
C. Jesshope and C. Egan (Eds.): ACSAC 2006, LNCS 4186, pp. 123 – 136, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Static WCET Analysis Based Compiler-Directed DVS
Energy Optimization in Real-Time Applications*

Yi Huizhan, Chen Juan, and Yang Xuejun

Section 620, School of Computer, National University of Defense Technology,
Changsha, 410073, Hunan, P.R. China

{huizhanyi, juanchen, xjyang}@nudt.edu.cn

Abstract. Compiler-directed dynamic voltage scaling (DVS) is one of the
effective low-power techniques for real-time applications. Using the technique,
compiler inserts voltage scaling points into a real-time application, and supply
voltage and clock frequency are adjusted to the relationship between the
remaining time and the remaining workload at each voltage scaling point. In
this paper, based on the WCET (the worst case execution time) analysis tool
HEPTANE and the performance/power simulator Sim-Panalyzer, we present a
DVS-enabled simulation environment RTLPower (Real-Time Low Power),
which integrates static WCET estimation, performance/power simulation,
automatically inserting the DVS code into a real-time application, and profile-
guided energy optimization. By simulations of some benchmark applications,
we prove that the DVS technique and the profile-guided optimization technique
significantly reduce energy consumption.

Keywords: Real-time, Low-power, WCET, Compiler.

1 Introduction

In the recent years, embedded systems for mobile computing, such as mobile phone
and PDA, are developing rapidly, and a crucial parameter of mobile systems is the
continued time of energy supply. Although the performance in the integrated circuits
(ICs) has been increasing rapidly in recent years [1], battery techniques are developed
very slowly [2] and it is of significant importance for battery-powered mobile systems
to utilize more effective low-power techniques.

Many novel low-power techniques in circuit, logic, architecture and software
levels, in order of increasing abstraction, have been proposed to reduce energy
consumption. Dynamic voltage scaling (DVS) [3], [4] is one of the low-power
techniques in architecture level, and it is widely used in embedded systems for mobile
computing and desktop systems. Real-time dynamic voltage scaling dynamically
reduces supply voltage to the lowest possible extent that ensures a proper operation
when the required performance is lower than the maximum performance. Since the
dynamic energy consumption, the dominant energy consumption in ICs, is in direct

* Supported by the National High Technology Development 863 Program of China under Grant

No. 2004AA1Z2210 and Server OS Kernel under Grant No. 2002AA1Z2101.

124 H. Yi, J. Chen, and X. Yang

proportion to the square of supply voltage V, it is possible for DVS to significantly
reduce energy consumption.

The voltage scheduling in a single task called an intra-task dynamic voltage scaling
(IntraDVS) [7] is proposed. IntraDVS assisted by compiler automatically inserts
voltage scaling points into a real-time task and divides the task into some execution
sections, and then supply voltage is adjusted to the relationship between the remaining
time and the remaining workload.

It is crucial for IntraDVS to properly place voltage scaling points in a real-time
application, and the configuration of voltage scaling points significantly affects
energy consumption. A good configuration could save more energy; however, due to
voltage scaling overhead, the improper one could waste much energy. For the past
few years, much work has been published on compiler-directed real-time dynamic
voltage scaling [5], [6], [7], [8], [9], [10], [11], [12], [13], and the algorithms have
utilized two kinds of configurations of voltage scaling points. The first is to make use
of fixed-length voltage scaling sections, the whole execution of a task is divided into
some equal subintervals and the voltage adjustment is made at the beginning of each
subinterval [6] [11]. The second is a heuristic method, the condition and loop
structure in real-time applications often bring about the workload variation and energy
consumption can be reduced enormously if voltage scaling points are put at the end of
the structures [7] [13]. Yi, et al proved that the heuristic configuration is the optimal
one when not considering the voltage scaling overhead [14]. At the same time they
presented a profile-guided optimizing configuration methodology, and using some
synthetic applications, they proved that the methodology significantly reduces energy
consumption. But they have not explained how to realize the method, and no
experimental results of real benchmark applications are given. Another problem of the
past works is not integrating with the WCET analysis tightly, but for real-time
applications, it is a key to give the time estimate method in detail.

