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Abstract. The Imagine processor is designed to address the processor-memory 
gap through streaming technology. Good performance of most media appli-
cations has been demonstrated on Imagine. However the research whether 
scientific computing applications are suited for Imagine is open. In this paper, 
we studied some key issues of scientific computing applications mapping to 
Imagine, and present the experimental results of some representative scientific 
computing applications on the ISIM simulation of Imagine. By evaluating the 
experimental results, we isolate the set of scientific computing application 
characteristics well suited for Imagine architecture, analyze the performance 
potentiality of scientific computing applications on Imagine compared with 
common processor and explore the optimizations of scientific stream program. 
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1   Introduction 

Scientific computing applications widely used to solve large computation problems 
are pervasive and computationally demanding. These applications require very high 
arithmetic rates on the order of billions of operations per second. But the performance 
of these applications is restricted by both the latency and bandwidth of memory 
accessing [1][2]. Scientific computing applications often exhibit large degrees of data 
parallelism, and as such maybe present great potential opportunities for stream 
architectures [3][4], such as Imagine architecture [4]. Imagine is a programmable 
stream processor aiming at media applications [5], which contains 48 arithmetic units, 
and a unique three level memory hierarchy designed to keep the functional units 
saturated during stream processing [6][7]. With powerful supports of the architecture, 
Imagine can exploit the parallelism and the locality of a stream program, and achieve 
high computational density and efficiency [8]. In this paper, we describe and evaluate 
the implementation of mapping scientific computing applications to stream programs 
formed of data streams and kernels that consume and produce data streams on the 
Imagine stream architecture, and compare our results on a cycle-accurate simulation 
of Imagine. The purpose of our work is to exploit the salient features of these unique 
scientific computing applications, isolate the set of application characteristics best 
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suited for the stream architecture by evaluating the experimental results, and explore 
the optimizations of scientific stream program. 

2   The Imagine Stream Processing System  

2.1   Imagine Architecture 

The Imagine architecture developed at Stanford University is a single-chip stream 
processor that operates on sequences of data records called streams, supporting the 
stream programming system. It is designed for computationally intensive applications 
like media applications characterized by high data parallelism and producer-consumer 
locality with little global data reuse [6][7]. The Imagine processor consists of 48-
ALUs arranged as 8 SIMD clusters and three level memory hierarchy to ensure the 
data locality and keep hundreds of arithmetic units efficiently fed with data. Several 
local register files (LRFs), directly feed those arithmetic units inside the clusters with 
their operands. A 128 KB stream register file (SRF) reads data from off-chip DRAM 
through a memory system interface and sequentially feeds the clusters [8][9]. Fig. 1 
diagrams the Imagine stream architecture. One key aspect of Imagine is the concept 
of producer-consumer locality, where data is circulated between the SRF and 
arithmetic clusters, thereby avoiding expensive off-chip memory access overhead 
[10]. Based on the foregoing architecture supports, Imagine can efficiently exploit 
data parallelism along three levels: instruction-level parallelism (ILP), data-level 
parallelism (DLP), and task-level parallelism (TLP).  

 

Fig. 1. The Imagine stream architecture 

2.2   Imagine Programming Model 

The programming model of Imagine is described in two languages: the stream level 
and the kernel level [11][12][13][14]. A stream level program is written in StreamC 
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language, which is derived from C++ language. A kernel level program of the clusters 
is written in KernelC language, which is C-like expression syntax. The StreamC 
program executed for the host thread represents the data communication between the 
kernels that perform computations. However, programmers must consider the stream 
organization and communication using this explicit stream model, increasing the 
programming complexity [15]. So the optimization for stream programming is 
important to achieve significant performance improvements on the Imagine 
architecture. The fine stream program can explore ILP, DLP and TLP to maximize 
performance, as it processes individual elements from streams in parallel. 

3   Implementation of Scientific Computing Stream Applications 

Imagine system promises to solve many computationally intensive problems much 
faster than their traditional counterparts. Scientific computing applications contain a 
great lot of loops possessing a high degree of instruction, data and task level 
parallelism that can be exploited by decomposing the scientific computing task into 
smaller subtasks, which are mapped into different computational elements, distri-
buting the scientific stream to different processors. However, because a stream 
program is more complex than an equivalent sequential program, to realize this 
increase in speed some challenges must be overcome first [12]. 

