
C. Jesshope and C. Egan (Eds.): ACSAC 2006, LNCS 4186, pp. 95 – 108, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Critical-Task Anticipation Scheduling Algorithm for
Heterogeneous and Grid Computing

Ching-Hsien Hsu1, Ming-Yuan Own1, and Kuan-Ching Li2

1 Dept. of Computer Science and Information Engr. Chung Hua University, Taiwan
chh@chu.edu.tw

2 Dept. of Computer Science and Information Engr. Providence University, Taiwan
kuancli@pu.edu.tw

Abstract. The problem of scheduling a weighted directed acyclic graph (DAG)
to a set of heterogeneous processors to minimize the completion time has been
recently studied. The NP-completeness of the problem has instigated researchers
to propose different heuristic algorithms. In this paper, we present an efficient
Critical-task Anticipation (CA) scheduling algorithm for heterogeneous
computing systems. The CA scheduling algorithm introduces a new task
prioritizing scheme that based on urgency and importance of tasks to obtain
better schedule length compared to the Heterogeneous Earliest Finish Time
algorithm. To evaluate the performance of the proposed algorithm, we have
developed a simulator that contains a parametric graph generator for generating
weighted directed acyclic graphs with various characteristics. We have
implemented the CA algorithm along with the HEFT scheduling algorithm on the
simulator. The CA algorithm is shown to be effective in terms of speedup and
easy to implement.

1 Introduction

The demand for powerful computing to solve a large application has emerged in recent
years. Some parallel architecture, such as multiple computers, or multiple processor
system, that employ numerous processors interconnected by high-speed network to
achieve superior performance than use a single computer. Because the diverse quality
among that processors (computers) or some special requirement, like exclusive
function, memory access speed, or the customize I/O devices, etc.; the tasks have
distinct execution time on different processors (computers) and it named hetero-
geneous computing system.

The purpose of such system is to drive processors cooperate to get the application
(an application consists of tasks) done quickly. Therefore, one of the key factors is how
to schedule individual task among processors to minimize execution time or maximize
processor utilization and so on. The primary scheduling methods can be classified into
two categories: dynamic scheduling and static scheduling. In dynamic algorithm, it
executes redistribution of tasks between processors during run-time, expect to balance
computational load, and reduce processor’s idle time. On the contrary, in static
algorithm, it assigns tasks to processors at the compile time, attempt to minimize the
entire completion time, and satisfy the precedence of tasks [6, 14]. When the

96 C.-H. Hsu, M.-Y. Own, and K.-C. Li

information of an application which predict tasks execution time, the message size of
communication among tasks, and tasks dependences are known a priori at the
compile-time, it called static model [6, 14], thus, schedule analysis must be done before
run time.

A Direct Acyclic Graph (DAG) [2] is used for modeling parallel applications which
consists of several independent tasks. The nodes of DAG correspond to tasks and the
edges of which indicate the precedence constraints between tasks. In addition, the
weight of an edge represents communication cost among tasks. Each node is given a
computation cost and it is represented by a computation costs matrix. Figure 1 depicts
an example of DAG and the computation cost matrix. Moreover, we consider that each
task can be executed on a single processor only and tasks are non-preemptable. A task
nj is a successor (predecessor) of task ni if there exists an edge from ni to nj (from j to i)
in the graph. The task has precedence constraint, that is, only if the predecessor ni

completes its execution and then its successor nj receives the messages from ni, the

successor nj can start its execution.
The scheduling problem has been widely researched in heterogeneous system where

the computational ability of processors is different and the processors communicate
over an underlying network. Many researchers had proposed articles on the subject.
The scheduling problem in general is proved to be NP-complete, so the desire of
optimal scheduling can lead to higher scheduling overhead. The negative result
motivates the requirement for heuristic approaches to solve the scheduling problem. A
comprehensive survey about static scheduling algorithms is given in [14]. The authors
of [14] have shown that the heuristic-based algorithms can be classified into a variety of
categories, such as clustering algorithms, duplication-based algorithms, and
list-scheduling algorithms.

The keynote of clustering algorithms is a mapping of the tasks onto n clusters. Each
task in a cluster must execute in the same processor. A nonlinear clustering is that at
least one cluster contains two independent tasks, otherwise it called linear clustering. It
iterates clustering steps while no improvements in the scheduling length can be
obtained. The requirement of unbound processors was a disadvantage and it causes the
algorithm to work badly in practice [3, 16]. With the auxiliary of some cluster merge
steps, the problem was solved [7, 8], although the approach is expensive.

