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Abstract. The problem of scheduling a weighted directed acyclic graph (DAG) 
to a set of heterogeneous processors to minimize the completion time has been 
recently studied.  The NP-completeness of the problem has instigated researchers 
to propose different heuristic algorithms.  In this paper, we present an efficient 
Critical-task Anticipation (CA) scheduling algorithm for heterogeneous 
computing systems.  The CA scheduling algorithm introduces a new task 
prioritizing scheme that based on urgency and importance of tasks to obtain 
better schedule length compared to the Heterogeneous Earliest Finish Time 
algorithm.  To evaluate the performance of the proposed algorithm, we have 
developed a simulator that contains a parametric graph generator for generating 
weighted directed acyclic graphs with various characteristics.  We have 
implemented the CA algorithm along with the HEFT scheduling algorithm on the 
simulator.  The CA algorithm is shown to be effective in terms of speedup and 
easy to implement. 

1   Introduction 

The demand for powerful computing to solve a large application has emerged in recent 
years.  Some parallel architecture, such as multiple computers, or multiple processor 
system, that employ numerous processors interconnected by high-speed network to 
achieve superior performance than use a single computer.  Because the diverse quality 
among that processors (computers) or some special requirement, like exclusive 
function, memory access speed, or the customize I/O devices, etc.; the tasks have 
distinct execution time on different processors (computers) and it named hetero- 
geneous computing system. 

The purpose of such system is to drive processors cooperate to get the application 
(an application consists of tasks) done quickly.  Therefore, one of the key factors is how 
to schedule individual task among processors to minimize execution time or maximize 
processor utilization and so on.  The primary scheduling methods can be classified into 
two categories: dynamic scheduling and static scheduling. In dynamic algorithm, it 
executes redistribution of tasks between processors during run-time, expect to balance 
computational load, and reduce processor’s idle time.  On the contrary, in static 
algorithm, it assigns tasks to processors at the compile time, attempt to minimize the 
entire completion time, and satisfy the precedence of tasks [6, 14].  When the 
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information of an application which predict tasks execution time, the message size of 
communication among tasks, and tasks dependences are known a priori at the 
compile-time, it called static model [6, 14], thus, schedule analysis must be done before 
run time. 

A Direct Acyclic Graph (DAG) [2] is used for modeling parallel applications which 
consists of several independent tasks.  The nodes of DAG correspond to tasks and the 
edges of which indicate the precedence constraints between tasks.  In addition, the 
weight of an edge represents communication cost among tasks.  Each node is given a 
computation cost and it is represented by a computation costs matrix.  Figure 1 depicts 
an example of DAG and the computation cost matrix.  Moreover, we consider that each 
task can be executed on a single processor only and tasks are non-preemptable.  A task 
nj is a successor (predecessor) of task ni if there exists an edge from ni to nj (from j to i) 
in the graph.  The task has precedence constraint, that is, only if the predecessor ni 

completes its execution and then its successor nj receives the messages from ni, the 

successor nj can start its execution. 
The scheduling problem has been widely researched in heterogeneous system where 

the computational ability of processors is different and the processors communicate 
over an underlying network.  Many researchers had proposed articles on the subject.  
The scheduling problem in general is proved to be NP-complete, so the desire of 
optimal scheduling can lead to higher scheduling overhead.  The negative result 
motivates the requirement for heuristic approaches to solve the scheduling problem.  A 
comprehensive survey about static scheduling algorithms is given in [14].  The authors 
of [14] have shown that the heuristic-based algorithms can be classified into a variety of 
categories, such as clustering algorithms, duplication-based algorithms, and 
list-scheduling algorithms. 

The keynote of clustering algorithms is a mapping of the tasks onto n clusters.  Each 
task in a cluster must execute in the same processor.  A nonlinear clustering is that at 
least one cluster contains two independent tasks, otherwise it called linear clustering.  It 
iterates clustering steps while no improvements in the scheduling length can be 
obtained.  The requirement of unbound processors was a disadvantage and it causes the 
algorithm to work badly in practice [3, 16].  With the auxiliary of some cluster merge 
steps, the problem was solved [7, 8], although the approach is expensive. 