3.1   Stream Level  

The key tasks of stream level are partitioning kernels and organizing input streams. 
Since parallelizable parts focus on loops, we present corresponding streaming method 
based on different loop transformations. Aiming at exploiting ILP within a cluster, 
DLP among clusters and TLP of a multi-Imagine system, programmers distribute 
parallelizable data among the clusters and put the data that dependence can’t be 
eliminated on the same cluster via loop analysis. Due to wire delay becoming 
increasingly important in microprocessor design, reducing inter-cluster communi-
cation must also be taken into account. It is necessary to modify the original algorithm 
when we write a stream program. We explicate our key methods in detail according to 
an example that is modified from a part of a scientific computing program named 
Capao introduced in the fourth section. Fig. 2 shows the example program including 
two main loops named loop1 and loop2 by us, and loop2 is a multinest with two inner 
loops labeled as loop3 and loop4 specially. 

3.1.1   Multinest  
In order to make the best use of the powerful computing ability of Imagine, kernel 
must process suitable granularity. Computationally intensive operations centre on 
multinest loops. It is a simple method to look upon each inner loop as a separate 
kernel. But this partition method brings memory access overhead due to replacing 
microcode frequently, and causes so much lower repeatable use ratio of SRF as to  
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1   alfa[0] = 0;            

2   alfa[1] = b/c; 

3   for (i=2;i<511;i++) 

4   alfa[i]=b/(c-a*alfa[i-1]); 

5   alfa[511]=0; 

6   beta[0]=0; 

7   for (j=1;j<511;j++) 

8   { 

9    for (i=1;i<511;i++) 

10   { 

11    f=t[i][j+1]-t[i][j];  

12    beta[i]= (f+beta[i-1])/alfa[i-1];

13   } 

14  w[511][j]=0; 

15  for (i=510;i>0;i--) 

16   w[i][j]=alfa[i]*w[i+1][j]+beta[i];

17  w[0][j]=0;  

18 } 

loop1

loop2

loop3

loop4

 

Fig. 2. Example program 

make memory access become bottleneck. So that multinest loop is mapped into a big 
kernel results in better execution time than several small kernels. Because having 
more operations in one kernel gives more opportunities to parallel the operations and 
generates more compact schedules with better resource utilization. There are two key 
steps to partition multinest loops into kernel codes on Imagine. 

 Loop combination 

Combine the inner loops without array dependence by instruction scheduling. This 
way can increase the computing scale within kernels, and reduce the number of single 
instructions outside the inner loops. 

 Loop splitting 

If inner loops can’t be combined, then consider splitting the multinest loop. In this 
way, the computing amount of outer loops can be involved in kernels, and 
accordingly parallelism of kernel level program can be improved. This method relates 
to array saving creating array copies. We can add one dimension based on original 
array to save the results of previous loops. It is a way that bartering space overhead 
for efficiency. For example, loop3 and loop4 in Fig. 2 exist array dependence. Hence 
we split the big multinest loop2 into two two-nest loops. The computing scale of 
kernels is increased from 510 to 510*510. For loop splitting, the dimension degree of 
array beta is increased to save the results of loop3, and prepare the input data for 
loop4. Fig. 3 shows loop2 is divided to two new multinest named loop3’ and loop4’ 
according to the dimension variety of array beta.  
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for (j=1;j<511;j++) 

     for (i=1;i<511;i++) 

   { 

  f=t[i][j+1]-t[i][j];  

  beta[i][j]=(f+beta[i-1][j])/alfa[i-1];

} 

for (j=1;j<511;j++) 

{ 

w[511][j]=0; 

for (i=510;i>0;i--) 

w[i][j]=alfa[i]*w[i+1][j]+beta[i][j];

w[0][j]=0;  

} 

loop3'

loop4'

 

Fig. 3. Loop splitting 

3.1.2   Coupled Dependent Loop  
It is difficult that single loop existing data coupled dependence is parallelized. So 
expanding one dimension based on the original array within multinest to exploit 
parallelism on the new dimension is an optional means. Then we can choose multi-
form methods of stream organization, aiming at exploiting parallelism among clusters 
and making full use of LRF according to the LRF capacity. For instance, in Fig. 2, the 
array beta in the twelfth row of the example code is expanded into two-dimension 
array. The new dimension direction j exists data coupled dependence, but there is 
independence between new columns. The coupled dependent code is as follows. 

beta[i][j] = (f + a * beta[i-1][j] ) / alfa[i-1]. 

For making full use of arithmetic units per cluster, we must avoid assigning the 
coupled dependent data to different clusters. Doing everything possible to place the 
coupled dependent data within a cluster can reduce the influence of wire delay, and 
improve parallelism on Imagine. There are two ways to solve this problem. 

