
C. Jesshope and C. Egan (Eds.): ACSAC 2006, LNCS 4186, pp. 231 – 243, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A High Performance Simulator System for a
Multiprocessor System Based on a Multi-way Cluster

Arata Shinozaki1, Masatoshi Shima1, Minyi Guo2, and Mitsunori Kubo1

1 Future Creation Lab., Olympus Corp., Shinjuku-ku, Tokyo 163-0914, Japan
{arata_shinozaki, masatoshi_shima, mi_kubo}@ot.olympus.co.jp

2 School of Computer Science and Eng., University of Aizu, Aizu-Wakamatsu,
Fukushima 965-8580, Japan
minyi@u-aizu.ac.jp

Abstract. In the ubiquitous era, it is necessary to research on the architectures
of multiprocessor system with high performance and low power consumption.
A processor simulator developed in high level language is useful because of its
easily changeable system architecture which includes application specific in-
struction sets and functions. However, there is a problem in processing speed
that both PCs and workstations provide insufficient performance for the simula-
tion of a multiprocessor system. In this research, a simulator for a multiproces-
sor system based on the multi-way cluster was developed. In the developed
simulator system, one processor model consists of an instruction set simulator
(ISS) process and several inter-processor communication processes. In order to
get the maximization of the simulation performance, each processor model is
assigned to the specific CPU on the multi-way cluster. Also, each inter-
processor communication process is implemented using MPI library, which can
minimize the CPU resource usage in a communication waiting state. The
evaluation results of the processing and communication performance using a
distributed application program such as JPEG encoding show that each ISS
process in the developed simulator system consumes approximately 100% CPU
resources for keeping enough inter-processor communication performance. This
result means that the performance increases in proportion to the number of inte-
grated CPUs on the cluster.

1 Introduction

In the ubiquitous era, micro processors are widely used in many applications includ-
ing not only PCs and PDAs but also home appliances and cars. For these applications,
high performance parallel computing is required for multimedia codec processing,
digital signal processing, and secure communication processing. Performance
improvement by increasing the operating frequency of a processor is reaching the
upper-bound because of leakage current and power consumption [1]. Both multi-core
processor systems and multiprocessor systems [2, 3] are effective solution to improve
performance without increasing operating frequency. However, they still consume a
lot of power. To solve these problems, it becomes necessary to research on the archi-
tecture of heterogeneous multiprocessor system with application-specific instruction
sets and functions, so that it optimizes the balance between high performance and low
power consumption, and lowers the redundancy of processing.

232 A. Shinozaki et al.

In general, a simulator developed in a high level language is useful for the research
on the architecture of a processor system, because the system architecture can be
easily changeable [4-8] with additional application specific instruction sets and func-
tions. However, there is a problem that both PCs and workstations provide insuffi-
cient performance for the simulation of a multiprocessor system.

In this research, a simulator system for a multiprocessor system was developed
based on a multi-way cluster. It is expected to provide high parallelism and high per-
formance with multiple CPUs on each node. This paper shows the usefulness of the
developed simulator system according to the evaluation results on the processing
capability and communication performance using a distributed processing application.

2 PE and PE Network

Fig. 2.1 shows a schematic diagram of a multiprocessor system. In the part (a), each
CPU is a Processing Element (PE). The system bus connecting the CPUs is called a
PE Network. From this point of view, a part of multiprocessor system can be simpli-
fied as PEs connected by a PE Network.

Fig. 2.1. Schematic Diagram of a Multiprocessor System

A PE can be also viewed as a processor, which contains a general purpose proces-
sor, a DSP, and a processor specific for special function, with application specific
instruction sets and functions. Furthermore, a PE contains peripherals including a
monitor, a keyboard, or a HDD. Similarly, PE Network can be viewed as a peripheral
bus, a system bus, the Internet, or other networks. The following sections show that
the simulator system can connect various PEs with common network interface and
protocol. Then, they show the simulator system is useful for the simulation of a het-
erogeneous multiprocessor system.

3 Simulator System

3.1 Simulator System

Fig. 3.1 shows the simulator system architecture. The simulator system consists of a
simulation engine, a control center (CC), and a GUI.

