution in in-house and open-market situations. For practicability, existing 
container technologies, if needed at all, should be supplemented rather than be replaced. 

4   Connector Basics 

We view software architectures as systems of component interfaces that optionally or 
temporarily service components. Like components, we treat component interfaces as 
binary, identifiable and separately deployable units that we call connectors. Technically, 
a connector contains at least one interface in the sense of the construct of the same name 
in modern object-oriented programming languages. Operations declared in interfaces of 
a connector form a functional closure; i.e., operations of connector interfaces use only 
parameters of basic data types, interfaces contained in the same connector, or interfaces 
in other connectors. In special cases types used in the signature of component interface 
operations are interfaces of application-neutral parts of the underlying class library, with 
collection interfaces and classes as the most evident examples. Additionally, connectors 
can monitor, guard or change operation invocations and data transmissions across com-
ponent boundaries as long as they conform to the contracted communication protocol 
without distracting adjacent components. Figure 1 illustrates the idea by means of a 
component (C1) surrounded by several connector components (A1, A2 and A3) conform-
ing to the architectural style and a style-violating component (C2). 

 

Fig. 1. A component surrounded by connectors 
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In the constellation shown in Figure 1, connector A1 contains interfaces that com-
ponent C1 must implement (provided interfaces). Connector A2 contains interfaces 
that component C1 uses (requested interfaces). Connector A2 services these interfaces, 
e.g., in order to monitor the communication protocol and map unexpected exceptions 
raised by the component that provides interfaces I3 and I4 to exceptions contracted in 
the connector. We call connectors heavy connectors if they wrap interfaces (like con-
nector A2 in Figure 1) in order to hook component services like logging, profiling, 
security checks and protocol checks. We call connectors light connectors if they con-
tain only interface declarations (like connectors A1 and A3 in Figure 1). Light connec-
tors can be exchanged for type (interface) compatible heavy connectors by means of 
program reconfiguration before run time.  

An executable program applying one connector obviously consists of at least two 
communicating components. We call these components functional components (com-
ponents for short where it is unambiguous) because they directly or indirectly imple-
ment functions that comprise the core business of a program. We speak of a symmet-
ric connector when a functional component on the client side of connector uses the 
same interface(s) as the functional component on the provider side for communica-
tion. We speak of an asymmetric connector when a client component and a provider 
component use different interfaces and the connector maps interface concepts during 
communication. This article focuses on symmetric connectors. Figure 2 illustrates a 
program that is minimal in terms of components and connectors and exposes the in-
ternal plumbing of a light connector. 

 

Fig. 2. Connector and functional components 

The connector in Figure 2 completely channels the communication between the 
component playing the role of a service client (component that requests interfaces I1 
and I2) and the component playing the role of a service provider (component that 
provides interfaces I1 and I2). Note that during an application session functional com-
ponents may change roles as in Figure 2 for callback interface I3. In general we call a 
component initiating a session a client and the triggered component a provider. Usu-
ally providers implement the interfaces that a connector offers. Clients only imple-
ment callback interfaces, if any. 

The primary task of the connector module2 (see Figure 2) is to load a service pro-
vider silently in the background during first access by the initiating service client. To 

                                                           
2 Modules are classes with (static) class members only. 
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this end the connector module processes data from a configuration file in order to re-
lieve service clients as well as the connector itself from referencing concrete classes in 
the program code, which otherwise would directly couple client components and con-
nectors to provider components. The resulting constellation is characterized as follows: 

• Components do not depend on each other. 
• Components depend on connectors. 
• Connectors do not depend on components. 

The compilation procedure in .NET/C# illuminates the constellation (see Table 1): 

Table 1. Compilation procedure with a self-containing connector 

Compilation procedure Reference structure 

 csc /out:Connector.dll /t:library ...  
csc /out:Provider.dll /t:library /r:Connector.dll ...
csc /out:Client.exe /t:exe /r:Connector.dll ... 

C1 = Client.exe, C2 = Provider.dll 
A = Connector.dll 

Obviously, if a connector A1 refers to interfaces of another connector A2, an adja-
cent component C refers to both connectors (see Table 2): 

Table 2. Compilation procedure with a partial connector 

Compilation procedure Reference structure 

csc /out:A1.dll /t:library … 
csc /out:A2.dll /t:library /r:A1.dll...  
csc /out:C.dll /t:library /r:A2.dll;A1.dll… 

 

Connectors remove direct coupling between functional components and break cir-
cular dependencies. Connectors that are capable of loading several service providers 
(multiple-part connectors) instead of loading at most one service provider as dis-
cussed so far (single-part connectors) reduce the complexity of each of the service-
providing components. Figure 3 illustrates a multiple-part connector. 

Upon exceeding a certain breadth, the component interface defined by a connector 
(I1 … In in Figure 3) can be implemented by several components (C2 and C3 in Figure 
3) instead of just one component. These components build a group. A component 
group is defined by a common connector and one or more partitioning attributes. Each 
component of a group must publish a value for each partitioning attribute. The com-
bination of attribute values characterizes a component within a component group. 
Thus partitioning attributes are used to diversify components. Diversification narrows 
the application scope of a single functional component, which eases its implementa-
tion while raising the domain-specific service level. A provider selection strategy [6] 
implemented either by the connector as part of the contract or by a client component 
selects the best-fitting service provider. Table 3 provides examples of multi-part con-
nectors and partitioning attributes whose values can be determined either statically or 
dynamically. 
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Fig. 3. Multiple-part connector 

Table 3. Attributes of multi-part connectors 

Multi-part connector Attributes 

String matchers automaton, e.g., NFA, DFA 

Report generators file format, e.g. PDF, HTML, CSV 

Memory systems access time, durability 

Numeric systems accuracy, precision, run time 

Information brokers current server load, round-trip time, availability, cost 

Provider components to hook into a multiple-part connector are specified in the 
configuration file with multiple-value entries such as 

<connector name=”A”> 
  <provider name=”C1"/> 
  <provider name=”C2"/> 
</connector> 

From the presentation so far it should be obvious that neither functional compo-
nents nor connectors reference functional components. Because they realize inde-
pendent component specifications with optionally built-in component services, con-
nectors become the points of variation of a program at which components can on 
demand be loaded, registered, monitored, controlled and unloaded. Figure 4 sketches 
a program whose architecture follows the connector/component-style. 

Figure 4 introduces a new kind of connector and the connector manager. Connector 
A3 is a heavy, multi-part connector; i.e., it can manage several functional components 
(C4 … C6 in Figure 2) and service them. This kind of connector is typically applied to 
secure premature or third-party components in a sandbox. Consequently, we distin-
guish four kinds of connectors (see Table 4). 

The connector manager is a new component with essentially two tasks.  

• It factors out code common to all connectors, e.g., code for loading functional 
components specified in the configuration file. 
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Fig. 4. A connector/component-architecture 

• It provides a communication interface by which external clients can monitor and 
control connectors, e.g., temporarily switching component services on and off. 

Note that the connector manager is optional. Functional components are indifferent 
to the existence of a connector manager. If installed, the connector manager improves 
nonfunctional properties of a program such as maintainability and dynamic adaptability. 

Table 4. Kinds of connectors 

light Connector: heavy Connector: Connector kinds 
no component services with component services 

single-part Connector: 
at most one provider   
multiple-part Connector: 
any number of providers   

5   A Connector in Test Use 

Before delving into some details of various kinds of connectors, we examine a usage 
scenario by means of a simplistic but demonstrative bank application. Section 7 will 
introduce two variants of a more demanding application relying heavily on the con-
nector/component architecture style. Figure 5 sketches the architecture of the bank 
application. It applies a light, single-part connector and omits a connector manager;  
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Fig. 5. Connector/component architecture of a bank application in test use 

the simple configuration is typical for component testing. The complete implementa-
tion of an almost identical application is available elsewhere [5]. 

The connector offers several interfaces whose names, operation signatures and re-
lations directly reflect the application’s view of the bank domain, consisting of 
branches, currency exchange offices and accounts. In this example the operations of 
all interfaces build a functional closure, i.e., involve only basic data types and inter-
faces declared in this (self-contained) connector:  

namespace BankInterface { // Connector (BankInterface.dll in Figure 5) 
  public interface IBank { 
    void Provide(out IBankBranch branch); 
    void Provide(out IAmount money, double value, string currency); 
    … 
  } 
  public interface IBankBranch { 
    IAccount SetupAccount(IAmount initialValue); 
    IAccount SetupAccount(); // initialValue= 0.00 EUR 
    bool Transfer(IAmount money, IAccount source, IAccount target); 
    … 
  } 
  public interface IAccount { 
    string Owner { get; set; } 
    bool Deposit(IAmount money); 
    … 
  } 
  … 
} // BankInterface 
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The concrete bank implementation providing the services as specified by these inter-
faces is configured before run time in the configuration file: 

<connector name=”BankInterface”> <provider name=”Bank"/> </connector> 

A test scenario illustrates the coding style, which resembles that prevailing for clients 
of COM components. In this scenario several customers transfer various amounts of 
money from their accounts to a common target account. The code is kept close to the 
connector and with it close to the object under test: 

namespace BankApplication { // Client (BankApplication.exe in Figure 5) 
  // 1. Set up bank branch and target account  
  IBank bank= CBank.Get(); 
    // during first access the connector loads Bank.dll and creates reflectively a bank object 
  IBankBranch branch; bank.Provide(out branch); 
  IAccount target= branch.SetupAccount(); // initial amount 0.00 Euro 

  // 2. Transfer 1000.00  
  IAmount amount1; bank.Provide(out amount1, 1000.00, "EUR"); 
  IAmount amount2; bank.Provide(out amount2, 1500.00, "EUR"); 
  IAccount source= branch.SetupAccount(amount2); // initial amount 1500.00 Euro 
  branch.Transfer(amount1, source, target); 
  … 
} 

The service provider (Bank.dll) can be reconfigured by substituting an interface- and 
contract-matching component without changing the client’s implementation. In this 
way a test stub that is applied during development of a bank client can be replaced 
with a production version for integration tests. The light connector can be replaced 
with a type-compatible heavy connector which can, e.g., check accounts for being 
issued by the same bank.  

6   Connectors in Detail 

6.1   Light Connectors 

The defining task of a connector is to isolate logically coherent interfaces and (op-
tionally) contractual obligations into a separate component. Furthermore, each con-
nector must implement just one nonfunctional task: the establishment of the first con-
nection between a service-using and a service-providing component while preserving 
their independence as well as its own independence. For this purpose a connector 
contains what, at the conceptual level, we have called a connector module. At the 
implementation level it is represented as a provider-independent connector class 
(CPiC). Figure 6 sketches the basic design of a light, single-part connector offering 
one interface (I1). 

A provider-independent connector class essentially has two tasks. On the one hand 
CPiC acts as a module with  

• class methods that load a provider and create a provider-identifying object, and 
• class variables for anchoring a provider-identifying object. 
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Fig. 6. Light, single-part connector 

On the other hand CPiC is a type that declares factory methods [6] for letting pro-
viders deliver first objects (root objects) of business process chains (application ses-
sions). Whether a provider starts a new business process per client request or reuses 
an existing one is determined in the contract between clients and providers. 

In any case, each provider must subclass exactly one provider-dependent con-
nector class (CPdC in Figure 6) per supported connector. The provider-independent 
connector class uses reflection techniques to create the sole object of this class (a 
singleton [6]), the connector object. This object is created automatically in the back-
ground during the first access to a provider (triggered, e.g., by bank= CBank.Get() in 
the bank application and executed by the class constructor of the CPiC) immediately 
after the provider component specified in the configuration file is loaded. Once the 
connector has supplied the connector object, a client queries it for the first business 
object by means of a factory method (e.g., via bank.Provide(out IBankBranch) in the 
bank application) declared in the provider-independent connector class and imple-
mented in the provider-dependent connector subclass. 

The implementation of the managing aspects of a light connector as discussed so 
far is delightfully cheap. Implemented in C# it costs about 10 lines of code executed 
once on first access (see the implementation of the CPiC CBank in Bank.src\Bank-
Interface\CBank.cs [5]) with a negligible increase for light, multi-part connectors due 
to loading, instantiating and anchoring several providers in a loop. All other operation 
calls connect functional components (client components and provider components) 
directly, but only for provider-independent operations declared in interfaces offered 
by the light connector. Thus light connectors completely separate communicating 
functional components with no run-time overhead. 

6.2   Heavy Connectors 

A connector is the place to factor out nonfunctional services from functional compo-
nents. Typical services are logging, profiling, security checks, and checks of operation 
parameters and operation sequences (protocol checks). Adjacent functional compo-
nents must have contracted these services. If not contracted, these services dare not 
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disturb the normal flow of operations and data between components communicating 
across heavy connectors. Logging and profiling are services that fulfill these require-
ments from a functional point of view. However, the implementation of these services 
must be optimized for run-time performance in order to avoid timeouts that would 
change the behavior of a program in irregular ways. In any case, all calls between 
communicating components must be trapped in the connector. For this purpose Figure 7 
extends the design shown in Figure 6 with proxy classes [6] around interfaces and 
template methods [6] in the provider-independent connector class (CPiC). Alone these 
wrapping techniques comprise the basic plumbing of every heavy connector. Syntac-
tically, hooks and connected services are completely hidden in the connector and 
therefore invisible to functional components. 

 

Fig. 7. Heavy, single-part connector 

Remember that a connector approves two-way communication expressed by call 
interfaces and callback interfaces. Connectors wrap both kinds of interfaces in the 
same way but at different moments: call interfaces on the way out of an operation and 
callback interfaces on the way into an operation. The following excerpt from the im-
plementation of a CPiC demonstrates this by wrapping the root object of a business 
process chain. 

namespace Connector { // e.g. BankInterface in the bank example 
  public abstract class CPiC { // e.g., CBank in the bank example 
    public void Provide(out I1 p) { // the template method 
      I1 q; // the service provider 
      this._Provide(out q); 
      p= new _CProxy1(q, this); 
        // 1.) I1 is a call interface, so wrap the return value q of type I1 on the way out 
        // 2.) tell the proxy to which connector it belongs (this is a parameter of the constructor) 
    } 
    protected abstract void _Provide(out I1 q); 
      // the primitive operation of the template method to be implemented by CPdC 
    ... 
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  } // CPiC 
  public interface I1 { ... } 
  internal class _CProxy1 : I1 { ... } 
  ... 
} // Connector 

This is the starting point for hooking any kind and number of nonfunctional services. 
We demonstrate this with a component service that checks objects passed as para-
meters of manipulating operations for being issued by the same functional compo-
nent. On violation of this constraint, the connector throws an exception signaling an 
error in the communication protocol. The exception is part of the contract between the 
communicating components. Components that cast types of parameter objects to com-
ponent-specific type implementations need this service to ensure their integrity. The 
bank example provides another illustrating rationale for the usefulness of this service: 
A bank manages only accounts issued by one of its bank branches. 

namespace Connector {   
  internal class _CProxy1 : I1 { 
    internal _CProxy1(I1 provider, CPiC connector) { 
      this._provider= provider; 
      this._connector= connector; 
      this._connector.Register(this); 
    } 
    public void Process(I2 p) { // operation defined in public interface I1 
      if (!this._connector.IsRegistered(p)) 
        throw new CProtocolException("unknown parameter object"); 
      this._provider.Process(p); 
    } 
    public I2 Deliver() { // operation defined in public interface I1 
      I2 p= this._provider.Deliver(); 
      return new _CProxy2(p, this._connector); 
    } 
    private I1 _provider; 
    private CPiC _connector; 
  } // _CProxy1 
  internal class _CProxy2 : I2 { 
    internal _CProxy2(I2 provider, CPiC connector) { 
      this._provider= provider; 
      this._connector= connector; 
      this._connector.Register(this); 
    } 
    … 
  } // _CProxy2 
  public abstract class CPiC { 
    … // as implemented in the code snippet above 
    internal void Register(Object p) { … } 
    internal bool IsRegistered(Object p) { … } 
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  } // CPiC 
} // Connector 

A service for checking complete application sessions is a more advanced example. 
We sketch the design and implementation of this service by means of a generic data 
stream analyzer. 

7   Connectors in Action 

Connector/component architectures lend themselves for building families of programs 
out of common components and varying components. Indeed the first incarnation of 
this architecture-style arose from our work on post-mortem analysis of limited data 
streams (logs). The first version of a generic log analyzer consisted of only light, 
single-part connectors. We outline the application domain before we sketch the archi-
tectures of two different log analyzers. 

In multithreaded and distributed environments, programs abound in components 
that interact in complex ways. These programs often exhibit fancy features and subtle 
errors during development and operation. Logs containing sequences of 
name/type/value log entries are commonly used for testing and debugging such pro-
grams. However, these logs vary in format and contents. Different stakeholders of a 
program, e.g., software developers, testers and operators, have different interests that 
are expressed by different analysis processes. 

The separation of the analyzers into analysis-neutral and analysis-specific compo-
nents is an essential prerequisite for a broad application scope. Analysis-neutral com-
ponents 

• merge, sort, filter and split logs, 
• check logs against restrictions of hypothetical log patterns, 
• trigger actions on matching log entries, and 
• evaluate analysis steps statistically. 

Analysis-specific components 

• transform logs between external (proprietary) and internal (general) formats, and 
• provide specific actions that can be triggered on matching log entries. 

7.1   Generic Log Analyzer with a Connector-Based Tier Architecture 

From a functional point of view, the outstanding characteristic of the first analyzer 
variant is its support of interactive analyses applied to rather unfamiliar logs and auto-
matic analyses applied to rather familiar logs (see Figure 8). 

From a nonfunctional point view, the outstanding characteristic is the arrangement 
of -the components in four tiers as Table 5 illustrates. 

This variant is actually a productive analyzer used, e.g., to examine logs of a dis-
tributed program controlling a steel mill. To provide the big picture of the control 
program’s dynamics, the analyzer must be capable of loading and transforming sev-
eral logs of different types. Thus the analyzer uses a multi-part connector (A3) for 
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connecting several log adapters (SAD). It uses heavy connectors (A3, A5) for protocol 
checks to shield application-neutral components from external, application-specific 
components, i.e., log adapters (SAD) and action providers (ACT). Note that all com-
ponents communicate exclusively through connectors, such as MEN surrounded by 
connectors A2, A4, A5, A6, A7 and A8. Furthermore, the analyzer uses a connector 
manager, but only for factoring out code common to all connectors. A post-mortem 
analyzer does not need dynamic configurability (dynamic loading and unloading of 
components) or online monitoring of its operations. 

 

Fig. 8. Generic log analyzer with a connector-based tier architecture 

Table 5. Generic tier log analyzer of common components and variable components 

Tier Components 
1 User interface UIG, UIB 
2 Business logic MEN, ACT 
3 Data management MEM 
4 Data import / export SADp, SADu 

A crucial part of the analyzer’s architecture is the interface between the business 
logic encapsulated in MEN and the components that accept user commands and de-
pict results, namely UIG and UIB. Because of the complexity of this interface, we 
have experimented with a heavy connector for testing the communication protocol 
during the development and testing phases of the analyzer. The testing service applies 
the state pattern [6]. Figure 9 illustrates the design of those parts of the testing service 
that check the protocol of undoable user commands. 
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Fig. 9. State machine that checks the communication between UIG/UIB and MEN  

The testing service is directly hooked into proxies of user commands in the form of 
objects belonging to concrete subclasses of class _State (see Figure 9b).   

namespace MEN.Interface { // connector (A2 in Figure 8) 
  internal class _CCommandProxy : ICommand { 
    internal _ CCommandProxy (ICommand cmd) { this._provider= cmd; } 
    internal void Set(ICondition condition) { 
      this._currentState.Set(this, true, condition); 
      this._provider.Set(condition); 
      this._currentState.Set(this, false, condition); 
    } 
    internal void Do() { 
      this._currentState.Do(this, true); 
      this._provider.Do(); 
      this._currentState.Do(this, false); 
    } 
    ... 
    internal _State _currentState= _CIncomplete.Instance; 
    internal _State _nextState= null; 
    internal ICommand _provider; 
  } // _ CCommandProxy 
  … 
} // MEN.Interface 

State objects check call sequences against the specified communication protocol. 
Whenever a client calls a method of a command object, the command’s state is 
changed. If a message is valid in the current state (at the beginning of a state transi-
tion), an eavesdropping state object replaces itself in the command proxy with the 
object that represents the target of a state transition. If the current state is not valid, 
the target state is the error state. The state objects that a command proxy references 
one after another (in instance variable _currentState) reflect a communication course. 
When used this way for checking a communication protocol, state objects can be 
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implemented as singletons [6] (_CIncomplete.Instance). The following excerpt from the 
class that models the starting state of a user command gives an impression of how the 
check algorithm operates. 

namespace MEN.Interface { // connector (A2 in Figure 8) 
  internal class _CIncomplete : _CConfigure { 
    internal void Set(_CCommandProxy cmdPrxy, bool startTransition, ICondition) { 
      if (startTransition) // start state change 
        cmdPrxy._nextState = _CComplete.Instance; 
      else { // end state change 
        cmdPrxy._currentState = cmdPrxy._nextState; cmdPrxy._nextState = null; 
      } 
    } 
    internal void Do(_CCmdProxy cmdPrxy, bool) 
    { 
      cmdPrxy._currentState = _CError.Instance; 
      throw new CProtocolException("execute incomplete cmd"); 
    } 
    ... 
  } // _CIncomplete 
} // MEN.Interface 

7.2   Generic Log Analyzer with a Connector-Based Pipeline Architecture 

The second variant of a log analyzer is directed towards automatic analysis of data 
streams. From a nonfunctional point view, the outstanding characteristic is the ar-
rangement of component objects in pipelines consisting of analysis commands alter-
nating with data (message) transporting channels. Figure 10 shows the connec-
tor/component architecture of this analyzer variant. 

In general, analyzers applying the pipeline architecture can be configured in two 
ways. (1) A developer can extend the set of command types (modeled by Action con-
nector), such as sort and filter. To broaden the analysis scope, a developer could in-
troduce a translator that unifies different date formats. (2) An end user configures 
application-specific analysis processes in the form of analyzer pipelines with the 
commands and channels available such as: 

<pipeline> 
  <dataprocess> 
    <command id="1"> 
      <type>TransformX</type><parameters>….</parameters><outchannel>A</outchannel> 
    </command> 
    <command id="2"> 
      <type>Filter</type> …  <inchannel>A</inchannel><outchannel>…</outchannel> 
    </command> 
    … 
  </dataprocess> 
  <datatransport> 
    <channel id="A"><type>RingBuffer</type> … </channel> 
    … 
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  </datatransport> 
</pipeline> 

The pipeline variant of the generic data stream analyzer is geared towards analysis of 
continuous data streams. Online monitoring is essential for analyses of continuous 
data streams. Therefore we extended the core parts of a pipeline, namely components 
Command, Channel and Data, with a Sensor component. The heavy, multi-part con-
nector at the back end of the Sensor component (Monitor in Figure 10) provides a 
special service: it pushes sensed data about a pipeline’s healthiness to all connected 
monitors concurrently. A connector manager can support continuous analyses of data 
streams well. An operator instructs the Action connector via the connector manager to 
dynamically load new application-specific command types. This provides a pipeline 
with much flexibility, provided that the component responsible for the configuration 
of a pipeline (the Pipeline Configurator in Figure 10) supports on-the-fly alterations 
of the pipeline layout. 

 

Fig. 10. Generic log analyzer with a connector-based pipeline architecture 

8   Discussion and Consequences 

Connectors as discussed in this article are special-purpose components that embody 
interfaces of functional components in the form of binary contracts. This allows func-
tional components to focus on their core business without being distracted by details 
of component containers. Connectors improve programs in several respects. With 
connectors functional components can be 

• specified and tested separately 
• developed in several alternate or supplementary variants 
• relieved of nonfunctional services like monitoring and protocol checking 
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Connectors can interpose nonfunctional services between functional components in a 
completely non-intrusive manner. This is achieved by means of a pattern language [3] 
that combines several design patterns [6], such as factory method, template method, 
proxy, strategy and state, and by encapsulating pattern implementations in separate 
deployment units. Two more design patterns lend themselves for queuing up several 
nonfunctional services in a connector: chain of responsibility and observer. 

Connectors promote architecture-centric project development [12]. Due to their fo-
cus on rather stable component interfaces, connectors enable easier adaptation of 
programs to changing requirements. Program functionally can be delivered and up-
dated incrementally. Multi-part connectors allow diversification (specialization) of 
functional components with regard to certain business characteristics (attributes). 
Diversification narrows the application scope of a single component, thus reducing its 
complexity. This simplifies its implementation, raises the domain-specific service 
level of a program, and improves the manageability of projects. 

Connectors with integrated life-cycle management enable embedded components 
to be unloaded during run time. This requires heavy connectors with essentially two 
services: protocol checks and object reference checks. Proxy objects around each 
component object embed component and perform these checks silently. A connector 
manager links connectors so that component services can, e.g., be coordinated among 
several connectors. On basis of .NET, unloading a component requires it to be in-
stalled in a separate application domain [7], i.e., in a separate .NET process, which of 
course increases communication costs due to marshalling all calls between application 
domains. 

