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Abstract. Compiler-directed dynamic voltage scaling (DVS) is one of the 
effective low-power techniques for real-time applications. Using the technique, 
compiler inserts voltage scaling points into a real-time application, and supply 
voltage and clock frequency are adjusted to the relationship between the 
remaining time and the remaining workload at each voltage scaling point. In 
this paper, based on the WCET (the worst case execution time) analysis tool 
HEPTANE and the performance/power simulator Sim-Panalyzer, we present a 
DVS-enabled simulation environment RTLPower (Real-Time Low Power), 
which integrates static WCET estimation, performance/power simulation, 
automatically inserting the DVS code into a real-time application, and profile-
guided energy optimization. By simulations of some benchmark applications, 
we prove that the DVS technique and the profile-guided optimization technique 
significantly reduce energy consumption. 
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1   Introduction 

In the recent years, embedded systems for mobile computing, such as mobile phone 
and PDA, are developing rapidly, and a crucial parameter of mobile systems is the 
continued time of energy supply. Although the performance in the integrated circuits 
(ICs) has been increasing rapidly in recent years [1], battery techniques are developed 
very slowly [2] and it is of significant importance for battery-powered mobile systems 
to utilize more effective low-power techniques. 

Many novel low-power techniques in circuit, logic, architecture and software 
levels, in order of increasing abstraction, have been proposed to reduce energy 
consumption. Dynamic voltage scaling (DVS) [3], [4] is one of the low-power 
techniques in architecture level, and it is widely used in embedded systems for mobile 
computing and desktop systems. Real-time dynamic voltage scaling dynamically 
reduces supply voltage to the lowest possible extent that ensures a proper operation 
when the required performance is lower than the maximum performance. Since the 
dynamic energy consumption, the dominant energy consumption in ICs, is in direct 
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proportion to the square of supply voltage V, it is possible for DVS to significantly 
reduce energy consumption. 

The voltage scheduling in a single task called an intra-task dynamic voltage scaling 
(IntraDVS) [7] is proposed. IntraDVS assisted by compiler automatically inserts 
voltage scaling points into a real-time task and divides the task into some execution 
sections, and then supply voltage is adjusted to the relationship between the remaining 
time and the remaining workload. 

It is crucial for IntraDVS to properly place voltage scaling points in a real-time 
application, and the configuration of voltage scaling points significantly affects 
energy consumption. A good configuration could save more energy; however, due to 
voltage scaling overhead, the improper one could waste much energy. For the past 
few years, much work has been published on compiler-directed real-time dynamic 
voltage scaling [5], [6], [7], [8], [9], [10], [11], [12], [13], and the algorithms have 
utilized two kinds of configurations of voltage scaling points. The first is to make use 
of fixed-length voltage scaling sections, the whole execution of a task is divided into 
some equal subintervals and the voltage adjustment is made at the beginning of each 
subinterval [6] [11]. The second is a heuristic method, the condition and loop 
structure in real-time applications often bring about the workload variation and energy 
consumption can be reduced enormously if voltage scaling points are put at the end of 
the structures [7] [13].  Yi, et al proved that the heuristic configuration is the optimal 
one when not considering the voltage scaling overhead [14]. At the same time they 
presented a profile-guided optimizing configuration methodology, and using some 
synthetic applications, they proved that the methodology significantly reduces energy 
consumption. But they have not explained how to realize the method, and no 
experimental results of real benchmark applications are given. Another problem of the 
past works is not integrating with the WCET analysis tightly, but for real-time 
applications, it is a key to give the time estimate method in detail. 

In this paper, based on the WCET (the worst case execution time) analysis tool 
HEPTANE and the performance/power simulator Sim-Panalyzer, we present a DVS-
enabled simulation environment RTLPower, which integrates static WCET estimation, 
performance/power simulation, automatically inserting the DVS code into a real 
application, and profile-guided energy optimization. By simulations of some real 
benchmark applications, we prove that the DVS technique and the profile-guided 
optimization technique significantly reduce energy consumption.  