In this paper, based on the WCET (the worst case execution time) analysis tool
HEPTANE and the performance/power simulator Sim-Panalyzer, we present a DVS-
enabled simulation environment RTLPower, which integrates static WCET estimation,
performance/power simulation, automatically inserting the DVS code into a real
application, and profile-guided energy optimization. By simulations of some real
benchmark applications, we prove that the DVS technique and the profile-guided
optimization technique significantly reduce energy consumption.

The rest of this paper is organized as follows. In Section 2, we list the related terms
of compiler-directed dynamic voltage scaling. In Section 3, we give the inserting
method of DVS code. In Section 4, we present the profile-guided energy optimization
method. In Section 5, we show by experiments that the DVS technique and the
profile-guided optimization technique significantly reduce energy consumption.
Finally, we give the conclusions.

2 Related Terms

A real-time task has strict timing constraint and must finish before its deadline (d),
missing the deadline might lead to a catastrophic result. Real-time dynamic voltage
scaling guarantees a correct operation of a real-time task and dynamically reduces

 Static WCET Analysis Based Compiler-Directed DVS Energy Optimization 125

supply voltage and clock frequency to the lowest possible extent in the execution
course. Therefore, for real-time applications, the worst-case execution time (wcet) or
the worst-case execution cycle (wcec) must be estimated in advance [19] to ensure
that the timing constraint is met, that is, the worst-case execution time must be less
than or equal to the deadline. If the wcet is less than the deadline, we can
proportionally reduce clock frequency beforehand. Consequently, the wcet is equal to
the deadline d and the obtained initial frequency is fstatic, that is, d=wcec/fstatic. This is
the starting point of dynamic voltage scaling in this paper. Current DVS-enabled
systems only can change the clock frequency on some discrete levels [15], [16], [17],
and therefore we assume that the clock frequency can change on some discrete levels
between consecutive interval [fmin, fmax].

IntraDVS divides the whole execution cycle of a task into n sections, and the
worst-case execution cycle and the actual execution cycle of each section are denoted
by wci and aci for ni ,...,1= , respectively. It is obvious that ii wcac ≤≤0 for ni ,...,1= ,

and ∑ =
= n

l lwcwcec
1

. The reduced worst-case execution cycle of the ith point is

denoted by irwec for 1,...,1 += ni , and we have ∑ =
= n

il li wcrwec for ni ,...,1= ,

01 =+nrwec .

At the beginning of each section, supply voltage (Vi for ni ,...,1=) and clock
frequency (fi for ni ,...,1=) are adjusted to the relationship between the remaining time
and the remaining workload, and the lowest supply voltage and clock frequency are
utilized within timing constraint. The proportional voltage scaling sets the frequency
of the ith section to

)/(
1

1∑ −

=
−= i

l lii tdrwecf

where tl denotes the actual execution time of the lth section. In the above formula, the
new clock frequency at the beginning of the ith section is set to the quotient of the
reduced worst-case execution cycle divided by the reduced time, which can guarantee
that the task can finish before its deadline at any time.

The formula () VVVf T /2−∝ defines the relationship between clock frequency and

supply voltage of CMOS, where VT denotes the threshold voltage of CMOS.
The execution time ti of each section can be computed by

iii fact /=

Finally, dynamic voltage scaling have some energy overhead and time overhead,
which are closely related to the initial voltage VDD1, the final voltage VDD2, and the
switch capacitance C. Burd, et al [18] present the formula of energy overhead

2
1

2
2)1(DDDD VVCE −⋅⋅−= η

and the formula of time overhead

12
max

2
DDDDTRAN VV

I

C
t −⋅⋅=

In this paper, we let 9.0=η (the typical value) and pFC 5= . The time overhead is
fixed as 200 cycles for 100Mhz frequency variation.