 A High Performance Simulator System for a Multiprocessor System 233

…

G
lo
b
a
l A
c
c
e
s
s M
e
m
o
ry

Fig. 3.1. Simulator System Architecture

The simulation engine consisted of (1) PEs, (2) PE Network, and (3) Global Ac-
cess Memory. Every PE is constructed from (a) Processing Module (PM), (b) applica-
tion-specific Function Module (FM), (c) Memory Module (MM), and (d) Communi-
cation Module (CM). A PM is a core information processing engine. An FM provides
application specific instruction sets and functions.

For example, PE1 integrates a general purpose CPU as a PM extended its function
with an application specific instruction set as an FM. PE2 accelerates a DSP with an
ASIC optimized for an application as an FM. In PE3, a processor specific for special
function cooperates with an ASIC for motion estimation, which requires high accu-
racy and massive data processing in video processing.

An MM is the registers and local memory of a PM and an FM. An MM also serves as
a memory for inter-PE communication. MM stores information sent and received over
the PE network, because the MM is accessible from CMs. A CM is the protocol-
independent general model of PE Network. There is no special module which connects
CMs. The connection information provided in each CM decides the structure of PE
Network. Also, system information is sent and received through CMs. The Global
Access Memory stores information shared between PEs such as large amount of video
data.

The CC analyzes information of user’s operations, sends control information to the
simulation engine, receives simulation results from it, and controls the whole system.
The CC also works as the gateway of the simulation engine, and operates the simula-
tion engine as if it were a part of a large information processing system.

As the GUI is independent from a platform it runs, it can operate the simulation
engine through the CC over various networks.

PMs and FMs can be implemented with the following various models focusing on
different functions and abstraction levels: an untimed function model which simulates
only function without time concept, an instruction set model which simulates only the
behavior of instructions, a cycle-accurate model [9, 10] which defines the behavior in

234 A. Shinozaki et al.

each clock cycle, and a RTL model which is equivalent to the target hardware. These
models are written in a language such as C, C++, Java, SystemC [11, 12], or their
combination.

3.2 Simulator System Platform

Fig. 3.2 shows a simulator system platform based on a multi-way cluster which inte-
grates three nodes with different number of CPUs.

Gbit Ethernet (NIS/NFS)

Internet

M

LAN

LAN LAN

Gbit Ethernet（MPI） bundle

CPU

LAN

LAN

LAN PCI

MM

M

M

CPU

LAN

LAN LAN

PCI

M

M

CPU CPU

CPU CPU

CPU

Fig. 3.2. Simulator System Platform

A one-way administration node executes the GUI and the CC, and controls the
whole simulator system. Each of 6PEs is assigned to the specific CPU in a four-way
node 1 and a two-way node 2 for high-speed simulation. Mainly, the node 1 processes
main program and the node 2 executes pre-processing, post-processing, and external
I/O processing.

The intra-node communication is implemented with high-speed system bus and
memory bus exclusively used for the specific CPU. The simulator system platform
implemented Opteron CPU [13] operated in 2.4GHz. One CPU can directly connect
up to three adjacent CPUs through HyperTransport [14], which is bidirectional multi-
channel system bus possible to transfer data at 6.4GBytes/sec. Each CPU has 4GB
memory directly-accessible at 3.2GBytes/sec.

The inter-node communication is implemented with a Gigabit-Ethernet. The
Ethernet cables can be logically bundled to avoid performance degradation caused by
the limit of bandwidth. Inter-PE communication model is implemented using MPI
[15] library which can program the timing of a request for communication and the
sequence of communication handshake.

MMs and the Global Access Memory are implemented as shared memory on the
OS. If the shared memory is created on other CPUs, a PM, an FM and a CM can ac-
cess them in high speed through HyperTransport.

SuSE Linux 9.1 Professional (kernel 2.6) [16] facilitates process assignment to
each CPU, process control, MPI programming, and the creation of shared memory
under 64-bit environment.

 A High Performance Simulator System for a Multiprocessor System 235

3.3 Implementation of Simulator System

Each PM of 6 PEs is implemented with a proprietary MIPS R2000/3000 instruction
set [17] simulator (ISS) in C++. An ISS can simulate each step of instruction behav-
ior, and it is suitable for the high-speed verification of algorithm of applications. For
the inter-PE communication, system call 1 instruction (syscall1) and system call 2
instruction (syscall2) were expanded from the system call instruction in the MIPS
instruction set. Syscall1 requests to send data for the data receiving PE, and syscall2
notifies that the data receiving PE finished using data for the data sending PE.