The duplication-based algorithms [1, 9, 11] are another different skills. Those
algorithms utilize the duplicate technique which duplicates some critical tasks (i.e. the
parent tasks) on the same or another processor so that reduce the communication cost.
When duplication of the execution of tasks occurs in processors, it will result in an
increase in the space complexity since data must be duplicated too.

The list-scheduling algorithms [10, 13, 14, 15] divided the approach into two
independent parts, list phase and processor-selection phase. In the first part, list phase,
they used heuristic method to give the task a priority and then according as the priority,
make an arrangement for the task set. In the second part, processor-selection phase,
they used the result of the first part to select the most suitable processor for the task
assignment. Our Critical-task Anticipation (CA) algorithm belongs to this classi-
fication. This typical method is superior to the others because it is easier to practice,
lower complexity, and good performance.

In this paper, our proposed algorithm uses the following scheduling system model.
There are P fully connected heterogeneous processors in the system. The processors

 Critical-Task Anticipation Scheduling Algorithm 97

communicate over an underlying communication network which is contention-free.
The main intent of this problem is to minimize the schedule length (schedule length
also called makespan). Our proposed algorithm takes advantage of some graph
attributes used by heterogeneous earliest-finish-time (HEFT) algorithm [14], and
furthermore we came up with a novel idea to improve the performance. In the HEFT
algorithm, it detects the critical path length of a given node. To do so, it uses critical
score, i.e., as the name implies, an accumulative value that are computed recursively
travels along the graph upward, starting from the exit node. In the literature, the authors
exhibited the brilliant performance as compared with the Dynamic Level Scheduling
Algorithm [13], the Levelized-Min Time Algorithm [5], and the Mapping Heuristic
Algorithm [12]. Our algorithm is similar to the HEFT algorithm, except that we use a
critical-task anticipation skill. We add a simple modification to make significant
improvements in schedule length as well as speedup of the application.

The rest of this paper is organized as follows: Section 2 introduces the scheduling
system and problem formulation. Section 3 presents the definitions used in our
proposed algorithm. In section 4, we discuss details of the CA scheduling algorithm
and give a simple comparison to the HEFT algorithm. Section 5 shows the simulation
results. Finally, in Section 6, some concluding remarks are made.

2 Preliminaries

2.1 Heterogeneous Scheduling System

As mentioned in section 1, the heterogeneous computing architecture is a set of
heterogeneous processors P = {pk: k = 1: p} connected in a fully connected topology,
where p = |P|. We also assume that:

1) There is no network contention between any arbitrary processors.
2) Computation and communication can be worked simultaneously because of the sep-

arated I/O.
3) Tasks are non-preemptable. In other words, once a task is assigned to a processor, it

starts execution and finishes to its completion.
4) After accomplish the task’s execution, the task have to send operational result to all

immediate successor of it instantly.
W is an n × p matrix in which wi,j indicates estimated computation time to execute

task ni on processor pj. The mean value of task ni is calculated as follow:

 ∑ =
= p

j jii pww
1 , / (1)

The communication cost depends on the size of message and communication latency
of processors. A p × p matrix T is structured to represent data transfer rate among
processors. Latency of processors is given in a p-dimensional vector V. The
communication cost of transferring data from task ni (execute on processor pm) to task
nj (execute on processor pn) is denoted by ci,j and can be calculated by the following
equation

nm

ji
mji T

Message
Vc

,

,
, += , (2)

98 C.-H. Hsu, M.-Y. Own, and K.-C. Li

Where:
Vm is the latency of processor pm,
Messagei,j is the size of message from task ni to task nj,
Tm,n is data transfer rate from processor pm to processor pn.
In static scheduling model, it is usually to use the mean value of communication cost

to simplify the presentation in a given DAG (as shown in Fig. 1). The mean value of
communication cost between tasks ni and nj can be formulated by the following
equation,

T

Message
Vc ji

ji
,

, += . (3)

Where:

V is the average latency of processors.

T is the average transfer rate.