 Combine the coupled dependent record into a big record according to the 
capacity of LRF. Then make the big records form a new input stream. The 
implementation of this method is complex in some sort, but comprehended 
easily. We emphasize that the infilling of new records may flush the LRF. So 
the dependent records are loaded into LRF as successively as possible. At the 
same time, we must claim attention to save the array boundary of big record. 
Because the record may be as large as the capacity of LRF. When next record 
coming, we must save the previous record as the input data of the next 
operation to avoid record losing. Fig. 4 presents the stream organization of 
this method on Imagine with 8 clusters. 

 Compared with the foregoing way, the second method is easy to implement, 
because the records of stream are not altered. We place the dependent record 
onto a cluster by a special index stream. Same as the foregoing method, every 
eight columns are treated as a group. The index stream is formed successively 
by row of independent records in a group. Each column of records is assigned 
onto a cluster. Fig. 5 presents the stream organization of this method. 
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Fig. 4. The first method of coupled dependent loop mapping on Imagine 
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Fig. 5. The second method of coupled dependent loop mapping on Imagine 

3.1.3   Single Instruction 
If there are a great deal of single instructions in original program, whether they are 
within loops or not, the partition of kernel is influenced, and the kernel granularity 
can’t be suitable. To solve the problem, we present two optimization methods. 

 Loop expending  

In order to increase the computing scale of kernels and avoid using index stream 
that causes DRAM reordered overhead, some single instructions need to be expanded 
into appropriate loops. Then we can either use successive basic stream as input data or 
provide uniform loop variable for multinest combination. For instance, the second 
instruction of the example code in Fig. 2 is expanded into loop1. 

 Instruction scheduling  

When above factors are satisfied, on the premise of accuracy being ensured, this 
method may reduce the number of write times to the same record, and prepare for 
combining single instruction operations. For example, the fourteenth and seventeenth 
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instructions of the example code in Fig. 2 are scheduled out of loop2 to lessen the 
computing amount of loop4 so that loop4’ in Fig. 3 can be mapped to stream program 
obviously. Fig. 6 illustrates the two methods of single instruction optimization. 

alfa[0] = 0;            

alfa[1] = b/c; 

for (i=2;i<511;i++)  

alfa[i]=b/(c-a*alfa[i-1]); 

... 

for (j=1;j<511;j++){ 

w[511][j]=0; 

for (i=510;i>0;i--) 

 w[i][j]=alfa[i]*w[i+1][j]+beta[i];

w[0][j]=0;       

} 

alfa[0] = 0;            

for (i=1;i<511;i++){ 

alfa[i]=b/(c-a*alfa[i-1]); 

w[511][i]=0; 

w[0][i]=0; 

} 

... 

for (j=1;j<511;j++) 

for (i=510;i>0;i--) 

 w[i][j]=alfa[i]*w[i+1][j]+beta[i]; 

 
 

Fig. 6. Single instruction optimizations 

3.2   Kernel Level  

An Imagine application is written as a sequence of smaller tasks, called kernels. A 
kernel operation performs a computation on a set of input streams to produce a set of 
output streams. Typically, kernels loop over an input stream, performing identical 
operations on each input element to produce their outputs. Each kernel runs on all 
eight clusters while processing its input streams and completes the processing of its 
input streams before the next kernel begins. In this way, producer-consumer locality 
is exploited by consuming the result of one kernel as soon as it is produced. As an 
example, Fig. 7 shows how the program in Fig. 2 is mapped to streams and kernels. In 
the event where inter-cluster communication is required, each cluster has a cluster id 
tag that can be used to identify the cluster and send/receive data to/from the right 
cluster. In order to expand the scale of kernel, a long stream is generally as input data. 
When computing data are not in native register, additional inter-cluster 
communications are required to transfer the data to the right cluster. And since all 
applications are not perfectly data parallel, many kernels require data reordering to 
place the data on the right clusters. 

alfa_in 

beta_out

alfa_out t_in

w_out

kernel 1

kernel 3

kernel 2

 

Fig. 7. Example program mapping to stream program model 
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4   Experimental Results and Analysis 

We implement some scientific computing applications on ISIM that is a cycle-
accurate simulator of Imagine [14], including 171.Swim in SPEC2000 and Capao. 