Even demanding services such as parallelizing operation requests among several 
service-providing components can be included in heavy, multi-part connectors with-
out distracting adjacent components. The implementation is straightforward for one-
way control- and data-flows. However, non-blocking, concurrent operations that re-
turn data require advanced implementation techniques such as asymmetric connectors 
(connectors that offer different interfaces for client components and provider compo-
nents) or futures (proxies for undetermined results of a concurrent computations 
which automatically block accesses until the values become determined). Related 
problems are outside our current work because so far they have not been relevant to 
our pilot project, the generic data stream analyzer. 

Programs that do not need connectors offering advanced component services sim-
ply use light connectors. The implementation of the skeletal structure of a light con-
nector is almost for free with regard to both development time and run-time efficiency 
while still providing the fundamental advantages of connectors, i.e., separate specifi-
cation, testing and development of functional components. Variants of a generic data 
stream analyzer prove the practical feasibility of the connector/component archi-
tecture style. Life-cycle management of components coordinated by connectors that 
are linked to a central connector manager is a key issue of our current work. Linking 
connectors this way to a connector framework and enabling this framework to dy-
namically control connectors and the set of components further improves program 
adaptability and operability. 
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Abstract. Object colocation is an optimization that reduces memory
access costs by grouping together heap objects so that their order in
memory matches their access order in the program. We implemented this
optimization for Sun Microsystems’ Java HotSpotTM VM. The garbage
collector, which moves objects during collection, assigns consecutive ad-
dresses to connected objects and handles them as atomic units.

We use read barriers inserted by the just-in-time compiler to detect the
most frequently accessed fields per class. These “hot fields” are added to
so-called hot-field tables, which are then used by the garbage collector for
colocation decisions. Read barriers that are no longer needed are removed
in order to reduce the overhead. Our analysis is performed automatically
at run time and requires no actions on the side of the programmer.

We measured the impact of object colocation on the young and the
old generation of the garbage collector, as well as the difference between
dynamic colocation using read barriers and a static colocation strategy
where colocation decisions are done at compile time. Our measurements
show that object colocation works best for the young generation using a
read-barrier-based approach.

1 Introduction

Object-oriented applications tend to allocate large numbers of objects that refer-
ence each other. If these objects are spread out randomly across the heap, their
access is likely to produce a large number of cache misses. This can be avoided if
objects that reference each other are located consecutively. Changing the object
order so that related objects are next to each other is called object colocation.
It is conveniently implemented as part of garbage collection where live objects
are moved to new locations. In general, the access pattern of objects cannot be
determined statically because it depends on how the program is used and which
classes are dynamically loaded. Therefore the analysis of access patterns must
be done at run time.
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Figure 1 shows an example of an object graph taken from the benchmark
227 mtrt of the SPECjvm98 benchmark suite [12]. Objects of the instance
classes OctNode, Face and Point as well as of the array classes Face[] and
Point[] form an access path that accounts for 70% of all reference field loads.
The objects have a size of 16 to 40 bytes, so up to four objects fit in a typical
cache line of 64 bytes. Colocating the objects reachable from an OctNode ob-
ject therefore reduces the memory access costs when a Point of an OctNode is
accessed.
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Fig. 1. Motivating example for object colocation

A static colocation strategy, e.g. one that always colocates the object ref-
erenced by the first field of another object, is only suitable for simple data
structures. For objects with more than one reference field, the first field is typ-
ically not the most frequently accessed one. For example, the field OctFaces
of OctNode objects has a 10 times higher access frequency than the first field
Adjacent.

We implemented a dynamic analysis for Sun Microsystems’ Java HotSpotTM

VM that identifies frequently accessed “hot fields” on a per-class basis using
read barriers. If a field counter reaches a certain threshold, the field is added to
the hot-field table of the according class. The read barriers are inserted into the
machine code by the just-in-time compiler. To minimize the run-time overhead,
read barriers that are no longer needed are removed.

The garbage collector uses the hot-field tables to decide which objects should
be colocated and assigns consecutive addresses to these objects when they are
moved during collection. This goes beyond previous approaches that modify only
the order in which a copying collector processes reference fields: We treat a set
of colocated objects as an atomic unit and guarantee that it is not separated in a
later garbage collection run. This paper contributes the following novel aspects:

– We implemented object colocation in a system with dynamic class loading
and different garbage collection algorithms.

– We use read barriers inserted by the just-in-time compiler to get a dynamic
field access profile with a negligible run-time impact.

– We evaluate our implementation and compare different configurations of the
garbage collector. We also compare the dynamic read-barrier-based approach
with a static colocation strategy.
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2 System Overview

Figure 2 shows the structure of the Java HotSpotTM VM with the relevant
subsystems. We modified the default configuration for interactive desktop ap-
plications, called the Client VM, which uses a fast just-in-time compiler and a
generational garbage collector with two generations. The Client VM is available
for Intel’s IA-32 and Sun’s SPARC architecture, but object colocation is cur-
rently only implemented for the IA-32 architecture because the code patterns
for the read barriers are platform dependent.
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young generation

old generation

machine code

jit compilerinterpreter
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stop-and-copy
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Fig. 2. System structure of the Java HotSpotTM VM

Methods are loaded by the class loader and start being executed by the in-
terpreter. Only frequently executed methods are compiled to minimize the com-
pilation overhead. Both interpreted and compiled methods access objects in the
heap, which is divided in a young and an old generation. The young generation
is collected using a stop-and-copy algorithm that copies live objects between
alternating spaces. A full collection of both generations is done using a mark-
and-compact algorithm [7]. Section 4 presents details of these algorithms.

The garbage collector accesses the hot-field tables that store parent-child rela-
tionships of classes whose objects should be colocated. The access profile of fields
is collected by read barriers, which are emitted by the just-in-time compiler into
the generated machine code and increment a counter for each field load. Fields
with high counter values are added to the hot-field tables. Section 3 presents the
code patterns used for the read barriers.

A parent object and the child object referenced by the parent’s most frequently
accessed field are placed next to each other in the heap. If a second field also
has high access counts, the corresponding child is placed consecutively to the
first one, and so on. Objects referenced by fields with low access counts are not
colocated because the optimization of rarely accessed data structures does not
pay off.
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Accesses to array elements are counted in the same way as field accesses.
However, the colocation of objects referenced by array elements is more compli-
cated because all elements are usually accessed with similar frequencies. As a
pragmatic solution, we colocate only the object referenced by the first element.

2.1 Hot-Field Tables

A hot-field table is a VM-global data structure that is built for every class with
hot fields. It is rooted in the data structure maintained by the VM for each
loaded class, which already stores information such as super- and subclasses,
fields and methods of the class.

Figure 3 shows a fragment of the hot-field tables for our example benchmark
227 mtrt. The table for a parent class stores a list of child entries for its hot
fields. Each entry holds the offset (off ) of the field as well as the field’s declared
child class. The order of the children is important: The first entry of the list is
processed first by the garbage collector, so the first child is placed consecutively
to the parent.

Face[]
OctNode[]
ObjNode
OctNode[]

12
16
20

8

Face-1 Point[]8 Point-1

OctNode

classes

hot-field tables

Face[] Face Point[] Point

off off off offclass class class class

Fig. 3. Example of hot-field tables

The list contains only frequently accessed children because optimizing rarely
accessed data structures only introduces overhead to the garbage collector. There
is no table for the class Point because this class only stores scalar fields. Since
array classes do not have a list of fields with according field offsets, the special
marker value -1 is used as the offset in the table. It is replaced by the index of
the first non-null array element when an actual object graph is constructed.

A hot-field table does not contain child entries for fields declared in a su-
perclass. Instead, the superclass has its own hot-field table. Similarly, a table
contains only direct children. Indirect children are only implicitly visible: the
class of a child entry also has its own hot-field table. In our example, a Face[]
object is a direct child of an OctNode object, while Face, Point[] and Point
objects are indirect children of this OctNode. During garbage collection, all di-
rect and indirect children of an object are captured by a separate table, which
is discussed in Sect. 4.1.
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2.2 Identifying Hot Field Loads

The hot-field tables are filled dynamically at run time. To achieve the best
results, they should contain only the most frequently accessed fields in the correct
order. We use read barriers emitted by the just-in-time compiler to detect hot
field accesses. Section 3.1 presents the code that is inserted by the compiler. We
count only field loads and not field stores because a high number of stores can
indicate a frequently changing data structure where object colocation is difficult
or even impossible. Furthermore, we ignore loads of scalar fields and emit read
barriers only for loads of reference fields.

We also experimented with a static approach to object colocation where the
just-in-time compiler fills the hot-field tables with all fields that are accessed
in compiled methods instead of emitting read barriers. The resulting hot-field
tables are bigger, but still useful because only a small fraction of methods is com-
piled and the tables do not contain fields that are accessed only by interpreted
methods. In Sect. 5.2 we compare the two approaches.

3 Read Barriers

Read barriers allow dynamic measurements of an application’s memory access
behavior. A read barrier is a piece of machine code that is inserted after the code
that performs the actual load of a reference field. We use two different kinds of
read barriers:

– A simple read barrier identifies frequently accessed fields that are worth
being optimized by object colocation.

– A detailed read barrier collects data for the analysis and verification of the
optimizations. It counts the number of field accesses where a parent object
and its child objects are colocated as well as in the same cache line.

Simple read barriers are a prerequisite of our object colocation and therefore
always enabled. In contrast, detailed read barriers are currently not intended for
production use. When analyzing the impact of object colocation, as presented
in Sect. 5.2, detailed read barriers are enabled via a VM flag.

The read barriers are inserted by the just-in-time compiler because it has
full information about fields: The instruction for a field access in the compiler’s
intermediate representation contains the class that declares the field (the par-
ent class), the field offset and the type of the field (the child class). With this
information, a unique counter is created for each field. When the same field is
accessed in different methods, the same counter is used. The few field accesses
that are performed by the interpreter are thus not counted, but this does not
affect the precision of the measurements.

The address of a counter is statically known and can be directly emitted into
the machine code. This allows a read barrier to be efficiently implemented as a
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single increment instruction, which nevertheless counts only accesses to a par-
ticular field of a class. Section 3.1 shows the details of the emitted instructions.

Our read barriers take compiler optimizations into account: The compiler
eliminates a field load if the value of the field is known at compile time or if the
load is redundant, and also does not emit a read barrier for these loads. So the re-
sulting counter values can be lower than a naive counting using an instrumented
interpreter, but they better reflect the actual behavior of an application.

3.1 Code Patterns for Read Barriers

Figure 4 shows the code pattern for a simple read barrier that increments a
counter for a field load. Assume that the field at offset 8 is to be loaded, that
the object’s address is already in register eax, and that the counter is located at
the fixed address 5000h. The IA-32 instruction set allows instructions to operate
on memory operands [6], so it is not necessary to load the counter value into a
register. Only a single instruction is emitted for the increment.

          ...                     // eax: base address of object
mov ebx, ptr [eax+8]   // access field at offset 8
inc ptr [5000h]        // increment counter

          ...                     // ebx: result of field load

Fig. 4. Code pattern for a simple read barrier

A simple read barrier is sufficient for identifying hot fields, but for the evalua-
tion of object colocation we are also interested in statistical data about colocated
objects and the cache behavior. Figure 5 shows the code pattern for a detailed
read barrier that checks if a parent object and a child object are located in the
same cache line.

          ...                     // eax: base address of object
          mov ebx, ptr [eax+8]   // access field at offset 8
          dec ptr [4000h]        // decrement slowcase counter
          jle slowcase           // slowcase if counter reaches 0
continue: ...                     // ebx: result of field load 

slowcase: mov ptr [4000h], 1000  // reset slowcase counter
inc ptr [5000h]        // increment total counter
lea esi, ptr [eax+8]   // compute address of field
xor esi, ebx           // check if address and value of 
and esi, 0FFFFFFC0h    //   field are in same cache line
jne skip_inc
inc ptr [5004h]        // increment cache line counter

skip_inc: ...                     // check for object colocation
jmp continue

Fig. 5. Code pattern for a detailed read barrier
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Executing the complete sequence of more than 15 instructions for each field
load would be too expensive. Therefore, the code is placed in a slow case [4] that
collects data only for every 1000th field load. A global counter is decremented
at each field load. Assume that the address of this counter is 4000h. When the
counter reaches 0, the slow case is executed.

The slow case resets the counter to 1000 and increments a total counter at
the address 5000h. The address of the referencing field is loaded to esi, and the
address of the referenced object is already in ebx. These addresses are in the
same cache line with a size of 64 bytes if all but their lower 6 bits are identical,
which is checked using the xor and and instructions. In this case the cache line
counter at the address 5004h is incremented. Dividing the cache line counter by
the total counter yields the percentage of objects that are in the same cache line.

The slow case also computes a colocation counter that counts the number of
cases in which the parent object and its child are colocated. This part of the code
has been omitted from Fig. 5 because it is similar to the code for computing the
cache line counter. If the base address of the parent object (which is in eax)
plus the size of the object (which is retrieved via the class pointer stored in the
object’s header) equals the address of the child object (which is in ebx), the
objects are colocated and the counter is incremented.

3.2 Processing of Counters

When the counter of a field has exceeded a certain threshold at the time of the
next garbage collection, the field is recorded in the hot-field table of the parent
class. The time between two garbage collections is used as the measurement
interval. We want to record fields that are accessed frequently in this period,
and to filter out the large number of fields that are accessed infrequently. As a
heuristic, a field is added to the hot-field table if it accounts for more than 6%
of all field loads in the last period.

The heuristic fills the tables iteratively: At the first garbage collection, fields
with an exceptionally high access frequency (and therefore a high percentage)
are added to the hot-field tables. Their read barrier counters are then invalidated
and ignored when computing the percentages at the second garbage collection,
so the next fields with still a high access frequency are added. This is repeated
until a stable state is reached where most fields have similar access frequencies,
so no single one is above 6%.

Incrementing a counter for each field load involves some run-time overhead.
Therefore, read barriers are removed as soon as they are no longer needed, i.e.
after the corresponding field was added to the hot-field table or if the access count
was low for a long time. This is done by recompiling all methods that increment
the read barrier’s counter. The machine code of those methods is marked so
that the compiler is invoked when the method is called the next time. Because
read barriers whose counters were invalidated are ignored during compilation,
the new code does not contain these read barriers anymore.



Automatic Object Colocation Based on Read Barriers 333

4 Modifications of Garbage Collection Algorithms

The Java HotSpotTM VM uses a generational garbage collection system with dif-
ferent collection algorithms. The default configuration uses two generations with
a stop-and-copy algorithm for the young generation and a mark-and-compact al-
gorithm for a full collection of both generations.

When the young generation is collected, live objects are copied between two
alternating spaces, called the from-space and the to-space. After several copying
cycles, an object is promoted to the old generation. New objects are allocated
in a separate nursery space of the young generation that is treated as a part of
the from-space during collection.

When the old generation is full, the entire heap is collected by a mark-and-
compact algorithm. All live objects are marked and then moved towards the
beginning of the heap in order to eliminate gaps between live objects. This takes
more time than a collection of the young generation, but it is only necessary if
no more space is available for the promotion of young objects.

We integrated our object colocation algorithm into both algorithms and allow
switching it on and off independently. This allows us to evaluate the benefits
of the optimization in both generations. However, enabling object colocation
for the young generation also affects the old generation: Groups of colocated
objects are promoted together, so the order of objects in the old generation
is also partly optimized. Because the unmodified mark-and-compact algorithm
does not change the object order, the optimized order is preserved.

4.1 Colocation Tables

The hot-field tables introduced in Sect. 2.1 are easy to maintain because they
store only direct children. However, it is expensive to detect all direct and indirect
children that should be colocated to a particular parent object. To limit the
overhead during garbage collection, an additional colocation table is created from
the hot-field table for each class. Figure 6 shows the colocation tables for the
running example of 227 mtrt.

Each table contains a flat list of all fields that should be colocated for a given
class. It is created once before garbage collection, and filled with objects multiple
times during garbage collection. The first entry stores the parent object for which
the table is filled; all other entries are direct or indirect children of this object.
The columns contain the following information:

– Field offset (off ): The offset of the field whose value is stored in this entry,
or -1 as a marker for arrays.

– Parent entry (par): The index of this object’s immediate parent in the same
table. It is 0 for direct children and greater than 0 for indirect children of
the parent object for which the table is filled.

– Object (obj ): The actual object that is referenced by this field. It is filled in
during garbage collection.
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Fig. 6. Example of colocation tables used during garbage collection

In our example, all information required for the colocation of direct and in-
direct children of an OctNode object is contained in the colocation table for
OctNode: The entries with the indices 1, 5, 6 and 7 denote fields that reference
direct children of the OctNode object with the index 0. The entries 2, 3 and
4 denote indirect children of the OctNode object as shown in Fig. 1. They are
direct children of the entries 1, 2 and 3, respectively.

If a Face[] object is not colocated to an OctNode object, we need the coloca-
tion table of Face[]. This table is smaller because it contains only the objects
that are colocatable to a Face[] object. Similarly, there are colocation tables for
the classes Face and Point[]. These tables contain a part of the information of
the bigger tables, indicated by the dashed lines in Fig. 6.

The algorithm GetChildren of Fig. 7 is used during garbage collection to
fill a colocation table with the children of a specific parent: After the parent
object has been stored in the first entry, all its children are iterated. Because the
immediate parent of a child is always located before this child, c.par has already
been added to the table before c and the field with the offset c.off of the object
c.par.obj can be accessed.

GETCHILDREN(obj)
tab = colocation table for class of obj
if tab not found then 

return empty table

tab[0].obj = obj // initialize first entry, which holds the parent
for i = 1 to tab.length - 1 do // iterate all entries except the first

c = tab[i] // get the entry of the current child
c.obj = c.par.obj.fieldAt(c.off) // access the field at the specified offset

return tab

Fig. 7. Algorithm for filling a colocation table during garbage collection
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4.2 Stop-and-Copy Collection of the Young Generation

Figure 8 shows the basic StopAndCopy algorithm. First, all objects referenced
by root pointers are copied from the from-space to the to-space using CopyOb-
ject. Allocating memory in the to-space requires only an increment of the end
pointer. Each object of the from-space that has been copied stores a forwarding
pointer to its new location. All objects referenced by copied objects are also alive
and must therefore be copied as well. The algorithm uses the to-space as a queue
and scans all copied objects in sequential order. The forwarding pointer is used
to prevent copying an object twice.

STOPANDCOPY
toSpace.end = toSpace.begin
for each root pointer r do

r = COPYOBJECT(r)

obj = toSpace.begin
while obj < toSpace.end do

for each reference r in obj do
r = COPYOBJECT(r)

obj += obj.size

COPYOBJECT(obj)
if obj is forwarded then

return obj.forwardee

newObj = toSpace.end
toSpace.end += obj.size
memmove(obj, newObj, obj.size)
obj.forwardee = newObj
return newObj

Fig. 8. Stop-and-copy algorithm used for collection of the young generation

This breath-first copying scheme is simple and efficient, but it leads to a
random order of copied objects in the to-space. An object is copied when the
first reference to it is scanned. A depth-first copying scheme, where all referenced
objects are copied immediately after the object itself, would result in a better
object order, but it would require an explicit stack of objects to be scanned.

We extended the breath-first copying so that it processes groups of objects
instead of individual objects. When a parent object has to be copied, the colo-
cation table is filled using the algorithm GetChildren. All child objects in the
table are copied together with their parent object. The necessary memory for
the object group is allocated at once. Figure 9 shows the modified algorithm for
CopyObject. The handling of child objects that are already in the old gener-
ation has been omitted from the algorithm; such children are simply ignored.

The root pointers are processed in an arbitrary order. If both the parent
object and a child object are referenced by a root pointer, it can happen that
the child object is copied before the parent. Because an object must not be
copied twice, the two objects cannot be colocated in this garbage collection run.
This is checked in the algorithm before colocating a child.

To avoid children that are copied before their parent, objects that were once
detected to be colocation children are tagged with a dedicated bit in the object
header, referred to as isColocationChild in the algorithm. The copying of tagged
objects is delayed until the parent object is processed, so the colocation succeeds.
Because all children keep the tag for their entire lifetime, objects are guaranteed
to stay colocated even if new root pointers to children are introduced.
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COPYOBJECT(obj)
if obj is forwarded then

return obj.forwardee // prevent copying an object twice
if obj.isColocationChild then

return fixupMarker // delay copying; a fixup is done when obj is copied later

tab = GETCHILDREN(obj) // get children of obj (may return empty table)
allocSize = obj.size // computation of total allocation size
for i = 1 to tab.length - 1 do

tab[i].obj.isColocationChild = true // tagging of object as colocation child
if tab[i].obj is not forwarded then

allocSize += tab[i].obj.size // only non-forwarded objects can be colocated

newObj = toSpace.end // allocate memory for parent and all children
toSpace.end += allocSize

memmove(obj, newObj, obj.size) // copy and forward parent object
obj.forwardee = newObj
offset = obj.size
for i = 1 to tab.length - 1 do // copy and forward all children

if tab[i].obj is not forwarded then
memmove(tab[i].obj, newObj + offset, tab[i].obj.size)
tab[i].obj.forwardee = newObj + offset
offset += tab[i].obj.size

return newObj

Fig. 9. Object colocation for the stop-and-copy algorithm

When the copying of a child object is delayed, the references to the child
require a later fixup. CopyObject returns a fixup marker and the reference is
added to a list. When the scan of the to-space is completed, these references
are updated to the forwarding pointer of the child object that was set during
the colocated copying. In rare cases it can happen that the parent object died,
but the child object is still alive because another object holds a reference to the
child. Similarly, a field update of the parent object can install a new child object
and leave the old one without a parent. Such objects are still uncopied in the
fixup phase, so they are copied before the fixup and the colocation bit is cleared.

4.3 Mark-and-Compact Collection of the Old Generation

The stop-and-copy collection of the young generation also affects the old gener-
ation because colocated objects are promoted together and are therefore already
partly colocated in the old generation. However, a collection of the young gen-
eration can only colocate a group of objects if all members of this group are
still in the young generation. If a child has already been promoted, it cannot be
colocated. In contrast, a collection of the entire heap can colocate all objects.

The mark-and-compact algorithm processes all live objects of the old and
the young generation. Because it places all objects contiguously into the old
generation, this is called a collection of the old generation. It requires four phases:
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1. Mark live objects: The heap is traversed recursively starting with the root
pointers to mark all live objects.

2. Compute new addresses : In a linear walk through the heap each object is
assigned a new address, which is stored in the object’s forwarding pointer.
Because gaps between live objects are removed, objects move towards the
beginning of the heap.

3. Adjust pointers : All root pointers and inner pointers of objects are updated to
point to the new addresses stored in the forwarding pointers of the referenced
objects.

4. Move objects: In another linear walk through the heap the objects are copied
to their new locations. Because objects move only towards the beginning
of the heap, the memory of the new location can be overwritten without
precautions.

The basic mark-and-compact algorithm preserves the order of objects. This
simplifies object colocation because the correct order needs to be established
only once. We extended the basic algorithm by modifying the phases 1, 2 and 4
in the following way:

In phase 1, all parents and children are detected. For each object whose class
has a colocation table, we use GetChildren (see Fig. 7) to fill the table with
the actual children of this object. The children are then tagged as in the stop-
and-copy algorithm.

When a parent object is processed in phase 2, GetChildren must be called
again because there is only one colocation table per class. All children of this
object get consecutive addresses assigned. This may change the order of objects
in the heap. With the help of the tags that are set in phase 1, the processing of
a child is delayed when it would be processed before its parent. So a child object
never gets a new address assigned before its parent. As a result, child objects
can now move also towards the end of the heap.

Since objects can now also move towards the end of the heap, phase 4 must
take precautions to rescue such objects. They are first copied into a scratch area
and then copied back to their final location after all other objects were processed.
However, this is only necessary for a small number of objects because at the next
collection the object order is already correct, so no reordering and no rescuing
is necessary.

5 Evaluation

We integrated our object colocation algorithm in the Java HotSpotTM VM of Sun
Microsystems, using a development snapshot of the upcoming Java SE 6 called
Mustang [14]. Currently, we work with the Mustang build 66 from January 2006.
Compared with the current JDK 5.0, the VM of this build includes optimiza-
tions such as a new object locking scheme called biased locking, and an improved
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just-in-time compiler using an intermediate representation in static single as-
signment form and a linear scan register allocator [16].

All measurements were performed on an Intel Pentium D processor 830 with
two cores running at 3.0 GHz. Each core has a separate L1 data cache of 16 KByte
and an L2-cache of 1 MByte. The cache line size is 64 bytes for both caches.
The main memory of 2 GByte DDR2 RAM is shared by the two cores. Microsoft
Windows XP Professional was used as the operating system. Both garbage col-
lection algorithms are neither parallel nor concurrent. Therefore, the second core
of the processor is idle during garbage collection. We evaluated our work with
the SPECjbb2005 benchmark [13] and the SPECjvm98 benchmark suite [12].