Fig. 1. An example of Direct Acyclic Graph (DAG) and the computation cost matrix

2.2 Problem Formulation

The application can be represented by a Directed Acyclic Graph (DAG), G = (V, E, C),
where V = {nj: j = 1: v} is the set of nodes and v = |V|, E = {ei,j = <ni, nj>} is the set of
communication edges and e =|E|; C is the set of edge communication costs. In the DAG
model, each node indicates least indivisible unit, in other words, each node must be
executed on a processor from beginning to end. Each edge <ni, nj> is a direct arc on
which ni is the immediate predecessor and nj is the immediate successor. There is
precedence relationship between tasks, namely task nj takes it’s turn to prepare for
starting execution after the ni has finished it’s execution and nj receive the essential

 Critical-Task Anticipation Scheduling Algorithm 99

message from ni. The weight of edge <ni, nj > indicates the average communication
cost between ni and nj.

The node without any inward edge is called entry node nentry, and a node without any
outward edge is called exit node nexit. In general, it is supposed that the application has
only one entry node and one exit node. If the actual application claims more than one
entry (exit) node, we can accede a zero-cost fake entry (exit) node with zero-cost edge.

The goal of scheduling problem is minimizing the total execution time of the
application. If there are more than one exit tasks, we consider that the latest completion
task is the ending of the application. In other word, we want to shorten the schedule
length as far as possible.

3 Definitions

The list scheduling algorithm is broadly distinguished into list phase and processor-
selection phase. In this section, we give some definitions that will be used in both CA
and HEFT algorithms.

3.1 Parameters for List Phase

Definition 1: In the list phase, the Critical Score of the task nexit denoted by CS(nexit) is
defined as exitexit wnCS =)(, where exitw is the average computation cost of task nexit.

Definition 2:))(()(,
)(

jji
nsucn

ii nCScMaxwnCS
ij

++=
∈

, where
iw is the average computation cost

of task ni, jic ,
 is the average communication cost of edge <ni, nj>, and suc(ni) is the set

of immediate successors of task ni.

3.2 Parameters for Processor-Selection Phase

In the processor-selection phase, the algorithm exploits a partial schedule to meet the
minimum schedule length. There is an intuitional idea to calculate the finish time (FT)
of task nj that will be executed on processor pk, then we can select the minimum finish
time from the calculated results and determine which processor is chosen to execute the
task nj. In such approach, each processor pk will maintain a list of tasks, task-list(pk),
keeps the latest status of tasks correspond to the EFT(ni, pk), the earliest finish time of
task ni that is assigned on processor pk.
 Recall having been mentioned above that the application represented by DAG must
satisfy the precedence relationship. Taking into account the sequence of tasks which
are assigned on the processors, a task nj can intend to execute on a processor pk only if
its all immediate predecessors send the essential messages to nj and nj successful
receives all these messages. Thus, the latest message arrive time of node ni on
processor pk, denoted by LMAT(nj, pk), is evaluated by the following equation,

 () () ()()jii
npredn

kj cnEFTMaxpnLMAT
ji

,, +=
∈

 (4)

where pred(nj) is the set of immediate predecessors of task nj. Note that if tasks ni and
nj are assigned to the same processor,

jic ,
 is assumed to be zero because it is negligible.

100 C.-H. Hsu, M.-Y. Own, and K.-C. Li

Definition 3: The nentry has no inward arc, therefore for the task nentry,

() 0, =kentry pnLMAT , for all k = 1 to p..

Definition 4: The start time of task nj executed on processor pk is denoted as ST(nj, pk).
The determination of start time aims to search available time slot on processor pk that is
large enough to execute task nj (i.e., length of time slot > wj,k). Note that the search of
available time slot is started from ()kj pnLMAT , .

Definition 5: The finish time of task nj completes its execution on processor pk is
denoted as),(kj pnFT and calculated by the following equation,

kjkjkj wpnSTpnFT ,),(),(+= (5)

Definition 6: The earliest finish time of task nj completes its execution is denoted as
)(jnEFT and determined by the following equation,

)},({)(kj
Pp

j pnFTMinnEFT
k∈

= (6)

Definition 7: According to definition 6, if the EFT of task nj is determined upon task nj
executed on processor pt, then the target processor of task nj is denoted by TP(nj), and
TP(nj) = pt.

4 The Proposed Scheduling Algorithm

In this section, we first present a new scheduling algorithm, the critical-task
anticipation algorithm (outlined in Figure 2) which will be operated in the
heterogeneous scheduling system. The proposed scheduling algorithm will be verified
beneficial for the readers while we delineate a sequence of the algorithm and show
some example scenarios. In the rest of this section, we will review the HEFT algorithm
which is the best known list-scheduling algorithm and provide some different
viewpoint between both algorithms.

