
Streaming Networks for Coordinating
Data-Parallel Programs (Position Statement)

Alex Shafarenko

Compiler Technology and Computer Architecture Group, University of Hertfordshire,
United Kingdom

A.Shafarenko@herts.ac.uk

Abstract. A new coordination language for distributed data-parallel
programs is presented, call SNet. The intention of SNet is to introduce
advanced structuring techniques into a coordination language: stream
processing and various forms of subtyping. The talk will present the or-
ganisation of SNet, its major type inferencing algorithms and will briefly
discuss the current state of implementation and possible applications.

Process concurrency is difficult to deal with in the framework of a programming
language. If properly integrated into the language semantics, it complicates and
often completely destroys the properties that enable the kind of profound op-
timisations that make compilation of computational programs so efficient. One
solution to this problem, which is the solution that this talk will present, is the
use of so-called coordination languages. A coordination language uses a readily-
available computation language as a basis, and extends it with a certain com-
munication/synchronisation mechanism thus allowing a distributed program to
be written in a purely extensional manner. The first coordination language pro-
posed was Linda[Gel85, GC92], which extended C with a few primitives that
looked like function calls and could even be implemented directly as such. How-
ever an advanced implementation of Linda would involve program analysis and
transformation in order to optimise communication and synchronisation patterns
beyond the obvious semantics of the primitives. Further coordination languages
have been proposed, many on them extensional in the same way, some not; for
the state of the art, see a survey in [PA98] and the latest Coordination conference
[JP05].

The emphasis of coordination languages is usually on event management,
while the data aspect of distributed computations is not ordinarily focused on.
This has a disadvantage in that the structuring aspect, software reuse and com-
ponent technology are not primary goals of coordination. It is our contention
that structuring is key in making coordination-based distributed programming
practically useful. In this talk we describe several structuring solutions, which
have been laid in the foundation of the coordination language SNet. The lan-
guage was introduced as a concept in [Sha03]; the complete definition, including
semantics and the type system, is available as a technical report [Sha06].

The approach proposed in SNet is based on streaming networks. The appli-
cation as a whole is represented as a set of self-contained components, called

C. Jesshope and C. Egan (Eds.): ACSAC 2006, LNCS 4186, pp. 2–5, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Streaming Networks for Coordinating Data-Parallel Programs 3

“boxes” (SNetis not extensional) written in a data-parallel language. SNet deals
with boxes by combining them into networks which can be encapsulated as fur-
ther boxes. The structuring instruments used are as follows:

– Streams. Instead of arbitrary communication, data is packaged into typed
variant records that flow in a sequence from their producer to a single con-
sumer.

– Single-Input, Single-Output(SISO) box and network configuration. Multiple
connections are, of course, possible and necessary. The unique feature of SNet
is that the multiplicity of connection is handled by SNet combinators so that
a box sees a single stream of records coming in. The records are properly
attributed to their sources by using types (which include algebraic types,
or tagged, disjoint unions). Similarly, the production of a single stream of
typed records by a box does not preclude the output separation into several
streams according to the type outside the box perimeter.

– Network construction using structural combinators. The network is pre-
sented as an expression in the algebra of four major combinators (and a
small variety of ancillary constructs): serial (pipelined) composition, parallel
composition, infinite serial replication (closure) and infinite parallel repli-
cation (called index splitter, as the input is split between the replicas ac-
cording to an “index” contained in data records). We will show that this
small nomenclature of tools is sufficient to construct an arbitrary streaming
network.

– Record subtyping. Data streams consist of flat records, whose fields are
drawn from a linear hierarchy of array subtypes[Sha02, SS04]. The records as
wholes are subtyped since the boxes accept records with extra fields and al-
low the producer to supply fewer variants than the consumer has the ability
to recognise.

– Flow inheritance. Due to subtyping, the boxes may receive more fields in a
record than they recognise. In such circumstances flow inheritance causes the
extra fields to be saved and then appended to all output records produced
in response to a given input one1. Flow inheritance enables very flexible
pipelining since, on the one hand, a component does not need to be aware of
the exact composition of data records that it receives as long as it receives
sufficient fields for the processing it is supposed to do; and on the other,
the extra data are not lost but passed further down the pipeline that the
components may be connected by.

– Record synchronizers. These are similar to I-structures known from dataflow
programming. SNet synchronisers are typed SISO boxes that expect two
records of certain types and produce a joint record. No other synchronisation
mechanism exists in SNet, and no synchronisation capability is required of
the user-defined boxes.

