
Trace-Based Data Cache Leakage Reduction at Link
Time

Lian Li1,2 and Jingling Xue1,2

1 Programming Languages and Compilers Group, School of Computer Science and
Engineering, University of New South Wales, Sydney, NSW 2052, Australia

2 National ICT Australia

Abstract. This paper investigates the benefits of conducting leakage energy op-
timisations for data caches at link time for embedded applications. We introduce
an improved algorithm for identifying and constructing the traces in a binary pro-
gram and present a trace-based optimisation for reducing leakage energy in data
caches. Our experimental results using Mediabench benchmarks show that good
leakage energy savings can be achieved at the cost of some small performance
and code size penalties. Furthermore, by varying the granularity of optimisation
regions, which is a tunable parameter, embedded application programmers can
make the tradeoffs between energy savings and these associated costs.

1 Introduction

Leakage power dissipation is estimated to be around 10-15% of the total power dissi-
pation in high-speed processes [6] and this fraction is projected to be the dominant part
of the chip power budget beyond the 0.1 micron feature sizes [2]. Leakage energy con-
sumption in caches is particularly significant since they contain a significant fraction of
the on-chip transistors in a microprocessor. It is projected that leakage will represent
more than 70% of the energy consumed in caches if left unchecked for the 0.07 micron
process [10]. Therefore, reducing leakage energy for caches is of practical importance
in modern microprocessors.

In our earlier work [12], we introduced a trace-based, link-time compilation frame-
work for embedded systems and reported its benefits in reducing leakage energy on
functional units. In this work, we investigate the benefits of supporting leakage en-
ergy optimisations on data caches in such a framework. In particular, we present an
improved algorithm for constructing the traces in a binary program. Based the traces
thus generated, we introduce a trace-based optimisation for reducing leakage energy on
data caches. We present experimental evaluations of our optimisation using Mediabench
benchmarks.

Guided by some execution profiling information, the frequently executed paths in
a binary program are identified and duplicated as single-entry traces. Separating fre-
quently from infrequently executed paths (spanning both user and library functions)
at link time enables the compiler to focus energy optimisations on the hot traces (i.e.,
spots) across the whole program. The traces are further connected to form the so-called
optimisation regions, where their entries and exits are less frequently executed than
what are inside. To reduce the leakage energy on a cache in an optimisation region, the

C. Jesshope and C. Egan (Eds.): ACSAC 2006, LNCS 4186, pp. 175–188, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

176 L. Li and J. Xue

Frontend CFG(IR)

Base Optimizations

One-time

Optimizations

Analyses

Trace Generation

Trace-based

Optmizations

Base Optimizations

Binary Code

Binary Code

Profiling

Information

Code Generation

Fig. 1. A traced-based, link-time framework implemented in alto for the Alpha architecture

compiler invokes an appropriate architectural feature at the entries of the region to put
the cache in an energy-saving mode and then restores the cache to its normal mode at its
exits. Our experimental results using Mediabench programs show that significant leak-
age energy savings can be obtained at the cost of small execution time and code size
increases. In addition, varying the granularity of optimisation regions makes it possible
to make the tradeoffs between energy savings and these associated costs.

The rest of this paper is organised as follows. Section 2 introduces our trace-based
methodology. In particular, we discuss an improved algorithm for identifying and con-
structing the traces in a binary program. Section 3 presents a traced-based optimisation
for reducing leakage energy on caches. In Section 4, we evaluate this work with Medi-
abench benchmarks. Section 5 reviews the related work. Section 6 concludes the paper.

2 Trace-Based Methodology

Figure 1 depicts our trace-based framework for supporting energy-oriented optimisa-
tions on binaries. We have implemented it alto, a link-time optimiser for the Alpha
architecture [15]. The two components we have added to alto are highlighted by the
two boxes in gray. We refer to [12] for a description of the functionalities of all the
components in the framework. Our framework supports static binary optimisations. The
advantage is that no runtime system is needed. However, applications that use shared or
runtime libraries cannot be handled. In addition, static binary translators such as alto
[15] rely on the reallocation information from the linker to reconstruct a CFG from a
binary file. So all relocatable addresses in the file must be identifiable.