126 H. Yi, J. Chen, and X. Yang

3 Inserting Method of DVS Code

Based on the WCET analysis tool HEPTANE [20], we present an automatically
inserting method of DVS code. For a real application program, it includes condition
structures, loop structures, and function calls, besides the sequential codes. Our
method can insert into any location of an application program. At each voltage scaling
point, we need three parameters: the reduced worst case execution cycle (rweci), the
deadline (d), and the current time (ct). The deadline is defined before hand, and the
current time can be obtained dynamically from the simulation system. The modified
simulation system Sim-Panalyzer can accumulate the actual execution time, and
convey the time information to real-time applications by some predefined memory
port. Therefore, if rweci is known, we can set the supply voltage and clock frequency
of each voltage scaling point. Furthermore, in order to make it possible to optimize
the insertion of voltage scaling points, we make each point executed by a prediction
insert_or_not[i]. Therefore, at each point, the DVS pseudo-code is illustrated at
Fig. 1. The function getcurrenttime obtains the current actual execution time from the
simulation environment. The function setnewfrequency sets new system execution
frequency, and based on the remaining time and the remaining workload, the function
computes new frequency and sets the nearest discrete voltage/frequency level that
guarantees the real-time execution. Both functions are realized by embedded assemble
language, which is supported by GCC compiler. Based on the different cases,
computecurrentRWEC can correctly give the reduced worst case execution cycle.

1 if (insert_or_not[i]) {
2 getcurrenttime(ct);
3 computecurrentRWEC(rweci);
4 nf = rweci / (d-ct-overhead);
5 setnewfrequency(nf);
6 }

Fig. 1. The pseudo-code of DVS at each point

The time estimation process of the WCET analysis tool HEPTANE is as follows:

1. Based on the source code of an application, a syntax tree is produced, which
corresponds to the source code structure.

2. From the syntax tree, a context tree is formed, which corresponds to the
execution process of the application. At the same time, some labels are inserted in the
syntax tree, which are used to mark the basic block (no branch structure). The
resultant syntax tree is used to output the modified source code.

3. The modified source code is compiled using GCC compiler, and the assemble
file and binary file are produced. Using the specific architecture information (such as
cache size, pipeline stage), the worst case execution time of each basic block is
estimated.

4. Using the context tree and the time information of basic blocks, the worst-case
execution time of the whole application is accumulated by depth-firstly traversing the
context tree.

 Static WCET Analysis Based Compiler-Directed DVS Energy Optimization 127

Based on the time estimation process of HEPTANE, we select inserting the DVS
code in the syntax tree of the source code. By traversing the syntax tree, we mark the
location for all the DVS points. When outputting the modified source code, the DVS
code is inserted into the source code automatically. Therefore, the final time
estimation includes the execution time of the DVS code (not DVS overhead), and the
safe real-time DVS program is produced.

Next, we present how to correctly get the value of rweci for the different cases. For
the code without loops and function calls, it is simple to make use of HEPTANE to
estimate the worst case execution cycle of each point. For the voltage scaling points
inserted into loops, the rweci of each iteration is different. Similarly, for the voltage
scaling point inserted into function calls, the different call sites of the function have
the different rweci. Since it is possible for our inserting method to insert a point into
any place, we must solve the problem due to loops and function calls.

Loop1::for(i1...)
 Loop2::for(i2...)

 LoopN::for(iN...)
 Votage scaling point
 LoopN end

 Loop2 end
Loop1 end

__index1 __indexN = 0
Loop1::for(i1...)
 Loop2::for(i2...)

 LoopN::for(iN...)
 Votage scaling point
 __indexN++
 LoopN end
 __indexN =0
 Loop2 end
 __index2 =0
 __index1++
Loop1 end
__index1 = 0

Fig. 2. The pseudo-code of instrumented code for loops

3.1 Compute the rweci of Voltage Scaling Points Inserted into Loops

For the voltage scaling points inserted into loops, the rweci of each iteration has the
different value, which is closely related to the specific iteration. We give the rweci by
the parametric method:

∑
=

⋅−−+=
n

j

j
loop

j
iterationcur

j
iterationbasei iiii

wceclooplooprwecrwec
0

max)1(

where
ibaserwec is the reduced worst case execution cycle for last iterations of all loop

levels including the voltage scaling point, j
loopi

wcec is the worst case execution cycle

of the jth loop level, j
iterationi

loopmax_ is the maximum iteration number of the jth loop

level, j
iterationcur i

loop _ is the current iteration number of the jth loop level. Here, we

specify the compute method of rweci when there are no function calls.