The SPECjbb2005 benchmark1 emulates a client/server application. The re-
sulting metric is the average number of transactions per second executed on a
memory-resident database. Since the default maximum heap size of the
HotSpotTM VM is too small for this benchmark, the heap was enlarged to 512
MByte via a VM flag.

The SPECjvm98 benchmark suite2 consists of seven benchmarks derived from
real-world applications, which cover a broad range of scenarios where Java appli-
cations are deployed. They are executed repeatedly until there is no significant
change in the execution time any more. The speedup of the fastest run compared
to a reference platform is reported as the metric for each benchmark, and the
geometric mean of all metrics is computed.

Scientific applications usually operate on large arrays, so no performance gain
can be expected from object colocation. However, there should also be no slow-
down due to read barriers or additional garbage collection overhead. In order to
verify this, we performed all measurements of the next sections also for SciMark
2.0 [11], a benchmark for scientific applications that executes several numeri-
cal kernels. All configurations of read barriers and object colocation showed the
same results.

5.1 Read Barriers

Read barriers impose a run-time overhead because additional code must be ex-
ecuted for each field load. Table 1 compares the baseline version where all our
changes are disabled, simple read barriers as described in Sect. 3.1 that are al-
ways enabled, and simple read barriers that are removed when the counters reach
the threshold as described in Sect. 3.2. Object colocation was disabled for all
measurements, so no optimizations were performed.

Counting all field loads leads to an average overhead of 30%, with a maximum
slowdown of nearly 80% for the field-access-intensive benchmark 227 mtrt. This
shows that such a naive read barrier is unfeasible, so we have to remove unneces-
sary read barriers. When read barriers are removed, the slowdown is reasonably
small, with an average of 1%.
1 All SPECjbb2005 results were valid runs according to the run rules. The measure-

ments were performed with one JVM instance.
2 All SPECjvm98 results are not approved metrics, but adhere to the run rules for

research use. The input size 100 was used for all measurements.
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Table 1. Benchmark results for read barriers (higher is better)

SPECjvm98 mean
_227_mtrt
_202_jess
_201_compress
_209_db
_222_mpegaudio
_228_jack
_213_javac

SPECjbb2005

baseline always enabled
216.6 150.2 -30.6%

with removal
214.4 -1.0%

591.9 119.6 -79.8% 583.1 -1.5%
267.2 222.1 -16.9% 260.9 -2.4%
217.7 165.1 -24.1% 219.3 0,7%

56.7 53.1 -6.4% 56.7 0.1%
389.5 323.3 -17.0% 386.8 -0.7%
234.9 208.7 -11.1% 232.1 -1.2%
125.2 110.0 -12.1% 122.8 -1.9%

14,292 9,179 -35.8% 14,152 -1.0%

read barriers read barriers

The maximum slowdown is 2.4% for 202 jess. This benchmark loads a large
number of fields with a low frequency, so the corresponding read barriers are
not removed because the recompilation overhead would be too high. The slight
speedup of some benchmarks is the result of improved optimizations during the
recompilation, e.g. a better inlining of methods.

The recompilation of methods increases the total number of method compi-
lations by 23.4% (from 1005 to 1240) for SPECjvm98 and by 48.5% (from 540
to 802) for SPECjbb2005. The additional compilation time has no significant
impact on the overall performance, especially for long-running applications.

5.2 Access Counts of Colocated Fields

Object colocation can be performed independently for the young and for the
old generation. This allows us to experiment with different scenarios: We mea-
sured the impact of object colocation when it is performed only for the young
generation, only for the old generation, or for both generations. We also experi-
mented with different strategies for filling the hot-field tables and compared our
read-barrier-based approach with a static colocation strategy: Instead of emit-
ting read barriers, the just-in-time compiler adds all fields accessed in compiled
code directly to the hot-field tables.

To assess the quality of our object colocation, we counted the number of field
accesses where the parent and the child object were colocated and where they
were in the same cache line. We use this as an approximation of the memory
access costs: When a reference field is loaded, the result of the load is typically
used for another field load in the near future. So it is beneficial if the address of
a loaded field and the value of the field are in the same cache line. In that case,
the subsequent load accesses a memory location that has already been put into
the cache during the first load.

Table 2 shows the number of fields and array elements that were loaded for
the benchmarks as well as the percentages of the loads that were colocated and
that were in the same cache line. The numbers were collected using the detailed
read barriers presented in Sect. 3.1. With object colocation the percentages are
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Table 2. Field loads of colocated objects and objects in same cache line

SPECjvm98 mean
_227_mtrt
_202_jess
_201_compress
_209_db
_222_mpegaudio
_228_jack
_213_javac

SPECjbb2005

2,078,900 7%
coloc. cache

6%

num. loads
(x 1,000)

baseline young gen. old gen. young gen.
coloc. cache coloc. cache coloc. cache coloc. cache

both gen.

21% 17% 18% 13% 21% 16% 20% 17%
167,000 7% 5% 59% 42% 58% 41% 59% 42% 52% 37%
171,100 19% 13% 39% 29% 19% 13% 39% 29% 41% 31%
774,900 4% 6% 4% 6% 4% 6% 4% 6% 4% 6%
356,800 0% 0% 40% 32% 37% 29% 43% 34% 41% 32%
436,500 9% 5% 9% 5% 9% 5% 9% 5% 9% 5%

61,400 22% 19% 29% 25% 26% 22% 32% 27% 36% 28%
111,200 9% 7% 24% 20% 15% 13% 26% 19% 24% 17%

— 2% 3% 33% 21% 23% 16% 33% 21% 32% 21%

read barriersread barriers read barriers static

significantly higher for most benchmarks. This shows that object colocation im-
proves both the locality of objects and the cache behavior. The detailed read
barriers collect data only for every 1000th field load, so all results are approximate
numbers. Because of the large number of loads they are nevertheless significant.

SPECjbb2005 uses a large memory-resident database implemented as trees
of objects. Object colocation succeeds to optimize these trees and increases the
percentage of colocated objects from 2% to 33%. Performing object colocation
in the young generation outperforms object colocation in the old generation
because the benchmark accesses a high number of objects located in the young
generation. Enabling object colocation in both generations does not improve
the numbers further. The number of field loads is not reported because the
benchmark does not execute a fixed workload, but runs for a fixed time.

For the benchmark 227 mtrt the percentage of colocated objects increases
from 7% to nearly 60%. Table 3 lists the most frequently accessed fields of the
benchmark. Four fields form the hot access path and account for 70% of all
field loads. These are the fields that were used in the running example of this
paper. Object colocation succeeds to colocate a high percentage of them. For the
array class Face[], only 18% (about 1/6) of the array accesses load a colocated
element because all six elements are accessed with the same frequency and only
the first element is colocated.

All three garbage collection configurations basically show the same results.
The static colocation strategy leads to the same results as the dynamic strategy
for classes with only one reference field. However, it fails to colocate the field
OctNode.OctFaces because it is not the first one.

The seven fields listed in Table 3 for the benchmark 209 db account for 99.9%
of all field loads. In the hot path a Vector of Strings that is stored in an Entry
of a Database is accessed. Colocation is possible for three of the seven fields.
The other four fields are typical examples where object colocation is not possible:
large arrays (Entry[]), frequently changing fields (Database.index), fields or
arrays of the type Object or Object[], and fields of short-living temporary
objects such as iterators (Vector$1.this$0).
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Table 3. Frequently accessed fields of 227 mtrt and 209 db

_227_mtrt

Face.Verts
Point[]
OctNode.OctFaces

_209_db
Entry[]
Database.index

33,200 0%

coloc. cache

0%

num. loads
(x 1,000)

baseline
coloc. cache coloc. cache coloc. cache coloc. cache

18% 9% 17% 9% 18% 6% 18% 9%Face[]

Vector.elementData
Object[]
Entry.items
String.value

167,000 7% 5% 59% 42% 58% 41% 59% 42% 52% 37%

356,800 0% 0% 40% 32% 37% 29% 43% 34% 41% 32%

Vector$1.this$0

32,900 2% 2% 100% 88% 100% 87% 100% 88% 100% 89%
32,600 0% 0% 99% 61% 98% 61% 99% 61% 99% 62%
15,700 0% 0% 93% 58% 91% 56% 92% 60% 0% 0%

66,400 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
61,100 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
54,900 0% 0% 87% 74% 89% 68% 100% 80% 88% 74%
54,500 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
51,100 0% 0% 100% 79% 88% 74% 100% 84% 100% 79%
45,500 0% 0% 100% 75% 87% 65% 100% 75% 100% 75%
23,200 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

young gen. old gen. young gen.both gen.
read barriersread barriers read barriers static

For 202 jess and 213 javac, performing object colocation in the young gener-
ation outperforms object colocation of the old generation. The collection of the
old generation comes too late because the benchmarks primarily access objects
in the young generation. Enabling object colocation in both generations leads to
the same results as performing colocation only in the young generation.

Object colocation cannot optimize applications that require no garbage col-
lection. Both 201 compress and 222 mpegaudio operate on a small, fixed set of
objects that are allocated at the beginning of the execution, so the percentages
are low for all configurations.

Each benchmark is executed once to collect the counters, so this run also in-
cludes the construction of the hot-field tables. For the benchmark 228 jack the
static colocation strategy has an advantage because the tables are filled when
methods are compiled and not when counters overflow. This is early enough to
optimize a larger data structure that is created at startup. However, both strate-
gies show the same results starting with the second execution of the benchmark.

5.3 Run-Time Impact of Object Colocation

Table 4 shows the run-time results of the various object colocation scenarios.
Some benchmarks are very sensitive to garbage collection time. Because object
colocation requires additional operations for each object copied during garbage
collection, the improved cache behavior is countervailed by the garbage collec-
tion overhead. The old generation contains much more objects than the young
generation, so the overhead is higher when performing object colocation for the
old generation. However, there is still potential for optimizing the garbage col-
lection algorithms so that the slowdown for these benchmarks can probably be
eliminated in the future.
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Table 4. Benchmark results for object colocation (higher is better)

SPECjvm98 mean
_227_mtrt
_202_jess
_201_compress
_209_db
_222_mpegaudio
_228_jack
_213_javac

SPECjbb2005

baseline young gen. old gen. young gen.
230.0 +6.2%

both gen.
224.3 +3.6% 227.8 +5.2% 229.5 +6.0%216.6

591.9
267.2
217.7

56.7
389.5
234.9
125.2

14,292

620.0 +4.8% 582.9 -1.5% 613.3 +3.6% 613.3 +3.6%
264.4 -1.1% 259.5 -2.9% 263.7 -1.3% 267.3 +0.0%
217.4 -0.1% 214.6 -1.4% 214.5 -1.5% 217.4 -0.1%

86.6 +52.8% 83.5 +47.2% 86.8 +53.1% 86.7 +53.0%
386.8 -0.7% 387.9 -0.4% 388.5 -0.3% 388.9 -0.1%
230.7 -1.8% 230.7 -1.8% 227.6 -3.1% 229.3 -2.4%
123.5 -1.3% 117.8 -6.0% 119.6 -4.5% 121.9 -2.7%

14,599 +2.1% 14,260 -0.2% 14,512 +1.5% 14,394 +0.7%

read barriers read barriers read barriers static

The benchmark 209 db benefits most from object colocation. The speedup
of more than 50% shows that the cache behavior has a major influence on the
total performance of the application. 227 mtrt also shows a significant speedup
in most scenarios. As shown in Table 3, both benchmarks have a hot path of
frequently accessed fields that can be optimized.

SPECjbb2005 shows a speedup of 2.1%, which proves that object colocation
also succeeds to optimize a large heap of a long-running application. The over-
head of object colocation is influenced by the number of children that are colo-
cated to a parent. Because the static colocation strategy identifies much more
children than the dynamic read-barrier-based approach, the dynamic approach
has a lower overhead and outperforms the static one.

For SPECjbb2005, the percentages of colocated objects (see Table 2) are sim-
ilar for the dynamic and the static approach, but the speedup (see Table 4)
is 2.1% for the dynamic approach and 0.7% for the static approach. Using the
static approach, there are 113 hot-field tables, with a maximum of 23 hot chil-
dren for the table of a class with 25 reference fields. In the dynamic approach,
there are only 38 tables with a maximum of 4 hot children per table. This shows
that the static colocation strategy does not scale well for larger applications, so
the read-barrier-based approach is inevitable.

5.4 Summary

All in all, the results show that the read-barrier-based object colocation of the
young generation leads to the best results. Optimizing only the old generation
finds less colocatable objects because the old generation is collected infrequently.
Optimizing both generations increases the overhead, but does not improve the
heap layout significantly because colocated objects are promoted and the old
generation preserves this optimized object order.

The static colocation strategy does not yield information about the most
frequently accessed fields. Therefore, too many parent-child relationships are
added to the tables, which increases the garbage collection overhead. The impact
is evident especially for larger applications such as SPECjbb2005.
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6 Future Work

The evaluation showed that our algorithm improves the object order of the heap,
but the speedup of some benchmarks is lower than one would expect. Therefore,
we plan to extend our object colocation algorithm to do object inlining, which will
eliminate the field loads for colocated objects and lead to an additional speedup.
The counters collected by the detailed read barriers show that for many fields
the referenced objects can always be colocated. In such cases, the address of a
child object needs not be read from a field, but can be computed by adding a
fixed offset to the address of the parent object.

Eliminating field loads can be implemented easily in the just-in-time compiler.
However, a safe execution of the optimized code requires additional effort: While
failing to colocate a small number of objects of a class is acceptable for object
colocation because it does not have a negative impact on the cache behavior,
object inlining requires that all objects of a class are colocated.

To guarantee this, object allocation must be modified so that colocated ob-
jects are already allocated together. Currently, objects are only colocated after
the first garbage collection run. Object inlining also requires that field stores
which change a parent-child relationship do not happen. Because fields can also
be changed via reflection or by native code using the Java Native Interface,
these subsystems must be instrumented to detect such cases. Recent research on
optimizations in the Java HotSpotTM VM showed that the safe execution of ag-
gressively optimized code requires extensive support of the run-time system [9].

7 Related Work

Huang et al. describe a system similar to ours called online object reordering,
implemented for the Jikes RVM [5]. They use the adaptive compilation system
of Jikes that periodically records the currently executed methods. Hot fields
accessed in these methods are traversed first in their copying garbage collector
and thus reordered. The decision which field of a method is hot is based on a
static analysis of the method, so it is not as precise as our dynamic numbers
obtained from the read barriers. By using the existing interrupts of Jikes, their
analysis has a low run-time overhead of 2% to 3%.

Chilimbi et al. use generational garbage collection for cache-conscious data
placement [3] and present results for the object-oriented programming language
Cecil. They use a profiling technique similar to read barriers to construct an ob-
ject affinity graph that guides a copying garbage collector and report an overhead
of about 6% for the profiling. They do not distinguish different fields within the
same object, which suffices only for small objects and does not allow colocating
the most frequently accessed field of bigger objects.

Lhoták et al. compare different algorithms for object inlining and report how
many field accesses they optimize [10]. All described algorithms are implemented
in static compilers and do not handle dynamic class loading. However, the dy-
namic class loading of the Java HotSpotTM VM asks for algorithms that do not
require a global data flow analysis.
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The algorithm for object combining by Veldema et al. puts objects together
that have the same lifetime [15]. It is more aggressive than object inlining be-
cause it also optimizes unrelated objects if they have the same lifetime. This
allows the garbage collector to free multiple objects together. Elimination of
pointer accesses is performed separately by the compiler. However, the focus is
on reducing the overhead of memory allocation and deallocation. This is benefi-
cial for their system because it uses a mark-and-sweep garbage collector where
the costs of allocation and deallocation are higher.

Escape analysis is another optimization that reduces the overhead of memory
accesses. It detects objects that can be eliminated or allocated on the method
stack. It is an orthogonal optimization to object colocation because it optimizes
short-living temporary objects, whereas object colocation optimizes long-living
data structures. Kotzmann implemented a new escape analysis algorithm for the
Java HotSpotTM VM [8]. It is fast enough for a just-in-time compiler and handles
all aspects of dynamic class loading. When a class is loaded that lets a previously
optimized object escape its scope, all affected methods are deoptimized and
recompiled using the same mechanism we use for removing read barriers.

Blackburn et al. measured the dynamic impact of various read and write
barriers on different platforms [2]. They focused on barriers that are necessary
for current garbage collection algorithms, so a barrier similar to ours that counts
field accesses is not measured. A complex conditional read barrier shows an
average slowdown of 16% on a Pentium 4 processor, with a maximum slowdown
of over 30%.

Arnold et al. presented a general framework for instrumentation sampling to
reduce the cost of instrumented code [1]. The framework dynamically switches
between the original uninstrumented code and the instrumented code in a fine-
grained manner. Instrumentation can be performed continuously with a reported
overhead of about 6%. This approach is more sophisticated than our detailed
read barriers that always collects data for every 1000th field load, but doubles
the code size.

8 Conclusions

We presented an object colocation algorithm implemented for the garbage col-
lector of the Java HotSpotTM VM. The most frequently loaded fields and thus
the most promising objects to be colocated are identified using read barriers that
are inserted into the machine code by the just-in-time compiler. The read bar-
riers yield precise information about the field access profile with a low run-time
overhead of just 1%.

In a generational garbage collection system, object colocation can be per-
formed independently for each generation. Our measurements show that it is
sufficient to optimize the young generation. When colocated objects are pro-
moted, they remain colocated in the old generation. A comparison with a static
colocation strategy shows that the overhead of optimizing infrequently accessed
objects is higher than the benefit.
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Abstract. In this work we present a new heuristic for PBQP which significantly
improves the quality of its register allocations and extends the range of viable
target architectures. We also introduce a new branch-and-bound technique for
PBQP that is able to find optimal register allocations.

We evaluate each of these methods, as well as a state of the art graph colouring
method, using SPEC2000 and IA-32 as a testbed. Spill costs are used as a metric
for comparison. We provide experimental evidence that our new heuristic allows
PBQP to remain effective even for relatively regular architectures such as IA-32,
generating results equal to those of a start-of-the-art graph colouring technique.
Our method is shown to run 3–4 times slower than graph colouring, however it
supports a wide range of irregularities.

Using our branch-and-bound solver for PBQP we were able to solve 97.4%
of the functions in SPEC2000 optimally. These results are used as a yardstick to
show that both PBQP and graph colouring produce results which are very close
to optimal.

1 Introduction

Efficient utilisation of machine resources demands highly optimising compilers as we
reach the limits of Moore’s law [1]. Register allocation is a key optimisation which de-
cides how programs will use the CPU registers which form the top level of the memory
hierarchy. As increases in CPU speed continue to outstrip reductions in memory la-
tency, the efficient use of registers becomes ever more important for ensuring program
performance.

In the intermediate representation of a compiler it is assumed that there are an ar-
bitrary number of symbolic registers available. During the register allocation stage the
compiler attempts to map these symbolic registers to real registers. Symbolic registers
for which no CPU register can be found (because all are already in use) are forced to re-
side in memory. Such symbolic registers are said to have been spilled to memory. Load
and store code must be inserted into the program to retrieve spilled values before they
are used, and store them after they are defined. This inserted code, called spill code, re-
duces program performance and is referred to as the spill cost of the symbolic register.
The challenge of register allocation is to find an assignment which minimises the total
spill cost, while terminating within a reasonable time frame. The scope of the register
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allocation is either on the basic block level (also known as local register allocation) or
over a whole procedure (also known as global register allocation).

The classical formulation of the global register allocation problem is NP complete.
It has traditionally been solved heuristically using the graph colouring method intro-
duced in [2], and extended in [3]. In this method a global register allocation problem
is described by an interference graph in which nodes represent symbolic registers, and
edges represent interference constraints. Using heuristics, the register allocator attempts
to compute a k-colouring of the interference graph, where each colour represents a CPU
register. If a k-colouring of the graph can be found it is mapped to a register allocation.
If no k-colouring can be found then some non-colourable nodes are spilled. Spill code
for these symbolic registers is inserted, the interference graph reconstructed and the
colouring process is restarted.

Graph colouring methods have been shown to be highly effective at producing allo-
cations for regular register architectures [3,2]. They have also been extended to support
architectures with irregularities such as register pairing [4], and register classes and
aliasing [5]. However, graph colouring methods generally lack the descriptive power
required to accurately model the costs and constraints of more irregular architectures.
Several alternative methods of register allocation have been devised to support irreg-
ular architectures, including Integer Linear Programming (ILP) [6], Multi-Commodity
Flow Network (MCFN) methods [7], and Partitioned Boolean Quadratic Programming
(PBQP) [8].

In this work we focus on the underlying mathematical discrete optimisation prob-
lem for register allocation. We are interested in how effective current state-of-the-art
graph-colouring approaches [5] are in comparison with approaches designed for highly
irregular architectures and small embedded system programs [8]. In order to ensure a
fair comparison between the methods we have used spill costs as a metric. Using spill
costs provides a clear and solid mathematical comparison, and avoids the noise which
is introduced by other optimisations run after the register allocation phase. Since spill
costs are estimated by the compiler (either a-priori, or based on dynamic profiles) their
accuracy is dependant on the accuracy of the estimator. However, since each of the
methods we compare relies on the same spill costs this does not affect the fairness of
our comparison.

As a testbed we have chosen the register allocation problems in the SPEC2000
benchmark suite, and IA-32 (which is fairly regular) as a target architecture. This com-
bination of architecture and benchmark suite represents a worst case for our method.
This extreme case was chosen in order to investigate how the old PBQP heuristic scaled
under such conditions, and how the new heuristic would fare. To find a yardstick for
the performance of both approaches we employed our optimal solver which can cope
with the large register allocation problems in the SPEC2000 benchmark suite, and the
constraints of IA-32.

The contributions of this work are outlined in the following:

1. We show that the heuristic introduced in [8] performs poorly for larger register
allocation problems.

2. We describe a new heuristic for PBQP that is able to produce allocations of very
high quality in reasonable time.
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3. We introduce a new branch-and-bound solver for PBQP. Using this solver we are
able to generate optimal register allocations for 97.4% of the functions in the
SPEC2000 benchmarks.

4. Using the optimal solutions mentioned above we are able to show, for our testbed,
i.e., IA-32 and SPEC2000, that the heuristics for graph-colouring and PBQP leave
little room for further improvements.

The paper is organised as follows. Section 2 provides background information on the
PBQP method of register allocation. Section 3 describes our new heuristic for PBQP.
In Section 4 we explain the branch-and-bound algorithm for PBQP. Section 5 provides
experimental evidence both for the performance of PBQP with the new heuristic, and
the optimality of the achieved solutions. Section 6 surveys related work. In Section 7
we draw our conclusions.

2 Background

2.1 PBQP

The Partitioned Boolean Quadratic Programming (PBQP) problem [8,9] is a specialised
Quadratic Assignment Problem (QAP). Consider a set of discrete variables
X = {x1, . . . , xn} and their finite domains {D1, . . . , Dn} where mi = |Di|. A so-
lution of PBQP is a simple function h : X → D where D is D1 ∪ . . . ∪ Dn; for each
variable xi we choose an element di in Di. By imposing a total order for each discrete
variable domain, sometimes we refer di by its ordinal number ranging from 1 to mi.

The quality of a solution is based on the contribution of two sets of terms:

1. for assigning variable xi to the element di in Di. The quality of the assignment is
measured by a local cost function c(xi, di).

2. for assigning two related variables xi and xj to the elements di in Di and dj in
Dj . The quality of the assignment is measured by a related cost function C(xi, xj ,
di, dj).

Thus, the total cost of a solution h is given below:

f =
∑

1≤i≤n

c(xi, h(xi)) +
∑

1≤i<j≤n

C (xi, xj , h(xi), h(xj)) (1)

The PBQP problem asks for an assignment of a minimum total cost.
We solve PBQP using matrix notation. A discrete variable xi becomes a boolean

vector xi whose elements are zeros and ones and whose length is determined by the
number of elements in its domain Di. Each 0-1 element of xi corresponds to an element
of Di. An assignment of xi to di is represented by setting all elements of xi to zero
except the element of di, which is set to one. Hence, a possible assignment for a variable
xi is modelled by the constraint xT

i · 1 = 1 that restricts vectors xi such that exactly
one element of the vectors is assigned one; all other elements are set to zero.

The related cost function C(xi, xj , di, dj) is decomposed for each pair (xi, xj). The
costs for the pair are represented as a matrix Cij . An element in the matrix corresponds
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to an assignment (di, dj). Similarly, the local cost function c(xi, di) is mapped to cost
vectors ci. Quadratic forms and scalar products are employed to rewrite the objective
function of Eq. (1) to

s.t. ∀1 ≤ i ≤ n : xi ∈ {0, 1}|Di|

∀1 ≤ i ≤ n : xT
i · 1 = 1

min f =
∑

1≤i≤n

xT
i · ci +

∑
1≤i<j≤n

xT
i Cijxj (2)

In [8,9] a solver was introduced, which solves a sub-class of these problems opti-
mally in O(nm3), where n is the number of discrete variables and m is the maximal
number of elements in their domains, i.e. m = max (m1, . . . , mn). For a given prob-
lem, the solver eliminates stepwise discrete variables until the problem is trivially solv-
able, i.e. all quadratic forms xT

i Cijxj are eliminated. Each elimination step requires
a reduction. The solver has reductions R0, RI, RII, which are not always applicable.
If no reduction can be applied, the problem becomes irreducible and a heuristic is ap-
plied, which is called RN. The heuristic chooses a beneficial discrete variable xi and
a good assignment for it by searching for local minima. The solution found is guar-
anteed to be optimal when the reduction RN is not used. Once the PBQP graph has
been fully reduced the backpropagation phase is invoked to compute a final solution by
reconstructing the original PBQP problem.