The rest of this paper is organized as follows. In Section 2, we list the related terms 
of compiler-directed dynamic voltage scaling. In Section 3, we give the inserting 
method of DVS code. In Section 4, we present the profile-guided energy optimization 
method. In Section 5, we show by experiments that the DVS technique and the 
profile-guided optimization technique significantly reduce energy consumption. 
Finally, we give the conclusions. 

2   Related Terms 

A real-time task has strict timing constraint and must finish before its deadline (d), 
missing the deadline might lead to a catastrophic result. Real-time dynamic voltage 
scaling guarantees a correct operation of a real-time task and dynamically reduces 
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supply voltage and clock frequency to the lowest possible extent in the execution 
course. Therefore, for real-time applications, the worst-case execution time (wcet) or 
the worst-case execution cycle (wcec) must be estimated in advance [19] to ensure 
that the timing constraint is met, that is, the worst-case execution time must be less 
than or equal to the deadline. If the wcet is less than the deadline, we can 
proportionally reduce clock frequency beforehand. Consequently, the wcet is equal to 
the deadline d and the obtained initial frequency is fstatic, that is, d=wcec/fstatic. This is 
the starting point of dynamic voltage scaling in this paper. Current DVS-enabled 
systems only can change the clock frequency on some discrete levels [15], [16], [17], 
and therefore we assume that the clock frequency can change on some discrete levels 
between consecutive interval [fmin, fmax].  

IntraDVS divides the whole execution cycle of a task into n  sections, and the 
worst-case execution cycle and the actual execution cycle of each section are denoted 
by wci and aci for ni ,...,1= , respectively. It is obvious that ii wcac ≤≤0  for ni ,...,1= , 

and ∑ =
= n

l lwcwcec
1

. The reduced worst-case execution cycle of the ith point is 

denoted by irwec for 1,...,1 += ni , and we have ∑ =
= n

il li wcrwec  for ni ,...,1= , 

01 =+nrwec .  

At the beginning of each section, supply voltage (Vi for ni ,...,1= ) and clock 
frequency (fi for ni ,...,1= ) are adjusted to the relationship between the remaining time 
and the remaining workload, and the lowest supply voltage and clock frequency are 
utilized within timing constraint. The proportional voltage scaling sets the frequency 
of the ith section to 

)/(
1

1∑ −

=
−= i

l lii tdrwecf  

where tl denotes the actual execution time of the lth section. In the above formula, the 
new clock frequency at the beginning of the ith section is set to the quotient of the 
reduced worst-case execution cycle divided by the reduced time, which can guarantee 
that the task can finish before its deadline at any time. 

The formula ( ) VVVf T /2−∝  defines the relationship between clock frequency and 

supply voltage of CMOS, where VT denotes the threshold voltage of CMOS. 
The execution time ti of each section can be computed by 

iii fact /=   

Finally, dynamic voltage scaling have some energy overhead and time overhead, 
which are closely related to the initial voltage VDD1, the final voltage VDD2, and the 
switch capacitance C. Burd, et al [18] present the formula of energy overhead 

2
1

2
2)1( DDDD VVCE −⋅⋅−= η  

and the formula of time overhead 

12
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2
DDDDTRAN VV

I

C
t −⋅⋅=  

In this paper, we let 9.0=η (the typical value) and pFC 5= . The time overhead is 
fixed as 200 cycles for 100Mhz frequency variation. 
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3   Inserting Method of DVS Code 