128 H. Yi, J. Chen, and X. Yang

Using the HEPTANE tool, we can obtain j
iterationi

loopmax_ from the loop annotation,

whereas j
iterationcur i

loop _ need add some instrumented code. Based on the syntax tree of

the source code, we insert the instrumented code to get j
iterationcur i

loop _ , as is shown in

Fig. 2. At the beginning of the loop, the indexes of the corresponding loop levels are
initiated to zero. When getting into a more deep loop level, the corresponding index is
incremented; on the contrary, when getting out of a loop level, the index is cleared to
zero. The instrumented code is directly inserted into the syntax tree, and when
outputting the modified source code, the result includes the instrumented code.

main
seqence

(0)

Init
(1)

Call
f1(2)

f1
Seqence

(2_0)

Init
(2_1)

IF
(2_2)

Code
(2_5)

Test
(2_3)

Code
2_4

Code
(3)

FOR
(4)

Code
(15)

Call
f1(16)

Code
(17)

Test
(5)

Exit
(6)

Incr
(14)

……

Seqence
(7)

Code
(8)

FOR
(9)

Test
(10)

Exit
(11)

Incr
(13)

Code
(12)

int f1(int a)
{
 if(a>5)
 return a;
 return 0;
}
int main()
{
 int i,j,a;
 a = 0;
 f1(a);
 for(i=0; i<100; i++) [100]
 for(j=0; j<10; j++) [10]
 a++;
 f1(a);
 return 0;
}

V
oltage scaling point

Fig. 3. A source code and the corresponding context tree for time estimation

We can estimate j
loopi

wcec directly using HEPTANE tool, but cannot directly get

ibaserwec from HEPTANE. In order to compute
ibaserwec , we modified the HEPTANE

tool, and estimate time by pruning the context tree of HEPTANE. The source code
and the corresponding context tree for time estimation are shown in Fig. 3. The source
code is a typical program except including some annotations of the maximum number
of loop iterations. The context tree is an expanded syntax tree, and it consists of all
execution instances of the functions. Suppose For(9) is selected as an voltage scaling
point, then only the nodes surrounded by the free curve have contribution to the

ibaserwec , the nodes marked by the black dots only need to estimate the time of their

partial sub-nodes. From the voltage scaling point, we search the parent node, prune
the sibling node before current node, and maintain the current node and the sibling
node after current node. For loop node, only a single iteration is considered. Finally,
we estimate the worst case execution cycle of the reduced context tree from bottom to
top, which is equal to

ibaserwec .

 Static WCET Analysis Based Compiler-Directed DVS Energy Optimization 129

3.2 Compute the rweci of Voltage Scaling Points Inserted into Function Calls

If the voltage scaling points are inserted into function calls, the rweci is different for
each instance of a function call. We add the hint information of function calls to
estimate the rweci:

ii loopfunci rwecrwecrwec +=

∑
=

⋅−−+=
n

j

j
loop

j
iterationcur

j
iterationbaseloop iiiii

wceclooplooprwecrwec
0

max)1(

where j
loopi

wcec , j
iterationi

loopmax_ , and j
iterationcur i

loop _ have the same meanings as before,

ibaserwec is the reduced worst case execution cycle between current voltage scaling

point and the end of the function,
ifuncrwec is the reduced worst case execution cycle of

the end of current instance of the function call. For the different instances of function
call,

ibaserwec could have the different value, and we simply use the maximum

ibaserwec for all instances. Using the
ifuncrwec , we can differ one instance from the

others.

f1()
{

voltage scaling point
}
f2()
{

f1()
f1()

}

f1(float rwec)
{

voltage scaling point
}
f2(float rwec)
{

rwec1 = rwec+rwec_a;
f1(rwec1)
rwec2 = rwec+rwec_b;
f1(rwec2)

}

Fig. 4. The pseudo-code of instrumented code for function calls

As before, we need insert the instrumented code, and an example is shown in
Fig. 4. The function f1 includes a voltage scaling point, we add a parameter for the
function f1, which represent the

ifuncrwec for the function f1. When the function f1 is

called, we can know the reduced worst case execution cycle at the end of the current
instance of the function f1. Similarly, the function f2 includes the call instance of the
function f1, and then it also needs an additional parameter to represent the reduced
worst case execution cycle at the end of the instance of the function f2. At the same
time, we make use of HEPTANE to estimate the worst case execution cycle rwec_a
between the end of the first instance of the function f1 and the end of the function f2,
and the worst case execution cycle rwec_b between the end of the second instance of
the function f1 and the end of the function f2. As a result, we can compute the

ifuncrwec for two instances of the function f1, which are transferred to the voltage

130 H. Yi, J. Chen, and X. Yang

scaling point by the function parameter. Besides the voltage scaling points, some
other points such as rwec_a and rwec_b also need estimate the reduced worst case
execution cycle, and we call them assistant voltage scaling points.