The duplication-based algorithms [1, 9, 11] are another different skills.  Those 
algorithms utilize the duplicate technique which duplicates some critical tasks (i.e. the 
parent tasks) on the same or another processor so that reduce the communication cost.  
When duplication of the execution of tasks occurs in processors, it will result in an 
increase in the space complexity since data must be duplicated too. 

The list-scheduling algorithms [10, 13, 14, 15] divided the approach into two 
independent parts, list phase and processor-selection phase.  In the first part, list phase, 
they used heuristic method to give the task a priority and then according as the priority, 
make an arrangement for the task set.  In the second part, processor-selection phase, 
they used the result of the first part to select the most suitable processor for the task 
assignment.  Our Critical-task Anticipation (CA) algorithm belongs to this classi- 
fication.  This typical method is superior to the others because it is easier to practice, 
lower complexity, and good performance. 

In this paper, our proposed algorithm uses the following scheduling system model.  
There are P fully connected heterogeneous processors in the system.  The processors 
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communicate over an underlying communication network which is contention-free.  
The main intent of this problem is to minimize the schedule length (schedule length 
also called makespan).  Our proposed algorithm takes advantage of some graph 
attributes used by heterogeneous earliest-finish-time (HEFT) algorithm [14], and 
furthermore we came up with a novel idea to improve the performance.  In the HEFT 
algorithm, it detects the critical path length of a given node.  To do so, it uses critical 
score, i.e., as the name implies, an accumulative value that are computed recursively 
travels along the graph upward, starting from the exit node.  In the literature, the authors 
exhibited the brilliant performance as compared with the Dynamic Level Scheduling 
Algorithm [13], the Levelized-Min Time Algorithm [5], and the Mapping Heuristic 
Algorithm [12].  Our algorithm is similar to the HEFT algorithm, except that we use a 
critical-task anticipation skill.  We add a simple modification to make significant 
improvements in schedule length as well as speedup of the application. 

The rest of this paper is organized as follows: Section 2 introduces the scheduling 
system and problem formulation.  Section 3 presents the definitions used in our 
proposed algorithm.  In section 4, we discuss details of the CA scheduling algorithm 
and give a simple comparison to the HEFT algorithm.  Section 5 shows the simulation 
results.  Finally, in Section 6, some concluding remarks are made. 

2   Preliminaries 

2.1   Heterogeneous Scheduling System  

As mentioned in section 1, the heterogeneous computing architecture is a set of 
heterogeneous processors P = {pk: k = 1: p} connected in a fully connected topology, 
where p = |P|.  We also assume that: 

1) There is no network contention between any arbitrary processors. 
2) Computation and communication can be worked simultaneously because of the sep- 

arated I/O. 
3) Tasks are non-preemptable.  In other words, once a task is assigned to a processor, it 

starts execution and finishes to its completion. 
4) After accomplish the task’s execution, the task have to send operational result to all 

immediate successor of it instantly. 
W is an n × p matrix in which wi,j indicates estimated computation time to execute 

task ni on processor pj.  The mean value of task ni is calculated as follow: 

                                                   ∑ =
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The communication cost depends on the size of message and communication latency 
of processors.  A p × p matrix T is structured to represent data transfer rate among 
processors.  Latency of processors is given in a p-dimensional vector V.  The 
communication cost of transferring data from task ni (execute on processor pm) to task 
nj (execute on processor pn) is denoted by ci,j and can be calculated by the following 
equation 
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Where: 
Vm is the latency of processor pm, 
Messagei,j is the size of message from task ni to task nj, 
Tm,n is data transfer rate from processor pm to processor pn. 
In static scheduling model, it is usually to use the mean value of communication cost 

to simplify the presentation in a given DAG (as shown in Fig. 1).  The mean value of 
communication cost between tasks ni and nj can be formulated by the following 
equation, 

 
T
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Where: 

V  is the average latency of processors. 

T  is the average transfer rate. 