Trace-Based Data Cache Leakage Reduction at Link Time 177

1 #DEFINE BB THRESHOLD = 5%
2 #DEFINE BB MIN = the execution frequency of basic block bi such that i

is the largest satisfying: BB THRESHOLD � (i/N) × 100(%), where
b1, . . . , bN are the N basic blocks in the program sorted in the non-increasing
order of their execution frequencies

3 #DEFINE BB PROB = 50%

4 Boolean FUNCTION Hot(block)
5 return block.freq � BB MIN × BB PROB

6 PROCEDURE GenTrace()
7 Initialise headerlist with loop headers or

function entry blocks h such that
h.freq � BB MIN

8 while headerlist is not empty
9 header = block h removed from headerlist such that h.freq is the largest (by

favouring a tieing candidate that is a successor of a trace exit in order
to create well-connected traces)

10 Identify the trace starting from header h
11 Duplicate the trace in the program
12 UpdateHeaderList(headerlist)

13 PROCEDURE UpdateHeaderList(headerlist)
14 Remove every block b from headerlist

such that Hot(b) does not hold
15 for every successor block s of a trace exit
16 if s is not in a trace such that Hot(s) holds
17 Add s to headerlist

Fig. 2. A static trace generation algorithm

Let us present an improved algorithm of [12] for identifying and constructing the
traces in a binary program. A trace is a frequently executed path in a binary program.
Such a trace may cross function boundaries. The first (basic) block in a trace is called
a trace header. A block in a trace is called a trace exit if it has one successor block
that is not in a trace. Based on profiling information, the frequently executed paths
in the CFG of a program are identified and duplicated as single-entry traces. Thus, a
trace t1 can only branch into a trace t2, where t1 and t2 may be identical, via the trace
header of t2. Single-entry traces allow compiler optimisations to be easily applied. In
[12], we presented an algorithm for constructing the traces in binaries. We give a high-
level sketch of that algorithm in Figure 2 and describe three improvements we have
made.

Our algorithm identifies and builds the hot traces in a program by making use of three
profiling-related parameters, which are defined in lines 1 – 3. In fact, BB THRESHOLD
is introduced only to define BB MIN, which, together with BB PROB, are used explicitly
in our algorithm. These three parameters serve the following purposes. Initially, our
algorithm starts with loop headers or function entries b that are potential trace headers
only when b.freq � BB MIN, where b.freq is the (profiled) execution frequency of
block b (line 7). When a trace grows, the blocks that join the trace become progressively

178 L. Li and J. Xue

non-larger in terms of their execution frequencies. However, every block that appears
in a trace must be hot. A block b is hot if the predicate Hot(b) defined in lines 4 – 5
evaluates to true, i.e., if b.freq � BB MIN × BB PROB. In addition, a block b does
not belong to a trace if its execution frequency has dropped below BB PROB(%) of the
execution frequency of the header of that trace.

BB THRESHOLD is a tunable parameter introduced to define BB MIN and is set to
be 5% for Mediabench programs. Depending on the application domains under consid-
eration, appropriate threshold values need to be empirically determined. Unlike [12],
BB MIN can vary from program to program, allowing the traces to be identified and
constructed in a program-dependent manner. Once a trace header h is found (line 7),
the while loop in line 8 grows the trace from h by adding more and more blocks to the
trace. The trace always grows from its last block along its hottest outgoing edge (i.e.,
branch). Let s be the successor block along this edge. The trace is terminated if s is the
pseudo block, a trace header or the exit block of the CFG for the program. The trace is
also terminated if s is not hot (i.e., Hot(s) does not hold) or s.freq < b.freq×BB PROB
(i.e., the execution frequency of s has dropped below BB PROB (%) of that of the trace
header b). In line 11, a trace that is identified in line 10 will be duplicated with the
execution frequencies of all affected blocks and edges being updated appropriately.

In line 12, UpdateHeaderList is called to do two things. First, some blocks in head-
erlist that are no longer hot are removed (line 14). This can happen since part of its
execution frequency may have been allocated to its duplicate in a hot trace. Second, in
lines 15 – 17, the successor blocks s of every trace exit are examined. If s is not already
in a trace, we add s to headerlist if it is hot, i.e., when s.freq � BB MIN × BB PROB
(even if s.freq < BB MIN may hold). Unlike [12], this ensures that both branches of
an if statement are included in traces if both are parts of frequently executed paths.

We have also improved [12] by using a profile-guided devirtualisation technique
to reduce the number of unknown indirect jumps in virtual call sites. In the case of
a virtual call site, alto may represent all possible function invocations as unknown
indirect jumps. Based on profiling information, our profile-guided devirtualisation pass
devirtualises the hot functions invoked at each virtual call site by means of method test
[4]. This involves replacing the indirect jump to a hot function by a direct jump guided
by a test on the address of the function.