For each voltage scaling point, we find out the function including the point in
the syntax tree. Then, we search for the syntax tree and find out all the call sites of
the function. The call sites are the assistant voltage scaling points. Combining all
the voltage scaling points with the assistant voltage scaling points, we continue to find
out more assistant voltage scaling points till the number of the voltage scaling points
is not changed. For the different kinds of voltage scaling points, we insert the
corresponding code and correctly compute the rweci. The pseudo-code algorithm of
searching for voltage scaling points is shown in Fig. 5.

Input:
 list_dvspoint represents a list of all initial voltage scaling
 points (the end of the uncertain loop and the beginning of each
 condition path)
1 while(the size of list_dvspoint is changed)
2 while(list_dvspoint is not empty)
3 get a dvs point
4 search for the function f including the dvs point
5 search for all the call sites of f, insert into a call site list
 list_callpoint
6 combine list_callpoint with list_dvspoint, get an updated
 list_dvspoint
7 for(each point in the list_dvspoint)
8 if(dvs point)
9 output the RWEC computing code
 and the voltage scaling code
10 else if(assistant dvs point)
11 output the RWEC computing code, add the function
 parameter and the parameter of function call

Fig. 5. The pseudo-code algorithm of searching for voltage scaling points

4 Profile-Guided Energy Optimization

When not considering the voltage scaling overhead, the optimal configuration
minimizing the energy consumption inserts voltage scaling points at the end of the
uncertain loop (for example, “while” in C language) and the beginning of each
condition path (for example, if-then-else and “switch” in C language). We realize the
inserting method, search for the syntax tree, and insert voltage scaling points into the
end of each uncertain loop and the beginning of each path of the condition structure.

When considering the voltage scaling overhead, the inserting method are not the
optimal. Yi, et al [14] have presented an analytical energy model, and based on the
energy model, they give an optimizing method, which deleted overmany voltage

 Static WCET Analysis Based Compiler-Directed DVS Energy Optimization 131

scaling points from the initial set of voltage scaling points. The optimizing method
considers each time voltage adjustment as a voltage scaling point, and attempts to
maintain the optimal voltage adjustment. For a real application program, voltage
scaling points can be inserted into any place, each voltage scaling points can
correspond to multiple instances. For example, as shown in Fig. 2, a voltage scaling
point is inserted into a loop, and any iteration of the loop has made voltage
adjustment. For the voltage scaling point included in Fig. 4, each instance of the
function f1 corresponds to one voltage adjustment. It is not simple problem to delete
voltage adjustment of an application.

Generally speaking, a voltage scaling point corresponds to an inserting location.
For example, for the voltage scaling point included by f1 in Fig. 4, we consider it as a
voltage scaling point. When we delete the voltage scaling point, we really delete two
times voltage adjustment corresponding to two instance of the function f1. It is
obvious that the voltage scaling point definition can lead to the ineffective
optimization, and the main problem comes from the voltage scaling points inserted
into loops. For example, for the voltage scaling point in Fig. 2, it is possible that it
corresponds to a large number of voltage adjustment, and as a result, its deletion leads
to ineffective voltage scaling placement. Therefore, we need give special meaning for
the points inserted into loops.

1 if (insert_or_not[i] && indexj mod stride == 0) {
2 getcurrenttime(ct);
3 computecurrentRWEC(rweci);
4 nf = rweci / (d-ct-overhead);
5 setnewfrequency(nf);
6 }

Fig. 6. The modified pseudo-code of DVS inserted into loops

We consider the point inserted into loops as multiple voltage scaling points and
need to be deleted in some sequence. Taking into account a modified DVS pseudo-
code as shown in Fig. 6, we add a prediction (indexj mod stride), where indexj is the
index of the jth loop level, stride is the stride length, and mod represents the modulus
operator. We can delete a voltage scaling point by clearing insert_or_not[i] to zero.
For the voltage scaling points inserted into loops, we also can delete some voltage
adjustment by setting indexj and stride to the different value. Therefore, we divide the
original optimizing methods [14] into two steps: optimizing the points inserted into
loops and globally optimizing the points inserted into the application. At the first step,
we delete the voltage adjustment by the order that firstly, stride is equal to 2n and n
changes from small to large value, where n belongs to positive integer and 2n is less
than the maximum iteration number of the jth loop level, then indexj changes from
more deep loop level to more exterior loop level. Actually, the process of deleting
voltage points is increasing the voltage scaling granularity, from more fine adjustment
to more coarse, and balances the energy saving with voltage scaling overhead. At the