4.1 The Critical-Task Anticipation Scheduling Algorithm

The CS(ni) is known as the maximal summation of scores including the average
computation cost and communication cost from task ni to the exit task, that is, CS(ni) is
the longest length of critical path. Therefore, the magnitude of the task’s critical score
is regarded as the decisive factor when we arrange the priority. In the HEFT algorithm,
it sorts the tasks in L by non-increasing order of critical scores. This method seems
good intuitively that it provides suitable priorities for the tasks. In this study, we
propose an improving scheduling heuristic, the critical-task anticipation scheduling
algorithm (CA). The origin of the CA algorithm is owing to the following three
observations.

Observation 1: The processors are heterogeneous, namely, there are variations in
execution cost from processor to processor for each task. Different processor
assignments for tasks result in a different computational cost. In that event, we always

 Critical-Task Anticipation Scheduling Algorithm 101

wish to give the task ni which has large average computation cost higher priority. This
can aid the task ni to get chance to reduce the finish time.

Observation 2: Except for the entry task, each task has to receive the essential messages
from its immediate predecessors. In other words, a task will be in waiting state when it
does not collect complete message yet. For this reason, we emphasize the importance
of the last arrival message such that the succeeding task (node) can start its execution
earlier. Therefore, it is imperative to give the predecessor who sends the last arrival
message higher priority. This can aid the task to get chance to advance the start time.

Observation 3: If a task ni is inserted into the front of the scheduling-list, it occupies
advantage position. Namely, ni has higher probability to reduce its finish time.
Consequently, the start time of suc(ni) can be advanced with higher probability.

According to the above observations, we have a different viewpoint on the
importance of a key task, the critical-task is defined as following.

Definition 8: A task ni is a critical-task of task nj, denoted as CT(nj), iff ni is not inserted
into scheduling list L yet and CS(ni) =))((

)(
k

npredn
nCSMax

jk ∈
.

Our viewpoint differs from the majority of literatures in terms of task prioritizing. In
most algorithms, their thought is to schedule high critical score task first (even the
estimation of critical scores in these algorithms are different). In our approach, the CA
algorithm prioritizes the task ni according to the influence of task ni, which effects the
successors of ni (Observation 2) and devotes to lead to an accelerated chain
(Observation 1). In short, our scheme is not only prioritizing tasks by the importance
(i.e., critical score) but also prioritizing tasks by the urgent among tasks.

Begin:
1. Input the information of DAG and matrix.

/* List Phase */

2. Construct an empty scheduling-list L which is FIFO.

3. Calculate CS(ni) for task ni, ∀ ni∈V.

4. Prioritize the tasks into L by CA procedure.

 //CA procedure is shown in figure 3.

 /* In the HEFT algorithm, tasks in L are sorted by

 non-increasing order according to critical

 scores */

/* Processor Selection Phase*/

5. While L is not empty do
6. Remove task ni from L.

7. Compute LMAT(ni, pk), ST(ni, pk), FT(ni, pk) for all k = 1 to p.

8. Determine EFT(ni), EST(ni).

9. Assign task ni to processor TP(ni)

10. Modify the task-list (TP(ni)).

11.Endwhile
End

Fig. 2. The Proposed Critical-Task Anticipation Algorithm

102 C.-H. Hsu, M.-Y. Own, and K.-C. Li

4.2 Details and Example

The procedure of Critical-task Anticipation is outlined in Fig. 3. It maintains the
following data structures: a scheduling list L which is first-in first-out, an auxiliary
stack S, a temporary container C and an array of Boolean called queue vector (QV).
QV[ni] = true indicates that task ni has queued into L. QV[ni] = false indicates that task
ni has not yet queued into L.
 We now perform a running trace of the CA algorithm. Let’s consider again the
example shown in figure 1, which has ten tasks. These tasks will be executed on three
fully-connected heterogeneous processors. According to this DAG, the critical scores
of tasks can be evaluated by definitions 1 and 2. We proceed to the computation of
critical scores from the nexit by bottom-up fashion. For example, for the exit node n10,
the CS(n10)=16, and for node n8, CS(n8)=10 + max(10 + CS(n10)) = 10 + max(26) = 36.
We start to examine the procedure of critical-task anticipation algorithm which is
illustrated in Fig. 3. The step by step execution sequence is given below.