4.1   Application Analysis 

Swim is a weather prediction program for comparing the performance of current 
supercomputers. Fig. 8 shows data flow chart of Swim. Its main computing amount 
focuses on a loop of calculating fourteen arrays with 513*513 size. The data amount 
of Swim is large, but the computing operations are few correspondingly. The array 
access pattern presented in Fig. 9 is irregular. 
    Capao is an application on the field of optics. Its computing amount is very huge. 
According to its result of serial version, 65.49% of time overhead comes from 
subroutine dfft, and 13.36% comes from subroutine transp. So we just consider 
mapping the two subroutines to stream program so that improve performance of the 
whole application. The subroutine dfft possesses small computing amount and fine 
computation intensiveness. We implement two version of dfft. One that applies 
butterfly algorithm is called DFFTN in this section, and another formulized without 
any optimization is called DFFT. The computing amount is exponent distinction 
between DFFTN and DFFT. It is time-consuming on general scalar processors that 
DFFTN performs bit reverse operation. Imagine supports this operation on hardware 
level, so the performance of DFFTN may be increased. The experiment on DFFT 
purposes certifying powerful computing ability of Imagine. 

            

Access 
Pattern

 

Fig. 8. The data flow chart of Swim               Fig. 9. Accessing pattern of Swim 

4.2   Experimental Results 

For comparison purpose, actual measurements of performance were taken using a 
general scalar processor system. Table 1 illustrates the result of a rough comparison 
between the performance of Imagine and the general scalar processor. It is obvious 
that Imagine provides high speedup of computationally intensive applications such as 
DFFTN, DFFT and Transp compared with general processor system in terms of 
number of cycles, due to the simple control logic and parallel processing ability of 
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many arithmetic units. And compared with highly sensitive to memory latency of 
general processor, these applications can hide latency to achieve good performance. 
But for data intensive applications such as Swim, the speedup is low due to irregular 
access pattern so that memory access latency can’t be hided. 

Table 1. Comparison of different implementation for the scientific applications 
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158444624
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Transp

1328951266603705560Cycles
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KernelC)

SwimDFFTN

28093910

1620615

DFFT

158444624

9287445

Transp

1328951266603705560Cycles

(C code)

668905117852335Cycles

(StreamC&
KernelC)

SwimDFFTN

 

Fig. 10 shows the three level bandwidth hierarchy of these applications. The LRF 
to memory bandwidth ratio are over 33:1, 70:1 and 592:1 across DFFTN, Transp and 
DFFT, due to the abundant memory access of these three applications focusing on 
LRF. So they can achieve good performance on Imagine with relatively low memory 
bandwidth for exposing a large register set with two levels of hierarchy to the 
compiler enables considerable locality to be captured that is not captured by a 
conventional cache. While the streams of Swim are very long, which can’t be 
partitioned due to dependence, causing low locality of SRF and LRF. Notice that the 
bandwidth of LRF is much lower than that of SRF, because a mass of index streams 
derived dynamically inhabit the SRF space. 
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Fig. 10. Bandwidth hierarchy of applications 

Table 2 presents the computation rate of these applications measured in the number 
of operations executed per second. Imagine achieves 16 GOPS ALU performance on 
media applications and sustains between 2% and 31% of the peak performance on 
these applications. On DFFT, Imagine averages 10 arithmetic operations per cycle 
across all the clusters for an aggregate rate of 5 GOPS. This high computation rate 
indicates that the stream programming system delivers high computational density on 
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the DFFT application. But for Swim, the computing time is 13%~38% of the whole 
run time. The great mass of work is to wait for result of memory accessing leading to 
inefficient performance. 

Table 2. Computation rate of applications 

 

Fig. 11 shows the size of the computation kernel, as well as the number of 
arithmetic operations per memory access. Imagine’s stream model requires large 
number of arithmetic operations per memory access to effectively use the underlying 
hardware. We can observe that Transp has enough bandwidth to sustain one operation 
per memory access, while DFFT and DFFTN that are computationally intensive 
applications require high computation per memory access to amortize off-chip 
memory bandwidth. Swim characterized by irregular data access results in low 
computation per memory access, and the SRF is not used effectively since there is bad 
producer-consumer locality in this example. In conclusion, Swim is not well suited 
for the Imagine architecture. The performance is limited by memory bandwidth due to 
the relatively low computation per memory access. 

 

Fig. 11. Computational intensity of applications 

4.3   Optimization 

Aiming at solving the inefficiency problem of Swim, we apply some optimizations on 
the application. There are two levels of stream program optimized method. 
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4.3.1   Kernel Level Optimization  
Computation is the bottleneck in the unoptimizable version of our stream programs 
not for saturation of the ALUs but for their poor utilization. The Imagine software 
environment allows for automatic code optimizations such as loop unrolling and 
software pipelining [12]. At the kernel level, the programmer can instruct the 
compiler to unroll/pipeline by simple compiler directives for program optimization. 
Then the loop in the cluster is unrolled and pipelined in order to achieve higher 
arithmetic intensity. The left part of Fig. 12 shows that the VLIW schedule of the 
unoptimizable code is quite sparse. The optimized schedule shown in the right part of 
Fig. 12 is dense. Fig. 13 presents that the computation time is reduced according to 
unrolling and piplining of diverse times on identical program. We can conclude that 
unrolling four times is a critical point. Unrolling too many times increase loading 
overhead of the microcode with enlarging code amount. 