Our illustrating example is given in Figure 3(a). For a block identified by nf , n de-
notes its block number and f its execution frequency. The number drawn on an edge
(x, y) represents its execution frequency; the number is omitted if the edge is the only
outgoing edge of x. In Figure 3(a), the edge (7,12) introduced by alto serves to indi-
cate that block 12 will be executed after the call made in block 7. The edges of this kind
are ignored during trace generation. Running our algorithm over the example given in
Figure 3(a) produces the modified CFG shown in Figure 3(b). There are a total of three
traces generated. They are highlighted in gray boxes, where the trace D7-D8′-D9′-D11′-
D12 crosses the boundaries of the two functions in the example.

In Figure 3(a), (7, 8) is a call edge, which is part of the trace denoted by T3. In this
case, we rely on the procedure InlineCriticalPaths available in alto [15] to inline a
frequently executed subgraph rooted at the entry block of the callee. Afterwards, our al-

Trace-Based Data Cache Leakage Reduction at Link Time 179

11000

34600 4400

55000

71000

999

81000

100

Pseudo BB

91000

61000

4000

121000

999

call

ret

111000

25000

T3

T2

T1

0

3680

11

30 4400

5400

60

120

8'0

Pseudo BB

D25000

D34600

D54600

80

90

110

100

Call

920

D61000

D1999

999

80

D8'1000
70

D9'1000

D11'1000

D121000
999

1

0

320

400

Ret

D71000

9'0

11'0

20

(a) CFG (b) CFG with traces

T2

T1

3680

11

4400

5400

D25000

D34600

D54600

Call

920

320

D61000

D1999

80
T3

D71000

D8'1000

D9'1000

D11'1000

D121000

999

1

400

0

T2

T1

3680

11

4400

5400

D25000

D34600

D54600

Call

920

320

D61000

D1999

80

T3

D8'1000

D9'1000

D11'1000

D121000999

1

R1

R2

400

D71000

0

(c) Trace flow graph (d) Regions

Fig. 3. An example CFG

gorithm will continue to grow the trace on the inlined subgraph as usual. In Figure 3(b),
the blocks 7, 8, 9, 8′, 9′ and 11′ are dead, which will eventually be removed.

3 Trace-Based Leakage Optimisation

In Section 3.1, we give an algorithm for clustering the traces into optimisation regions,
the units of our energy-oriented optimisations. In Section 3.2, we describe the architec-
tural features required for supporting our leakage optimisation. Section 3.3 presents our
trace-based optimisation for reducing the data cache leakage energy.

180 L. Li and J. Xue

3.1 From Traces to Optimisation Regions

The hot traces constructed by GenTrace given in Figure 2 are clustered into the so-called
optimisation regions, which are the units of energy-oriented optimisations. Given a re-
gion, we will reduce the leakage energy of a data cache by turning off the cache at
the entries of the region and turning it back on again at its exits. Since what are in-
side a region are hot traces, its entries and exits are less frequently executed than the
blocks/edges inside. However, the switching on/off activities on these insertion points,
if performed too frequently, can still consume significant CPU cycles and dynamic en-
ergy. To allow the tradeoffs between performance and energy savings to be made, the
granularity of optimisation regions can be tuned.

The formation of optimisation regions relies on a so-called trace flow graph, which
is defined below and illustrated in Figure 3(c) using our running example. In addition,
the concept of trace flow graph is also used in our two optimisations.

Definition 1. A control flow edge (x, y) in the CFG of a program is called (1) a trace
entry edge if x is not in a trace and y is a trace header, (2) a trace exit edge if x is in
a trace but y is not, and (3) a trace link edge if both x and y are in traces (which may
be identical), and in addition, y is a trace header.

Definition 2. A trace flow graph is the graph consisting of (1) all the hot traces (in-
cluding the blocks in these traces and the edges connecting these blocks), and (2) all
trace entry, exit and link edges and their incident blocks.

The trace flow graph of Figure 3(b) is shown in Figure 3(c), where (1, D2), (5, D2)
and (5, D6) are trace entry edges, (D2, 4) and (D8′, Call) are trace exit edges, and
(D1, D2), (D5, D2), (D5, D6), (D6, D7) and (D12, D7) are trace link edges. Note that
(D5, D2) ((D12, D7)) is a trace link edge for the trace T1 (T3) itself.

