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Foreword

AISC 2006, the 8th International Conference on Artificial Intelligence and Sym-
bolic Computation, was held on the campus of Beihang University, China, in the
golden autumn of 2006. On behalf of the Organizing Committee and Beihang
University, I had the pleasure to welcome the participants of this conference. The
AISC series of specialized biennial conferences was founded in 1992 by Jacques
Calmet and John Campbell with initial title “Artificial Intelligence and Sym-
bolic Mathematical Computing” (AISMC) and the previous seven conferences
in this series were held in Karlsruhe (AISMC-1, 1992), Cambridge (AISMC-2,
1994), Steyr (AISMC-3, 1996), Plattsburgh, NY (AISC 1998), Madrid (AISC
2000), Marseille (AISC 2002), and Hagenberg, Austria (AISC 2004).

Artificial intelligence and symbolic computation are two views and approaches
for automating (mathematical) problem solving. They are based on heuristics
and mathematical algorithmics, respectively, and each of them can be applied
to the other. The AISC series of conferences has not only provided a lively
forum for researchers to exchange ideas and views and to present work and
new findings, but has also stimulated the development of theoretical insights
and results, practical methods and algorithms, and advanced tools of software
technology and system design in the interaction of the two fields and research
communities, meanwhile leading to a broad spectrum of applications by the
combined problem solving power of the two fields.

The success of the AISC series has benefited from the contributions of many
people over the last decade. For AISC 2006, the Program Committee and, in
particular, its Chair Tetsuo Ida deserve special credits: it is their expertise and
tireless effort that made an excellent scientific program. I am most grateful to the
four distinguished invited speakers, Arjeh M. Cohen, Heisuke Hironaka, William
McCune, and Wen-tsün Wu, whose participation and speeches definitely helped
make AISC 2006 a unique and high-level scientific event. The AISC 2006 General
Chair, Dongming Wang, and Local Arrangements Chair, Shilong Ma, together
with their organization team made considerable effort on many aspects to ensure
the conference was successful. I would like to thank all the above-mentioned in-
dividuals, other Organizing Committee Members, referees, authors, participants,
our staff members and students, and all those who have contributed to the or-
ganization and success of AISC 2006.

September 2006 Wei Li
Honorary Chair

AISC 2006
President of Beihang University



Preface

This volume contains invited presentations and contributed papers accepted for
AISC 2006, the 8th International Conference on Artificial Intelligence and Sym-
bolic Computation held during September 20–22, 2006 in Beijing, China. The
conference took place on the campus of Beihang University and was organized
by the School of Science and the School of Computer Science and Engineering,
Beihang University.

In the AISC 2006 call for papers, original research contributions in the fields
of artificial intelligence (AI) and symbolic computation (SC), and in particular
in the fields where AI and SC interact were solicited. In response to the call, 39
papers were submitted. This volume contains 18 contributed papers, selected by
the Program Committee on the basis of their relevance to the themes of AISC
and the quality of the research expounded in the papers. The program of the
conference featured 5 invited talks, out of which 4 presentations are included in
the proceedings.

The papers in this volume cover a broad spectrum of AI and SC. The papers
may be characterized by key words such as theorem proving, constraint solv-
ing/satisfaction, term rewriting, deductive system, operator calculus, quantifier
elimination, triangular set, and mathematical knowledge management. Despite
the breadth of the papers, we can observe their mathematical aspect in common.

For 15 years since the conception of AISMC (AI and Symbolic Mathematical
Computing), changed to AISC in 1998, the mathematical aspect has remained as
the common profile of the conferences. We see challenges as the problems that we
face become more complex with the rapid development of computer technologies
and the transformation of our society to an e-society. Such problems are tackled
by using mathematical tools and concepts, which become highly sophisticated.
The interaction of AI and SC bound by mathematics will become more relevant
in problem solving. We hope that this unique feature of the conference will
remain and gather momentum for further expansion of AISC.

Wewould like to express our thanks to theProgramCommitteemembers andex-
ternal reviewers for their efforts inrealizingthishigh-qualityconference.Ourthanks
arealsodue toWeiLi,PresidentofBeihangUniversity, andtheLocalArrangements
Committee chaired by Shilong Ma for making the conference such a success.

We acknowledge the support of EasyChair for administering paper submis-
sions, paper reviews and the production of the proceedings. With its support,
the whole preparation process for the AISC 2006 program and proceedings was
streamlined.

September 2006 Jacques Calmet
Tetsuo Ida

Dongming Wang



Organization

AISC 2006, the 8th International Conference on Artificial Intelligence and Sym-
bolic Computation, was held at Beihang University, Beijing, September 20–22,
2006. The School of Science and the School of Computer Science and Engi-
neering, Beihang University were responsible for the organization and local ar-
rangements of the conference. AISC 2006 was also sponsored by the State Key
Laboratory of Software Development Environment and the Key Laboratory of
Mathematics, Informatics and Behavioral Semantics of the Ministry of Educa-
tion of China.

Conference Direction

Honorary Chair Wei Li (Beihang University, China)
General Chair Dongming Wang (Beihang University, China

and UPMC–CNRS, France)
Program Chair Tetsuo Ida (University of Tsukuba, Japan)
Local Chair Shilong Ma (Beihang University, China)

Program Committee

Luigia Carlucci Aiello (Università di Roma “La Sapienza,” Italy)
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Interactive Mathematical Documents

Arjeh M. Cohen

Technische Universiteit Eindhoven
a.m.cohen@tue.nl

http://www.win.tue.nl/~amc/

Abstract. Being so well structured, mathematics lends itself well to
interesting interactive presentation. Now that computer algebra pack-
ages have come of age, their integration into documents presenting the
mathematics as natural as possible is a new challenge.

XML techniques enable us to record mathematics in a Bourbaki like
structure and to present it in a natural fashion. In this vein, at the Tech-
nische Universiteit Eindhoven, we have built a software environment,
called MathDox, for playing, creating, and editing interactive mathe-
matical documents. Computer algebra systems function as services to be
called by the document player. Specific applications are

– the build-up of context, providing information about the variables
and notions involved in the document;

– a package providing an argument why two given graphs are isomor-
phic or —the more interesting case— non-isomorphic;

– an exercise repository from which exercises can be played in various
natural languages (generated from the same source).

Parts of the work have been carried out within European projects like
LeActiveMath, MONET, OpenMATH, and WebALT.

J. Calmet, T. Ida, and D. Wang (Eds.): AISC 2006, LNAI 4120, p. 1, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Algebra and Geometry
Interaction Between “Equations” and “Shapes”

Heisuke Hironaka

Japan Association for Mathematical Sciences, Coop Olympia 506, Jingumae 6-35-3,
Shibuya-ku, Tokyo 150-0001, Japan

as6h-hrnk@asahi-net.or.jp

Abstract. It is an elementary fact, even known to high schoolers, that
there are two different ways of showing “shapes”, the one by photography
and the other by drawing. Mathematically, they correspond to the one by
giving equations which showalgebraic relations among coordinates and the
other by using parameters, of which coordinates are expressed as functions.
Think of a circle of radius one, on one hand expressed by an equation x2 +
y2 = 1 and on the other by x = cos t, y = sin t with a parameter t, 0 ≤ t ≤
2π. As is well known, if the equation is cubic with no singularity, then we
have a parametric presentation using elliptic functions.

The correspondence between equational presentation and parametric
presentation becomes complex but interesting in the case of many vari-
ables and presence of singularities. I will present how the correspondence
can be processed in general.

Theoretically there are two technical approaches.

1. Newton Polygons and Toroidal Geometry
For a plane curve defined by f(x, y) = 0, which is for simplicity as-
sumed to have only one local branch of multiplicity m at the origin,
we choose a suitable coordinate system and look at the Newton poly-
gon which is one segment of slope −1/δ. (The coordinate is chosen
to make δ the biggest possible.) Then we get a graded R[x, y]-algebra

℘(f) =
∞∑

i=1

{xiyj | j + i/δ ≥ k/m}R[x, y]T k

where T is a dummy variable whose exponent indicates the degree
of homogeneous part of the graded algebra. It is toroidal. I will
show that this algebra can be generalized with meaningful geometric
properties to all the cases of many variables. Thus the technique of
toroidal geometry is applicable.

2. Ideals and Tropical Geometry
Think of an expression of ratio J

b
where the numerator J is an ideal (or

system of equations) and the denominator b is a positive integer. The
first equivalence is Jk

kb
= J

b
for all positive integers k. We introduce

more geometrically meaningful equivalence and discuss natural oper-
ations on it in connection with the language of the tropical geometry.

J. Calmet, T. Ida, and D. Wang (Eds.): AISC 2006, LNAI 4120, p. 2, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



An Inductive Inference System and Its
Rationality

Wei Li

State Key Laboratory of Software Development Environment
Beihang University, Beijing 100083, P.R. China

liwei@nlsde.buaa.edu.cn

Abstract. An inductive inference system I is introduced to discover
new laws about the generality of the theory for a given model describing
knowledge of a specific domain. The system I is defined in the first or-
der language and consists of the universal inductive rule, the refutation
revision rule and the basic sentence expansion rule. A rule of I can be
applied to a theory and a given instance depending on their logical rela-
tion, and generates a new version of the theory. When the instances are
taken one after another, a version sequence will be generated. The ratio-
nality of the system I is demonstrated by the following three properties
of the generated version sequence: the convergency, commutativity, and
independency. The rationality of the system I is formally proved by con-
structing a procedure GUINA which generates such version sequences.

Keywords: Belief, induction, refutation, inference, rationality.

1 Motivation

Inductive reasonings are the most frequently invoked and most effective means
to discover new laws in scientific investigations. The purpose of this paper is to
construct formally an inductive inference system I in the first order language, to
present formally the rationality of the inductive inference systems, and to prove
that the system introduced is rational. In order to achieve this goal, we begin
by pointing out the main characteristics of inductive inference.

Inductive inference is a kind of mechanism to discover the new laws or propose
new conjecture from individuals, and it is used in the evolutionary process of
forming a theory of knowledge for a specific domain. Using the terminology
of the first order language, inductive inference is used to find those sentences
containing quantifier ∀ which are true for a given model M.

The basic idea of inductive inference was given by Aristotle about 2000 years
ago. In the chapter “Nous” of his masterpiece “Organon”, he wrote “The induc-
tion is a passage from individual instances to generalities” [1]. In the first order
language, it could be described by the following rule:

P (c) =⇒ ∀xP (x)

J. Calmet, T. Ida, and D. Wang (Eds.): AISC 2006, LNAI 4120, pp. 3–17, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



4 W. Li

where c is a constant symbol, P (c) denotes an individual instance, ∀xP (x) de-
notes a general law (generalities) called inductive conclusion, and =⇒ denotes
inductive inference relation (passage).

It is obvious that the above inductive conclusion P (x) is just a conjecture
about generality, or a belief [2] about generality, and the rule does not have the
soundness as the deductive inference usually does. For example, let Johnson be
a constant symbol and W (x) be a unary predicate which is interpreted as “x is
a white swan”. An application of the above rule could be

W [Johnson] =⇒ ∀xW (x).

It means that from the instance “Johnson is a white swan”, we induce a universal
proposition “every swan is white”. It is obvious that the inductive conclusion is
not true because there exists some swans which are not white.

Thus, the truth of an inductive conclusion of the above rule depends on
whether there is a counterexample, or say, whether it is refuted by some facts.
If it is refuted, then it is false; however if an inductive conclusion has never
met a refutation, then it will be accepted. Therefore, we need to verify each
inductive conclusion in a model (in the first order sense) which describes
some knowledge in a specific domain. By all means, inductions and refuta-
tions are two indispensable parts of inductive inferences that supplement each
other, and an inductive inference systems must contain a rule for refutation
revision.

Let us use Γ to denote our initial theory, or a set of beliefs. After each appli-
cation of the inductive inference rule, the following two cases would arise. For
the first case, we obtain a new law for generality. Namely, Γ will be expanded,
or a new version will be generalized. For the second case, a universal belief of Γ
encounters a refutation by facts. Namely, Γ should be removed, and a revised
version is generated.

After inductive inference rules and refutation revision rules are alternately
invoked, a sequence of versions of the set of beliefs Γ is generated as
follows:

Γ1, Γ2, . . . , Γn, . . .

where Γn denotes the n-th version of Γ .
The above versions in the sequence describe the evolution of the versions of the

set of beliefs Γ by applying inductive inference rules. From the view point of the
version sequence, the key point of rationality of an inductive inference system
should be as follows: For any given model describing knowledge of a specific
domain, there exists a version sequence starting from an initial belief (conjecture)
and every version is generated by applying the rules of this inductive inference
system, such that the version sequence is convergent and the interpretation of
its limit containing all of the laws about generalities of the knowledge of that
specific domain.

In this paper, we will formalize the evolution of knowledge as outlined above
in the terminology of the first order language.
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2 A Formal Language of Beliefs

In order to avoid the syntactical details, in this paper, the first order language is
chosen to be a formal language to describe sets of beliefs (or knowledge bases) [3].
Briefly, a first order language L has two sets of symbol strings. They are the set
of terms and the set of beliefs. The terms are used to describe the constants
and functions used in knowledge bases. The set of terms are defined inductively
on the set of variable symbols V : {x, y, z, . . .}, the set of function symbols
F : {f, g, h, . . .}, and the set of constants symbols C : {a, b, c, . . .} using the
following BNF like definition:

t ::= c | x | f(t1, t2, . . . , tn).

where t1, t2, . . ., tn are terms.
The beliefs of L are used to describe laws, rules, principles or axioms in the

knowledge bases. The beliefs of L are represented by ϕ, χ, ψ, and are defined
on the set of predicate symbols P : {P,Q,R, . . .}, quality symbol .=, the set of
logical connective symbols including: ¬, ∧, ∨, ⊃, and the set of the quantifiers
∀ and ∃. The set of beliefs L is defined inductively as follows:

ϕ ::= t1
.= t2 | P (t1, t2, · · · , tn) | ¬ψ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ ⊃ ψ | ∀xϕ | ∃xϕ.

A belief is called closed belief if there occurs no free variable. A belief is called
atomic if it is a closed predicate.

In this paper, the concept of consistency of the first order language are em-
ployed for the set of beliefs [3].

Definition 1 (Base of belief set). A finite consistent set Γ of the beliefs is
called a base of belief set, or called a base for short. The beliefs contained in Γ
are called the laws of the base.

A model M is a pair 〈M, I〉, where M is called the domain of M, which is a
nonempty set; I is called the interpretation of M, which is a mapping from L to
M . The form M |= ϕ means that for the given domain M and the interpretation
I, ϕ is true in M . M |= Γ mean that for every ϕ ∈ Γ , M |= ϕ.

Finally, ϕ is called a logical consequence of Γ and is written as Γ |= ϕ, if and
only if for every M, if M |= Γ holds, then M |= ϕ holds.

The individual instances and counterexamples are described by the predicates
or negation of predicates of L without free variables defined formally as below.

Definition 2 (Herbrand universe). Let L be a first order language. The set
H of terms in L is defined as follows:

1. If c is a constant symbol, then c ∈ H.
2. If f is an n-ary function symbol and terms t1, . . ., tn ∈ H, then f(t1, · · · , tn) ∈

H as well.

H is called Herbrand universe or term universe of L, and elements in H are
called Herbrand terms or basic terms.
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Definition 3 (Complete set of basic sentences for model M). Let M be
a model of L, and H be Herbrand universe of L. Let

Ω0 = {ϕ | ϕ is a constant predicate P and P is true under M, or ϕ is ¬P
P is a constant predicate and ¬P is true under M},

Ωn+1 = Ωn ∪ {ϕ[t1, . . . , tn] | tj ∈ H, ϕ is P [t1, . . . , tn] and P [t1, . . . , tn]
is true under M, or ϕ[t1, . . . , tn] is ¬P [t1, . . . , tn] and ¬P [t1, . . . , tn]
is true under M},

ΩM =
⋃∞

i=1 Ωi.

ΩM is called a complete set of basic sentences in L for model M.

ΩM is countable, and it is also called a complete sequence of base sentences
for model M of L. It is interpreted as the set of all positive examples and
counterexamples.

A Gentzen style logical inference system G is used in this paper, which is a
modified version of the inference system given in [3]. It is used for the formal
deductive reasoning of the beliefs. The system G is built on sequent. A sequent
is formed as Γ � Δ, where Γ and Δ could be any finite sets of beliefs, Γ is
called antecedent of the sequent and Δ is called succedent of the sequent, and �
denotes the deductive relation [3, 5]. The system G consists of axioms, the rules
for logical connectives and the rules for quantifiers [3, 5].

Cn(Γ ) is the set of all logical consequences of the base of belief set Γ .
Th(M) is the set of all sentences of L which are true in M.
Finally, it should be assumed that two beliefs α and β are treated as the same

belief if and only if α ≡ β, that is (α ⊃ β) ∧ (β ⊃ α), is a tautology.

3 Refutation by Facts

As mentioned in the first section, a law for generality of a base of a belief set
would be rejected by a counterexample which contradicts this law. This phe-
nomenon can be defined in a model-theoretic way as below [4].

Definition 4 (Refutation by facts). Let Γ be a base and Γ |= ϕ. A model
M is called a refutation by facts of ϕ if and only if M |= ¬ϕ holds. Let

ΓM(ϕ) := {ψ | ψ ∈ Γ, M |= ψ and M |= ¬ϕ}.

M is further called an ideal refutation by facts of ϕ if and only if ΓM(ϕ) is
maximal in the sense that there does not exist another refutation by facts M′ of
ϕ, such that ΓM(ϕ) ⊂ ΓM ′(ϕ).

The above definition describes the following situation that Γ � ϕ holds, but we
have found a counterexample M that makes ¬ϕ true. ΓM(ϕ) is a subset of Γ
which does not contradict ¬ϕ. The refutation by facts meets the intuition that
whether a base is accepted, depends only on whether its logical consequences
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agree with the facts. The ideal refutation by facts meets the Occam’s razor,
which says: Entities are not to be multiplied beyond necessity [6]. Here, it means
that if a logical consequence ϕ deduced from a base Γ is rejected by facts or
counterexamples, then the maximal subsets of the base which are consistent
with ¬ϕ must be retained and are assumed to be true in the current stage of
the developing process of the base, but the rest of laws contained in the base Γ
must be removed because they lead to the refutation by facts.

In the rest of the paper, we consider ideal refutation by facts only, and simply
call them refutation by facts. Sometimes, we say that ¬ϕ is a refutation by facts
of Γ . It means that Γ � ϕ holds and that there is an ideal refutation by facts
M which satisfies M |= ¬ϕ.

Definition 5 (Maximal contraction). Let Γ � ϕ and Λ ⊂ Γ . Λ is called a
maximal contraction of Γ by ¬ϕ if it is a maximal subset of Γ and is consistent
with ¬ϕ.

Lemma 1. If Γ � ϕ holds and Λ is a maximal contraction of Γ by ¬ϕ, then
there exists a maximal refutation by facts M of ϕ and M |= Λ holds, and for
any χ, if χ ∈ Γ − Λ, then M |= ¬χ holds.

Proof. The proof is immediate from Definitions 4 and 5. �
The maximal contraction given here is a proof-theoretic concepts, and can be
viewed as a special kind, but most useful contraction given by AGM in [1]. The
refutation by facts is a corresponding model-theoretic concept of the maximal
contractions.

4 Inductive Inference System I

This section will introduce the inductive inference system I including the uni-
versal inductive rule, the refutation revision rule and the instance expansion
rule. For simplicity, in this paper we prescribe that the language L only contains
unary predicates.

The key to construct an inductive inference rule is to describe “the passage
from individual instances to generalities” formally. In this paper, we use the
following fraction to represent inductive inference:

condition(Γ, P [t], ΩM)
Γ =⇒ Γ ′ .

where P is an unary predicate. P [t/x] denote that term t is used to substitute
free variable x occurring in P [3]. If t does not contain free variables, then P [t/x]
can be written as P [t] [3]. Here since t ∈ ΩM, t does not contain any free variable.

The bases Γ and Γ ′ in the denominator of the fraction are the versions before
and after applying inductive inference rules respectively. The condition(Γ , P [t],
ΩM) in the numerator of the fraction represents the relations between the current
version Γ and the basic sentence P [t] ∈ ΩM. The fraction can be interpreted as:
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if condition(Γ, P [t], ΩM) holds, then a new version Γ ′ should be induced from
the version Γ . The role of condition(Γ, P [t], ΩM) is to make the new version Γ ′

generated after the induction not only consistent with itself but also consistent
with the current version Γ .

Definition 6 (Preempt consistent relation). Let Γ be a base, P [t] and
¬P [t′] be basic sentences, t, t′ ∈ H be basic terms. Let P [t] and Γ be consis-
tent. If there does not exist a basic term t′ ∈ H such that ¬P [t′] ∈ Γ , then P [t]
is preemptly consistent with Γ and is denoted as P [t] �� Γ ; otherwise, P [t] is not
preemptly consistent with Γ and is denoted as P [t] ��� Γ .

Lemma 2. If the current version Γ is finite, then the preempt consistency be-
tween the basic sentence P [t] and Γ is decidable.

Proof. Because P [t] is an atomic sentence or the negation of an atomic sentence
and Γ is finite, the consistency of Γ and P [t] is decidable. �
In the next step, we examine whether Γ contains atomic sentences in a form like
¬P [t′], which is also decidable. Having defined the preempt relation between
the current version and basic sentence, we now introduce the inductive inference
system I. In the following rules, we suppose that M is a model describing the
knowledge for specific domains, and P [t] ∈ ΩM is a basic sentence.

Definition 7 (Universal inductive rule)

P [t] �� Γ
Γ =⇒i ∀xP (x), Γ, P [t]

.

The universal inductive rule is a formal rule that induces universal sentences from
individual basic sentences. This rule shows the following: under the assumption
that the current version is Γ and P [t] is a basic sentence, if P [t] and Γ are
preempt consistent, i.e., there does not exist another basic term t′ such that
¬P [t′] ∈ Γ holds, then we can induce a universal sentence ∀xP (x) from P [t]. The
new version generated after the induction is {∀xP (x), Γ, P [t]}. The subscript i of
=⇒i in the denominator of the rule represents that this inference is a universal
inductive inference.

It is not difficult for readers to find that the universal inductive inference rule
can not retain the soundness of inferences. Therefore the following refutation
revision rule is indispensable as a supplement to correct errors in case that they
happen. The refutation revision rule has the following form:

Definition 8 (Refutation revision rule)

Γ � ¬P [t]
Γ =⇒r R(Γ, P [t])

.

This rule shows that when the formal conclusion ¬P [t] of the current version Γ
meets the refutation of the basic sentence P [t], the refutation revision rule should
be applied to generate a new version R(Γ, P [t]), which is a maximal contraction
of Γ with respect to P [t]. The subscript r of =⇒r in the denominator of the rule
denotes its difference from the inductive inference =⇒i.
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Definition 9 (Basic sentence expansion rule)

P [t] ��� Γ
Γ =⇒e P [t], Γ

.

This rule shows that the current version Γ is not preempt consistent with the
basic sentence P [t], i.e., there exists another basic sentence ¬P [t′] ∈ Γ . Thus
we have to accept P [t] as a new axiom of Γ but we cannot use the universal
inductive rule to induce ∀xP (x). Thus the new version is P [t], Γ . The subscript
e of =⇒e represents the basic sentence expansion inference.

The universal induction, refutation and basic sentence expansion are all basic
ingredients of evolutions of the base. Without causing confusions in the context,
this paper uses =⇒ to represent the inductive, refutation and basic sentence
expansion inferences, all of which are evolutionary relations.

5 Sequence of Bases

Definition 10 (Sequence of bases). If for every natural number n > 0, Γn

is a base, then
Γ1, Γ2, . . . , Γn, . . .

is a sequence of bases, or sequence for short, and is written as {Γn}.
If for every natural number n > 0, Γn ⊆ Γn+1 (or Γn ⊇ Γn+1), the sequence

is a monotonically increasing (or decreasing) sequence.
A sequence {Γn} is called a version sequence, if for any given n > 0, Γn+1

is obtained by applying a rule of the system I for a belief ϕn ∈ ΩM of a given
model M.

The definition of limit of sequences introduced in [5] is given below.

Definition 11 (Limit of sequence). Let {Γn} is a sequence of base. The set
of beliefs

{Γn}∗ =
∞⋂

n=1

∞⋃
m=n

Γm

is called the upper limit of {Γn}. The set of beliefs

{Γn}∗ =
∞⋃

n=1

∞⋂
m=n

Γm

is called lower limit of {Γn}.
If the set of beliefs {Γn}∗ is consistent, and {Γn}∗ = {Γn}∗ holds, the sequence

{Γn} is convergent, and its limit is its upper (lower) limit, and written as

lim
n→∞Γn.
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From the definition, it is easy to see that ϕ ∈ {Γn}∗ holds, if and only if there
exists a countable natural numbers sequence {kn} such that ϕ ∈ Γkn holds;
ϕ ∈ {Γn}∗ holds, if and only if there exists natural number N > 0 such that if
m > N , ϕ ∈ Γm holds.

Lemma 3. {Cn(Γn)}∗ = Cn({Cn(Γn)}∗).

Proof. We need to prove that Cn({Cn(Γn)}∗) ⊆ {Cn(Γn)}∗ holds. Let ϕ ∈
Cn({Cn(Γn)}∗) such that {Cn(Γn)}∗ � ϕ holds. According to the compactness
of first order languages, there exists a finite set of beliefs {ϕn1 , . . . , ϕnk

} ⊆
{Cn(Γn)}∗, and {ϕn1 , . . . , ϕnk

} � ϕ is provable. Thus, there exists N > 0, such
that if n > N holds, ϕni ∈ Cn(Γn), where i = 1, . . ., k, holds. This proves that
for every n > N , Cn(Γn) � ϕ holds. Thus, ϕ ∈ {Cn(Γn)}∗ is proved. �

6 Procedure GUINA

In the rest of the paper, we will discuss the rationality of the inductive inference
system I. The purpose of the inductive inferences is to gradually induce all the
true propositions of M, which is realized through examining individual instances
of ΩM and modifying the current version of a base by adding new beliefs or
deleting wrong ones. In this way, a version sequence is eventually generated and
the rationality of inductive inferences is naturally described by the following
three properties of the generated version sequence.

Definition 12 (Convergency, Cn-Commutativity and Independency).
Let M be a model and {Γn} be a version sequence generated by the system I for
ΩM.

1. {Γn} is M-convergent, if {Γn} is convergent and

lim
n→∞Cn(Γn) = Th(M).

2. {Γn} is Cn-commute, if

lim
n→∞Cn(Γn) = Cn( lim

n→∞Γn).

3. {Γn} keeps independency, if every Γn is independent and {Γn} is convergent
then limn→∞ Γn is independent.

In order to generate a version sequence satisfying the above three properties, we
need to design a procedure that starts from a given initial conjecture and inputs
all elements of ΩM. For each element of ΩM, the procedure applies appropriate
inductive inference rules to generate a new version. All these new versions form
a version sequence. If this sequence satisfies the above three properties, then the
inductive inference system I is rational. In this section we show such a procedure
can be constructed and we call it GUINA which is a revised version given in [7].
Its basic design strategy is as follows.
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The body of procedure GUINA is mainly a loop which calls the sub-procedure
GUINA∗. In each call of GUINA∗, the current version Γn and basic instance Pn[t]
in ΩM are the inputs. A new version Γn+1 will be output corresponding to the
following cases:

1. Γn � Pn[t] is provable. The input basic sentence is a logical conclusion of
the current version Γn. In this case it is unnecessary to use the inductive
rules. The output of GUINA∗ is Γn+1 := Γn, Θn+1 := {Pn[t]} ∪ Θn and
Δn+1 := Δn.

2. Γn � ¬Pn[t] is provable. Since Pn[t] belongs to ΩM, it must be accepted. This
shows that the logical conclusion ¬Pn[t] of Γn meets a refutation by Pn[t].
In this case, the refutation revision rule should be applied. The new version
Γn+1 is constructed in two steps. In the first step, the union of a maximal
contraction of Γn containing Δn and {Pn[t]} is formed. In the second step,
every element of Δn and Θn is checked. If it is not a logical consequence
then it is added to Γn+1, otherwise it is left off.

3. Neither Γn � Pn[t] nor Γn � ¬Pn[t] is provable. There are two cases:
(a) Pn[t] ��� Γn holds. This shows that Pn[t] must be accepted, but for some

t′, ¬P [t′] already exists in Γn. Under such circumstances, only the basic
sentence expansion rule can be applied. Thus Γn+1 := {Pn[t]} ∪ Γn,
Δn+1 := {Pn[t]} ∪Δn and Θn+1 := Θn.

(b) Pn[t] �� Γn holds. This shows that Pn[t] must be accepted, but for any
t′, ¬P [t′] does not exist in Γn. In this case, the universal inductive rule
should be applied. Γn+1 := {∀xPn(x)} ∪ Γn, Δn+1 := {Pn[t]} ∪Δn and
Θn+1 := Θn.

The procedure GUINA can be specified formally as below.

Definition 13 (GUINA). Let M be a model of knowledge for some specific
domains whose complete sets of basic sentences ΩM is {Pi[t]}.

procedure GUINA(Γ : theory; {Pn[t]}: a sequence of base-sentences);
Γn: theory;
Θn, Θn+1: theory;
Δn, Δn+1: theory;

procedure GUINA∗(Γn: theory; Pn[t]: base-sentence; var Γn+1: theory);
begin

if Γn � Pn[t] then
begin

Γn+1 := Γn;
Θn+1 := Θn ∪ {Pn[t]};
Δn+1 := Δn

end
else if Γn � ¬Pn[t] then

begin
Γn+1 := {Pn[t]} ∪ R(Γn, Pn[t]);
loop for every ψi ∈ Δn ∪ Θn

if Γn+1 � ψi then skip
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else Γn+1 := Γn+1 ∪ {ψi}
end loop
Θn+1 := Θn;
Δn+1 := Δn

end
else if Pn[t] �	
 Γn then

begin
Γn+1 := Γn ∪ {Pn[t]};
Θn+1 := Θn;
Δn+1 := Δn

end
else

begin
Γn+1 := Γn ∪ {∀xP (x)};
Θn+1 := Θn;
Δn+1 := Δn ∪ {Pn[t]}

end
end

begin
Γn := Γ ;
Θn := ∅; Θn+1 := ∅;
Δn := ∅; Δn+1 := ∅;
loop

GUINA∗(Γn, Pn[t], Γn+1);
print Γn+1

end loop
end

The R(Γn, Pn[t]) in the procedure is a maximal contraction of Γn with respect
to Pn[t].

In GUINA, Δ is a buffer. It is used to store the basic sentences serving as
new axioms before the n-th version. The role of Δ is to ensure that all new
axioms accepted should be added to the selected maximal contraction when the
refutation revision rule is applied.

Θ is also a buffer. It is used to store the inputted basic sentence Pm which
is a logical consequece of version Γm, m < n during the formations of the first
n versions. The role of Θ is to ensure that all basic sentences are not lost when
the refutation revision rule is applied. In addition, the initial states of Δ and Θ
are ∅.

Lemma 4. If the initial base input of GUINA is an empty base, then the con-
ditions Γn � Pn[t] and Pn[t] �� Γn occurring in GUINA are both decidable.

Proof. The proof is omitted. �
It should be metioned that if the initial base of GUINA is a finite base of beliefs,
then the conditions such as Γn � Pn[t] and Pn[t] �� Γn occurring in if and while
statements may not be decidable. Thus the procedure GUINA will not be a
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procedure defined in a programming language such as C or Pascal, it should be
called procedure scheme.

7 Convergency

In this section we prove that the output version sequence of GUINA is convergent.

Theorem 1 (Convergency). Let M be a model of L and Γ be a base of L.
{Γn} is the output sequence of GUINA by taking a complete sequence of basic
sentences ΩM and initial base Γ as inputs, then sequence {Cn(Γn)} is convergent
and

lim
n→∞Cn(Γn) = Th(M)

holds.

Proof. In what follows we prove this theorem in two steps:

1. We first prove that Th(M) ⊆ {Cn(Γn)}∗ holds. It suffices to prove that for
any belief ϕ, if ϕ ∈ Th(M), then ϕ ∈ {Cn(Γn)}∗. We prove by induction on
the structure of ϕ:
(a) ϕ is an atomic belief. Since ϕ ∈ Th(M), ϕ ∈ ΩM. Let ϕ = PN . By

the definition of GUINA, we know that PN is a logical consequence, a
new instance or a refutation by facts of ΓN . But in whichever cases,
we always have PN ∈ Cn(ΓN+1) holds. According to the designs of the
buffer sets Δ and Θ, we know that when n > N , PN ∈ Cn(Γn). That is,
ϕ ∈ {Cn(Γn)}∗.

(b) ϕ is the negation of an atomic belief. It is a negative instance. We can
just assume that ϕ = ¬PN and ¬PN ∈ ΩM. By the definition of GUINA
and using the same proof as in (a), we know that ϕ ∈ {Cn(Γn)}∗.

(c) ϕ is α ∨ β. According to the meaning of ∨, we know that at least one
of α ∈ Th(M) and β ∈ Th(M) holds. Assume the first one holds. By
the induction hypothesis, we know that α ∈ {Cn(Γn)}∗. Then according
to the ∨ right rule of system G, we have α ∨ β ∈ Cn({Cn(Γn)}∗). By
Lemma 3, this is ϕ ∈ {Cn(Γn)}∗.