 

Fig. 12. Schedule diagram of kernel level optimization for Swim 

 

Fig. 13. Performance obtained from unrolling and piplining optimizations 

4.3.2   Stream Level Optimization  
By exploiting kernel level optimization, the total execution time reduces. Based on 
the most perfect optimization in kernel, we adjust the input stream length to observe 
the performance variety. Fig. 14 shows that it gives more improvements with shorter 
input stream, and longer stream results in worse speedup. Specially, when the length 
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longer than 512*4, performance is reduced sharply due to appearance of double-
buffer. Optimization is invalid when the stream length greater than 512*32, because 
the optimization increases microcode loading overhead with enlarging code amount.  

Length of streams (word)

Sp
ee

du
p

 

Fig. 14. Speedup obtained from varying stream length 

Above analyses show that the organization of stream, especially the partition of 
long stream, influences on program performance deeply. To eliminate this bottleneck, 
it is necessary to reduce data transmission between memory and SRF so that the 
locality of SRF is enhanced. There are two optimizations of stream level accordingly, 
stripmining and Software pipelining. 

The input streams of most applications are too large to fit the SRF directly. To 
solve this problem, stripmining is brought forward to process a great deal of input 
stream into small portions that fit in the SRF. Then the small input portions are 
applied to produce small portions of the final output that fit in the SRF. This 
optimization is important to achieve good performance [16]. 

Software pipelining divides a loop into sections so that the execution of one section 
in an iteration can be overlapped with execution of another section of another 
iteration. This optimization is implemented for exploiting producer-consumer locality 
and effectively hiding memory access overhead. 

5   Conclusion and Future Work  

In this paper, we explain the method of scientific computing applications mapping to 
stream programs, and present the experimental results. Partial programs fit for stream 
application, such as DFFT and DFFTN. For analyzing whether scientific computing 
applications are suited for stream architecture, we come up for discussion. 

Three level parallelisms and two level data localities of Imagine architecture make 
the performance of scientific computing stream programs improve possibly. And the 
memory operations and computation overlapping can be propitious to cover the 
memory delay and implement optimizations, with the goal of keeping all the units 
busy at all times. Scientific computing applications often exhibit large degrees of data 
parallelism, and as such may be good candidates for SIMD stream applications. But 
comparing scientific computing applications with media applications, the former has 
irregular data organization, multiform data accessing pattern, new compiling 
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problems caused by large computing scale, much higher precision in calculation, and 
bandwidth in great demand. It is difficult to suit for the stream architecture 
completely. For the reason of making full use of the supports of stream architecture 
and exploiting the potentiality of scientific computing programs mapping to Imagine, 
we need to study the optimization algorithm of the existing stream programs. At 
present, the stream compiler is good at optimizing the stream code like loop unrolling, 
software pipelining, stripmining and so on, but the optimizations are restricted to 
algorithm of original stream programs. So we need to modify the original algorithm 
so that these optimizations can be performed effectively. For example, DFFTN 
achieves higher performance due to applying butterfly algorithm on DFFT. Stream 
organization and multi-level parallelism of the algorithm modified can exploit more 
potentiality of stream architecture, with higher computation per memory access and 
better data locality of LRF. 

Through optimization of algorithm and compiler, there will certainly be a large 
class of scientific computing applications where stream architectures are more 
effective. Since there exists a lot of data parallelism in such applications, and the 
overhead of loading and changing kernels is amortized by large stream sizes 
[16][17][18]. Also, the memory operations and computation can overlap in order to 
hide the time spent in memory accesses, with large kernel of scientific computing 
stream programs. Furthermore, the amount of arithmetic units are enough to exploit 
data parallelism effectively, and memory accessing focuses on LRF and SRF mostly 
after optimizations to take advantage of consumer-producer locality so that make 
more efficient use of the memory bandwidth hierarchy. Powerful computational 
ability of stream architecture is emerged to sustain a high computation rate. 

Future plans include exploiting common programming model to improve coding 
efficiency, due to existing program model exposing so many controls to programmers. 
Also, it is significant to construct a scientific computing kernel library that is valuable 
on algorithm design and shifting much of the complexity to the development of 
stream applications. This approach lowers the barrier to developer participation and 
can simplify collaborations among research teams by allowing each group to focus on 
their interests and expertise. 
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