After the traces have been constructed, the optimisation regions are formed by calling
FindRegions. This procedure expects two arguments to be passed in: TFG represents
the trace flow graph of a given program and Affinity is a value ranging in [0, 1]. Es-
sentially, an optimisation region consists of multiple traces that are connected by trace
link edges. However, some trace link edges may be infrequently executed. Such edges
are ignored depending on the value of Affinity so that we can tune the granularity of
optimisation regions formed. If Affinity = 0 (i.e., a small positive number close to 0,
in practice), then all regions are singleton traces. Such a setting is the most aggressive
in turning off unused or infrequently used hardware components (e.g., cache) in a re-
gion. If Affinity = 1, then every region is the largest possible with the largest number
of directly connected traces. Such a setting aims at reducing the execution cycles and
dynamic energy consumed by the power-aware instructions inserted. Varying the value
of Affinity allows tradeoffs to be made between energy savings and performance.

Figure 3(d) depicts the two regions formed for the program shown in Figure 3(c)
with Affinity = 1/1.2 under the assumption that BB MIN = 1000.

3.2 Architecture Support

The leakage power of a CMOS circuit is directly proportional to the product of the
power supply voltage (VDD) and the leakage current in a CMOS transistor. Circuit

Trace-Based Data Cache Leakage Reduction at Link Time 181

1 PROCEDURE FindRegions(TFG, Affinity)
2 Let L be the set of all trace link edges e in TFG such that e.freq< (1

Affinity − 1) ∗ BB MIN
3 TFG′ = TFG with all edges in L removed
4 return (set of all connected subgraphs in TFG′)

Fig. 4. An algorithm for forming regions

techniques such as power gating (SG), input vector control (IVC) and dynamic voltage
scaling (DVS) [2,6] can reduce the leakage power by reducing the supply voltage and/or
leakage current. To support our optimisations, we assume the availability of on and off
instructions in the underlying instruction set architecture (ISA).

Following [19], we use the same state-preserving leakage control mechanism as pro-
posed in [6], which can preserve the contents of a cache line when the line is put into a
low leakage mode. Thus, the cache behaviour of a program is not affected.

The execution of an on (off) instruction causes all the cache lines in the cache to be
placed in a normal (leakage-saving) state. Whenever a cache line is accessed, if it is in
the leakage-saving state, the normal state will be restored first for the cache line before
the access is executed. The execution of an on (off) instruction with respect to an cache
line that is in the normal (leakage-saving) state has no effect on the leakage status of the
cache line. The latencies and dynamic energy overheads of on/off instructions depend
on the exact implementation mechanism.

3.3 Leakage Optimisation for Data Caches

Given an optimisation region, all the cache lines in the cache are “turned off”, i.e.,
placed in the low-leakage mode at its entries and “turned on”, i.e., placed in the normal
mode at its exits. A cache line accessed in a region, once restated to the normal mode,
will remain so until the region has been executed.

Figure 5 gives our algorithm, CacheOpt, for reducing the data cache leakage energy.
In lines 3 and 4, we identify the traces and then form the optimisation regions. In line
5, we call InsertOnOffInsts to insert the required on/off instructions at the entries and
exits of every optimisation region straightforwardly. In lines 8 – 9, we insert one single
“off instruction” on every trace entry edge. In lines 10 – 11, we insert one single “on
instruction” on every trace exit edge. In lines 12 – 14, we find every trace link edge
(x, y) such that x and y are two distinct regions, in which case x.region �= y.region.
Every such an edge serves as a exit edge of the region x and an entry edge of the region
y. Therefore, an “off instruction” is inserted on the edge. Note that an “on instruction”
needs not be inserted redundantly before the off instruction on the same edge.

Our algorithm allows the granularity of optimisation regions to be adjusted by vary-
ing the tunable parameter AFFINITY. If the regions are large enough, the performance
and dynamic energy penalties due to switching on/off activities will be insignificant but
the opportunities for leakage reduction are also small. In general, the larger a region is,
the larger the number of cache lines there will be in the normal mode and the smaller
the leakage energy savings will be in the region. Therefore, the regions can be tuned to

182 L. Li and J. Xue

1 #DEFINE AFFINITY = a value in [0, 1]
2 PROCEDURE CacheOpt()
3 Build the TFG (Definition 2)
4 SetofRegs = FindRegions(TFG, AFFINITY)
5 InsertOnOffInsts

6 PROCEDURE InsertOnOffInsts()
7 Insert one “on inst” at entry to main
8 for every trace entry edge (x, y)
9 Insert one “off inst”

10 for every trace exit edge (x, y)
11 Insert one “on inst”
12 for every trace link edge (x, y)
13 if x.region �= y.region
14 Insert one “off inst”

Fig. 5. A leakage optimisation for data caches

make tradeoffs between the leakage energy savings and associated overheads (including
dynamic energy and execution time penalties).