132 H. Yi, J. Chen, and X. Yang

second step, we consider each inserting location as a voltage scaling point, and delete
the voltage scaling point by setting insert_or_not[i] into zero. The detailed optimizing
step is shown in Fig. 7. All the profile-guided time statistics are from HEPTANE
tool.

First Step:
Input: the execution pattern of each loop in
the most frequent execution case.
Output: a configuration of voltage scaling
points inserted into the loop.
1 An initial optimal configuration without

considering voltage scaling overhead.
2 Compute the energy consumption by

using the analytical model from [14]
3 Compute the energy consumption with

stride incremented or indexj being more
exterior loop level.

4 Compare the energy consumption for
step 2 and step 3.

5 If step 2 has smaller energy consumption,
stop!

6 Or else repeat the steps from 2 to 6.

Second Step:
Input: the output from the first step.
Output: a configuration of voltage scaling
points.
1 Compute the energy consumption with

n points by using the analytical model
from [14]

2 Compute the energy consumption with
one point deleted (n-1).

3 Compute the difference of the energy
consumption between step 2 and step
1, and find out the minimum.

4 If the minimum is larger than zero,
stop!

5 Or else use the configuration with the
minimum as the new configuration,
update n (-1).

6 repeat the steps from 2 to 5.

Fig. 7. The improved optimizing method

5 The Experiment Environment and Results

We realize an experiment environment named RTLPower (Real-Time Low Power),
which integrates static time estimation, cycle-accurate performance/power simulation,
dynamic voltage scaling, and energy optimization. The front end is the modified
HEPTANE WCET analysis tool [20], and the back end is the modified Sim-Panalyzer
performance/power simulator [21]. The whole environment is based on the
StrongARM architecture, as shown in Fig. 8. The gray regions are the modified or
added modules. The front end of RTLPower receives the configuration information
and C source code file with the annotation [20], the configuration information and
source code file build the syntax tree of the application, and the code modification
module modifies the source code by manipulating the syntax tree. The modified
syntax tree is translated into context tree that is used to time estimation in HEPTANE
tool. Using HEPTANE we estimate the worst case execution cycle of the application,
the worst case execution cycle of all the loops, and the reduced worst case execution
cycle of all the inserting points. The estimated time information is returned to the
code modification module, and is used to create the complete syntax tree and output
the DVS-enabled source code file. Integrated with the profile-guided optimization, we
get the modified source code file and the final executable binary file.

 Static WCET Analysis Based Compiler-Directed DVS Energy Optimization 133

autom
atic code m

odification m
odule

code modification module

config.xml

HEPTANE WCET analysis tool

Parser

source code
（ *.c）

insert voltage scaling
points

 fill the R
W

E
C

 info

WCET
estimation

RWEC
estimation

WCET of loop
estimation

configuration info context tree
info of time estimation

syntax tree
D

V
S-enabled source code file

（

*.c

）

D
V

S-enabled binary file

（

exe

）

Sim
-P

analyzer sim
ulator

A
R

M
 pow

er m
odel

D
V

S-enabled system
 based on m

apping m
em

ory port

search assistant voltage scaling
points

search voltage scaling
points

add necessary variable and initial
function

Profile-guided optimization
module

Fig. 8. RTLPower experimental envioment

Table 1. The performance parameters of Sim-Panalyzer

Fetch width 1 Decode width 1
Issue width 1 Commit width 1
RUU size 2 Lsq size 2
Int ALU 1 Int MUL 1
Flt ALU 1 Flt MUL 1
Mem Port 1 In-order issue true
L1 data cache 16 sets, 32 bytes block,

32 ways, 1 cycle latency
L1 inst cache 16 sets, 32 bytes block,

32 ways, 1 cycle latency
TLB 32 sets, 4096 bytes page size,

32 ways, 30 cycles miss latency

The back end of RTLPower cycle-accurately simulates the binary program and
makes dynamic voltage scaling. It outputs time statistics, power statistics.

