
C. Jesshope and C. Egan (Eds.): ACSAC 2006, LNCS 4186, pp. 38 – 51, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Scientific Computing Applications on the Imagine
Stream Processor*

Jing Du, Xuejun Yang, Guibin Wang, and Fujiang Ao

PSchool of Computer, National University of Defense Technology, Changsha 410073, China
jdstarry@yahoo.com.cn

Abstract. The Imagine processor is designed to address the processor-memory
gap through streaming technology. Good performance of most media appli-
cations has been demonstrated on Imagine. However the research whether
scientific computing applications are suited for Imagine is open. In this paper,
we studied some key issues of scientific computing applications mapping to
Imagine, and present the experimental results of some representative scientific
computing applications on the ISIM simulation of Imagine. By evaluating the
experimental results, we isolate the set of scientific computing application
characteristics well suited for Imagine architecture, analyze the performance
potentiality of scientific computing applications on Imagine compared with
common processor and explore the optimizations of scientific stream program.

Keywords: scientific computing application, Imagine, stream, three level
parallelism, multinest.

1 Introduction

Scientific computing applications widely used to solve large computation problems
are pervasive and computationally demanding. These applications require very high
arithmetic rates on the order of billions of operations per second. But the performance
of these applications is restricted by both the latency and bandwidth of memory
accessing [1][2]. Scientific computing applications often exhibit large degrees of data
parallelism, and as such maybe present great potential opportunities for stream
architectures [3][4], such as Imagine architecture [4]. Imagine is a programmable
stream processor aiming at media applications [5], which contains 48 arithmetic units,
and a unique three level memory hierarchy designed to keep the functional units
saturated during stream processing [6][7]. With powerful supports of the architecture,
Imagine can exploit the parallelism and the locality of a stream program, and achieve
high computational density and efficiency [8]. In this paper, we describe and evaluate
the implementation of mapping scientific computing applications to stream programs
formed of data streams and kernels that consume and produce data streams on the
Imagine stream architecture, and compare our results on a cycle-accurate simulation
of Imagine. The purpose of our work is to exploit the salient features of these unique
scientific computing applications, isolate the set of application characteristics best

* This work was supported by the National High Technology Development 863 Program of

China under Grant No. 2004AA1Z2210.

 Scientific Computing Applications on the Imagine Stream Processor 39

suited for the stream architecture by evaluating the experimental results, and explore
the optimizations of scientific stream program.

2 The Imagine Stream Processing System

2.1 Imagine Architecture

The Imagine architecture developed at Stanford University is a single-chip stream
processor that operates on sequences of data records called streams, supporting the
stream programming system. It is designed for computationally intensive applications
like media applications characterized by high data parallelism and producer-consumer
locality with little global data reuse [6][7]. The Imagine processor consists of 48-
ALUs arranged as 8 SIMD clusters and three level memory hierarchy to ensure the
data locality and keep hundreds of arithmetic units efficiently fed with data. Several
local register files (LRFs), directly feed those arithmetic units inside the clusters with
their operands. A 128 KB stream register file (SRF) reads data from off-chip DRAM
through a memory system interface and sequentially feeds the clusters [8][9]. Fig. 1
diagrams the Imagine stream architecture. One key aspect of Imagine is the concept
of producer-consumer locality, where data is circulated between the SRF and
arithmetic clusters, thereby avoiding expensive off-chip memory access overhead
[10]. Based on the foregoing architecture supports, Imagine can efficiently exploit
data parallelism along three levels: instruction-level parallelism (ILP), data-level
parallelism (DLP), and task-level parallelism (TLP).