Example. As in before, we assume that BB MIN=1000, BB PROB=50% and AFFINITY
= 1/1.2. Consider our running example given in Figure 3(a). In lines 3 – 4, the trace
flow graph and the optimisation regions found are given in Figures 3(c) and 3(d), re-
spectively. As a result, the on and off instructions are inserted as shown in Figure 6.

4 Experimental Results

In our experiments, we evaluate the effectiveness of our trace generation algorithm
in identifying the hot traces and the effectiveness of our optimisation in reducing the
leakage energy of data caches.

We use 15 benchmarks from the Media benchmark suite. All benchmarks are com-
piled using DEC C 5.6-075 at “O2” on an Alpha 21264-based system. Similar trends
in our results are observed at “O3” or under gccwith varying optimisation levels. There
are so-called “second data sets” for 12 out of the 15 benchmarks available in the Media-
bench web site. The exceptions are pgpencrypt, pgpdecrypt and mesa. For each
benchmark, the profiling information is collected using the so-called “second data set”
if it exists and the data set that comes with the benchmark otherwise. All benchmarks
are simulated using the data sets that come with these benchmarks.

We consider a superscalar out-of-order architecture consisting of two integer multi-
pliers, four integer ALUs for non-multiplication integer operations, one floating point
multiplier and four floating point adders. Such an architecture is chosen to match the
target architecture of alto, in which our trace-based framework is implemented. We
use sim-outorder, an out-of-order cycle-level simulator from SimpleScalar. The simu-
lations for all the benchmarks are run to completion.

In order to make our presentation precise, we use Palto to denote the binary from
alto and Popt to denote the binary generated after CacheOpt has been applied.

Trace-Based Data Cache Leakage Reduction at Link Time 183

T2

T1 11

4400

5400

D25000

D34600

D54600

Call

C_off

D61000

D1999

C_off

T3

D8'1000

D9'1000

D11'1000

D121000

C_off

R1

R2

C_on

D71000

C_off

C_on

Fig. 6. The result of applying CacheOpt to the running example given in Figure 3. All tunable
parameters used are defined in Section 3.3.

4.1 Trace Generation: GenTrace

The three metrics are used: (1) the trace accuracy measured as the cycles spent in the
traces, (2) the code size increase due to the duplication of the traces, and (3) the perfor-
mance degradation due to the introduction of the traces.

Table 1. Five settings for BB THRESHOLD and BB PROB

Configuration BB THRESHOLD BB PROB
CONFIG1 3% 50%
CONFIG2 5% 25%
DEFAULT 5% 50%
CONFIG3 5% 75%
CONFIG4 8% 50%

We evaluate GenTrace below using the five configurations listed in Table 1, where
DEFAULT is the default setting. The trace accuracies are over 80% for all benchmarks
under all five configurations. The only exception is djpeg for which an accuracy of
49.12% is obtained in CONFIG1. In this special case, a threshold of BB PROB = 3%
results in BB MIN=703, which is too large to capture all frequently executed paths in
the benchmark. The static instruction count increases range from 0.12% in nearly all
five configurations for both rawcaudio and rawdaudio to 6.87% in CONFIG4 for
cjpeg. The performance changes for all the benchmarks are very encouraging. Out
of the 15 benchmarks used, pgpdecrypt and g721encode have small positive or

184 L. Li and J. Xue

Table 2. Cache parameters taken from [19]

Parameter Value
Feature size 0.07 micron
Supply voltage 1.0 V
L1 I-cache 16 KB, direct-mapped
L1 I-cache latency 1 cycle
L1 D-cache 16 KB, 4-way
L1 D-cache latency 1 cycle
Unified L2 cache 512KB, 4-way
L2 cache latency 10 cycles
Memory latency 100 cycles
Clock speed 1 GHz
L1 cache line size 32 bytes
L2 cache line size 64 bytes
L1 cache line
leakage energy 0.33 pJ/cycle

L1 deactive mode cache
line leakage energy 0.01 pJ/cycle

L1 state-transition
(dynamic) energy 2.4 pJ/transition

L1 state-transition latency
from deactive mode 1 cycle

L1 dynamic energy
per access 0.11 nJ

L2 dynamic energy
per access 0.58 nJ

negative speedups configurations under all five configurations, toast and untoast
run between 0.04% to 1.58% slower under all five configurations, and the remaining 11
programs run faster under all five configurations. These performance variations appear
to be attributed to the profile-guided code layout pass invoked in the code generation
module of alto as shown in Figure 1. Our results show that GenTrace is capable of
identifying the most frequently executed paths in a program and the associated costs
for duplicating these paths as the hot traces in the program are small (relative to the
achieved energy savings to be discussed shortly).