We use three typical applications of SNU-RT benchmark [22] from Real-Time
Research Group, Seoul National University to analyze the realization and
optimization of DVS. One of the applications is Adaptive Differential Pulse Code

134 H. Yi, J. Chen, and X. Yang

Modulation (adpcm), and the whole application includes three stages: data
initialization, data encoding, and data decoding. It includes 800 lines source code,
many loop structures, condition structures and function calls, and the data input length
is 2000. The second application is the fast fourier transform (fft1k), and the input data
length is 1024. The final program is matrix multiplication (matmul). Its initial data
size is 5x5, and we expand the size into 20x20. The performance parameters of Sim-
Panalyzer are listed in Table 1. The voltage/frequency model comes from Intel Xscale
[23], the frequency/voltage is listed in Table 2.

Table 2. The frequency and voltage of Intel Xscale

f(Mhz) 1000 800 600 400 150
V(V) 1.80 1.60 1.30 1.00 0.75

 (a) The energy consumption (b) The actual execution cycle

0.00%
20.00%
40.00%
60.00%
80.00%

100.00%
120.00%

ad
pc

m
fft

1k
matm

ul

nodvs
dvs
optdvs

0.00%
20.00%
40.00%
60.00%
80.00%

100.00%
120.00%

ad
pc

m
fft

1k

matm
ul

no
rm

al
iz

ed
 e

xe
cu

tio
n

cy
cl

e

nodvs
dvs
optdvs

 (c) The actual execution time

90.00%
110.00%
130.00%
150.00%
170.00%
190.00%
210.00%
230.00%
250.00%
270.00%

adp
cm fft1

k

matm
ul

no
rm

al
iz

ed
 e

xe
cu

tio
n

tim
e

nodvs
dvs
optdvs

Fig. 9. The statistics of experimental results

We presents the experiment results in Fig. 9, where nodvs indicates the results of
no voltage adjustment, dvs is the results with voltage adjustment, and optdvs is the
results after profile-guided optimization. All the results are normalized to the
maximum. The energy consumption without dvs and after voltage adjustment are

 Static WCET Analysis Based Compiler-Directed DVS Energy Optimization 135

shown in Fig. 9(a), we can save 10%~60% energy consumption. After the profile-
guided optimization, we further save 3%~6% energy consumption. In Fig. 9(b), we
show the actual execution cycle, which indicates the incremented computation
quantity. Generally speaking, dynamic voltage scaling leads to less computation
quantity increment. For the application adpcm, after profile-guided optimization,
fewer cycles are used, and we analyze that the result attributes to cache effect.
Dynamic voltage scaling reduces energy consumption by slowing the execution and
decreasing supply voltage, and in Fig. 9(c) we show the effect. The actual execution
times are prolonged by 50~150%, and after optimization, both the execution cycle and
time are reduced.

6 Conclusions

Based on the WCET (the worst case execution time) analysis tool HEPTANE and the
performance/power simulator Sim-Panalyzer, we present a DVS-enabled simulation
environment RTLPower, which integrates static WCET estimation, performance/
power simulation, automatically inserting the DVS code into a real application, and
profile-guided energy optimization. By simulations of some real applications, we
prove that the DVS technique and the profile-guided optimization technique
significantly reduce energy consumption.

References

1. ITRS, “International Technology Roadmap for Semiconductors 2003 Edition,” Can get
from http://public.itrs.net

2. Kanishka Lahiri, “Battery-Driven System Design: A New Frontier in Low Power Design,
” ASP-DAC/VLSI Design 2002, January 07 - 11, 2002, Bangalore, India.

3. T. Burd, T. Pering, A. Stratakos, and R. Brodersen, “A Dynamic Voltage Scaled
Microprocess- or System,” in Proc. of IEEE International Solid-State Circuits Conference,
2000, pp. 294–295.

4. C.M. Krishna, Yann-Hang Lee, “Voltage-Clock-Scaling Adaptive Scheduling Techniques
for Low Power in Hard Real-Time Systems,” IEEE TRANSACTIONS ON
COMPUTERS, December 2003 (Vol. 52, No. 12).

5. Daniel Mosse, H. Aydin, B.R. Childers, R. Melhem, “Compiler-Assisted Dynamic Power-
Aware Scheduling for Real-Time Applications,” Workshop on Compilers and Operating
Systems for Low-Power (COLP'00), Philadelphia, PA, October 2000.