 

Fig. 1. An example of Direct Acyclic Graph (DAG) and the computation cost matrix 

2.2   Problem Formulation 

The application can be represented by a Directed Acyclic Graph (DAG), G = (V, E, C), 
where V = {nj: j = 1: v} is the set of nodes and v = |V|, E = {ei,j = <ni, nj>} is the set of 
communication edges and e =|E|; C is the set of edge communication costs.  In the DAG 
model, each node indicates least indivisible unit, in other words, each node must be 
executed on a processor from beginning to end.  Each edge <ni, nj> is a direct arc on 
which ni is the immediate predecessor and nj is the immediate successor.  There is 
precedence relationship between tasks, namely task nj takes it’s turn to prepare for 
starting execution after the ni has finished it’s execution and nj receive the essential 
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message from ni.  The weight of edge <ni, nj > indicates the average communication 
cost between ni and nj. 

The node without any inward edge is called entry node nentry, and a node without any 
outward edge is called exit node nexit.  In general, it is supposed that the application has 
only one entry node and one exit node.  If the actual application claims more than one 
entry (exit) node, we can accede a zero-cost fake entry (exit) node with zero-cost edge. 

The goal of scheduling problem is minimizing the total execution time of the 
application.  If there are more than one exit tasks, we consider that the latest completion 
task is the ending of the application.  In other word, we want to shorten the schedule 
length as far as possible. 

3   Definitions 

The list scheduling algorithm is broadly distinguished into list phase and processor- 
selection phase.  In this section, we give some definitions that will be used in both CA 
and HEFT algorithms.  

3.1   Parameters for List Phase 

Definition 1: In the list phase, the Critical Score of the task nexit denoted by CS(nexit) is 
defined as exitexit wnCS =)( , where exitw  is the average computation cost of task nexit.   

Definition 2: ))(()( ,
)(

jji
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ii nCScMaxwnCS
ij

++=
∈

, where 
iw  is the average computation cost 

of task ni, jic ,
 is the average communication cost of edge <ni, nj>, and suc(ni) is the set 

of immediate successors of task ni. 

3.2   Parameters for Processor-Selection Phase 

In the processor-selection phase, the algorithm exploits a partial schedule to meet the 
minimum schedule length.  There is an intuitional idea to calculate the finish time (FT) 
of task nj that will be executed on processor pk, then we can select the minimum finish 
time from the calculated results and determine which processor is chosen to execute the 
task nj.  In such approach, each processor pk will maintain a list of tasks, task-list(pk), 
keeps the latest status of tasks correspond to the EFT(ni, pk), the earliest finish time of 
task ni that is assigned on processor pk. 
    Recall having been mentioned above that the application represented by DAG must 
satisfy the precedence relationship.  Taking into account the sequence of tasks which 
are assigned on the processors, a task nj can intend to execute on a processor pk only if 
its all immediate predecessors send the essential messages to nj and nj successful 
receives all these messages.  Thus, the latest message arrive time of node ni on 
processor pk, denoted by LMAT(nj, pk), is evaluated by the following equation, 

                                         ( ) ( ) ( )( )jii
npredn

kj cnEFTMaxpnLMAT
ji

,, +=
∈

                                (4) 

where pred(nj) is the set of immediate predecessors of task nj.  Note that if tasks ni and 
nj are assigned to the same processor, 

jic ,
 is assumed to be zero because it is negligible. 
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Definition 3: The nentry has no inward arc, therefore for the task nentry, 

( ) 0, =kentry pnLMAT , for all k = 1 to p.. 

Definition 4: The start time of task nj executed on processor pk is denoted as ST(nj, pk).  
The determination of start time aims to search available time slot on processor pk that is 
large enough to execute task nj (i.e., length of time slot > wj,k).  Note that the search of 
available time slot is started from ( )kj pnLMAT , . 

Definition 5: The finish time of task nj completes its execution on processor pk is 
denoted as ),( kj pnFT  and calculated by the following equation, 

kjkjkj wpnSTpnFT ,),(),( +=                                             (5) 

Definition 6: The earliest finish time of task nj completes its execution is denoted as 
)( jnEFT  and determined by the following equation, 

)},({)( kj
Pp

j pnFTMinnEFT
k∈

=                                                (6) 

Definition 7: According to definition 6, if the EFT of task nj is determined upon task nj 
executed on processor pt, then the target processor of task nj is denoted by TP(nj), and 
TP(nj) = pt. 