Initially, QV = [F, F, F, F, F, F, F, F, F, F], S is empty, L is empty, where F is false
and T is true. The index is the serial number of the task, from 1 to 10.

1) Push n10 on stack S. S = [n10].
2) S is not empty, begin the while loop (Fig. 3, Line 5).
3) Pop n10, predecessors of task n10 are n7, n8, n9. Since the condition of QV at line
7 isn’t satisfied, it then goes to the next stage, searching CT(n10) at line 11 and resulting
C = {n7, n8, n9}. Finally, S = [n9, n7, n8, n10]. Note that CT(n10) = n9, which is pushed on
the top of S, and n9 has the highest priority than the other tasks in stack S.
4) Peek at n9 (top of stack), then S = [n4, n2, n5, n9, n7, n8, n10] (after lines 11-20 in
CA procedure are processed).
5) Peek at n4, then S = [n1, n4, n2, n5, n9, n7, n8, n10].
6) Peek at n1, note that n1 is entry node, so it follows lines 7~10, S = [n4, n2, n5, n9,
n7, n8, n10], L = [n1] and set QV[n1] = T.
7) Peek at n4, because pred(n4) = {n1}, we then check QV[n1] and have QV[n1] = T.
This implies that pred(n4) are inserted into L. Therefore, S = [n2, n5, n9, n7, n8, n10], L=
[n1, n4] and set QV[n4] = T (Lines 7-10).
8) Peek at n2, S = [n5, n9, n7, n8, n10], L = [n1, n4, n2] and set QV[n2] = T.
9) Peek at n5, S = [n9, n7, n8, n10], L = [n1, n4, n2, n5] and set QV[n5] = T.
10) Peek at n9, pred(n9) = {n2, n4, n5}. Since QV = [T, T, F, T, T, F, F, F, F, F], the
condition “all QV[ni] are true, ni∈pred(nj)” at line 7 is satisfied. We then have S = [n7,
n8, n10], L = [n1, n4, n2, n5, n9] and set QV[n9] = T.
11) Peek at n7, then S = [n3, n7, n8, n10].
12) Peek at n3, then S = [n7, n8, n10], L = [n1, n4, n2, n5, n9, n3] and set QV[n3] = T.
13) We omit the rest process until only task n10 remains in stack S. When task n10 is
popped, S becomes empty and L = [n1, n4, n2, n5, n9, n3, n7, n6, n8, n10]; the values of QV
are all true. The list phase is done.

 We continue the processor-selection phase by deploying tasks from list L in FIFO
manner to suitable processor. According to L = [n1, n4, n2, n5, n9, n3, n7, n6, n8, n10], at
the beginning, task n1 is assigned to processor p3 because it produces the earliest finish
time, i.e., EFT(n1) = 9 and TP(n1) = p3. Then, n4 is the next task to be removed from L.
The LMAT(n4, p1) = Max(EFT(n1) + 9) = 18, according to the partial schedule, the

 Critical-Task Anticipation Scheduling Algorithm 103

ST(n4, p1) = 18 and FT(n4, p1) = ST(n4, p1) + w4,1 = 18 + 13 = 31. We have FT(n4, p2) =
18 + 8 = 26 and FT(n4, p3) = 9 + 18 = 27. Therefore, the EFT(n4) = Min {31, 26, 27} =
26 and TP(n4) is p2 since p2 is the best choice among the processors.

1. Procedure Critical-task Anticipation:

2. Initially, construct an array of Boolean QV and a stack S.

3. QV[nj] = false, ∀ nj∈V.
4. Push nexit on top of S.

5. While S is not empty do
6. Peek task nj on the top of S;

7. If(all QV[ni] are true, for all ni∈pred(nj) or task nj is nentry)

8. Pop task nj from top of S and put nj into scheduling-list L;

9. QV[nj] = true;

10. EndIf.
11. Else /* search the CT(nj) */

12. For each task ni, where ni∈pred(nj) do
13. If(QV[ni] = false)

14. Put CS(ni) into container C;

15. Endif
16. EndFor
17. Push tasks pred(nj) from C into S by non-decreasing order

according to their critical scores;

18 Reset C to empty;

19. /* if there are 2+ tasks with same CS(ni), task ni is randomly

pushed into S. */

20. EndElse
21. EndWhile

Fig. 3. The Critical-Task Anticipation Procedure

Fig. 4. Scheduling results for the DAG in Fig. 1 using (a) CA algorithm (makespan = 81) (b)
HEFT algorithm (makespan = 92)

104 C.-H. Hsu, M.-Y. Own, and K.-C. Li

The scheduling result obtained by the CA algorithm for the DAG given in Fig. 1 is
depicted in Fig. 4(a). On the other hand, the HEFT results L = [n1, n4, n3, n2, n5, n6, n9, n7,
n8, n10] in the list phase and the scheduling result is given in Fig. 4(b) and it demonstrates
that the CA algorithm outperforms the HEFT algorithm in terms of makespan.