Based on the WCET analysis tool HEPTANE [20], we present an automatically 
inserting method of DVS code. For a real application program, it includes condition 
structures, loop structures, and function calls, besides the sequential codes. Our 
method can insert into any location of an application program. At each voltage scaling 
point, we need three parameters: the reduced worst case execution cycle (rweci), the 
deadline (d), and the current time (ct). The deadline is defined before hand, and the 
current time can be obtained dynamically from the simulation system. The modified 
simulation system Sim-Panalyzer can accumulate the actual execution time, and 
convey the time information to real-time applications by some predefined memory 
port. Therefore, if rweci is known, we can set the supply voltage and clock frequency 
of each voltage scaling point. Furthermore, in order to make it possible to optimize 
the insertion of voltage scaling points, we make each point executed by a prediction 
insert_or_not[i]. Therefore, at each point, the DVS pseudo-code is illustrated at  
Fig. 1. The function getcurrenttime obtains the current actual execution time from the 
simulation environment. The function setnewfrequency sets new system execution 
frequency, and based on the remaining time and the remaining workload, the function 
computes new frequency and sets the nearest discrete voltage/frequency level that 
guarantees the real-time execution. Both functions are realized by embedded assemble 
language, which is supported by GCC compiler. Based on the different cases, 
computecurrentRWEC can correctly give the reduced worst case execution cycle. 

 
1 if (insert_or_not[i]) { 
2       getcurrenttime(ct); 
3       computecurrentRWEC(rweci); 
4       nf = rweci / (d-ct-overhead); 
5       setnewfrequency(nf); 
6 } 

Fig. 1. The pseudo-code of DVS at each point 

The time estimation process of the WCET analysis tool HEPTANE is as follows: 

1. Based on the source code of an application, a syntax tree is produced, which 
corresponds to the source code structure. 

2. From the syntax tree, a context tree is formed, which corresponds to the 
execution process of the application. At the same time, some labels are inserted in the 
syntax tree, which are used to mark the basic block (no branch structure). The 
resultant syntax tree is used to output the modified source code. 

3. The modified source code is compiled using GCC compiler, and the assemble 
file and binary file are produced. Using the specific architecture information (such as 
cache size, pipeline stage), the worst case execution time of each basic block is 
estimated. 

4. Using the context tree and the time information of basic blocks, the worst-case 
execution time of the whole application is accumulated by depth-firstly traversing the 
context tree. 
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Based on the time estimation process of HEPTANE, we select inserting the DVS 
code in the syntax tree of the source code. By traversing the syntax tree, we mark the 
location for all the DVS points. When outputting the modified source code, the DVS 
code is inserted into the source code automatically. Therefore, the final time 
estimation includes the execution time of the DVS code (not DVS overhead), and the 
safe real-time DVS program is produced. 

Next, we present how to correctly get the value of rweci for the different cases. For 
the code without loops and function calls, it is simple to make use of HEPTANE to 
estimate the worst case execution cycle of each point. For the voltage scaling points 
inserted into loops, the rweci of each iteration is different. Similarly, for the voltage 
scaling point inserted into function calls, the different call sites of the function have 
the different rweci. Since it is possible for our inserting method to insert a point into 
any place, we must solve the problem due to loops and function calls. 

Loop1::for(i1...)
  Loop2::for(i2...) 

    LoopN::for(iN...) 
        Votage scaling point 
    LoopN end 

  Loop2 end 
Loop1 end 

__index1 __indexN = 0 
Loop1::for(i1...)
  Loop2::for(i2...) 

    LoopN::for(iN...) 
        Votage scaling point 
    __indexN++ 
    LoopN end 
    __indexN =0 
  Loop2 end 
  __index2 =0 
  __index1++ 
Loop1 end 
__index1 = 0 

 

Fig. 2. The pseudo-code of instrumented code for loops 

3.1   Compute the rweci of Voltage Scaling Points Inserted into Loops 

For the voltage scaling points inserted into loops, the rweci of each iteration has the 
different value, which is closely related to the specific iteration. We give the rweci by 
the parametric method: 