A PBQP problem can be represented as an undirected PBQP graph G〈N, E〉. The
nodes of the PBQP graph are discrete variables xi, for all i (1 ≤ i ≤ n). In the graph
there exists an edge (i, j) for i < j if matrix Cij is not the zero matrix.

2.2 PBQP for Register Allocation

Previous work in [9,8] described how the register allocation problem for irregular ar-
chitectures can be mapped to PBQP. To understand this mapping it is easiest to view
the PBQP graph as an extension of the interference graph.

Nodes in the PBQP graph represent symbolic registers as in an interference graph. In
addition each node u has an associated cost vector cu which describes the costs of each
allocation option for u. In this work we assume that the first element of this vector will
contain the cost of the spill option sp, and subsequent elements will contain the costs of
each CPU register that is valid for u.

Edges in the PBQP graph represent constraints on the register allocation problem as
before. There are usually two types of edges in an interference graph, interference or
coalesce edges (which indicate that there is a benefit to assigning two non-interfering
symbolic registers to the same CPU register). Edges in PBQP graphs have no explicit
type, but are associated with cost matrices Cuv . Each cost matrix Cuv represents the
cost of pairs of allocations for nodes u and v. The contents of each cost matrix de-
termines the effect of its edge on the final solution. Several common matrix forms for
register allocation were given in [8].

For our work we employ only interference matrices. Interference matrices describe
the costs of combinations of assignments for pairs of nodes which interfere. For two
interfering nodes u and v the cost of an allocation (ai, aj) is infinite if ai and aj alias.
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Pairs of registers ri and rj are said to alias if writing to one may affect the value of
the other. By definition a register aliases with itself, and the spill option aliases with
nothing (not even itself). For allocations where ai and aj do not alias the cost is zero.
The interference matrix for nodes u and v is thus given by

Iuv(i, j) =

{
0, if ai aliases aj

∞, otherwise.
(3)

As an example, consider the following subset of the IA-32 register architecture. It
contains three 16bit registers named AX, BX and CX, each of which is aliased by two
8bit registers as depicted below.

AX BX CX
AH AL BH BL CH CL

If two nodes u and v have register option sets {sp, AH, AL, BL, CL} and {sp, AX, BX}
respectively, the interference matrix Iuv is given by

Iuv =

sp AX BX
↓ ↓ ↓
0 0 0 ← sp
0 ∞ 0 ← AH
0 ∞ 0 ← AL
0 0 ∞ ← BL
0 0 0 ← CL

(4)

The rows of the matrix represent each allocation option for u (sp, AH, AL, BL and
CL respectively). The columns represent each allocation option for v (sp, AX and BX
respectively). Each element (i, j) gives the cost of an allocation (ai, aj).

The costs in the first row and column are all zero, since the spill option does not alias
with anything. The second column contains two infinities since the AX register option
for v aliases with both the AH and AL options for u. The third column contains only a
single infinity since the BX register option for v only aliases with the BL option for u
(we assume that the BH option has been denied to u by a register exclusion). The final
row, representing the CL option for u, contains all zeros, because no register option for
v aliases with CL.

Neither hardware registers nor register exclusions are explicitly represented in a
PBQP graph. Instead, register exclusions remove options from nodes, reducing the
length of the cost vectors and matrices. This in turn improves the speed of the PBQP
solver.

3 PBQP Heuristic

Our initial experiments using PBQP to allocate registers for SPEC2000 revealed that
the heuristic described in [8], Maximal Degree Minimum Solution (MDMS), performed
poorly for these benchmarks.
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reduce node with
lowest spill cost
to degree ratio

else

Fig. 1. Reduction Decision Tree

Previous work, presented in [9], showed that better results can be obtained by pre-
computing an RN reduction order using a traditional graph colouring approach. (Graph
colouring approaches select and remove colourable nodes before non-colourable ones;
a node u is considered colourable if no allocation of registers to u’s neighbours pre-
cludes an allocation of a register to u itself.)

In the following we present a heuristic which is able to dynamically determine a
reduction order for RN nodes based on colourability. At the core of our heuristic is an
efficient and accurate method of determining colourability for irregular architectures.

The reduction order produced by our method is similar, though not identical, to that
produced by graph colouring. Our reduction order is determined during the reduction
phase based on the decision diagram depicted in Figure 1. During the reduction phase
nodes of degree two or less are removed by the R0, RI and RII reductions. These reduc-
tions are performed irrespective of the colourability of nodes (on irregular architectures
even low degree nodes may be non-colourable due to large register exclusion sets).
Once all remaining nodes are of degree three or higher our RN heuristic is invoked to
decide which node to reduce.

Our RN heuristic sorts the remaining nodes in descending order of degree. Based on
this order it searches for a colourable node. If a colourable node is found it is removed
from the PBQP graph and placed on the reduction stack. Sorting the nodes by degree
ensures that the colourable node of highest degree is reduced. This improves the perfor-
mance of the reduction process by maximising the number of nodes whose degrees are
reduced.

If no colourable node is found we apply Brigg’s spill heuristic [3] to reduce the node
with the lowest ratio of spill cost to degree. No register assignment is made at this stage;
instead our heuristic is optimistic in the sense that it defers the actual assignment until
the backpropagation phase.

At the end of the reduction phase all nodes reside on the reduction stack. During the
backpropagation phase the PBQP solver pops nodes from the reduction stack and rein-
serts them into the PBQP graph. As nodes are reinserted, the solver selects a decision
vector that minimises the cost of the final solution. All nodes that we have classified
as colourable (cf. the path via predicate “∃ colourable” in Figure 1) are guaranteed to
be allocated a register. Nodes reduced by the R0, RI or RII reductions are solved op-
timally, and will be allocated a register if one is available. Nodes reduced due to the
spill heuristic may or may not be allocated a register. Nodes which cannot be assigned
a register will be assigned the sp option.
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The performance of our heuristic depends on the efficient determination of coloura-
bility. For regular architectures colourability can be determined by comparing the de-
gree of a node u to the number of available registers k. If degree(u) < k then the node is
colourable. For irregular architectures this condition is insufficient because each neigh-
bour of u may exclude more than one register option from u (due to register aliasing).
We describe below a fast and accurate method to determine the colourability of nodes
for irregular architectures. Our method is based on the PBQP graph and its associated
cost matrices.

We observe that a node u is colourable if either of the following two conditions hold.

(1) The maximum number of colours which could be denied to u by a colouring of u’s
neighbours is less than the total number of colours available for u.

(2) There is at least one colour which is a valid choice for u, but not for any neighbour
of u.

To determine whether Condition (1) holds we calculate the maximum number of
register choices that can be denied to node u by a colouring of u’s neighbours. It is
not practical to calculate this value exactly, because this would require enumerating all
colourings of the neighbours of u. Instead we calculate a safe upper bound on Condi-
tion (1) by examining the worst case colourings of each of u’s neighbours considered
individually. This upper bound we call the impact upon u, denoted by impactu.

If the adjacency set of a node u is given by adj(u), and the impact of a single neigh-
bour v by impactu(v), then the impact upon u by its neighbours is given by

impactu =
∑

v∈adj(u)

impactu(v). (5)

In order to calculate impactu(v), we need to look at the columns of the cost matrix
Cuv . The number of infinite elements in each column j represents the number of reg-
isters which could be denied to node u by selecting register rj for node v (cf. Eq. (3)).
For instance it can be seen in Eq. (4) that selecting the AX register for v (column 2) re-
moves two options from u, whereas selecting the BX option (column 3) removes only
one option, and the sp option (column 1) removes none.

We write inf count(Cuv, j) for the number of infinite cost elements in column j of
matrix Cuv, and mu for the number allocation options for u. Then impactu(v) is given
by

impactu(v) = max
1≤j≤mu

{
inf count(Cuv, j)

}
. (6)

To determine whether Condition (2) holds for node u we determine the set of regis-
ters which cannot be denied to u by any colouring of its neighbours. This set we call
safe regsu. For Condition (2) to hold the cardinality of safe regsu must be greater than
zero. To determine whether register ri resides in safe regsu, we examine row i of each
of the neighbouring cost matrices of u. If row i of a matrix Cuv contains an infinite
element, then ri may be denied to u by some selection for v, thus ri must be removed
from safe regsu.

In order to calculate safe regsu, we place all register options except the spill element
in safe regsu. For each neighbour v of u we examine the cost matrix Cuv . Each of the
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rows of this matrix represents a valid register choice for u. For each row i that contains
an infinite element we remove the corresponding register ri from safe regsu, since a
certain colouring of v could exclude ri from u. At the end of this process the registers
remaining in safe regsu are those whose rows contained no infinite elements in any of
the neighbouring matrices of u.

In Eq. (4) it can be seen that register AH (row 1) must not be in safe regsu, since row
1 contains an infinity. Likewise registers AL and BL must not be in safe regsu because
rows 2 and 3 contain infinities. Row 4 however, representing the CL option, does not
contain an infinity, so CL is in safe regsu.

Because the cost matrix construction process takes into account register classes and
aliasing, these phenomena are implicitly considered in the determination of colourabil-
ity. In addition, a positive effect of register exclusions, not considered in [3] and [5],
is accounted for: if all neighbours of a node u are excluded from occupying a regis-
ter that is a valid option for u, then u is colourable. On regular architectures register
exclusions are rare and this effect would not significantly improve accuracy. However,
for irregular architectures register exclusions are common and register sets are typically
small. Considering this register exclusion effect can therefore yield a small increase in
the accuracy of the colourability criterion.

An algorithm to calculate the colourability criterion according to Conditions (1)
and (2) is given below. Therein options(u) denotes the valid allocation options for node
u, and sp denotes the spill element.

4 Branch-and-Bound for PBQP

Branch-and-bound is a general technique for solving discrete and combinatorial opti-
misation problems [10]. The general idea of branch-and-bound relies on two concepts.
First, branching is a decomposition of the problem into sub-problems. Since branching
is applied recursively to each of the sub-problems, the generated sub-problems form a
tree called a search tree. Second, bounding is a fast way of finding lower bounds and
upper bounds, respectively, for the optimal solution within sub-problems.

The branch-and-bound algorithm prunes sub-problems whose lower bounds are
greater than the upper bound for any other sub-problem. If an upper bound for a sub-
problem matches its lower bound, then the sub-problem has been solved. For finding
the minimum all sub-problems of the search tree are either pruned or solved. Due to
limited computational resources, sometimes not all sub-problems of the search-tree are
either pruned or solved, and the branch-and-bound algorithm is terminated before find-
ing the minimum of the objective function. In this case, the minimum lower bound and
the minimum upper bound, among all non-pruned sub-problems, bound the minimum
of the objective function. For branch-and-bound methods there are different ways to
bound sub-problems and how to create and inspect the nodes in the search tree.

We extend the PBQP solver with branch-and-bound techniques. The approach intro-
duced in [8] solves a PBQP problem optimally if R0, RI and RII reductions entirely
decompose the problem. If no R0, RI or RII reduction can be applied in the reduction
phase, the PBQP becomes irreducible and a heuristic selects a discrete variable xl and
chooses a concrete solution for xl in Dl. We refer to this step as RN reduction. If the
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Algorithm 1. Colourability Criterion
Input: PBQP Graph G, node u ∈ G.
Output: Boolean value describing the colourability of u.

1: impactu ← 0
2: safe regsu ← options(u)\sp
3: for all v ∈ adj(u) do
4: impactu(v) ← 0
5: for all j ∈ {1, . . . , |Dv |} do
6: inf count(Cuv, j) ← 0
7: for all i ∈ {1, . . . , |Du|} do
8: if Cuv(i, j) = ∞ then
9: inf count(Cuv, j) ← inf count(Cuv, j) + 1

10: safe-regsu ← safe-regsu\ri

11: end if
12: end for
13: if inf count(Cuv, j) > impactu(v) then
14: impactu(v) ← inf count(Cuv, j)
15: end if
16: end for
17: impactu ← impactu + impactu(v)
18: end for
19: if (|safe-regsu| > 0) ∨ (|impactu| < |options(u)|) then
20: colourable ← true
21: else
22: colourable ← false
23: end if

problem domain is known, RN reductions based on heuristics are highly efficient and
effective.

To find an optimal solution exhaustive enumeration was employed in [11]. The un-
derlying idea of exhaustive enumeration is to use the ideas of the heuristic approach,
i.e., R0, RI and RII reductions are applied until the problem is trivially solvable or an
RN reduction needs to be applied. Instead of choosing a single solution for a discrete
variable reduced by RN, all possible assignments of the discrete variable are enumer-
ated. The complexity of exhaustive enumeration grows exponentially with the number
of discrete variables reduced by RN. Despite the fact that for smaller problems with
a small number of RN reductions this approach works sufficiently well, it becomes
intractable for huge register allocation problems.

For PBQP a branch-and-bound approach is superior to an exhaustive enumeration ap-
proach because many assignments of discrete variables reduced by RN will be pruned.
Furthermore, the solving techniques for PBQP allow a natural formulation of a branch-
and-bound algorithm: A sub-problem is a PBQP problem which (1) cannot be further
reduced by R0, RI and RII, and (2) is not trivially solvable. To each sub-problem we
associate the discrete variable xl which is selected by the RN reduction in the next
reduction step and its concrete assignment.
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A fragment of a search tree is depicted in Figure 2. The root of the tree represents
the overall problem to be solved. If a problem has no RN reduction, the problem has
no sub-problems and the tree consists of the root node only. Otherwise the reduced
discrete variable xi1 and its possible assignments ranging from 1 to mi1 of the first RN
reduction constitute the children of the root node. The discrete variable of the second
RN reduction and its assignments constitute the grandchildren of the root node and so
forth.

Note that a child of a sub-problem is a new sub-problem for which the discrete
variable of its parent sub-problem was reduced, and R0, RI and RII reductions had been
applied until the problem became irreducible. For the branch-and-bound algorithm we
need to find lower and upper bounds of sub-problems, denoted by 〈f l

ik
, fu

ik
〉.

Before discussing the specific problem of finding lower and upper bounds of sub-
problems, we derive the computation of lower and upper bounds of a general PBQP
problem in matrix notation (see Eq. (2)). More formally, we want to find a lower bound
f l and upper bound fu of f such that

f l < f(x1, . . . , xn) < fu (7)

holds for all possible assignments for discrete variables xi ∈ Di, (1 ≤ i ≤ n). Bounds
can be simply derived by the observation that only one element of a cost vector ci and
matrix Cij respectively, contributes to the objective function. Thus, lower and upper
bounds of f are given by

f l =
∑

1≤i≤n

min ci +
∑

1≤i<j≤n

min Cij (8)

fu =
∑

1≤i≤n

max ci +
∑

1≤i<j≤n

maxCij , (9)

where min ci is the smallest element in ci and in Cij , respectively, and max ci is the
greatest element in ci and in Cij , respectively.

The bounds for a sub-problem are computed by reducing the node xl. We choose
a concrete element for vector xl as assignment in Dl. For a given assignment of xl a
sub-problem represented in matrix notation as given in Eq. (2) reduces to

s.t. ∀1 ≤ i ≤ n, i �= l : xi ∈ {0, 1}|Di|

∀1 ≤ i ≤ n, i �= l : xT
i 1 = 1

min f = α +
∑

1≤i≤n,i	=l

xT
i (ci + ∆i) +

∑
1≤i<j≤n,i	=l,j 	=l

xT
i Cijxj , (10)

where α is a constant, i.e., α = xT
l cl, and ∆i is a cost vector, i.e.,

∆i =

{
Cilxl, if i < l

xT
l Cli, otherwise.

(11)
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Problem

xi1 = 1
〈f l

i1 , fu
i1〉

xi2 = 1

〈f l
i2 , fu

i2〉
. . .

xi2 = mi2

〈f l
i2 , fu

i2〉

. . .
xi1 = mi1

〈f l
i1 , fu

i1〉

Fig. 2. Search Tree for PBQP

Because the discrete variable xl is set to a concrete value, quadratic forms involving
xl become scalar products. Applying the lower and upper bounds of Eq. (8) and Eq. (9),
we can deduce the following lower and upper bounds for a sub-problem.

f l = α +
∑

1≤i≤n,i	=l

min(ci + ∆i) +
∑

1≤i<j≤n,i	=l,j 	=l

min Cij (12)

fu = α +
∑

1≤i≤n,i	=l

max(ci + ∆i) +
∑

1≤i<j≤n,i	=l,j 	=l

max Cij (13)

The PBQP branch-and-bound algorithm is a standard branch-and-bound algorithm:
sub-problems are classified in live and dead nodes in the search tree. Live nodes are leafs
of sub-problems, which are not solved yet (i.e., lower and upper bound do not coincide).
Dead nodes are nodes whose children have been already expanded. For running the
algorithm we need an upper bound for the global minimum of the PBQP problem. The
upper bound of the global minimum is initialised with infinity.

The live nodes are stored in a priority queue where the priority is determined by
the lower bound of the sub-problem. The live node with the smallest lower bound is
expanded first. The expansion of a node includes two steps. First, the children of the
sub-problem are added to the tree and inserted to the priority queue if their lower bound
is smaller than the upper bound of the global minimum. Second, the node is removed
from the priority queue and it becomes dead. The branch-and-bound algorithm termi-
nates if there are no nodes left in the priority queue, or if the upper bound of the global
minimum is smaller then the smallest element in the priority queue.

We improved the standard algorithm by using the solution of a heuristic algorithm. In
a pre-processing phase the search tree is expanded according to the solution of a given
heuristic. Before running the canonical expansion the branch-and-bound algorithm has
a tight upper bound for the global minimum and the search space becomes significantly
smaller if the heuristic used is close to the optimum.

5 Experiments

In our experiments we compared the performance of three different PBQP solvers, i.e. a
PBQP solver using the MDMS heuristic introduced in [8], a PBQP solver using our new
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Table 1. Number of Functions in SPEC2000

Benchmark Total Pairs Empty Remaining

164.gzip 89 1 14 74
175.vpr 266 4 47 215
176.gcc 1965 46 367 1552
181.mcf 26 0 2 24
186.crafty 109 39 9 61
197.parser 323 0 27 296
252.eon 1257 0 570 687
253.perlbmk 1015 1 208 806
254.gap 852 6 122 724
255.vortex 923 10 93 820
256.bzip2 74 0 14 60
300.twolf 191 0 17 174
total 7090 107 1490 5493

heuristic (see Sec. 3), a PBQP solver using branch-and-bound (see Sec. 4), and a state-
of-the-art graph colouring method described in [5]. The four approaches are compared
in terms of number of spills, spill costs, and solve time. We do not consider the effects
of register allocation on code size nor on runtime of benchmark programs since register
allocation works in concert with other standard compiler optimisations. Measuring the
genuine effects of register allocation on code size and runtime would be overlayed with
noise. Taking the spill cost as a measurement gives a solid mathematical comparison.

To obtain a comparison of our methods each solver was used to produce allocations
for the SPEC2000 benchmarks. The interference graphs, annotated with spill costs and
register constraints, were obtained from the GCC 3.3.6 compiler, and passed to the
solvers. Empty interference graphs and graphs requiring register pairs were not taken
into account, leaving 5493 graphs for our experiments. A quantitative summary of the
interference graphs is given in Table 1. Each solver calculates an allocation and pro-
duces a raw assignment of registers and spills to symbolic registers, as well as timing
information. Our raw allocations were processed to check for correctness and to extract
spill costs and other information.

The cost model used for our experiments is highly regular. Our solvers assign only
registers of the same size as the allocation candidate (in contrast to GCC’s allocator
which stores all non-spilled symbolic registers in 32-bit registers). All valid register
options are assumed to have zero cost (except the spill option, whose cost is given
by GCC’s spill cost estimator), and only interference constraints are modelled. Such a
regular cost model represents a worst-case scenario for PBQP, which performs better
on more constrained architectures.

Summaries of the allocations produced by each of our solvers are given in Table 2.
The first three columns describe the total spill cost for each benchmark individually and
overall, using each heuristic solver. The next three columns give the number of spills
produced by the solvers. The final three columns show the time taken to produce the
allocations.
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Table 2. Raw Allocation Results for the SPEC2000 Benchmarks

Spill Cost Spills Allocation Time (ms)
Benchmark MDMS New GrCo MDMS New GrCo MDMS New GrCo

164.gzip 120438 60175 60838 121 114 118 6.9 9.2 3.1
175.vpr 521770 330724 328358 690 710 704 27.5 39.8 12.4
176.gcc 1431081 720548 728731 3078 3341 3335 322.6 532.4 133.2
181.mcf 98796 69440 69445 81 82 83 2.4 3.2 1.1
186.crafty 73491 27978 28267 149 153 153 10.5 15.1 4.9
197.parser 221732 162962 168847 508 525 525 35.9 52.9 15.1
252.eon 446646 366810 367965 815 826 816 34.7 53.0 16.6
253.perlbmk 758888 323161 334957 910 925 921 93.4 126.4 38.8
254.gap 1873241 1090693 1099054 1822 1929 1947 118.8 163.9 49.5
255.vortex 424300 238188 239328 972 983 977 49.9 64.8 23.6
256.bzip2 67531 26944 27349 134 146 146 7.1 10.1 3.2
300.twolf 1085151 560064 564956 1110 1194 1203 91.7 155.7 33.1
total 7123065 3977687 4018095 10390 10928 10928 801.5 1226.5 334.5

It can be seen from the final row of Table 2 that our new heuristic produces a spill
cost 44% lower than that of the MDMS heuristic, and 1% lower than graph colouring.
This result represents a large improvement over the previous heuristic, and places PBQP
on a par with graph colouring in terms of the allocations generated.

The poor performance, in terms of spill cost, of the MDMS heuristic compared to
graph colouring has not been observed before. Previous work on PBQP for register allo-
cation using this heuristic, given in [8], was carried out using embedded systems bench-
marks. These benchmarks have smaller interference graphs than those of SPEC2000.
For such graphs the RN reduction rule is seldom invoked, and the choice of RN heuris-
tic has less impact upon the final result.

The MDMS heuristic generates fewer spills overall than either of the other methods,
despite producing a worse allocation overall. This occurs because the MDMS heuristic
always reduces the node of highest degree, regardless of whether the node is colourable.
Choosing such a node lowers the degree of the maximum number of neighbours, reduc-
ing the chance of further spills. No effort is made to decide whether this is a good spill
decision however, which leads to a poor final allocation.

Both PBQP heuristics are considerably slower than graph colouring. The MDMS
heuristic takes a factor of 2.4 times longer than graph colouring over all benchmarks.
An original naive implementation of our heuristic required a factor of 25 times longer
than graph colouring. We determined however that most of this time was spent in un-
necessary re-evaluations of matrices. By implementing a caching strategy for per-matrix
information and using lazy evaluation to update these caches we were able to reduce
the time taken to the present factor of 3.7 times longer than graph colouring. Previous
work on register allocation [12] showed that the time taken to solve the graph colouring
problem is only a small fraction of the overall allocation time. As such we would not
expect our method to significantly increase the total compile time.

Table 3 gives the results produced by each solver for those functions which we were
able to solve optimally. The first column gives the number of functions solved optimally
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Table 3. Optimal Costs, Spills and Comparisons

Functions Spill Cost Spills
Benchmark Optimal New GrCo Optimal New GrCo

164.gzip 73 47603 47605 48268 105 104 108
175.vpr 207 286466 291553 289036 600 605 599
176.gcc 1491 595785 602444 611952 2212 2281 2272
181.mcf 24 69404 69440 69445 81 82 83
186.crafty 59 23702 23789 24078 120 121 123
197.parser 280 144464 148540 154400 320 329 329
252.eon 686 366613 366723 367874 775 782 775
253.perlbmk 800 429530 441131 451981 795 825 833
254.gap 710 1033923 1042452 1049729 1634 1672 1688
255.vortex 815 225461 228250 229673 862 875 869
256.bzip2 58 23179 24344 27349 92 99 97
300.twolf 149 368726 375961 378710 528 544 547
total 5352 3614856 3662232 3699885 8124 8319 8323

for each benchmark and overall. The next three columns give the spill costs for the
optimal solution, PBQP using our new heuristic, and graph colouring. The final three
columns give the number of spills generated by each of the methods.