4   The Proposed Scheduling Algorithm 

In this section, we first present a new scheduling algorithm, the critical-task 
anticipation algorithm (outlined in Figure 2) which will be operated in the 
heterogeneous scheduling system.  The proposed scheduling algorithm will be verified 
beneficial for the readers while we delineate a sequence of the algorithm and show 
some example scenarios.  In the rest of this section, we will review the HEFT algorithm 
which is the best known list-scheduling algorithm and provide some different 
viewpoint between both algorithms. 

4.1   The Critical-Task Anticipation Scheduling Algorithm 

The CS(ni) is known as the maximal summation of scores including the average 
computation cost and communication cost from task ni to the exit task, that is, CS(ni) is 
the longest length of critical path.  Therefore, the magnitude of the task’s critical score 
is regarded as the decisive factor when we arrange the priority.  In the HEFT algorithm, 
it sorts the tasks in L by non-increasing order of critical scores.  This method seems 
good intuitively that it provides suitable priorities for the tasks.  In this study, we 
propose an improving scheduling heuristic, the critical-task anticipation scheduling 
algorithm (CA).  The origin of the CA algorithm is owing to the following three 
observations. 

Observation 1: The processors are heterogeneous, namely, there are variations in 
execution cost from processor to processor for each task.  Different processor 
assignments for tasks result in a different computational cost.  In that event, we always 
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wish to give the task ni which has large average computation cost higher priority.  This 
can aid the task ni to get chance to reduce the finish time. 

Observation 2: Except for the entry task, each task has to receive the essential messages 
from its immediate predecessors.  In other words, a task will be in waiting state when it 
does not collect complete message yet.  For this reason, we emphasize the importance 
of the last arrival message such that the succeeding task (node) can start its execution 
earlier.  Therefore, it is imperative to give the predecessor who sends the last arrival 
message higher priority.  This can aid the task to get chance to advance the start time.  

Observation 3: If a task ni is inserted into the front of the scheduling-list, it occupies 
advantage position. Namely, ni has higher probability to reduce its finish time.  
Consequently, the start time of suc(ni) can be advanced with higher probability. 

According to the above observations, we have a different viewpoint on the 
importance of a key task, the critical-task is defined as following. 

Definition 8: A task ni is a critical-task of task nj, denoted as CT(nj), iff ni is not inserted 
into scheduling list L yet and CS(ni) = ))((

)(
k

npredn
nCSMax

jk ∈
. 

Our viewpoint differs from the majority of literatures in terms of task prioritizing.  In 
most algorithms, their thought is to schedule high critical score task first (even the 
estimation of critical scores in these algorithms are different).  In our approach, the CA 
algorithm prioritizes the task ni according to the influence of task ni, which effects the 
successors of ni (Observation 2) and devotes to lead to an accelerated chain 
(Observation 1).  In short, our scheme is not only prioritizing tasks by the importance 
(i.e., critical score) but also prioritizing tasks by the urgent among tasks.  

Begin:
1. Input the information of DAG and matrix. 

/* List Phase */ 

2. Construct an empty scheduling-list L which is FIFO. 

3. Calculate CS(ni) for task ni, ∀ ni∈V. 

4. Prioritize the tasks into L by CA procedure. 

  //CA procedure is shown in figure 3. 

  /* In the HEFT algorithm, tasks in L are sorted by 

   non-increasing order according to critical 

   scores */ 

/* Processor Selection Phase*/ 

5. While L is not empty do 
6.    Remove task ni from L. 

7.    Compute LMAT(ni, pk), ST(ni, pk), FT(ni, pk) for all k = 1 to p.

8.    Determine EFT(ni), EST(ni). 

9.    Assign task ni to processor TP(ni)

10.   Modify the task-list (TP(ni)).

11.Endwhile 
End

 

Fig. 2. The Proposed Critical-Task Anticipation Algorithm 
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4.2   Details and Example 

The procedure of Critical-task Anticipation is outlined in Fig. 3.  It maintains the 
following data structures: a scheduling list L which is first-in first-out, an auxiliary 
stack S, a temporary container C and an array of Boolean called queue vector (QV).  
QV[ni] = true indicates that task ni has queued into L.  QV[ni] = false indicates that task 
ni has not yet queued into L. 
    We now perform a running trace of the CA algorithm.  Let’s consider again the 
example shown in figure 1, which has ten tasks.  These tasks will be executed on three 
fully-connected heterogeneous processors.  According to this DAG, the critical scores 
of tasks can be evaluated by definitions 1 and 2.  We proceed to the computation of 
critical scores from the nexit by bottom-up fashion.  For example, for the exit node n10, 
the CS(n10)=16, and for node n8, CS(n8)=10 + max(10 + CS(n10)) = 10 + max(26) = 36.  
We start to examine the procedure of critical-task anticipation algorithm which is 
illustrated in Fig. 3.  The step by step execution sequence is given below.  