∑
=

⋅−−+=
n

j

j
loop

j
iterationcur

j
iterationbasei iiii

wceclooplooprwecrwec
0

_max_ )1(  

where 
ibaserwec is the reduced worst case execution cycle for last iterations of all loop 

levels including the voltage scaling point, j
loopi

wcec  is the worst case execution cycle 

of the jth loop level, j
iterationi

loopmax_  is the maximum iteration number of the jth loop 

level, j
iterationcur i

loop _  is the current iteration number of the jth loop level. Here, we 

specify the compute method of rweci when there are no function calls. 
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Using the HEPTANE tool, we can obtain j
iterationi

loopmax_  from the loop annotation, 

whereas j
iterationcur i

loop _  need add some instrumented code. Based on the syntax tree of 

the source code, we insert the instrumented code to get j
iterationcur i

loop _ , as is shown in 

Fig. 2. At the beginning of the loop, the indexes of the corresponding loop levels are 
initiated to zero. When getting into a more deep loop level, the corresponding index is 
incremented; on the contrary, when getting out of a loop level, the index is cleared to 
zero. The instrumented code is directly inserted into the syntax tree, and when 
outputting the modified source code, the result includes the instrumented code. 

main
seqence

(0)

Init
(1)

Call
f1(2)

f1
Seqence

(2_0)

Init
(2_1)

IF
(2_2)

Code
(2_5)

Test
(2_3)

Code
2_4

Code
(3)

FOR
(4)

Code
(15)

Call
f1(16)

Code
(17)

Test
(5)

Exit
(6)

Incr
(14)

……

Seqence
(7)

Code
(8)

FOR
(9)

Test
(10)

Exit
(11)

Incr
(13)

Code
(12)

int f1(int a)
{
   if(a>5)
     return a;
   return 0;
}
int main()
{
   int i,j,a;
   a = 0;
   f1(a);
   for(i=0; i<100; i++) [100]
     for(j=0; j<10; j++) [10]
        a++;
   f1(a);
   return 0;
}

V
oltage  scaling  point

 

Fig. 3. A source code and the corresponding context tree for time estimation 

We can estimate j
loopi

wcec  directly using HEPTANE tool, but cannot directly get 

ibaserwec  from HEPTANE. In order to compute 
ibaserwec , we modified the HEPTANE 

tool, and estimate time by pruning the context tree of HEPTANE. The source code 
and the corresponding context tree for time estimation are shown in Fig. 3. The source 
code is a typical program except including some annotations of the maximum number 
of loop iterations. The context tree is an expanded syntax tree, and it consists of all 
execution instances of the functions. Suppose For(9) is selected as an voltage scaling 
point, then only the nodes surrounded by the free curve have contribution to the 

ibaserwec , the nodes marked by the black dots only need to estimate the time of their 

partial sub-nodes. From the voltage scaling point, we search the parent node, prune 
the sibling node before current node, and maintain the current node and the sibling 
node after current node. For loop node, only a single iteration is considered. Finally, 
we estimate the worst case execution cycle of the reduced context tree from bottom to 
top, which is equal to 

ibaserwec . 
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3.2   Compute the rweci of Voltage Scaling Points Inserted into Function Calls 

If the voltage scaling points are inserted into function calls, the rweci is different for 
each instance of a function call. We add the hint information of function calls to 
estimate the rweci: 

ii loopfunci rwecrwecrwec +=  

∑
=

⋅−−+=
n

j

j
loop

j
iterationcur

j
iterationbaseloop iiiii

wceclooplooprwecrwec
0

_max_ )1(  

where j
loopi

wcec , j
iterationi

loopmax_ , and j
iterationcur i

loop _ have the same meanings as before, 

ibaserwec is the reduced worst case execution cycle between current voltage scaling 

point and the end of the function, 
ifuncrwec is the reduced worst case execution cycle of 

the end of current instance of the function call. For the different instances of function 
call, 

ibaserwec could have the different value, and we simply use the maximum 

ibaserwec  for all instances. Using the 
ifuncrwec , we can differ one instance from the 

others.  

 
f1() 
{ 

voltage scaling point 
} 
f2() 
{ 

f1() 
f1() 