Overall we were able to solve 97.4% of the functions in the SPEC2000 benchmarks
optimally over a period of about a day. From the final row it can be seen that the optimal
spill cost is 1.3% lower than that produced by our heuristic, and 2.3% lower than that
of graph colouring. Our heuristic never generated spill costs more than 3% above the
optimal for any benchmark (the highest was perlbmk at 2.7%). Graph colouring never
generated an allocation more than 7% above the optimal for any benchmark (the highest
was parser at 6.9%). The small margins between the optimal spill costs and the heuris-
tics show that there is little room for improvements for a fairly regular architecture such
as IA-32.

6 Related Work

Graph colouring approaches [2,3] are a success story for RISC architectures with large
register banks and an orthogonal instruction set. However, attempts to adapt graph
colouring to irregular architectures have produced ad-hoc modifications which fail to
provide a unified method for dealing with irregularities. Each of these methods is able
to deal with a certain subset of irregularities at the expense of breaking from the simple
graph colouring analogy.

Smith et al. [5] introduced a new colourability criterion for irregular architectures
which is able to determine colourability for architectures featuring register classes and
aliasing. However, their approach cannot deal with complex constraints between two
symbolic registers such as pairing or dedicated registers. Runeson and Nyström [13]
present a retargetable graph-colouring register allocator based on the 〈p, q〉 test, which
is similar to the work in [5]. Other techniques for graph colouring such as the technique
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introduced by Koseki et al. [14] modifies the selection phase to increase the likelihood
that symbolic registers are given their preferred registers. However, their algorithm can
only deal with certain aspects of irregular architectures.

Register allocation based on Integer Linear Programming (ILP) was introduced by
Goodwin and Wilken [15]. The approach maps the register allocation problem to an
integer linear program, which is solved by CPLEX, a commercial solver for generic
ILP problems. The work was extended by Kong and Wilken [6] for irregular architec-
tures. Recently, in [16], an approach was introduced which uses a progressive solver for
solving register allocation problems based on multi commodity network flows. With
their approach not all possible constraints occurring in irregular architectures can be
modelled.

Recently, register allocation approaches exploiting the tree structure of SSA graphs
have been investigated [17] stating that the graph colouring problem is solvable in
polynomial time without considering coalescing costs at phi-nodes. However these ap-
proaches do not consider any irregularities.

Most of the work in this paper builds on work described in [8,11]. The PBQP opti-
misation problem accommodates for the needs of solving the register allocation prob-
lem for a wide range of irregularities. It is a fairly comprehensive approach. However,
the exhaustive enumeration approach introduced in [11] is intractable for larger bench-
marks and the approach introduced in [8] has a poorly performing heuristic for larger
benchmarks and more regular architectures. Both problems have been resolved by this
work.

7 Future Work and Conclusion

In this paper we have presented a new PBQP heuristic for register allocation. For larger
benchmarks and moderately irregular architectures the new heuristic performs signif-
icantly better than the MDMS heuristic introduced in [8]. We also describe a new al-
gorithm for PBQP based on branch-and-bound. The branch-and-bound algorithm was
extended to use a heuristic to find a tight upper bound for its global minimum. With
this technique we show that 97.4% of the register allocation problems in the SPEC2000
integer benchmark suite can be solved optimally in less than a day.

With the given framework there is still the algorithmic challenge to solve every reg-
ister allocation problem in SPEC2000 optimally. This challenge might be achieved by
exploring some decomposition properties of PBQP, i.e. a PBQP problem disintegrates
into independent sub-problems during the reduction phase. By solving the sub-problems
independently the search space of the branch-and-bound solver will be significantly
reduced.

We plan to integrate this method into a modern optimising compiler in order to eval-
uate our method’s effects on code size and execution speed. Given the closeness of the
spill costs we have seen we do not expect significant deviation between our method and
graph colouring for IA-32 using these metrics. However we plan to apply both methods
to more irregular architectures where we would expect a greater variation.

With the optimal solution as a yardstick we have shown that current graph colour-
ing heuristics [5] for irregular architectures and the new PBQP heuristic introduced in
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this work are on average 2% from the optimal solution. In future there will be very
little room for further progress in finding better optimisation heuristics for moderately
irregular architectures.
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Abstract. Partial Redundancy Elimination (PRE) is a standard pro-
gram optimization which removes redundant computations via Code Mo-
tion. It subsumes and generalizes the optimizations of Global Common
Subexpression Elimination (GCSE) and Loop Invariant Code Motion
(LICM). Recent work has generalized PRE to become Speculative PRE
(SPRE), which uses estimates of execution frequencies to find the opti-
mal places in a program to perform computations. However, the analysis
performed by the compiler is computationally intensive and hence im-
practical for just-in-time (JIT) compilers.

This paper introduces a novel approach which abandons a guarantee
of optimality in favour of simplicity and speed of analysis. This new
approach, called Isothermal SPRE, achieves results which are close to
optimal in practice, yet its analysis time is at least as good as current
compiler techniques for code motion. It is a technique suitable for use in
JIT compilers.

1 Introduction

The simplest computation performed by a program is the evaluation of an ex-
pression, say a+b. If the program contains a sequence of statements similar to

x = a+b;
x = x + c*d;
y = a+b;

then (assuming complications involving aliasing of variable names do not occur)
the second computation of a+b is fully redundant , since neither a nor b is modi-
fied between the two computations of a+b. A good compiler would translate the
code as though it had been written as

t1 = a+b;
x = t1;
x = x + c*d;
y = t1;

where t1 is a new temporary variable (and which would be a good candidate for
implementing as a register).
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The generalization to partial redundancy occurs if we have a program that
contains multiple control flow paths and where a computation is redundant on
some path(s) but not on all paths. An example fragment of program with a
partially redundant occurrence of a+b is shown in Figure 1(a). In this (meaning-
less) calculation, the value of a+b computed in the loop condition will usually
be the same value as was computed on the previous iteration. A compiler which
performs partial redundancy elimination optimization will go through a two step
process of inserting some additional computations of a+b to produce the inter-
mediate version of Figure 1(b) and then eliminating those occurrences which
have become fully redundant to achieve the result shown in Figure 1(c).

while((a+b) > sum) {
if (sum % 10 == 0)

a = a + 1;
sum += b;

}

(a) Original while loop

t1 = a+b; // inserted
while((a+b) > sum) {

if (sum % 10 == 0) {
a = a + 1;
t1 = a+b; // inserted

}
sum += b;

}
(b) After insertions of a+b

t1 = a+b;
while(t1 > sum) { // replaced

if (sum % 10 == 0) {
a = a + 1;
t1 = a+b;

}
sum += b;

}
(c) After deletion of redundancies

Fig. 1. Application of (classical) PRE to a loop

However, the classical PRE analysis is performed without any knowledge of
the relative frequencies of execution of the different paths through the program.
Thus PRE is required to be conservative, and will never choose to insert a com-
putation e at a point P in the program unless it is guaranteed that the value of
e will be used on every path that continues from point P. After those computa-
tions that become fully redundant due to the insertions have been removed, the
number of computations of e cannot be greater than in the original program.
Usually it will be smaller. Another benefit of the conservative approach is that
even unsafe expressions can be moved. An unsafe expression is a computation
which may cause a run-time exception. For example, an array reference A[i] in
Java may cause an exception either because the array A has not been allocated
or because the index i is out of range. If the expression does cause an exception
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at run-time, then the optimized program will at worst raise that exception at an
earlier point in the program.1 In no case would the transformed program raise
an exception that would not be raised in the original program.

The conservatism of PRE causes it to miss optimization opportunities that
involve safe expressions, i.e. expressions that cannot raise an exception when
computed. An enumeration of expressions which should be considered safe de-
pends on the semantics of the programming language and on the platform for
which the code is compiled. For example, a+b is normally safe in the C language.
However a/b would be safe at a point P in a C program only if the compiler
can prove that b is non-zero at P or if the integer division instruction on the
target platform does not generate a divide-by-zero interrupt. (The PowerPC
architecture provides an example of such a platform.)

The example of Figure 2 shows a loop that PRE cannot optimize, but which
SPRE will. The transformation from Figure 2(a) to Figure 2(b) cannot be per-
formed by PRE. Without knowledge of execution path frequencies, an insertion
of t1=a*a in the then clause of the if statement might make the program slower.
PRE has to consider the possibility, for example, that the else clause is never
executed. That would introduce 10000 computations in the transformed pro-
gram that would not have been performed by the original program. However, if
SPRE is given profile information which shows that the else clause is executed
more frequently than the then clause, then it will produce the result shown in
Figure 2(b) because the total number of computations of a*a would be smaller.

for(i=0; i<10000; i++) {
if (A[i]<0) { // 1% frequency

a = a+1;
} else { // 99% frequency

sum += a*a;
}

}

(a) Original code

t1 = a*a;
for(i=0; i<10000; i++) {

if (A[i]<0) {
a = a+1;
t1 = a*a;

} else {
sum += t1;

}
}

(b) Result from SPRE

Fig. 2. A loop that PRE does not optimize

The SPRE approach is restricted to safe expressions because a compiler should
never introduce the possibility of an exception that was not present in the original
program. However, there is no reason why a dual approach of using SPRE for
safe expressions and PRE for unsafe expressions could not be adopted.

A major obstacle to adopting SPRE in a compiler is that the existing analysis
algorithms are computationally intensive. For each candidate expression, the
current formulations of SPRE construct a network flow problem and then finds
a minimum-cut partition of the network. Given that the number of nodes V in
1 However this may cause other difficulties for Java because it has precise exception

semantics and code motion must take this into account.
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the network is proportional to the size of the control flow graph of the program
being analyzed, and given that standard algorithms for finding the minimum cut
have O(V 3) time complexity, finding the solution is costly (even if it finds an
optimal solution).

In contrast, PRE uses data flow analyses which can be formulated as bit-vector
problems. This means that PRE determines solutions for all candidate expres-
sions simultaneously. Furthermore, the worst-case time complexity for solving
the data flow equations is quadratic in the size of the control flow graph, with
linear time complexity being the norm for almost all control flow graphs that
occur in practice.

Although there is undoubtedly scope for implementing faster versions of
SPRE, its analysis time is about two orders of magnitude slower than PRE.
This may be acceptable for use in a standard optimizing compiler where much
effort can be expended to achieve the fastest possible target program. However,
it has restricted applicability in a just-in-time compiler where all the analysis
must be performed on the fly.

In this paper, we introduce a new formulation of SPRE where the optimality
of its final result is sacrificed in order to achieve a very efficient analysis. We
call the new formulation Isothermal Speculative Partial Redundancy Elimination
(ISPRE) for reasons which will be covered later.

ISPRE performs standard data flow analyses which can, again, be imple-
mented as bit vector problems. Furthermore, these analyses are simpler than
those performed by PRE. Since ISPRE uses program profile information, it will
usually produce results which are better than PRE, though they would usually
be a bit worse than those of SPRE. Experimental results included in this paper
confirm this expectation. These same results also demonstrate the speed of the
implementation of ISPRE, comparing it to the speed of PRE and SPRE.

2 Background and Related Work

Common Subexpression Elimination (CSE) has existed as a standard compiler
optimization since the early Fortran compilers [1,2]. The first formulation of
Global Common Sub-expression Elimination (GCSE), via an available expres-
sions analysis, is described in [4].

The generalization from GCSE to partial redundancy elimination (i.e. PRE)
was first described by Morel and Renvoise [10]. They later extended their anal-
yses to the interprocedural case [11].

There have been several developments to PRE that have both improved its
implementation in compilers and the quality of the transformed program. These
include the reformulation of PRE as a set of unidirectional analyses [16], and the
establishment of critical-edge splitting [5] as a crucial component in increasing
the power of PRE. Finally, Lazy Code Motion (LCM) [8,9] is a PRE formulation
which is optimal with respect to lifetimes of the temporary variables introduced
to hold expression values. Since these temporaries would often be implemented
as registers, LCM has the smallest impact on register pressure. LCM is presently
the algorithm of choice in modern optimizing compilers.
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The idea of using profiling information to improve the expected performance of
PRE is due to Horspool and Ho [6]. Subsequent work has shown that the problem
can be mapped to a form of network flow problem known as Stone’s Problem [15].
The name Speculative Partial Redundancy Elimination (SPRE) has been applied
to the problem, and algorithms for finding optimal solutions have been presented
[3,13]. These optimal solutions minimize the expected number of computations
of the candidate expressions, based on the execution frequencies of the different
paths through the program obtained from the program profile. A secondary, but
still very important, concern is in minimizing register pressure. Xue and Cai
[17] have developed a variation on SPRE which minimizes the lifetimes of the
temporary variables while still maintaining optimality.

3 Notation and Terminology

In this paper, we present an intraprocedural analysis algorithm. That is, each
procedure of a program will be transformed by ISPRE independently of the
other procedures. Extension of ISPRE to the interprocedural case should be
straightforward and is left for future work [12, sec. 19.2].

We assume that each procedure is translated into an intermediate represen-
tation (IR) by the compiler and that machine independent optimizations such
as ISPRE are applied to the IR form. For the purposes of this paper, we assume
that IR statements have these forms only:

L: // a label
x = c // assign a constant
x = y // assign a variable
x = y op z // assign a simple expression
goto L // unconditional branch)
if (a op b) goto L // conditional branch

where op represents a simple operation like addition or multiplication, or like
less-than when used in a conditional branch. The precise details are unimportant
when describing ISPRE.

The sequence of IR instructions for a procedure is partitioned into basic
blocks. A basic block is a maximal sequence of instructions through which the
only flow of control is sequential. This implies that the first instruction in a ba-
sic block must be either a labelled instruction or an instruction which follows a
conditional branch. It also implies that the last instruction in a basic block is a
branch, either conditional or unconditional.

The basic blocks of a procedure form a control flow graph (CFG). A CFG
is a directed graph with the node set N , where each node b ∈ N represents a
basic block. The CFG has an edge set E ⊆ N ×N , and two distinguished nodes:
s ∈ N , a unique start (or entry) node, and f ∈ N , which is a unique final (or
exit) node. Edges (u, v) ∈ E represent the branching structure of the CFG. The
functions succs(u) = {v|(u, v) ∈ E} and preds(u) = {v|(v, u) ∈ E} represent the
immediate successors and immediate predecessors of node u.



Fast Profile-Based Partial Redundancy Elimination 367

4 Isothermal Speculative Partial Redundancy
Elimination

Isothermal SPRE (ISPRE) is a complete reformulation of SPRE. It is, by design,
an approximate technique for performing code motion using information ob-
tained from program profiles. The major part of the performance gains achieved
by ISPRE are made in one transformation pass over the flowgraph. Further im-
provements can be made with additional passes, but a law of diminishing returns
apply. We distinguish two versions of ISPRE with the names Single Pass ISPRE
and Multipass ISPRE, according to whether just one pass or several transfor-
mation passes over the program are performed. In the following, and in our
experiments, we describe single pass ISPRE.

ISPRE initially uses profile information to divide a CFG G into two subgraphs
— a hot region Ghot consisting of the nodes and the edges executed more fre-
quently than a given threshold frequency Θ, and a cold region Gcold consisting
of the remaining nodes and edges. A pictorial representation of a division of a
CFG into its hot and cold regions is shown in Figure 3. In this picture, the black
region represents Ghot and the grey region represents Gcold.

s

f

Fig. 3. Dividing a CFG into Hot and Cold Subgraphs

The example illustrates that either subgraph may consist of disconnected
components. As shown here, the components of Ghot would usually correspond
to loops. However, that is not necessarily the case because an isolated node with
several predecessors and several successors could be hot while its immediate
neighbours are all cold. It is also possible for a cold component to consist of just
a single edge, to provide a second example of a degenerate case.

More formally,

Ghot = 〈NH , EH〉
Gcold = 〈NC , EC〉
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where

NH = {u | u ∈ N ∧ freq(u) > Θ}
EH = {e | e ∈ E ∧ freq(e) > Θ}
NC = N − NH

EC = E − EH

Given that division into hot and cold subgraphs, we define the Ingress edges
as

Ingress = {(u, v) | u ∈ NC ∧ v ∈ NH}
That is, the Ingress set consists of those edges which transfer control from a
cold node to a hot node. Note that Ingress ⊆ EC must hold (because every edge
adjacent to a cold node must be cold).

ISPRE operates by inserting expressions on edges in the Ingress set, and
thus making some expressions in hot nodes become fully redundant. If those
fully redundant expressions are then replaced by references to temporaries which
hold saved values of the expressions, we have achieved code motion from Ghot
to Gcold.

The code motion is driven by the results of two analyses:

removability, which deduces instances of computations in the hot region that
can be deleted; and

necessity, which deduces edges in the Ingress set where computations must
be inserted, so as to ensure the correctness of the deletions determined by
removability analysis.

Both removability and necessity are formulated as analyses that fall within
the monotone dataflow framework of Kam and Ullman [7]. This implies that they
can be implemented as unidirectional analyses using bit-vector representations of
sets of expressions. That is, we can efficiently compute removability and necessity
for all candidate expressions simultaneously.

4.1 Removability Analysis

An expression e is a possible candidate for removal if (1) e is a safe expression
and (2) there is an upwards exposed use of e in at least one node u ∈ NH . As
mentioned previously, an expression is safe at a particular program point if com-
puting it at that point cannot generate an exception. Exactly which expressions
can be considered safe is both language and platform dependent, and is beyond
the scope of this paper. An expression a op b, for some operator op is upwards
exposed in a basic block if it is not preceded in that basic block by any assign-
ments to a or b (or, in the terminology of dataflow analysis, is not preceded by
any statements which kill e).

Our removability analysis is based on the assumption that every candidate
expression is available on every edge in the Ingress set. An expression e is



Fast Profile-Based Partial Redundancy Elimination 369

available at a point P if it has been computed on every edge leading to P without
being subsequently killed (i.e. no operand of e has been modified). The necessity
analysis will ensure that our assumption is satisfied.

Given the assumption, removability analysis just becomes available expres-
sions analysis [1]. A candidate expression e is removable from node u if and only
if u contains an upwards exposed use of e and if e is available on entry to u. The
dataflow equations, with modifications to incorporate our assumption, can now
be stated.

First, the following sets are computed for each basic block by processing the
intermediate code in the block.

XUSES(b) def= { e | expression e occurs in b and is not preceded
by any redefinitions of operands of e }

GEN(b) def= { e | expression e occurs in b and is not followed
by any redefinitions of operands of e }

KILL(b) def= { e | block b contains a statement which
may redefine an operand of e }

Then the following dataflow equations are solved by finding a least fixed point
solution.

∀b ∈ N :
AVOUT(b) = (AVIN(b) − KILL(b)) ∪ GEN(b)

AVIN(b) =
⋂

p∈preds(b)

{
Candidates if (p, b) ∈ Ingress

AVOUT(p) otherwise

∀b ∈ NH :
Removable(b) = AVIN(b) ∩ XUSES(b)

In the above equations, Candidates represents the set of all candidate ex-
pressions. The solutions to the equations for Removable indicate which upwards
exposed uses of expressions can be removed from each node in Ghot.

Note that the equations for AVIN and AVOUT are solved for all blocks in
the CFG, not just in the hot region. This is because the expression availability
within the cold region is useful in completing the necessity analysis.

4.2 Necessity Analysis

The solutions for the Removable sets assume that computations of all candidate
expressions are available on the Ingress edges. That assumption could be satisfied
by inserting the computations on all those edges. However, that would be a
suboptimal solution because not all the insertions would be needed. There are
two reasons why inserting an expression e on an edge (u, v) in the Ingress set
may be unnecessary.
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1. It is useless: the expression may not reach any exposed use of e in the hot
region which has been deemed to be removable, or

2. It is redundant: the expression e may already be available at the end of block
u.

The dataflow equations for NEEDIN and NEEDOUT determine whether in-
sertions of the candidate expressions would be useless or not. When they have
been solved, their results are used to construct the Insert sets. The calculation
of these sets takes into account whether the insertion would be redundant or
not.

∀b ∈ NH :
NEEDIN(b) = (NEEDOUT(b) − GEN(b)) ∪ Removable(b)

NEEDOUT(b) =
⋃

s∈succs(b)

NEEDIN(s)

∀(u, v) ∈ Ingress :
Insert(u, v) = NEEDIN(v) − AVOUT(u)

4.3 An ISPRE Example

An example CFG to be optimized by Isothermal SPRE is shown in Figure 4(a).
For the example, we use a threshold value Θ of 900. Thus the hot region Ghot
consists of blocks b2, b3, and b4, and edges b2→b3, b3→b5, and b5→b2, while the
Ingress set consists of edges b1→b2 and b4→b5. ISPRE assumes that the result
of the computation of a+b is available in temporary variable t0 on edges b1→b2
and b4→b5. Although ISPRE does not actually transform the CFG at this stage,
the removability analysis assumes the existence of the extra computations on the
Ingress edges, as shown in Figure 4(b).

Removability analysis then finds that the computation of a+b in block b3 would
be redundant and can be replaced with t0. The result is shown in Figure 4(c).

Finally, we can clean up the CFG. We should, whenever possible, avoid in-
serting new code on edges because that implies the creation of new basic blocks
and that, in turn, may cause the compiler to generate more branch instructions.
In our example, the code to be inserted in edge b1→b2 can be moved to the
bottom of block b1; similarly the code to be inserted on b4→b5 can be moved
to the bottom of node b4. The result is shown in Figure 4(d).

4.4 Multipass ISPRE

The analysis described above partitions the CFG into two regions: a hot region
and a cold regions. Once the code motions implied by that partitioning have been
completed, there is no reason why the same process should not be repeated with
a smaller threshold value. The smaller value for Θ will select a larger subgraph for
Ghot, one that contains the previous Ghot region. The ISPRE transformations
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t0 = a+b

(d) After code straightening

Fig. 4. Example of ISPRE

for the second pass will again move computations from the hot region to the
cold region, improving the overall performance of the program.

We propose, but we do not yet have experimental justification for, the halving
of the threshold value on each pass until the expected performance gains become
unimportant.
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The structure of multipass ISPRE would be as follows:

Θ = 0.90 * maximum frequency
repeat

perform ISPRE on the CFG
Θ = Θ / 2

until Θ is small

Much of the analysis for the second and subsequent iterations of ISPRE can
reuse the results of the dataflow analyses from the previous iteration, just up-
dating the solutions.

5 Experimental Results

For our experiments, we used the gcc compiler (version 4.1.0) when applied
to various programs from the SPEC CPU2000 benchmark suite.[14] For these
preliminary experiments, the test subsection of the suite has been used. (We
plan to use the full ref suite in future experiments.)

Table 1 compares the effects of different PRE optimization algorithms. The
column labelled LCM shows the execution times when compiled by gcc using
its PRE algorithm, which is an implementation of LCM [8]. The two columns
labelled SPRE show the (a) times when an optimal speculative PRE algorithm
is used by the compiler, and (b) those times as compared to LCM. (The imple-
mentation of SPRE follows that given in [13].) Finally, the two columns labelled
ISPRE show the results achieved by the method described in this paper. In the
comparisons with LCM, a negative percentage value shows a smaller time than
LCM while a positive value shows the converse.

For all the ISPRE experiments reported here, a single partitioning of the
CFG was performed. That is, the multipass ISPRE was not tested in these ex-
periments. The threshold parameter Θ was always set to be 90% of the highest
node frequency in the CFG. We observe that even a single pass of ISPRE pro-
duces execution times which are very similar to those for SPRE. Taken over the
set of twelve benchmarks, ISPRE produces slightly better results than SPRE.