Initially, QV = [F, F, F, F, F, F, F, F, F, F], S is empty, L is empty, where F is false 
and T is true.  The index is the serial number of the task, from 1 to 10. 

1) Push n10 on stack S.  S = [n10]. 
2) S is not empty, begin the while loop (Fig. 3, Line 5). 
3) Pop n10, predecessors of task n10 are n7, n8, n9.  Since the condition of QV at line 
7 isn’t satisfied, it then goes to the next stage, searching CT(n10) at line 11 and resulting 
C = {n7, n8, n9}.  Finally, S = [n9, n7, n8, n10].  Note that CT(n10) = n9, which is pushed on 
the top of S, and n9 has  the highest priority than the other tasks in stack S.  
4) Peek at n9 (top of stack), then S = [n4, n2, n5, n9, n7, n8, n10] (after lines 11-20 in 
CA procedure are processed). 
5) Peek at n4, then S = [n1, n4, n2, n5, n9, n7, n8, n10].  
6) Peek at n1, note that n1 is entry node, so it follows lines 7~10, S = [n4, n2, n5, n9, 
n7, n8, n10], L = [n1] and set QV[n1] = T. 
7) Peek at n4, because pred(n4) = {n1}, we then check QV[n1] and have QV[n1] = T.  
This implies that pred(n4) are inserted into L.  Therefore, S = [n2, n5, n9, n7, n8, n10], L= 
[n1, n4] and set QV[n4] = T (Lines 7-10). 
8) Peek at n2, S = [n5, n9, n7, n8, n10], L = [n1, n4, n2] and set QV[n2] = T. 
9) Peek at n5, S = [n9, n7, n8, n10], L = [n1, n4, n2, n5] and set QV[n5] = T. 
10) Peek at n9, pred(n9) = {n2, n4, n5}.  Since QV = [T, T, F, T, T, F, F, F, F, F], the 
condition “all QV[ni] are true, ni∈pred(nj)” at line 7 is satisfied.  We then have S = [n7, 
n8, n10], L = [n1, n4, n2, n5, n9] and set QV[n9] = T. 
11) Peek at n7, then S = [n3, n7, n8, n10]. 
12) Peek at n3, then S = [n7, n8, n10], L = [n1, n4, n2, n5, n9, n3] and set QV[n3] = T. 
13) We omit the rest process until only task n10 remains in stack S.  When task n10 is 
popped, S becomes empty and L = [n1, n4, n2, n5, n9, n3, n7, n6, n8, n10]; the values of QV 
are all true.  The list phase is done.   

    We continue the processor-selection phase by deploying tasks from list L in FIFO 
manner to suitable processor.  According to L = [n1, n4, n2, n5, n9, n3, n7, n6, n8, n10], at 
the beginning, task n1 is assigned to processor p3 because it produces the earliest finish 
time, i.e., EFT(n1) = 9 and TP(n1) = p3.  Then, n4 is the next task to be removed from L.  
The LMAT(n4, p1) = Max(EFT(n1) + 9) = 18, according to the partial schedule, the 
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ST(n4, p1) = 18 and FT(n4, p1) = ST(n4, p1) + w4,1 = 18 + 13 = 31.  We have FT(n4, p2) = 
18 + 8 = 26 and FT(n4, p3) = 9 + 18 = 27.  Therefore, the EFT(n4) = Min {31, 26, 27} = 
26 and TP(n4) is p2 since p2 is the best choice among the processors. 