4.2 Leakage Optimisation for Data Caches

We will use the DEFAULT configuration to evaluate our data cache leakage optimisa-
tion: BB THRESHOLD = 5%, BB PROB = 50% and AFFINITY takes four values:
1, 1/1.05, 1/1.5 and 0. We adopt the cache configuration and energy numbers listed in
Table 2, which is taken entirely from [19]. The cache state-preserving leakage control
mechanism used is from [6]. According to [19], the energy numbers were obtained by
circuit simulation for the 0.07 micron process.

Figure 7 depicts the data cache leakage energy savings achieved by CacheOpt. The
percentage leakage reduction in a program Popt is given by:

cache saving =
Ostatic − Cdynamic − Cstatic

Ostatic

Trace-Based Data Cache Leakage Reduction at Link Time 185

0
20
40
60
80

100

rawcaudio

rawdaudio

pgpencryt

pgpdecryt

mpeg2encode

mpeg2decode
epic

unepic
cjpeg

djpeg

g721encode

g721decode
toast

untoast
mesa

C
ac

h
e

L
ea

ka
g

e
S

av
in

g
s

(%
)

AFFINITY=1 AFFINITY=1/1.05 AFFINITY=1/1.5 AFFINITY=0

Fig. 7. Percentage cache leakage energy reductions of Popt relative to Palto

0

10

20

30

rawcaudio

rawdaudio

pgpencryt

pgpdecryt

mpeg2encode

mpeg2decode
epic

unepic
cjpeg

djpeg

g721encode

g721decode
toast

untoast
mesa

D
yn

am
ic

 E
n

er
g

y
O

ve
rh

ea
d

s
(%

)

AFFINITY=1 AFFINITY=1/1.05 AFFINITY=1/1.5 AFFINITY=0

Fig. 8. Dynamic energy overheads measured as
Cdynamic

Cstatic+Cdynamic

0
2
4
6
8

10

rawcaudio

rawdaudio

pgpencryt

pgpdecryt

mpeg2encode

mpeg2decode
epic

unepic
cjpeg

djpeg

g721encode

g721decode
toast

untoast
mesa

In
st

ru
ct

io
n

 C
o

u
n

t
In

cr
ea

se
s

(%
)

AFFINITY=1 AFFINITY=1/1.05 AFFINITY=1/1.5 AFFINITY=0

Fig. 9. Code expansion of Popt relative to Palto

where Ostatic denotes the amount of leakage energy consumed in Palto before the op-
timisation, Cstatic the amount of leakage energy consumed in the optimised Popt and
Cdynamic the dynamic energy overhead due to the switching on/off activities introduced
in Popt. As shown in Figure 7, the leakage energy savings are obtained in all benchmarks
at all four AFFINITY values. In addition, they are progressively non-worse as the gran-
ularity of optimisation regions (i.e., AFFINITY) decreases. When AFFINITY = 1, the
leakage reductions range from 18.59% for epic to 92.59% for g721encode. In the
other extreme when AFFINITY = 0, the leakage reductions are more impressive, rang-
ing from 83.87% for cjpeg to 95.74% for rawcaudio.

In the Mediabench benchmarks, a small set of data are typically active at a given
period of time. As a result, reducing the granularity of optimisation regions tends to
increase the total leakage energy saved. While smaller regions lead to higher on/off
switching activities, i.e., higher dynamic energy consumption, as illustrated in Figure 8,
these overheads are more than or equally outweighed by the leakage energy savings

186 L. Li and J. Xue

-10

-5

0

5

10

15

20

rawcaudio

rawdaudio

pgpencryt

pgpdecryt

mpeg2encode

mpeg2decode
epic

unepic
cjpeg

djpeg

g721encode

g721decode
toast

untoast
mesa

P
er

fo
rm

an
ce

 D
eg

ra
d

at
io

n
s

(%
) AFFINITY=1 AFFINITY=1/1.05 AFFINITY=1/1.5 AFFINITY=0

Fig. 10. Performance changes of Popt relative to Palto

achieved at all the four AFFINITY values used. This phenomenon is more pronounced in
pgpencrypt, epic, unepic, cjpeg, djpeg and mesa. In the other nine bench-
marks, the largest optimisation regions obtained when AFFINITY = 1 are small, result-
ing in already at least 83.87% leakage reduction in each case. So any further leakage
savings from using smaller regions are relatively insignificant.