} 

f1(float rwec) 
{ 

voltage scaling point 
} 
f2(float rwec) 
{ 

rwec1 = rwec+rwec_a; 
f1(rwec1) 
rwec2 = rwec+rwec_b; 
f1(rwec2) 

} 

Fig. 4. The pseudo-code of instrumented code for function calls 

As before, we need insert the instrumented code, and an example is shown in  
Fig. 4.  The function f1 includes a voltage scaling point, we add a parameter for the 
function f1, which represent the 

ifuncrwec  for the function f1. When the function f1 is 

called, we can know the reduced worst case execution cycle at the end of the current 
instance of the function f1. Similarly, the function f2 includes the call instance of the 
function f1, and then it also needs an additional parameter to represent the reduced 
worst case execution cycle at the end of the instance of the function f2. At the same 
time, we make use of HEPTANE to estimate the worst case execution cycle rwec_a 
between the end of the first instance of the function f1 and the end of the function f2, 
and the worst case execution cycle rwec_b between the end of the second instance of 
the function f1 and the end of the function f2. As a result, we can compute the 

ifuncrwec  for two instances of the function f1, which are transferred to the voltage 
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scaling point by the function parameter. Besides the voltage scaling points, some 
other points such as rwec_a and rwec_b also need estimate the reduced worst case 
execution cycle, and we call them assistant voltage scaling points. 

For each voltage scaling point, we find out the function including the point in  
the syntax tree. Then, we search for the syntax tree and find out all the call sites of  
the function. The call sites are the assistant voltage scaling points. Combining all  
the voltage scaling points with the assistant voltage scaling points, we continue to find 
out more assistant voltage scaling points till the number of the voltage scaling points 
is not changed. For the different kinds of voltage scaling points, we insert the 
corresponding code and correctly compute the rweci. The pseudo-code algorithm of 
searching for voltage scaling points is shown in Fig. 5. 
 

Input:
    list_dvspoint represents a list of all initial voltage scaling    
    points (the end of the uncertain loop and the beginning of each  
    condition path ) 
1 while(the size of list_dvspoint is changed) 
2     while( list_dvspoint is not empty) 
3        get a dvs point 
4        search for the function f including the dvs point 
5        search for all the call sites of f, insert into a call site list  
         list_callpoint 
6     combine list_callpoint with list_dvspoint, get an updated  
      list_dvspoint 
7 for(each point in the list_dvspoint) 
8     if(dvs point) 
9        output the RWEC computing code  
         and the voltage scaling code 
10    else if(assistant dvs point) 
11      output the RWEC computing code, add the function  
        parameter and the parameter of function call  

Fig. 5. The pseudo-code algorithm of searching for voltage scaling points 

4   Profile-Guided Energy Optimization 

When not considering the voltage scaling overhead, the optimal configuration 
minimizing the energy consumption inserts voltage scaling points at the end of the 
uncertain loop (for example, “while” in C language) and the beginning of each 
condition path (for example, if-then-else and “switch” in C language). We realize the 
inserting method, search for the syntax tree, and insert voltage scaling points into the 
end of each uncertain loop and the beginning of each path of the condition structure. 

When considering the voltage scaling overhead, the inserting method are not the 
optimal. Yi, et al [14] have presented an analytical energy model, and based on the 
energy model, they give an optimizing method, which deleted overmany voltage  
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scaling points from the initial set of voltage scaling points. The optimizing method 
considers each time voltage adjustment as a voltage scaling point, and attempts to 
maintain the optimal voltage adjustment. For a real application program, voltage 
scaling points can be inserted into any place, each voltage scaling points can 
correspond to multiple instances. For example, as shown in Fig. 2, a voltage scaling 
point is inserted into a loop, and any iteration of the loop has made voltage 
adjustment. For the voltage scaling point included in Fig. 4, each instance of the 
function f1 corresponds to one voltage adjustment. It is not simple problem to delete 
voltage adjustment of an application. 