One might ask how it is possible that an approximate technique like ISPRE
could produce better timings than SPRE which is provably optimal. A partial
answer is that SPRE is optimal only with respect to the expected number of
evaluations of the candidate expressions when the program is run. The dynamic
number of evaluations is not perfectly correlated with execution time because
of interactions between PRE and other compiler optimizations, and there are
interactions with the code generation phase of the compiler. We suspect that
the dominant interaction effect is register pressure. The version of SPRE imple-
mented for these experiments does not take register pressure into account. On
the other hand, LCM keeps the lifetimes of the introduced temporary variables
to a minimum and is therefore minimizing its effect on register pressure. We also
believe that ISPRE naturally chooses insertion points for new computations at
places which do not have a severe impact on register pressure.
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Table 1. Execution Times of Optimized Programs

LCM SPRE ISPRE
Benchmark time

(seconds)
time

(seconds)
relative to

LCM
time

(seconds)
relative to

LCM
164.gzip 1.183 1.266 7.02% 1.190 0.59%
181.mcf 0.118 0.119 0.85% 0.115 -2.54%
197.parser 1.418 1.416 -0.14% 1.305 -7.97%
253.perlbmk 4.364 4.363 -0.02% 4.373 0.21%
255.vortex 3.376 3.203 -5.12% 3.194 -5.39%
300.twolf 0.145 0.144 -0.69% 0.146 0.69%
173.applu 0.149 0.150 0.67% 0.150 0.67%
178.galgel 4.930 4.750 -3.65% 4.770 -3.25%
183.equake 0.553 0.532 -3.80% 0.532 -3.80%
188.ammp 5.688 5.281 -7.16% 5.213 -8.35%
189.lucas 7.102 7.094 -0.11% 7.202 1.41%
301.apsi 4.128 4.150 0.53% 4.164 0.87%

Summary 33.154 32.468 -2.07% 32.354 -2.41%

Table 2. Compilation Times

LCM SPRE ISPRE
Benchmark time

(seconds)
time

(seconds)
relative to

LCM
time

(seconds)
relative to

LCM
164.gzip 2.300 2.460 6.96% 2.330 1.30%
181.mcf 1.200 1.240 3.33% 1.190 -0.83%
197.parser 8.370 9.150 9.32% 8.370 0.00%
253.perlbmk 28.630 33.430 16.77% 28.600 -0.10%
255.vortex 23.150 24.200 4.54% 23.270 0.52%
300.twolf 12.890 14.660 13.73% 12.840 -0.39%
173.applu 2.930 2.920 -0.34% 2.930 0.00%
178.galgel 10.580 10.760 1.70% 10.550 -0.28%
183.equake 1.110 1.330 19.82% 1.050 -5.41%
188.ammp 6.600 7.280 10.30% 6.730 1.97%
189.lucas 1.900 1.940 2.11% 1.940 2.11%
301.apsi 6.230 6.190 -0.64% 6.200 -0.48%

Summary 105.890 115.560 9.13% 106.000 0.10%

One of the claims made in this paper is that the analysis performed by ISPRE
is much faster than SPRE and similar to that of the standard implementations
of PRE. This claim is supported by the timings shown in Table 2. These timings
show the total compilation times for the benchmark programs. In the environ-
ment of JIT compilation, all the initial phases of a compiler (lexical analysis,
syntactic analysis, semantic analysis and IR code generation) would have been
performed before the program begins execution. Thus the time spent on per-
forming code optimization becomes much more significant.
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Table 3. Compilation Times for PRE Optimization Phase Only

LCM SPRE ISPRE
Benchmark time

(seconds)
time

(seconds)
relative to

LCM
time

(seconds)
relative to

LCM
164.gzip 0.010 0.140 14.00 0.010 1.00
181.mcf 0.020 0.300 15.00 0.010 0.50
197.parser 0.040 0.680 17.00 0.040 1.00
253.perlbmk 0.230 4.760 20.70 0.340 1.48
255.vortex 0.130 1.040 8.00 0.210 1.62
300.twolf 0.060 1.740 29.00 0.130 2.17
173.applu 0.030 0.050 1.67 ε -
178.galgel 0.270 0.270 1.00 0.310 1.15
183.equake ε 0.160 - 0.200 -
188.ammp 0.060 0.590 9.83 0.020 0.33
189.lucas 0.040 0.020 0.50 0.030 0.75
301.apsi 0.030 0.040 1.33 0.070 2.33

Summary 0.920 9.630 10.47 1.170 1.27

To further reveal the difference in analysis times between the three different
PRE implementations, Table 3 shows just the times spent in performing the PRE
optimization during compilation. The columns which show relative performance
are displayed as ratios (not as percentage differences) because most ratios are large
numbers. The large ratios for SPRE, e.g. 29 for the 300.twolf benchmark, occur
with the benchmarks which contain large CFGs and are a symptom of the cubic
time computational complexity of the SPRE analysis. In a couple of cases, the
benchmark programs are small and the measured times are negligible. In these
cases, the times are shown as ε and the ratios between the times are left blank.

The case of 183.equake shows a negligible compilation time with LCM but
a much larger compilation time with ISPRE – even larger than the compilation
time with SPRE. It is currently under investigation.

6 Conclusions and Further Work

This paper has introduced a new way to implement partial redundancy elim-
ination in a compiler. Unlike other PRE implementations, there is no claim
of optimality for any cost metric (not lifetimes of saved expression values, not
expected number of expression computations). However, we do claim that the
method is simple to implement, is fast, and produces results that are close to
those produced by the optimal SPRE algorithm. We claim the the technique is
fast enough to be used by JIT compilers.

We have much further work to do, including: evaluation of multipass ISPRE,
selection of threshold values, analysis of register pressure and lifetime issues,
incorporating unsafe expressions into the framework, and optimizing in the pres-
ence of Java or C# exception handling.
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We believe that ISPRE has the potential to become the code motion optimiza-
tion algorithm of choice in future compilers, especially just-in-time compilers.
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Abstract. We present an alternative solution to the Dining Philosophers prob-
lem that is based on Peterson’s mutual exclusion algorithm for N processes, 
with the benefit of not using any ingredients beyond atomic read and write op-
erations. We proceed in two steps towards a comprehensible, symmetric, and 
starvation-free algorithm that does neither rely on atomic test-and-set instruc-
tions nor on synchronization constructs such as monitors, signals, semaphores, 
locks, etc. 

1   Introduction 

Ever since E. W. Dijkstra posed the story of the dining philosophers as an exercise in 
concurrent programming in the early 1970s [1], this problem has attracted and chal-
lenged both theoreticians and programmers, and a variety of different solutions have 
been developed, most of them using some kind of synchronization mechanism (typi-
cally a semaphore) to control accesses to chopsticks by hungry philosophers, see for 
example [2]. Amazingly, although this problem is unmistakably a restricted mutual 
exclusion problem, we could not find any solution that makes direct use of a classical 
mutual exclusion algorithm. Therefore, we took the bait and tried to reuse Peterson’s 
simple but ingenious solution to mutual exclusion published in 1981 [3]. 

2   Peterson’s Filter Algorithm 

Peterson’s algorithm guarantees mutual exclusion among a fixed number of N proc-
esses with respect to their critical section, without making use of any synchronization 
constructs. The state of each process 0,…, N – 1 is captured by an array structured 
variable named claiming. For i fixed, claiming[i] serves as an “escalator” for process i 
to travel from “floor” 0 (non-critical section) to “floor” N (entrance to the critical 
section). On each floor, the shared variable mark is used by a newly arriving process 
to leave a “footprint”. Using a notional Pascal-like syntax, our version of the Peterson 
algorithm for N processes looks like this: 

Program 1. Peterson’s mutual exclusion algorithm for N processes 

(* state space *) 
var claiming, mark: array N of integer; 

(* initialization *) 
var i: integer; 
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begin 
  for i := 0 to N-1 do claiming[i] := 0 end 
end 

(* process nr. i *) 
var k: integer; 
begin 
  loop 
    … (* non-critical section *) 
    (* entry protocol to critical section *) 
    for k := 1 to N-1 do 
      claiming[i] := k; mark[k] := i; 
      while (exists j: j # i: 
        (claiming[j] >= k) & (mark[k] = i)) do 
      end 
    end; 
    claiming[i] := N; 
    … (* critical section *) 
    claiming[i] := 0 (* relinquish exclusivity *) 
  end 
end 

This algorithm is also called the filter algorithm, see [4]. The reason is that for each 
floor i from 1 to N - 1 the last process arriving at this floor (the one that left the last 
footprint”, that is, the one that set mark[k] to i most recently) is a “victim” that cannot 
proceed. As a consequence, at most N – i + 1 processes can simultaneously be on 
floor i and, as a corollary, at most one process can be on floor N at any time, so that 
mutual exclusion is guaranteed. As a fine point note that the statement claiming[i] := 
N can be omitted without loss. 

It is shown in [3] that the algorithm is free from starvation (and deadlock), under 
the obvious assumption that each process is always guaranteed to get a chance to 
proceed after some finite amount of time. However, note that the algorithm does not 
guarantee first-in-first-out handling because one process within the entry protocol can 
easily pass another. 

3   Peterson Modified for the Dining Philosophers 

Let us first recall E. W. Dijkstra’s invention of the Dining Philosophers that is illus-
trated in Figure 1. The original formulation of the problem was this: “Five philoso-
phers sit around a circular table. Each philosopher is alternately thinking and eating. 
In the centre of the table is a large plate of noodles. A philosopher needs two chop-
sticks to eat a helping of noodles. Unfortunately, only five chopsticks are available. 
One chopstick is placed between each pair of philosophers, and each agrees only to 
use the two chopsticks on their immediate right and left side”. 

Because each adjacent pair of philosophers is forced to share one chopstick but re-
quires two of them in order to eat, appropriate synchronization of the philosophers’ 
access to them is necessary. Therefore, at a fundamental level, we have a restricted 
mutual exclusion problem, and so we now try to adapt Peterson’s filter algorithm to 
solve it. 
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Fig. 1. A possible scenario of the Dining Philosophers: one philosopher is eating, three phi-
losophers are waiting for their second chopstick, and one philosopher is thinking 

Obviously, the thinking phase and eating phase of a philosopher’s process corre-
spond to the non-critical and the critical section of a process in the abstract setting 
above. The key idea of how to apply Peterson’s algorithm to the philosophers prob-
lem is now straightforward: reinterpret the permission of entrance into the critical 
section as a mere chance to enter, and have the applicant restart his entry protocol in 
the case when at least one of his two neighbors is critically engaged (that is eating). 

Keeping in mind that (i – 1) (mod 5) and (i + 1) mod 5 are the numbers of philoso-
pher i’s neighbors (due to a linear array being used to represent the circular table) and 
using abbreviations c for claiming and m for mark, we deduce the following attempt 
to solve the Dining Philosophers problem for five diners: 

Program 2. Attempt of a Peterson based Dining Philosopher solution 

(* state space *) 
var c, m: array 5 of integer; 

(* initialization *) 
var i: integer; 
begin 
  for i := 0 to 4 do c[i] := 0 end 
end 
 
(* activity of philosopher nr. i *) 
var k: integer; 
begin 
  loop 
    (* think *) 
    loop (* claim access to chopsticks *) 
      for k := 1 to 4 do 
        c[i] := k; m[k] := i; 
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        while ((c[(i + 1) mod 5] >= k) 
             | (c[(i + 2) mod 5] >= k) 
             | (c[(i + 3) mod 5] >= k) 
             | (c[(i + 4) mod 5] >= k)) 
             & (m[k] = i) do 
        end 
      end; 
      c[i] := 5; 
      if c[(i - 1) mod 5] >= 0 & c[(i + 1) mod 5] >= 0 
        then exit 
      end 
    end; 
    c[i] := -1; 
    (* eat *) 
    c[i] := 0 
  end 
end 

According to this algorithm, each philosopher i is continuously cycling through the 
states c[i] = 0, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, …, 1, 2, 3, 4, 5,  -1, 0, 1, 2, … 
whose semantics are described in Table 1.  

Table 1. State diagram for philosopher processes 

State c Semantics 

0 thinking 

1 hungry, starting entry protocol 

2 progressing in entry protocol 

3 progressing in entry protocol 

4 progressing in entry protocol 

5 chance to eat if no neighbor eats 

-1 eating 

From our above discussion of the filter algorithm we know that the statements in state 
c[i] = 5 (in bold type face) run under mutual exclusion, which means that c[i] < 0 
invariantly implies c[(i - 1) mod 5] >= 0 and c[(i + 1) mod 5] >= 0 or, in other 
words, that, whenever philosopher i is in his critical section, none of his two 
neighbors (i - 1) mod 5 and (i + 1) mod 5 are in their critical section. 

However, the above solution is not free from potential starvation, as the following 
scenario demonstrates: an applicant P detects that one of his neighbors, say Q, is busy 
in his critical section and therefore immediately restarts the entry protocol. At roughly 
the same time, Q exits the critical section and, because he is still hungry, immediately 
requests entrance to the critical section again. This leads to a race between P and Q 
that might be won by Q because, as we know, the filter algorithm does not prevent 
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one algorithm from passing another. Because this situation may recur any arbitrary 
number of times, P may finally starve due to the “race hazard”. 

Therefore, the algorithm needs further refinement. One way to remedy the race 
hazard is adding a variant of the “bakery algorithm” by introducing a ticket-
numbering system that (roughly) indicates the order of the processes starting the entry 
protocol. However, ticket-numbering may have a transitive (global) effect that pre-
vents an otherwise unblocked philosopher from starting to eat merely because of his 
high ticket-number. A better refinement of Program 2 is based on a mechanism that 
allows a hungry but blocked philosopher in the state c[i] = 5 to raise a flag. For this 
purpose, Boolean arrays l and r are added with the following semantics: 

•   l[i]  ⇔ philosopher i would be allowed to eat but is blocked by his left neighbor 
•   r[i]  ⇔ philosopher i would be allowed to eat but is blocked by his right neighbor 

An additional guard at the end of the filter loop is now used to request each philoso-
pher to yield to any of his neighbors who was previously blocked. The following 
argument shows that the resulting algorithm is free from starvation: assume that some 
philosopher process i cannot proceed from state 5 to the critical section due to one or 
both neighbors who are in their critical section. Then, after some finite amount of 
time, these neighbors will leave their critical section and will not be able to enter 
again before philosopher i has removed his flags l[i] and r[i] and has passed the criti-
cal section himself. 

Program 3. The Final Program Solving the Dining Philosophers Program 

(* state space *) 
var l, r: array 5 of Boolean; 
  c, m: array 5 of integer; 

(* initialization *) 
var i: integer; 
begin 
  for i := 0 to 4 do 
    l[i] := false; r[i] := false; c[i] := 0 
  end 
end 
 
(* activity of philosopher nr. i *) 
var k: integer; 
begin 
  loop 
    (* think *) 
    loop (* enter room and claim access *) 
      for k := 1 to 4 do 
        c[i] := k; m[k] := i; 
        while ((c[(i + 1) mod 5] >= k) 
             | (c[(i + 2) mod 5] >= k) 
             | (c[(i + 3) mod 5] >= k) 
             | (c[(i + 4) mod 5] >= k)) 
             & (m[k] = i) do 
        end 
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      end; 
      c[i] := 5; 
      if c[(i - 1) mod 5] < 0 then l[i] := true 
      elsif c[(i + 1) mod 5] < 0) then r[i] := true 
      elsif ~r[(i - 1) mod 5] & ~l[(i + 1) mod 5]) 
      then exit 
      end 
    end; 
    c[i] := -1; l[i] := false; r[i] := false; 
    (* eat *) 
    c[i] := 0 
  end 
end 

3   Conclusion 

We have demonstrated the approach of adapting a well-proved generic mutual exclu-
sion algorithm to a restricted mutual exclusion problem, with the benefit of automati-
cally inheriting its correctness and other qualities. This approach contrasts with the 
usual approach of handcrafting an algorithm that solves a singular concurrency prob-
lem but inherently carries the dangers of errors due to overlooked scenarios. The net 
result is an elegant, symmetric, and starvation-free solution to the Dining Philoso-
phers’ problem that does neither rely on synchronization constructs nor on hardware 
support for atomic memory updates. 
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Hervé Paulino1 and Lúıs Lopes2
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Abstract. We present a service-oriented scripting language for pro-
gramming mobile agents in distributed systems. The main novelty of
the language we call Mob, is the integration of the service-oriented and
mobile agent paradigms. Mob is also encoded onto a process calculus
with a well studied semantics. The encoding provides a specification for
the front-end of the language compiler and allows us to use, for the
back-end and for the run-time system, a compiler and a virtual machine
previously developed for the process calculus.

1 Introduction and Motivation

Service-Oriented Computing (SOC) builds on the pre-existing concepts of object-
oriented and component-based programming, and the client-server paradigm.
The programming model is borrowed from the object-oriented paradigm, as ser-
vices are accessed much in the same way that objects are. Services are described
in a platform independent way by contracts (service interfaces), which are nego-
tiated by the components of an application. Inter-component communication is
based on the client-server paradigm. However, unlike typical client-server archi-
tectures where a client is linked to a given server during the entire operation, in
service-oriented architectures the client-server model is used to request services
in a peer-to-peer organization. A component is not tied to a single server and
there are no client-server hierarchies between the components that provide and
require services. Most of the first service-oriented architectures were built re-
sorting to DCOM [1] or to CORBA [2]. Component-based systems have recently
received a lot of attention for distributed systems, namely with the .NET [3],
Jini [4] and Openwings [5] platforms.

Another major technology for Web applications is that of mobile agents (MA).
Mobile agents are computations that have the ability to travel through a net-
work, by halting their execution, saving their state and then restoring it in a new
host. As they travel along the network, mobile agents use resources (e.g., data,
servers) thus focusing on local, rather than remote, communication. This con-
trasts with the usual communication paradigms (e.g., client-server), that require
costly remote sessions to be maintained.

D. Lightfoot and C. Szyperski (Eds.): JMLC 2006, LNCS 4228, pp. 383–402, 2006.
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Programming languages for mobile agents come in two flavors: those designed
by hand and those based on formal systems. In the first set we have systems
such as Aglets [6], Mole [7] and Voyager [8] that mostly extend Java classes to
define an agent’s behavior. Since it is not possible to access the state of the
Java Virtual Machine (JVM), and modifying it would mean losing portability,
all these systems resort to a weaker kind of migration. Instead of moving the
whole computation to the new location and resuming the execution in the exact
same point where it was interrupted, only code and data are moved, forcing
the programmer to implement receiver code that re-activates the agent after a
migration. Another approach, still in the same set, is that of scripting languages
such as D’Agents [9] or Ara [10], that fully support agent migration but require
specific virtual machine support.

Providing a demonstrably sound semantics for all these systems is rather dif-
ficult given the gap between the implementation and an adequate formal model.

Languages in the second set are based on formal systems, mostly some form
or extension of the π-calculus [11,12]. This process calculus provides the theo-
retical framework upon which researchers can build solid specifications for pro-
gramming languages. Languages can thus be proved correct by design relative
to some base calculus with a well established theory, by providing an adequate
encoding. Examples of such languages have been implemented in recent years,
namely, JoCaml [13], TyCO [14], X-Klaim [15], Nomadic Pict [16], Acute [17] and
Alice [18]. Although process calculi are ideal formal tools for the development
of mobile agent frameworks, their constructs are very low-level and high-level
idioms that provide more intuitive abstractions for programming are desirable.

In [19] we first introduced Mob, a programming language for developing ap-
plications based on mobile agents. Here we extend Mob with another main
abstraction, services, thus uniting two major paradigms for Web applications.
Services, whose contracts are interfaces implemented by agents, and (mobile)
agents are the main abstractions of the language. Agents provide and require
services dynamically as they move through the network. It is our belief that
combining the SOC and MA paradigms in a programming language provides a
useful tool for high-level programming of mobile agents. For instance, using a
service-oriented language, programmers are not required to keep track of agent
names. This makes applications more resilient since the same service may be
provided transparently by several agents in the network.

Moreover, the new formulation of the Mob language has been encoded onto
a calculus that extends the LSD (Lexically Scoped Distributed) π-calculus [20]
with basic objects, expressions, and a strong migration primitive. The LSDπ-
calculus is, in turn, a form of the π-calculus extended with support for dis-
tributed execution and mobility of resources and, with a well-studied semantics.
Although this is not the focus of this paper, we hope to use the encoding to prove
the soundness of the operational semantics of the language. This is particularly
important as it provides a form of language security, in the sense of being correct
by design, not readily available in related languages.



A Mobile Agent Service-Oriented Scripting Language 385

Last, but not least, the encoding onto the process calculus provides a full
specification of the front-end of the compiler for Mob. The output of this front-
end is the Mob source programs written into equivalent programs in the DiTyCO
language [14], a concrete implementation of the LSDπ model. This allowed us to
use both the compiler and the run-time system previously developed for DiTyCO
[21], respectively, as the back-end of the Mob compiler and as the basis for the
run-time system for Mob.

The remainder of the paper is structured as follows: the next section de-
scribes the syntax and semantics of the Mob programming language; section 3
describes the Mob language compiler and run-time system; section 4 presents
two programming examples in Mob to demonstrate its expressiveness; section 5
compares our approach to existing work in the area, and; finally, we present some
conclusions and future work in section 6.

2 Introducing Mob

Mob is a service-oriented mobile agent programming language, whose main ab-
stractions are agents and services. Agents are objects with an associated run-
time. Following an object-oriented approach, they are abstracted in classes de-
fined by the agent construct, while instances are created with the new construct.
Definitions for common objects are given by the class construct, and instances
are created also with the new construct.

Agents may move through the network and this is controlled explicitly, at
high-level, by the programmer using a primitive go (similar to the one found in
Telescript [22]). A strong migration mechanism is used, thus the movement of
an agent involves moving its whole state (code, data and execution state) to the
target host in the network. On arrival the execution resumes transparently at
the exact point where it was interrupted. An agent always carries the closure for
its code, thus enabling disconnected autonomous execution.

Agents may provide (provides) services to other agents and, simultaneously,
require (requires) services provided by other agents. There is absolutely no dis-
tinction between clients and servers. As service providers, agents must be able
to handle multiple incoming requests. To cope with this demand Mob agents
are multi-threaded. Threads can be explicitly created by an agent, through the
fork instruction, or implicitly created, e.g., in a remote method invocation. The
threads running in an agent have unique identifiers and share the agent’s ad-
dress space. Synchronization with the parent thread can be achieved with the
join instruction. Another form of synchronization is provided by the instructions
lock and unlock that support a simple form of mutual exclusion in data access.

The interface for services is defined by the service construct. The interface
is the contract for the service, the base for all service-oriented programming in
Mob. By providing and requiring services, agents become the components of a
service-oriented architecture. Checking that the interface of a service is correctly
implemented is done at compile time by connecting to a network name service.
The types inferred by the Mob compiler are matched with those assumed for the
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service in the network. Well-typed Mob programs do not have run-time protocol
errors, i.e., method invocations are guaranteed to invoke existing methods in
objects and agents, with the right number of arguments and with the correct
types for the arguments.

To access a service, an agent must get a binding for an agent that provides
that service. The binding is obtained dynamically through the primitive bind
that asks the network name service for an agent that provides the required
service. When the binding is received, interaction through method invocation
can happen (much like Java RMI [23]).

Mob can also be used as a coordination language. For that we support the
interaction with external services through the exec primitive. We supply an in-
terface of seven actions that allow initializing a session with a service, interacting
with it, and ultimately terminating it. This interface can be used, for instance,
to execute services implemented in other languages, or interact with network
services, such as WWW queries, FTP transactions, or e-mail communication.

The remainder of the language constructs provide fairly standard support for
control flow, expression evaluation and built-in types.

Syntax and Semantics
Here, we describe the abstract syntax for Mob, an extension of the Mob core
language [24], obtained by providing derived constructs for higher-level program-
ming. The derived constructs keep the underlying semantics of the core language
and are used, for example, to introduce new data-types such as arrays and hashes
(associative arrays). Due to space constraints we will briefly describe the syn-
tax and semantics of the language. The full definition of the language and its
operational semantics may be found in [24].

The syntax for a Mob program is presented in figure 1. The language defines
a set of reserved words identified in bold-face. The main syntactic categories are:
constants (booleans, integers and strings) ranged over by c; variables, ranged over
by x; agent and class identifiers, ranged over by X ; service identifiers, ranged
over by S; method names, ranged over by m; expressions, ranged over by e, and;
instructions, ranged over by P . A sequence of elements of a syntactic category
α is denoted α̃. With this syntax, constant arrays are denoted by [ẽ] and con-
stant hashes by {ẽ ⇒ ẽ}. Naturally, the concrete syntax of Mob imposes some
restrictions to this syntax, e.g., class, agent and service declarations are allowed
only at the beginning of programs.

We exemplify the syntax with a small example of a server and a client for
a Time service. The server (listing 1) provides the service Time with a single
method getTime(). Note that the main method may be empty since Mob agents
run as daemons and some external action is required to terminate their execution.
Here mob is a built-in object, available to every Mob program. It provides an
implementation for basic operations (e.g., input/output) and a simple interface
based on sessions to run external programs. For example, in listing 1, the execp
method encapsulates the execution of a command in the local file-system and
returns a handle for a session in the variable proc. Methods can then be executed
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P ::= agent X(x̃) [provides S̃] [requires S̃] { [G] [M ] } | class X(x̃) { [G] [M ] }
| service S {m̃} | requires S̃ | join (x) | lock (x) | unlock (x)

| go (e) | if (e) { P } [else { P }] | while (e) { P } | for (x in e) { P }
| for (G ; e ; G) { P } | break | return e | exit() | d = e | C

| P ; P | ε

G ::= x1 = e1 . . . xn = en

M ::= m1(x̃1) { P1 } . . . mn(x̃n) { Pn }
C ::= new X(ẽ) | fork { P } | bind (S, e) | bind (S) | host()

| exec (ẽ) | e.m (ẽ)

e ::= C | {ẽ ⇒ ẽ} | [ẽ] | e bop e | uop e | d | c | self | mob

| null

d ::= x | e[e] | e{e} | d.d

Fig. 1. The syntax of the Mob programming language

on this handle according to the kind of session provided: the readln method reads
the result of the command getTimeApp, and; kill terminates the session.

Listing 1. A time server agent

s e r v i c e Time { getTime }
agent TimeServer ( ) p r o v i d e s Time {
main { }
getTime ( ) {

proc = mob . execp ( ”getTimeApp” ) ;
l i n e = proc . r e a d l n ( ) ;
proc . k i l l ( ) ;
r e tu r n l i n e ;

}
}
new TimeServer ( )

The client (listing 2) requires the Time service and takes an array of hosts as
an argument. The agent performs a cycle in which it moves to each of the hosts
provided, setting the current time to the value retrieved from the TimeServer.