The impact of CacheOpt on code size and performance is illustrated in Figures 9 and
10. In both cases, the cost increases are relatively small.

5 Related Work

Reducing energy consumption is important for embedded devices. Compiler optimisa-
tions can play an important role due to the need to meet conflicting constraints on time,
code size and energy consumption. In the absence of architectural support, compiler
techniques can improve the dynamic energy behaviour of a program in many phases
of the compilation process, such as instruction selection [13], register allocation [7]
and instruction scheduling [11]. Loop transformations such as loop tiling can reduce
the dynamic energy spent on cache by reducing the cache misses in the program [9].
By exploiting available architectural support in an embedded system, the compiler can
generate code to dynamically reconfigure the processor resources to make tradeoffs be-
tween performance and energy usage. For example, [16] explore DVS as a means of
improving the dynamic energy consumption of a program without increasing its execu-
tion time. [18] analyse and evaluate the opportunities and limits of compile-time DVS
scheduling.

The on-chip caches are one of the hardware components for leakage reduction since
they contain a significant fraction of the transistors in a microprocessor. Flautner et al
[6] present architectural techniques for reducing the leakage energy of a data cache by
periodically putting cache lines into a low-power mode. Motivated by this work, Zhang
et al [19] describes a loop-based, compiler-directed solution. Essentially, the innermost
loops are taken as optimisation regions. Given an innermost loop, all the cache lines are
placed in a low-leakage mode at the beginning of the loop and restored to their normal
mode at its exits. His experimental results over benchmarks show that this software
solution can be competitive with the hardware-based solution [6].

In this work, we present a trace-based approach to reducing data cache leakage en-
ergy at link time. Rather than innermost loops, our units of optimisations are the regions

Trace-Based Data Cache Leakage Reduction at Link Time 187

constructed from the hot traces. The advantages of using traces are stated earlier. The
traces are inherently inter-procedural, spanning both user and library functions (which
may contain assembly code). In addition, the frequently executed paths formed by re-
cursive calls are recognisable as traces but not as loops.

There are a number of static or dynamic binary translation systems around [1,3,17].
These systems aim at improving performance or otherwise achieving portability.
However, we are the first to investigate the effectiveness of a trace-based, static binary
translation framework in supporting energy-oriented optimisations for embedded appli-
cations. Working on binaries at link time (i.e., statically) dispenses with an expensive
run-time system that would otherwise be required.

Traces are not new. Trace scheduling [5] is a well-known technique for increasing
the amount of ILP by scheduling a sequence of basic blocks together, which typically
represents a frequently executed path in the program. Traces have a number of exten-
sions such as hyperblocks [14] and regions [8]. In Dynamo [1], the frequently executed
paths are identified at run time so as to improve the program performance transpar-
ently. These previous works show that a trace-based approach is effective in supporting
performance-oriented optimisations. This work demonstrates that the traces also repre-
sent a suitable framework to support energy-oriented optimisations.

Our trace generation algorithm identifies the hot traces across procedural boundaries
at link time based on an inter-procedural CFG constructed from a binary file. This CFG
is imprecise since the targets of some jumps may be unknown or even illegal since
a branching instruction in one function may jump to the middle of another function.
These problems do not exist when the traces are constructed at compile time [5,8,14] or
cause less trouble when the traces are constructed at run time [1].

6 Conclusion

This work investigates for the first time the effectiveness of conducting energy-oriented
optimisations for data caches in a traced-based compilation framework at link time.
We present a simple yet effective algorithm for identifying and constructing the hot
traces in a binary program at link time. We also introduce a trace-based optimisation
for reducing leakage energy for data caches. The optimisation is simple since traces
allow the optimisation regions and on/off insertion points to be identified easily and also
effective since significant leakage energy reductions can be obtained for benchmarks at
small performance degradations and code size expansions.

Acknowledgements

This work is supported in part by ARC Discovery grants DP0211793 and DP0452623.

References

1. V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transparent dynamic optimization
system. In ACM SIGPLAN ’00 Conference on Programming Language Design and Imple-
mentation, pages 1 – 12, Vancouver, British Columbia, Canada, 2000. ACM Press.