Generally speaking, a voltage scaling point corresponds to an inserting location. 
For example, for the voltage scaling point included by f1 in Fig. 4, we consider it as a 
voltage scaling point. When we delete the voltage scaling point, we really delete two 
times voltage adjustment corresponding to two instance of the function f1. It is 
obvious that the voltage scaling point definition can lead to the ineffective 
optimization, and the main problem comes from the voltage scaling points inserted 
into loops. For example, for the voltage scaling point in Fig. 2, it is possible that it 
corresponds to a large number of voltage adjustment, and as a result, its deletion leads 
to ineffective voltage scaling placement. Therefore, we need give special meaning for 
the points inserted into loops. 

 
1 if (insert_or_not[i] && indexj mod stride == 0) { 
2       getcurrenttime(ct); 
3       computecurrentRWEC(rweci); 
4       nf = rweci / (d-ct-overhead); 
5       setnewfrequency(nf); 
6 } 

Fig. 6. The modified pseudo-code of DVS inserted into loops 

We consider the point inserted into loops as multiple voltage scaling points and 
need to be deleted in some sequence. Taking into account a modified DVS pseudo-
code as shown in Fig. 6, we add a prediction (indexj mod stride), where indexj is the 
index of the jth loop level, stride is the stride length, and mod represents the modulus 
operator. We can delete a voltage scaling point by clearing insert_or_not[i]  to zero. 
For the voltage scaling points inserted into loops, we also can delete some voltage 
adjustment by setting indexj and stride to the different value. Therefore, we divide the 
original optimizing methods [14] into two steps: optimizing the points inserted into 
loops and globally optimizing the points inserted into the application. At the first step, 
we delete the voltage adjustment by the order that firstly, stride is equal to 2n and n 
changes from small to large value, where n belongs to positive integer and 2n is less 
than the maximum iteration number of the jth loop level, then indexj changes from 
more deep loop level to more exterior loop level. Actually, the process of deleting 
voltage points is increasing the voltage scaling granularity, from more fine adjustment 
to more coarse, and balances the energy saving with voltage scaling overhead. At the  
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second step, we consider each inserting location as a voltage scaling point, and delete 
the voltage scaling point by setting insert_or_not[i] into zero. The detailed optimizing 
step is shown in Fig. 7. All the profile-guided time statistics are from HEPTANE  
tool. 

 
First Step: 
Input: the execution pattern of each loop in 
the most frequent execution case. 
Output: a configuration of voltage scaling 
points inserted into the loop. 
1 An initial optimal configuration without 

considering voltage scaling overhead. 
2 Compute the energy consumption by 

using the analytical model from [14]   
3 Compute the energy consumption with 

stride incremented or indexj being more 
exterior loop level. 

4 Compare the energy consumption for 
step 2 and step 3. 

5 If step 2 has smaller energy consumption, 
stop! 

6 Or else repeat the steps from 2 to 6. 
 

Second Step: 
Input: the output from the first step. 
Output: a configuration of voltage scaling 
points. 
1 Compute the energy consumption with 

n points by using the analytical model 
from [14] 

2 Compute the energy consumption with 
one point deleted (n-1). 

3 Compute the difference of the energy 
consumption between   step 2 and step 
1, and find out the minimum. 

4 If the minimum is larger than zero, 
stop! 

5 Or else use the configuration with the 
minimum as the new configuration, 
update n (-1). 

6 repeat the steps from 2 to 5. 