For algorithm complexity, the time complexity of the CA algorithm for calculating

critical score is O(|P|+|E|), where O(|P|) is for iw calculation. The procedure of

Critical-task Anticipation leads O(|E|+|V|) time complexity in the list phase and takes
O(|E|× |P|) in the processor-selection phase. Therefore, the time complexity of the CA
algorithm is O(|E|× |P|).

5 Simulation

In this section, we first introduce the random graph generator, a simulator that
generating weighted directed acyclic graphs with various characteristics. We then
explain metrics for performance comparison. Finally, we show the simulation results.

5.1 Random Graph Generator

To evaluate the efficiency of our algorithm, we implemented a Random Graph
Generator (RGG) to simulate applications with various characteristics. RGG uses the
following input parameters to produce diverse graphs.

 Weight of graph (weight), which is a constant = {32, 128, 512, 1024}.
 Number of tasks in the graph (n). In our simulation, n = {20, 40, 60, 80, 100}.
 Parallelism of graph (p)

It influences the shape of the graph. The p is assigned for 0.5, 1.0 and 2.0. The
level of graph is ⎣ ⎦pv / . For example, if the value p = 2.0, it will generate higher

parallelism graph and vice versa.
 Out degree of a task (d).

The d is assigned for 1, 2, 3, 4 and 5. The out degree represents the dependence
among tasks. If the degree is large, the task relationship is high.

 Heterogeneity of computation cost (h).
This parameter is used to control the computation cost wi,k for a task ni on processor
pk. The wi,k is randomly chosen from the following formula.

.

2
1

2
1 , ⎟

⎠
⎞

⎜
⎝
⎛ +×≤≤⎟

⎠
⎞

⎜
⎝
⎛ −× h

ww
h

w ikii

 (7)

RGG randomizes wi from the interval [1, weight]. Note that if the weight is
assigned with larger value, it represents the estimation of great precision. The h is
assigned for 0.1, 0.25, 0.5, 0.75 and 1.0.

 Communication to Computation Ratio (CCR).
The CCR is assigned for 0.1, 0.5, 1.0, 2.0 and 10.0.

5.2 Comparison Metrics

As mentioned earlier, the objective of our scheduling algorithm is to shorten the
completion time of an application. Several comparative metrics are given below:

 Critical-Task Anticipation Scheduling Algorithm 105

 Makespan
The makespan (also known as schedule length) is defined as

niallfornEFTmakespan i ~1),(max(== (8)

 Speedup
The speedup is defined as

makespan

w
Speedup Vn jiPp

i
j

}{min ,∑ ∈∈
= (9)

The numerator is the minimal accumulated sum of computation cost of tasks which
are assigned on one processor. The meaning of Speedup is comparison between
sequential execution time and parallel execution time.

 Percentage of Quality of Schedules (PQS)
The percentage of the CA algorithm produces better, equal and worse quality of
schedules compared to the HEFT algorithm.

5.3 Simulation Results

In [14], HEFT demonstrated superior performance to other scheduling techniques, the
Dynamic Level Scheduling Algorithm [13], the Levelized-Min Time Algorithm [5],
and the Mapping Heuristic Algorithm [12]. Upon this reason, in this simulation, our
emphasis is on the performance comparison with HEFT. The first simulation aims to
demonstrate the merit of the CA algorithm by showing the quality of schedules using
the RGG. Figures 5 and 6 show the simulations make use of the parameters which
generate 1875 different DAGs. The CA scheduling algorithm provides superior
performance for 70% ~ 80% test samples. Fig. 5 (a) shows the effect of setting
different weight = {32, 128, 512, 1024}. This result shows that PQS does not changed
largely by varying the weight. Therefore, it is interesting to discover the effect on
different number of processors. Fig. 5 (b) shows that the CA algorithm performs very
well when the number of processor becomes large.

 weight 32 128 512 1024

CA Better:

Equal:

CA Worse:

74.61%

0.21%

25.18%

73.22%

0.05%

26.73%

72.42%

0.05%

27.53%

73.13%

0.05%

26.82%

Processors

5 6 7 8

Better:

Equal:

Worse:

77.41%

0.10%

22.49%

80.45%

0.00%

19.55%

82.56%

0.16%

17.28%

85.46%

0.10%

14.44%

(a) (b)

Fig. 5. PQS (a) CA compared with HEFT (3 processors) (b) CA compared with HEFT (weight =
128)

Figures 6 present the simulation results in terms of speedup by varying n, p, d, CCR
and h, respectively. The effect of number of task is shown in Fig. 6 (a). For both
algorithms, while the simulation has small number of processors, the speedup is placid.
However, when we adapt processors to eight, it is apparent that speedup increased

106 C.-H. Hsu, M.-Y. Own, and K.-C. Li

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

20 40 60 80 100

of task

sp
ee

d
u
p

2

3

4

5

6

3 4 5 6 7 8

of processors

sp
ee

d
u

p p=0.5
p=1.0
p=2.0
p=0.5
p=1.0
p=2.0

 (a) (b)

3.58

3.48

3.35

3.2

3.27
3.22 3.2

3.15 3.133.13

3.2

3.48

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3 4 5 6 7 8

of degree

sp
ee

d
u

p

CA HEFT

CCR=0.1

CCR=1.0

CCR=10

CCR=0.1

CCR=1.0

CCR=10

1

2

3

4

5

6

7

3 4 5 6 7 8

of prccessor

sp
ee

d
u
p

CCR=0.1 by CA CCR=1.0 by
CCR=10 by CA CCR=0.1 by
CCR=1.0 by HEFT CCR=10 by H

(c) (d)

3.5

4.5

5.5

0.1 0.25 0.5 0.75 1

sp
ee

d
u
p CA HEFT

(e)

Fig. 6. Performance comparison of the CA and the HEFT algorithms (a) speedup comparison
with different number of tasks (n) (b) speedup comparison with different degree of parallelism
(p) (c) speedup comparison with different out-degree of tasks (d) (d) speedup comparison with
different CCR (e) speedup comparison with different heterogeneity of computation cost (h)

significantly, especially in the situation of large number of task. Compare with the
HEFT algorithm, the improvement rate of the CA algorithm in terms of average
speedup is about 7% at processor = 4 and 11% at processor = 8; the Improvement Rate
(IRCA) is estimated by the following equation:

∑
∑∑ −

=
)(

)()(

HEFTspeedup

HEFTspeedupCAspeedup
IR CA

 (10)

 Critical-Task Anticipation Scheduling Algorithm 107

Fig. 6 (b) helps in investigating the sensitivity of task parallelization. It is noticed
that, when p is large, the graphs are tending parallelism. As shown in Fig. 6 (b), the CA
algorithm favors linear graphs (p=0.5), also outperforms the HEFT algorithm in
general graphs too (p=1.0), but is defeated in high parallelism graphs (p =2.0). Fig. 6
(c) gives the observation about the dependence relationship among tasks by fixing
number of processors at 5. Although the speedups of both algorithms are stable, the CA
algorithm outperforms the HEFT in most cases. In Fig. 6(d), the impact of
communication on speedup is plotted for various value of CCR. We vary CCR by 0.1,
1.0 and 10. It is noted that an increase in CCR decreases the speedup rapidly. For
example, speedup offered by the CCR=0.1 used CA at processor = 8 is 6.45 and CCR
=10.0 used CA at processor =8 is only 2.2. This is due to the fact that when the
communication is higher than computation, the behavior of migration of tasks is not
useful. Beside, when the CCR is large, there is still poor performance even if the
numbers of processors are added. Namely, there is no benefit of increase of processors
when communication is the bottleneck. Fig. 6 (e) shows the effect of heterogeneity (h)
by fixed number of processor =8. From Fig. 6 (e), we observe that the speedup
increases with increasing h in both algorithms. As the result of simulation, we consider
the CA algorithm achieves significant performance improvement in majority part.

6 Conclusion

In this paper, we proposed a new scheduling heuristic, the critical-task anticipation
(CA) algorithm for heterogeneous computing systems. The CA scheduling algorithm is
a list scheduling heuristic and has a simple structure and low complexity.