MMs are implemented with 256KB local memory and registers. The registers con-
sist of general-purpose registers, exception registers, and extended system control
registers. The Global Access Memory is composed of 4MB internal bulk memory on
the node 1, 4MB external memory, and also 4MB media memory on the node 2.

3.4 Details of Simulator System

3.4.1 Process Organization and CPU Assignment
Fig.3.3 shows process organization and CPU assignment for the communication be-
tween PE1 and PE2 / PE3. The PE is implemented with one PM process, i.e., MIPS
ISS, and CM processes consisted of pairs of sending process and receiving process.
These pairs are used for (1) inter-PE communication and (2) communication with the
CC. All processes of a specific PE is assigned to a corresponding CPU. Therefore, all
the processes in the PE are possible to use almost 100% of the specific CPU re-
sources. All the processes are accessible to the registers and the local memory in the
MM. Fig. 3.4 shows the local memory map.

Fig. 3.3. Process Organization and CPU Assignment

3.4.2 Communication Module (CM)
A CM is implemented using MPI library as native code on the multi-way cluster, and
works with a pair of a sending process and a receiving one. MPI enables to write the
detailed sequence of the communication handshake as intended.

236 A. Shinozaki et al.

Fig. 3.4. Local Memory Map

When the simulator extends the network structure by increasing or decreasing the
pair of the CM processes, these CM processes are required to minimize the influence
on the PM process. Then, every sending process or receiving process minimizes its
CPU resource usage, organized with a loop starting from MPI_Recv() function to
block its execution and sleep in a waiting state. This enabled the PM process to use
almost 100% of the specific CPU resources.

3.4.3 Mailbox
Necessary information for inter-PE communication includes (1) control information
(i.e., commands) and (2) data stored in command mailbox and data mailbox respec-
tively. They consist of sending mailbox and receiving mailbox constructed on the
local memory.

The command mailbox uses 64-byte fixed area, and stores the following com-
mands: (1) ID of data sending and receiving PE, (2) communication type, (3) address
to store data in data sending and receiving PE, (4) data size and number of packets,
and (5) repeat count of data communication. The command of the communication
type stores the signal to:

a. request to send data issued from the data sending PE (REQ signal)
b. respond for the REQ signal issued from the data receiving PE (ACK signal)
c. notify that the data receiving PE finished using data(FIN signal)
The suitable size and the number of data mailbox can be defined according to the

characteristics of the application.
The Mail Control was constructed at the top of mailbox area. It manages commu-

nication status using the following register and flags:
A. Sending Session Counter (SSC) to count the number of communication

session

 A High Performance Simulator System for a Multiprocessor System 237

B. Sending Mailbox Full (SMF) to notify whether the sending mailbox is empty
to the PM process

C. Receiving Mailbox Full (RMF) to notify whether the receiving data mailbox
receives data to the PM process

3.4.4 Sequence of Communication
Fig. 3.5 shows the sequence of the inter-PE communication to send data from PE1 to
PE2 with a single communication buffer. PM1 app. and PM2 app. express the de-
scription of application program running on PM1 and PM2 respectively. PM1 and
PM2 express the behavior of PMs which application programs cannot detect, for ex-
ample the control of a flags and mailboxes etc.

(flow)
(1) [PM1 app.] stores sending commands including the REQ signal and the address to
indicate the top of sending data to the sending command mailbox.
(2) [PM1 app.] stores sending data to the sending data mailbox.
(3) [PM1 app.] executes syscall1.
(4) [PM1] sets SCC and SMF.
(5) [PM1] extracts the ID of PE2 from the sending command mailbox, then, sends the
sending commands including the REQ signal to CM2
(6) [CM2] receives the commands including the REQ signal, and returns from a wait-
ing state.
(7) [CM2] stores the sending commands including the ACK signal and the address to
indicate the top of the receiving data to the sending command mailbox.
(8) [CM2] sends the sending commands including the ACK signal to CM1
(9) [CM1] receives the commands including the ACK signal, and returns from a
waiting state.
(10) [CM1] sends the sending data in the sending data mailbox to CM2
(11) [CM1] clears SMF, and waits the next commands by MPI_Recv(). PM1 app.
becomes able to store the sending commands and data for the next session to the send-
ing mailboxes.
(12) [CM2] receives the data in the receiving data mailbox.
(13) [CM2] sets RMF, and enters a waiting state by MPI_Recv().
(14) [PM2 app.] detects RMF, and stores the received data to the working memory
(15) [PM2 app.] sets the sending commands including the FIN signal to the sending
command mailbox.
(16) [PM2 app.] executes syscall2.
(17) [PM2] clears RMF.
(18) [PM2] extracts the ID of PE1 from the sending command mailbox, then, send
the sending commands including the FIN signal to CM1
(19) [CM1] receives the commands including the FIN signal, and returns from a
waiting state.
(20) [CM1] clears SSC, and enters a waiting state by MPI_Recv(). After that, PM1
app. can execute syscall1.