Fig. 7. The improved optimizing method 

5   The Experiment Environment and Results 

We realize an experiment environment named RTLPower (Real-Time Low Power), 
which integrates static time estimation, cycle-accurate performance/power simulation, 
dynamic voltage scaling, and energy optimization. The front end is the modified 
HEPTANE WCET analysis tool [20], and the back end is the modified Sim-Panalyzer 
performance/power simulator [21]. The whole environment is based on the 
StrongARM architecture, as shown in Fig. 8. The gray regions are the modified or 
added modules. The front end of RTLPower receives the configuration information 
and C source code file with the annotation [20], the configuration information and 
source code file build the syntax tree of the application, and the code modification 
module modifies the source code by manipulating the syntax tree. The modified 
syntax tree is translated into context tree that is used to time estimation in HEPTANE 
tool. Using HEPTANE we estimate the worst case execution cycle of the application, 
the worst case execution cycle of all the loops, and the reduced worst case execution 
cycle of all the inserting points. The estimated time information is returned to the 
code modification module, and is used to create the complete syntax tree and output 
the DVS-enabled source code file. Integrated with the profile-guided optimization, we 
get the modified source code file and the final executable binary file. 
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Fig. 8. RTLPower experimental envioment 

Table 1. The performance parameters of Sim-Panalyzer 

Fetch width 1 Decode width 1 
Issue width 1 Commit width 1 
RUU size 2 Lsq size 2 
Int ALU 1 Int MUL 1 
Flt ALU 1 Flt MUL 1 
Mem Port 1 In-order issue true 
L1 data cache 16 sets, 32 bytes block, 

32 ways, 1 cycle latency 
L1 inst cache 16 sets, 32 bytes block, 

32 ways, 1 cycle latency 
TLB 32 sets, 4096 bytes page size, 

32 ways, 30 cycles miss latency 

The back end of RTLPower cycle-accurately simulates the binary program and 
makes dynamic voltage scaling. It outputs time statistics, power statistics. 

We use three typical applications of SNU-RT benchmark [22] from Real-Time 
Research Group, Seoul National University to analyze the realization and 
optimization of DVS. One of the applications is Adaptive Differential Pulse Code 
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Modulation (adpcm), and the whole application includes three stages: data 
initialization, data encoding, and data decoding. It includes 800 lines source code, 
many loop structures, condition structures and function calls, and the data input length 
is 2000. The second application is the fast fourier transform (fft1k), and the input data 
length is 1024. The final program is matrix multiplication (matmul). Its initial data 
size is 5x5, and we expand the size into 20x20. The performance parameters of Sim-
Panalyzer are listed in Table 1. The voltage/frequency model comes from Intel Xscale 
[23], the frequency/voltage is listed in Table 2. 

Table 2. The frequency and voltage of Intel Xscale 

f(Mhz) 1000 800 600 400 150 
V(V) 1.80 1.60 1.30 1.00 0.75 
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Fig. 9. The statistics of experimental results 

We presents the experiment results in Fig. 9, where nodvs indicates the results of 
no voltage adjustment, dvs is the results with voltage adjustment, and optdvs is the 
results after profile-guided optimization. All the results are normalized to the 
maximum. The energy consumption without dvs and after voltage adjustment are 
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shown in Fig. 9(a), we can save 10%~60% energy consumption. After the profile-
guided optimization, we further save 3%~6% energy consumption. In Fig. 9(b), we 
show the actual execution cycle, which indicates the incremented computation 
quantity. Generally speaking, dynamic voltage scaling leads to less computation 
quantity increment. For the application adpcm, after profile-guided optimization, 
fewer cycles are used, and we analyze that the result attributes to cache effect. 
Dynamic voltage scaling reduces energy consumption by slowing the execution and 
decreasing supply voltage, and in Fig. 9(c) we show the effect. The actual execution 
times are prolonged by 50~150%, and after optimization, both the execution cycle and 
time are reduced. 

6   Conclusions 

Based on the WCET (the worst case execution time) analysis tool HEPTANE and the 
performance/power simulator Sim-Panalyzer, we present a DVS-enabled simulation 
environment RTLPower, which integrates static WCET estimation, performance/ 
power simulation, automatically inserting the DVS code into a real application, and 
profile-guided energy optimization. By simulations of some real applications, we 
prove that the DVS technique and the profile-guided optimization technique 
significantly reduce energy consumption. 
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