Fig. 1. The Imagine stream architecture

2.2 Imagine Programming Model

The programming model of Imagine is described in two languages: the stream level
and the kernel level [11][12][13][14]. A stream level program is written in StreamC

40 J. Du et al.

language, which is derived from C++ language. A kernel level program of the clusters
is written in KernelC language, which is C-like expression syntax. The StreamC
program executed for the host thread represents the data communication between the
kernels that perform computations. However, programmers must consider the stream
organization and communication using this explicit stream model, increasing the
programming complexity [15]. So the optimization for stream programming is
important to achieve significant performance improvements on the Imagine
architecture. The fine stream program can explore ILP, DLP and TLP to maximize
performance, as it processes individual elements from streams in parallel.

3 Implementation of Scientific Computing Stream Applications

Imagine system promises to solve many computationally intensive problems much
faster than their traditional counterparts. Scientific computing applications contain a
great lot of loops possessing a high degree of instruction, data and task level
parallelism that can be exploited by decomposing the scientific computing task into
smaller subtasks, which are mapped into different computational elements, distri-
buting the scientific stream to different processors. However, because a stream
program is more complex than an equivalent sequential program, to realize this
increase in speed some challenges must be overcome first [12].

3.1 Stream Level

The key tasks of stream level are partitioning kernels and organizing input streams.
Since parallelizable parts focus on loops, we present corresponding streaming method
based on different loop transformations. Aiming at exploiting ILP within a cluster,
DLP among clusters and TLP of a multi-Imagine system, programmers distribute
parallelizable data among the clusters and put the data that dependence can’t be
eliminated on the same cluster via loop analysis. Due to wire delay becoming
increasingly important in microprocessor design, reducing inter-cluster communi-
cation must also be taken into account. It is necessary to modify the original algorithm
when we write a stream program. We explicate our key methods in detail according to
an example that is modified from a part of a scientific computing program named
Capao introduced in the fourth section. Fig. 2 shows the example program including
two main loops named loop1 and loop2 by us, and loop2 is a multinest with two inner
loops labeled as loop3 and loop4 specially.

3.1.1 Multinest
In order to make the best use of the powerful computing ability of Imagine, kernel
must process suitable granularity. Computationally intensive operations centre on
multinest loops. It is a simple method to look upon each inner loop as a separate
kernel. But this partition method brings memory access overhead due to replacing
microcode frequently, and causes so much lower repeatable use ratio of SRF as to

 Scientific Computing Applications on the Imagine Stream Processor 41

1 alfa[0] = 0;

2 alfa[1] = b/c;

3 for (i=2;i<511;i++)

4 alfa[i]=b/(c-a*alfa[i-1]);

5 alfa[511]=0;

6 beta[0]=0;

7 for (j=1;j<511;j++)

8 {

9 for (i=1;i<511;i++)

10 {

11 f=t[i][j+1]-t[i][j];

12 beta[i]= (f+beta[i-1])/alfa[i-1];

13 }

14 w[511][j]=0;

15 for (i=510;i>0;i--)

16 w[i][j]=alfa[i]*w[i+1][j]+beta[i];

17 w[0][j]=0;

18 }

loop1

loop2

loop3

loop4

Fig. 2. Example program

make memory access become bottleneck. So that multinest loop is mapped into a big
kernel results in better execution time than several small kernels. Because having
more operations in one kernel gives more opportunities to parallel the operations and
generates more compact schedules with better resource utilization. There are two key
steps to partition multinest loops into kernel codes on Imagine.

 Loop combination

Combine the inner loops without array dependence by instruction scheduling. This
way can increase the computing scale within kernels, and reduce the number of single
instructions outside the inner loops.

 Loop splitting

If inner loops can’t be combined, then consider splitting the multinest loop. In this
way, the computing amount of outer loops can be involved in kernels, and
accordingly parallelism of kernel level program can be improved. This method relates
to array saving creating array copies. We can add one dimension based on original
array to save the results of previous loops. It is a way that bartering space overhead
for efficiency. For example, loop3 and loop4 in Fig. 2 exist array dependence. Hence
we split the big multinest loop2 into two two-nest loops. The computing scale of
kernels is increased from 510 to 510*510. For loop splitting, the dimension degree of
array beta is increased to save the results of loop3, and prepare the input data for
loop4. Fig. 3 shows loop2 is divided to two new multinest named loop3’ and loop4’
according to the dimension variety of array beta.