238 A. Shinozaki et al.

Fig. 3.5. Sequence of Inter-PE Communication with a Single Buffer

 A High Performance Simulator System for a Multiprocessor System 239

4 Performance Evaluation

This section shows the basic processing performance of PE without CM processing
and the basic communication performance of CM without PM processing. After that,
we will evaluate the processing and communication performance of this simulator
system and its usefulness, using an application -- JPEG encoding program.

4.1 Performance Evaluation of PM Processing

The following five application programs were selected for performance evaluation of
PM processing: (1) transposition of 32x32-bit matrix, (2) two-dimensional DCT for
8x8-element matrix, (3) a test program for arithmetical and logical instructions (4) a
test program for branch and jump instructions, and (5) a test program for memory
access instructions. Each application program executed 1G instructions on each of 1
PE, 2 PEs, 4 PEs, or 6 PEs without inter-PE communication, measuring the process-
ing time to evaluate the processing performance of ISSs as PM. Fig. 4.1 shows the
average processing performance and CPU resource usage of PM.

Fig. 4.1. Average Processing Performance and CPU Resource Usage of PM

This instruction simulator caches decoded instructions. Therefore, the processing
performance of PM depends on the cache hit rate. In terms of matrix transposition,
which shows the lowest performance, the average processing performance of PM was
over 14MIPS in 6PE case. The performance is only 5% lower than that in 1 PE case.
Other application programs show almost the same results. For each PE was assigned
to the specific CPU, the CPU resource usage in all of application programs shows
almost 100% as expected.

240 A. Shinozaki et al.

4.2 Performance Evaluation of CM Processing

On the intra-node and inter-node communication models shown in Fig. 4.2, (1) 64-
byte packets same as a command mailbox and (2) 16K-byte packets same as a data
mailbox were sent and received sequentially in 60 seconds. Each communication
channel has no dependency. The average of inter-PE communication speed of all
channels and the CPU resource usage were calculated. To measure the communica-
tion performance while all PMs consume almost 100% of CPU resources, the execu-
tion priority of each CM process was set to be low. Table 4.1 shows the results of the
measurement.

Fig. 4.2. Intra-node Comm. Model (left) / Inter-node Comm. Model (Right)

Table 4.1. Average Inter-PE Comm. Speed and CPU Resource Usage of PM and CM

64 16K 64 16K

PM[%] 94.58 98.87 73.31 79.58

CM(send)[%] 4.31 0.38 6.21 10.05

CM(recv.)[%] 1.11 0.74 20.49 10.37

[Packets/sec] 1,222 476 63,991 4,805

[Mbps] 0.60 59.52 31.26 601.07

Average Comm. Speed in All
InterPE Comm. Channel

Intra. Inter.

Average CPU Resource Usage

Communication Model

Size of Packet[Bytes]

Regarding the inter-node communication, the performance of CM kept 600Mbps

worth of 4800 packets/sec with 64KByte data packets because of the buffering
mechanism in the Ethernet board. Considering a MPI header, actual communication
performance is higher than 600Mbps. It consumes almost all of communication
bandwidth of Gigabit-Ethernet. If necessary, bundling the Ethernet cables is able to
expand the bandwidth. For an application in which communication plays an important
role, it is possible to increase communication speed by lowering the CPU resource
usage of PM. The same can be said for the intra-node communication.