      

1. Procedure Critical-task Anticipation: 

2.   Initially, construct an array of Boolean QV and a stack S. 

3.   QV[nj] = false, ∀ nj∈V.
4.   Push nexit on top of S. 

5.   While S is not empty do 
6.      Peek task nj on the top of S; 

7.        If( all QV[ni] are true, for all ni∈pred(nj) or task nj is nentry)

8.                Pop task nj from top of S and put nj into scheduling-list L; 

9.                QV[ nj] = true;

10.       EndIf.
11.       Else   /* search the CT(nj) */

12.              For each task ni, where ni∈pred(nj) do
13.                    If(QV[ni] = false)

14.                        Put CS(ni) into container C; 

15.                    Endif 
16.              EndFor 
17.              Push tasks pred(nj) from C into S by non-decreasing order 

according to their critical scores; 

18               Reset C to empty; 

19.              /* if there are 2+ tasks with same CS(ni), task ni is randomly 

pushed into S. */ 

20.       EndElse 
21. EndWhile  

Fig. 3. The Critical-Task Anticipation Procedure 

 

Fig. 4.  Scheduling results for the DAG in Fig. 1 using (a) CA algorithm (makespan = 81) (b) 
HEFT algorithm (makespan = 92) 
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The scheduling result obtained by the CA algorithm for the DAG given in Fig. 1 is 
depicted in Fig. 4(a).  On the other hand, the HEFT results L = [n1, n4, n3, n2, n5, n6, n9, n7, 
n8, n10] in the list phase and the scheduling result is given in Fig. 4(b) and it demonstrates 
that the CA algorithm outperforms the HEFT algorithm in terms of makespan. 

For algorithm complexity, the time complexity of the CA algorithm for calculating 

critical score is O(|P|+|E|), where O(|P|) is for iw  calculation.  The procedure of 

Critical-task Anticipation leads O(|E|+|V|) time complexity in the list phase and takes 
O(|E|× |P|) in the processor-selection phase.  Therefore, the time complexity of the CA 
algorithm is O(|E|× |P|). 

5   Simulation 

In this section, we first introduce the random graph generator, a simulator that 
generating weighted directed acyclic graphs with various characteristics.  We then 
explain metrics for performance comparison.  Finally, we show the simulation results.    

5.1   Random Graph Generator 

To evaluate the efficiency of our algorithm, we implemented a Random Graph 
Generator (RGG) to simulate applications with various characteristics.  RGG uses the 
following input parameters to produce diverse graphs. 

 Weight of graph (weight), which is a constant = {32, 128, 512, 1024}. 
 Number of tasks in the graph (n).  In our simulation, n = {20, 40, 60, 80, 100}. 
 Parallelism of graph (p) 

It influences the shape of the graph.  The p is assigned for 0.5, 1.0 and 2.0.  The 
level of graph is ⎣ ⎦pv / .  For example, if the value p = 2.0, it will generate higher 

parallelism graph and vice versa.  
 Out degree of a task (d).   

The d is assigned for 1, 2, 3, 4 and 5.  The out degree represents the dependence 
among tasks.  If the degree is large, the task relationship is high. 

 Heterogeneity of computation cost (h). 
This parameter is used to control the computation cost wi,k for a task ni on processor 
pk.  The wi,k is randomly chosen from the following formula. 

                                            
.
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                                   (7) 

RGG randomizes wi from the interval [1, weight].  Note that if the weight is 
assigned with larger value, it represents the estimation of great precision.  The h is 
assigned for 0.1, 0.25, 0.5, 0.75 and 1.0. 

 Communication to Computation Ratio (CCR). 
The CCR is assigned for 0.1, 0.5, 1.0, 2.0 and 10.0.  

5.2   Comparison Metrics 

As mentioned earlier, the objective of our scheduling algorithm is to shorten the 
completion time of an application.  Several comparative metrics are given below: 
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 Makespan 
The makespan (also known as schedule length) is defined as 

niallfornEFTmakespan i ~1),(max( ==                                     (8) 

 Speedup 
The speedup is defined as 

makespan

w
Speedup Vn jiPp

i
j

}{min ,∑ ∈∈
=                                           (9) 

The numerator is the minimal accumulated sum of computation cost of tasks which 
are assigned on one processor.  The meaning of Speedup is comparison between 
sequential execution time and parallel execution time.   

 Percentage of Quality of Schedules (PQS) 
The percentage of the CA algorithm produces better, equal and worse quality of 
schedules compared to the HEFT algorithm. 