– The concept of network feedback in the form of a closure operator. This
connects replicas of a box in a (conceptually) infinite chain, with the input

1 This is a conceptual view; in practice the data fields are routed directly to their
consumers, thanks to the complete inferability of type in SNet.

4 A. Shafarenko

data flowing to the head of the chain and the output data being extracted
on the basis of fixed-point recognition. The main innovation here is the
proposal of a type-defined fixed point (using flow inheritance as a statically
recognisable mechanism), and the provision of an efficient type-inference
algorithm. As a result, SNet has no named channels (in fact, no explicit
channels at all) and the whole network can be defined as a single expression
in a certain combinator algebra.

The talk will address the following issues. We will first give an overview of
stream processing pointing out the history of early advances [Kah74, AW77,
HCRP91], the semantic theory [BS01] and the recent languages [Mic02]. Then
the concepts of SNet will be introduced, focusing in turn on: overall organisation
and combinators, type system and inference algorithms, concurrency and syn-
chronisation, and the binding for a box language. Finally a sketch of a complete
application in the area of plasma simulation using the particle-in-cell method
will be provided.

Work is currently underway to implement SNet as a coordination language for
a large EU-sponsored Integrated Project named “EATHER”[Pro], which is part
of the Framework VI Advanced Computing Architecture Initiative. University
of Hertfordshire is coordinating the software side of the project; if time permits,
the talk will touch upon the progress achieved to date.

References

[AW77] E. A. Ashcroft and W. W. Wadge. Lucid, a nonprocedural language with
iteration. Communications of the ACM, 20(7):519–526, 1977.

[BS01] M Broy and G Stefanescu. The algebra of stream processing functions.
Theoretical Computer Science, (258):99–129, 2001.

[GC92] D Gelernter and N Carriero. Coordination languages and their significance.
Communications of the ACM, 35(2):96–107, Feb. 1992.

[Gel85] David Gelernter. Generative communication in linda. ACM Trans Pro-
gram. Lang Syst., 1(7):80–112, 1985.

[HCRP91] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous
data-flow programming language LUSTRE. Proceedings of the IEEE,
79(9):1305–1320, September 1991.

[JP05] Jean-Marie Jacquet and Gian Pietro Picco, editors. Coordination Mod-
els and Languages. 7th International Conference, COORDINATION 2005,
Namur, Belgium, April 20-23, 2005, volume 3454 of Proceedings Series:
Lecture Notes in Computer Science, Vol. 3454 Jacquet, Jean-Marie; Picco,
Gian Pietro (Eds.) 2005, X, 299 p., Softcover Lecture Notes in Computer
Science. Springer Verlag, 2005.

[Kah74] G Kahn. The semantics of a simple language for parallel programming. In
L Rosenfeld, editor, Information Processing 74, Proc. IFIP Congress 74.
August 5-10, Stockholm, Sweden, pages 471–475. North-Holland, 1974.

[Mic02] Michael I. Gordon et al. A stream compiler for communication-exposed
architectures. In Proceedings of the Tenth International Conference on
Architectural Support for Programming Languages and Operating Systems,
San Jose, CA. October 2002, 2002.

Streaming Networks for Coordinating Data-Parallel Programs 5

[PA98] G A Papadopoulos and F Arbab. Coordination models and languages. In
Advances in Computers, volume 46. Academic Press, 1998.

[Pro] The AETHER Project. http://aetherist.free.fr/Joomla/index.php.
[Sha02] Alex Shafarenko. Coercion as homomorphism: type inference in a system

with subtyping and overloading. In PPDP ’02: Proceedings of the 4th
ACM SIGPLAN international conference on Principles and practice of
declarative programming, pages 14–25, 2002.

[Sha03] Alex Shafarenko. Stream processing on the grid: an array stream trans-
forming language. In SNPD, pages 268–276, 2003.

[Sha06] Alex Shafarenko. Snet: definition and the main algorithms. Technical
report, Department of Computer Science, 2006.

[SS04] Alex Shafarenko and Sven-Bodo Scholz. General homomorphic overload-
ing. In Implemntation and Application of Functional Languages. 16th
International Workshop, IFL 2004, Lübeck, Germany, September 2004.
Revised Selected Papers., LNCS’3474, pages 195–210. Springer Verlag,
2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