On the other hand, regarding the intra-node communication, communication speed
is 1200 packets/sec with 16KB packets and 500 packets/sec with 64B packets using 4
channels, while PM consumes about 95% CPU resources. If much higher communica-
tion speed is required, it is possible to share the information without communication
by constructing mailboxes on the Global Access Memory based on the characteristics
of the multi-way cluster.

 A High Performance Simulator System for a Multiprocessor System 241

4.3 Performance Evaluation of Simulator System Using JPEG Encoding
Application Program

The JPEG encoding application is divided into six sub-programs and executed on
each PE as shown in Table 4.2. An input image is specified with the format of 24-bit-
depth bitmap file, the size of VGA (640x480), the sampling factor of 4:2:2, and the
quality of 75. Table 4.2 shows the processing performance of PM, the CPU resource
usage of PM, the times and the processing rate defined below, the data size in inter-
PE communication, and the performance of CM processing.

• PE operating time = the elapsed time from the beginning of processing to the

end of it on each PE
• PM operating time = the time consumed as a user process out of PE operating

time
• PM waiting time = PM operating time * (No. of instructions executed in a

communication waiting state / No. of all instructions)
• PM processing time = PM operating time – PM waiting time
• CM communicating time= PE operating time – PM operating time
• PE processing rate = (PM processing time + CM communicating time) / PE

operating time

Table. 4.2. Simulator System Performance Using JPEG Encoding Application Program

Assigned Node Node 2 Node 2

Assigned PE PE5 PE1 PE2 PE3 PE4 PE6

Function
Bitmap

File
Reading

RGB to
YCrCb

Down
Sampling

DCT/
Quantizati

on

Huffman/R
un-length

JPEG
File

Writing
PM Processing Performance[MIPS] 15.29 14.03 14.58 14.08 14.06 15.68 14.62

PM CPU Resource Usage 99.32% 99.52% 99.95% 99.97% 99.90% 99.95% 99.77%

PE Operating Time[sec] 21.41 21.40 21.40 21.40 21.40 21.41

PM Operating Time[sec] 21.24 21.20 21.31 21.31 21.28 21.32

PM Processing Time[sec] 0.36 3.07 1.55 8.16 2.19 0.02

PM Waiting Time[sec] 20.88 18.13 19.76 13.15 19.08 21.30

CM Commnicating Time[sec] 0.17 0.20 0.09 0.09 0.13 0.09

PE Processing Rate 2.50% 15.28% 7.65% 38.55% 10.84% 0.50% 12.55%

Size of Receiving Data[KBytes] 0 900 900 600 1200 ～600

Size of Sending Data[KBytes] 900 900 600 1200 ～600 0

CM Processing Performance [MBytes/sec] 5.05 8.75 16.10 19.75 ～14.06 ～6.73

Node 1

Average

 Each PM could achieve over 14MIPS performance with CM processing. CM could
achieve over 5MBytes/sec communication performance using less than 1 % CPU
resources. The performance of PM itself is equivalent to the performance in the case
of single PM processing without CM processing shown in Fig. 4.1. The performance
of CM is higher than that of CM processing without PM processing, which is shown
in Table 4.1. However, this JPEG encoding application used only single communica-
tion buffer and could send the next data only after detecting the execution of data
processing. As a result, 90% of PE operating time was consumed for a waiting state,
and the simulation time exceeded 20 seconds for the encoding of one JPEG picture. In
the next step, the communication waiting time will be reduced using multiple

242 A. Shinozaki et al.

communication buffer and overlapping PM processing and CM processing to improve
the performance.

One of the performance improvement methods is averaging the processing times in
all of PMs and optimizing the partitioning of functions assigned to each PE by detect-
ing performance bottlenecks. This simulator system enables researchers to profile and
detect the bottlenecks of the processing time and waiting time of each PE. For exam-
ple, the result in Table 4.2 implies that PE3 is one of bottlenecks consuming the long-
est processing time, and partitioning them into DCT and quantization will be effec-
tive. Also, it implies PE6 consumes less than 1% PE processing rate, and combining it
with PE4 will be effective. Thus, the simulator system is useful to optimize the parti-
tioning of functions, and research new additional instruction sets and application
specific functions. As a result, the simulator system is suitable to research the archi-
tecture of a heterogeneous multiprocessor system.