Listing 2. A time client agent

agent TimeCl i en t ( h o s t s ) r e q u i r e s Time {
main ( ) {

t imeSe r v e r = b ind ( Time ) ;
f o r ( hostname i n ho s t s ) {
go ( hostname ) ;
proc = mob . execp ( ” setTimeApp ” ˆ t imeSe r v e r . getTime ( ) ) ;
proc . k i l l ( ) ;

}
}

}
new TimeCl i en t ( [ ” ho s t1 ” , ” ho s t2” , ” ho s t3 ” , ” ho s t4” ] ) ;
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The semantics for the Mob core language is provided in the form of a static
type system and an abstract machine. The later describes state transitions be-
tween network configurations. It is not possible to provide a detailed description
of the abstract machine here, due to space constraints. We refer the reader to [24]
for an in depth presentation and, instead briefly sketch the abstract machine
here.

A Mob network N is composed of a set of agents A running concurrently,
together with a name service R. This service keeps two maps. The first, Rh,
keeps track of the current host for each agent. The second, Rs, keeps, for each
service, its type and the set of agents currently running in the network that
provide it. Thus a network may be written as A1 | . . . | An, R (where | is the
concurrent composition operation).

Each agent is internally composed of an agent key k (used to identify the agent
in the network), a host identifier h (the name of the host the agent is currently
running on), the code C required for the execution of the agent, a heap H (to
keep run-time data-structures), a pool of running threads T1 | . . . | Tn and, a
set of suspended threads W (waiting on resources). Thus, we write an agent as
a tuple of the form A

def= (k, h, C, H, T1 | . . . | Tn, W ).
Threads T are composed of a thread identifier t (a synchronization point

for the thread), a stack Q (composed of closures of code blocks waiting to be
executed) and, a heap reference r where the result of the execution of the thread
is to be placed. Thus, a thread may be written as a tuple of the form: T

def=
(t, Q, r).

The abstract machine describes Mob computations with rules of the form
A, R → A′, R′. This top-level reduction operation is most often obtained in
terms of reduction within agents A → A′ when the instructions executed by the
agent do not involve the name service, or other agents. With this description,
the initial state of the execution of a program P is:

(k, h, ∅, ∅, (t, (∅, P ), null), ∅) | A, R

where k is a fresh agent key, t is a fresh thread identifier, h is the local host and,
P is the sequence of instructions of the program. At the end of the sequence of
instructions of a program the configuration of the network will be of the form:

(k, h, , , (t, ε, null), ∅) | A′, R′

This state may not be further simplified to A′, R′, since the agent may provide
services to the network. It simply means that the services have been setup. The
agent now runs as a daemon at host h. To end the execution of an agent the
programmer must explicitly do so with an exit command.

As an example, we present the rules for the go and bind primitives. The go
primitive takes an argument that must be evaluated as a string and that names
a host (h′) in the network. The rule takes the host name and changes the name
service map Rh by mapping the agent binding r′ to the host h′. This change is
reflected in the current hostname for the agent.



A Mobile Agent Service-Oriented Scripting Language 389

eval(H, t, B, v) = h′ B(self) = r′ r′ ∈ dom(Rh) h′ ∈ Host

(k, h, C, H, (t, (B, go(v) ; P ) :: Q, r) | T, W ) | A, (Rh, Rs) →
(k, h′, C, H, (t, (B, P ) :: Q, r) | T, W ) | A, (Rh + {r′ : h′}, Rs)

The bind primitive takes a service name as its argument and provides a bind-
ing for an agent that implements the service. So, the rule for bind, consults the
Rs component of the name server with S as key, and retrieves a binding for one
of the available agents. Here we assume that any agent will do. However, in an
implementation, the choice criteria can be customized.

Rs(S) = (α, {r1, . . . , rn}) r′ ∈ {r1, . . . , rn}
(k, h, C, H, (t, (B, x = bind(S) ; P ) :: Q, r) | T, W ) | A, (Rh, Rs) →

(k, h, C, H, (t, (B + {x : r′}, P ) :: Q, r) | T, W ) | A, (Rh, Rs)

Finally, the abstract machine was encoded onto the DiTyCO process calcu-
lus [14] by defining a map from networks in Mob onto networks in DiTyCO. This
encoding forms the specification for the front-end of the Mob compiler which
we will describe in the next section.

3 Compiler and Run-Time System

The Compiler
The compilation of a Mob program is a two stage process (figure 2). First, the
front-end of the compiler takes the Mob source code and outputs the corre-
sponding code in the DiTyCO language, as specified by the encoding of Mob in
LSDπ. The back-end of the Mob compiler is just the compiler for the DiTyCO
language [21]. The DiTyCO compiler outputs code written in an intermediate
language called MIL (Multi-threaded Intermediate Language [25]), which is com-
piled just-in-time by the run-time system before being executed.

The front-end of the compiler performs type inference on the Mob source code
and in particular finds the types for both the services provided and required by
each agent defined in a program. At this point in the compilation, the network
name service is contacted and a type-check is performed. The types inferred by
the compiler are matched against those assumed for the services in the network.
If the agent provides a non-existing service, the interface provided becomes the
interface for that service. This level of type verification provides some form of
program security in remote method invocation. If the type-check succeeds, the
source Mob program is transformed into a program written in the DiTyCO
programming language.

Along with the DiTyCO code for a Mob program, one extra DiTyCO program
may be produced for certain agents. These are proxies that, when compiled and
executed, allow users to locate a particular agent in the network and to interact
with it. Proxies are generated only for agents that define a special proxyKey
attribute, that is used to locate the agent in the network. Proxies can be executed
in any Mob-enabled host.
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Fig. 2. The compilation and execution of a Mob program

The back-end of the compiler, takes the DiTyCO code generated by the front-
end and processes it with the DiTyCO language compiler to produce .mil files
for each agent and its proxy. Only well-typed DiTyCO programs are successfully
compiled into the final MIL code. The MIL code thus generated is executed by
the run-time system for the DiTyCO programming language [26] with extensions
to support strong mobility (figure 2).

The Run-Time System
Agents run within the boundaries of hosts. In Mob, this host layer is imple-
mented on every Mob-enabled host in a network and on top of the DiTyCO
run-time system (figure 3). This layer is responsible for managing agents within
hosts and supporting their mobility. It is implemented as a service, identified by
a unique, network-wide port, and provides the means to create, execute, mar-
shall, send, unmarshall and receive agents. Its implementation takes advantage
of the fact that the MIL virtual machine is implemented on top of the JVM.
This, for instance, enables the access to the full state of an agent and makes
the (un)marshalling operations quite straightforward to implement besides pre-
serving portability. For example, the Mob run-time system can provide a strong
migration mechanism in a simple and transparent way by stopping and serializ-
ing a running agent that executes the go primitive.

Fig. 3. A Mob network
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The next layer corresponds to the agents themselves and the name service.
Both the agents and the name service are implemented with DiTyCO run-time
systems. Each DiTyCO run-time system (site) has two components; the first is an
instance of theMIL virtual machine that runs theMIL code for the agent or for the
name service; the second, is called the communicator and is a JVM thread respon-
sible for handling network communication for the MIL virtual machine (figure 4).

Internally, the MIL virtual machine is composed of a heap, a hash of MIL
program fragments, and a pool of JVM threads that consume/produce tasks
from/for a set of local run-queues. The tasks are activation records for fragments
of MIL code compiled from the original Mob program. They are scheduled for
execution in the run-queues and executed by idle threads [26].

A shared run-queue also exists to allow for load-balancing between the threads
running the virtual machine (figure 4).

The migration of sites introduces a problem in the management of the coher-
ence of the state of the network, since other sites may hold bindings to resources
from the site about to move. We handle this problem with a lazy reconfiguration
of the network’s topology. When a client tries to establish a connection to an
agent (a site) that is no longer where expected, an exception is thrown. In re-
sponse to this exception, a query is sent to the DiTyCO run-time infrastructure
to find the new location of the agent. The run-time system provides the new
location of the agent and updates all the bindings for the resources imported
from that agent in the client. If the agent is not found, the run-time system
reports an error to the client.

4 Programming with MOB

In this section we present two programming examples that illustrate the expres-
siveness of the language.
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A Mobile Number Cruncher
The example implements an agent that performs some computationally intensive
task (e.g., number crunching) that requires a large amount of CPU time. The
target hardware system in this example is a common LAN, in which computers
are idle for substantial periods of time (e.g., during the night, weekends, lunch
hour). To obtain the resources it requires to complete the computation, the agent
moves through the LAN looking for idle machines that voluntarily donate their
CPU cycles. This example also illustrates how Mob may be used to program
just the coordination between the agent and the underlying network infrastruc-
ture, thus completely encapsulating the computation to be performed. Allowing
agents to dynamically move to computers where the required resources are avail-
able increases the usefulness of the platform considerably and potentially allows
almost uninterrupted execution.

The computation encapsulated by the worker agents may be implemented in
a language other than Mob. The only assumption we make on the application
is that it periodically checkpoints its state into a file and that this file may be
used (as input) to resume the computation once the agent has moved to another
host. The application is divided into three Mob modules.

The PortalAgent (listing 3) supplies an entry point to the network. Its purpose
is to welcome the registry of new hosts to the network and to allow the execution
of new applications. The Portal service defines methods to allow new hosts to
join the network (enter), to retrieve the currently registered hosts (getHosts),
to obtain the number of hosts participating in the cluster (getNoOfHosts), and
which of these are currently available to receive work (getNoOfHostsAvailable).
This data is collected by interacting with MonitorAgent installed on each host of
the LAN.

Listing 3. The PortalAgent agent

s e r v i c e Po r t a l { en te r , getHosts , getNoOfHosts , g e tNoOfHos t sAva i l ab l e }

agent Por ta lAgen t ( ) p r o v i d e s Po r t a l {
ho s t s = [ ] ; // The hosts registered in the portal

en t e r ( h ) { ho s t s . put ( h ) ; }
getHos t s ( ) { r e tu r n ho s t s ; }
getNoOfHosts ( ) { r e tu r n ho s t s . s i z e ( ) ; }

getNoOfHos t sAva i l ab l e ( ) {
r e s u l t = 0 ;
f o r ( h i n ho s t s )

i f ( h . getLoad ( ) != −1)
r e s u l t ++;

r e tu r n r e s u l t ;
}

}
new Por ta lAgen t ( ) ;

A MonitorAgent (listing 4) begins by locating the portal and joining the net-
work. At startup, it specifies the maximum computational load allowed for ap-
plications in the local node. Then, it periodically checks the load of the host and
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uses it to decide whether it is possible to host an application. If the load is higher
than the limit and a worker is running, the later is notified that it must leave
the host. The Monitor service provides methods to retrieve the name of the host
it is monitoring (getHost), to reserve the host for an incoming agent (reserve),
to allow a worker to register itself in the host and store a file with given con-
tents in the local file-system (registerAndStoreFile), to load a data file to memory
(loadFile), and to retrieve the computational load of the host (getLoad). The
reserve method ensures that the migration from one host to another is atomic,
setting the target host as unavailable to any other request during the operation.

Listing 4. The MonitorAgent agent

s e r v i c e Monitor {getHost , r e s e r v e , getLoad , r e g i s t e r A n d S t o r e F i l e , l o a d F i l e }

agent MonitorAgent ( po r ta lHos t , maxLoad ) p r o v i d e s Monitor r e q u i r e s Po r t a l {
worker = n u l l ; // The worker currently executing in the host
l o ad = 0 ; // The current work load
a v a i l a b l e = t r u e ; // Availability of the host

main ( ) {
p o r t a l = b ind ( po r ta lHos t , Po r t a l ) ; // Locate portal
p o r t a l . e n t e r ( s e l f ) ; // Enter the network
wh i l e ( t r u e ) {

l o ad = readLoad ( ) ; // Read the host’s load
i f ( worker != n u l l ) { // If a worker is running

i f ( l oad > maxLoad ) {
worker . l e a v e ( ) ; // Command agent to leave
worker = n u l l ;

}
}
e l s e // If no a worker is running

i f ( l oad > maxLoad ) a v a i l a b l e = f a l s e ; // Not available
e l s e a v a i l a b l e = t r u e ; // Available

mob . s l e e p ( 1 000 ) ; // Sleep 1 second
}

}

r e g i s t e r A n d S t o r e F i l e (w, f i l eName , data ) {
worker = w; // Register worker
// Open file and store contents

}

l o a d F i l e ( f i l eName ) { /∗ Read and r e t u r n f i l e c o n t en t s ∗/ }

getHost ( ) { r e tu r n host ( ) ; }

r e s e r v e ( ) { a v a i l a b l e = f a l s e ; }

getLoad ( ) { i f ( a v a i l a b l e ) r e tu r n l o ad ; e l s e r e tu r n −1; }

readLoad ( ) {
proc = mob . execp ( ” getLoad” ) ; // Obtain the load of the host
r e s u l t = new S t r i n g ( proc . r e a d l n ( ) ) . t o I n t ( ) ; // Convert it to an integer
proc . k i l l ( ) ; // Terminate execution of getLoad
r e tu r n r e s u l t ; // Return result

}

}
new MonitorAgent ( $1 , new S t r i n g ( $2 ) . t o I n t ( ) ) ;
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Finally, a WorkerAgent (listing 5) encapsulates the application to be executed
in a given host. Its parameters are: the name of the portal, the name of the
application to execute and, the name of the checkpoint file for the application.

Listing 5. The WorkerAgent agent

s e r v i c e Worker { l e a v e }

agent WorkerAgent ( po r ta lHos t , app , d a t aF i l e ) p r o v i d e s Worker r e q u i r e s Po r t a l {
p o r t a l ; // The agent supplying the Portal service
monitor ; // The monitor of the current host
data ; // The data collected by the agent
runningApp ; // The process running the application
MAX LOAD = 1000 // A top for the load

main ( ) {
p o r t a l = b ind ( po r ta lHos t , Po r t a l ) ; // Locate portal
data = moni tor . l o a d F i l e ( d a t a F i l e ) ; // Load file to memory
f indHostAndGo ( ) ; // Find a host to execute the application

}

l e a v e ( ) {
runningApp . k i l l ( ) ; // Terminate the execution of the application
data = moni tor . l o a d F i l e ( d a t a F i l e ) ; // Load file to memory
f indHostAndGo ( ) ; // Find new host

}

f indHostAndGo ( ) {
found = f a l s e ;
h o s t s = p o r t a l . g e tHos t s ( ) // Get hosts in the network
monitor = n u l l ;
wh i l e ( ! found ) {

l o ad = MAX LOAD;
f o r ( h i n ho s t s ) { // For each host in the network

aux = h . getLoad ( ) ; // Obtain load of the host
i f ( aux != −1 && aux < l o ad ) { // Check if it is the one with a lower load

monitor = h ;
l oad = aux ;

}
}
i f ( mon i tor != n u l l )

found = moni tor . r e s e r v e ( ) ; // Mark host as reserved
}
go ( mon i to r . getHost ( ) ) ; // Migrate to host
moni tor . r e g i s t e r A n d S t o r e F i l e ( s e l f , d a t aF i l e , data ) ; // Store data to file
runningApp = mob . execp ( app ) ; // Run application

}
}
new WorkerAgent ( $1 , $2 , $3 ) ; // Create worker agent

The main method locates the portal and calls findHostAndGo to find a suitable
host to install the computation. Once the host is selected in the later method,
the agent moves to it, saves the checkpoint data to a file and executes the
application. The host where the application is deployed is selected based on
the loads reported by the monitors of each host registered in the portal. In this
example, the host with the lowest load is reserved. The reservation will only fail if
another worker as already reserved the host. The leave method is used to suspend
the execution of the application in the current host when it ceases to provide the
computational resources necessary to run it (for example, the owner of the host
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restarts using it). The method suspends the execution of the application and
looks for a new host by querying the portal. Note that the method only returns
once the migration is complete, and thus the later is a synchronous operation.

A Mobile RPM Installer
In this section we present an example that provides a simple way to dynamically
update the software (in the form of RPM files) in a network. For simplicity we
assume that all target hosts have the same operating system and distribution,
and thus no version control is required. We also do not implement user authen-
tication, since it is not the focus of the example. The application is divided into
four components.

The Repository agent manages a repository of software files (listing 6). It
implements the SoftRepository service that provides methods to store (put) and
retrieve files (get), and to obtain the agent’s location (getHost). Method get takes
a list of file names and creates and returns an hash in which the keys are the
file names and the values are the contents of the files. The method put method
adds files to the repository.

Listing 6. The Repository agent

s e r v i c e So f tR epo s i t o r y { put get getHost }

agent Repo s i t o r y ( ) p r o v i d e s So f tR epo s i t o r y {

main ( ) { }

put ( f i l eName , f i l e C o n t e n t s ) { . . . }

get ( f i l e s ) {
r e s u l t = {} ;
f o r ( f i l eName i n f i l e s ) // Place the contents of the files in the map

r e s u l t . put ( f i l eName , r e a d F i l e ( f i l eName ) ) ;
r e tu r n r e s u l t ; // Return map

}

getHost ( ) { r e tu r n host ( ) ; }

r e a d F i l e ( f i l eName ) { /∗ Read the f i l e to memory ∗/ }
}
new Repo s i t o r y ( ) ;

Every host willing to be updated must execute an agent that implements the
SoftInstaller service. This agent, Installer, is the base station for other agents
to come and install the software. The SoftInstaller service is composed by two
methods: install and getDeps. In their implementation in the Installer agent, the
install method performs the actual installation of the software given as argument.
It creates a new file to hold the RPM to install, installs it by executing the rpm -i
command, and finally removes the RPM file from the file-system. It returns the
message given by the RPM installation, or an error message, if the file could not
be created. The getDeps method, returns an array holding the dependencies of
the given file. The implementation is similar to install.
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Listing 7. The Installer agent

s e r v i c e S o f t I n s t a l l e r { i n s t a l l , getDeps }

agent I n s t a l l e r ( t a r g e tHo s t ) p r o v i d e s S o f t I n s t a l l e r {
main ( ) { go ( t a r g e tHo s t ) ; }

i n s t a l l ( f i l e C o n t e n t s ) {
f i l eName = c r e a t e F i l e ( f i l e C o n t e n t s ) ; // Create file
proc = mob . execp ( ”rpm − i ” ˆ f i l eName ) ; // Install file
proc . wa i t ( ) ; // Wait for completion
r e s u l t = proc . r e a d l n ( ) ;
r emoveF i l e ( f i l eName ) ; // Remove file
r e tu r n r e s u l t ; // Return result

}

getDeps ( f i l e C o n t e n t s ) {
f i l eName = c r e a t e F i l e ( f i l e C o n t e n t s ) ; // Create file
proc = mob . execp ( ”rpmDeps ” ˆ f i l eName ) ; // Get dependencies
proc . wa i t ( ) ; // Wait for completion
r e s u l t = new S t r i n g ( proc . r e a d l n ( ) ) . toAr ray ( ) ; // Create array from string
r emoveF i l e ( f i l eName ) ; // Remove file
r e tu r n r e s u l t ; // Return result

}

c r e a t e F i l e ( f i l e C o n t e n t s ) { /∗ Crea te new temporary f i l e ∗/ }
r emoveF i l e ( f i l eName ) { /∗ Del e te f i l e from f o l d e r ∗/ }

}
f o r ( i = 1 ; i < $$ ; i++) // For each host given as argument

new I n s t a l l e r ( $ i ) ; // Launch installer

Client is a component that locates a network agent that provides the Soft-
Deployer service and instructs him to install a set of files in a set of hosts. Its
implementation (listing 8) receives a string with the hosts ($1) and, a string with
the names of the files to install ($2) from the command line.

Listing 8. The Client script

r e q u i r e s So f tD ep l o y e r
b ind ( So f tD ep l o y e r ) . d ep l oy ( new S t r i n g ( $1 ) . toAr ra y ( ) , new S t r i n g ( $2 ) . toAr ray ( ) ) ;

Finally, a Deployer agent is launched into the network and waits for installation
requests. As the name suggests, the agent deploys the files required by the local
instances of Installer agents. Requests get exclusive access to the agent and thus
are serviced one at a time. A call to the deploy method first resolves the location
of the software repository and the Deployer agent moves to that host, in order to
obtain the desired RPM files. Then, it moves through the list of hosts given in the
call. At each host it obtains a bind for a local agent implementing the SoftInstaller
service. Then, for each file to install, it checks for unresolved dependencies. The
result (deps) will be matched against the list of files installed in the previous host
(the keys of the cachedFiles hash). Once this operation is completed, the deps list
will contain the name of the files required from the repository and, the cachedFiles
hash the dependencies for the files that are already owned by the agent. If deps is
not empty, another trip to the repository is required to obtain the missing files.
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These will also be placed in cachedFiles, which keeps track of the dependencies
to be resolved before installing the software. The actual installation is done by
iterating through the cachedFiles and toDeploy hashes and calling install in the
local Installer agent to install the packages involved. The use of both hashes
separates the static set of requested files from the host-dependent, dynamically
gathered dependencies.

Listing 9. The Deployer agent

s e r v i c e So f tD ep l o y e r { dep l oy }

agent Dep loye r ( ) p r o v i d e s So f tD ep l o y e r r e q u i r e s So f tR epo s i t o r y , S o f t I n s t a l l e r {

main ( ) { }

dep l oy ( f i l eNames , h o s t s ) {
l o ck ( s e l f ) ;
r ep = b ind ( So f tR epo s i t o r y ) ; // Discover the repository
repHost = rep . getHost ( ) ; // Obtain the host where it is located
go ( repHost ) ; // Migrate to its location
toDep loy = rep . ge t ( f i l eNames ) ; // Get files to install
c a c h e d F i l e s = {} ;
deps = {} ;
f o r ( h i n ho s t s ) {

go ( h ) ; // Migrate to a target host
i n s t a l l e r = b ind ( S o f t I n s t a l l e r , h ) ; // Obtain a binding for the local base station
f o r ( f i l e i n toDep loy ) { // Get dependencies

deps = i n s t a l l e r . getDeps ( f i l e ) ;
f o r ( f i l eName i n c a c h e d F i l e s . keys ( ) ) // Check if all dependencies are fulfilled

i f ( deps . c o n t a i n s ( f i l eName ) )
deps . remove ( f i l eName ) ;

e l s e
c a c h e d F i l e s . remove ( f i l eName ) ;

i f ( ! deps . i sEmpty ( ) ) { // Dependencies are not fulfilled
go ( repHost ) ; // Migrate to the repository
c a c h e d F i l e s . put ( r ep . ge t ( deps ) ) ; // Get dependency files
go ( h ) ; // Migrate back to the host

}
}
f o r ( f i l e i n c a c h e d F i l e s ) // Install dependencies

i n s t a l l e r . i n s t a l l ( f i l e ) ;
f o r ( f i l e i n toDep loy ) // Install requested files

i n s t a l l e r . i n s t a l l ( f i l e ) ;
}
un lock ( s e l f ) ;

}
}
new Dep loye r ( ) ;

Running Mob applications is easy. The mob command may be used to run
scripts. A Mob program is run by specifying its .mil file, the host where it should
run (which must be Mob-enabled) and the command line arguments the program
takes. The command that follows creates a new DiTyCO run-time system to run
agentCode.mil at ahost.anet with arguments arg1 arg2 ... argn.

> mob agentCode.mil ahost.anet arg1 arg2 ... argn

Similarly, when a proxy is run, a new DiTyCO run-time system is created.
The proxy takes the key of the agent as argument, resolves its current location
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using the underlying DiTyCO infra-structure and gets a binding for it. After
the binding is obtained, communication through remote method invocation is
possible. The following command starts the proxy program, agentProxy.mil, that
connects to the agent with key agentKey.

> mob agentProxy.mil agentKey

5 Related Work

In this section we describe recent research that we feel relates more closely to
this work. In the field of languages and systems based on process calculi there
are several languages that have been proposed. None of these languages use the
concept of service-orientation.

Jocaml [13] is a programming language based on the Join calculus that pro-
vides support for distributed and mobile agent based applications. The language
uses a custom virtual machine and supports the migration of trees of compu-
tations (an agent and its tree of sub-agents) between hosts in a network. Just
as in Mob, type-checking is mostly done at compile time except for interaction
with other modules which is done dynamically. The required type information
is annotated in the source program.

The M-Calculus [27] is an extension of the Distributed Join calculus, that
incorporates several new notions, such as programmable localities and dynamic
binding. It does not support mobile computations but rather code mobility. Its
focus is on resource access control and safe communication, defining localities
composed of a membrane and a content. The current implementation uses a
distributed abstract machine called CLAM (CeLular Abstract Machine), and
provides a centralized implementation, the C-VM (Cellular Virtual Machine)
[28], which was developed on top of the JVM. Each location is executed by a
single dedicated Java thread. In Mob, we defined the Mob abstract machine,
and implemented it resorting to the DiTyCO distributed implementation. Each
Mob agent is encoded into a DiTyCO site (run-time system) which is executed,
by the Mob host service. Each site is itself multi-threaded [26].