42 J. Du et al.

for (j=1;j<511;j++)

 for (i=1;i<511;i++)

 {

 f=t[i][j+1]-t[i][j];

 beta[i][j]=(f+beta[i-1][j])/alfa[i-1];

}

for (j=1;j<511;j++)

{

w[511][j]=0;

for (i=510;i>0;i--)

w[i][j]=alfa[i]*w[i+1][j]+beta[i][j];

w[0][j]=0;

}

loop3'

loop4'

Fig. 3. Loop splitting

3.1.2 Coupled Dependent Loop
It is difficult that single loop existing data coupled dependence is parallelized. So
expanding one dimension based on the original array within multinest to exploit
parallelism on the new dimension is an optional means. Then we can choose multi-
form methods of stream organization, aiming at exploiting parallelism among clusters
and making full use of LRF according to the LRF capacity. For instance, in Fig. 2, the
array beta in the twelfth row of the example code is expanded into two-dimension
array. The new dimension direction j exists data coupled dependence, but there is
independence between new columns. The coupled dependent code is as follows.

beta[i][j] = (f + a * beta[i-1][j]) / alfa[i-1].

For making full use of arithmetic units per cluster, we must avoid assigning the
coupled dependent data to different clusters. Doing everything possible to place the
coupled dependent data within a cluster can reduce the influence of wire delay, and
improve parallelism on Imagine. There are two ways to solve this problem.

 Combine the coupled dependent record into a big record according to the
capacity of LRF. Then make the big records form a new input stream. The
implementation of this method is complex in some sort, but comprehended
easily. We emphasize that the infilling of new records may flush the LRF. So
the dependent records are loaded into LRF as successively as possible. At the
same time, we must claim attention to save the array boundary of big record.
Because the record may be as large as the capacity of LRF. When next record
coming, we must save the previous record as the input data of the next
operation to avoid record losing. Fig. 4 presents the stream organization of
this method on Imagine with 8 clusters.

 Compared with the foregoing way, the second method is easy to implement,
because the records of stream are not altered. We place the dependent record
onto a cluster by a special index stream. Same as the foregoing method, every
eight columns are treated as a group. The index stream is formed successively
by row of independent records in a group. Each column of records is assigned
onto a cluster. Fig. 5 presents the stream organization of this method.

 Scientific Computing Applications on the Imagine Stream Processor 43

0 7 8 15

…

…

… …

…

…

511.
.
.

...

....original record

new big record

The pattern
of stream

organization

Fig. 4. The first method of coupled dependent loop mapping on Imagine

0 7 8 15

…

…

…

511

original record

The pattern
of stream

organization

…… …

Fig. 5. The second method of coupled dependent loop mapping on Imagine

3.1.3 Single Instruction
If there are a great deal of single instructions in original program, whether they are
within loops or not, the partition of kernel is influenced, and the kernel granularity
can’t be suitable. To solve the problem, we present two optimization methods.

 Loop expending

In order to increase the computing scale of kernels and avoid using index stream
that causes DRAM reordered overhead, some single instructions need to be expanded
into appropriate loops. Then we can either use successive basic stream as input data or
provide uniform loop variable for multinest combination. For instance, the second
instruction of the example code in Fig. 2 is expanded into loop1.