(d) Similarly we can prove the cases when ϕ is α ∧ β or α ⊃ β.
(e) ϕ is ∃xα(x) and ϕ ∈ Th(M). By the meaning of ∃, there exists a t ∈ H

such that α(t) ∈ Th(M) is true. By the induction hypothesis, α[t] ∈
{Cn(Γn)}∗ is true. Then according to the ∃ right rule of system G,
∃xα(x) ∈ Cn({Cn(Γn)}∗). By Lemma 3, that is ϕ ∈ {Cn(Γn)}∗.

(f) ϕ is ¬β and ϕ ∈ Th(M). Since the proof in the case of β being an atomic
belief has been given in (b), we can just assume that β is not an atomic
belief. Hence β can only be: ψ∧χ , ψ∨χ, ¬ψ, ψ ⊃ χ, ∀xψ and ∃xψ with
ψ and χ being beliefs. Thus ¬β can be listed by the following table:

β ψ ∧ χ ψ ∨ χ ¬ψ ψ ⊃ χ ∀xψ ∃xψ
¬β ¬ψ ∨ ¬χ ¬ψ ∧ ¬χ ψ ψ ∧ ¬χ ∃x¬ψ ∀x¬ψ
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By the method used in (b) to (e), we can prove that each item in the sec-
ond row of the proof table belongs to {Cn(Γn)}∗. Thus ϕ ∈ {Cn(Γn)}∗.

Thus we have proven Th(M) ⊆ {Cn(Γn)}∗.
2. Next we prove that {Cn(Γn)}∗ ⊆ Th(M) holds. Suppose there exists a

belief ϕ such that ϕ ∈ {Cn(Γn)}∗ and ϕ �∈ Th(M) both hold. Th(M) being
complete indicates that ¬ϕ ∈ Th(M). Since Th(M) ⊆ {Cn(Γn)}∗, there
must exists an N such that for m > N , ¬ϕ ∈ Cn(Γm). Furthermore, since
ϕ ∈ {Cn(Γn)}∗, there exist n1, . . . , nk, . . . such that ϕ ∈ Cn(Γnk

) holds
for any natural number k. Thus when nk > N , both ϕ and ¬ϕ belong to
Cn(Γnk

). This contradicts the consistency of Γnk
. Hence ϕ ∈ Th(M).

These two steps proved that {Cn(Γn)}∗ ⊆ Th(M) ⊆ {Cn(Γn)}∗ holds. Thus
{Cn(Γn)}∗ = {Cn(Γn)}∗ = Th(M) holds. The theorem is proved. �
Theorem 1 shows that for any given model M describing knowledge of specific
domains the GUINA procedure, starting from a given initial base, improves this
base by generating its new version through examining only one basic sentence of
ΩM each time. If this basic sentence is a logical conclusion of the current version,
then we regard it as an evidence of recognizing and accepting the current version;
if this basic sentence is a refutation by facts, then we need to revise the current
version and the new version generated should be a maximal contraction of the
original version plus all the basic sentences that were accepted previously but
were not logical consequence of the selected maximal contraction; if this basic
sentence is a new basic sentence for the current version, then we either use the
universal inductive rule to generalize this instance to a universal sentence or only
expand the version by adding this basic sentence. As long as all basic sentences
of ΩM are examined, the logical closure of the versions output by GUINA will
gradually approach all the true sentences of the model M as a whole. This
is the convergency of the inductive inference system I, and can be called the
convergency of the procedure GUINA.

8 Commutativity

This section will prove that the version sequence output by the GUINA proce-
dure possesses commutativity between the operator of limit and logical closure.

Theorem 2 (Commutativity). Let M be a model of L and Γ be a base of L.
If {Γn} is the output sequence of GUINA by taking a complete sequence of basic
sentences ΩM and initial base Γ as inputs, then

lim
n→∞Cn(Γn) = Cn( lim

n→∞Γn)

holds.

Proof. Since we have already proved by Theorem 1 that limn→∞Cn(Γn) =
Th(M) holds, it suffices to prove that

{Cn(Γn)}∗ ⊆ Cn({Γn}∗) ⊆ Cn({Γn}∗) ⊆ {Cn(Γn)}∗
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holds. In fact, this theorem can be proved in two steps, i.e., to prove that both
{Cn(Γn)}∗ ⊆ Cn({Γn}∗) and Cn({Γn}∗) ⊆ {Cn(Γn)}∗ hold.

1. We first prove that Cn({Γn}∗) ⊆ {Cn(Γn)}∗. For any ϕ ∈ Cn({Γn}∗),
{Γn}∗ � ϕ is provable. According to the compactness theorem of system G,
there exists a sequence

{ϕn1 , . . . , ϕnk
} ∈ {Γn}∗

such that
{ϕn1 , . . . , ϕnk

} � ϕ

is provable. By the definition of {Γn}∗, ϕni ∈ {Γn}∗, i = 1, . . . , k, which
shows that there exists a subsequence of Γn:

Γni1 , . . . , Γnij , . . . j is natural number.

ϕni is an element of Γnij in this sequence and thus is an element of Cn(Γnij ).
Hence ϕni ∈ {Cn(Γn)}∗, i.e.,

{ϕn1 , . . . , ϕnk
} ⊂ {Cn(Γn)}∗

holds. According to Theorem 1, {Cn(Γn)}∗ = Th(M). Thus {Cn(Γn)}∗ is
the logical closure. Hence

ϕ ∈ Cn(ϕn1 , . . . , ϕnk
) ⊂ {Cn(Γn)}∗.

2. Then we prove that {Cn(Γn)}∗ ⊆ Cn({Γn}∗). For any ϕ ∈ {Cn(Γn)}∗,
there exists a N > 0 such that for any n > N , ϕ ∈ Cn(Γn) holds. This is
for any n > N , Γn � ϕ is provable. Thus {Γn}∗ � ϕ is also provable, i.e.
ϕ ∈ Cn({Γn}∗) holds. Hence {Cn(Γn)}∗ ⊆ Cn({Γn}∗). �

This theorem shows that the logical closure of limn→∞ Γn equals to the limit of
Cn(Γn); therefore in any stage n > 0 of investigation, it is enough to consider
the finite base Γn.

9 Independency

If the initial base is an empty set, then we can prove that GUINA procedure
retains its independency.

Theorem 3 (Independency). Let M be a model of L and Γ be a base of L.
{Γn} is the output sequence of GUINA by taking a complete sequence of basic
sentences ΩM and initial base Γ as inputs. If Γ = ∅, then for any n > 0, Γn is
independent, and limn→∞ Γn is also independent.

Proof.The proof can be done in two steps.

I. Prove that for any n > 0, Γn is independent. Let ΩM be {P1, . . . , Pn, . . .}.
According to the condition given in the theorem, Γ1 = ∅. Suppose that Γn

is independent, By the definition of GUINA, there are only the following four
possible cases:
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1. Γn � Pn is provable. In this case Γn+1 = Γn. Thus Γn+1 is independent.
2. Pn is a refutation by facts of Γn. In this case GUINA selects a maximal

subset Λ of Γn that is consistent with Pn. Because Γn is independent, Λ is
also independent. By the definition of GUINA, Γn+1 can be generated in
two steps: First, we need to combine Pn with Λ. Since the basic sentence Pn

is a new axiom of Λ, Λ ∪ {Pn} is still independent. Secondly, GUINA needs
to examine the elements in Θn and Δn individually and then make a union
between those lost basic sentences Pnj during the selection of Λ. Since Pnj

are independent of Λ∪ {Pn}, each time when Pnj is added, the new version
obtained is still independent. Thus Γn+1 is independent.

3. Neither Γn � Pn nor Γn � ¬Pn is provable and Pn �� Γn holds. By the
definition of GUINA, Pn must be the first instance of a predicate P facing
Γn. In this case Γn+1 = Γn ∪ {∀xP (x)}. Thus Γn+1 is independent.

4. Neither Γn � Pn nor Γn � ¬Pn is provable and Pn ��� Γn holds. By the
definition of GUINA, Γn+1 = Γn ∪ {Pn}. In this case Pn �∈ Th(Γn) but
Pn ∈ Th(Γn+1). Thus Γn+1 is independent.

The above four cases prove that if Γn is independent, then Γn+1 is still indepen-
dent. By the induction hypothesis, for any n > 0, Γn is independent.

II. Since for any n > 0, Γn is independent and {Γn} is convergent, for any
ϕ ∈ {Γn}∗, there exists an N such that ϕ ∈ Γn and Γn − {ϕ} � ϕ is not
provable. So

(
∞⋂

n=N

(Γn − {ϕ})) � ϕ is not provable, and
∞⋂

n=N

Γn � ϕ is provable.

Therefore ({Γn}∗−{ϕ} � ϕ is not provable, and {Γn}∗ � ϕ is provable. This shows
{Γn}∗ is independent. Since limn→∞ Γn = {Γn}∗, limn→∞ Γn is independent. �

10 Conclusion

In this paper, we have introduced the inductive inference system I. It is used to
discover the new laws about generality of the base of beliefs for a given model
M describing knowledge of a specific domain. The system I is defined in the first
order language and consists of the universal inductive rule, the refutation revi-
sion rule, and the basic sentence expansion rule. A rule of I should be applied to
a base of beliefs and a given basic sentence, and generates a new version of the
base depending on their logical relation. When the basic sentences of ΩM are
taken one after another, a version sequence will be generated. The rationality
of the system I is exhibited by the convergency, commutativity and indepen-
dency of the generated version sequences. Finally, we have proved formally the
rationality of the system I by constructing the procedure GUINA which inputs
all basic sentences of ΩM, and generates the version sequences satisfying these
properties.
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Abstract. We use finite interpretations to guide searches in first-order
and equational theorem provers. The interpretations are carefully chosen
and based on expert knowledge of the problem area of the conjecture.
The method has been implemented in the Prover9 system, and equational
examples are given the areas of lattice theory, Boolean algebras, and
modular ortholattices.

1 Introduction

Automated deduction methods for first-order and equational problems have fo-
cused mostly on completeness-preserving restrictions on inference rules, effective
term orderings, and special-purpose inference and simplification rules. Less at-
tention has been paid to ordering the search. In saturation systems that use the
given-clause algorithm or one if its variants, the order of the search is determined
mostly by selection of the given clauses. The selection is usually by a weight-
ing function that considers syntactic properties of clauses such as length, depth,
occurrences of particular symbols, and patterns of symbols.

We propose to use semantic criteria in addition to syntactic weighting func-
tions to select the given clauses, and we view this method as a form of semantic
guidance for theorem provers. The semantic criteria are finite interpretations of
the language of the problem.

Interpretations have been used previously for restricting the application of
inference rules, for example, a semantic rule may require that one of the parents
be false in the interpretation [9, 6, 11]. However, semantic inference rules are
frequently incompatible, from both theoretical and practical points of view, with
other important methods such as simplification and restrictions based on term
orderings.

Semantic guidance with finite interpretations has been used previously, most
notably in the recent versions of SCOTT series of provers. In MSCOTT [2],
Hodgson and Slaney use semantic guidance with multiple interpretations that
are generated automatically and updated during the search. In Son of SCOTT
[10], Slaney, Binas, and Price introduced the notion of soft constraints that al-
lows the use of just one interpretation that partially models some subset of the
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derived clauses. As in MSCOTT, Son of SCOTT automatically generates the
interpretation and updates it during the search. In both systems, the interpre-
tations are small, usually with at most 4 elements.

In this project we are studying the use of larger interpretations that are
carefully chosen by the user and fixed throughout the search. The interpretations
are intended to be based on expert knowledge on the theory of the problem and
on closely related theories. We give several examples of using semantic guidance
on difficult equational problems and touch on several ideas for choosing good
interpretations.

2 Semantic Strategies and Choice of Interpretations

The roots of semantic strategies for automated theorem proving are in the set of
support strategy, introduced by Wos et al in 1965 [14]. The primary motivation
for the set of support strategy rests on the assumption that many conjectures
have the form theory, hypotheses ⇒ conclusion. The idea is that when searching
for a proof, one should avoid exploring the theory and focus instead on the hy-
potheses and the conclusion. The set of support strategy is a semantic restriction
strategy, and (assuming that the set of support consists of the hypotheses and
conclusion) an arbitrary model of the theory, in which the hypotheses or the
denial of the conclusion are false, is used to prove completeness. The effect is
that all lines of reasoning must start with the hypotheses or the denial of the
conclusion.

Semantic restriction strategies based on other general interpretations (e.g.,
positive resolution), or on arbitrary explicit interpretations were developed later,
most notably by Slagle in 1967 [9]. These rules generally require that one of the
parents for each binary inference be false in the interpretation.

The motivation for the present work on semantic guidance with carefully
selected interpretations is similar to the motivation for the set of support strat-
egy. If the conjecture has the form theory, hypotheses ⇒ conclusion, we wish
to focus the search on lines of reasoning that connect the hypotheses to the
conclusion. If the theory is true in the guiding interpretation, and the hy-
potheses and conclusion are false, we believe that lines of reasoning consisting
mostly of false clauses will be valuable in connecting the hypotheses to the
conclusion.

Because we propose to use semantics to guide rather than restrict the search,
valuable consequences of the theory (e.g., lemmas true in the interpretation) can
be easily derived, and these may help with the “false” lines of reasoning.

If the conjecture has no obvious hypotheses that are separate from the theory,
the interpretation should falsify some part of the theory (a model of the theory
that falsifies the conclusion gives a counterexample). In particular, we believe
that the interpretation should be a model of a slightly weakened theory, in
which the conclusion is false. For example, if the goal is to prove that a theory is
associative, one might wish to use a nonassociative interpretation that satisfies
many other properties of the theory. If one is unfamiliar with or unsure of the
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theory, one can use a nonassociative interpretation that satisfies properties of
closely related theories.

3 Implementation in Prover9

Prover9 [5] is Otter’s [4] successor, and it is similar to Otter in many important
ways. In particular, it uses the given-clause algorithm (the so-called Otter loop),
in which weighting functions are used to select the next given clause, that is, the
next path to explore. Ordinarily (without semantic guidance), Prover9 cycles
through two functions: selecting the oldest clause (to provide a breadth-first
component) and selecting the lightest clause (to provide a best -first component).
The ratio of the two functions is determined by parameters.

For semantic guidance, Prover9 accepts one or more finite interpretations in
the format produced by Mace4 [3]. Each clause that is retained (input or derived)
is evaluated in the interpretations. The clause is marked as true if it is true in
all of the interpretations; otherwise is it marked as false. An exception is that if
evaluation of a clause in an interpretation would be too expensive (determined
by a parameter that considers the number of variables in the clause and the size
of the interpretation), the evaluation is skipped and the clause is marked with
the default value true. The mark is used when (and only when) selecting given
clauses.

When using semantic guidance, Prover9 cycles through three methods when
selecting the next given clause: (1) the oldest clause, (2) the lightest true clause,
and (3) the lightest false clause. The ratio of the three methods is determined
by parameters. (Son of SCOTT [10] uses a similar 3-way ratio.) We use the
notation A : B : C to mean A rounds of selecting the given clause by age,
B rounds selecting true clauses of lowest weight, and C rounds selecting false
clauses of lowest weight, and so on. If a false clause is called for and none is
available, a true clause is substituted, and vice versa.

4 Examples

The theorems cited here were first proved with Otter by using various search
strategies, with substantial interaction from the user. All of the examples are
equational theorems, and a paramodulation inference rule with simplification
(demodulation) was used, similar to unfailing Knuth-Bendix completion.

The interpretations for the semantic guidance were produced by Mace4
(quickly) after the user had determined the desired properties for the interpreta-
tions. Although the Prover9 implementation can handle multiple interpretations,
each of the examples uses just one.

The Prover9 jobs used ratio 1 : 1 : 4 (age:true:false) for selecting the given
clauses. The weighting function for the true and false components was simply
the number of symbols in the clause.

As is frequently done with Prover9, limits were set on the size of equations
for several of the searches; these limits substantially improve the performance of
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Prover9. The term-ordering method and symbol precedence/weights are usually
very important in equational problems, but they are not so important here,
because these examples have so few symbols. We used the lexicographic path
ordering (LPO) with the default symbol precedence.

Finally, Prover9was directed to introduce a new constantwhen it deduced that a
constantsatisfyingsomepropertyexists.Forexample,iff(x, f(x, x))=f(y, f(y, y))
was derived, the equation f(x, f(x, x)) = c, for a new constant cwas inferred, with
c added to the interpretation in such a way that f(x, f(x, x)) = c is true.

Waldmeister [1] is usually assumed to be the fastest automatic prover for
equational logic. We ran each example with version 704 (July 2004) of Wald-
meister in its automatic mode with a time limit of four hours, and the results are
given below with each example. Comparison between provers on a small number
of examples is usually not meaningful; the purpose of the Waldmeister jobs is
simply to give another measure of the difficulty of these examples.

4.1 Lattice Theory Identities

This example arose in a project to find weak Huntington identities, that is, lattice
identities that force a uniquely complemented lattice to be Boolean [8]. The follow-
ing two identities (among many others) were proved to be Huntington identities,
and we then looked at the problem of whether one is weaker than the other.

(x ∧ y) ∨ (x ∧ z) = x ∧ ((y ∧ (x ∨ z)) ∨ (z ∧ (x ∨ y))) (H82)
x ∧ (y ∨ (x ∧ z)) = x ∧ (y ∨ (z ∧ ((x ∧ (y ∨ z)) ∨ (y ∧ z)))) (H2)

Let LT be an equational basis for lattice theory in terms of meet and join. Mace4
easily finds a counterexample to LT, H2 ⇒ H82. The statement LT, H82 ⇒ H2
is a theorem and is the focus of this example.

This theorem has the form theory, hypotheses ⇒ conclusion, and a natural
choice for a guiding interpretation is model of the theory that falsifies the hy-
pothesis. Mace4 easily finds a lattice of size 6 satisfying those constraints, and
also shows that there is none smaller and none other of size 6. By using semantic
guidance with that lattice, Prover9 proved the theorem in 10 seconds; without
semantic guidance, Prover9 proved it in about one hour. Waldmeister proved
the theorem in about 5 minutes.

4.2 Boolean Algebra Basis

This example is on Veroff’s 2-basis for Boolean algebra in terms of the Sheffer
stroke [13].1 Consider the following equations, where f is the Sheffer stroke.

f(x, y) = f(y, x) (C)
f(f(x, y), f(x, f(y, z))) = x (V)
f(f(f(y, y), x), f(f(z, z), x)) = f(f(x, f(y, z)), f(x, f(y, z))) (S)

1 The Sheffer stroke, which can be interpreted as the not-and or NAND operation, is
sufficient to represent Boolean algebra.
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The pair C,V is a basis for Boolean algebra, and S is a member of Sheffer’s origi-
nal basis. The theorem for this example is C,V⇒ S. This statement does not have
the form theory, hypotheses ⇒ conclusion for any nontrivial and well-understood
theory, and it is not so obvious where to look for a guiding interpretation.

When faced with the conjecture, we know that the goal is to prove a property
of Boolean algebra. We use an interpretation that is close to, but not, a Boolean
algebra. Consider the chain of varieties ortholattices (OL), orthomodular lattices
(OML), modular ortholattices (MOL), Boolean algebras (BA). (See [7] for Sheffer
stroke as well as standard bases for these varieties.) Mace4 can be used to find
the smallest MOL that is not a BA. It has size 6, and there is exactly one of size
6. With that interpretation as a guide, Prover9 proved the theorem in about 4
minutes. A similar search without semantic guidance produced a proof in about
6.5 minutes. Waldmeister took about 8 minutes to prove the theorem.

4.3 Modular Ortholattice Single Axiom

The two theorems in this section are on a single axiom for modular ortholattices
in terms of the Sheffer stroke [7]. The second theorem is quite difficult; it was
first proved by Veroff using the proof sketches method [12], and it was first
proved automatically (given a helpful interpretation) with the semantic guidance
described here. Consider the following equations, all in terms of the Sheffer
stroke.

f(f(y, x), f(f(f(x, x), z), f(f(f(f(f(x, y), z), z), x), f(x, u)))) = x (MOL)
f(x, f(f(y, z), f(y, z))) = f(y, f(f(x, z), f(x, z))) (A)
f(x, f(y, f(x, f(z, z)))) = f(x, f(z, f(x, f(y, y)))) (M)

The equation MOL is a single axiom for modular ortholattices, A is an asso-
ciativity property, and M is a modularity property. The two theorems in focus
are MOL ⇒ A and MOL ⇒ M. Neither suggests an obvious interpretation for
guidance.

In the rest of this section, the term associative refers to the operations meet
and join when defined in terms of the Sheffer stroke. As in the preceding example,
we considered the chain of varieties OL–OML–MOL–BA.

For the first theorem (the associativity property), we chose the smallest nonas-
sociative interpretation that satisfies several MOL (modular ortholattice) prop-
erties; it has size 8. With that interpretation as guidance, Prover9 proved the
theorem in about 8.5 minutes. Without semantic guidance, Prover9 took about
the same amount of time to prove the theorem, but required a much larger
search, generating 57% more clauses. Waldmeister did not find a proof of the
theorem within the time limit of 4 hours.

For the second theorem (the modularity property), we chose the smallest
nonmodular orthomodular lattice, which has size 10. The motivation for this
choice is similar to that for the Boolean Algebra 2-basis example, that is, to
use an interpretation that is very close to, but not, an algebra in the variety
corresponding to the goal of the conjecture. With the interpretation as guidance,
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Prover9 proved the theorem in about 3.8 hours. Without semantic guidance,
Prover9 failed to prove the theorem within 6 hours. Waldmeister proved the
theorem in about 3.3 hours.

5 Remarks

The Mace4 jobs that find the interpretations and the Prover9 jobs that find the
proofs for the examples can be found on the Web at the following location.

http://www.mcs.anl.gov/~mccune/papers/semantic-strategy/

When Prover9 selects a given clause, it is printed to the output file, including
any false marks. The false marks are shown as well in any proofs that are printed.
These notations help the user to analyse the effects of semantic guidance.

The output files on the Web show the following.

– The false clauses that are selected as given clauses are, for the most part,
heavier than the true clauses. When the false clauses are the same weight
as the true clauses, the false clauses have much higher ID numbers. Both of
these properties indicate that the false clauses would not be selected so soon
without semantic guidance.

– Most of the proofs have a preponderance of false clauses, especially near
the ends of the proofs. The true clauses do, however, play very important
roles as lemmas of the theory, suggesting that semantic restriction strategies
that eliminate many true clauses may be less useful than semantic guidance
strategies.

Comparisons of the Prover9 jobs with and without semantic guidance indicate
that semantic guidance may be more helpful in examples where the interpreta-
tions are more obvious or are more carefully chosen. The lattice theory example,
which immediately suggests a lattice interpretation falsifying the hypothesis,
shows a great improvement. The Boolean Algebra 2-basis and the MOL modu-
larity examples, in which the interpretation is close to the theory corresponding
to the goal, show a substantial improvement. The MOL associativity example,
which uses a rather ad hoc interpretation which was not carefully chosen, shows
only a small improvement.

Future work includes more experimentation with various interpretations, ex-
perimentation on non-equational and non-Horn problems, and automating the
selection of effective interpretations for semantic guidance.
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Abstract. In the recent years it has come to be more and more impor-
tant to analyze and verify systems which control complex external sys-
tems, like railways and airlines, whose serious accidents have been caused
not only by bugs in software or hardware but also by human errors possibly
involved in recognition or decision. This paper deals with an actual traffic
accident widely known as “Shigaraki Kougen Railway accident” caused by
a fatal decision based upon certain incorrect knowledge, as an example of
systems involving human factor. In order to represent and analyze this ac-
cident, the formal system @-calculus is generalized into the “labeled” @-
calculus so as to describe time-concerned recognition, knowledge, belief
and decision of humans besides external physical or logical phenomena,
while the word ‘time-concerned’ is used to express the property not only
time-dependent mathematically but also distinctively featured by subtle
and sophisticated sensitivity, interest or concern in exact time.

Keywords: Labeled @-calculus, time-concerned knowledge and belief,
Shigaraki Kougen Railway accident.

Topics: Artificial intelligence, logic, mathematical knowledge
management.

1 Introduction

In the recent decades, it has come to be more and more important to study formal
theory for systems controlling complex systems, e.g. railways and airlines, whose
serious accidents have been caused not only by bugs in software or hardware but
also by human errors possibly involved in human factors, i.e. recognition or deci-
sion by humans. The authors of this paper have published the formalisms [14], [22],
[23] for verification of hybrid systems involving recognition and decision of humans
in a merging car driving situation to avoid collision as an example. They claim that
these formalisms belong to the earliest to verify and analyze concurrent program
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systems controlling continuously changing outer systems including human factor,
even though there are many reasoning systems for temporal or time-related logic
of knowledge and belief [1], [3], [6], [7], [8], [10].

In this paper, labeled @-calculus which is a generalization of @-calculus [17] is
introduced for representation, analysis and verification of time-concerned recog-
nition, knowledge, belief and decision of humans besides external physical or
logical phenomena, while the word ‘time-concerned’ is used here to express the
property not only time-dependent mathematically but also distinctively featured
by subtle and sophisticated sensitivity, interest or concern in exact time, like
musical performance, traffic control, etc. @-calculus is one of the formal systems
based on the first-order natural number theory introduced as a modification of
tense arithmetic (TA) [15] developed on rational time.

A theory for knowledge and belief [16], [20] have been dealt with by one of the
authors of this paper, which used to belong to the area of artificial intelligence.
This paper establishes a formal theory of time-concerned human factor by the
collaboration of [20] and @-calculus, and moreover, the 42 lives lost train accident
happened in 1991 widely known as “Shigaraki Kougen Railway accident” by a
fatal decision based upon certain incorrect knowledge is analyzed as an example
of systems involving human factor.

Traffic control systems, or collision avoidance protocol more specifically, are
represented in hybrid automata models and duration calculus, which study in-
cludes a thorough verification of a car distance controlling example [4]. The the-
oretical treatments in that paper can be translated into the original @-calculus
[17], besides the formalism in the present paper treats misunderstanding of sub-
jects e.g. drivers or controllers of traffic systems. It must be noted that the 2001
Japan Air Line (JAL) near-miss off Shizuoka injuring about 100 people involved
at least 6 subjects: Two air controllers, one of them making an error, two pilots
and two units of the computerized Traffic Alert and Collision Avoidance System
(TCAS), while one pilot decided to follow air traffic control instead of the aural
TCAS Resolution Advisory [2]. Nevertheless, it can be treated in our formalism
with less difficulty, presumably, for the reasoning by humans was much simpler
than that during Shigaraki accident.

In section 2, the formal system of labeled @-calculus is introduced with its
intended meaning. The outline of the accident is shown in section 3, and the
formal description of the accident and its analysis is in section 4. Discussions
follow.

2 Labeled @-Calculus

2.1 Preliminary Explanation

As a quick example of the formulas of @-calculus, let us consider a ‘clock’ J
that counts every milisecond [ms]. If the clock value happens to be 1000 now,
written as either J = 1000@0 or J = 1000, equivalently, in @-calculus, then it
will be 1000 + n after n[ms], written as J = 1000 + n@n[ms], and vice versa.
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Thus J = 1000 ≡ J = 1000 + n@n, “@” connecting stronger than usual logical
connectives and [ms] understood. Using usual individual variables x, y and z, we
have J = x ≡ J = x+y@y, or its universal closure ∀x∀y(J = x ≡ J = x+y@y),
whereas ∀x∀y∀z(z = x ≡ z = x+ y@y) is incorrect. (∀x∀y∀z(z = x ≡ z = x@y)
is correct instead.) Hence we treat J as a ‘special’ constant rather than a variable
in order to prevent quantification. J itself and any term containing J must be
discriminated from regular terms farther in derivation, substitution especially,
to avoid inconsistency.

Incidentally J = x+y@y ≡ J−y = x@y holds in @-calculus since J = x+y ≡
J − y = x in arithmetic, so that J = x ≡ J − y = x@y holds for the above clock.
Thus the term J − y expresses the time ‘now’ looked back, or evaluated, y[ms]
later.

J cannot become smaller than the initial 1000, i.e. ¬∃x(J < 1000@x). In
other word, the time when (or the world where) J < 1000 would hold can never
be reached, which fact will be usually written as J < 1000@∞.

As to the labeled @-calculus, let us think about a misunderstanding: A person,
say l, may well expect the train to depart within 1 minute as scheduled whereas
another person or controller, say l′, knows that it will depart 5 minutes later. If
α, which is a defined special constant called a ‘spur’ formally, corresponds to the
trigger to make the train start, then the former is expressed by α < 1060@l, or
α < 1[min]@l, [min] indicating the proper conversion of the clock values, and the
latter by α = 5[min]@l′ together with the very fact α = 5[min], i.e. α = 1300.
Incidentally, (A@l)&A can mean “l knows A.” in most cases, while it is not
the purpose of the present paper to formalize ‘knows’ or the operator “∗” in
[20].

2.2 Syntax and the Intended Meaning of Labeled @-Calculus

Peano arithmetic (PA) is extended to PA(∞) called pseudo-arithmetic [17], in-
cluding the infinity (∞) and the minimalization (μ) listed in Table 1 1.

The syntax of the labeled (‘NΣ-labeled’ in a more general framework) @-
calculus that is an extension of PA(∞) is introduced.

Infinite number of special, or ‘tense-sensitive’ constants, J, J1, J2, . . . and
labels, l, l1, l2, . . . ∈ Σ, the set of labels, are added. The special constants cor-
respond to program variables taking natural number value and possibly ∞, and
the change of their values along the natural number time is expressed by the
change of local models, or ‘worlds’, and vice versa. It must be noticed that a
program variable is guarded against quantification in the calculus, since each J
is not a variable but a constant. A label indicates a personality that is a gener-
alization of an agent of multi-agent systems, or an observer in physics, including
notion of subjectivity. Besides the conventional logical operators ¬,& and ∀, a
new connective “@” is introduced.
1 We will partially follow [25] in which P stands for Peano arithmetic, while an

occurrence of the variable x in a formula A will be indicated explicitly as
A[x], and μxA[x] will designate the least number sasitfying A, in the present
paper.
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Table 1. Axioms of PA(∞)

N1. x + 1 �= 0. N2. x < ∞ ⊃ y < ∞ ⊃ x + 1 = y + 1 ⊃ x = y.
N3. x + 0 = x. N4. x < ∞ ⊃ y < ∞ ⊃ x + (y + 1) = (x + y) + 1.
N5. x × 0 = 0. N6. y < ∞ ⊃ x × (y + 1) = (x × y) + x.
N7. ¬(x < 0). N8. y < ∞ ⊃ (x < y + 1 ≡ x ≤ y).
Axioms for ∞:
N4′. x + ∞ = ∞ + x = ∞.
N5′. 0 × ∞ = 0. N6′. 0 < x ⊃ x × ∞ = ∞ × x = ∞.
N7′. x ≤ ∞.
Mathematical Induction:
N9. A[0] & ∀x(x < ∞ ⊃ A[x] ⊃ A[x + 1]) ⊃ ∀x(x < ∞ ⊃ A[x]).
Definition of μ (The least number principle):
N9′. ∃xA[x] ⊃ A[μxA[x]]&∀y(A[y] ⊃ μxA[x] ≤ y).

Definition 1. (Terms and formulas of (NΣ-)labeled @-calculus)

1. A term of PA(∞) is a term.
2. A special constant is a term.
3. If x is a variable (of PA(∞)) and A is a formula, then μxA[x] is a term.
4. If a and b are terms, then a ≤ b is a formula.
5. If x is a variable, and A and B are formulas, then ¬A,A&B and ∀xA are

formulas.
6. If a is a term, A is a formula, and l is a label, then A@〈a, l〉, A@a and

A@l are formulas.

It must be noted that the essential difference between the above inductive def-
inition and that of the original @-calculus lies only in the last part. Hence this
particular language and calculus will be called ‘NΣ-labeled’ in accordance with
the typical pair (or a tuple in general) 〈a, l〉 following @, N standing for the
natural numbers (see remark 1).

A term of PA(∞) is called a pseudo-arithmetic expression henceforth to dis-
criminate it from general terms, while a, or a[J ], in which any special constant
occurs is said to be tense-sensitive.

A tense means the time relative to a reference ‘observation time’ called now
or present, which is taken to be 0 throughout the calculus,while any term des-
ignates some tense, e.g. 1, n, ∞, etc, where ∞ indicates the tense when false
holds. The value of a tense-sensitive term may change along with tense since
so may that of a special constant, while that of a pseudo-arithmetic one does
not.

@-mark as a logical symbol is called the coincidental operator. A formula of
the form A@〈a, l〉 intuitively means that the personality designated by the label
l believes at the observation time the fact that A holds at the tense designated
by a, while A@a and A@l that A holds at tense a, and that l believes that A
holds now, respectively.
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The terms a + b and a× b can be defined by the operators of PA(∞) and μ
as follows:

a + b ⇔ μx∃y1y2(a = y1 & b = y2 & x = y1 + y2),
a× b ⇔ μx∃y1y2(a = y1 & b = y2 & x = y1 × y2).

The primitive logical symbol “ ; ” called the futurity operator of the original
@-calculus is treated as an abbreviation defined by

a; b ⇔ a + μx(x = b@a),
a; A ⇔ μx(a ≤ x & (A@x)).

Thus the futurity operator moves the observation time toward a future time-
point, so that a formula, e.g., J − y = x@y can be written as y; (J − y) = y; x.
a; b is the tense of b observed at the tense designated by a. m; n is m + n for
any pair of natural numbers m and n. a; A means the least, i.e. ‘the earliest’,
time when A comes to hold, or ‘rises’, after (or at) the tense a, which will be
called the ascent of A at a.