The X-KLAIM [15] programming language is an implementation of the
KLAIM model with ad-hoc extensions to incorporate higher-order constructs,
asynchronous reading of tuple-spaces and hierarchical structured networks. Pro-
grams in X-KLAIM are compiled into Java classes that resort to a package,
KLAVA, to run. A mobile agent in X-KLAIM is a process with a single exe-
cution flow, rather than the multi-threaded agents found in Mob. This makes
the migration of a multi-threaded agent, scattered among several processes at a
given site, a complex and user aware operation.

Nomadic Pict [16] is perhaps the closest to our work in that it grows from
another process calculus based language, Pict [29], and adds primitives for pro-
gramming mobile computations such as agent creation, agent migration and
asynchronous communication between agents. Nomadic Pict also focuses on ver-
ification and a proof of correctness for an instance of the infrastructure has been
achieved [30]. Despite the similar approach, our emphasis is on producing a
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compact, user-friendly, scripting language that abstracts away from network lo-
cation dependent information. In this respect we feel that Mob, even in its core
language is higher level than Nomadic-Pict, providing built-in multi-threaded
agents and a service-oriented paradigm.

Acute [17] is a programming language for mobile agents built on top of the Ob-
jective Caml programming language. The language provides type-safety through
a mixed static/dynamic type checking scheme, e.g., on module linking. Moving
computations is achieved through an atomic operation that captures a collec-
tion of threads in a structure (a thunk) that can afterwards be marshalled and
moved across the network. This contrasts with Mob where marshalling of ob-
jects or agents is transparent to the programmer. In the case of Mob agents
the primitive go implements the marshalling required for sending the agent to
another node in the network. The Mob service on that node will be responsible
for unmarshalling the agent and restart it. In this respect Acute provides a finer,
lower level, control over migration and marshalling than Mob.

Alice is a programming language based on Oz and its implementation,
Mozart [18] (itself based on Standard ML). The functionality provided by Alice
is similar to that of Acute, supporting dynamically linked modules, type-safe
marshalling, concurrent execution but with some differences, e.g., it lacks re-
binding. The front-end of the Alice compiler produces Oz intermediate code so
that the Oz run-time, Mozart, is used to run Alice applications. The approach
is similar to the one we use since the front-end of the Mob compiler produces
DiTyCO code that is then executed with DiTyCO’s run-time system.

Java based systems such as Aglets [6], Mole [7] and Voyager [8] supply a set
of Java classes which the programmer must extend to implement applications.
As in Mob, the run-time architecture of these systems is based on abstractions
for IP nodes running a hosting service.

In Aglets [6], inter-agent communication is done by dispatching instances of
a Message class, which are relayed by a proxy on the target agent’s side, much
like in Mob. Communication is point-to-point and group communication is not
supported. Each agent is executed in an independent Java thread.

Mole [7] agents are clusters of objects. References to agents in Mole are sym-
bolic, each agent being identified by a unique network-wide name. In Mob,
references to agents are true heap references and are kept by the agent as it
moves through the network. Communication in Mole uses a set of pre-defined
mechanisms supported by Java such as RMI or asynchronous message-passing.

In Voyager [8] an agent is also a collection of objects. However, objects (includ-
ing agents) may be created remotely without implementing any special interface.
Voyager generates all the required files, and handles all messaging. Communi-
cation is done by method invocation or through a shared space. As in Mob,
Voyager supplies basic communication mechanisms, reserving higher-level com-
munication or protocols to the application programmer.

Two other systems that have some features akin to Mob are D’Agents and
Ara. A mobile agent in D’Agents [9] (former Agent Tcl) may be written in any
language, although TCL is the one mostly used. All the services and resources
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required by an agent (e.g., state capture, migration, communication, disk access)
are made available at each host by a dedicated server. D’Agents implements a
weak form of migration since, although agents resume execution in the next
instruction of the program after a migration, no state is carried by the agent.

Mobile agents in Ara [10] are programmed in an interpreted language. The
interpreter for this language is a special run-time system for agents called the
core. A special core call allows agents to migrate at any point of their execution,
and the agent carries the full state of the computation with it (as opposed to
D’Agents).

6 Conclusions and Future Work

We introduced Mob, a programming language for developing applications based
on mobile agents that uses a service-oriented approach to resource discovery.
The combination of both paradigms in a programming language and run-time
system provides a very high level model for programming distributed applications
for today’s networks. It allows, for example, to abstract away from the physical
locations and even from the identifiers of individual network agents. Interaction is
based on service contracts. Services are provided to the network and are required
from the network.

We have implemented a compiler and a run-time system for the Mob lan-
guage. The abstract machine for Mob was encoded onto a process calculus and
this allowed us to use this encoding as a specification for the front-end of the
Mob compiler. It also allowed us to use the run-time system developed for the
calculus as the basis for the development of the Mob run-time system.

Currently, we are preparing a release of the platform with the prototypes of
both the compiler and the run-time. We are also extending the language with
APIs for interaction with external services. This will allow Mob to act as a
coordination language for mobile agents that interact with web services using
such protocols as SMTP, FTP, or HTTP and, to interact with network databases.

From a more formal point of view, we aim to prove the soundness of the
Mob language. In other words, given our encoding [[·]], from Mob abstract-
machine states into the extended LSDπ-calculus, we wish to prove the following
conjecture:

Conjecture (Soundness.) Let N and N ′ be network configurations in the Mob
abstract-machine. If N → N ′ (reduces to in Mob) then, [[N ]] ≡ [[N ′]] (is congru-
ent to in the calculus) or [[N ]] → [[N ′]] (reduces to in the calculus).
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Abstract. The recent product development of processors shows that multi-core 
computer architectures are rapidly becoming reality. Therefore, in order to use 
the available processing power, operating systems and programming languages 
supporting the development of multi-threaded software will be needed. In this 
paper, we present a small case study that shows how elegant and safe concur-
rent programming can be if a powerful programming language and thread-safe 
libraries are used. The case study is a simple search tool written in Active 
Oberon. The application uses a thread-safe GUI framework that relieves the 
programmer from synchronizing requests. 

1   Introduction 

Present and future multi-core computer architectures require multi-processor operat-
ing systems and support for multi-threading on the level of the programming language 
and the environment. Current operating systems are capable to schedule processing 
tasks to multiple processors. The complexity is hidden, thus, giving the IT user bene-
fits in terms of efficiency and response times. The structuring of a programming task 
into threads and their synchronization is one of the challenges of current program-
ming and can hardly be automated. In standard programming languages and environ-
ments (Java, C#/.NET), multi-threading is supported by a number of specialized li-
brary or language calls. However, their use is cumbersome and very often, the pro-
grammer has to understand the implementation to make correct use of them. In addi-
tion, standard libraries and frameworks for graphical user interfaces (GUI) are seldom 
thread-safe (e.g. Java Swing, .NET WinForms). This means that it is the program-
mer’s responsibility to synchronize threads that operate on the same component. What 
is desirable is a programming environment in that developing complex multi-threaded 
applications becomes more focused on the actual problem and releases the program-
mer from burdens that can be performed effectively by the environment. 

Active Oberon is a type-safe, modular object-oriented programming language that 
contains dedicated language constructs for threads and their synchronization [1]. 
Threads are declared as activities encapsulated in objects. Such an active object con-
tains variables and methods like a regular object but its body is executed as a separate 
thread. In addition, there exist language constructs to declare critical sections with 
respect to an object scope and a powerful wait statement that allows waiting for a 
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conditional expression to become true instead of waiting for a primitive signal like it 
is commonly used in other languages and threading libraries. With these, it is possible 
that an object or a module performs like a monitor [1][2]. It has been shown that these 
multi-threading specific language constructs can be adopted by other programming 
languages [3]. 

Bluebottle is an operating system consisting of a lean multiprocessor kernel and a 
thread-safe multimedia and GUI framework [1][4]. It is fully programmed in Active 
Oberon. The particular thread-safety mechanism of Bluebottle’s GUI framework 
makes developing applications easier. Programmers do not need to explicitly syn-
chronize requests to the same GUI component. This built-in synchronization strategy 
uses a message queue for asynchronous events, a thread for processing the messages 
and a lock for ensuring a consistent view on inter-component relations [5].  

This paper presents the design and implementation of a sample application pro-
grammed in Active Oberon under Bluebottle. This application, a search tool, is a typical 
concurrent GUI application. We demonstrate that the combination of the language con-
structs of Active Oberon and the synchronization strategy of Bluebottle’s GUI frame-
work is perfectly well suited for this type of problem. While the implementation of this 
application in other environments is typically complex and cumbersome, the program 
code in Active Oberon becomes clear and concise, and thus, less error-prone.  

2   Sample Application 

Our case study is a GUI application that allows the user to search for files that contain 
a given character string. The GUI of the search tool is shown in Fig. 1. The input  

 

 

Fig. 1. Graphical user interface of search tool. It shows the results of a search request given the 
directory path “AOS:”, the file mask “*.Mod” and the search string “FileList”.  
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parameters of a search request are a directory path, a file mask (e.g. *.Mod), and a 
search string. The search is started by pressing the start button labeled with “Go” and 
interrupted by clicking on the button “Stop”. The search results are displayed as soon 
as they are found. A status line at the bottom of the window indicates the status of an 
ongoing request. It can either show “Processing” or “Ready”. As searching through 
files is time-consuming it is possible to open some of the found files while the search 
is still ongoing. 

A user may open multiple instances of the search tool on his desktop and start sev-
eral search requests in parallel. 

3   Design 

The graphical user interface of the search tool is built using Bluebottle’s GUI compo-
nents. Bluebottle provides a number of standard GUI components to build the most 
common user interfaces. The search tool uses two threads for searching through the files 
and for displaying the results. The two threads communicate by a buffer and, thus, rep-
resent a classical producer-consumer scheme. The current search results are written to 
the GUI using a model-view-controller (MVC) pattern. The consumer process updates 
the model of the GUI component. Changes to the model implicitly lead to an update of 
the views. Fig. 2 shows the threads (active objects) and the main regular objects in-
volved in this application. The arrows between objects represent method calls. 

The singleton object WindowManager receives asynchronous mouse and keyboard 
events and forwards them to the corresponding window [4]. In our case, starting and 
stopping a search request as well as opening a file for inspection are triggered by 
mouse clicks.  

The main window of the search tool is represented by an object of base type Form-
Window. It contains the GUI components ordered in a hierarchical structure that con-
trol the appearance of the application. For instance, the top element of the component 
hierarchy is a component of type Panel that among others contains a StringGrid com-
ponent to display the search results on the GUI.  

The active object Searcher processes a search request. It traverses all files that 
match the given mask and checks if the provided string is contained. The Searcher 
object waits for a new request after finishing a search task. The results are written to a 
buffer of type ListBuffer. The active object Dispatcher reads the elements of the 
buffer chunk by chunk as soon as they are available and updates the object String-
GridModel. The object StringGridModel represents the model in the MVC pattern 
whereas the view is a GUI component of type StringGrid that is part of the compo-
nent hierarchy contained in object FormWindow. The model StringGridModel man-
ages a dynamic two-dimensional array of strings that are linked with some more  
context data. Every change to the object StringGridModel automatically leads to an 
update of its view in the FormWindow object.  

Status messages are displayed in the GUI component by means of delegate proce-
dures that are registered with the Dispatcher object. 

Requests to the search tool window are serialized. This means that mouse events 
from the WindowManager object, requests to update the view and status messages are 
implicitly synchronized. This is done by a sequencing mechanism implemented by a 
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sequencer object that is stored with each FormWindow object. The sequencer object 
contains a thread, a message queue and a lock that protects the hierarchy of GUI com-
ponents [5]. Each request to the FormWindow object that is not called by the se-
quencer thread is put in the message queue that is processed by the sequencer thread. 
The object FormWindow corresponds to the Active Object pattern that decouples 
method execution from method invocation in order to allow synchronized access to an 
object that resides in its own thread of control [6]. 

 

 

Fig. 2. Call graph of search tool 
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4   Implementation 

The following section presents the implementation of the objects Searcher, Dis-
patcher and Listbuffer. It describes the mechanism used to update the StringGrid-
Model object and the status display. Finally, we explain the wiring of the objects. 

Recall that the object Searcher administers the search actions. Results are written 
to the object ListBuffer and are forwarded by the object Dispatcher to the model 
StringGridModel.  

4.1   Searcher 

The active object Searcher executes an infinite loop that waits for a new search re-
quest, then copies the input parameters from the new search request to those of the 
current request, resets the buffer and starts the search. It notifies the end of the search 
request to the buffer and waits for the next search request.  

Active objects are declared as regular objects but their body is annotated by the 
keyword ACTIVE to denote that the object body is executed as a separate thread. The 
active object Searcher contains some state variables, the parameters of the ongoing 
and the new search request and a reference to the Listbuffer object. The parameters of 
a search request are packed in a record type SearchPar for ease of use. The Searcher 
object acts as monitor that requests mutual exclusion for its methods [2]. Mutual ex-
clusion for a method is denoted by the keyword EXCLUSIVE after the first BEGIN. A 
new search request is started by calling the method Start and is interrupted by calling 
the method Stop. The relevant code fragments of the Searcher object are given in the 
following. The language constructs that support multi-threading are highlighted.  

TYPE 
  SearchPar = RECORD 
    path, fmask, content : ARRAY 1024 OF CHAR 
  END; 

  Searcher = OBJECT 
  VAR  
    newlyStarted, stopped : BOOLEAN; 
    currentPar, newPar : SearchPar; 
    lb : ListBuffer;   

  PROCEDURE &Init(lb : ListBuffer);  (* constructor *) 
  BEGIN 
    newlyStarted := FALSE; 
    stopped := FALSE; 
    SELF.lb := lb 
  END Init; 
 
  PROCEDURE Start(VAR searchPar : SearchPar);                  
  BEGIN {EXCLUSIVE}    
    newPar := searchPar; 
    newlyStarted := TRUE 
  END Start; 
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  PROCEDURE AwaitNewStart; 
  BEGIN {EXCLUSIVE} 
    AWAIT(newlyStarted); 
    newlyStarted := FALSE; 
    stopped := FALSE 
  END AwaitNewStart; 

  PROCEDURE CopySearchParams; 
  BEGIN {EXCLUSIVE} 
    currentPar := newPar; 
  END CopySearchParams; 

  PROCEDURE Stop; 
  BEGIN {EXCLUSIVE} 
    stopped := TRUE 
  END Stop; 

  PROCEDURE HasStopped() : BOOLEAN; 
  BEGIN {EXCLUSIVE} 
    RETURN stopped 
  END HasStopped; 

  PROCEDURE SearchPath; 
  VAR mask, name : ARRAY 1024 OF CHAR; 
    e : AosFS.Enumerator; 
    d : DirEntry; 
  BEGIN 
    … 
    NEW(e);  
    e.Open(mask, {}); 
    WHILE e.HasMoreEntries() DO 
      IF HasStopped() THEN RETURN END; 
      IF e.GetEntry(name, …) THEN 
        IF ContainsStr(name, currentPar.content) THEN 
          NEW(d); 
          …  
          lb.Put(d); 
        END 
      END 
    END 
  END SearchPath; 

 
BEGIN {ACTIVE} (* body *) 
  LOOP 
    AwaitNewStart; 
    CopySearchParams;  
    lb.Reset; 
    SearchPath;    
    lb.Finished 
  END 
END Searcher; 



 A Case Study in Concurrent Programming with Active Objects 409 

The AWAIT statement as in procedure AwaitNewStart is noteworthy. If the condition 
in the argument of AWAIT returns false, the current process is suspended and put in a 
list of waiting processes. Additionally to the process, a helper function and the base 
pointer of the current stack frame are stored. The helper function is generated by the 
compiler and is used to evaluate the condition of the AWAIT statement in a given 
stack frame. When a process leaves the end of a critical section, the runtime system 
traverses the list of waiting processes and for each process evaluates the condition 
using the helper function. If a condition of a waiting process evaluates to true, the 
lock of the process that leaves the critical section is atomically transferred to the wait-
ing process which is then scheduled [1]. In C#/.NET and Java, suspending a process 
and waking up one or all waiting processes are realized by special library calls and 
built-in procedures, respectively. In both C# and Java, the programmer has to place 
the statements for waking up waiting processes at each location in the code where a 
condition for any of the waiting processes may become true. This is a burden for the 
programmer and, in fact, these statements are easily forgotten while developing con-
current C# or Java programs. In addition, if there are processes waiting on different 
conditions and only one of the conditions becomes true there is no other way than to 
wake up all waiting processes and to suspend those whose condition is not satisfied 
yet. Besides that the programs thereby become less readable and less compact this 
may result in a number of unnecessary context switches that reduce the efficiency of 
the system. Active Oberon wakes up exactly one of those waiting processes whose 
condition has become true. Thus, unnecessary context switches are avoided. The cost 
is that the conditions of waiting processes are evaluated every time a process leaves a 
critical section. Since these evaluations can be performed without a context switch, 
this overhead is comparatively small [1]. 

The procedure SearchPath performs the actual search over all files that match the 
given directory path and the file mask. Before inspecting the next file, SearchPath 
checks whether the flag stopped is set and returns if this is the case. The algorithm for 
finding the occurrence of a given string in a file is the Boyer-Moore string search 
algorithm.  

4.2   Dispatcher  

The Dispatcher thread waits for a new search request and then continuously reads the 
search results from the buffer and updates the model of the GUI component that dis-
plays the results. It displays status messages to the GUI of the search tool denoting 
that a search is ongoing and when it has finished. The search results are read from the 
buffer in chunks to avoid too frequent model updates in the case of very frequently 
occurring search strings. The delegate mechanism of Active Oberon is used for both 
the model and the status updates. Delegates are declared similar to procedure types 
[2]. Formally, a delegate variable is a pair of references that point to an object and to a 
type-bound procedure.  

A new data type RetrievedList to contain chunks of the buffer is defined. A buffer 
element is of type DirEntry (see Sec. 4.3). It is a record structure that contains the 
directory information of a file, e.g. the file name, its size, creation date, etc.. Frag-
ments of the program code of Dispatcher are shown below. Dedicated language con-
structs are again highlighted. 
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TYPE  
  RetrievedList = RECORD 
    data : ARRAY RListSize OF DirEntry; 
    noEl : INTEGER 
  END; 

TYPE 
  GridDisplayHandler = PROCEDURE {DELEGATE} (VAR rl : 
RetrievedList);  
 
  SearchStatusHandler = PROCEDURE {DELEGATE} (); 
 
  Dispatcher = OBJECT 
  VAR  
    newlyStarted, stopped : BOOLEAN; 
    rl : RetrievedList; 
    display : GridDisplayHandler; 
    startHandler, doneHandler : SearchStatusHandler; 
    lb : ListBuffer; 
 
    (* constructor *) 
    PROCEDURE &Init(lb : ListBuffer;  
                    d : GridDisplayHandler; 
                    sh, dh : SearchStatusHandler); 
    BEGIN 
      SELF.lb := lb; 
      display := d; 
      startHandler := sh;  
      doneHandler := dh; 
      stopped := FALSE 
    END Init; 

    … 
    (* procedures Start, AwaitNewStart, Stop and  
       HasStopped as in Searcher *) 
    … 

  BEGIN {ACTIVE} 
    LOOP 
      AwaitNewStart; 
      startHandler; 
      LOOP 
        lb.Get(rl); 
        IF rl.noEl = 0 OR HasStopped() THEN EXIT END; 
        display(rl); 
      END; 
      doneHandler; 
    END 
  END GridDisplayHandler; 
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4.3   ListBuffer 

The ListBuffer data structure is implemented as a circular buffer. The Searcher thread 
puts the search results into the buffer one by one whereas the Dispatcher thread con-
sumes them in chunks.  

The variables and signatures of the methods of ListBuffer are given below. The 
Listbuffer object contains a variable chunkSize that denotes the minimum number of 
buffer elements returned by procedure Get in case of an ongoing search request. This 
number is computed dynamically. It is initialized to 1 and adapted after each call to 
Get. Procedure Get returns only if the number of available elements in the buffer are 
greater or equal to chunkSize or if the search is finished. If the number of available 
buffer elements is greater than chunkSize the variable chunkSize is adapted. All meth-
ods can only be accessed by one process at a time, i.e. they are declared with the 
EXCLUSIVE keyword. Thus, an instance of ListBuffer like the instances of Searcher 
and Dispatcher acts as a monitor. 

TYPE ListBuffer = OBJECT 
  VAR data : ARRAY RListSize OF DirEntry; 
    in, out, chunkSize : INTEGER; 
    finished : BOOLEAN; 

    PROCEDURE &Reset; (* constructor *) 

    PROCEDURE Put(d : DirEntry); (* produce *) 

  PROCEDURE Get(VAR rl : RetrievedList); (* consume *) 

    PROCEDURE Finished(); (* signal end of searching *) 

END ListBuffer; 

4.4   StringGridModel Update 

The model of the GUI component that displays the search results is updated by the 
delegate DisplayGrid that is a method of the type FileList. The FileList declaration 
contains the GUI component, its view, as a variable and provides further methods like 
opening a file in the GUI component.  

Excerpts of the program code of DisplayGrid and how it is embedded in the decla-
ration of FileList is shown below. The variable grid denotes the GUI component that 
shows the search results. It has a reference to the underlying model and provides a 
locking mechanism such that changes to the model are synchronized. The methods to 
lock the model are Acquire and Release. They are highlighted in the code fragment 
below. The method Release implicitly performs an upcall to the observers of the 
model to update the view.    

TYPE FileList = OBJECT 
  … 
  grid : WMStringGrids; 
  … 
 
  (* delegate *) 
  PROCEDURE DisplayGrid(VAR rl : RetrievedList); 
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  VAR i : LONGINT; 
    d : DirEntry; 
  BEGIN 
    grid.model.Acquire; 
    FOR i := 0 TO rl.noEl – 1 DO 
      d := rl.data[i]; 
      … 
      (* add the new search result d to the model *)  
      …       
    END; 
    grid.model.Release (* performs an implicit update 
                          of the view *) 
  END DisplayGrid; 

  … 

END FileList; 

4.5   Status Messages and Interconnection of Objects 

The delegates for displaying the status messages of the search tool are two very short 
methods of the object of type FormWindow. The constructor of FormWindow creates 
the instances of type Searcher, Dispatcher and ListBuffer and connects them as shown 
in Fig. 2. The buffer of type ListBuffer is registered with the active objects Searcher 
and Dispatcher and the delegate procedures are installed with the object Dispatcher. 
The following program code shows fragments of the constructor that creates the ob-
jects and their connections. We also present the two delegate procedures that display 
the status messages. The important pieces of code are marked with highlighted com-
ments. 

TYPE  
  Window = OBJECT(WMComponents.FormWindow) 
  VAR 
    (* GUI component that displays status messages *)    
    label : WMStandardComponents.Label;     
    … 
    filelist : WMSystemComponents.FileList; 
    lb : ListBuffer; 
    s : Searcher; 
    d : Displayer; 
    … 
   
    PROCEDURE &New(); 
    BEGIN 
      … 
      NEW(filelist);   (* object creation and wiring *)    
      NEW(lb); 
      NEW(s, lb); 
      NEW(d, lb, filelist.DisplayGrid,  
          SearchStartHandler, SearchDoneHandler); 
      … 
    END New; 
 



 A Case Study in Concurrent Programming with Active Objects 413 

    (* delegate *) 
    PROCEDURE SearchStartHandler; 
    BEGIN 
      label.caption.SetAOC(“Status: Processing ...”) 
    END SearchStartHandler; 
 
    (* delegate *) 
    PROCEDURE SearchDoneHandler; 
    BEGIN 
      label.caption.SetAOC(“Status: Ready ...”) 
    END SearchDoneHandler; 
    … 
  END Window; 

It must be noted that this easy way of programming the updating of status mes-
sages is due to the synchronization mechanism of Bluebottle’s GUI framework. The 
delegate procedures SearchStartHandler and SearchStopHandler are called from the 
Dispatcher thread and are executed in the context of the GUI thread, i.e. the se-
quencer thread of FormWindow.  

Behind the scenes, the GUI framework checks whether the calling process is the 
same as the sequencer thread. If this is the case, it puts the method call into the mes-
sage queue of the sequencer thread. Otherwise, the call is executed immediately 
within the sequencer thread. Checking this condition costs only a few clock cycles in 
Bluebottle and, thus, can easily be done within the framework [4].  

In C#/.NET, the programmer has to check explicitly whether a context switch to 
the GUI process is required and is forced to handle the two cases appropriately. Cor-
rect handling of these cases requires knowledge of the GUI framework that in our 
opinion should be hidden from the programmer. Bluebottle’s GUI framework is a set 
of libraries where the programmer does not need to know any implementation details 
to perform his task. 

5   Conclusions 

We showed that concurrent programs written in a powerful programming language 
(Active Oberon) using thread-safe libraries (Bluebottle’s GUI framework) are com-
pact, readable and less error-prone. The constructs for multi-threading are integrated 
in the programming language which facilitates their use. In addition, the dedicated 
language constructs are lean and very effective such that the program code remains 
clear and concise. The thread-safety of the GUI framework relieves the program de-
veloper from synchronizing requests to the same component. This contributes in a 
similar way to the readability and compactness of the program code.  
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