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Abstract. We use finite interpretations to guide searches in first-order
and equational theorem provers. The interpretations are carefully chosen
and based on expert knowledge of the problem area of the conjecture.
The method has been implemented in the Prover9 system, and equational
examples are given the areas of lattice theory, Boolean algebras, and
modular ortholattices.

1 Introduction

Automated deduction methods for first-order and equational problems have fo-
cused mostly on completeness-preserving restrictions on inference rules, effective
term orderings, and special-purpose inference and simplification rules. Less at-
tention has been paid to ordering the search. In saturation systems that use the
given-clause algorithm or one if its variants, the order of the search is determined
mostly by selection of the given clauses. The selection is usually by a weight-
ing function that considers syntactic properties of clauses such as length, depth,
occurrences of particular symbols, and patterns of symbols.

We propose to use semantic criteria in addition to syntactic weighting func-
tions to select the given clauses, and we view this method as a form of semantic
guidance for theorem provers. The semantic criteria are finite interpretations of
the language of the problem.

Interpretations have been used previously for restricting the application of
inference rules, for example, a semantic rule may require that one of the parents
be false in the interpretation [9, 6, 11]. However, semantic inference rules are
frequently incompatible, from both theoretical and practical points of view, with
other important methods such as simplification and restrictions based on term
orderings.

Semantic guidance with finite interpretations has been used previously, most
notably in the recent versions of SCOTT series of provers. In MSCOTT [2],
Hodgson and Slaney use semantic guidance with multiple interpretations that
are generated automatically and updated during the search. In Son of SCOTT
[10], Slaney, Binas, and Price introduced the notion of soft constraints that al-
lows the use of just one interpretation that partially models some subset of the
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derived clauses. As in MSCOTT, Son of SCOTT automatically generates the
interpretation and updates it during the search. In both systems, the interpre-
tations are small, usually with at most 4 elements.

In this project we are studying the use of larger interpretations that are
carefully chosen by the user and fixed throughout the search. The interpretations
are intended to be based on expert knowledge on the theory of the problem and
on closely related theories. We give several examples of using semantic guidance
on difficult equational problems and touch on several ideas for choosing good
interpretations.

2 Semantic Strategies and Choice of Interpretations

The roots of semantic strategies for automated theorem proving are in the set of
support strategy, introduced by Wos et al in 1965 [14]. The primary motivation
for the set of support strategy rests on the assumption that many conjectures
have the form theory, hypotheses ⇒ conclusion. The idea is that when searching
for a proof, one should avoid exploring the theory and focus instead on the hy-
potheses and the conclusion. The set of support strategy is a semantic restriction
strategy, and (assuming that the set of support consists of the hypotheses and
conclusion) an arbitrary model of the theory, in which the hypotheses or the
denial of the conclusion are false, is used to prove completeness. The effect is
that all lines of reasoning must start with the hypotheses or the denial of the
conclusion.

Semantic restriction strategies based on other general interpretations (e.g.,
positive resolution), or on arbitrary explicit interpretations were developed later,
most notably by Slagle in 1967 [9]. These rules generally require that one of the
parents for each binary inference be false in the interpretation.

The motivation for the present work on semantic guidance with carefully
selected interpretations is similar to the motivation for the set of support strat-
egy. If the conjecture has the form theory, hypotheses ⇒ conclusion, we wish
to focus the search on lines of reasoning that connect the hypotheses to the
conclusion. If the theory is true in the guiding interpretation, and the hy-
potheses and conclusion are false, we believe that lines of reasoning consisting
mostly of false clauses will be valuable in connecting the hypotheses to the
conclusion.

Because we propose to use semantics to guide rather than restrict the search,
valuable consequences of the theory (e.g., lemmas true in the interpretation) can
be easily derived, and these may help with the “false” lines of reasoning.

If the conjecture has no obvious hypotheses that are separate from the theory,
the interpretation should falsify some part of the theory (a model of the theory
that falsifies the conclusion gives a counterexample). In particular, we believe
that the interpretation should be a model of a slightly weakened theory, in
which the conclusion is false. For example, if the goal is to prove that a theory is
associative, one might wish to use a nonassociative interpretation that satisfies
many other properties of the theory. If one is unfamiliar with or unsure of the
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theory, one can use a nonassociative interpretation that satisfies properties of
closely related theories.

3 Implementation in Prover9

Prover9 [5] is Otter’s [4] successor, and it is similar to Otter in many important
ways. In particular, it uses the given-clause algorithm (the so-called Otter loop),
in which weighting functions are used to select the next given clause, that is, the
next path to explore. Ordinarily (without semantic guidance), Prover9 cycles
through two functions: selecting the oldest clause (to provide a breadth-first
component) and selecting the lightest clause (to provide a best -first component).
The ratio of the two functions is determined by parameters.