188 L. Li and J. Xue

2. A. Chandrakasan, W. J. Bowhill, and F. Fox. Design of High-Performance Microprocessor
Circuits. IEEE Press, 2001.

3. J. C. Dehnert, B. K. Grant, J. P. Banning, R. Johnson, T. Kistler, A. Klaiber, and J. Mattson.
The transmeta code morphing software: using speculation, recovery, and adaptive retrans-
lation to address real-life challenges. In 1st ACM/IEEE International Symposium on Code
Generation and Optimization, pages 15–24. IEEE Computer Society, 2003.

4. D. Detlefs and O. Agesen. Inlining of virtual methods. In 13th European Conference on
Object-Oriented Programming (ECOOP’99), pages 258–278, 1999.

5. J. Fisher. Trace scheduling: a technique for global microcode compaction. In IEEE Trans-
actions on Computers, pages 478–490, 1981.

6. K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge. Drowsy caches: simple tech-
niques for reducing leakage power. In 29th annual international symposium on Computer
architecture, pages 148–157. IEEE Computer Society, 2002.

7. C. H. Gebotys. Low energy memory and register allocation using network flow. In 34th
Annual Conference on Design Automation Conference, pages 435–440. ACM Press, 1997.

8. R. E. Hank, W.-M. Hwu, and B. R. Rau. Region-based compilation: an introduction and
motivation. In 28th ACM/IEEE International Symposium on Microarchitecture, pages 158–
168. IEEE Computer Society Press, 1995.

9. M. T. Kandemir, N. Vijaykrishnan, M. J. Irwin, and W. Ye. Influence of compiler optimiza-
tions on system power. In Design Automation Conference, pages 304–307, 2000.

10. N. S. Kim, K. Flautner, D. Blaauw, and T. Mudge. Drowsy instruction caches: leakage power
reduction using dynamic voltage scaling and cache sub-bank prediction. In Proceedings of
the 35th annual ACM/IEEE international symposium on Microarchitecture, pages 219–230.
IEEE Computer Society Press, 2002.

11. C. Lee, J. K. Lee, T. Hwang, and S.-C. Tsai. Compiler optimization on instruction scheduling
for low power. In 13th International Symposium on System Synthesis, pages 55–60, Madrid,
Spain, 2000. ACM Press.

12. L. Li and J. Xue. A trace-based binary compilation framework for energy-aware computing.
In LCTES ’04: Proceedings of the 2004 ACM SIGPLAN/SIGBED conference on Languages,
compilers, and tools, pages 95–106. ACM Press, 2004.

13. M. Lorenz, L. Wehmeyer, and T. Dräger. Energy aware compilation for DSPs with SIMD
instructions. In ACM SIGPLAN’ 02 Conference on Languages, Compilers, and Tools for
Embedded Systems, pages 94–101. ACM Press, 2002.

14. S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bringmann. Effective compiler
support for predicated execution using the hyperblock. In 25th ACM/IEEE International
Symposium on Microarchitecture, pages 45–54. IEEE Computer Society Press, 1992.

15. R. Muth. ALTO: A Platform for Object Code Modification. PhD thesis, The University of
Arizona, 1999.

16. H. Saputra, M. Kandemir, N. Vijaykrishnan, M. J. Irwin, J. S. Hu, C.-H. Hsu, and U. Kremer.
Energy-conscious compilation based on voltage scaling. In ACM SIGPLAN ’02 Conference
on Languages, Compilers, and Tools for Embedded Systems, pages 2 – 11, Berlin, Germany,
2002. ACM Press.

17. D. Ung and C. Cifuentes. Machine-adaptable dynamic binary translation. In ACM SIGPLAN
Workshop on Dynamic and Adaptive Compilation and Optimization, pages 41–51. ACM
Press, 2000.

18. F. Xie, M. Martonosi, and S. Malik. Compile-time dynamic voltage scaling settings: oppor-
tunities and limits. In ACM SIGPLAN’ 03 Conference on Programming Language Design
and Implementation, pages 49–62. ACM Press, 2003.

19. W. Zhang. Compiler-directed data cache leakage reduction. In IEEE Computer Society An-
nual Symposium on VLSI Emerging Trends in VLSI Systems Design. IEEE Computer Society,
2004.

	Introduction
	Trace-Based Methodology
	Trace-Based Leakage Optimisation
	From Traces to Optimisation Regions
	Architecture Support
	Leakage Optimisation for Data Caches

	Experimental Results
	Trace Generation: GenTrace
	Leakage Optimisation for Data Caches

	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