The precedence over symbols is defined as follows:

×,+, ; , {=,≤, <},@,¬,&,∨,⊃,≡

(strong) ←→ (weak).

Abbreviations. A@〈a, l1〉 & A@〈a, l2〉 & . . . & A@〈a, ln〉 and A@l1 &
A@l2 & . . . & A@ln will be abbreviated as A@〈a, {l1, l2, . . . , ln}〉 and
A@{l1, l2, . . . , ln}, respectively, of which the latter means that all personalities
listed in {l1, l2, . . . , ln} believe A.

λ, λ1, λ2, . . . are used as metasymbols of tense, label, and pair or set of them
following @ in a formula, e.g., 〈a, l〉, {l1, l2, . . . , ln}, etc.

2.3 Proof System

Axioms. The following axioms are added to those of PA(∞) as the logical, or
proper axioms, where false is an abbreviation of 0 = 1.

1. The equality substitution for @: x = y ⊃ A@x ⊃ A@y.
2. Elimination of tense 0: A@0 ≡ A.
3. Inductive valuation:

(a) false@x ≡ x = ∞,
(b) (x ≤ y)@λ ≡ μz(z = x@λ) ≤ μz(z = y@λ),
(c) A@x@y ≡ A@y; x,
(d) A@x@l ≡ A@〈x, l〉,
(e) x <∞ ⊃ ((¬A)@x ≡ ¬(A@x)),
(f) ¬(A@l) ≡ (¬A)@l,
(g) (A&B)@λ ≡ A@λ&B@λ,
(h) (∀yA)@λ ≡ ∀y(A@λ).
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Remark 1. In studying artificial intelligence it seems natural to introduce some
structure into Σ making it a space, including the use of N , rather than an
alphabet, although there are cases when they can be simply treated as abbrevi-
ations. E.g., a formula of Σ2-labeled @-calculus, even dispensing with the tense,
like A@〈l1, l2〉 can mean A@l1@l2 by a straightforward generalization of axiom
3(d), 〈l1, l2〉 representing l1’s belief as believed by l2; and A@〈l, l〉 ≡ A@l
makes the introspective (reflection) axiom. It can be more faithful in a certain
respect to apply this generalization to the case treated in the present paper
too.

Inference Rules. The rules of NK [9] are used with the only one restriction as
follows.

1. Restriction of ∀-E rule. In ∀-E(elimination) rule:

∀x(A[x])
A[a]

only a pseudo-arithmetic expression a can be substituted for x if x occurs
in a subformula of the form B[x]@〈b, l〉 or B[x]@b of the upper formula,
while the occurrence of x in b does not matter (see [17] for the detail).

Moreover, the following two rules are added.

2. @-I(introduction rule):
A

A@x

where every assumption of A does not have any special constants.
3. @-E(elimination rule):

A@a
A

where no special constant occurs in A.

Remark 2. It is likely that the metatheory, including the proof of the soundness,
of the original @-calculus in [17] can be generalized for the labeled @-calculus in
a straightforward manner. It must be noted that the soundness of TA is shown
in [15] and [21], latter relying upon the elimination of ∞ (see also Conclusion).

2.4 Axiom Tableaux

Using axiom tableaux [17], actions or changes of states of programs for verification
can be readably represented by program axioms. First, some primitive notions
for program axioms and then axiom tableaux are introduced.

Spurs. Spurs [13] are generalizations of schedulers, the ‘next’ operator in tem-
poral logic, i.e. “©”, etc. α, β, γ, . . . , κ are used for the metasymbols of spurs.
A spur α is defined as a term by

α=μy(0 < y&0 < J@y), for an arbitrarily chosen and fixed special constant J .



Labeled @-Calculus: Formalism for Time-Concerned Human Factors 31

Each component process, or even certain external object, of a multi-CPU parallel
(or interleaving) program system is assigned a distinct spur usually, and the
whole program is described in accordance with the causality, i.e. the relationships
between the spurs as ‘motives’ and the changes of values.

Program Labels. a, a1, a2, . . . are program labels, expressed by mutually
exclusive special, or tense-sensitive, boolean constants defined as:

a ≡ L = 0, ai ≡ L = i (i = 1, 2, . . .).

where L is an arbitrary special constant.

Conservation Axioms. We adopt the following two axiom schemata as follows
[17].

(CA1) J = z ⊃ x < α & x < β & . . . & x < κ ⊃ J = z@x,

for each special constant J and all spurs α, β, . . . , which means that the value of
J does not change until (unless) any spur rises, i.e. the next step of any process
rises, where each spur α, β, . . . indicates the tense when the next step of the
process corresponding to the spur rises.

(CA2) J = z@a ⊃ α < β & . . . & α < κ ⊃ a ≤ x ≤ α ⊃ J = z@x,
each a and J

such that J does not occur in the ‘act’ part of corresponding program axiom,
which means that J does not change within the block corresponding to a.

Remark 3. Theoretically these axioms belong to the so-called frame axioms [12]:
the value of a variable, like J , in a program does not change unless there is an exe-
cution of statement or command, i.e. the cause or motive, to change it positively.

Special Implication Symbol. Most of program axioms are of the form (A ⊃
B)@λ or A ⊃ B@λ (an abbreviation of A ⊃ (B@λ), since the precedence of
@ is greater than other logical symbols), the former intuitively read that if A
holds at time designated by λ, then the action represented by B is carried out,
while the latter that if A holds now then B is carried at λ. Though in the usual
logical sense of the implication symbol, these axioms allow that B can be done
even if ¬A, it is prohibited by the conservation axioms. For avoiding such an
ambiguity, the special implication symbol “⇒” will be used for the implication
associated with conservation axioms 2.

Labels in Axiom Tableau. (A ⇒ B)@λ is represented by the tableau as

index condition action tense personality
i A B a [∗] l1, l2, . . . , ln

2 In the intuitionistic logic [26], “A ⇒ B” is often used as “if A then B”, which is
essentially the same as the notation of this paper.
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and A ⇒ B@λ is

index condition action tense personality
i A, global B a [∗] l1, l2, . . . , ln

where λ is 〈a, {l1, l2, . . . , ln}〉, including the case a is missing, while “ ∗ ” will
be used to indicate the case λ is a.

Remark 4. Those program axioms that reflect the target program but no phys-
ical pehnomena are sound, since there is a unform translation from programs
into (labeled) @-calculus [15], [17].

3 Case Study: The Shigaraki Kougen Railway Accident

In the following two sections, an actual traffic accident “Shigaraki Kougen Rail-
way accident” will be analyzed in labeled @-calculus.

3.1 Outline of the Accident

It occurred about at 10:35, 14th May 1991, between Onotani signal station and
Shigaraki-no-Miya station on Shigaraki Kougen Line that was a single track, Shiga
Prefecture, Japan. An up train of Shigaraki Kougen Railway (SKR) for Kibukawa
Station collided with a down train of Japan Railway (JR) for Shigaraki station.
The cause was as follows. When the up train was to depart from Shigaraki station
at 10:14 as scheduled, the signal at that station was still red. After a fairly reason-
able (logical indeed) consideration, the responsible person of SKR decided that
the up train depart 11 minutes after the scheduled time, with confidence of safety.
But the departure signal for the down trains at Onotani signal station was still
green. Therefore, the down train that departed from Kibukawa station at 10:16
on schedule did not wait at the signal station and entered the interval between
the signal station and Shigaraki station. Thus, two trains collided.

3.2 Formalization

The formalization of this accident appeared below is along the analysis report [5]
by the counselors of the victims, some details excluded for avoiding unnecessary
complication.

Coordinates. Let us consider the one-dimensional coordinate axes along the
line as Figure 1, in which the origin is at Kibukawa station, and the coordinate
of Onotani signal station is d and that of Shigaraki station is l.

Axiom Tableau. Table 2 shows the axiom tableau representing the train con-
trol system, where S and J are labels indicating the personalities SKR and JR,
respectively. The indices will be parenthesized in the text. (1) to (20) are the
program axioms of the system, from which (21) and (22) are inferred. (5’) means
(5) did not occur, which did not occur actually. From (1) to (20) without (5),
(23) and (24) are inferred, which occurred actually.
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Fig. 1. SKR line

Each line in this tableau is explained below with its corresponding normal
expression of the calculus, in which @τ0 is abbreviated uniformly from the end
of each formula, where τ0 <∞ is the start time of the train controlling system.
@̂r is an abbreviation of @〈r, S〉, while @〈r, {S, J}〉 is not specifically mentioned
for the explanation of the also correct @r will suffice.

Clock = r@r (1)

This means that the value of the program variable Clock is r at time r[s] after
the system starts.

(A = l & B ≤ 0 & ¬13R & ¬lock)@Clock = 0 (2)

This is the initial condition at time when the system starts, i.e. Clock = 0. 13R
and lock are program variables which take truth values. The former expresses the
status of the signal 13R for down trains to be allowed to depart from Onotani
signal station, while the latter that of the block signal to 13R operated when
an up train departs from Shigaraki station. When the signal 13R is green (red),
the value is true (false). The program variables A and B represent the positions
of the up train of SKR for Kibukawa and the down train of JR for Shigaraki,
respectively. This axiom shows that the up train is at the Shigaraki station and
the down train is not between Shigaraki and Kibukawa, and also that 13R is red
and the block signal is open at the time when the system starts.

r+ ≡ r ≤ Clock (3)

This defines r+. It is a formula meaning that the value of Clock is greater than
or equal to r at every observation time. The expressions like “10:16”, “10:25”,
etc are abbreviations of r+ when r represents the difference between the actual
value of τ0 and that of 10:16, 10:25, etc.

α = 10 : 25 + 1@̂A = l (4)

This means that the up train departs just after (+1[s]) 10:25 when it is at
Shigaraki station, where α is a spur to control the up train. It is a fact but only
SKR staff knows it.

γ = α@̂A = l (5)
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Table 2. Axiom tableau representing the railway system

index condition action tense personality
1 Clock = r, global r ∗ S, J

2 A = l, B ≤ 0, ¬13R, ¬lock, global Clock = 0 ∗ S, J

3 r+ ≡ r ≤ Clock, def ∗ S, J

4 α = 10 : 25 + 1 A = l ∗ S

5 γ = α A = l S

5′ - - - -
6 γ = α A = d + u S

7 κ = α A = d S

8 ¬13R γ = lock ∗ S

9 lock γ = ¬lock ∗ S

10 0 < i < imax αi+1 = αi + 1 ∗ S, J

11 0 < i ≤ imax A = l − i · u αi ∗ S, J

12 β = 13R + 1 B = d ∗ S, J

13 0 < j < jmax, j �= jmid βj+1 = βj + 1 ∗ S, J

14 0 < j ≤ jmid β = j · v βj ∗ S, J

15 jmid < j ≤ jmax B = d + j · w βj ∗ S, J

16 β = κ B = c ∗ S, J

17 κ = 12R ∗ S, J

18 ¬lock κ = 13R ∗ S, J

19 10 : 16 ≤ (B = 0), global ∗ S, J

20 v ≤ c/(9 · 60), global ∗ S, J

21 d < A < l ⇒ B ≤ d x + 10 : 25 + 1 S

22 ¬Crash x + 10 : 25 + 1 S

23 d < A < l & d < B < l ∃x.x + 10 : 25 + 1 ∗
24 Crash ∃x.x + 10 : 25 + 1 ∗

This is also a knowledge only of SKR staff. When the up train departs from
Shigaraki station, the spur γ to control the block signal rises. In reality, this
axiom did not work properly; γ did not rise, thus the signal 13R did not turn
red, i.e. γ = ∞, therefore both up and down trains were in the section between
Shigaraki and Onotani that caused the accident.

γ = α@̂A = d + u (6)

The spur γ to control 13R rises just before (-1[s]) the up train reaches Onotani
signal station, where u[m/s] is the speed of the up train. In the axiom, u means
not a speed but a distance u[m] since every action rises every 1[s] from axioms
(10) and (13) below. In reality, the spur did not rise since the up train did not
reach Onotani by the accident.

κ = α@̂A = d (7)

The spur κ for controlling 12R rises when the up train reaches Onotani signal
station. In reality, this spur also did not rise by the accident.

(¬13R⇒ γ = lock)@̂0 (8)
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13R becomes locked if it is red when γ rises by (5).

(lock ⇒ γ = ¬lock)@̂0 (9)

13R becomes open if it is locked when γ rises by (6).

0 < i < imax ⇒ α(i+1)−th − αi-th = 1 (10)

(0 < i ≤ imax ⇒ A = l − i · u)@αi-th (11)

Let u be the speed of the up train and imax be (l− d)/u. αi-th (and also αi)
means the time of i-th rise of α from the observation time. Hence, α(i+1)-th−αi-th
in (10) is the interval between the rises of α. (10) shows that the period of the
rise of α is 1[s] when the up train is between Shigaraki and Onotani, while (11)
indicates the position of the train.

β = 13R+ 1@B = d (12)

This means the down train departs just after (+1 [s]) the time when 13R
turns green, where β is a spur for controlling the down train.

0 < j < jmax & j �= jmid⇒ β(j+1)-th − βj-th = 1 (13)

(0 < j < jmid ⇒ B = j · v)@βj-th (14)

(jmid < j < jmax ⇒ B = d+ j · w)@βj-th (15)

Let v and w be the speeds of the down train between Kibukawa and Onotani,
and between Onotani and Shigaraki, respectively, and jmid and jmax be d/v
and d/v+(l−d)/w, respectively. Similarly to (10) and (11), (13) shows that the
period of the rise of β is 1[s] except the case that the train is at Onotani, which
is shown in (12), and (14) and (15) show the position of the train.

κ = β@B = c (16)

When the down train reaches c, the spur κ rises to control 12R and 13R, where
c is the position of the sensor 12RDA to control the signals between Kibukawa
and Onotani.

κ = 12R (17)

¬lock ⇒ κ = 13R (18)

When κ rises, 12R turns green, and simultaneously, 13R turns green if it is
open.

10 : 16 ≤ (B = 0) (19)

The down train did not reach Kibukawa station till 10:16.

v ≤ c/(9 · 60) (20)

This indicates the upper limit of the speed of the down train. From this and
(19), the fact that the train did not reach c till 10:25 is obtained.
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4 Analysis of the Accident

4.1 Inference by SKR

The responsible person of SKR inferred the conclusion that no collision could
happen even if the up train departed at 10:25 by his own knowledge. Namely,
he testified that he deduced as follows:

Suppose that the up train will depart at 10:25 as (4).
13R will be locked from (5) and (8).
Even if down train will reach c after the above two things as (16), 13R will

not turn green.
The down train will not reach c till 10:25 from (19) and (20).
Thus, 13R will not turn red.
On the other hand, by (12), the down train will not beyond Onotani.
Hence the two train will not be in the section between Onotani and Shigaraki

at the same time:

(d < A < l⇒ B ≤ d)@̂x+ 10 : 25 + 1, (21)

which is a kind of the mutual exclusion, where x is a logical variable and the
tense x+ 10 : 25 + 1 indicates the proposition holds any time after 10:25.

Therefore, any crash will not happen:

¬Crash@̂x+ 10 : 25 + 1, (22)

where Crash ≡ d < A < l & d < B < l & |A−B| < δ.

Remark 5. The assertion (22) can be also expressed as

0; Crash = ∞@̂10 : 25 + 1, (22’)

i.e. the tense when Crash occurs is infinity. It must be noted that it is possible
to introduce an abbreviation to omit “0; ” from the term 0; Crash, so that any
formula like Crash can be regarded as a term to mean the tense when it occurs,
so that (22’) can be written as

Crash = ∞@̂10 : 25 + 1. (22”)

4.2 The Actual Action

As inferred in the previous subsection, the responsible person of SKR decided
that the up train depart at 10:25 as (4).

But against (5), the block signal did not rise. Hence 13R was not locked
(against (8)), and 13R turned green by (18).

Thus the up train entered the interval between Onotani and Shigaraki by
(12). Therefore, there exists a tense x that (21) and (22) do not hold. Namely,



Labeled @-Calculus: Formalism for Time-Concerned Human Factors 37

∃x((d < A < l & d < B < l)@x+ 10 : 25 + 1) (23)

and
∃x(Crash@x+ 10 : 25 + 1) (24)

hold, i.e., the crash occurred.
These inferences can be carried out in labeled @-calculus precisely, not relying

very much on mathematical induction on time values or positions, while the
formal derivations are omitted from this paper for the lack of space.

5 Conclusion and Discussions

This paper introduced a formalization of verification and analysis of the compli-
cated control system involving human factor, especially misunderstanding and
inappropriate decision, with the demonstration of the analysis of the actually
occurred train accident. We consider this formal system is one of the earliest
formalism for “time-concerned” or time-dependent knowledge with real-timing
controlled hybrid systems. Since @-calculus, the basis of labeled @-calculus, is
convenient to analyze such complicated systems as shown in [17], so is labeled @-
calculus as shown in sections 3 and 4. The former calculus has been successfully
applied to deal with a computerized ensemble system for musical performance,
which is another sophisticated example of time-concerned system apparently,
bearing much resemblance to cooperative autonomous vehicles in logical and
mathematical representations [11], [18].

As mentioned in Introduction, there are many reasoning systems for knowl-
edge and belief with time. To compare them with the formal system introduced
in this paper, most of them are based on propositional logic, and the rest on
predicate logic without any reference to specific and rigid mathematical founda-
tion, whereas the latter is based on the concrete and very basic mathematical
theory PA, which develops precise mathematics. And moreover, it is very likely
that the formal system is a conservative extension of PA, since it has been proved
that ∞ can be eliminated from the present formalism [21]. Hence, verification
and analysis of complicated control systems with time can be carried out in a
consistent formal theory. The authors think that automated verification with
human assistance of (labeled) @-calculus can be devised relatively easily, since
it is based on NK with PA, for which automatic verification methods have been
studied well.

The way that natural numbers are used so as to represent the time-dependent
position of trains as axioms in section 3 seems to be a promising solution for
the difficulty of treating continuous phenomena and discrete changes like deci-
sions, computer operations, etc together, while the external variables with very
elementary differential equations were introduced in [17] and [23] to cope with
this problem. It must be noted that mathematical induction on the positions or
time values does not appear explicitly in the formal proofs.

This research was first reported in [19], [24], which had been resumed after
the 2005 overturn accident in Amagasaki on Fukuchiyama line of West Japan



38 T. Mizutani et al.

Railway Co. (JR West), killing 107 people. This accident as well as more than
one handred elevator accidents, (many of them apparently caused by errors of
software, CPUs or their conjoint actions with sensors or actuators), recently
reported in Japan, however, seems to be much simpler than the Shigaraki one
theoretically in so far as more or less social aspects like labor management,
maintenance practice, etc are excluded from analyses, while some social matters
did affect the latter.
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Abstract. Finding new theorems is essential for the general progress
in mathematics. Apart from creating and proving completely new theo-
rems progress can also be achieved by theorem reuse; i.e. by translating
theorems from related theories into the target theory and proving its
translated premises under which the theorem was proven. This approach
is pursued by the ”little theories” and the development graph paradigms.
This work suggests an improvement in this direction in two aspects: par-
tial theory inclusions enhances theorem reuse and formula matching to
support automated detection of theory inclusions. By representing the-
ory axioms as facts and partial theories (i.e. theorems and their minimal
set of premises) as horn clauses, reusable theorems correspond to derived
facts such that model generator like KRHyper can be used for this task.

1 Introduction

Finding new theorems is essential for the general progress in mathematics. For
this we postulate new assertions within a certain theory T and try to prove them
based on the axioms of T and the already proven theorems therein. Sometimes,
however, we could alleviate this burden if the proofs are already done in some
other theory S: For instance Jane, an undergraduate math student, has to prove
for an arithmetic course the following assertion: (1) ∀m,n. gcd(m,n) = m ⇒
lcm(m,n) = n. She may attack this problem using only her knowledge from
arithmetics. Or she is smart and uses her knowledge acquired in a course about
lattices. From there she remembers the lemma (2) ∀a, b.a � b = a ⇒ a � b = b.
This can easily be mapped on the assertion (1) with the signature morphism
σ := [� → gcd,� → lcm]. Of course mapping only the theorem does not turn
the original assertion into a theorem. But as soon as we know that all the axioms
from which (2) can be derived also hold in our target theory we are done. To finish
the example, Jane happens to know that “gcd” and “lcm” are commutative and
associative functions, and finally she proves the absorption rules between these
two functions. As these are exactly the lattice axioms translated into arithmetics
with σ she has implicitly proven the initial assertion (1); i.e. she reused the
theorem from lattice theory in arithmetics.

In mathematical parlance we would say Jane proved that the algebraic struc-
ture ( , gcd, lcm) is a lattice. Such phrases are quite common in mathematics:

J. Calmet, T. Ida, and D. Wang (Eds.): AISC 2006, LNAI 4120, pp. 40–52, 2006.
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We say for instance ( ,+, 0) is a group as well as ( +, ∗, 1) is where we actu-
ally mean that the axioms from group theory can be proven in the theory of
integers and positive rational numbers respectively after translating the symbols
appropriately.

The ”little theory” paradigm [4] is designed to make use of such theory embed-
ding. A further elaborated variant called ”development graph” [1] pursues this
goal by means of ”theory inclusions” 1. The basic idea behind that is firstly to
translate a complete source theory into the target theory and secondly to prove
the translated axioms of the source theory inside the target theory. Whenever
this is possible all the theorems from the source theory become automatically
theorems in the target theory. Imps, Maya, and Hets are systems implementing
the little theories paradigm and the development graph respectively. For brevity
we call them just dg-systems – more about this topic is provided in section 2.

The work reported here presents an improvement of theorem reuse in dg-
systems in two aspects: 1) the theorem reuse factor is enhanced by embedding
into the target theory only the minimal premises of a theorem to be reused
instead of the whole set of axioms of the source theory. We call these embeddings
partial theory inclusions. 2) Consistent many to many formulae matching is used
to detect appropriate signature morphisms for such embeddings. Finally it is
shown how elaborated model generator like KRHyper [11] can be effectively
used to generate the transitive closure of partial theory inclusions.

In current dg-systems it is left to the user to choose a source theory S for a
given target theory T and to find (if possible at all) an appropriate signature
morphism σ and finally prove that σS is included in T . However, finding all
signature morphisms σ that map all axioms from S into valid statements in T is a
many to many formulae matching task that can be automated. Thus some theory
inclusions can be automatically found without generating any proof obligations.
In fact we will define constructively (section 3) the set of all signature morphisms
σ with Φ ⊇ σΨ for any sets of formulae Φ and Ψ . This can already be used to
build the transitive closure of a theory based on total2 theory inclusion. Even
more theorems can be reused if we take partial theory inclusions into account:
It is always sufficient to prove only the assumptions of the theorem inside the
target theory to reuse this theorem. A theorem ϕ together with its minimal set of
assumptions Γ actually used in a proof can be considered as a partial theory of
some other theory. We will call Γ � ϕ a sequent . Every theorem caught by total
theory inclusion is also caught by partial theory inclusion whereas the opposite
does not hold – a formal argument will be given in section 4 and an illustrating
example in section 6.

We compute the transitive closure of a theory by forward chaining: All the-
orem instances are added to the theory whose assumptions in a sequent match

1 The term ”theory inclusion” from in the development graph is called ”theory inter-
pretation” in in the little theory paradigm.

2 By ”total theory inclusion” we mean the (global or local) theory inclusions from the
development graph and we use the attribute ”total” just to distinguish them from
our ”partial theory inclusion”.
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the axioms of the target theory or theorems added before in the same manner.
To enhance this procedure we do not operate on the formulae themselves, but
on their abstracted representatives (section 5). On the abstract level the theory
closure task corresponds to model generation of all ground terms derivable from
the initial input facts representing the axioms of the target theory. Hence sys-
tems specialized on model generation like Satchmo [7] and KRHyper [11] can
be used to build the transitive closure of a theory. A mini session in KRHyper
is given in section 6 to demonstrate this possibility.

2 Theorem Reuse in the Development Graph

The basic goal in this paradigm is to find a source theory S and an appropriate
translation σ such that every model of the translated source theory is also a
model of the target theory T – formally T � σS which we call theory inclusion
where T is said to include S via the signature morphism σ. Obviously, if we
have T � σS then we can be sure that for any theorem ϕ in S its translation
σϕ must be a theorem in T too. In order to prove T � σS it is sufficient to
prove that all axioms from S translated with σ are theorems in T . Thus one
proves T � σ(Ax(S)) once and gets all theorems from S for free in T ; i.e. just
by translating them with the guarantee that these translated formulae are really
theorems in T .

Of course every target theory may serve as a source theory for some other
theory and so we may find paths of theory inclusions. Furthermore target theories
may include several source theories. Eventually leading to a directed graph of
theory inclusions. The gain of theorems for a given target theory T is then the
union of all theorems contained in those theories which are recursively included
in T .

So far we have considered theory inclusions as edges and theories as nodes
of a graph where theories contain axioms3 and locally proven theorems. Adding
to the graph theory imports as another sort of edges we get essentially a data
structure known under the notion of development graph [1]. A theory import of
a source theory S into a target theory T simply means that all axioms of S hold
in T by definition. Thus nodes representing theories in the development graph
can have local axioms and non-local axioms imported from other theories.

Systems implementing the development graph4 are Imps [3], Maya [2], and
Hets [10]. For Imps its development graph is rather an add on feature, but its
main focus is on proof assistance for local theorem proofs in a fixed logic. Maya
and Hets in contrast abstract from a fixed logic as they are theoretically based
on entailments [8] and institutions [5]. The development graph is their central

3 For brevity we subsume definitions and axioms under the term ”axiom” for the rest
of this paper.

4 Actually they implement different variants of the development graph, e.g. Maya
differentiates in contrast to Imps and Hets between theory imports that import
only from direct processors and those which import recursively along a whole path
of theory imports. A similarly global and local theory inclusions are distinguished.
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data structure which is also equipped with a development graph transformation
calculus. Roughly spoken these transformations are intended to reduce as much
as possible proof obligations that are necessary to keep the whole graph valid
after an external graph modification performed like postulating a new theory
inclusion or adding, removing local theorems or axioms to a theory.

3 Mapping Sets of Formulae on Sets of Formulae

As already mentioned in the introduction if we have found a signature morphism
σ such that T ⊇ σ(Ax(S)) then we know that the target theory T includes the
translated source theory σS; i.e. all theorems of S (translated via σ) can be
reused in T . Hence for automating theorem reuse it is helpful to automatically
construct the set {σ|T ⊇ σ(Ax(S))} which is a missing feature in current dg-
systems. For our partial theory inclusion we need a little more general set: {σ|Φ ⊇
σΨ} for given sets of formulae Φ and Ψ . In order to make the construction of
this set explicit we give an alternative constructive definition for this set: Let μ
be a matcher function that takes two formulae ψ and ϕ and returns a signature
morphism σ such that σψ = ϕ if possible and otherwise σ0 which denotes a
failure. We define for two signature morphisms σ and σ′ the merge σ ⊕ σ′ as
the union of them if they are compatible5 and otherwise σ0. The merge of many
signature morphisms can be expressed as

⊕n
j=1 σj := σ1 ⊕ . . . ⊕ σn. For two

sets of formulae Ψ and Φ we define the set ΣΨ→Φ of all signature morphisms
whose elements map all formulae from Ψ on a subset of Φ (i.e. Φ ⊇ σΨ for all
σ ∈ ΣΨ→Φ): ∑

Ψ→Φ

:= {σ|∃m : Ψ → Φ.σ =
⊕
ψ∈Φ

μ(ψ,m(ψ)) �= σ0}

The set ΣΦ→Ψ and hence the effect of theorem reuse can be even enlarged if we
extend the matcher function μ by requiring σψ = ϕ modulo normalization as
investigated in [9]. Another aspect to be mentioned here concerns the efficiency
of building such a set. In the extreme case this set can contain as many signature
morphisms as there are mappings m : Φ → Ψ . In practice, however, for most
of these mappings m : Φ → Ψ there is no consistent signature morphism with
Φ ⊇ σΨ . In principle, term indexing is the state of the art for matching many
to many formulae as described in [6]. It is not the purpose of this paper to
invent new term indexing methods, but rather to suggest an adjustment to the
particular task: Term indexing methods are typically used to match quantifier
free formulae where all variables from one formula are tried to match consistently
against all variables of the other formula. Our task in contrast is to match
quantified formulae against quantified formulae. All variables involved are bound
variables and not subjected to matching whereas all symbols from the signature
are subjected. Thus it makes sense in our scenario not to apply term indexing
methods directly on the formulae from the theories, but on their abstraction
5 σ and σ′ is said to be compatible if σϕ = σ′ϕ for every ϕ ∈ support(σ)∩support(σ′).
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where all signature symbols are considered as variables and their variables as
constants. We will go more in detail in section 5.

4 Transitive Closure of a Theory Based on Partial
Theories

In the last section we considered for theorem reuse only two sets of formulae
one being the source of theorems and the other the consumer of theorems so
to speak. In the development graph these sets are theories. In our approach we
consider partial theories and consequently partial theory inclusions as opposed
to total theory inclusions. Both kind of inclusions have transitivity in common,
of course. To make the best theorem reuse from all source theories connected by
theory inclusion to the target theory one builds the transitive closure of it. We
want to express this more formally that one can easily see how this transitive
closure can be constructed. Thereby it becomes even clearer why the yield of
theorem reuse is higher when based on partial theory inclusion than on total
theory inclusion.

As already introduced above, a sequents P � ϕ represents a proof where
all premises from the set of formulae P were used, but no more, to derive the
theorem ϕ. We define the reflexive transitive closure modulo signature morphism
on a set of formulae Γ based on sequents:

Γ0 := Γ
Γn := Γn−1 ∪ {σϕ|Γn−1 ⊇ σP ∧ P � ϕ}
Γ ∗ :=

⋃
n Γn

From the last section we know how to construct Γn−1 ⊇ σP , thus the recursive
construction of Γn is clear. And Γ ∗ is the fixed point which exists essentially due
to the finite number of sequents.

It should be mentioned that we are not bound to a particular logic6 in
our definition of Γ ∗. We rely only on entailment systems and consider the
sequent relation as a subrelation of the entailment relation. From the entail-
ment axioms it can be shown that in fact Γ ∗ is entailed in Γ ; i.e. all state-
ments in Γ ∗ are derivable from Γ in the entailment system. In particular for
Γn−1 ⊇ σP and P � ϕ we know that Γn entails σ(P ∪ϕ) and since P ∪ ϕ
can be viewed as a partial theory we call this entailment a partial theory
inclusion.

Let us now assume that we build our transitive closure, now denoted by Γ ′∗,
only with total theory inclusions. This would imply that P in the definition
of Γn would not be just the assumptions needed to derive ϕ, but all axioms
from the theory where ϕ was derived; i.e. often more than needed for an ac-
tual proof. Γn can become only smaller or at best stay the same when P is
increased in Γn−1 ⊇ σP . Therefore Γ ′∗ is always at best equal to Γ ∗, but of-
ten smaller. Which means that partial theory inclusion yields a better theorem
reuse.
6 Moreover we are not interested in the details of the proofs.
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5 Abstraction of Formulae and Sequents

For efficiency reasons as mentioned in section 3 we will now introduce a notion
of formula abstraction and extend it to abstraction of a sequent. The basic idea
is to separate structure and content of a formula where we mean by content the
symbols of a signature occurring in a formula.

Abstraction of formulae. We consider only closed formulae (i.e. formulae with
free variables universally quantified). We classify the symbols of our logic into
constants (subsuming also function and relation symbols), variables (possibly
higher-order), and logical constants.

Let c be a constant, v be a variable, x be a variable or a logical constant,◦be
any symbol, Q be a quantifier, and ϕj be a formula. We define recursively a
function f that maps to each formula its structure:

f(c) = �, f(x) = x, f(Qv.ϕ) = Qv.f(ϕ)

f(◦(ϕ1, . . . , ϕn)) = f(◦)(f(ϕ1), . . . , f(ϕn)

Thus f just removes all signatures symbols out of the formula and replaces it by
a placeholder. Moreover we assume that our f renames all bound variables in a
standardized way7 such that structural identity is relieved from α-equivalence.
For readability we abandon this α-standardizations in our examples, but choose
instead our bound variables conveniently which makes α-standardization unnec-
essary.

Our second function p collects in a list all the signature symbols from a
formula. Here is its recursive definition8:

p(c) = (c), p(x) = (), p(Qv.ϕ) = p(ϕ)

p(◦(ϕ1, . . . , ϕn)) = p(◦) :: p(ϕ1) :: . . . :: p(ϕn)

The following example demonstrates f and p on a formula ϕ. Note, in our defini-
tions of f and p the formulae are supposed to be in prefix notation. For a better
readability, however, we give the example in usual infix notation9:

The formula : ϕ := ∀a, b, c.a ∗ (b+ c) � (a ∗ b) + (a ∗ c)
its structure : f(ϕ) = ∀a, b, c.a�(b�c) � (a�b)�(a�c)
its constants : p(ϕ) = (∗,+, ∗,+, ∗)

Let F be the set of all formulae, N a set of identifiers, and ind : f(F) ↔ N a
bijective mapping. We define the formula abstraction λ on F thus

λ(ϕ) := (ind(f(ϕ)), p(ϕ))

7 This actually one step of normalization as described in [9].
8 The symbol ”::” denotes the list append operator.
9 Equality in the meta language is denoted by ”=” and by ”�” in the object language.
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Let’s take for example ϕ from above and assume that ind(f(ϕ)) = dist then we
get from ϕ the abstraction λ(ϕ) := (dist, (∗,+, ∗,+, ∗)). Instead of this tuple
notation we also use the meta term notation : ”dist(∗,+, ∗,+, ∗)”.