For performance evaluation, we compared CA with HEFT scheduling algorithm.
The experimental results showed that CA is in most cases equal or superior to HEFT
due to a more appropriate task prioritizing. Graphs with medium and high CCR were
always best scheduled by CA. In the case of low CCR, the CA algorithm delivered
comparable results to the HEFT algorithm. Overall speaking, from the simulation, the
performance of the CA algorithm has been observed to fit most DAG.

References

1. R. Bajaj and D. P. Agrawal, “Improving Scheduling of Tasks in a Heterogeneous
Environment,” IEEE Transactions on Parallel and Distributed Systems, vol. 15, no. 2, pp.
107-118, 2004.

2. S. Behrooz, M. Wang, and G. Pathak, “Analysis and Evaluation of Heuristic Methods for
Static Task Scheduling,” Journal Parallel and Distributed Computing, vol. 10, pp.
222-232, 1990.

3. A. Gerasoulis and T. Yang,” On the Granularity and Clustering of Directed Acyclic Task
Graphs,” IEEE Transactions on Parallel and Distributed Systems, vol.4, no.6, pp. 686-701,
1993.

4. T. Hagras and J. Janecek, ” A High Performance, Low Complexity Algorithm for
Compile-Time Task Scheduling in Heterogeneous Systems,” IEEE Proc. IPDPS, 2004.

108 C.-H. Hsu, M.-Y. Own, and K.-C. Li

5. M. Iverson, F. Ozguner, and G. Follen, “Parallelizing Existing Applications in a Distributed
Heterogeneous Environment,” Proc. Heterogeneous Computing Workshop, pp. 93-100,
1995.

6. Y. Kwok and I. Ahmed, “Benchmarking the Task Graph Scheduling Algorithms,” Proc.
IPPS/SPDP, 1998.

7. J. Liou and M. A. Palis, “A Comparison of General Approaches to Multiprocessor
Scheduling,” Proc. Int’l. Parallel Processing Symposium, pp. 152-156, 1997.

8. S. S. Pande, D. P. Agrawal, and J. Mauney, “A Scalable Scheduling Method for Functional
Parallelism on Distributed Memory Multiprocessors,” IEEE Transactions on Parallel and
Distributed Systems, vol. 6, no. 4, pp. 388-399, 1995.

9. C.I. Park and T.Y. Choe, “An Optimal Scheduling Algorithm Based on Task Duplication,”
IEEE Transactions on Computers, vol. 51, no. 4, pp. 444-448, 2002.

10. A. Radulescu and A. van Gemund, “Fast and effective task scheduling in heterogeneous
systems,” Heterogeneous Computing Workshop, 2000, pp. 229-238, May, 2000.

11. S. Ranaweera and D. P. Agrawal, “A Task Duplication Based Scheduling Algorithm for
Heterogeneous Systems,” IEEE Proceedings of IPDPS, pp. 445-450, 2000.

12. H. Rewini and T. G. Lewis, “Scheduling Parallel Program Tasks onto Arbitrary Target
Machines,” Journal of Parallel and Distributed Computing, vol. 9, pp. 138-153, 1990.

13. G. C. Sih and E. A. Lee, “A Compile Time Scheduling Heuristic for Interconnection -
Constrained Heterogeneous Processors Architectures,” IEEE Transactions on Parallel and
Distributed Systems, vol. 4, no. 2, pp. 175-187, 1992.

14. H. Topcuoglu, S. Hariri, and W. Min-You, “Performance-Effective and Low-Complexity
Task Scheduling for Heterogeneous Computing,” IEEE Transactions on Parallel and
Distributed Systems, vol.13, no. 3, pp. 260-274, 2002.

15. M. Wu and D. Gajski, “Hypertool: A Programming Aid for Message-Passing System,”
IEEE Trans. Parallel and Distributed Systems, vol. 1, no. 3, pp.330-343, 1990.

16. T. Yang and A. Gerasoulis, “DSC:Scheduling Parallel Tasks on an Unbounded Number of
Processors,” IEEE Tran. on Parallel and Distributed Systems, vol. 5, no.9, pp. 951-967,
1994.

	Introduction
	Preliminaries
	Heterogeneous Scheduling System
	Problem Formulation

	Definitions
	Parameters for List Phase
	Parameters for Processor-Selection Phase

	The Proposed Scheduling Algorithm
	The Critical-Task Anticipation Scheduling Algorithm
	Details and Example

	Simulation
	Random Graph Generator
	Simulation Results

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