For semantic guidance, Prover9 accepts one or more finite interpretations in
the format produced by Mace4 [3]. Each clause that is retained (input or derived)
is evaluated in the interpretations. The clause is marked as true if it is true in
all of the interpretations; otherwise is it marked as false. An exception is that if
evaluation of a clause in an interpretation would be too expensive (determined
by a parameter that considers the number of variables in the clause and the size
of the interpretation), the evaluation is skipped and the clause is marked with
the default value true. The mark is used when (and only when) selecting given
clauses.

When using semantic guidance, Prover9 cycles through three methods when
selecting the next given clause: (1) the oldest clause, (2) the lightest true clause,
and (3) the lightest false clause. The ratio of the three methods is determined
by parameters. (Son of SCOTT [10] uses a similar 3-way ratio.) We use the
notation A : B : C to mean A rounds of selecting the given clause by age,
B rounds selecting true clauses of lowest weight, and C rounds selecting false
clauses of lowest weight, and so on. If a false clause is called for and none is
available, a true clause is substituted, and vice versa.

4 Examples

The theorems cited here were first proved with Otter by using various search
strategies, with substantial interaction from the user. All of the examples are
equational theorems, and a paramodulation inference rule with simplification
(demodulation) was used, similar to unfailing Knuth-Bendix completion.

The interpretations for the semantic guidance were produced by Mace4
(quickly) after the user had determined the desired properties for the interpreta-
tions. Although the Prover9 implementation can handle multiple interpretations,
each of the examples uses just one.

The Prover9 jobs used ratio 1 : 1 : 4 (age:true:false) for selecting the given
clauses. The weighting function for the true and false components was simply
the number of symbols in the clause.

As is frequently done with Prover9, limits were set on the size of equations
for several of the searches; these limits substantially improve the performance of
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Prover9. The term-ordering method and symbol precedence/weights are usually
very important in equational problems, but they are not so important here,
because these examples have so few symbols. We used the lexicographic path
ordering (LPO) with the default symbol precedence.

Finally, Prover9was directed to introduce a new constantwhen it deduced that a
constantsatisfyingsomepropertyexists.Forexample,iff(x, f(x, x))=f(y, f(y, y))
was derived, the equation f(x, f(x, x)) = c, for a new constant c was inferred, with
c added to the interpretation in such a way that f(x, f(x, x)) = c is true.

Waldmeister [1] is usually assumed to be the fastest automatic prover for
equational logic. We ran each example with version 704 (July 2004) of Wald-
meister in its automatic mode with a time limit of four hours, and the results are
given below with each example. Comparison between provers on a small number
of examples is usually not meaningful; the purpose of the Waldmeister jobs is
simply to give another measure of the difficulty of these examples.

4.1 Lattice Theory Identities

This example arose in a project to find weak Huntington identities, that is, lattice
identities that force a uniquely complemented lattice to be Boolean [8]. The follow-
ing two identities (among many others) were proved to be Huntington identities,
and we then looked at the problem of whether one is weaker than the other.

(x ∧ y) ∨ (x ∧ z) = x ∧ ((y ∧ (x ∨ z)) ∨ (z ∧ (x ∨ y))) (H82)
x ∧ (y ∨ (x ∧ z)) = x ∧ (y ∨ (z ∧ ((x ∧ (y ∨ z)) ∨ (y ∧ z)))) (H2)

Let LT be an equational basis for lattice theory in terms of meet and join. Mace4
easily finds a counterexample to LT, H2 ⇒ H82. The statement LT, H82 ⇒ H2
is a theorem and is the focus of this example.

This theorem has the form theory, hypotheses ⇒ conclusion, and a natural
choice for a guiding interpretation is model of the theory that falsifies the hy-
pothesis. Mace4 easily finds a lattice of size 6 satisfying those constraints, and
also shows that there is none smaller and none other of size 6. By using semantic
guidance with that lattice, Prover9 proved the theorem in 10 seconds; without
semantic guidance, Prover9 proved it in about one hour. Waldmeister proved
the theorem in about 5 minutes.

4.2 Boolean Algebra Basis

This example is on Veroff’s 2-basis for Boolean algebra in terms of the Sheffer
stroke [13].1 Consider the following equations, where f is the Sheffer stroke.

f(x, y) = f(y, x) (C)
f(f(x, y), f(x, f(y, z))) = x (V)
f(f(f(y, y), x), f(f(z, z), x)) = f(f(x, f(y, z)), f(x, f(y, z))) (S)

1 The Sheffer stroke, which can be interpreted as the not-and or NAND operation, is
sufficient to represent Boolean algebra.
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The pair C,V is a basis for Boolean algebra, and S is a member of Sheffer’s origi-
nal basis. The theorem for this example is C,V ⇒ S. This statement does not have
the form theory, hypotheses ⇒ conclusion for any nontrivial and well-understood
theory, and it is not so obvious where to look for a guiding interpretation.