The inverse of formula abstraction is called formula instantiation. For example
the instantiation of the meta term dist(∩,∪,∩,∪,∩) would give the concrete
formula ∀a, b, c.a ∩ (b ∪ c) � (a ∩ b) ∪ (a ∩ c).

Let’s return to the efficiency issue mentioned in section 3: The constant sym-
bols from the signature are the only symbols subjected to the signature mor-
phisms and these are exactly the only visible symbols in the abstract level. Since
there is a bijection between the abstract and the concrete level we can apply
the signature morphisms as well on abstract level as on the concrete level. How-
ever, the formulae on the abstract level are much more compact which makes
matching faster.

Abstraction of sequents. Let s be a function that takes a formula ϕ and collects
in a set all signature symbols occurring in ϕ. The abstraction of formulae is then
extended to abstraction of sequents as follows:

λ(ϕ1, . . . , ϕn � ψ) = ∀s1, . . . , sm.λ(ϕ1) ∧ . . . ∧ λ(ϕn) ⇒ λ(ψ)

where {s1, . . . , sm} =
⋃n

k=1 s(ϕk)∪ s(ψ). Note, the logical symbols occurring on
the right hand side of equality are part of the abstract sequent – they should
not be mixed up with the logical symbols from the concrete level.

For example given the following concrete sequent:

∀a.a + 0 � a, ∀a.∃b.a− b � 0 � ∀a.∃b.a+ (a− b) = a

and furthermore assume we have for the formulae involved the following
abstractions:

Table 1. Example of formulae abstractions

ϕ λ(ϕ) s(ϕ)
∀a.a + 0 � a neut(+, 0) {+, 0}
∀a.∃b.a − b � 0 inv(−, 0) {−, 0}
∀a.∃b.a + (a − b) = a abs(+,−) {+, −}

This would turn the concrete sequent from above into this abstracts sequent:

∀+,−, 0. neut(+, 0) ∧ inv(−, 0) ⇒ abs(+,−)

Abstraction of typed formulae. For typed formulae the abstraction process must
be slightly extended. The basic intuition is that types can be considered as
(untyped) formulae. Instead of developing here the whole mechanism formally
we want to illustrate the idea by example. The first step is exactly as in the
untyped situation:
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The formula : ϕ := ∀f : i→ i.∃a : i, g : i→ i.a ∗ g > f

its structure : f(ϕ) = ∀f : i→ i.∃a : i, g : i→ i.(a�g)�f
its constants : p(ϕ) = (∗ : i× i→ i, >: i× i→ o)

In the second step we treat the types as formulae:

f(∗ : i× i→ i) = f(>: i× i→ o) = � : �×� → �

p(∗ : i× i→ i) = (∗, i, i, i) andp(>: i× i→ o) = (>, i, i, o)

Let us assume the following names for the two structures:

mult := ind(f(ϕ)) and op := ind(� : �×� → �)

Then we get finally the abstracted formula:

mult(op(∗, i, i, i), op(>, i, i, o))

From this information we can reconstruct the original formula (modulo α-
renaming of the bound variables).

6 An Illustrative Example

In this section we want to demonstrate on some example theories how a system
would accomplish theorem reuse which implements the methods from above.
Assume we have a collection consisting of the following theories S and S′: 10

Table 2. Two source theories S and S ′

S S ′

axioms

(s1) ∀a, b.a � b � b � a
(s2) ∀a, b.a � b � b � a
(s3) ∀a, b.a � (a � b) � a
(s4) ∀a, b.a � (a � b) � a

(s′1) ∀a.a|a � a
(s′2) ∀a, b.a � b ⇔ a|b � a

theorems
(s5) ∀a.a � a � a
(s6) ∀a, b.a � b � a ⇒ a � b � b

(s′3)∀a.a � a

Now we create a new theory T containing only axioms. We want the system
to reuse in our target theory T as many theorems from our source theories S
and S′ as possible in the way described above. At first we observe that there
is neither for S nor for S′ a signature morphism σ such that T ⊇ σ(Ax(S))
or T ⊇ σ(Ax(S′)). Hence the method to make theorem reuse via total theory
inclusion fails completely.

Fortunately we can do better with partial theory inclusions under the as-
sumption that the user or theorem prover records for each proven theorem in
the theory its minimal set of premises; i.e. the sequent. In our example we have:
10 For readability of formulae we use in this section again usual infix instead of prefix

notation.
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Table 3. A new target theory T

T

axioms
(t1) ∀a, b.a ∪ (a ∩ b) � a
(t2) ∀a, b.a ∩ (a ∪ b) � a
(t3) ∀a, b.a ⊆ b ⇔ a ∩ b � a

theorems ?

– s3, s4 � s5
– s1, s2 � s6
– s′1, s′2 � s′3

Formula abstraction. At first the database of all formula abstractions needs to
be updated:

Table 4. Abstraction of all recorded formulae

ϕ f(ϕ) ind(f(ϕ))
s1, s2 ∀a, b.a�b � b�a com
s3, s4, t1, t3 ∀a, b.a�(a�b) � a abs
s5, s′1 ∀a.a�a � a idem
s′2, t3 ∀a, b.a�b ⇔ a�b � a ord
s6 ∀a, b.a�b � a ⇒ a�b � b dual
s′3 ∀a.a�a refl

For every row of this table the entries in the first column lists all formulae
which have the structure recorded in the second column and in the third column
the identifiers11 are recorded giving each formula structure a name.

Sequent abstraction. From the formula abstraction database and the concrete
sequents listed above the system computes the abstract sequents:

Table 5. Abstraction of all recorder sequents

concrete sequents abstract sequents
s3, s4 � s5 ∀R1, R2, R3. abs(R1, R2) ∧ abs(R2, R1) ⇒ idem(R3)
s1, s2, s3 � s6 ∀R1, R2. com(R1) ∧ com(R2) ∧ abs(R1, R2) ⇒ dual(R1)
s′1, s′2 � s′3 ∀R1, R2. idem(R1) ∧ ord(R1, R2) ⇒ refl(R2)

Abstraction of the target theory. From the formula abstraction database and
the concrete axioms of the target theory T the system computes the abstracted
version of T :
11 For readability we chose intuitive names where actually generic identifiers would be

generated.
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Table 6. Abstraction of the target theory

T

axioms
(t1) abs(∪, ∩)
(t2) abs(∩, ∪)
(t3) ord(⊆, ∩)

The transitive closure of the abstract target theory. With the abstract target the-
ory as facts and the abstract sequents as rules the system computes the transitive
closure of the target theory as the Herbrand model for these facts and rules. Del-
egating this job to the model generator KRHyper yields the following session:

Table 7. The transitive closure of the abstract target theory in a KRHyper session

Input of facts and rules model as output
KRH> abs(cap,cup).
KRH> abs(cup,cap).
KRH> ord(sub,cap).
KRH> idem(A):-abs(A,B),abs(B,A).
KRH> dual(A):-abs(A,B),com(A),com(B).
KRH> refl(A):-idem(B),ord(A,B).

abs(cap,cup)
abs(cup,cap)
ord(sub,cap)
idem(cap)
idem(cup)
refl(sub)

The transitive closure of the concrete target theory. Finally the system translates
the result from the abstract level back to the concrete level:

Table 8. The final target theory T with theorems reused from the source theories S
and S ’

T

axioms
(t1) ∀a, b.a ∪ (a ∩ b) � a
(t2) ∀a, b.a ∩ (a ∪ b) � a
(t3) ∀a, b.a ⊆ b ⇔ a ∩ b � a

theorems
(t4) ∀a.a ∩ a � a
(t5) ∀a.a ∪ a � a
(t6) ∀a.a ⊆ a

Thus the system has derived three theorems from the axioms of T by reusing
two theorems from the source theories S and S′. Note that the idempotence
theorem was reused in two variants.

Cyclic theory inclusions The simple example from above may raise the question
how this forward chaining copes with cyclic theory inclusions. Such cyclic inclu-
sions are not at all pathological. A very popular example can be found in basic
group theory: Having the left neutral as axiom we can prove the right neutral
property and vice versa. Translating this to abstract sequents would yield cyclic



50 I. Normann

rules. However, this kind of cycles would not cause KRHyper to run forever.
Only rules of the kind f(f(X)):-f(X) generate infinite Herbrand models. But
this kind of rules are never the result of sequent abstraction.

Remarks on the triviality of the given examples. A working mathematician may
immediately object that theorems such as that from the example above are
not at all impressing. In fact every theorem found by our method is presumably
trivial from a mathematicians perspective. This is not surprising since consistent
formula matching and applying Horn clauses never constitutes a sophisticated
proof as mathematicians appreciate. Finding a sophisticated proof is not at all
the primary goal.

The actual strength of the method presented here is the ability of scanning
masses of formulae. Mathematicians are unsurpassable in their dedicated field,
but machines are good in precision and mass processing - they can discover useful
things which are simply overlooked by humans. In this sense the proposed method
rather aims to be an assistant tool: It may find almost only theorems which are
folklore to mathematician in a research area where this theorem comes from. Nev-
ertheless this seemingly trivial theorem is exactly what another mathematician
from a different research area with a different background is looking for.

7 Limitations and Future Work

First of all it must be conceded that important parts of the methods described
here need to be implemented. The current implementation can load formulae in
the CASL format12, normalize and abstract them, and build up in the working
memory a database of abstracted formulae as well abstracted sequents. All the
implementations are well integrated into Hets which is written in Haskell. A
communication with KRHyper is not yet implemented and a persistent database
for these abstracted formulae and sequents does not exist either.

All this is planned in the near future as well as case studies on large real world
math libraries. Unfortunately, the author hase not found so far a library which
explicitly keeps track of the minimal premises for each of its theorem. May be
the potential use of such information has been simply overseen by the creators
of the libraries. Although many libraries store the proofs of their theorem it
is a tedious and very library specific programming task to extract the sequent
information out of the proof. This is not done so far.

Apart from these rather implementational issues there are some rather
theoretical:

So far we have considered only simple signature morphisms meaning mor-
phism which only rename symbols of a theories signature. In fact the Hets
system which is the current test bed for this work does support only simple sig-
nature morphisms. A generalization to signature morphisms mapping symbols
to terms is subject of future work.

12 The load process is actually executed by Hets.
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Concerning typed formulae the current implementation of formula abstraction
is restricted to a simple type system with overloading. There are certainly many
other non-simple type systems around worth to be supported. With the general
approach handling types like untyped formulae it should not be a fundamental
problem to support other non-simple type systems. This will be done if required
e.g. in a case study.

After a new theorem is proven in a certain theory T of the development graph
one has in a dg-system almost immediately access to this theorem from all other
theories which are connected to T via theory inclusions or imports. The only
operation executed is a fast translation between the theories. Our model gener-
ation is inferior in this respect: Proving a new theorem would mean upgrading
the database by one abstract sequent. Calculating from the upgraded database
the transitive closure of a theory would not require a new model generation
which involves a lot of backtracking. But after all this additional time expense
is rewarded with the higher theorem reuse factor.

8 Conclusion

We presented a method for theorem reuse based on partial theory inclusion which
is related to total theory inclusion from development graph. We have shown
that partial theory inclusion can increase the theorem reuse factor of that from
total theory inclusion. This new method makes use of many to many formulae
matching for the search of theory inclusions - a feature not yet supported by
current system implementing the development graph. For efficiency all formulae
and partial theories (=sequents) are abstracted before Matching is conducted.
On this abstract level theory axioms correspond to Prolog facts and sequents to
Horn clauses. The maximum of theorem reuse in some target theory T by this
method is building a Herbrand model from the facts representing the axioms
of T and the Horn clauses representing all partial theories of the whole theory
collection. As a proof of concept this method was tested on a small collection of
partial theories with the model generator KRHyper.
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Abstract. We present in this paper an automatic way to combine any
first-order theory T with the theory of finite or infinite trees. First of all,
we present a new class of theories that we call zero-infinite-decomposable
and show that every decomposable theory T accepts a decision proce-
dure in the form of six rewriting which for every first order proposition
give either true or false in T . We present then the axiomatization T ∗

of the extension of T into trees and show that if T is flexible then its
extension into trees T ∗ is zero-infinite-decomposable and thus complete.
The flexible theories are theories having elegant properties which enable
us to eliminate quantifiers in particular cases.

1 Introduction

The theory of finite or infinite trees plays a fundamental role in programming.
Recall that Alain Colmerauer has described the execution of Prolog II, III and IV
programs in terms of solving equations and disequations in this theory [6, 9, 2].
He has first introduced in Prolog II the unification of infinite terms together with
a predicate of non-equality [8]. He has then integrated in Prolog III the domain
of rational numbers together with the operations of addition and subtraction
and a linear dense order relation without endpoints [5, 7]. He also gave a general
algorithm to check the satisfiability of a system of equations, inequations and
disequations on a combination of trees and rational numbers. Finally, in Prolog
IV, the notions of list, interval and Boolean have been added [10, 2].

We present in this paper an idea of a general extension of the model of Prolog
IV by allowing the user to incorporate universal and existential quantifiers to
Prolog closes and to decide the validity or not validity of any first-order propo-
sition (sentence) in a combination of trees and first-order theories. For that:

(1) we give an automatic way to generate the axiomatization of the combina-
tion of any first order theory T with the theory of finite or infinite trees,

(2) we present simple conditions on T and only on T so that the combination
of T with the theory of finite or infinite trees is complete and accepts a decision
algorithm in the form of six rewriting rules which for every proposition give
either true or false.

One of major difficulties in this work resides in the fact that the two theo-
ries can possibly have non-disjoint signatures. Moreover, the theory of finite or
infinite trees does not accept full elimination of quantifiers.

J. Calmet, T. Ida, and D. Wang (Eds.): AISC 2006, LNAI 4120, pp. 53–67, 2006.
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The emergence of general constraint-based paradigms, such as constraint logic
programming [19], constrained resolution [3] and what is generally referred to
as theory reasoning [1], rises the problem of combining decision procedure for
solving general first order constraints. Initial combinations results were provided
by R. Shostak in [27] and in [28]. Shostak’s approach is limited in scope and not
very modular. A rather general and completely modular combination method
was proposed by G. Nelson and D. Oppen in [21] and then slightly revised in [22].
Given, for i = 1, ..., n a procedure Pi that decides the satisfiability of quantifier-
free formulas in the theory T1 ∪ ... ∪ Tn. A declarative and non-deterministic
view of the procedure was suggested by Oppen in [24]. In [30], C. Tinelli and
H.Harandi followed up on this suggestion describing a non-deterministic version
of the Nelson-Oppen approach combination procedure and providing a simpler
correctness proof. A similar approach had also been followed by C. Ringeissen
in [26] which describes the procedure as a set of a derivation rules applied non-
deterministically.

All the works mentioned above share one major restriction on the constraint
languages of the component reasoners: they must have disjoint signatures, i.e. no
function and relation symbols in common. (The only exception is the equality
symbol which is however regarded as a logical constant). This restriction has
proven really hard to lift. A testament of this is that, more than two decades
after Nelson and Oppen’s original work, their combination results are still state
of the art.

Results on non-disjoint signatures do exists, but they are quite limited. To
start with, some results on the union of non-disjoint equational theories can be
obtained as a by-product of the research on the combination of term rewriting
systems. Modular properties of term rewriting systems have been extensively
investigated (see the overviews in [23] and [18]). Using some of these properties
it is possible to derive combination results for the word problem in the union
of equational theories sharing constructors1. Outside the work on modular term
rewriting, the first combination result for the word problem in the union of
non-disjoint constraint theories were given in [16] as a consequence of some
combination techniques based on an adequate notion of (shared) constructors.
C. Ringeissen used similar ideas later in [25] to extend the Nelson-Oppen method
to theories sharing constructors in a sense closed to that of [16].

Recently, C. Tinelli and C. Ringeissen have provided some sufficient conditions
for the Nelson-Oppen combinability by using a concept of stable Σ-freeness
[29], a natural extension of Nelson-Oppen’s stable-infiniteness requirement for
theories with non-disjoint signatures. As for us, we present a natural way to
combine the theory of finite or infinite trees with any first order theory T which
can possibly have a non-disjoint signature. A such theory is denoted by T ∗ and
does not accept full elimination of quantifiers which makes the decision procedure

1 The word problem in an equational theory T is the problem of determining whether
a given equation s = t is valid in T , or equivalently, whether a disequation ¬(s = t)
is (un)satisfiable in T . In a term rewriting system, a constructor is a function symbol
that does not appear as the top symbol of a rewrite rule’s left-hand-side.
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not evident. To show the completeness of T ∗ we give simple conditions on T and
only on T so that its combination with the theory of finite or infinite trees, i.e.
T ∗, is complete and accepts a decision procedure which using only six rewriting
rules is able to decide the validity or not validity of any first order constraints
in T ∗.

This paper is organized in five sections followed by a conclusion. This in-
troduction is the first section. In Section 2, we recall the basic definitions of
signature, model, theory and vectorial quantifier. In Section 3, after having pre-
sented a new quantifier called zero-infinite, we present a new class of theories
that we call zero-infinite-decomposable. The main idea behind this class of theo-
ries consists in decomposing each quantified conjunction of atomic formulas into
three embedded sequences of quantifications having very particular properties,
which can be expressed with the help of three special quantifiers denoted by ∃?,
∃!, ∃Ψ(u)

o∞ and called at-most-one, exactly-one, zero-infinite. We end this section
by six rewriting rules which for every zero-infinite-decomposable theory T and
for every proposition ϕ give either true or false in T . The correctness of our
algorithm shows the completeness of the zero-infinite-decomposable theories. In
Section 4, we give a general way to generate the axioms of T ∗ using those of
T and show that if T is flexible then T ∗ is zero-infinite-decomposable and thus
complete. The flexible theories are theories having elegant properties which en-
able us to eliminate quantifiers in particular cases. We end this section by some
fundamental flexible theories.

The zero-infinite-decomposable theories, the decisionprocedure in zero-infinite-
decomposable theories, the axiomatization of T ∗ and the flexible theories are our
main contribution in this paper. A full version of this paper with detailed proofs
can be found in [13] and in the Ph.D thesis of K. Djelloul [14] (chapters 3 and 4).

2 Preliminaries

Let V be an infinite set of variables. Let S be a set of symbols, called a signature
and partitioned into two disjoint sub-sets: the set F of function symbols and
the set R of relation symbols. To each function symbol and relation is linked a
non-negative integer n called its arity. An n-ary symbol is a symbol of arity n.
A 0-ary function symbol is called a constant.

An S-formula is an expression of the one of the eleven following forms:

s = t, rt1 . . . tn, true, false,
¬ϕ, (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ→ ψ), (ϕ↔ ψ),

(∀xϕ), (∃xϕ),
(1)

with x ∈ V , r an n-ary relation symbol taken from F , ϕ and ψ shorter S-
formulas, s, t and the ti’s S-terms, that are expressions of the one of the two
following forms

x, ft1 . . . tn,

with x taken from V , f an n-ary function symbol taken from F and the ti shorter
S-terms
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The S-formulas of the first line of (1) are called atomic, and flat if they are
of the one of the five following forms:

true, false, x0 = fx1...xn, x0 = x1, rx1...xn,

with the xi’s possibly non-distinct variables taken from V , f ∈ F and r ∈ R.
If ϕ is an S-formula then we denote by var(ϕ) the set of the free variables

of ϕ. An S-proposition is an S-formula without free variables. The set of the
S-terms and the S-formulas represent a first-order language with equality.

An S-structure is a couple M = (D,F ), where D is a non-empty set of
individuals ofM and F a set of functions and relations in D. We call instantiation
or valuation of an S-formula ϕ by individuals of M , the (S∪D)-formula obtained
from ϕ by replacing each free occurrence of a free variable x in ϕ by the same
individual i of D and by considering each element of D as 0-ary function symbol.

An S-theory T is a set of S-propositions. We say that the S-structure M is a
model of T if for each element ϕ of T , M |= ϕ. If ϕ is an S-formula, we write
T |= ϕ if for each S-model M of T , M |= ϕ. A theory T is called complete if for
every proposition ϕ, one and only one of the following properties holds: T |= ϕ,
T |= ¬ϕ.

Let M be a model. Let x̄ = x1 . . . xn and ȳ = y1 . . . yn be two words on v of
the same length. Let ϕ and ϕ(x̄) be M -formulas. We write

∃x̄ ϕ for ∃x1...∃xn ϕ,
∀x̄ ϕ for ∀x1...∀xn ϕ,
∃?x̄ ϕ(x̄) for ∀x̄∀ȳ ϕ(x̄) ∧ ϕ(ȳ) →

∧
i∈{1,...,n} xi = yi,

∃!x̄ ϕ for (∃x̄ ϕ) ∧ (∃?x̄ ϕ).

The word x̄, which can be the empty word ε, is called vector of variables. Note
that the formulas ∃?εϕ and ∃!εϕ are respectively equivalent to true and to ϕ in
any model M .

3 Zero-Infinite-Decomposable Theories

In this section, let us fix a signature S∗ = F ∗∪R∗. Thus, we can allow ourselves to
remove the prefix S∗ from the following words: formulas, equations, theories and
models. We will also use the abbreviation wnfv for “without new free variables”.
We say that an S-formula ϕ is equivalent to a wnfv S-formula ψ in T if T |=
ϕ↔ ψ and ψ does not contain other free variables than those of ϕ.

3.1 Zero-Infinite Quantifier [15]

Let M be a model and T a theory. Let Ψ(u) be a set of formulas having at most
one free variable u. Let ϕ and ϕj be M -formulas. We write

M |= ∃Ψ(u)
o ∞ xϕ(x), (2)

if for each instantiation ∃xϕ′(x) of ∃xϕ(x) by individuals of M one of the
following properties holds:
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– the set of the individuals i of M such that M |= ϕ′(i), is infinite,
– for every finite sub-set {ψ1(u), .., ψn(u)} of elements of Ψ(u), the set of the

individuals i of M such that M |= ϕ′(i) ∧
∧

j∈{1,...,n} ¬ψj(i) is infinite.

We write T |= ∃Ψ(u)
o ∞ xϕ(x), if for every model M of T we have M |= ∃Ψ(u)

o ∞ xϕ(x).
This infinite quantifier holds only for infinite models, i.e. models whose set of

elements are infinite. Note that if Ψ(u) = {false} then (2) simply means that if
M |= ∃xϕ(x) then M contains an infinity of individuals i such that M |= ϕ(i).
The intuitions behind this definition come from an aim to eliminate a conjunction
of the form

∧
i∈I ¬ψi(x) in complex formulas of the form ∃x̄ ϕ(x) ∧

∧
i∈I ¬ψi(x)

where I is a finite (possibly empty) set and the ψi(x) are formulas which do not
accept full elimination of quantifiers.

3.2 Zero-Infinite-Decomposable Theory [15]

A theory T is called zero-infinite-decomposable if there exists a set Ψ(u) of for-
mulas, having at least one free variable u, a set A of formulas closed under
conjunction, a set A′ of formulas of the form ∃x̄α with α ∈ A, and a sub-set A′′

of A such that:

1. every formula of the form ∃x̄ α∧ψ, with α ∈ A and ψ a formula, is equivalent
in T to a wnfv formula of the form:

∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧ (∃x̄′′′ α′′′ ∧ ψ)),

with ∃x̄′ α′ ∈ A′, α′′ ∈ A′′, α′′′ ∈ A and T |= ∀x̄′′α′′ → ∃!x̄′′′α′′′,
2. if ∃x̄′α′ ∈ A′ then T |= ∃?x̄′ α′ and for every free variable y in ∃x̄′α′, one at

least of the following properties holds:
– T |= ∃?yx̄′ α′,
– there exists ψ(u) ∈ Ψ(u) such that T |= ∀y (∃x̄′ α′) → ψ(y),

3. if α′′ ∈ A′′ then
– the formula ¬α′′ is equivalent in T to a wnfv formula of the form

∨
i∈I αi

with αi ∈ A,
– for every x′′, the formula ∃x′′α′′ is equivalent in T to a wnfv formula

which belongs to A′′,
– for every variable x′′, T |= ∃Ψ(u)

o ∞ x′′ α′′,
4. every conjunction of flat formulas is equivalent in T to a wnfv disjunction of

elements of A,
5. if the formula ∃x̄′α′ ∧α′′ with ∃x̄′α′ ∈ A′ and α′′ ∈ A′′ has no free variables

then x̄ is the empty vector, α′ is the formula true and α′′ is either the formula
true or false.

3.3 A Decision Procedure for Zero-Infinite-Decompoable
Theories [14]

Let T be a zero-infinite-decomposable theory. The sets Ψ(u), A, A′ and A′′ are
known and fixed.
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Definition 3.3.1. A normalized formula ϕ of depth d ≥ 1 is a formula of the
form ¬(∃x̄ α ∧

∧
i∈I ϕi), where I is a finite possibly empty set, α ∈ A, the ϕi

are normalized formulas of depth di with d = 1 + max{0, d1, ..., dn}, and all
the quantified variables have distinct names and different form those of the free
variables.

Property 3.3.2. Every formula is equivalent in T to a normalized formula.

Definition 3.3.3. A final formula is a normalized formula of the form

¬(∃x̄′ α′ ∧ α′′ ∧
∧
i∈I

¬(∃ȳ′i β′
i)), (3)

with I a finite possibly empty set, ∃x̄′α′ ∈ A′, α′′ ∈ A′′, ∃ȳ′iβ′
i ∈ A′, α′′ is

different from the formula false, all the β′
i’s are different from the formulas true

and false.

Property 3.3.4. Let ϕ be a conjunction of final formulas without free variables.
The conjunction ϕ is either the formula true or the formula ¬true.

Property 3.3.5. Every normalized formula is equivalent in T to a conjunction
of final formulas.

Proof. We give bellow six rewriting rules which transform a normalized formula
of any depth d into a conjunction of final formulas equivalent in T . To apply
the rule p1 =⇒ p2 on a normalized formula p means to replace in p, the sub-
formula p1 by the formula p2, by considering the connector ∧ associative and
commutative.

(1) ¬
[
∃x̄ α ∧ ϕ∧
¬(∃ȳ true)

]
=⇒ true

(2) ¬
[
∃x̄ α ∧ false ∧ ϕ

]
=⇒ true

(3) ¬
[
∃x̄ α∧∧

i∈I ¬(∃ȳi βi)

]
=⇒¬

[
∃x̄′x̄′′ α′ ∧ α′′∧∧

i∈I ¬(∃x̄′′′ȳi α
′′′ ∧ βi)

]

(4) ¬
[
∃x̄ α ∧ ϕ∧
¬(∃ȳ′ β′ ∧ β′′)

]
=⇒

[
¬(∃x̄ α ∧ ϕ ∧ ¬(∃ȳ′ β′))∧∧

i∈I ¬(∃x̄ȳ′ α ∧ β′ ∧ β′′
i ∧ ϕ)

]

(5) ¬
[
∃x̄ α∧∧

i∈I ¬(∃ȳ′i β′
i)

]
=⇒¬

[
∃x̄′ α′ ∧ α′′∗∧

i∈I′ ¬(∃ȳ′i β′
i)

]

(6) ¬

⎡
⎢⎢⎣
∃x̄ α ∧ ϕ∧

¬
[
∃ȳ′ β′ ∧ β′′∧∧

i∈I ¬(∃z̄′i δ′i)

]
⎤
⎥⎥⎦ =⇒

[
¬(∃x̄ α ∧ ϕ ∧ ¬(∃ȳ′ β′ ∧ β′′))∧∧

i∈I ¬(∃x̄ȳ′z̄i α ∧ β′ ∧ β′′ ∧ δ′i ∧ ϕ)

]

with α an element of A, ϕ a conjunction of normalized formulas and I a finite
possibly empty set. In the rule (3), the formula ∃x̄ α is equivalent in T to a
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decomposed formula of the form ∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧ (∃x̄′′′ α′′′)) with ∃x̄′ α′ ∈ A′,
α′′ ∈ A′′, α′′′ ∈ A, T |= ∀x̄′′α′′ → ∃!x̄′′′α′′′ and ∃x̄′′′ α′′′ different from ∃ε true.
All the βi’s belong to A. In the rule (4), the formula ∃x̄ α is equivalent in T to
a decomposed formula of the form ∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧ (∃ε true)) with ∃x̄′ α′ ∈ A′

and α′′ ∈ A′′. The formula ∃ȳ′ β′ belongs to A′. The formula β′′ belongs to A′′

and is different from the formula true. Moreover, T |= (¬β′′) ↔
∨

i∈I β
′′
i with

β′′
i ∈ A. In the rule (5), the formula ∃x̄ α is not of the form ∃x̄ α1 ∧ α2 with
∃x̄ α1 ∈ A′ and α2 ∈ A′′, and is equivalent in T to a decomposed formula of the
form ∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧ (∃ε true)) with ∃x̄′ α′ ∈ A′ and α′′ ∈ A′′. Each formula
∃ȳ′i β′

i belongs to A′. The set I ′ is the set of the i ∈ I such that ∃ȳ′iβ′
i does not

contain free occurrences of a variable of x̄′′. Moreover, T |= (∃x̄′′α′′) ↔ α′′∗ with
α′′
∗ ∈ A′′. In the rule (6), I �= ∅, ∃ȳ′ β′ ∈ A′, ∃z̄′i δ′i ∈ A′ and β′′ ∈ A′′.
Let ψ be a formula without free variables, the decision of ψ proceeds as

follows:

1. Transform the formula ψ into a normalized formula ϕ which is equivalent to
ψ in T .

2. While it is possible, apply the rewriting rules on ϕ. At the end, we obtain a
conjunction φ of final formulas.

According to Property 3.3.5, the application of the rules on a formula ψ without
free variables produces a wnfv conjunction φ of final formulas, i.e. a conjunction
φ of final formulas without free variables. According to Property 3.3.4, φ is either
the formula true, or the formula ¬true, i.e. the formula false.

Corollary 3.3.6. If T is zero-infinite-decomposable then T is complete and
accepts a decision procedure in the form of six rewriting rules which for every
proposition give either true or false in T .

4 Extension of First-Order Theories into Trees

4.1 The Structure of Finite or Infinite Trees

Trees are well known objects in the computer science world. Here are some of them:

Their nodes are labeled by the symbols 0,1,s,f, of respective arities 0,0,1,2, taken
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from a set F of functional symbols which we assume to be infinite. While the
first tree is a finite tree (it has a finite set of nodes), the two others are infinite
trees and have an infinite set of nodes. We denote by A the set of all trees2

constructed on F .
We introduce in A a set of construction operations3, one for each element

f ∈ F , which is the mapping (a1, ..., an) → b, where n is the arity of f and b the
tree whose initial node is labeled by f and the sequence of suns is (a1, ..., an),
and which be schematized as:

We thus obtain the structure of finite or infinite trees constructed on F , which
we denote by (A,F ).

4.2 Theory of Finite or Infinite Trees

Let S be a signature containing only an infinite set of function symbols F .
Michael Maher has introduced the S-theory of finite or infinite trees [20]. The
axiomatization of this S-theory is the set of the S-propositions of the one of the
following forms:

1 ∀x̄∀ȳ f x̄ = f ȳ →
∧

i xi = yi,
2 ∀x̄∀ȳ ¬fx̄ = gȳ,
3 ∀x̄∃!z̄

∧
i zi = fi(z̄, x̄),

with f and g two distinct function symbols taken from F , x̄ a vector of variables
xi, ȳ a vector of variables yi, z̄ a vector of distinct variables zi and fi(x̄, z̄) an
S-term which begins with an element of F followed by variables taken from x̄z̄.

The first axiom is called axiom of explosion, the second one is called axiom
of conflict of symbols and the last one is called axiom of unique solution.

We show that this theory has as model the structure of finite or infinite trees
[12]. For example, using axiom 3, we have T |= ∃!xy x = f1y ∧ y = f0x. The
individuals x and y represents the two following trees in the structure of finite
or infinite trees:
2 More precisely, we define first a node to be a word constructed on the set of strictly

positive integers. A tree a on F , is then a mapping of type a : E → F , where E is a
non-empty set of nodes, each one i1 . . . ik (with k ≥ 0) satisfies two conditions: (1)
if k > 0 then i1 . . . ik−1 ∈ E and (2) if the arity of a(i1 . . . ik) is n, then the set of
the nodes E of the form i1 . . . ikik+1 is obtained by giving to ik+1 the values 1, ..., n.

3 In fact, the construction operation linked to the n-ary symbol f of F is the mapping
(a1, ..., an) → b, where the ai’s are any trees and b is the tree defined as follows from
the ai’s and their set of nodes Ei’s: the set E of nodes of a is {ε} ∪ {ix|x ∈ Ei and
i ∈ {1, ..., n} and, for each x ∈ E, if x = ε, then a(x) = f and if x is of the form iy,
with i being an integer, a(x) = ai(y).



Extension of First-Order Theories into Trees 61

4.3 Axiomatization of the Theory T + Tree or T ∗

Let us fix now a signature S containing a set F of function symbols and a set R
of relation symbols, as well as a signature S∗ containing:

– an infinite set F ∗ = F ∪ FA where FA is an infinite set of function symbols
disjoint from F .

– a set R∗ = R ∪ {p} of relation symbols, containing R, and an 1-ary relation
symbol p.