5.3   Simulation Results 

In [14], HEFT demonstrated superior performance to other scheduling techniques, the 
Dynamic Level Scheduling Algorithm [13], the Levelized-Min Time Algorithm [5], 
and the Mapping Heuristic Algorithm [12].  Upon this reason, in this simulation, our 
emphasis is on the performance comparison with HEFT.  The first simulation aims to 
demonstrate the merit of the CA algorithm by showing the quality of schedules using 
the RGG.  Figures 5 and 6 show the simulations make use of the parameters which 
generate 1875 different DAGs.  The CA scheduling algorithm provides superior 
performance for 70% ~ 80% test samples.  Fig. 5 (a) shows the effect of setting 
different weight = {32, 128, 512, 1024}.  This result shows that PQS does not changed 
largely by varying the weight.  Therefore, it is interesting to discover the effect on 
different number of processors.  Fig. 5 (b) shows that the CA algorithm performs very 
well when the number of processor becomes large. 
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Fig. 5. PQS (a) CA compared with HEFT (3 processors) (b) CA compared with HEFT (weight = 
128) 

Figures 6 present the simulation results in terms of speedup by varying n, p, d, CCR 
and h, respectively.  The effect of number of task is shown in Fig. 6 (a).  For both 
algorithms, while the simulation has small number of processors, the speedup is placid.  
However, when we adapt processors to eight, it is apparent that speedup increased 
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Fig. 6. Performance comparison of the CA and the HEFT algorithms (a) speedup comparison 
with different number of tasks (n) (b) speedup comparison with different degree of parallelism 
(p) (c) speedup comparison with different out-degree of tasks (d) (d) speedup comparison with 
different CCR (e) speedup comparison with different heterogeneity of computation cost (h) 

significantly, especially in the situation of large number of task.  Compare with the 
HEFT algorithm, the improvement rate of the CA algorithm in terms of average 
speedup is about 7% at processor = 4 and 11% at processor = 8; the Improvement Rate 
(IRCA) is estimated by the following equation: 

∑
∑∑ −

=
)(

)()(

HEFTspeedup

HEFTspeedupCAspeedup
IR CA

                          (10) 
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Fig. 6 (b) helps in investigating the sensitivity of task parallelization.  It is noticed 
that, when p is large, the graphs are tending parallelism.  As shown in Fig. 6 (b), the CA 
algorithm favors linear graphs (p=0.5), also outperforms the HEFT algorithm in 
general graphs too (p=1.0), but is defeated in high parallelism graphs (p =2.0).  Fig. 6 
(c) gives the observation about the dependence relationship among tasks by fixing 
number of processors at 5.  Although the speedups of both algorithms are stable, the CA 
algorithm outperforms the HEFT in most cases.  In Fig. 6(d), the impact of 
communication on speedup is plotted for various value of CCR.  We vary CCR by 0.1, 
1.0 and 10.  It is noted that an increase in CCR decreases the speedup rapidly.  For 
example, speedup offered by the CCR=0.1 used CA at processor = 8 is 6.45 and CCR 
=10.0 used CA at processor =8 is only 2.2.  This is due to the fact that when the 
communication is higher than computation, the behavior of migration of tasks is not 
useful.  Beside, when the CCR is large, there is still poor performance even if the 
numbers of processors are added.  Namely, there is no benefit of increase of processors 
when communication is the bottleneck.  Fig. 6 (e) shows the effect of heterogeneity (h) 
by fixed number of processor =8.  From Fig. 6 (e), we observe that the speedup 
increases with increasing h in both algorithms.  As the result of simulation, we consider 
the CA algorithm achieves significant performance improvement in majority part. 

6   Conclusion  

In this paper, we proposed a new scheduling heuristic, the critical-task anticipation 
(CA) algorithm for heterogeneous computing systems.  The CA scheduling algorithm is 
a list scheduling heuristic and has a simple structure and low complexity.   

For performance evaluation, we compared CA with HEFT scheduling algorithm.  
The experimental results showed that CA is in most cases equal or superior to HEFT 
due to a more appropriate task prioritizing.  Graphs with medium and high CCR were 
always best scheduled by CA.  In the case of low CCR, the CA algorithm delivered 
comparable results to the HEFT algorithm.  Overall speaking, from the simulation, the 
performance of the CA algorithm has been observed to fit most DAG. 
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