6. S. Lee and T. Sakurai, “Run-Time Voltage Hopping for Low-Power Real-Time Systems,”
in Proc. of Design Automation Conference, 2000, pp. 806–809.

7. Dongkun Shin, Seongsoo Lee, Jihong Kim, “Intra-Task Voltage Scheduling for Low-
Energy Hard Real-Time Applications,” In IEEE Design & Test of Computers, Mar. 2001.

8. H.Saputra, M. Kandemir, N.Vijaykrishnan, M.J.Irwin, J.S. Hu, C-H.Hsu, U.Kremer,
“Energy-Conscious Compilation Based on Voltage Scaling,” In ACM SIGPLAN Joint
Conference on Languages, Compilers, and Tools for Embedded Systems and Software and
Compilers for Embedded Systems , June 2002.

9. Flavius Gruian, “Hard Real-Time Scheduling for Low-Energy Using Stochastic Data and
DVS Processors,” In Proceedings of the International Symposium on Low-Power
Electronics and Design ISLPED'01 (Huntington Beach, CA, Aug. 2001).

136 H. Yi, J. Chen, and X. Yang

10. Ana Azevedo, Ilya Issenin, Radu Cornea, “Profile-based Dynamic Voltage Scheduling
Using Program Checkpoints,” In Proceeding of Design, Automation and Test in Europe
Conference (DATE), March 2002.

11. Nevine AbouGhazaleh, Daniel Mosse, B.R. Childers, R. Melhem, Matthew Craven,
“Collaborative Operating System and Compiler Power Management for Real-Time
Applications,” in Proc. of The Real-time Technology and Application Symposium, RTAS,
Toronto, Canada (May 2003).

12. Chung-Hsing Hsu, Ulrich Kremer, “The Design, Implementation, and Evaluation of a
Compiler Algorithm for CPU Energy Reduction,” in Proceedings of the ACM SIGPLAN
2003 conference on Programming language design and implementation, pp. 38--48, June
2003.

13. Dongkun Shin and Jihong Kim, “Look-ahead Intra-Task Voltage Scheduling Using Data
Flow Information,” In Proc. ISOCC, pp. 148-151, Oct. 2004.

14. Huizhan Yi and Xuejun Yang, “Optimizing the Configuration of Dynamic Voltage Scaling
Points in Real-Time Applications,” In Proc. of PATMOS 2005, Sep 22-25,2005.

15. M. Fleischmann, “Crusoe Power Management: Reducing the Operating Power with
LongRun,” in Proc. of HotChips 12 Symposium, 2000.

16. Intel, Inc., “The Intel(R) XScale(TM) Microarchitecture Technical Summary,” 2000.
17. AMD, Inc., “AMD PowerNow Technology,” 2000.
18. Thomas D.Burd, Robert W.Brodersen, “Design Issue for Dynamic Voltage Scaling ,” in

Proc. of the 2000 international symposium on low power electronics and design, Rapallo,
Italy, pages: 9-14.

19. Peter Puscher, Alan Burns, “A Review of Worst-Case Execution-Time Analysis
(Editorial),” Kluwer Academic Pubilishers, September 24, 1999.

20. Antoine Colin, Isabelle Puaut, “Worst Case Execution Time Analysis for a Processor with
Branch Prediction,” Real-Time System, 2000, vol 18(2/3): 249-274.

21. Nam Sung Kim, Todd Austin, Trevor Mudge, “Challenges for Architectural Level Power
Modeling,” Book Chapter from Power Aware Computing, 2001.

22. SNU Real-Time Benchmarks. Get from http://archi.snu.ac.kr/realtime/benchmark/.
23. Dakai Zhu, Daniel Mosse and Rami Melhem, “Power Aware Scheduling for AND/OR

Graphs in Real-Time Systems,” IEEE Trans. On Parallel and Distributed Systems, vol. 15,
no.9, pp.849-864, 2004.

	Introduction
	Related Terms
	Inserting Method of DVS Code
	Compute the $rwec_i$ of Voltage Scaling Points Inserted into Loops
	Compute the $rwec_i$ of Voltage Scaling Points Inserted into Function Calls

	Profile-Guided Energy Optimization
	The Experiment Environment and Results
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