Let T be an S-theory. The extension of the S-theory T into trees is the S∗-
theory denoted by T ∗ and whose set of axioms is the infinite set of the following
S∗-propositions, with x̄ a vector of variables xi and ȳ a vector of variables yi:

1. Explosion: for all f ∈ F ∗ :

∀x̄∀ȳ ¬pfx̄ ∧ ¬pf ȳ ∧ fx̄ = f ȳ →
∧
i

xi = yi

2. Conflict of symbols: Let f and g be two distinct function symbols taken from
F ∗:

∀x̄∀ȳ f x̄ = gȳ → pfx̄ ∧ pgȳ

3. Unique solution

∀x̄∀ȳ (
∧
i

pxi) ∧ (
∧
j

¬pyj) → ∃!z̄
∧
k

(¬pzi ∧ zk = tk(x̄, ȳ, z̄))

where z̄ is a vector of distinct variables zi, tk(x̄, ȳ, z̄) an S∗-term which
begins by a function symbol fk ∈ F ∗ followed by variables taken from x̄, ȳ, z̄,
moreover, if fk ∈ F , then the S∗-term tk(x̄, ȳ, z̄) contains at least a variable
from ȳ or z̄

4. Relations of R: for all r ∈ R,

∀x̄ rx̄→
∧
i

pxi

5. Operations of F : for all f ∈ F ,

∀x̄ pfx̄↔
∧
i

pxi

(if f is 0-ary then this axiom is written pf)
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6. Elements not in T : for all f ∈ F ∗ − F ,

∀x̄ ¬pfx̄

7. Existence of an element satisfying p (only if F does not contain 0-ary function
symbols):

∃xpx,

8. Extension into trees of the axioms of T : all axioms obtained by the following
transformations of each axiom ϕ of T : While it is possible replace all sub-
formula of ϕ which is of the form ∃x̄ ψ, but not of the form ∃x̄ (

∧
pxi) ∧ ψ′,

by ∃x̄ (
∧

pxi)∧ψ and every sub-formula of ϕ which is of the form ∀x̄ ψ, but
not of the form ∀x̄ (

∧
pxi) → ψ′, by ∀x̄ (

∧
pxi) → ψ.

4.4 Example: Extension of Linear Dense Order Relations Without
Endpoints into Trees

Let F be an empty set of function symbols and let R be a set of relation symbols
containing only the relation symbol < of arity 2. If t1 and t2 are terms, then we
write t1 < t2 for < (t1, t2). Let Tord be the theory of linear dense order relation
without endpoints, whose signature is S = F ∪ R and whose axioms are the
following propositions:

1 ∀x¬x < x,
2 ∀x∀y∀z (x < y ∧ y < z) → x < z,
3 ∀x∀y x < y ∨ x = y ∨ y < x,
4 ∀x∀y x < y → (∃z x < z ∧ z < y),
5 ∀x∃y x < y,
6 ∀x∃y y < x.

Let now F ∗ be an infinite set of function symbols and R∗ = {<, p} a set of
relation symbols containing the 2-ary relation symbol < and the 1-ary relation
symbol p. Let S∗ be the signature F ∗ ∪ R∗. According to the transformations of
axioms given in Section 4.3, the axiomatization of the extension of the theory Tord
into trees is the S∗-theory Tord

∗ whose axioms are the following propositions:

1 ∀x̄∀ȳ ¬pfx̄ ∧ ¬pf ȳ ∧ fx̄ = f ȳ →
∧

i xi = yi

2 ∀x̄∀ȳ f x̄ = gȳ → pfx̄ ∧ pgȳ
3 ∀x̄∀ȳ (

∧
i pxi) ∧ (

∧
j ¬pyj) → ∃!z̄

∧
k(¬pzi ∧ zk = fk(x̄, ȳ, z̄))

4 ∀x∀y x < y → (px ∧ py),
5 ∀x̄¬pfx̄,
6 ∃xpx,
7 ∀xpx→ ¬x < x,
8 ∀x∀y∀z px ∧ py ∧ pz → ((x < y ∧ y < z) → x < z),
9 ∀x∀y (px ∧ py) → (x < y ∨ x = y ∨ y < x),
10 ∀x∀y (px ∧ py) → (x < y → (∃z pz ∧ x < z ∧ z < y)),
11 ∀xpx → (∃y py ∧ x < y),
12 ∀xpx → (∃y py ∧ y < x),
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where f and g are distinct function symbols taken from F∗, x, y, z variables, x̄ a
vector of variables xi, ȳ a vector of variables yi, z̄ a vector of distinct variables zi

and fk(x̄, ȳ, z̄) a term which begins by an element fk of F∗ followed by variables
taken from x̄ȳz̄.

5 Completeness of T ∗

We have given a general axiomatization of T ∗ using the axioms of T , what about
the completeness of T ∗? Are all the extensions into trees complete theories?
While in [15] we have shown the completeness of a combination of trees and
rational numbers, in this paper the challenge is to use general properties that
hold not only for rational numbers but for a large set of different theories Ti and
that make T ∗

i zero-infinite-decomposable and thus complete.
Let S = F ∪ R be a signature and T an S-theory. Let S∗ = F ∗ ∪ R∗ be

another signature with F ∗ an infinite set of function symbols containing F and
R∗ = R∪{p}. Let T ∗ be the S∗-theory of the extension of T into trees. Suppose
that the variables of V are ordered by a linear dense order relation without
endpoints denoted ".

5.1 Flexible Theory

Definition 5.1.1. We call leader of an S-equation α the greatest variable x in
α, according to the order ", such that T |= ∃!xα.

Definition 5.1.2. A conjunction of S-atomic formulas α is called formatted in
T if

– α does not contain sub-formulas of the form f1 = f2 or rf1...fn or y = x,
where all the fi’s are 0-ary function symbols taken from F , r ∈ R and x " y,

– each S-equation of α has a distinct leader which has no occurrences in other
S-equations or S-relations of α,

– if α′ is the conjunction of all the S-equations of α then for all x ∈ var(α′)
we have T |= ∃?xα′.

Definition 5.1.3. The theory T is called flexible if for each conjunction α of
S-equations and for each conjunction β of S-relations:

1. α∧β is equivalent in T to a formatted conjunction of atomic formulas wnfv,
2. the S-formula ¬β is equivalent in T to a disjunction wnfv of S-equations

and S-relations,
3. for all x ∈ V

– the S-formula ∃xβ is equivalent in T to false, or to a wnfv conjunction
of S-relations,

– for all x ∈ V , we have T |= ∃{faux}
o ∞ xβ.

Let us now present our main result

Theorem 5.1.4 If T is flexible then T ∗ is zero-infinite-decomposable.
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5.2 Some Fundamental Flexible Theories

We present in this section the axiomatization of some fundamental flexible the-
ories. Full proofs can be found in [14].

Infinite Clark equational theory: Let Cl be a theory together with an empty
set of function and relation symbols and whose axioms is the infinite set of
propositions of the following form:

(1n) ∀x1...∀xn∃y¬(x1 = y) ∧ ... ∧ ¬(xn = y), (4)

where all the variables x1...xn are distinct and (n �= 0). The form (4) is called
diagram of axiom and for each value of n there exists an axiom of Cl. This
theory Cl has been introduced by Clark [4] and has an infinite set of models
each one containing an infinite set of distinct individuals.

Additive rational or real numbers theory with addition and subtrac-
tion: Let F = {+,−, 0, 1} be a set of function symbols of respective arities
2, 1, 0, 0. Let R = ∅ be an empty set of relation symbols. The theory Ra of ad-
ditive rational or real numbers together with addition and subtraction consists
in the infinite set of propositions of the following form:

1 ∀x∀y x+ y = y + x,
2 ∀x∀y∀z x+ (y + z) = (x+ y) + z,
3 ∀xx + 0 = x,
4 ∀xx + (−x) = 0,
5n ∀xn.x = 0 → x = 0,
6n ∀x∃!y n.y = x,
7 ∀x∀y∀z (x = y) ↔ (x+ z = y + z),
8 ¬(0 = 1).

with n an non-null integer. This theory has two usual models: rational numbers
Q with addition and subtraction in Q and real numbers R with addition and
subtraction in R.

Linear dense order theory without endpoints: Let F be an empty set
of function symbols and R a set of relation symbols containing only the binary
relation symbol <. The theory Tord be the theory of the linear dense order
without endpoints consists in the set of propositions of the following form:

1 ∀x¬x < x,
2 ∀x∀y∀z (x < y ∧ y < z) → x < z,
3 ∀x∀y x < y ∨ x = y ∨ y < x,
4 ∀x∀y x < y → (∃z x < z ∧ z < y),
5 ∀x∃y x < y,
6 ∀x∃y y < x.
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Ordered additive rational or real numbers theory with addition and
subtraction: Let F = {+,−, 0, 1} be a set of function symbols of respective
arities 2, 1, 0, 0. Let R = {<} be a set of relation symbols containing only the
binary relation symbol <. The theory Tad of ordered additive rational or real
numbers theory with addition and subtraction consists in the infinite set of
propositions of the following form:

1 ∀x∀y x+ y = y + x,
2 ∀x∀y∀z x+ (y + z) = (x+ y) + z,
3 ∀xx+ 0 = x,
4 ∀xx+ (−x) = 0,
5n ∀xn.x = 0 → x = 0, (n �= 0)
6n ∀x∃!y n.y = x, (n �= 0)
7 ∀x¬x < x,
8 ∀x∀y∀z (x < y ∧ y < z) → x < z,
9 ∀x∀y (x < y ∨ x = y ∨ y < x),
10 ∀x∀y x < y → (∃z x < z ∧ z < y),
11 ∀x∃y x < y,
12 ∀x∃y y < x,
13 ∀x∀y ∀z x < y → (x+ z < y + z),
14 0 < 1.

with n a non-null integer.

6 Conclusion

We have defined in this paper a general idea for the extension of the models of
Prolog by giving an automatic way to combine any first order theory T with
the theory of finite or infinite trees. To show the completeness of T ∗ we have
introduced the flexible theories and have shown that if T is flexible then T ∗

zero-infinite-decomposable. The zero-infinite-decomposable theories are first or-
der theories having elegant properties which enable us to decide the validity of
any proposition using only six rewriting rules. The main idea behind this rules
consists in a local decomposition of quantified conjunctions of hybrid atomic
formulas, a partial elimination of quantifiers using the properties of the vectorial
quantifiers, and a special distribution to decrease the depth of the formulas.

There exists many practical applications of the extensions into trees of first
order theories. First-order constraints on trees can be expressed in a simpler way
when they are in the extension into trees of another structure. For example, the
constraints representing the moves in two players games introduced by Alain
Colmerauer and Thi-Bich-Hanh Dao [11, 12] can be represented by a simpler
constraint in the extension into trees of the integers together with the operations
of addition and subtraction and a linear dense order relation.

On the other hand, our decision algorithm can decide the validity or not
validity of big and complex propositions and can also be applied on formulas
having free variables and produces in this case a Boolean combination of basic
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formulas which does not accept full elimination of quantifiers. Unfortunately,
this algorithm is not able to detect formulas having free variables and being
always equivalent to false or true in T ∗. It does not warrant that a final formula
having at least one free variable is neither true nor false in T ∗ and can not
present the solutions of the free variables in a clear and explicit way. This is
why our algorithm is called decision procedure and not a general algorithm for
solving first order constraints. It would be interesting to transform our decision
procedure into a general algorithm for solving any first order constraint in T ∗

and which presents the solutions of the free variables in a clear and explicit way,
as it has been done in [11, 12] for the theory of finite trees and finite or infinite
trees. This kind of algorithm needs another work completely different from this
one, by introducing syntactic and semantic definitions much more complex than
the definition of flexible theories given in this paper. The implementation of a
such algorithm will enable us to extend the Prolog language by allowing the
user to solve any complex first order constraint, with or without free variables,
in many combinations of theories around trees.

Currently, we are trying to proof that every extension of a complete theory
into trees is complete and may be zero-infinite-decomposable. For that, we expect
to add new vectorial quantifiers in the decomposition such as ∃n which means
there exists n and ∃Ψ(u)

n,∞ which means there exists n or infinite, in order to increase
the size of the set of the zero-infinite-decomposable theories and may be get a
much more simple definition than the one defined in this paper. We plan also
with Thom Fruehwirth [17] to add to CHR a general mechanism to treat our
normalized formulas. This will enable us to implement quickly and easily our
algorithms and get a general idea on the expressiveness of first order constraints
in combinations of trees and first order theories.

Acknowledgements. We thank Alain Colmerauer for our many discussions
and his help in this work. We thank him too for the quality of her remarks and
advice on how to improve the organisation of this paper. We dedicate to him
this paper with our best wishes for a speedy recovery.
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Abstract. We prove that the properties of reachability, joinability and
confluence are undecidable for flat TRSs. Here, a TRS is flat if the heights
of the left and right-hand sides of each rewrite rule are at most one.
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1 Introduction

A term rewriting system (TRS) is a set of directed equations called rewrite rules.
It defines a binary relation on terms by replacement of a subterm matching a
left member of a rewrite rule by the corresponding right member. A TRS is
called confluent (or Church-Rosser) if any two terms obtained, by the rewriting
relation, from the same term are joinable. The confluence is a crucial property
for the application of rewriting as a model for computation as it ensures the
uniqueness of normal forms [1], and it has received much attention so far.

Confluence is undecidable in general, and even for restricted classes of TRS
like monadic or semi-constructor TRSs [11]. On the other hand, decidability
results have been established for several classes of TRSs, like e.g. ground (rewrite
rules having no variables) TRSs [13, 4, 2], flat (left and right members of rewrite
rules having height at most one) and rule-linear (a variable cannot occur more
than once in a rewrite rule) TRSs [17], and more recently for flat and right-
linear (a variable cannot occur more than once in a right member of rewrite
rule) TRSs [6].

In this paper, we demonstrate that the above linearity restriction is necessary
for decidability, showing that confluence is undecidable for flat TRSs, even with
only one non-right-linear flat rewrite rule. A previous proof of this result has been
published in [8]. However, we have found some technical flaws in this proof.
This paper presents a correct and detailed undecidability proof, which is also
significantly simpler than the one of [8].

The related properties of reachability (whether a given term can be reached
from another given term by rewriting) and joinability (whether two given terms
can be rewritten to the same term) are decidable for right-ground (right members
of rewrite rules have no variable) TRSs [14], for right-linear monadic TRSs [15, 12],
and for right-linear and finite-path-overlapping TRSs [16]. The latter two classes
properly include the class of flat and right-linear TRSs. We show in this paper that
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reachability and joinability are undecidable if we drop the right-linearity condi-
tion, i.e. it is undecidable for general flat TRSs.

The paper is organized as follows: after giving the definitions and nota-
tions in Section 2, we show in Section 3 that reachability is undecidable for
flat TRSs by reduction of the Post’s correspondence problem. It follows as a
corollary that joinability is also undecidable for the same class. Then, in Sec-
tion 4, we show that confluence is undecidable for flat TRSs, by a reduction of
reachability.

2 Preliminaries

We assume that the reader is familiar with the standard definitions of rewrite
systems [5, 1] and we just recall here the main notations used in this paper.

Let ε be the empty string. Let X be a set of variables. Let F be a finite set
of operation symbols graded by an arity function ar : F → N(= {0, 1, 2, · · · }),
Fn = {f ∈ F | ar(f) = n}. Let T be the set of terms built from X and F .
A substitution is a finite mapping from X to T . As usual, we identify substi-
tutions with their morphism extension to terms, and we use a postfix notation
for the application of substitutions. We use x as a variable, f, h as function
symbols, r, s, t as terms, θ as a substitution. A term s is ground if s has no vari-
able. The height of a term is defined as follows: height(a) = 0 if a is a variable
or a constant and height(f(t1, . . . , tn)) = 1 + max{height(t1), . . . , height(tn)} if
n > 0.

A position in a term a sequence of positive integers, and positions are par-
tially ordered by the prefix ordering ≥. Let s|p be the subterm of s at po-
sition p. Let s ≥sub t if t is a subterm of s. For a position p and a term t,
we use s[t]p to denote the term obtained from s by replacing the subterm s|p
by t.

A rewrite rule α → β is a directed equation over terms. A TRS R is a finite
set of rewrite rules. A term s reduces to t at position p by the TRS R, denoted
s −−→pR t (p and R may be omitted), if s|p = αθ and t = s[βθ]p for some rewrite
rule α → β and substitution θ. Let −−→= be → ∪ =, ← be the inverse of →
and −→∗ be the reflexive and transitive closure of →. The terms s and t are
joinable if s −→∗ · ←−∗ t, which is denoted s ↓ t. The term t is reachable from s if
s −→∗ t. The term r is confluent on the TRS R if for every peak s ←−−∗R r −−→∗R t,
we have s ↓ t. The TRS R is confluent if every term is confluent on R. Let
γ : s1 −−→p1 s2 · · · −−−−→pn−1 sn be a rewrite sequence. This sequence is abbreviated
by γ : s1 −→∗ sn and γ is called p-invariant if pi > p for every redex position pi

of γ; this is denoted by γ : s1 −−−−→>p ∗ sn.

Definition 1. A rule α → β is flat if height(α) ≤ 1 and height(β) ≤ 1. A rule
α → β is monadic if height(β) ≤ 1. A term s is shallow if s is a variable or
s = f(s1, · · · , sn) for some function symbol f and terms s1, · · · , sn such that
every si(1 ≤ i ≤ n) is either a variable or ground. A rule α → β is shallow if
both α and β are shallow. For C ∈ {flat, monadic, shallow}, R is C if every rule
in R is C.
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We are interested in the following decision problems:

Reachability. Given a TRS R and two terms s, t, does there exist a rewrite
sequence s −−→∗

R
t?

Joinability. Given a TRS R and two terms s, t, are s and t joinable, i.e., s ↓R t?
Confluence. Given a TRS R, is every term confluent on R?

Definition 2. A finite automaton is a 5-tuple (Q,Σ, δ, FQ, q0) whereQ is a finite
set of states, Σ is a finite set of input symbols, δ : Q × Σ → Q is a function,
FQ ⊆ Q is a finite set of final states, and q0 ∈ Q is the initial state.

3 Reachability and Joinability for Flat TRSs

In [8], it has been reported that reachability and joinability are also undecid-
able for flat TRSs. But, the undecidability proof of reachability contains a flaw.
We propose a repaired proof of undecidability for reachability which is sim-
pler than the former one. The proof is a reduction of the Post’s Correspon-
dence Problem (PCP) into the reachability of a constant 1 from a constant
0 using a a flat TRS R1. This TRS, constructed from the given instance of
PCP, is such that every rewrite sequence 0 −−→∗R1

1 contains a representation
of a solution of the PCP as a term t. This property is ensured, informally,
by running separately several sub-TRS of R1 on several copies of t, where
all copies have different colors and are under a function symbol of arity 6 or
7. Moreover, some equality tests are performed during the rewrite sequence
using R1, by means of a flat rewrite rules in R1 containing some non-linear
variables.

Let P = {〈ui, vi〉 ∈ Σ+ × Σ+ | 1 ≤ i ≤ k} be an instance of PCP.
The goal of the problem is to find a sequence of indices i1, . . . , in, possibly
with repetitions, such that the concatenations ui1 . . . , uin and vi1 . . . , vin are
equal. Note that the alphabet Σ is fixed. Let lP = max1≤i≤k(|ui|, |vi|). Let _
be a new symbol and Δ = {1, · · · , lP } × (Σ ∪ {_})2. We shall use a prod-
uct operator ⊗ which associates to two non-empty strings of Σ+ of length
smaller than or equal to lP a word of Δ∗ of length lP as follows: a1 · · · an ⊗
a′1 · · · a′m = 〈1, a1, a

′
1〉 · · · 〈lP , alP , a

′
lP
〉, where a1, · · · , an, a

′
1, · · · , a′m ∈ Σ, ai = _

for all i ∈ {n + 1, · · · , lP }, and a′j = _ for all j ∈ {m + 1, · · · , lP }. Note
that 〈1, _, _〉(s), 〈1, _, a′1〉(s), or 〈1, a1, _〉(s) can not be returned by
operator ⊗.

Example 1. Let lP = 4, then a⊗ bab = 〈1, a, b〉〈2, _, a〉〈3, _, b〉〈4, _, _〉.

Let A = (QA, Δ, δA, FQA , qA) and B = (QB, Σ, δB, FQB , qB) be two finite au-
tomata recognizing the respective sets L(A) = {ui ⊗ vi | 〈ui, vi〉 ∈ P}+ and
L(B) = Σ+. We may assume that both qA and qB are non final. We as-
sume that the automata A and B are clean (i.e., any state accepts some in-
put string and is reachable from the initial state qA(or qB) by some input
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string). We associate automata A,B with the following ground TRSs TA, TB,
respectively:

T
(i,j)
A = {q(i) → d(j)(q′(i)) | q′ ∈ δA(q, d)} ∪ {q(i) → e | q ∈ FQA}

T
(i,j)
B = {q(i) → a(j)(q′(i)) | q′ ∈ δB(q, a)} ∪ {q(i) → e | q ∈ FQB}

We assume given 13 disjoint copies of the above signatures, colored with color
i ∈ {0, · · · , 12}:

Σ(i) = {a(i) | a ∈ Σ}
Δ(i) = {d(i) | d ∈ Δ}

Q
(i)
A = {q(i) | q ∈ QA}

Q
(i)
B = {q(i) | q ∈ QB}

Let Θ012 = Δ(0) ∪ Σ(1) ∪ Σ(2), Θ345 = Δ(3) ∪ Δ(4) ∪ Σ(5), and Q = Q
(6)
A ∪

Q
(7)
A ∪Q

(8)
A ∪Q

(9)
A ∪Q

(10)
B ∪Q

(11)
B ∪Q

(12)
A . Let e be a constant. We assume that

ar(f) = 1 for every f ∈ Δ ∪ Σ. For a ground term t built from Δ ∪ Σ ∪ {e},
t(i) is defined as follows: e(i) = e and (f(t1))(i) = f (i)(t(i)1 ) for f ∈ Δ ∪ Σ and
term t1.

Now, we define the flat TRS R1 on an extended signature F0 = Q ∪ {e, 0, 1},
F1 = Θ012 ∪Θ345, F6 = {f}, and F7 = {g}. First, we color TA and TB:

T
(i,j)
A = {q(i) → d(j)(q′(i)) | q′ ∈ δA(q, d)} ∪ {q(i) → e | q ∈ FQA}

T
(i,j)
B = {q(i) → a(j)(q′(i)) | q′ ∈ δB(q, a)} ∪ {q(i) → e | q ∈ FQB}

Next, we define recoloring TRSs S, P and projection TRSs Π1, Π2:

S(i,j) = {a(i)(x) → a(j)(x) | a ∈ Σ}
P (i,j) = {d(i)(x) → d(j)(x) | d ∈ Δ}
Π

(i,j)
1 = {〈n, a, a′〉(i)(x) → a(j)(x) | n ∈ {1, · · · , lP }, a ∈ Σ, a′ ∈ Σ ∪ {_}}

∪{〈n, _, a′〉(i)(x) → x | n ∈ {2, · · · , lP }, a′ ∈ Σ ∪ {_}}
Π

(i,j)
2 = {〈n, a, a′〉(i)(x) → a′(j)(x) | n ∈ {1, · · · , lP }, a ∈ Σ ∪ {_}, a′ ∈ Σ}

∪{〈n, a, _〉(i)(x) → x | n ∈ {2, · · · , lP }, a ∈ Σ ∪ {_}}

The flat TRS R1 is defined as follows:

R0 = T
(6,3)
A ∪ T

(7,3)
A ∪ T

(8,4)
A ∪ T

(9,4)
A ∪ T

(10,5)
B ∪ T

(11,5)
B

∪P (3,0) ∪Π
(3,1)
1 ∪Π

(4,2)
2 ∪ P (4,0) ∪ S(5,1) ∪ S(5,2) ∪ T

(12,0)
A

R1 = R0 ∪

⎧⎪⎨
⎪⎩

0 → f(q(6)
A , q

(7)
A , q

(8)
A , q

(9)
A , q

(10)
B , q

(11)
B ),

f(x3, x3, x4, x4, x5, x5) → g(x3, x3, x4, x4, x5, x5, q
(12)
A ),

g(x0, x1, x2, x0, x1, x2, x0) → 1

⎫⎪⎬
⎪⎭
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By construction of R1, if 0 −−→∗
R1

1 then the rules of R1 are applied as described
in the following picture.

0 ε→ f( q(6)
A , q

(7)
A , q

(8)
A , q

(9)
A , q

(10)
B , q

(11)
B )

∗↓
T

(6,3)
A

∗↓
T

(7,3)
A

∗↓
T

(8,4)
A

∗↓
T

(9,4)
A

∗↓
T

(10,5)
B

∗↓
T

(11,5)
B

f( t3, t3, t4, t4, t5, t5)
ε↓
g( t3, t3, t4, t4, t5, t5, q

(12)
A )

∗↓P (3,0)
∗↓

Π
(3,1)
1

∗↓
Π

(4,2)
2

∗↓P (4,0)
∗↓S(5,1)

∗↓S(5,2)
∗↓

T
(12,0)
A

g( t0, t1, t2, t0, t1, t2, t0 ) ε→ 1

Indeed, each of the symbols 0 and 1 occurs in only one rewrite rule of R1, and
there is only one rule to transform the function symbol f into g.

Moreover, in the above rewrite sequence by R1, we have a subsequence
q
(12)
A −−−−−→∗

T
(12,0)
A

t0, which means that t0 has the form ((ui1⊗vi1) · · · (uim⊗vim)(e))(0)

for some i1, · · · , im ∈ {1, · · · , k}. We will show in Lemma 1 that:

q
(6)
A −−−−−−−−−→∗

T
(6,3)
A ∪P (3,0) t0 ←−−−−−−−−−∗

T
(9,4)
A ∪P (4,0) q

(9)
A

Figure 1 shows how colors are changed by the rules of R1.
Let G1 be the set of ground terms built from F0 ∪ F1 ∪ F6 ∪ F7.

6 1

3

7
012

8

4

9
2

5

10

11 1

Π1

TA

TA

TA

TA

TB

TB

S

S

P

P

Π2

TA

Fig. 1. Graph of the reduction of colors for R1
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Definition 3

(1) Let −−→∗
R

(s) = {t | s −−→∗
R

t}. For a subset C ⊆ {0, · · · , 12}, let GC be the
intersection of G1 and the set of ground terms built from e and colored
function symbols in ∪i∈C(Σ(i) ∪Δ(i) ∪Q

(i)
A ∪Q

(i)
B ).

(2) The index of an i-colored term built from Δ(i) ∪ {e} is a string of integers
defined as follows: index(e) = ε, and index(〈n, a, a′〉(i)(t)) = n index(t).

This Lemma 1 will be useful in the proof of the following Lemma 2.

Lemma 1. Assume that q(6)
A −−→∗R0

t0 and q
(9)
A −−→∗R0

t0 where
t0 = ((ui1 ⊗ vi1 ) · · · (uim ⊗ vim)(e))(0). Then, the following properties hold:

(1) q
(6)
A −−−−−−−−−→∗

T
(6,3)
A ∪P (3,0) t0

(2) q
(9)
A −−−−−−−−−→∗

T
(9,4)
A ∪P (4,0) t0

Proof

(1) By definition of R0, q
(6)
A −−−−−−−−−−−−−−→∗

T
(6,3)
A ∪P (3,0)∪Ξ

(3,1)
1

t0 where Ξ
(3,1)
1 is the subset of

Π
(3,1)
1 defined by:

Ξ
(3,1)
1 = {〈n, _, a′〉(3)(x) → x | n ∈ {2, · · · , lP }, a′ ∈ Σ ∪ {_}}.

Note that index(t0) = (1 · · · lP )m. In this rewrite sequence, if there is at
least one application of some rule of Ξ(3,1)

1 , index(t0) = (1 · · · lP )m does not
hold, since if we applied a rule 〈n, _, a′〉(3)(x) → x, then at most m − 1
symbols of n would be included in index(t0) whereas exactly m symbols of 1
in index(t0) (since any symbol of form 〈1, a, a′〉(3) can not be deleted). Thus,
the proposition holds.

(2) Similar to (1). �

Lemma 2. 0 −−→∗
R1

1 iff the PCP P has a solution.

Proof

Only if part: by definition of R1, we have:

0 −−→
R1

f(q(6)
A , q

(7)
A , q

(8)
A , q

(9)
A , q

(10)
B , q

(11)
B ) −−−−→

R0

>ε ∗ f(t3, t3, t4, t4, t5, t5)
−−→R1

g(t3, t3, t4, t4, t5, t5, q
(12)
A ) −−−−→R0

>ε ∗ g(t0, t1, t2, t0, t1, t2, t0)
−−→R1

1

By definition of R0:

−−→∗R0
(q(6)

A ) ⊆ G{0,1,3,6}, −−→∗R0
(q(7)

A ) ⊆ G{0,1,3,7},
−−→∗R0

(q(8)
A ) ⊆ G{0,2,4,8}, −−→∗R0

(q(9)
A ) ⊆ G{0,2,4,9},

−−→∗
R0

(q(10)
B ) ⊆ G{1,2,5,10}, −−→∗

R0
(q(11)

B ) ⊆ G{1,2,5,11}
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We first show that the following condition (I) holds:

ti ∈ G{i} ∀i ∈ {0, · · · , 5} (I)

Note that t3 ∈ G{0,1,3} holds, since t3 ∈−−→∗R0
(q(6)

A )∩ −−→∗
R0

(q(7)
A ).

Similarly, t4 ∈ G{0,2,4} and t5 ∈ G{1,2,5}.
Since t3 −−→∗R0

t0 and t4 −−→∗R0
t0, we have t0 ∈ G{0,1,3} ∩G{0,2,4} = G{0}.

Similarly, t1 ∈ G{0,1,3} ∩G{1,2,5} = G{1} and t2 ∈ G{0,2,4} ∩G{1,2,5} = G{2}.
Hence, the condition (I) holds for i ∈ {0, 1, 2}.

Since t3 −−→∗R0
t0 ∈ G{0} and t3 −−→∗R0

t1 ∈ G{1}, t3 can not contain any symbol in
G{0,1}, hence t3 ∈ G{3} holds.
Similarly, t4 ∈ G{4} holds because t4 −−→∗R0

t2 ∈ G{2} and t4 −−→∗R0
t0 ∈ G{0}, and

t5 ∈ G{5} holds because t5 −−→∗R0
t1 ∈ G{1} and t5 −−→∗R0

t2 ∈ G{2}.
Hence, (I) holds for i ∈ {3, 4, 5}, as claimed.

By (I), we have: t3−−−−→∗
Π

(3,1)
1

t1 ←−−−−∗
S(5,1) t5 and t4−−−−→∗

Π
(4,2)
2

t2 ←−−−−∗
S(5,2) t5.

Since q(12)
A −−→∗R0

t0, t0 = ((ui1 ⊗ vi1) · · · (uim ⊗ vim)(e))(0) for some i1, · · · , im ∈
{1, · · · , k}. We have m > 0 because the initial state qA is not final.
By Lemma 1, t3−−−−→∗

P (3,0) t0 ←−−−−∗
P (4,0) t4. Thus, t3 = ((ui1 ⊗ vi1) · · · (uim ⊗ vim)(e))(3)

and t4 = ((ui1 ⊗ vi1) · · · (uim ⊗ vim)(e))(4).
Since t3−−−−→∗

Π
(3,1)
1

t1, t1 = (ui1 · · ·uim(e))(1),

and since t4−−−−→∗
Π

(4,2)
2

t2, t2 = (vi1 · · · vim(e))(2).

Finally, t1←−−−−
S(5,1) t5 −−−−→∗

S(5,2) t2, hence t5 = (ui1 · · ·uim(e))(5) = (vi1 · · · vim(e))(5).
It means that the PCP P has a solution.

If part: let i1 · · · im be a solution of the PCP P , and let:

s = (ui1 ⊗ vi1 ) · · · (uim ⊗ vim)(e) and t = ui1 · · ·uim(e)

Then, t = vi1 · · · vim(e) holds. By definition of R1, we have:

0 → f(q(6)
A , q

(7)
A , q

(8)
A , q

(9)
A , q

(10)
B , q

(11)
B ) −→∗ f(s(3), s(3), s(4), s(4), t(5), t(5))

→ g(s(3), s(3), s(4), s(4), t(5), t(5), q(12)
A ) −→∗ g(s(0), t(1), t(2), s(0), t(1), t(2), s(0))

→ 1.

Hence, 0 −−→∗R1
1 �

As a consequence of Lemma 2, we have the following main theorem of this
section.

Theorem 1. Reachability is undecidable for flat TRSs.

Since 1 is a normal form, 0 −−→∗R1
1 iff 0 ↓R1 1. Thus, the following corollary holds.
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Corollary 1. Joinability is undecidable for flat TRSs.

Compared to the construction in [8] for Lemma 2, on the one hand, the above
TRS R1 is simpler and on the other hand, some rules have been added in order
to permit the reduction q

(12)
A −−−−−→∗

T
(12,0)
A

t0. This appeared to be necessary in order

to fix a bug [8] where a reduction 0 −→∗ 1 was possible with the TRS associated
to the PCP {〈aa, a〉, 〈a, ab〉} whereas it has no solution. The main reason for
this counter-example is for lack of some consideration such as Lemma 1 above
(derived from the existence of q(12)

A −→∗ ((ui1 ⊗ vi1 ) · · · (uim ⊗ vim)(e))(0) and the
definition of operator ⊗).

4 Confluence for Flat TRSs

We show that confluence for flat TRSs is undecidable by reduction of the reach-
ability problem which has been shown undecidable in the previous section. We
introduce some technical definitions in Sections 4.1.

4.1 Mapping Lemma

A mapping φ from T to T can be extended to TRSs as follows:

φ(R) = {φ(α) → φ(β) | α→ β ∈ R} \ {t→ t | t ∈ T }

Such a mapping φ can also be extended to substitutions by φ(θ) = {x %→ φ(xθ) |
x in the domain of θ}. The following lemma gives a characterization of conflu-
ence for a TRS R using φ(R).