 Instruction scheduling

When above factors are satisfied, on the premise of accuracy being ensured, this
method may reduce the number of write times to the same record, and prepare for
combining single instruction operations. For example, the fourteenth and seventeenth

44 J. Du et al.

instructions of the example code in Fig. 2 are scheduled out of loop2 to lessen the
computing amount of loop4 so that loop4’ in Fig. 3 can be mapped to stream program
obviously. Fig. 6 illustrates the two methods of single instruction optimization.

alfa[0] = 0;

alfa[1] = b/c;

for (i=2;i<511;i++)

alfa[i]=b/(c-a*alfa[i-1]);

...

for (j=1;j<511;j++){

w[511][j]=0;

for (i=510;i>0;i--)

 w[i][j]=alfa[i]*w[i+1][j]+beta[i];

w[0][j]=0;

}

alfa[0] = 0;

for (i=1;i<511;i++){

alfa[i]=b/(c-a*alfa[i-1]);

w[511][i]=0;

w[0][i]=0;

}

...

for (j=1;j<511;j++)

for (i=510;i>0;i--)

 w[i][j]=alfa[i]*w[i+1][j]+beta[i];

Fig. 6. Single instruction optimizations

3.2 Kernel Level

An Imagine application is written as a sequence of smaller tasks, called kernels. A
kernel operation performs a computation on a set of input streams to produce a set of
output streams. Typically, kernels loop over an input stream, performing identical
operations on each input element to produce their outputs. Each kernel runs on all
eight clusters while processing its input streams and completes the processing of its
input streams before the next kernel begins. In this way, producer-consumer locality
is exploited by consuming the result of one kernel as soon as it is produced. As an
example, Fig. 7 shows how the program in Fig. 2 is mapped to streams and kernels. In
the event where inter-cluster communication is required, each cluster has a cluster id
tag that can be used to identify the cluster and send/receive data to/from the right
cluster. In order to expand the scale of kernel, a long stream is generally as input data.
When computing data are not in native register, additional inter-cluster
communications are required to transfer the data to the right cluster. And since all
applications are not perfectly data parallel, many kernels require data reordering to
place the data on the right clusters.

alfa_in

beta_out

alfa_out t_in

w_out

kernel 1

kernel 3

kernel 2

Fig. 7. Example program mapping to stream program model

 Scientific Computing Applications on the Imagine Stream Processor 45

4 Experimental Results and Analysis

We implement some scientific computing applications on ISIM that is a cycle-
accurate simulator of Imagine [14], including 171.Swim in SPEC2000 and Capao.

4.1 Application Analysis

Swim is a weather prediction program for comparing the performance of current
supercomputers. Fig. 8 shows data flow chart of Swim. Its main computing amount
focuses on a loop of calculating fourteen arrays with 513*513 size. The data amount
of Swim is large, but the computing operations are few correspondingly. The array
access pattern presented in Fig. 9 is irregular.
 Capao is an application on the field of optics. Its computing amount is very huge.
According to its result of serial version, 65.49% of time overhead comes from
subroutine dfft, and 13.36% comes from subroutine transp. So we just consider
mapping the two subroutines to stream program so that improve performance of the
whole application. The subroutine dfft possesses small computing amount and fine
computation intensiveness. We implement two version of dfft. One that applies
butterfly algorithm is called DFFTN in this section, and another formulized without
any optimization is called DFFT. The computing amount is exponent distinction
between DFFTN and DFFT. It is time-consuming on general scalar processors that
DFFTN performs bit reverse operation. Imagine supports this operation on hardware
level, so the performance of DFFTN may be increased. The experiment on DFFT
purposes certifying powerful computing ability of Imagine.

Access
Pattern

Fig. 8. The data flow chart of Swim Fig. 9. Accessing pattern of Swim

4.2 Experimental Results

For comparison purpose, actual measurements of performance were taken using a
general scalar processor system. Table 1 illustrates the result of a rough comparison
between the performance of Imagine and the general scalar processor. It is obvious
that Imagine provides high speedup of computationally intensive applications such as
DFFTN, DFFT and Transp compared with general processor system in terms of
number of cycles, due to the simple control logic and parallel processing ability of

46 J. Du et al.

many arithmetic units. And compared with highly sensitive to memory latency of
general processor, these applications can hide latency to achieve good performance.
But for data intensive applications such as Swim, the speedup is low due to irregular
access pattern so that memory access latency can’t be hided.