5 Conclusion

This research focused on a simulator system for a multiprocessor system based on the
high performance multi-way cluster integrated multiple CPUs on each processing
node. The implemented simulator system maximized its performance, assigning each
PE to the specific CPU on the multi-way cluster and implementing CM with MPI
which can minimize the CPU resource usage in a communication waiting state. The
simulator system executed application at over 14MIPS on each PM, achieving com-
munication performance at over 5MBytes/sec with the distributed processing of JPEG
encoding using single communication buffer. Thus, this showed that the implemented
simulator system is useful for the simulation of distributed application on a multi-
processor system.

This paper showed that the implemented simulator system enables to profile appli-
cation processing time and waiting time of each PE, detect bottlenecks, optimize the
partitioning of functions in available PE resources, and research additional new in-
struction sets and application specific functions for the architecture of a heterogene-
ous multiprocessor system suitable for the ubiquitous era.

In the future, extending the current simulator system, we will research and develop
a full-scale simulator system suitable for a multi-stream application with new sets of
PE including ISSs and cycle-accurate models with additional instruction sets, applica-
tion specific untimed function models, and RTL models in a system description lan-
guage such as SystemC. The simulator system will promote the research on the target
multiprocessor system.

References

1. Matsuzawa, A., Issues of Current LSI Technology and the Future Technology Direction.
IEICE Transactions vol. J87-C No.11, pages 802-809, 2004.

2. Pham, D., et al., The Design and Implementation of a First-Generation CELL Processor –
A Multi-Core SoC. ICICDT 2005 pages 49 – 52, 2005

 A High Performance Simulator System for a Multiprocessor System 243

3. Intel PentiumD Processor, http://www.intel.com/products/processor/index.htm (March,
2006)

4. Imafuku, S., Ohno, K., and Nakashima, H. Reference filtering for distributed simulation of
shared memory multi-processor. In Proc. 34th Annual Simulation Symposium, pages
219—226, May 2001.

5. Mukherjee, S., Reinhardt, S., Falsafi, B., Litzkow, M., Huss-Lederman, S., Hill, M., Larus,
J., and Wood, D. Wisconsin Wind Tunnel II: A fast and portable parallel architecture
simulator. In Proc. Workshop on Performance Analysis and Its Impact on Design, June
1997.

6. Rosenblum, M., Herrod, S., Witchel, E., and Gupta, A. Complete computer system simula-
tion: The SimOS approach. IEEE Parallel & Distributed Technology, 3(4): 34—43, 1995.

7. Veenstra, J., and Fowler, R. Mint: A front end for efficient simulation of shared-memory
multi-processor. In Proc. MASCOTS’94, pp. 201—207, 1994.

8. Cmelik, R., and Keppel, D. Shade: A fast instruction set simulator for execution profiling.
In Proc. of 1994 ACM SIGMETTRICS Conference on Measurement and Modeling of
computer systems, Philadelphia, 1996.

9. Shima, M., Shinozaki, A., Sato, T. Cycle-Accurate Processor Modeling Written in Java
Lan-guage. IEICE CPSY2002-53, pages 13-18, 2002.

10. Shima, M., Shinozaki, A., Ohta, S., Ito, K. Cycle-Accurate System Modeling in Java.
IEICE VLD2002-146, pages 1-6, 2003.

11. Grotker, T., Liao, S., Martin, G., Swan, S. System Design with SystemC, Kluwer Aca-
demic Publishers, 2003.

12. SystemC Community. http://www.systemc.org/ (March, 2004).
13. AMD Opteron Processor, http://www.amd.com/us-en/Processors/ProductInformation/

0,,30_118_8825,00.html (Current March, 2006).
14. HyperTransport Consortium, http://www.hypertransport.org/ (Current March, 2006).
15. Pacheco, P., Parallel Programming with MPI. Morgan Kaufmann Publishers, CA, USA,

1997.
16. SUSE Linux, http://www.novell.com/linux/ (Current March, 2006)
17. Kane, G., Heinrich, J. MIPS RISC ARCHITECTURE. Prentice Hall PTR, New Jersey,

USA, 1992.

	Introduction
	PE and PE Network
	Simulator System
	Simulator System
	Simulator System Platform
	Implementation of Simulator System
	Details of Simulator System

	Performance Evaluation
	Performance Evaluation of PM Processing
	Performance Evaluation of CM Processing
	Performance Evaluation of Simulator System Using JPEG Encoding Application Program

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