Lemma 3. A TRS R is confluent iff there exists a mapping φ : T → T that
satisfies the following conditions (1)–(4).

(1) If s −−→
R

t then φ(s) −−−−→∗
φ(R) φ(t)

(2) −−−−→
φ(R) ⊆−−→∗

R

(3) t −−→∗
R

φ(t)
(4) φ(R) is confluent

Proof. Only if part: let φ be the identity mapping.
If part: assume that s←−−∗R r −−→∗R t.
By Condition (1), φ(s) ←−−−−∗

φ(R) φ(r) −−−−→∗
φ(R) φ(t).

By Condition (4), φ(s) ↓φ(R) φ(t).
By Condition (2), φ(s) ↓R φ(t).
By Condition (3), s −−→∗R φ(s) and t −−→∗R φ(t). Thus, s ↓R t. �

This lemma is used in Section 4.2.
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4.2 Proof of Undecidability

Let us introduce new function symbols Θ012
2 = {d2 | d ∈ Θ012}, where each d2

has arity 2. We add the following rules to the TRS R1 of Section 3:

R2 = R1 ∪ {e → 0} ∪ {d(x) → d2(0, x), d2(1, x) → x | d ∈ Θ012}

Note that the TRS R2 is flat. Let G2 be the set of ground terms built from
F0 ∪ F1 ∪ F6 ∪ F7 ∪Θ012

2 .
First, we show that 0 −−→∗R2

1 iff 0 −−→∗R1
1. For this purpose, we will introduce

another reduction mapping φ and another TRS R′
2 and show a technical lemma.

Let ψ be the mapping over G2 defined as follows.

ψ(h(t1, · · · , tn)) = e (if h ∈ {0, 1, f, g})
ψ(d2(t1, t2)) = d(ψ(t2)) (if d ∈ Θ012)

ψ(h(t1, · · · , tn)) = h(ψ(t1), · · · , ψ(tn)) (otherwise)

Let R′
2 = R1 ∪ {e → 0} ∪ {d(x) → d2(0, x) | d ∈ Θ012}.

Lemma 4. For any s ∈ G2, if s −−→R′
2

t then ψ(s) −−→=R1
ψ(t).

Proof. We prove this lemma by induction on the structure of s.

Base case: if s ∈ Q then s = ψ(s) −−→R1
ψ(t) = t.

If s ∈ {e, 0} then ψ(s) = ψ(t) = e.

Induction step

Case of s ∈ {f(s1, · · · , s6), g(s1, · · · , s7)}: in this case, ψ(s) = ψ(t) = e.
Case of s = d(s1) where d ∈ Θ345: if t = d(t1) and s1 −−→R′

2
t1 then ψ(s) =

d(ψ(s1)) −−→=R1
d(ψ(t1)) = ψ(t) by the induction hypothesis. Otherwise either

t = d′(s1) with d′ ∈ Θ012 and ψ(s) = d(ψ(s1)) −−→R1
d′(ψ(s1)) = ψ(t) or t = s1

and ψ(s) = d(ψ(s1)) −−→R1
ψ(s1) = ψ(t).

Case of s = d(s1) where d ∈ Θ012: if t = d(t1) and s1 −−→R′
2

t1 then ψ(s) =
d(ψ(s1)) −−→=R1

d(ψ(t1)) = ψ(t) by the induction hypothesis. Otherwise t =
d2(0, s1) and ψ(s) = ψ(t) = d(ψ(s1)).
Case of s = d2(s1, s2) where d ∈ Θ012: in this case, t = d2(t1, t2) holds for
some t1, t2 and either s1 −−→R′

2
t1 and s2 = t2 or s2 −−→R′

2
t2 and s1 = t1, hence

ψ(s) = d(ψ(s2)) −−→=R1
d(ψ(t2)) = ψ(t) by the induction hypothesis. �

Lemma 5. 0 −−→∗R2
1 iff 0 −−→∗R1

1.

Proof. The if part is obvious. For the only if part, by definition of R2, if 0 −−→∗
R2

1
then there exists a shortest sequence γ that satisfies:

γ : 0 −−→R1
f(q(6)

A , q
(7)
A , q

(8)
A , q

(9)
A , q

(10)
B , q

(11)
B ) −−−−→R2

>ε ∗ f(t3, t3, t4, t4, t5, t5)
−−→R1

g(t3, t3, t4, t4, t5, t5, q
(12)
A ) −−−−→R2

>ε ∗ g(t0, t1, t2, t0, t1, t2, t0)
−−→
R1

1.
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Note that d2(1, x) → x can not be applied in γ. Indeed, if d2(1, x) → x is applied
in γ, then γ must contain a subsequence 0 −−→∗R2

1 since 1 appears only in the
right-hand side of the rule g(x0, x1, x2, x0, x1, x2, x0) → 1, g is only generated
by the rule f(x3, x3, x4, x4, x5, x5) → g(x3, x3, x4, x4, x5, x5, q

(12)
A ), and f is only

generated by the rule 0 → f(q(6)
A , q

(7)
A , q

(8)
A , q

(9)
A , q

(10)
B , q

(11)
B ). This contradicts the

hypothesis that γ is a shortest sequence. Thus,

f(q(6)
A , q

(7)
A , q

(8)
A , q

(9)
A , q

(10)
B , q

(11)
B ) −−−−→

R′
2

>ε ∗ f(t3, t3, t4, t4, t5, t5)

and g(t3, t3, t4, t4, t5, t5, q
(12)
A ) −−−−→R′

2

>ε ∗ g(t0, t1, t2, t0, t1, t2, t0)

By Lemma 4 (for sake of readability, we shall write below x instead of ψ(x)):

f
(
q
(6)
A , q

(7)
A , q

(8)
A , q

(9)
A , q

(10)
B , q

(11)
B

)
−−→∗R1

f
(
t3, t3, t4, t4, t5, t5

)
and g

(
t3, t3, t4, t4, t5, t5, q

(12)
A

)
−−→∗R1

g
(
t0, t1, t2, t0, t1, t2, t0

)
Since ψ(q) = q for every q ∈ Q, 0 −−→R1

f
(
q
(6)
A , q

(7)
A , q

(8)
A , q

(9)
A , q

(10)
B , q

(11)
B

)
.

By definition of R1, f
(
t3, t3, t4, t4, t5, t5

)
−−→R1

g
(
t3, t3, t4, t4, t5, t5, q

(12)
A

)
and

g
(
t0, t1, t2, t0, t1, t2, t0

)
−−→R1

1. Altogether 0 −−→∗R1
1. �

We shall show next that R2 is confluent iff 0 −−→∗R2
1 by using Lemma 3. We need

the following lemma for that purpose.

Lemma 6. If 0 −−→∗R2
1 then t −−→∗R2

1 for any t ∈ G2.

Proof. First, we note that for any q ∈ Q, there exists s ∈ G2 which does
not contain any function symbol in Q such that q −−→∗R2

s. Since both of the
automata A and B are clean, there exists u ∈ Δ(3)∗ ∪Δ(4)∗ ∪Σ(5)∗ ∪Δ(0)∗ such
that q −−→∗

R0
u(e).

Thus, it suffices to show that for any t ∈ G2 which does not contain any
function symbol in Q, t −−→∗R2

1. We show this proposition by induction on the
structure of t:

Base case: by e −−→
R2

0 −−→∗
R2

1.

Induction step: let t = h(t1, · · · , tn) where n > 0 and h ∈ Θ012∪Θ345∪{f, g}∪
Θ012

2 . By the induction hypothesis, h(t1, · · · , tn) −−→∗R2
h(1, · · · , 1).

For every d ∈ Θ345, d(1) −−→R1
d′(1) for some d′ ∈ Θ012 or d(1) −−→R1

1.
For every d′ ∈ Θ012, d′(1) −−→R2

d′2(0, 1) −−→∗R2
d′2(1, 1).

For every d′2 ∈ Θ012
2 , d′2(1, 1) −−→R2

1.

Moreover, f(1, · · · , 1) −−→
R1

g(1, · · · , 1, q(12)
A ) −−→∗

R1
g(1, · · · , 1, u(e))

−−→∗R2
g(1, · · · , 1, 1)

−−→
R1

1 where u ∈ Δ(0)∗

�
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Let φ(t) be the term obtained from t by replacing every maximal ground subterm
(w.r.t. ≥sub) by 1. Note that:

φ(R0) = P (3,0) ∪Π
(3,1)
1 ∪Π

(4,2)
2 ∪ P (4,0) ∪ S(5,1) ∪ S(5,2)

φ(R1) = φ(R0) ∪
{

f(x3, x3, x4, x4, x5, x5) → g(x3, x3, x4, x4, x5, x5, 1),
g(x0, x1, x2, x0, x1, x2, x0) → 1

}
φ(R2) = φ(R1) ∪ {d(x) → d2(1, x), d2(1, x) → x | d ∈ Θ012}.

Note also that the rules of TA and TB vanish in φ(R0). The following technical
lemma is used in the proof of Lemma 8.

Lemma 7. For any non-constant function symbol h ∈ Θ012∪Θ345∪{f, g}∪Θ012
2 ,

h(1, · · · , 1) −−−−→∗
φ(R2)

1.

Proof

For every d ∈ Θ345, d(1) −−−−→φ(R1)
d′(1) for some d′ ∈ Θ012 or d(1) −−−−→φ(R1)

1.
For every d′ ∈ Θ012, d′(1) −−−−→

φ(R2)
d′2(1, 1).

For every d′2 ∈ Θ012
2 , d′2(1, 1) −−−−→φ(R2)

1.
Moreover, f(1, · · · , 1) −−−−→φ(R1)

g(1, · · · , 1) −−−−→φ(R1)
1. Thus, the lemma holds. �

We show now how the hypotheses of Lemma 3 hold for R2 and φ.

Lemma 8. If 0 −−→∗R2
1 then the following properties hold.

(1) If s −−→R2
t then φ(s) −−−−→∗

φ(R2) φ(t).
(2) −−−−→φ(R2)

⊆ −−→∗R2
.

(3) t −−→∗R2
φ(t).

(4) φ(R2) is confluent.

Proof

(1) By induction on the structure of s. If s is a ground term then φ(s) = φ(t) = 1.
Thus, we assume that s is not ground. Let s −−→pR2

t.
If p = ε then s = αθ → βθ = t where α→ β ∈ R2. Let s = h(s1, · · · , sn) for
some h ∈ Θ012 ∪Θ345 ∪ {f, g} ∪Θ012

2 and s1, · · · , sn, and α = h(a1, · · · , an).
Since R2 is flat, a1 · · ·an ∈ X ∪ F0. If ai is a variable then φ(aiθ) = aiφ(θ).
If ai is a constant then φ(si) = φ(ai) = 1. Thus, φ(s) = φ(α)φ(θ). Similarly,
φ(t) = φ(β)φ(θ), so φ(s) −−−−→φ(R2)

φ(t) holds.
If p �= ε then s = h(s1, · · · , si, · · · , sn), t = h(s1, · · · , ti, · · · , sn), and si −−→R2

ti where i ∈ {1, · · · , n}. Since s is not ground,

φ(s) = h(φ(s1), · · · , φ(si), · · · , φ(sn)).

By the induction hypothesis, φ(si) −−−−→∗
φ(R2)

φ(ti).
If t is not ground then h(φ(s1), · · · , φ(ti), · · · , φ(sn)) = φ(t).
If t is ground then h(φ(s1), · · · , φ(ti), · · · , φ(sn)) = h(1, · · · , 1).
By Lemma 7, h(1, · · · , 1) −−−−→∗

φ(R2)
1 = φ(t). Thus, φ(s) −−−−→∗

φ(R2)
φ(t) holds.
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(2) Since φ(R2) \
({

d(x) → d2(1, x) | d ∈ Θ012
}
∪
{
f(x3, x3, x4, x4, x5, x5) →

g(x3, x3, x4, x4, x5, x5, 1)
})

⊆ R2, it suffices to show that:

d(xθ) −−→∗R2
d2(1, xθ)

and f(x3θ, x3θ, x4θ, x4θ, x5θ, x5θ) −−→∗R2
g(x3θ, x3θ, x4θ, x4θ, x5θ, x5θ, 1)

We have that: d(xθ) −−→
R2

d2(0, xθ) −−→∗R2
d2(1, xθ).

By Lemma 6:

f(x3θ, x3θ, x4θ, x4θ, x5θ, x5θ) −−→R1
g
(
x3θ, x3θ, x4θ, x4θ, x5θ, x5θ, q

(12)
A

)
−−→∗R2

g(x3θ, x3θ, x4θ, x4θ, x5θ, x5θ, 1)

(3) By Lemma 6.
(4) We can easily show that φ(R2) is terminating by using a lexicographic path

order induced by a precedence > that satisfies the following conditions: for
any d ∈ Θ345, d′ ∈ Θ012, d′′ ∈ Θ012

2 , d > d′ > d′′ > 1 and f > g > 1. Thus, it
suffices to show that every critical peak of φ(R2) is joinable.
For every a, a′ ∈ Σ, 〈n, a, a′〉(0)(x) ← 〈n, a, a′〉(3)(x) → a(1)(x) is joinable

by: 〈n, a, a′〉(0)(x) → 〈n, a, a′〉(0)2 (1, x) → x← a
(1)
2 (1, x) ← a(1)(x).

For every a′ ∈ Σ, 〈n, _, a′〉(0)(x) ← 〈n, _, a′〉(3)(x) → x is joinable by:
〈n, _, a′〉(0)(x) → 〈n, _, a′〉(0)2 (1, x) → x.

For every a, a′ ∈ Σ, 〈n, a, a′〉(0)(x) ← 〈n, a, a′〉(4)(x) → a′(2)(x) is joinable
by: 〈n, a, a′〉(0)(x) → 〈n, a, a′〉(0)2 (1, x) → x← a

′(2)
2 (1, x) ← a′(2)(x).

For every a ∈ Σ, 〈n, a, _〉(0)(x) ← 〈n, a, _〉(4)(x) → x is joinable by:
〈n, a, _〉(0)(x) → 〈n, a, _〉(0)2 (1, x) → x.

For every a ∈ Σ, a(1)(x) ← a(5)(x) → a(2)(x) is joinable by:
a(1)(x) → a

(1)
2 (1, x) → x← a

(2)
2 (1, x) ← a(2)(x). �

Lemma 9. R2 is confluent iff 0 −−→∗R2
1.

Proof. The if part follows from Lemmata 3 and 8.
For the only if part, by 〈n, _, a′〉(0)(x)←−−−−

P (3,0) 〈n, _, a′〉(3)(x)−−−−→
Π

(3,1)
1

x, the conflu-

ence ensures that 〈n, _, a′〉(0)(x) ↓R2 x.
Since x is a normal form, 〈n, _, a′〉(0)(x) −−→∗

R2
x. Thus, there exists a sequence:

〈n, _, a′〉(0)(x) −−→
R2

〈n, _, a′〉(0)2 (0, x) −−→∗
R2

〈n, _, a′〉(0)2 (1, x) −−→
R2

x

It follows that 0 −−→∗R2
1 holds. �

By Lemmata 2, 5, 9, the following theorem holds.

Theorem 2. Confluence is undecidable for flat TRSs.

The above TRS R2 differs from the analogous one of [8]. Indeed, in some cases,
with the TRS of [8] we may have 0 −−→∗R2

1 whereas 0 −−→∗R1
1 does not hold, which

is a problem for the correctness of the reduction. This error was corrected in [9],
but Lemma 9 does not hold for the TRS of this report. Therefore, the above
TRS R2 and the above proof differ from the ones of [9].
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5 Concluding Remarks

We have shown that the properties of reachability, joinability and confluence
are undecidable for flat TRSs. These results are negative solutions to the open
problems posed in [7], and striking compared with the results that the word
and unification problems for shallow TRSs are decidable [3]. The undecidability
of reachability is shown by a reduction of the Post’s Correspondence Problem
and the case of joinability and confluence are treated both by a reduction of
reachability (with a non trivial reduction in the case of confluence).

The proof techniques involved in our constructions, namely term coloring in
Section 3, the criteria for confluence of Lemma 3 and the ground term mapping
of Section 4 appeared to be very useful in this context and we believe that they
could be of benefit to other decision problems.

Note that the only rules not linear in our TRS are f(x3, x3, x4, x4, x5, x5) →
g(x3, x3, x4, x4, x5, x5, q

(12)
A ) and g(x0, x1, x2, x0, x1, x2, x0) → 1 (both left and

right members of the first rule are non-linear and they share variables, which is
crucial in our reduction). Hence, we have narrowed dramatically the gap between
known decidable and undecidable cases of confluence, reachability and joinability
of TRS. All three properties are indeed decidable for TRSs whose left members
of rules are flat and right members are flat and linear [17, 12, 16].

It will be a next step to find non-right-linear subclasses of flat (or shallow)
TRSs with the decidable property for some of these decision problems. For ex-
ample, what about the class of flat and semi-constructor TRSs? Here, a semi-
constructor TRS is such a TRS that all defined symbols appearing in the right-
hand side of each rewrite rule occur only in its ground subterms.

Another interesting question is: does there exist a subclass of TRSs such that
exactly one of reachability and confluence is decidable? For the related question
about whether there exists a subclass such that exactly one of reachability and
joinability is decidable, the existence of such a confluent subclass has been shown
in [10, 11].
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Abstract. We present some new properties of triangular sets, which
have rather theoretical contribution to understand the structure of the
affine varieties of triangular sets. Based on these results and the famous
algorithm CharSet, we present two modified versions of the algorithm
CharSer that can decompose any nonempty polynomial set into charac-
teristic series. Some examples show that our improvement can efficiently
avoid for redundant decompositions, and reduce the branches of the de-
composition tree at times.

Keywords: Triangular sets, quasi-normal zero, characteristic set, algo-
rithm CharSer.

1 Introduction

Let K be a field of characteristic 0 and K[x1, . . . , xn] (or K[x] for short) the ring
of polynomials in the variables (x1, . . . , xn) with coefficients in K. A polynomial
set is a finite set P of nonzero polynomials in K[x]. For any polynomial P �∈ K,
the biggest index p such that deg(P, xp) > 0 is called the class, xp the leading
variable, and deg(P, xp) the leading degree of P , denoted by cls(P ), lv(P ) and
ldeg(P ), respectively. A finite nonempty ordered set T= [f1, . . . , fs] of polynomi-
als in K[x]\K is called a triangular set if cls(f1) < · · · < cls(fs). Let a triangular
set T be written as the following form

T = [f1(u1, . . . , ur, y1), . . . , fs(u1, . . . , ur, y1, . . . , ys)], (1)

where (u1, . . . , ur, y1, . . . , ys) is a permutation of (x1, . . . , xn), and we always
assume r ≥ 1 throughout this paper. Let F �= 0 be a polynomial and G any
polynomial in K[x], the pseudo-remainder of G with respect to F in lv(F ) de-
noted by prem(G,F ). One can see the detail definition in [18] or an alternative
one in [14]. For any polynomial set P ⊂ K[u, y1, . . . , ys]\K[u] and polynomial
P ∈ P, with the notation in [18], prem(P,T) stands for the pseudo-remainder
of P with respect to T, and res(P,T) the resultant of P with respect to T, re-
spectively. The extension field K̃ of K considered in this paper is the complex

J. Calmet, T. Ida, and D. Wang (Eds.): AISC 2006, LNAI 4120, pp. 82–93, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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number field. We speak about the set of all zeros of P in K̃n which is denoted by
Zero(P). It is obvious that Zero(P) is a closed set in Euclidean space K̃n. While
speaking about a polynomial system, we refer to a pair [P,Q] of polynomial sets.
The set all zeros of [P,Q] is defined as

Zero(P/Q) � {z ∈ K̃n : P (z) = 0, Q(z) �= 0, ∀P ∈ P, Q ∈ Q}.

For any triangular set T in the form (1), we write ldeg(T) for
∏

f∈T
ldeg(f),

and sat(T) the saturation ideal Ideal(T) : ini(T)∞, respectively. Cfi denotes the
set of all the nonzero coefficients of fi in yi, Ii = ini(fi) the leading coefficient
of fi in yi for each i, and ini(T) the set of all Ii. For any z̄ = (ū, ȳ1, . . . , ȳs) ∈
Zero(T), we write z̄{j} for ū, ȳ1, . . . , ȳj or (ū, ȳ1, . . . , ȳj) with ū = z̄{0} and
z̄ = z̄{s}.

A triangular set T = [f1, . . . , fs] is called a regular set which was introduced
independently by Yang and Zhang([23]) and Kalkbrener([9]), if res(Ii,T) �= 0, for
i = 2, 3, · · · , s. In addition, the notion of Lazard triangular sets was introduced
in [10] which are just special regular sets. Referring to [1, 2], one can find the
properties of Lazard triangular sets and regular sets.

The next assertion proved by Aubry et al. in [1] (see also Theorem 6.2.4
in [18]): A triangular set T is a regular set if and only if sat(T) = {P ∈ K[x] :
prem(P,T) = 0}.

Let T be a regular set in K[x]. A zero z0 ∈ Zero(T) is called a quasi-normal
zero if z{i−1}

0 /∈ Zero(Cfi) for any 1 ≤ i ≤ s, also said to be satisfying the
nondegenerate condition (see [25] for details). T is called a strong regular set if
every zero of T is also a quasi-normal zero. Referring to [12], we have Zero(T) =
Zero(sat(T)) if T is a strong regular set.

Let T be a regular set and P a polynomial in K[x]. The following properties
presented in [13] are equivalent:

– Zero(T/ini(T)) ⊆ Zero({P});
– for any quasi-normal zero z0 of T, z0 ∈ Zero({P});
– there exists an integer 0 < d ≤ ldeg(T) such that prem(P d,T) = 0.

It is natural question to ask whether the above interesting properties can ex-
tend to triangular sets in general. This effort has rather theoretical contribution
to understand the structure of the affine varieties of triangular sets.

2 Definitions and Properties

We will try to extend the theory of the weakly nondegenerate condition to tri-
angular sets in this section.

2.1 Preliminaries

The following definition is an extension of the concept of quasi-normal zero of
regular sets.
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Definition 1. Let T = [f1, . . . , fs] be a triangular set in K[x]. A zero z0 ∈
Zero(T) is called a quasi-normal zero of T if for any 1 ≤ i ≤ s, either condition
holds:

a. Ii(z
{i−1}
0 ) �= 0;

b. res(Ii,T) �= 0 and z{i−1}
0 /∈ Zero(Cfi).

Example 2. Let a triangular set T = [x2
1 − u2, x1(x1 + 1)x2

2 + vx2 + u(u −
1), (x1−u)x2

3 +x3−x2] in K[u, v, x1, x2, x3], which is not a regular set. The zero
z1 = (u = 1, v = 1, x1 = −1, x2 = 0, x3 = 0) is a quasi-normal zero of T, but the
zero z2 = (u = 0, v = 1, x1 = 0, x2 = 0, x3 = 0) is not.

Example 3. Let a triangular set T = [ux1 − s, vx2
2 + x2 − u, sx3 − u] in

K[s, u, v, x1, x2, x3]. It is easy to see that each element of the following set

X0 = {(s = 0, u = 0, v = w1, x1 = w2, x2 = 0, x3 = w3) : ∀wi ∈ K̃}

is not a quasi-normal zero of T.

For any triangular set T ⊂ K[x], we denote by QnZero(T) the set of all quasi-

normal zeros of T and by QnZero(T)
E

the closure of QnZero(T) in Euclidean
space K̃n. U(z∗, ε) denotes the ε-neighborhood of z∗ = (x∗1, . . . , x

∗
n) ∈ K̃n de-

fined by the set {z = (x1, . . . , xn) ∈ K̃n : |xi − x∗i | < ε, i = 1, · · · , n}.

Given a positive integer number n, we define a mapping Ψn of K̃n+1 into K̃[y]
as follows,

Ψn(a) = any
n + an−1y

n−1 + . . .+ a1y + a0 ∈ K̃[y],

for any a = (an, an−1, . . . , a1, a0) ∈ K̃n+1.

The following result is another description of Lemma 5 in [25] or Lemma 2 in
Chapter 3 in [24] with the above notation, which plays an important role in this
section.

Lemma 4. Let G = bky
k + · · · + b1y + b0 be a polynomial in K̃[y] with k ≥ 1

and bk �= 0. For any integer n ≥ k, ε > 0 and y∗ ∈ Zero({G}), there exits a δ > 0
such that

U(y∗, ε) ∩ Zero({Ψn(b)}) �= ∅

for any b ∈ U(b̃, δ) with b̃ = (

n−k︷ ︸︸ ︷
0, · · · , 0, bk, bk−1, . . . , b1, b0) ∈ K̃n+1.

2.2 Main Results

The following assertion is an extension of Theorem 2 in [25] or Theorem 1 in
Chapter 3 in [24].

Theorem 5. For any triangular set T = [f1(u, y1), . . . , fs(u, y1, . . . , ys)], we have

QnZero(T)
E ⊆ Zero(sat(T)).
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Proof: We first claim that QnZero(T) ⊆ Zero(sat(T)). For any given z∗ =
(u∗, y∗1 , · · · , y∗s) ∈ QnZero(T), we set η = {j : Ij(z∗{j−1}) = 0 for 1 ≤ j ≤ s}
with the above notation. Given any P ∈ sat(T), it follows that there exists an
integer d > 0 such that

(
s∏

i=1

Ii)dP ∈ Ideal(T).

If η = ∅, namely, Ii(z∗{i−1}) �= 0 for any 1 ≤ i ≤ s, then it is obvious that
z∗ ∈ Zero({P}).

Now consider the case η �= ∅, we assume without loss of generality that η =
{l1, . . . , lm} with 1 ≤ l1 ≤ · · · ≤ lm ≤ s. It follows from Definition 1 that

res(Ili ,T) ∈ K[u]\{0}, for 1 ≤ i ≤ m.

Supposing P (z∗) �= 0, by the continuity of the functions determined by P and
Ij for any j /∈ η, there is an ε > 0 such that

P (z) �= 0, Ij(z{j−1}) �= 0 for any j /∈ η and z ∈ U(z∗, ε). (2)

According to Lemma 4, we can obtain a number δs > 0 (with δs < ε) such that

U(y∗s , ε) ∩ Zero({fs(z{s−1}, ys)}) �= ∅

for any z{s−1} ∈ U(z∗{s−1}, δs) whether or not s ∈ η.
Analogously, we can find a number δs−1 > 0 (with δs−1 < δs) such that

U(y∗s−1, δs) ∩ Zero({fs−1(z{s−2}, ys−1)}) �= ∅

for any z{s−2} ∈ U(z∗{s−2}, δs−1) whether or not s− 1 ∈ η.
By doing in this way successively, · · ·, the numbers δs, δs−1, · · · , δ2 are obtained

one by one.
At last, we can obtain a number δ1 > 0 (with δ1 < δ2) such that

U(y∗1 , δ2) ∩ Zero({f1(z{0}, y1)}) �= ∅

for any z{0} ∈ U(z∗{0}, δ1).
Now set R =

∏
j∈η res(Ij ,T) ∈ K[u], Since the following set is a dense set in

K̃r

{u ∈ K̃r : R(u) �= 0},
we can get an u0 ∈ U(z∗{0}, δ1) with R(u0) �= 0. Starting from u0 by above
argument. It can be found successively the numbers y0

1 , · · · , y0
s such that

z0 = (u0, y
0
1 , · · · , y0

s) ∈ Zero(T) ∩U(z∗, ε).

This implies that Ii(z0) �= 0 for any 1 ≤ i ≤ s, so P (z0) = 0. This reduces a
contradiction to (2), hence P (z∗) = 0. It follows that QnZero(T) ⊆ Zero(sat(T)).

Since Zero(sat(T))
E

= Zero(sat(T)) we know that

QnZero(T)
E ⊆ Zero(sat(T)).

This completes the proof of the theorem.
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Starting from Theorem 5 and it’s proof, the next corollaries can easily be
found.

Corollary 6. Let T = [f1(u, y1), . . . , fs(u, y1, . . . , ys)] be a triangular set. Given
a z̆ = (ŭ, z̆1, . . . , z̆s) ∈ QnZero(T) and ε > 0, there exist a δ̆ > 0 and a polynomial
R ∈ K[u] \K such that, one can get a zero

(u∗, z∗1 , . . . , z
∗
s ) ∈ U(z̆, ε)

⋂
QnZero(T)

for any u∗ ∈ U(ŭ, δ̆) with R(u∗) �= 0.

Corollary 7. Let T be a triangular set in K[x]. If prem(P d,T) = 0 for some

integer d > 0, then QnZero(T)
E ⊆ Zero({P}).

Corollary 8. Let T be a triangular set in K[x] such that QnZero(T)
E

= Zero(T).
Then, Zero(T) = Zero(sat(T)).

Example 9. Let a triangular set T = [x2
1 − u2, (x1 + u1)x2

2 + (x1 + u1)x2 +
1, x1x

2
3−x3 +u] in K[u, x1, x2, x3], it is easy to see that T is not a regular set and

QnZero(T) = Zero(T). Then, we have Zero(T) = Zero(sat(T)) by Corollary 8.

Example 10. Let a triangular set T = [x1 − u1, u2x
2
2 + u3x2 + u4], it is easy to

see that X0 ⊆ Zero(T) \QnZero(T) where

X0 = {(u1 = c1, u2 = u3 = u4 = 0, x1 = c1, x2 = c2) : ∀c1, c2 ∈ K̃}.

By the above results, it is difficult to determine the relationship of Zero(T) and
Zero(sat(T)). But, we will get that Zero(T) = Zero(sat(T)) according to the
following Theorem 14.

To discuss the general situation, we first introduce some notation. For each
triangular set T, we now denote Rf = {res(c,T) �= 0 : c ∈ Cf} for any f ∈ T

and write gcd(Rf ) for the greatest common divisor of polynomials in Rf over
K[u] if Rf �= ∅.

Definition 11. Let T be a triangular set in K[x]. We establish

UT � {c : res(c,T) = 0, for c ∈ ini(T)}
∪{gcd(Rf ) : res(ini(f),T) �= 0,Rf ∩K = ∅, for f ∈ T} \K.

One can compute UT by the following algorithm Comp for any triangular set T.

Algorithm Comp: UT ← Comp(T). Given a triangular set T in K[x], this
algorithm computes UT.

C1. Set U ← ∅; T∗ ← T.
C2. While T∗ �= ∅ do:

C2.1. Let f be an element of T∗ and set T∗ ← T∗\{f}.
C2.2. Compute res(ini(f),T).
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C2.2.1. If res(ini(f),T) = 0 then set U ← U ∪ {ini(f)} and go to C2.
C2.2.2. If res(ini(f),T) �= 0 and Cf ∩K = ∅ then set

R∗
f ← {res(c,T) : for c ∈ Cf}.

C2.2.3. Set Rf ← R∗
f \ {0} and A ← ∅. If Rf ∩K = ∅, then compute

gcd(Rf ).
C2.2.4. If gcd(Rf ) ∈ K[u] \K, then set A ← A ∪ {gcd(Rf )}.
C2.2.5. Set U ← U ∪ A.

C3. Set UT ← U.

Example 12. Let a triangular set T∗ = [f1, f2, f3 ] in K[x1, x2, x3, x4] under
x1 ≺ x2 ≺ x3 ≺ x4, where

f1 = −x2
2 + x1,

f2 = −x2x
3
3 + (2x1 − 1)x2

3 − x2(x1 − 2)x3 − x1,

f3 = (x2x3 + 1)x4 + x1x3 + x2.

By the above notation, we know

Cf1 = {−1, x1}, Cf2 = {−x2, 2x1 − 1,−x2(x1 − 2),−x1},
Cf3 = {x2x3 + 1, x1x3 + x2}.

It is obvious that

Rf1 = Cf1 = {−1, x1}, Rf2 = {−x1, 2x1 − 1,−x1(x1 − 2)2,−x1},

and as res(ini(f3),T∗) = 0. Thus

UT∗ = {ini(f3)} = {x2x3 + 1}.

Similarly, one can compute that

UT∗
1

= {u}; UT∗
2

= ∅;

where

T∗
1[1] = x(27x4 + 27x3 + 9x2 + 36ux2 + 18x2u2

+12u2x+ x+ 24ux+ 4u+ 2u2),
T∗

1[2] = uy − 3x− 1,
T∗

1[3] = (2u2 + 3x2 + x)z − 6x− 2

under u ≺ x ≺ y ≺ z and T∗
2 = [ux1 − s, vx2

2 + x2 − u, sx3 − u] under s ≺ u ≺
v ≺ x1 ≺ x2 ≺ x3.

Furthermore, we will get an interesting result that

Zero(T/UT) ⊆ Zero(sat(T))

for any triangular set T. In order to prove it, the next proposition plays a crucial
role.



88 Y.-B. Li

Proposition 13. Let T = [f1(u, y1), . . . , fs(u, y1, . . . , ys)] be a triangular set
and a zero z0 = (u̇, ż1, . . . , żs) ∈ Zero(T/UT) as the above notation. If z{k−1}

0 ∈
QnZero(T{k−1}), but z{k}

0 /∈ QnZero(T{k}) for some 1 ≤ k ≤ s, then, given
ε > 0, there exist a δ > 0 and a polynomial R ∈ K[u] \K such that, one can
obtain a zero

(u∗, z∗1 , . . . , z
∗
k) ∈ U(z{k}

0 , ε)
⋂

QnZero(T{k})

for any u∗ ∈ U(u̇, δ) with R(u∗) �= 0.

Proof. Suppose that
fk =

∑
c∈Cfk

cync

k .