Table 1. Comparison of different implementation for the scientific applications

28093910

1620615

DFFT

158444624

9287445

Transp

1328951266603705560Cycles

(C code)

668905117852335Cycles

(StreamC&
KernelC)

SwimDFFTN

28093910

1620615

DFFT

158444624

9287445

Transp

1328951266603705560Cycles

(C code)

668905117852335Cycles

(StreamC&
KernelC)

SwimDFFTN

Fig. 10 shows the three level bandwidth hierarchy of these applications. The LRF
to memory bandwidth ratio are over 33:1, 70:1 and 592:1 across DFFTN, Transp and
DFFT, due to the abundant memory access of these three applications focusing on
LRF. So they can achieve good performance on Imagine with relatively low memory
bandwidth for exposing a large register set with two levels of hierarchy to the
compiler enables considerable locality to be captured that is not captured by a
conventional cache. While the streams of Swim are very long, which can’t be
partitioned due to dependence, causing low locality of SRF and LRF. Notice that the
bandwidth of LRF is much lower than that of SRF, because a mass of index streams
derived dynamically inhabit the SRF space.

B
an

dw
id

th
 (

G
B

/s
)

Fig. 10. Bandwidth hierarchy of applications

Table 2 presents the computation rate of these applications measured in the number
of operations executed per second. Imagine achieves 16 GOPS ALU performance on
media applications and sustains between 2% and 31% of the peak performance on
these applications. On DFFT, Imagine averages 10 arithmetic operations per cycle
across all the clusters for an aggregate rate of 5 GOPS. This high computation rate
indicates that the stream programming system delivers high computational density on

 Scientific Computing Applications on the Imagine Stream Processor 47

the DFFT application. But for Swim, the computing time is 13%~38% of the whole
run time. The great mass of work is to wait for result of memory accessing leading to
inefficient performance.

Table 2. Computation rate of applications

Fig. 11 shows the size of the computation kernel, as well as the number of
arithmetic operations per memory access. Imagine’s stream model requires large
number of arithmetic operations per memory access to effectively use the underlying
hardware. We can observe that Transp has enough bandwidth to sustain one operation
per memory access, while DFFT and DFFTN that are computationally intensive
applications require high computation per memory access to amortize off-chip
memory bandwidth. Swim characterized by irregular data access results in low
computation per memory access, and the SRF is not used effectively since there is bad
producer-consumer locality in this example. In conclusion, Swim is not well suited
for the Imagine architecture. The performance is limited by memory bandwidth due to
the relatively low computation per memory access.

Fig. 11. Computational intensity of applications

4.3 Optimization

Aiming at solving the inefficiency problem of Swim, we apply some optimizations on
the application. There are two levels of stream program optimized method.

48 J. Du et al.

4.3.1 Kernel Level Optimization
Computation is the bottleneck in the unoptimizable version of our stream programs
not for saturation of the ALUs but for their poor utilization. The Imagine software
environment allows for automatic code optimizations such as loop unrolling and
software pipelining [12]. At the kernel level, the programmer can instruct the
compiler to unroll/pipeline by simple compiler directives for program optimization.
Then the loop in the cluster is unrolled and pipelined in order to achieve higher
arithmetic intensity. The left part of Fig. 12 shows that the VLIW schedule of the
unoptimizable code is quite sparse. The optimized schedule shown in the right part of
Fig. 12 is dense. Fig. 13 presents that the computation time is reduced according to
unrolling and piplining of diverse times on identical program. We can conclude that
unrolling four times is a critical point. Unrolling too many times increase loading
overhead of the microcode with enlarging code amount.

Fig. 12. Schedule diagram of kernel level optimization for Swim

Fig. 13. Performance obtained from unrolling and piplining optimizations

4.3.2 Stream Level Optimization
By exploiting kernel level optimization, the total execution time reduces. Based on
the most perfect optimization in kernel, we adjust the input stream length to observe
the performance variety. Fig. 14 shows that it gives more improvements with shorter
input stream, and longer stream results in worse speedup. Specially, when the length

 Scientific Computing Applications on the Imagine Stream Processor 49

longer than 512*4, performance is reduced sharply due to appearance of double-
buffer. Optimization is invalid when the stream length greater than 512*32, because
the optimization increases microcode loading overhead with enlarging code amount.