When faced with the conjecture, we know that the goal is to prove a property
of Boolean algebra. We use an interpretation that is close to, but not, a Boolean
algebra. Consider the chain of varieties ortholattices (OL), orthomodular lattices
(OML), modular ortholattices (MOL), Boolean algebras (BA). (See [7] for Sheffer
stroke as well as standard bases for these varieties.) Mace4 can be used to find
the smallest MOL that is not a BA. It has size 6, and there is exactly one of size
6. With that interpretation as a guide, Prover9 proved the theorem in about 4
minutes. A similar search without semantic guidance produced a proof in about
6.5 minutes. Waldmeister took about 8 minutes to prove the theorem.

4.3 Modular Ortholattice Single Axiom

The two theorems in this section are on a single axiom for modular ortholattices
in terms of the Sheffer stroke [7]. The second theorem is quite difficult; it was
first proved by Veroff using the proof sketches method [12], and it was first
proved automatically (given a helpful interpretation) with the semantic guidance
described here. Consider the following equations, all in terms of the Sheffer
stroke.

f(f(y, x), f(f(f(x, x), z), f(f(f(f(f(x, y), z), z), x), f(x, u)))) = x (MOL)
f(x, f(f(y, z), f(y, z))) = f(y, f(f(x, z), f(x, z))) (A)
f(x, f(y, f(x, f(z, z)))) = f(x, f(z, f(x, f(y, y)))) (M)

The equation MOL is a single axiom for modular ortholattices, A is an asso-
ciativity property, and M is a modularity property. The two theorems in focus
are MOL ⇒ A and MOL ⇒ M. Neither suggests an obvious interpretation for
guidance.

In the rest of this section, the term associative refers to the operations meet
and join when defined in terms of the Sheffer stroke. As in the preceding example,
we considered the chain of varieties OL–OML–MOL–BA.

For the first theorem (the associativity property), we chose the smallest nonas-
sociative interpretation that satisfies several MOL (modular ortholattice) prop-
erties; it has size 8. With that interpretation as guidance, Prover9 proved the
theorem in about 8.5 minutes. Without semantic guidance, Prover9 took about
the same amount of time to prove the theorem, but required a much larger
search, generating 57% more clauses. Waldmeister did not find a proof of the
theorem within the time limit of 4 hours.

For the second theorem (the modularity property), we chose the smallest
nonmodular orthomodular lattice, which has size 10. The motivation for this
choice is similar to that for the Boolean Algebra 2-basis example, that is, to
use an interpretation that is very close to, but not, an algebra in the variety
corresponding to the goal of the conjecture. With the interpretation as guidance,



Semantic Guidance for Saturation Provers 23

Prover9 proved the theorem in about 3.8 hours. Without semantic guidance,
Prover9 failed to prove the theorem within 6 hours. Waldmeister proved the
theorem in about 3.3 hours.

5 Remarks

The Mace4 jobs that find the interpretations and the Prover9 jobs that find the
proofs for the examples can be found on the Web at the following location.

http://www.mcs.anl.gov/~mccune/papers/semantic-strategy/

When Prover9 selects a given clause, it is printed to the output file, including
any false marks. The false marks are shown as well in any proofs that are printed.
These notations help the user to analyse the effects of semantic guidance.

The output files on the Web show the following.

– The false clauses that are selected as given clauses are, for the most part,
heavier than the true clauses. When the false clauses are the same weight
as the true clauses, the false clauses have much higher ID numbers. Both of
these properties indicate that the false clauses would not be selected so soon
without semantic guidance.

– Most of the proofs have a preponderance of false clauses, especially near
the ends of the proofs. The true clauses do, however, play very important
roles as lemmas of the theory, suggesting that semantic restriction strategies
that eliminate many true clauses may be less useful than semantic guidance
strategies.

Comparisons of the Prover9 jobs with and without semantic guidance indicate
that semantic guidance may be more helpful in examples where the interpreta-
tions are more obvious or are more carefully chosen. The lattice theory example,
which immediately suggests a lattice interpretation falsifying the hypothesis,
shows a great improvement. The Boolean Algebra 2-basis and the MOL modu-
larity examples, in which the interpretation is close to the theory corresponding
to the goal, show a substantial improvement. The MOL associativity example,
which uses a rather ad hoc interpretation which was not carefully chosen, shows
only a small improvement.

Future work includes more experimentation with various interpretations, ex-
perimentation on non-equational and non-Horn problems, and automating the
selection of effective interpretations for semantic guidance.
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