We first claim res(c0,T{k−1}) �= 0 with c0 = ini(fk). In fact, if res(c0,T{k−1}) =
0, this means c0 ∈ UT, then z{k}

0 ∈ QnZero(T{k}), it reduces a contradiction.
Furthermore, it follows from z{k}

0 /∈ QnZero(T{k}) that c(z0
{k−1}) = 0 for any

c ∈ Cfk
. In addition, we have that Rfk

∩K = ∅ and rc(u̇) = 0 for any rc ∈ Rfk
.

Given ε > 0, as z{k−1}
0 ∈ QnZero(T{k−1}), one can obtain a δ > 0 and a

polynomial R0 ∈ K[u] \K by Corollary 6 such that, there is a zero

(u∗, z∗1 , . . . , z
∗
k−1) ∈ U(z{k−1}

0 , ε)
⋂

QnZero(T{k−1}) (3)

for any u∗ ∈ U(u̇, δ) with R0(u∗) �= 0.
Now set R = R0res(c0,T{k−1}) and

S∗ = U(u̇, δ)
⋂
{u ∈ Kr : R(u) �= 0}.

For any ū ∈ S∗, there is a zero

(ū, z̄1, . . . , z̄k−1) ∈ U(z{k−1}
0 , ε)

⋂
QnZero(T{k−1})

by the form (3), it implies that c0(ū, z̄1, . . . , z̄k−1) �= 0. Set

Z = {(ū, z̄1, . . . , z̄k−1) ∈ U(z{k−1}
0 , ε)

⋂
QnZero(T{k−1}) : ū ∈ S∗}.

We proceed to prove that

U(z{k}
0 , ε)

⋂
QnZero(T{k}) �= ∅.

It follows from the fact c(z0
{k−1}) = 0 and rc(u̇) �= 0 for any c ∈ Cfk

that

inf({fk(ū, z̄1, . . . , z̄k−1, zk) : (ū, z̄1, . . . , z̄k−1) ∈ Z }) = 0

for any zk ∈ (żk − ε, żk + ε).
Given a z̄k ∈ (żk − ε/2, żk + ε/2), the above fact implies that there is a

(ū, z̄1, . . . , z̄k−1) ∈ Z and δ̄0 such that fk(ū, z̄1, . . . , z̄k−1, zk) = δ̄0 with |δ̄0| <
δ̄ for any δ̄ > 0. Let f̄k = fk(ū, z̄1, . . . , z̄k−1, yk) ∈ K[yk] and gk = f̄k−
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δ̄0 where gk(z̄k) = 0. According to Lemma 4, one can prove that there is
a (u�, z�

1 , . . . , z
�
k−1) ∈ Z and z�

k ∈ (żk − ε, żk + ε) such that fk vanishes at
(u�, z�

1 , . . . , z
�
k−1, z

�
k). Hence

(u�, z�
1 , . . . , z

�
k−1, z

�
k) ∈ U(z{k}

0 , ε)
⋂

QnZero(T{k}).

Since ε is given arbitrarily, this completes the proof the proposition.
The next result follows by an argument analogous to the proof of Theorem 5,

we omit the details.

Theorem 14. For any triangular set T, we have

Zero(T/UT) ⊆ QnZero(T)
E ⊆ Zero(sat(T)).

Corollary 15. Let T be a triangular set in K[x] with UT = ∅. Then,

Zero(T) = Zero(sat(T)).

Example 16. (Continued from Example 10). Since UT = ∅, we have that
Zero(T) = Zero(sat(T)).

3 Improvement Upon Algorithm CharSer

Let T be a triangular set as (1) and P any polynomial. P is said to be reduced
with respect to T if deg(P, yi) < deg(fi, yi) for all i. T is said to be noncontra-
dictory ascending set if every f ∈ T ∪ ini(T) is reduced with respect to T \ {f}.
The following concept of characteristic sets was introduced by Wu in [20].

Definition 17. An ascending set T is called a characteristic set of nonempty
polynomial set P ⊂ K[x] if

T ⊂ Ideal(P), prem(P,T) = {0}.

Definition 18. A finite set or sequence Ψ of ascending sets T1, . . . ,Te is called
a characteristic series of polynomial set P in K[x] if the following zero decom-
position holds

Zero(P) =
e⋃

i=1

Zero(Ti/ini(Ti))

and prem(P,Ti) = {0} for every i.
Given a nonempty polynomial set P ⊂ K[x], two algorithms CharSet and

CharSer1 which were developed by Wu in [20, 21, 22] and described by Wang
in [18] compute a characteristic set T of P (denoted by CharSet(P)) and charac-
teristic series {T1, . . . ,Te} of P. Several authors continued and improved Wu’s
1 One can obtain their respective implementations in the Epsilon library at:

http://www-calfor.lip6.fr/˜wang/epsilon.
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approach, mainly Chou and Gao([3, 4, 5]), Dahan et al.([6]), Gallo and Mishra
([7, 8]), Li([11]) and Wang([15, 16, 17]). As an application of these new proper-
ties of triangular sets, we proceed to improve algorithm CharSer. The next result
which follows from Theorem 14 plays an important in this section.

Proposition 19. Let P a nonempty polynomial set in K[x]. If UT = ∅ with
T = CharSet(P), then Zero(T) = Zero(P).

Based algorithm CharSet, we next to present two modified versions of algorithm
CharSer according to the above results, and omit the details of the proofs. The
following algorithm CharSerA is only different to in step qC2.5 of CharSer in
[18] where ini(T) is replaced by UT.

Algorithm qCharSerA: Ψ ← CharSerA(P). Given a nonempty polynomial set
P in K[x], this algorithm computes a finite set triangular sets Ψ such that

Zero(P) =
⋃

T∈Ψ

Zero(T/UT).

qC1. Set Φ← {P}, Ψ ← ∅.
qC2. While Φ �= ∅ do:

qC2.1. Let F be an element of Φ and set Φ← Φ\{F}.
qC2.2. Compute T ← CharSet(F).
qC2.3. If T is noncontradictory, then compute UT by algorithm Comp.
qC2.4. If UT = ∅, then set Ψ ← Ψ ∪ {T}.
qC2.5. If UT �= ∅, then set

Ψ ← Ψ ∪ {T}, Φ← Φ ∪ {F ∪ T ∪ {I} : I ∈ UT}.

In order to avoid producing superfluous triangular sets at the utmost, we pro-
ceed to improve further algorithm QuasiCharSerA. Note that we always treat
elements of UT in the above algorithm equally without discrimination. More
delicate considering elements of UT and the above results lead to the following
algorithm.

Algorithm QuasiCharSerB: Ξ ← QuasiCharSerB(P). Given a nonempty
polynomial set P in K[x], this algorithm computes a finite set of triangular
systems Ξ such that

Zero(P) =
⋃

[T,U]∈Ξ

Zero(T/U).

qC1. Set Φ← ∅, Ξ ← ∅.
qC2. Compute T ← CharSet(P).
qC3. If T is non-contradictory, then set Φ← {< P,T >}.
qC4. While Φ �= ∅ do:

qC4.1. Let < F1,F2 > be an element of Φ and set Φ← Φ\{< F1,F2 >}.
qC4.2. Compute UT ← Comp(F2) and set U ← UT.
qC4.3. If U = ∅, then set Ξ ← Ξ ∪ {[F2, ∅]} and go to qC4.
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qC4.4. Set U0 ← U, U∗ ← ∅.
qC4.5. While U0 �= ∅ do:

qC4.5.1. Let I be an element of U0 and set U0 ← U0\{I}.
qC4.5.2. Compute T0 ← CharSet(F2 ∪ {I}) and UT0 ← Comp(T0).If

UT0 = ∅ and prem(P,T0) = {0}, then go to qC4.5.
qC4.5.3. Compute T ← CharSet(F1 ∪ F2 ∪ {I}) and set

Φ← Φ ∪ {< F1 ∪ F2 ∪ {I},T >}.

qC4.5.4. Set U∗ ← U∗ ∪ {I}.
qC4.6. Set Ξ ← Ξ ∪ {[F2,U

∗]}.

Example 20. Let P = {P1, P2, P3} with

P1 = −x2x3x4 − x4 − x1x3 + x2
2 − x2 − x1,

P2 = x2x
3
3 − 2x1x

2
3 + x2

3 + x1x2x3 − 2x2x3 + x1,

P3 = 2x2x3x4 + 2x4 + x2x
3
3 − 2x1x

2
3 + x2

3 + x1x2x3

−2x2x3 + 2x1x3 + 2x2 + x1.

Under the variable ordering x1 ≺ x2 ≺ x3 ≺ x4, one can compute Charset(P) =
T∗ which has already been given in Example 12. By the above description, one
can easily get QuasiCharSerA(P) = {T∗,T2}, where T2 = [−x1 + x2

2, x2x3 + 1].
It is easy to see that UT2 = ∅, this implies that

Zero(P) = Zero(T∗/UT∗) ∪ Zero(T2/UT2) = Zero(T∗/{x2x3 + 1}) ∪ Zero(T2).

One can check that prem(P,T2) = {0} and T2 = CharSet(T∗∪{x2x3+1}), this
means T2 is a redundant one. We can compute QuasiCharSerB(P) = {[T∗, ∅]}.
Namely,

Zero(P) = Zero(T∗).

Compared with algorithm CharSer, we get CharSer(P) = {T∗,T2,T3}, where
T3 = [x1, x2, x3, x4], and

Zero(P) = Zero(T∗/{x2x3 + 1}) ∪ Zero(T2/{x2}) ∪ Zero(T3).

Example 21. Let P = {uy − 3x − 1,−2zu − yxz + 2y, xz2 − zu + y}. This
set of polynomials has been considered by Wang in [19]. Under the variable
ordering u ≺ x ≺ y ≺ z, one can compute Charset(P) = T∗

1 which is given in
Example 12. By the above description, one can easily get QuasiCharSerA(P) =
{T∗

1,T2,T3} and QuasiCharSerB(P) = {[T∗
1, {u}], [T2, {y}], [T3, ∅]}, where T2 =

[u, 3x+ 1, y(y − 12), y(6 + z)], T3 = [u, 3x+ 1, y, z2]. It follows that

Zero(P) = Zero(T∗
1/{u}) ∪ Zero(T2/{y}) ∪ Zero(T3).

Compared with algorithm CharSer, we have that CharSer(P) = {T∗
1,T2,T3},

and

Zero(P) = Zero(T∗
1/{2u2 + 3x2 + x, u}) ∪ Zero(T2/{y})∪ Zero(T3).
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Example 22. Let P = {ux1−s, vx2
2+x2−u, sx3−u} under the variable ordering

s ≺ u ≺ v ≺ x1 ≺ x2 ≺ x4. It is obvious that CharSet(P) = T∗
2 which is given

in Example 12 or the same as T in Example 3. We know that UT∗
2

= ∅. This
implies that

QuasiCharSerA(P) = {T∗
2}; QuasiCharSerB(P) = {[T∗

2, ∅]}.

It follows that Zero(P) = Zero(T∗
2).

Compared with algorithm CharSer, we have that

CharSer(P) = {T∗
2,T2,T3,T4}

where

T2 = [v, ux1 − s,−x2 + u,−sx3 + u], T3 = [s, u, x2(vx2 + 1)],T4 = [s, u, v, x2]

and

Zero(P) = Zero(T∗
2/{s, u, v}) ∪ Zero(T2/{u, s}) ∪ Zero(T3/{v}) ∪ Zero(T4).

Acknowledgments. The author is very grateful to Prof. Lu Yang and Prof.
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Abstract. It is an essential step in decomposition algorithms for radical
differential ideals to satisfy the so-called Rosenfeld property. Basically
all approaches to achieve this step are based on one of two concepts:
Coherence or passivity.

In this paper we will give a modern treatment of passivity. Our focus
is on questions regarding the different definitions of passivity and their
relation to coherence. The theorem by Li and Wang stating that passivity
in Wu’s sense implies coherence is extended to a broader setting. A new
definition for passivity is suggested and it is shown to allow for a converse
statement so that coherence and passivity are seen to be equivalent.

1 Introduction

The Rosenfeld property provides a link between differential algebra and alge-
bra. It allows to solve questions about a system of differential polynomials in a
purely algebraic fashion. For example, if the given system of differential polyno-
mials is known to have the Rosenfeld property, its radical differential ideal may
be decomposed into prime differential ideals using tools in a finite polynomial
algebra [1].

To satisfy the Rosenfeld property, decomposition algorithms follow one of two
methods: Either the concept of coherence, which appeared in Rosenfeld’s original
work [12] and which bears resemblance to using S-polynomials in Gröbner basis
theory, is used, or involutive ideas are applied to guarantee passivity of the given
differential system.

While the definition of coherence is standardized, the same cannot be said
about passivity. Not only have different involutive divisions been used, often
passivity is introduced in correspondence with a previously fixed method for
involutive completion of the given system which again is based on a certain
involutive reduction. While these definitions and coherence are believed to be
linked concepts, little has been proven about their relation. This naturally leads
to the following three questions which are at the centre of this work:
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1. Is passivity independent of the chosen involutive completion?
2. Every passive system (with respect to Wu’s definition) is coherent. [9] Is the

converse also true?
3. Is passivity independent of the chosen involutive division?

In the following, we will show that the answer to all three questions is “Yes”.
We first introduce the notions that will be used in this paper in Sect. 2. In
Sect. 3, a new definition for passivity is suggested. We show this new definition
to be independent of the way that completions are computed and reduction is
performed. Section 4 contains a comparison of our definition with passivity in
the sense of other authors. We show that the new definition is equivalent to the
one provided by Wu and that it is closely related to passivity in the sense of
Ritt and Chen & Gao. Section 5 is devoted to an equivalence statement between
coherence and passivity. In the final Sect. 6 we summarize our main results.

2 Basic Notions

We use Kolchin’s “Differential Algebra and Algebraic Groups” [8] and a paper by
Seiler [13] as the main references for differential algebra and involutive divisions,
respectively. If not mentioned otherwise, their notation will be used.

Differential Algebra. Let K be a differential field of characteristic zero with set
ofm pairwise commuting derivations Δ = {δ1, . . . , δm}. We adopt the convention
to write “Δ-” instead of “differential”. The commutative monoid generated by
Δ is denoted by Θ; Θ+ be the set Θ without its identity. The elements of Θ are
called derivative operators. As the monoids Θ and Nm are isomorphic, we identify
derivative operators with m-tuples of non-negative integers; this also implies that
we write the addition of two elements of Nm multiplicatively. We consider the Δ-
polynomial ring K�Y� in n Δ-indeterminates Y = {Y1, . . . , Yn}.1 The elements
of ΘY are called derivatives. Given a subset A ⊆ K�Y�, denote by 〈A〉 and [A]
the ideal and the Δ-ideal generated by A, respectively. Furthermore, let ΘA and
Θ+A be the union of all θa, where a ∈ A,θ ∈ Θ and θ ∈ Θ+, respectively. The
saturation of an ideal I by a finite set H ⊆ K�Y� is defined as

I : H∞ := {p ∈ K�Y� | ∃h ∈ H∞ : hp ∈ I},

where H∞ is the smallest multiplicatively closed subset of K�Y� containing H .
If I is a Δ-ideal, then so is I : H∞.

We choose a fixed ranking on ΘY. Hence, we may speak of the leader, ini-
tial, separant, and degree of a given p ∈ K�Y� \ K. These shall be denoted by
lead(p), init(p), sep(p), and deg(p), respectively. For a subset A ⊆ K�Y� \ K,
let lead(A), IA, and SA be the set of all leaders, initials, and separants of ele-
ments of A, respectively. We put HA := IA ∪ SA. Given a subset A ⊆ K�Y� \K

1 Note that, in contrast to Kolchin, we use the notation of [6] to refer to rings of
Δ-polynomial.
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and u ∈ ΘY, A<u and A≤u denote the union of all elements in A whose lead-
ers rank lower than u and lower than or equal to u, respectively; likewise for
A≥u and A>u. As we will often work with Noetherian induction, we recall that
rankings are well-orderings.

Definition 1. A Δ-system is an ordered pair (A,H) of finite, non-empty subsets
A,H ⊆ K�Y� such that A ∩K = ∅ and HA ⊆ H∞.

Whenever (A,H) is a Δ-system we assume that A is triangular and partially
autoreduced and that H is partially reduced w.r.t. A.

Definition 2. Let p, q ∈ R with lead(p) = v = lead(q), d = deg(p), and
e = deg(q). The pseudo-S-polynomial S(p, q) of p and q is defined as

S(p, q) :=
init(q)vep− init(p)vdq

gcd(vd, ve)
.

Definition 3. A Δ-system (A,H) is coherent if for every pair (p, q) ∈
Θ+A×Θ+A such that lead(p) = v = lead(q) the following holds:

S(p, q) ∈ 〈ΘA<v〉 : H∞ .

Coherence can be decided algorithmically: For all Y ∈ Y, consider all pairs
(p, q) ∈ A ×A with lead(p) = αY and lead(q) = βY , some α, β ∈ Nm. Given
such a pair, define γ := lcm(α, β). Then (A,H) is coherent if the above condition
is satisfied by the finitely many pairs ( γ

αp,
γ
β q).

Theorem 1 (Rosenfeld Lemma). Let (A,H) be a coherent Δ-system. In that
case, every p ∈ [A] : H∞ that is partially reduced w.r.t. A belongs to 〈A〉 : H∞.

A proof has been given by Boulier et al. [1] The latter property in the above
theorem is called the Rosenfeld property; examples of its applications can be
found in many parts of the literature. [1, 5, 7] Recall that coherence is only a
sufficient condition for the Rosenfeld property. [14]

Involutive Divisions and Δ-Polynomials. LetN ⊆ Nm be finite and α ∈ N .
The cone of α ∈ N is given by C(α) := {βα | β ∈ Nm}. The span 〈N〉 of N is
the union of all cones of its members, i.e. 〈N〉 = ∪α∈NC(α). Given an involutive
division L, we denote by NN ,α ⊆ {1, . . . ,m} the set of multiplicative indices of
α relative to N (and L). The involutive cone CL,N (α) of α relative to N is given
by the set

{βα | (β1, . . . , βm) ∈ Nm, βi �= 0 only if i ∈ NN ,α} .

The involutive span 〈N〉L ofN is the union of all involutive cones of its members.
A finite set N ⊆ N ′ ⊆ Nm is an involutive completion of N , if 〈N ′〉L = 〈N〉.
It is minimal if N ′ is contained in every involutive completion of N . In gen-
eral, (minimal) involutive completions need not exist. However, if there are no
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α, β ∈ N such that α is a divisor of β, then there is always a minimal involutive
completion relative to Thomas and Janet division; see [4].

For a subset A ⊆ K�Y� \ K, define for each Y ∈ Y a set NA,Y := {α ∈ Nm |
αY ∈ lead(A)}. Given a p ∈ A with lead(p) = αY , the involutive cone of p is
defined as

CL,A(p) := {βp | βα ∈ CL,NA,Y (α)} .

An element of Θ{p} is called a multiplicative prolongation (of p ∈ A) if it belongs
to CL,A(p). It is a non-multiplicative prolongation otherwise. A derivative u ∈
ΘY is said to be a proper multiplicative derivative of A (or more precisely of
lead(p), p ∈ A) if u ∈ lead(CL,A(p))\{lead(p)}. Finally, a Δ-polynomial that
does not contain any proper multiplicative derivative of A is said to be partially
involutively reduced w.r.t. A.

3 Passive Differential Systems

Throughout this section, let L be a fixed but arbitrary involutive division.

Definition 4. Let A ⊆ K�Y� \ K be finite. The involutive span [A]L of A is
given by

[A]L :=

〈⋃
p∈A

CL,A(p)

〉
.

For every u ∈ ΘY, define a subideal [A]uL of [A]L by

[A]uL :=

〈⋃
p∈A

CL,A(p) ∩K[ΘY≤u]

〉
.

Definition 5. Let A ⊆ K�Y� \ K be triangular. A set AL containing A is an
involutive completion of A, if it is minimal with the following properties.

1. For all Y ∈ Y, NAL,Y is a minimal involutive completion of NA,Y .
2. H∞

A = H∞
AL .

3. p ∈ AL \A implies deg(p) = 1.
4. p ∈ AL \A with lead(p) = v implies p ∈ 〈ΘA≤v〉.

If a minimal involutive completion NL
A,Y of NA,Y is given for every Y ∈ Y, an

involutive completion of A can be obtained in the following way: For every Y ∈ Y
and α ∈ NL

A,Y \ NA,Y , choose a p ∈ A and β ∈ Nm such that lead(βp) = αY .
As α ∈ 〈NA,Y 〉, such a pair (β, p) exists. The union of all these βp and all p ∈ A
is an involutive completion of A. We denote this set by AL∗ . Further examples of
involutive completions can be found in [11, 15, 3].

Definition 6. Let (A,H) be a Δ-system and AL be an involutive completion
of A. Then (A,H) is passive w.r.t. AL if 〈ΘA≤u〉 : H∞ = [AL]uL : H∞ for all
u ∈ ΘY.
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We are now in the position to provide an answer to the first question posed in
the introduction: The following three statements show that passivity does not
depend on the chosen involutive completion.

Proposition 1. Let (A,H) be a Δ-system such that an involutive completion
AL of A exists. Every p ∈ [AL]uL : H∞, when multiplied by a suitable h ∈ H∞,
may be written as linear combination

hp =
k∑

i=1

λimi,

where each mi is a finite product of multiplicative prolongations of AL, all of
which rank lower than or equal to u, and where all λi are reduced w.r.t. A at
all derivatives v ∈ ΘY≤u. Moreover, if lead(p) ≤ u, then each λi is partially
reduced w.r.t. A.

Proof. By definition, there is for every p ∈ [A]uL : H∞ an h ∈ H∞ such that hp is
a linear combination of multiplicative prolongations lower than or equal to u, say

hp =
k∑

i=1

λβ,q(βq) . (1)

Assume some λi is not reduced w.r.t. A at some derivative ranking lower than or
equal to u. We call any such derivative a nuisance and proceed to remove them
by Noetherian induction. If a given representation of the form (1) contains no
nuisances, then there is nothing to show. Otherwise, let v be the highest ranking
nuisance. Without loss of generality, v shall appear with degree e in λ1 and we
may assume there is no occurrence of v as a nuisance of higher degree. We find a
multiplicative prolongation γr of r ∈ AL such that lead(γr) = v and deg(r) is
less than or equal to the degree of λ1 in v: If v ∈ Θ+lead(A), then deg(γr) = 1
since A is partially autoreduced. Otherwise, the claim is clear since λ1 is not
reduced at v w.r.t. A. In any case, we may pseudo-divide λ1 by γr at v to obtain

h′λ1 = λ(γr) + λ′1,

where h′ ∈ init(γr)∞. Note that λ′1 neither contains v nor any nuisances ranking
higher than v. Moreover, λ contains v in a strictly lower degree than e. We mul-
tiply (1) by h′ and plug the result into the above equation. In this new equation,
there is one less occurrence of v as a nuisance of degree e. Since init(γr) < v,
multiplying by h′ did not introduce any new nuisances ranking as high as v or
higher. We may repeat the argument to eventually completely remove v as a
nuisance and are done by induction hypothesis.

If lead(p) ≤ u, then only the λi may contain derivatives v ∈ lead(Θ+A)>u.
Hence, it may be assumed that all λi are free of these derivatives. This proves
the claim. ��
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Corollary 1. Let (A,H) and AL be as above. Any p ∈ [AL]uL : H∞, when
multiplied by a suitable h ∈ H∞, may be written as

hp = λ(γr) + s,

where λ ∈ K�Y�, s ∈ [AL]vL for some v < u and γr is a multiplicative prolon-
gation of r ∈ AL, uniquely determined by lead(γr) = u. If lead(p) < u and
u ∈ lead(Θ+A), then it may be assumed that λ = 0.

Proof. The first claim follows directly from Proposition 1. If lead(p) < u ∈
lead(Θ+A), then no u′ ∈ lead(Θ+A)≥u appears on the left hand side, so
the same must be true for the right hand side. But by Proposition 1, there is
an equation such that the only possibility for an element of lead(Θ+A)≥u to
appear is as leader of γr. The claim follows. ��

Proposition 2. Let (A,H) be a Δ-system and AL
1 , AL

2 be involutive comple-
tions of A. Then (A,H) is passive w.r.t. AL

1 if and only if (A,H) is passive
w.r.t. AL

2

Proof. Due to symmetry reasons, it is enough to show that whenever (A,H) is
passive w.r.t. AL

1 , then for all u ∈ ΘY we have αp ∈ [AL
2 ]uL : H∞ for all p ∈ A,

α ∈ Nm with lead(αp) = u.
Therefore, assume that (A,H) is passive w.r.t. AL

1 and consider p ∈ A, α ∈ Nm

with u = lead(αp). We proceed by Noetherian induction on the rank of u. If
there is no βq ∈ ΘA such that lead(βq) < u, then α = 0 and p ∈ [AL

2 ]uL : H∞.
Otherwise, αp ∈ [AL

1 ]uL : H∞ by assumption. So, Corollary 1 implies

h(αp) = λ1(γ1r1) + s, (2)

where γ1r1 is a multiplicative prolongation of r1 ∈ AL
1 , uniquely determined by

lead(γ1r1) = v, and s ∈ [AL
1 ]vL for some v < u. If λ1 = 0, then note that every

βq ∈ ΘAL with lead(βq) ≤ v belongs to ΘA≤v by property (iv) of involutive
completions. Thus, we are done by the induction hypothesis.

Otherwise, since AL
2 is an involutive completion of A and A is partially au-

toreduced, there is a unique pair (γ2, r2) so that γ2r2 is a multiplicative prolon-
gation of r2 ∈ AL

2 with lead(γ2r2) = u and deg(γ2r2) = 1 = deg(γ1r1). By
definition of involutive completions γ2r2 ∈ 〈ΘA≤u〉 : H∞ and by assumption
〈ΘA≤u〉 : H∞ = [AL

1 ]uL : H∞. Pseudo-dividing γ1r1 by γ2r2 at u, we obtain

init(γ2r2)(γ1r1) = init(γ1r1)(γ2r2) + s′,

where s′ ∈ [AL
1 ]uL : H∞. We find some h′ ∈ H∞ such that h′s′ =

∑k
i=1 λimi

as in Proposition 1. Since u = lead(αp) ∈ lead(Θ+A), u does not appear in
any λi and can only appear in mi if γ1r1 is part of the product. Without loss of
generality, this is the case for i = k′ + 1, . . . , k and we shift all those λimi to the
left hand side of the above equation. Hence, we obtain an equation of the form

(h′init(γ2r2) + λ) (γ1r1) = h′init(γ1r1)(γ2r2) +
k′∑

i=1

λimi,
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where mi < u (i = 1, . . . , k′). Comparing the coefficient of u on both sides, it
follows that h′′ := h′init(γ2r2)+λ belongs to H∞. Therefore, if (2) is multiplied
by h′′ and if we plug the above equation into the result, then we obtain

h′′h(αp) = λ1

⎛
⎝h′init(γ1r1)(γ2r2) +

k′∑
i=1

λimi

⎞
⎠+ h′′s

= λ1h
′init(γ1r1)(γ2r2) + s′′,

where s′′ ∈ [AL
1 ]u

′
L ⊆ 〈ΘA≤u′ 〉 for some u′ < u. By induction hypothesis, the

proof is done. ��

In light of this result, we simply say that a Δ-system is passive without reference
to an involutive completion. We will end this section with a finite criterion for
passivity. It is an analogue of local involutivity; hence, the involutive division
has to be continuous. See, e.g., [13], Def. 5.2 and Prop. 5.3.

Proposition 3 (A Finite Criterion). Let L be continuous, (A,H) be a Δ-
system, and AL be an involutive completion of A. If δip ∈ [AL]uL : H∞ whenever
p ∈ AL, δi ∈ Δ, and lead(δip) = u, then (A,H) is passive.

Note that the above is actually only a condition on those δip that are non-
multiplicative prolongations of p ∈ AL.

Proof. Let p ∈ A and α ∈ Nm and u = lead(αp). To show that αp ∈ [AL]uL : H∞

we proceed by Noetherian induction on the rank of u. If there is no βq ∈ ΘA
with lead(βq) < lead(αp), then α = 0 and p ∈ A ⊆ [AL]uL : H∞.

If αp ∈ CL,AL(p), there is nothing to show. Otherwise, we may assume that
α �= 0 and α = α′δi where δip /∈ CL,AL(p). By assumption, Corollary 1 may be
applied to yield

h1(δip) = λ1(γ1r1) + s1,

where s1 ∈ [AL]vL for some v < lead(δip) and lead(γ1r1) = lead(δip). We
apply α′ to both sides and shift all terms except h1(α′δip) from the left to the
right, i.e.

h1(αp) = λ1(α′γ1r1) +
∑

β1,β2∈N
m,

β1 �=0,β1β2=α

(β1λ1)(β2γ1r1)

+ α′s1 −
∑

β1,β2∈N
m,

β1 �=0,β1β2=α

(β1h1)(β2δip) .

Since s1 ∈ [AL]vL ⊆ 〈ΘA≤v〉 and α′v < u, we have α′s1 ∈ 〈ΘA<u〉. Also,
(β2γ1r1), (β2δip) ∈ 〈ΘA<u〉, the former by definition of involutive completions.
By induction hypothesis, we obtain

h1(αp) = λ1(α′γ1r1) + s′1, (3)

for a suitable s1 ∈ [AL]v1 , v1 < u and lead(α′γ1r1) = u. Hence, if α′γ1r1 is a
multiplicative prolongation of r1, then the claim is proven. Otherwise, we may
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write α′γ1 = γ′1δ(i1), where δ(i1)r1 /∈ CL,AL(r1). We may use Corollary 1 again
and repeat the above described argument to find

h2(α′γ1r1) = λ2(γ′1γ2r2) + s2, (4)

where s2 ∈ [AL]v2 , v2 < u and lead(γ′1γ2r2) = u. If we multiply (3) by h2 and
substitute (4) into the resulting equation, then we arrive at

h2h1(αp) = λ1 (λ2(γ′1γ2r2) + s2) + h2s
′
1

= λ1λ2(γ′1γ2r2) + λ1s2 + h2s
′
1

= λ′2(γ
′
1γ2r2) + s′2,

for some s′2 ∈ [AL]v2
L . If again γ′1γ2r2 is not a multiplicative prolongation of r2,

we may continue the process and construct a sequence r1, r2, r3, . . . such that
the derivative operator appearing in lead(δ(ij)rj) is in the involutive cone of the
derivative operator in lead(rj+1) for j = 1, 2, 3 . . . and so on. In other words,
the derivative operators β1, β2, β3, . . . appearing in the leaders of r1, r2, r3, . . .
form a sequence satisfying [13], Def. 5.2. By continuity of L, the elements in the
sequence β1, β2, β3, . . . are pairwise distinct. Hence, the elements in the sequence
r1, r2, r3, . . . are pairwise distinct and therefore, this sequence is finite. After a
finite number of steps, we eventually find an h ∈ H∞ such that h(αp) = λ(γr)+s,
where γr is a multiplicative prolongation of r ∈ AL and s ∈ [AL]vL for some v < u.
By induction hypothesis, the proof is done. ��

4 Comparison of Definitions

Let us compare Definition 6 to Ritt’s definition of passivity, which is based upon
Riquier’s work, and two more definitions proposed by Wu and Chen & Gao.

Definition 7 ([11], p. 161). Let L be the Janet division and (A, {1}) be a
Δ-system such that A is autoreduced.2 Let AL be an involutive completion of A.
Then (A, {1}) is passive if every non-multiplicative prolongation δip of a p ∈ AL

may be represented as

δip = γr +
k∑

i=1

mi,

where γr is a multiplicative prolongation of r ∈ AL, uniquely determined by
lead(γr) = lead(δip) and each mi is a finite product of multiplicative prolon-
gations all of which rank lower than lead(δip).

Definition 8 ([15], p. 300). Let L be the Thomas division and (A,HA) be a
Δ-system such that A is autoreduced. Let AL be an involutive completion of A.

2 This type of Δ-system is also called orthonomic.
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Then (A,HA) is passive if every non-multiplicative prolongation δip of a p ∈ AL

may be represented as

hinit(γr)(δip) = hinit(δip)(γr) +
k∑

i=1

λimi,

where h ∈ H∞, γr is a multiplicative prolongation of r ∈ AL, uniquely deter-
mined by lead(γr) = lead(δip), each mi is a finite product of multiplicative
prolongations all of which rank lower than lead(δip), and all λi are partially
reduced w.r.t. A.

Definition 9 ([3], p. 481). Let L be an involutive division and (A,HA) be a
Δ-system such that A is autoreduced. Let AL be an involutive completion of A.3

Then (A,HA) is passive if every αp (α ∈ Nm, p ∈ AL) can be represented as

h(αp) =
k∑

i=1

λi(βiqi),

where h ∈ H∞
A , each βiqi is a multiplicative prolongation of qi ∈ A ranking lower

than or equal to lead(αp),4 and the following holds.

– If βi �= 0, then λi is partially involutively reduced at all derivatives
u > lead(βiqi).

– If βi = 0, then λi is partially involutively reduced w.r.t. AL and reduced
w.r.t. all q ∈ AL such that qi < q.