Length of streams (word)

Sp
ee

du
p

Fig. 14. Speedup obtained from varying stream length

Above analyses show that the organization of stream, especially the partition of
long stream, influences on program performance deeply. To eliminate this bottleneck,
it is necessary to reduce data transmission between memory and SRF so that the
locality of SRF is enhanced. There are two optimizations of stream level accordingly,
stripmining and Software pipelining.

The input streams of most applications are too large to fit the SRF directly. To
solve this problem, stripmining is brought forward to process a great deal of input
stream into small portions that fit in the SRF. Then the small input portions are
applied to produce small portions of the final output that fit in the SRF. This
optimization is important to achieve good performance [16].

Software pipelining divides a loop into sections so that the execution of one section
in an iteration can be overlapped with execution of another section of another
iteration. This optimization is implemented for exploiting producer-consumer locality
and effectively hiding memory access overhead.

5 Conclusion and Future Work

In this paper, we explain the method of scientific computing applications mapping to
stream programs, and present the experimental results. Partial programs fit for stream
application, such as DFFT and DFFTN. For analyzing whether scientific computing
applications are suited for stream architecture, we come up for discussion.

Three level parallelisms and two level data localities of Imagine architecture make
the performance of scientific computing stream programs improve possibly. And the
memory operations and computation overlapping can be propitious to cover the
memory delay and implement optimizations, with the goal of keeping all the units
busy at all times. Scientific computing applications often exhibit large degrees of data
parallelism, and as such may be good candidates for SIMD stream applications. But
comparing scientific computing applications with media applications, the former has
irregular data organization, multiform data accessing pattern, new compiling

50 J. Du et al.

problems caused by large computing scale, much higher precision in calculation, and
bandwidth in great demand. It is difficult to suit for the stream architecture
completely. For the reason of making full use of the supports of stream architecture
and exploiting the potentiality of scientific computing programs mapping to Imagine,
we need to study the optimization algorithm of the existing stream programs. At
present, the stream compiler is good at optimizing the stream code like loop unrolling,
software pipelining, stripmining and so on, but the optimizations are restricted to
algorithm of original stream programs. So we need to modify the original algorithm
so that these optimizations can be performed effectively. For example, DFFTN
achieves higher performance due to applying butterfly algorithm on DFFT. Stream
organization and multi-level parallelism of the algorithm modified can exploit more
potentiality of stream architecture, with higher computation per memory access and
better data locality of LRF.

Through optimization of algorithm and compiler, there will certainly be a large
class of scientific computing applications where stream architectures are more
effective. Since there exists a lot of data parallelism in such applications, and the
overhead of loading and changing kernels is amortized by large stream sizes
[16][17][18]. Also, the memory operations and computation can overlap in order to
hide the time spent in memory accesses, with large kernel of scientific computing
stream programs. Furthermore, the amount of arithmetic units are enough to exploit
data parallelism effectively, and memory accessing focuses on LRF and SRF mostly
after optimizations to take advantage of consumer-producer locality so that make
more efficient use of the memory bandwidth hierarchy. Powerful computational
ability of stream architecture is emerged to sustain a high computation rate.

Future plans include exploiting common programming model to improve coding
efficiency, due to existing program model exposing so many controls to programmers.
Also, it is significant to construct a scientific computing kernel library that is valuable
on algorithm design and shifting much of the complexity to the development of
stream applications. This approach lowers the barrier to developer participation and
can simplify collaborations among research teams by allowing each group to focus on
their interests and expertise.

Acknowledgements. We gratefully thank the Stanford Imagine team for the use of
their compilers and simulators and their generous help. We specifically thank lab 620
of School of Computer Science in National University of Defense Technology for
helpful discussions and comments on this work. We also acknowledge the reviewers
for their insightful comments. This work was supported by the National High
Technology Development 863 Program of China under Grant No. 2004AA1Z2210.

References

1. W. A. Wulf, S. A. McKee. Hitting the memory wall: implications of the obvious.
Computer Architecture News, 1995. 23(1): 20-24.

2. D. Burger, J. Goodman, A. Kagi. Memory bandwidth limitations of future micro-
processors. In Proceedings of the 23rd International Symposium on Computer
Architecture, Philadelphia, PA, 1996.78-89.

 Scientific Computing Applications on the Imagine Stream Processor 51

3. Saman Amarasinghe, William. Stream Architectures. In PACT 2003, September 27, 2003.
4. B. Khailany et al. Imagine: Media processing with streams. IEEE Micro, 21(2):

35–46,March 2001.
5. Ujval J. Kapasi, Scott Rixner, William J. Dally, Brucek Khailany, Jung Ho Ahn, Peter

Mattson and John D.Owens. Programmable Stream Processors. IEEE Computer, pages
54-62, August , 2003.

6. Brucek Khailany, William J. Dally, Andrew Chang, Ujval J. Kapasi, Jinyung Namkoong,
and Brian Towles. VLSI design and verification of the Imagine processor. In Proceedings
of the IEEE International Conference on Computer Design, pages 289–296, September
2002.

7. Brucek Khailany. The VLSI Implementation and Evaluation of Area-and Energy-Effcient
Streaming Media Processors. Ph.D. thesis, Stanford University, 2003.

8. Ujval J. Kapasi, William J. Dally, et al. The Imagine Stream Processor. In Processings of

the 2002 International Conference on Computer Design, 2002.
9. Nuwan S. Jayasena. Memory Hierarchy Design for Stream Computing. Ph.D. thesis,

Stanford University, 2005.
10. Scott Rixner, William Dally, Ujval J. Kapasi, Brucek Khailany, Abelardo Lopez-Lagunas,

Peter Mattson and John D.Owens. Media processing applications on Imagine media
processor. In Proceedings of the 2002 International Conference on Computer design,2002.

11. Peter Mattson et al. Imagine Programming System Developer’s Guide. http:// cva.
stanford.edu, 2002.

12. Peter Raymond Mattson. A Programming System for the Imagine Media Processor. Dept.
of Electrical Engineering. Ph.D. thesis, Stanford University, 2002.

13. Saman Amarasinghe et al. Stream Languages and Programming Models. In PACT 2003,
September 27, 2003.

14. Abhishek Das, Peter Mattson, et al. Imagine Programming System User’s Guide 2.0.
June 2004.

15. Ola Johnsson, Magnus Stenemo, Zain ul-Abdin. Programming & Implementation of
Streaming Applications. Master’s thesis, Computer and Electrical Engineering Halmstad
University, 2005.

16. Jinwoo Suh, Eun-Gyu Kim, Stephen P. Crago, Lakshmi Srinivasan, and Matthew C.
French. A Performance Analysis of PIM, Stream Processing, and Tiled Processing on
Memory-Intensive Signal Processing Kernels. In ISCA03, 2003.

17. Mattan Erez,Jung Ho Ahn, Ankit Garg, William J.Dallyet et al. Analysis and Performance
Results of a Molecular Modeling Application on Merrimac. In SC’04, Pittsburg,
Pennsylvania, USA, November 6-12, 2004.

18. Jung Ho Ahn, William J. Dally, et al. Evaluating the Imagine Stream Architecture. In
ISCA2004, 2004.

	Introduction
	The Imagine Stream Processing System
	Imagine Architecture
	Imagine Programming Model

	Implementation of Scientific Computing Stream Applications
	Stream Level
	Kernel Level

	Experimental Results and Analysis
	Application Analysis
	Experimental Results
	Optimization

	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