Due to Proposition 3, it is not difficult to see that each of these three definitions
implies Definition 6. Conversely, for a given αp with α �= 0 and p ∈ AL there is
a multiplicative prolongation γr of r ∈ AL, uniquely determined by lead(γr) =
lead(αp), with S(αp, γr) = init(γr)(αp)− init(αp)(γr). Applying Corollary 1
and Proposition 1 to this pseudo-S-polynomial, this leads to an equation of the
form

hinit(γr)(αp) = hinit(αp)(γr) +
k∑

i=1

λimi, (5)

where h ∈ H∞, all λi are partially reduced w.r.t. A, and all mi are products
of multiplicative prolongations of AL all of which rank lower than lead(αp).
This can be rewritten so that it satisfies Chen & Gao’s definition except for the
very last item. We think this is an artefact of the reduction algorithm Chen &
Gao are using. Taking α = δi, we see that (5) implies passivity in Wu’s sense.
If in addition H = {1}, then h = init(γr) = init(αp) = 1 and we arrive at
a representation very similar to the one in Ritt’s definition. Unlike Ritt, who
arrives at the above representation by a series of reductions which must return
a zero remainder, we cannot make the stronger assumption that the λi equal 1.
3 In Chen & Gao’s definition, a weaker notion than involutive completion is used.

However, in the case which is of algorithmic interest, i.e. where a statement similar
to Proposition 3 holds, they have to assume that AL is an involutive completion.

4 The latter requirement on the rank of the multiplicative prolongations is not found
in Chen & Gao’s original definition. However, it is meant to be included [2].
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5 An Equivalence Statement

The following is a generalization of Theorem 3 in [9] to arbitrary involutive
divisions and Δ-systems (A,H) where A is triangular, partially autoreduced and
where H is partially reduced w.r.t. A. It can be seen as a differential algebra,
pseudo-division analogue of the well known fact that any involutive basis is a
Gröbner basis, see, e.g., [4].

Theorem 2. Let L be an involutive division and (A,H) be a Δ-system. If
(A,H) is passive, then (A,H) is coherent.

Proof. Let p′q′ ∈ Θ+A such that lead(p′) = u = lead(q′). We claim that
S(p′, q′) ∈ 〈ΘA<u〉 : H∞. Assume p′ = αp and q′ = βq for some p, q ∈ A. By
passivity, we may apply Corollary 1 to αp and βq and obtain

hpαp = λp(γr) + sp, hqβq = λq(γr) + sq,

where sp, sq ∈ [AL]vL, v < u. Since u ∈ lead(Θ+A) and A is partially autore-
duced, γr is linear. Furthermore,

hphqS(p′, q′) = hqinit(q′)(λp(γr) + sp)− hpinit(p′)(λq(γr) + sq)
= (hqinit(q′)λp − hpinit(p′)λq)(γr)

+ (hqinit(q′)sp − hpinit(p′)sq) .

(6)

The derivative u cannot appear in hp or hq, since H is partially reduced
w.r.t. A. Since p′, q′ ∈ ΘA, we have init(p′), init(q′) ∈ H , so u cannot be
contained in either one of them. Furthermore, lead(S(p′, q′)) < u by definition
and likewise, u can only appear in the coefficients of sp, sq ∈ [AL]vL when both
Δ-polynomials are represented as linear combinations of multiplicative prolon-
gations ranking lower than or equal to v.

Let tail(γr) := γr− init(γr)lead(γr). If −tail(γr)/init(γr) is substituted
for u in (6) and if the resulting equation is multiplied by a suitable power of
init(γr) to get rid of denominators, then we obtain an equation of the form

init(γr)khphqS(p, q) = init(γr)k1hqinit(q′)s̃p − init(γr)k2hpinit(p′)s̃q .

where s̃′p, s̃′q are elements of [AL]vL. Thus, all of the right hand side belongs to
[AL]vL ⊆ 〈ΘA<u〉 : H∞. Moreover, init(γr) ∈ H∞ since init(γr) = sep(r) or
init(γr) = init(r). In both cases, init(γr) ∈ H∞

A by definition of involutive
completions and H∞

A ⊆ H∞ by assumption. The claim follows. ��

We now turn to the second question stated in the introduction, namely whether
the converse to the above statement also holds. The next theorem shows that
this is true. The answer to the third question is an immediate corollary: Indeed,
if passivity is equivalent to coherence then it has to be independent of the chosen
involutive division as coherence obviously has this property. The key ingredient
to the following proof is that passivity is independent of the chosen involutive
completion.
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Theorem 3. Let L be an involutive division and (A,H) be a Δ-system. Assume
that an involutive completion of A w.r.t. L exists. If (A,H) is coherent, then
(A,H) is passive.

Proof. Since passivity is independent of the chosen involutive completion, we
may choose AL∗ . By definition of AL∗ , ΘAL∗ <u = ΘA<u. In conjunction with
property (ii) of involutive completions, it follows that (AL

∗ , H) is coherent.
Let p ∈ A and α ∈ Nm be arbitrary and put u = lead(αp). We proceed by

Noetherian induction on the rank of lead(αp) to show that αp ∈ [AL∗ ]uL : H∞. If
there is no βq ∈ ΘA such that lead(βq) < lead(αp), then α = 0 and p belongs
to [AL

∗ ]uL : H∞.
There is also nothing to show if αp ∈ AL∗ . So we may assume that

αp ∈ (ΘA \ A) ∩ (ΘAL
∗ \ AL

∗ ). Since AL
∗ is an involutive completion, there is

a multiplicative prolongation γr of r ∈ AL∗ with lead(γr) = u. Since A is
partially autoreduced, γr linear. Hence,

S(αp, γr) = init(γr)αp− init(αp)γr .

Coherence of (AL
∗ , H) implies that S(αp, γr) ∈

〈
ΘAL

∗ <u

〉
: H∞. Thus by the

above equation and the fact that init(γr) ∈ H∞
AL∗

= H∞
A ⊆ H∞, the claim is

proven by induction hypothesis. ��
Corollary 2. Let (A,H) be a Δ-system. Consider only those involutive divi-
sions for which A has an involutive completion. The following are equivalent:

1. (A,H) is passive w.r.t. to all involutive divisions.
2. (A,H) is passive w.r.t. to one involutive division.
3. (A,H) is coherent.

6 Conclusions

We have suggested a new approach to passivity in differential algebra. Our def-
inition is a generalization of the one used by Wu. Moreover, it is closely related
to passivity in the sense of Ritt and Chen & Gao. Using the new definition, we
have provided a positive answer to all three questions posed in the introduction:
The corresponding statements are Proposition 2, Theorem 3 and Corollary 2.
We remark that the proofs can be used together with assumptions that are less
restrictive than the ones made in this work, see [10].

Hopefully, the insights on passivity presented here lead to new ideas combining
the properties of coherence and passivity to be used in decomposition algorithms
in differential algebra. It would also be of interest to explore the connection
between passivity as described in this work and passivity as it is treated in the
formal theory of partial differential equations.
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Abstract. A full system of invariants for a third-order bivariate hy-
perbolic linear partial differential operator L is found under the gauge
transformation g(x1, x2)−1Lg(x1, x2). That is, all other invariants can
be obtained from this full system, and two operators are equivalent with
respect to the gauge transformations if and only if their full systems of
invariants are equal. To obtain the invariants, we generalize the notion of
Laplace invariants from the case of order two to that of arbitrary order.
This is done through the notion of common obstacles to factorizations
into first-order factors. Explicit formulae for the invariants of a general
operator are given in terms of the coefficients of the operator.

The majority of the results were obtained using Maple 9.5.

Keywords: Laplace invariants, partial differential operators, Maple.

1 Introduction

The idea of looking for the invariants of a differential operator is very popular.
As early as 1769/1770, Laplace and Euler found two invariants for a second-
order linear bivariate hyperbolic operator L under the gauge transformations
L %→ g(x1, x2)−1Lg(x1, x2). Thus, the operator

L = D1D2 + aD1 + bD2 + c

has the invariants

h = ∂1(a) + ab− c, k = ∂2(b) + ab− c.

Using the invariants, the operator may be rewritten in the form

L = (D1 + b)(D2 + a) + h = (D2 + a)(D1 + b) + k.

If h = 0 or k = 0, the operator L is factorable and one can find the general
solution of the corresponding equation. Darboux proved [3] that h and k together

J. Calmet, T. Ida, and D. Wang (Eds.): AISC 2006, LNAI 4120, pp. 106–115, 2006.
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form a full system of invariants, in other words a basis, which provides an easy
way to judge whether one operator can be obtained as a gauge transformation
of another.

Possible ways of generalizing these invariants include considering a broader
group of transformations, considering nonlinear operators, or considering non-
commuting derivations [1, 2, 4, 7]. For instance, in [1, 2], the non-commutative
case for a hyperbolic second-order operator was done.

Another possibility is to extend the ideas to the case of higher-order operators.
Thus, some invariants were found in [10] as a by-product of his generalized Laplace
transformations theory. Also some invariants were found in [5] using the idea of
incomplete factorization. However, a full system of invariants was not found.

In the present paper we introduce a complete set of invariants for a third-order
hyperbolic linear partial differential operator L in two independent variables
under gauge transformations. We obtain explicit formulae in special variables
for which the symbol of the operator has the simplest form D1D2(D1 +D2).

Algorithmically it is not an easy task to find such a change of variables,
since one has to solve a general first-order linear partial differential equation. So
one prefers to have explicit formulae in the general case, that is for the symbol
SymL = s30D

3
1 +s21D

2
1D2 +s12D1D

2
2 +s03D

3
2. In fact, one can find the formulae

even in this case. For example, the simplest invariant

I1 = −2a20 + a11 − 2a02

from Theorem 4 (given below) has the form

−6s21s03a20 + 2s212a20 + 9s30s03a11 − s21s12a11 − 6s12s30a02 + 2s221a02

where aij denotes the coefficient of DiDj in L. However, the general form of the
next simplest invariant

I2 = ∂1(a20)− ∂2(a02)

is huge: its length in Maple [6] (as measured by the function length) is 27083.
However, one can obtain the formulae for the general case using our method,
large though it be.

One may note that in Theorem 4, we give the invariants in short and com-
pact forms, meaning that one can prove that they form a complete system even
working by hand. However, the discovery of these forms of the invariants, and
the proof of their correctness, relies on extensive computations, which were per-
formed using Maple.

2 Notation

Let K be a commutative ring with 1. Let Δ = {∂1, . . . , ∂n} be commuting
derivations acting on K. That is, for every ∂ ∈ Δ and for every a, b ∈ K, we
have ∂(a + b) = ∂(a) + ∂(b) and ∂(ab) = a∂(b) + ∂(a)b. Consider the ring of
linear differential operators

K[D] = K[D1, . . . , Dn] ,
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where D1, . . . , Dn correspond to the derivations ∂1, . . . , ∂n respectively. Thus
K[D] is the ring of non-commutative polynomials in D1, . . . , Dn with the fol-
lowing multiplication rules:

DiDj = DjDi , Di(a) = aDi +Di(a)

for all a ∈ K and any i, j ∈ {1, . . . , n}. We use the notation

D(i1,...,in) := Di1
1 . . .Din

n ,

and define the order as follows:

|D(i1,...,in)| = ord(D(i1,...,in)) := i1 + . . . + in ,

and in addition the order of the zero operator is −∞.
Now every operator L ∈ K[D] has the form

L =
∑
|J|≤d

aJD
J ,

where d = ord(L) and aJ ∈ K, J ∈ Nn. We define Li =
∑

|J|=i aJD
J . Then one

may rewrite L in the form

L =
d∑

i=0

Li .

The operator Ld is called the symbol of L and is denoted by SymL. Finally we
introduce the notation Ki[D] = {L ∈ K[D]|L ≡ Lord(L)} for all i.

3 Common Obstacles to Factorizations

In this section we briefly recapitulate some results from [8, 9], because they are
essential to the next sections.

Definition 1. Let L ∈ K[D] and suppose that its symbol has a decomposition
SymL = S1 . . . Sk. Then we say that the factorization

L = F1 ◦ . . . ◦ Fk, where SymFi
= Si , ∀i ∈ {1, . . . , k},

is of the factorization type (S1)(S2) . . . (Sk).

Definition 2. Let L ∈ K[D], SymL = S1 . . . Sk. An operator R ∈ K[D] is
called a common obstacle to factorization of the type (S1)(S2) . . . (Sk) if there
exists a factorization of this type for the operator L − R and R has minimal
possible order.

Let R be such a common obstacle of order t, and di = ord(Si), i = 1, . . . , k.
Then

R = L− F1 ◦ . . . ◦ Fk ,
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where

Fj = Sj +
dj−1∑
i=0

Gj
i ,

and Gj
i ∈ Ki[D] for all i and j.

One can change any term whose order is less than or equal to t− (d− dj) in
any factor Fj , j ∈ {1, . . . , k} and get new factors F ′

j as a result. Then one may
see that

R′ = L− F ′
1 ◦ . . . ◦ F ′

k

is again a common obstacle of order t.

Definition 3. The main (common) obstacle is defined to be R = L−F ′
1◦. . .◦F ′

k,
where each factor F ′

j is obtained from the factor Fj by replacing all terms of order
less than or equal to t− (d− dj) in Fj with zero.

Example 1. Consider the hyperbolic operator

L = D1D2 − aD1 − bD2 − c,

where a, b, c ∈ K. Then P1 is a common obstacle to factorizations of the type
(D1)(D2) if there exist g0, h0 ∈ K such that

L− P1 = (D1 − g0) ◦ (D2 − h0).

Comparing the terms on the two sides of the equation, one gets

g0 = b, h0 = a , P1 = ∂x(a)− ab− c.

Analogously, we get a common obstacle to factorization of the type (D2)(D1):

P2 = ∂y(b)− ab− c,

and the corresponding factorization for L− P2:

L− P2 = (D1 − a) ◦ (D2 − b).

Thus, the obtained common obstacles P1 and P2 are the famous Laplace invari-
ants [10].

Theorem 1. Let n = 2, L ∈ K[D], ord(L) = d, and SymL = S1·S2 . . . Sk, where
Si, i ∈ {1, . . . , k} are pairwise coprime. Then the order of common obstacles is
less then d− 1.

Let us recall that a second-order partial differential operator is called (strictly)
hyperbolic if its symbol has exactly two different factors. By analogy, a partial
differential operator of order d is (strictly) hyperbolic if its symbol has exactly
d different factors.

Theorem 2. Let n = 2, and let L ∈ K[D] be a strictly hyperbolic operator of
some order d. Let the factorization type of the factorization of L into exactly d
factors be fixed. Then a common obstacle is unique.
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Theorem 3. Let P be a common obstacle of L ∈ K[D], then g−1Pg is a com-
mon obstacle of g−1Lg, where g ∈ K.

4 Generalization of the Laplace Invariants

First of all, we recall the definition of an invariant of an operator L ∈ K[D].

Definition 4. Let L ∈ K[D]. An algebraic differential expression I in coeffi-
cients of L is an invariant under gauge transformations L1 = g(x, y)−1Lg(x, y)
if it does not change under these transformations.

For some fixed L ∈ K[D], the set of all invariants forms a ring, meaning that the
sum, the difference and the product of two invariants are also invariants. Trivial
examples of an invariant are coefficients of the symbol.

In the following proposition, we collect known information about the common
obstacles of a bivariate, strictly hyperbolic operator and show that the symbol
of a common obstacle can be considered as a generalization of the Laplace in-
variants.

Proposition 1. Let n = 2. Fix a strictly hyperbolic operator L ∈ K[D], and
denote the order of L by d. Consider factorizations of L into first-order factors.
Then

1. the order of common obstacles less than or equal to d− 2;
2. a common obstacle is unique for each factorization type;
3. there are d! common obstacles;
4. if d = 2, then the common obstacles of order 0 are the Laplace invariants;
5. the symbol of a common obstacle is an invariant.

Proof. The first statement follows from Theorem 1, while the second one is the
result of Theorem 2.

There are d! different types of factorizations of L into d factors, and so d!
common obstacles (not necessarily different). This proves the third statement.

The fourth statement follows from Example 1.
To prove the last statement we use Theorem 3 and the fact that the symbol

of an operator in K[D] is invariant under the gauge transformations. So, the
symbol of a common obstacle of L equals the symbol of a common obstacle of
g−1Lg, g ∈ K∗. On the other hand, the second statement implies that common
obstacles are unique. So, we are done.

Note that for a second order operator, by Theorem 1, all common obstacles have
order 0. Thus, the symbol of a common obstacle is just the common obstacle
itself. That is why a common obstacle is invariant for a second-order hyperbolic
operator. In general, that is not the case. Moreover, for a common obstacle P ,
none of the operators Pi, i ∈ {0, . . . , ord(L)− 1} is an invariant in general.
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5 A Full System of Invariants for Third Order LPDOs

Let n = 2. We consider a third-order strictly hyperbolic operator L ∈ K[D].
Using an appropriate change of variables, one can find a form for L in which the
symbol is

SymL = D1D2(D1 +D2).

So, without loss of generality it is enough to consider only this case.
For convenience we denote the derivations ∂1 and ∂2 by ∂x and ∂y respectively.

Theorem 4. Let n = 2. Consider an operator L ∈ K[D]:

L = D1D2(D1 +D2) + a20D
2
1 + a11D1D2 + a02D

2
2 + a10D1 + a01D2 + a00.

Then the following is a full system of invariants of L.

I1 = −2a20 + a11 − 2a02,
I2 = ∂x(a20)− ∂y(a02),
I3 = a10 + a20(a20 − a11) + ∂y(a20 − a11),
I4 = a01 + a02(−a11 + a02) + ∂x(−a11 + a02),
I5 = a00 − a01a20 − a10a02 + a02a20a11+

+(2a02 − a11 + 2a20)∂x(a20) + ∂xy(a20 − a11 + a02).

(1)

Thus, an operator L′ ∈ K[D]

L′ = D1D2(D1 +D2) + b20D
2
1 + b11D1D2 + b02D

2
2 + b10D1 + b01D2 + b00

is equivalent to L (w.r.t. the gauge transformations) if and only if their corre-
sponding invariants I1, I2, I3, I4, I5 are equal.

Proof. Suppose the corresponding systems of invariants {I1, I2, I3, I4, I5} of L
and {I ′1, I ′2, I ′3, I ′4, I ′5} of L′ are equal. We look for a function f ∈ K, such that

f−1Lf = L′ . (2)

We equate the coefficients of D2
1, D

2
2 on both sides of (2), and get

b20 = a20 + ∂y(g) , b02 = a02 + ∂x(g) . (3)

Consider f ∈ K, such that
g = ln f .

Now, I2 = I ′2 implies

∂x(b20 − a20) = ∂y(b02 − a02) . (4)

Therefore, there is only one (up to a multiplicative constant) function f , which
satisfies the conditions (3). We fix this function f , and check whether the others
coefficients on the both sides of (2) are equal.

We introduce the following notation:

P = ∂x(g) , Q = ∂y(g) .

We will use the following two lemmas.
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Lemma 1. The following equalities hold:

∂xy(f)
f

= ∂x(g)∂y(g) + ∂xy(g) = PQ+ ∂x(Q) ,

∂yy(f)
f

= ∂2
y(g) + ∂yy(g) = Q2 + ∂y(Q) ,

∂xxy(f)
f

= Q∂x(P ) + 2P∂x(Q) + P 2Q+ ∂xx(Q) ,

∂xyy(f)
f

= P∂y(Q) + 2Q∂y(P ) + PQ2 + ∂xy(Q) .

Proof. Use definitions of g, P,Q, equalities (3), and ∂y(P ) = ∂x(Q).
For instance, the proof of the first statement is as follows. Since

∂x(g) =
∂x(f)
f

,

we have

∂xy(f)
f

=
∂y(f∂x(g))

f
=

∂y(f)∂x(g) + f∂xy(g)
f

= ∂x(g)∂y(g) + ∂xy(g) .

To get a form of the expression in P and Q one may just substitute

∂x(g) = P , ∂y(g) = Q .

Lemma 2. The following equalities hold:

1. b20 = Q+ a20,
2. b02 = P + a02,
3. b11 = 2P + 2Q+ a11,
4. b10 = a10 + 2PQ+ a11Q+Q2 + 2a20P + ∂y(2P +Q),
5. b01 = a01 + 2PQ+ a11P + P 2 + 2a02Q+ ∂x(P + 2Q).

Proof. The equalities 1, 2 follow from (3). Equality 3 is implied by I1 = I ′1, while
equalities 4, 5 are consequences of I3 = I ′3 and I4 = I ′4 respectively.

To finish the proof it is enough to prove the following lemma.

Lemma 3. Let the coefficients of D1D2, D1 and D2 be c11, c10 and c01 and let
the free coefficient in (f−1L ∗ f − L′) be c00. Then c11 = c10 = c01 = c00 = 0.

Proof. From the equality I1 = I ′1, we have c11 = 0.
Now, by the lemma 1, we compute

c10 = a10 − b10 + a11∂y(g) +
∂yy(f) + 2∂xy(f)

f
+ 2a20∂x(g)

= a10 − b10 + a11Q +Q2 + 2PQ+ ∂y(Q) + 2∂x(Q) , (5)

which is 0, by equality 4 from lemma 2.



Full System of Invariants for Third-Order LPDOs 113

Analogously, the coefficient

c01 = a01 − b01 + a11∂x(g) +
∂xx(f) + 2∂xy(f)

f
+ 2a02∂y(g)

is 0, by equality 5 from lemma 2.
Now, let us consider the free coefficient

c00 = a00 − b00 + a10∂x(g) + a01∂y(g)

+
a20∂xx(f) + a11∂xy(f) + a02∂yy(f)

f
+
∂xxy(f) + ∂xyy(f)

f
. (6)

We may use lemma 1 together with the equalities 1, 2 from lemma 2 to obtain

c00 = a00 − b00 + a10P + a01Q+ a20P
2 + a11PQ+ a02Q

2

+P 2Q + PQ2 + (a20 +Q)∂x(P ) + (a11 + 2(P + Q))∂y(P )
+(a02 + P )∂y(Q) + ∂xy(P +Q). (7)

From I5 = I ′5, and using I1 = I ′1, we get

0 = a00 − b00 − a01a20 + b01b20 − a10a02 + a02a20a11 + b10b02

−b02b20b11 + (−2a02 + a11 − 2a20)∂y(P ) + ∂xy(P +Q). (8)

After subtracting this equation from equation (7), and using all the substitutions
from lemma 2, one gets

c00 = 0 .

So, we have finished the proof in one direction, more precisely, we have just
proved that if the five invariants are equal, then there is f ∈ K such that
f−1Lf = L′.

Now, suppose that L and L′ are equivalent w.r.t. the gauge transformations.
Then one can check that the respective invariants are equal. This requires some
extended but straightforward computations of the invariants, which were done
by means of Maple 9.5.

Let n = 2. Consider a strictly hyperbolic third order operator L ∈ K[D]. By
Proposition 1, there are 6 common obstacles to factorizations of L into first
order factors. By the same proposition, the symbols of these common obstacles
are invariants of L.

Now, we have the full system of invariants {I1, I2, I3, I4, I5}, which is a basis
for all invariants. That is, the coefficients of the symbols of these 6 common
obstacles can be expressed in terms of these five invariants. The free coefficients
of common obstacles are not invariants in general, but nevertheless they can be
“almost” expressed in terms of these basic invariants. More precisely, we prove
the following theorem.

Theorem 5. Let n = 2, and L ∈ K[D] be a third order operator with the symbol
SymL = S1 · S2 · S3, where S1 = D1, S2 = D2, S3 = D1 +D2.
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Then for every permutation (i, j, k) of (1, 2, 3) denote the main common ob-
stacle to factorization of the type (Si)(Sj)(Sk) by Obstijk, and the symbol of
Obstijk by Symijk.

Then all Symijk and Obstijk can be expressed using the five invariants of the
full system (1) as follows:

Sym123 = (I3 + I2)D1 +I4D2,
Sym132 = (I3 + ∂y(I1))D1 +I4D2,
Sym213 = I3D1 +(I4 + I2)D2,
Sym231 = I3D1 +(I4 + 2I2 + ∂x(I1))D2,
Sym312 = (I3 + ∂y(I1))D1 +(I4 + I2 + ∂x(I1))D2,
Sym321 = (I3 + I2 + ∂y(I1))D1 +(I4 + 2I2 + ∂x(I1))D2.

While (the main) common obstacles have the forms

Obst123 = T123,
Obst132 = T132 − ∂xy(I1) + ∂x(I2),
Obst213 = T213 − I1I2,
Obst231 = T231 − I1I2 − ∂xy(I1)− ∂y(I2),
Obst312 = T321 − ∂xy(I1) + ∂x(I2),
Obst321 = T321 − I1I2 − ∂xy(I1)− ∂y(I2),

where a20 and a02 are the coefficients at ∂xx and ∂yy in L, and

Tijk = Symijk + I5 − a02[D1](Symijk)− a20[D2](Symijk),

where [Di](S) denotes the coefficient of Di in S.

Proof. Let

L = SymL + a20D
2
1 + a11D1D2 + a02D

2
2 + a10D1 + a01D2 + a00.

Then

Sym123 = (u − ∂x(a20) + ∂y(a02 − a11 + a20))D1 +(v + ∂x(a02 − a11))D2,
Sym132 = (u − 2∂x(a20)− ∂y(a20))D1 +(v + ∂x(a02 − a11))D2,
Sym213 = (u + ∂y(a20 − a11))D1 +(v + ∂x(a02 − a11 + a20)

−∂y(a02))D2,
Sym231 = (u + ∂y(a20 − a11))D1 +(v − ∂x(a02)− 2∂y(a02))D2,
Sym312 = (u − 2∂x(a20)− ∂y(a20))D1 +(v − ∂x(a20 + a02)

−∂y(a02))D2,
Sym321 = (u − ∂x(a20)− ∂y(a20 + a02))D1 +(v − ∂x(a02)− 2∂y(a02))D2,

where
u = a10 − a20a11 + a2

20 and v = a01 − a02a11 + a2
02 .

Then direct computations prove the first statement of the theorem.
We prove the formulae for the Obstijk in a similar way, that is, we compute

the formulae for Obstijk as some expressions (they are large, in fact) in the
coefficients of L, and then finish the proof of the theorem by means of direct
computations.
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Remark 1. The invariants I1, I2, I3, I4 were obtained as a consequence of Propo-
sition 1, that is as generalizations of Laplace invariants. More precisely, we have
considered all six types of factorizations into first order factors and the cor-
responding common obstacles, which are uniquely determined for these types.
Thus, we got twelve invariants as the coefficients of these common obstacles.
However, these invariants can be expressed in terms of four invariants. Then
one has to determine the last invariant I5, which should be dependent on the
coefficient a00 of the operator L.
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Abstract. The Complete Root Classification for a univariate polyno-
mial with symbolic coefficients is the collection of all the possible cases of
its root classification, together with the conditions its coefficients should
satisfy for each case. Here an algorithm is given for the automatic com-
putation of the complete root classification of a polynomial with complex
symbolic coefficients. The application of complete root classifications to
some real quantifier elimination problems is also described.

Keywords: Complete discrimination system, complete root classifica-
tion, root classification, parametric polynomial.

1 Introduction

Complete discrimination systems and complete root classifications have been
applied to questions concerning the positive definiteness of polynomials [7], to
ordinary differential equations [12], to integral equations [13] and to mechan-
ics [6]. In section 3 of this paper, we show applications to some real quantifier
elimination problems.

Consider for a start a polynomial p ∈ K[x], where K is typically R or C,
whose coefficients are known (not symbolic). By a Root Classification (RC), we
mean a list giving the number of roots in each of several categories. We list the
number of roots, including multiplicities, that are real, the number that form
complex conjugate pairs, and the number that are complex but which are not
part of a conjugate pair. The number of roots listed must sum to deg(p). If a
polynomial has known coefficients, then its RC is unique, but if the polynomial
has symbolic coefficients, then it could have several RCs, each one being valid
for a range of coefficient values. The collection of all such RCs, together with the
ranges of the coefficients over which they are valid, is then the Complete Root
Classification (CRC) of the polynomial. We denote the complex unit by I and
the complex conjugate of r ∈ C by r.

Definition 1. A Root Classification (RC) of p ∈ C[x] consists of a list of lists:
[L1, L2, L3], where L1, L2, L3 are defined below.
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The list L1 describes all roots r
(1)
k of p such that r

(1)
k ∈ R. It is the list

L1 := [n(1)
1 , n

(1)
2 , . . .] where each n

(1)
k is the multiplicity of root r(1)k . The list L2

describes all roots r(2)k of p such that r(2)k ∈ C\R and r
(2)
k is also a root of p. It

is the list L2 := [n(2)
1 ,−n(2)

1 , n
(2)
2 ,−n(2)

2 , . . .] where each n
(2)
k is the multiplicity

of root r(2)k . The list L3 describes all roots r(3)k of p such that r(3)k has not been
counted in L1 and L2. It is the list L3 := [n(3)

1 , n
(3)
2 , . . .], where each n

(3)
k is the

multiplicity of root r(3)k .

Remark. Notice that in the list L2, by listing each n
(2)
k twice, the sum of all

the absolute values of all entries equals deg(p). The negative sign in front of
the second n

(2)
k in the list L2 is merely a mnemonic of the fact that the pair of

integers describes a complex-conjugate pair.

Definition 2. A Complete Discrimination System (CDS) of a parametric poly-
nomial p(x) consists of a set of expressions in the symbolic coefficients of p(x),
such that only these expressions need to be tested in order to decide a root clas-
sification.

Definition 3. A Complete Root Classification (CRC) of a parametric polyno-
mial p(x) is a collection of statements, each of which consists of an RC coupled
with a sequence of conditions for which it is valid. The sequence of conditions
uses the elements of the CDS.

As an introductory example, the root classification of p(x) = x4 + ax2 + bIx
(where a, b are real parameters) is completely determined by a, b and D where
D = −4a3 + 27b2. Therefore, the CDS is {a, b,D}. The CRC consists of the
statements

– [[4], [], []] if and only if a = 0 ∧ b = 0,
– [[1, 1, 2], [], []] if and only if a < 0 ∧ b = 0,
– [[2], [1,−1], []] if and only if a > 0 ∧ b = 0,
– [[1], [], [1, 1, 1]] if and only if b �= 0 ∧D �= 0,
– [[1], [], [1, 2]] if and only if b �= 0 ∧ a �= 0 ∧D = 0.

Progress on finding CDS and CRC for polynomials has been slow. The CRC for
a quartic polynomial with real symbolic coefficients was found by Arnon [1] only
in 1985. Arnon [2] used that result to derive the positive semidefinite conditions
on polynomial x4 + px2 + qx + r. Significant progress on CDS and CRC for
polynomials with degrees greater than 4 was not made until 1996 (see [2], [9]).
In 1996, Yang et al. ([9], [10]) proposed a generic method for establishing the
CDS for a real polynomial of any degree. Furthermore, they gave an algorithm for
generating the root classification of a constant coefficient polynomial. However,
they did not give an algorithm for computing a CRC. This drawback prevented
the CDS and CRC from extensive applications.

As the degree of polynomial increases, human analysis will founder on the
greater complication and the possibility of error. In fact, it is not easy to dis-
cover accurately how many possible cases of root classification there are for a
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polynomial of degree 9 with real symbolic coefficients. Thus, it is a necessary
and non-trivial task to establish a generic algorithm to determine the CRC for
any polynomial by computer. Moreover, compared with the case of real paramet-
ric polynomials, the analysis of complex parametric polynomials is much more
complicated. If Rn and Cn denote the numbers of possible cases of RC for a
polynomial of degree n with real symbolic coefficients and complex symbolic co-
efficients respectively, then we can see from Table 1 (an explanation will be given
in section 2.2) that the ratio of Cn to Rn increases as the degree n increases.
In 1999, Liang and Zhang [7] showed how to solve the problems of CDS and

Table 1. The Ratio of Cn to Rn

n 2 3 4 5 6 10 15 20 25 30
Rn 3 4 9 12 23 118 651 3177 12584 46092
Cn 6 12 27 50 98 888 9072 69545 433054 2324844

Cn/Rn 2 3 3 4 4 8 14 22 34 50

CRC for polynomials with complex coefficients, but they did not give explicit
and systematic algorithms.

This paper gives a complete and explicit algorithmic method for generating
the CDS and CRC of a polynomial with complex symbolic coefficients. Fur-
thermore, this paper discusses how to remove some of those RCs which are not
realizable for a sparse parametric polynomial (see Definition 10). It is interesting
and also important since most polynomials arising in AI applications are sparse.
In section 2, the algorithms for generating CDS and CRC for polynomials with
complex symbolic coefficients are presented. In section 3, some applications of
CRC to problems in real quantifier elimination and the advantages of the new
method are discussed.

2 CDS and CRC

In this section, f(x) is a complex (parametric) polynomial of degree n. f(x) =
f1(x)+ I ∗f2(x), where f1(x) and f2(x) are the real part and the imaginary part
of f(x) respectively. By p(x) and g(x) we always refer to the greatest common
divisor of f1(x) and f2(x) (determined by proposition 3 below) and the pseudo
quotient of f(x) divided by p(x) respectively. A polynomial is called primitive,
if its real part and its imaginary part are co-prime. It is easy to see that g(x)
is primitive. We first review some basic concepts and results needed for the
algorithms in subsection 2.1. Then in subsections 2.2 to 2.4 we will present the
subalgorithms which are the components of the main algorithm. In subsection
2.5, we will present the algorithm for CRC.

2.1 Review of Basic Concepts and Results

In order to make this paper self-contained, we review some definitions and propo-
sitions which can be found in [7], [9] or [10]. Notations are as above.
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Proposition 1. The set of all roots of p(x) exactly consists of all real roots and
all conjugate imaginary roots of f(x).

A proof can be found in [7]. Then from proposition 1, we can easily get

Proposition 2. g(x) has at most non-conjugate imaginary roots.

Let f(x) = anx
n + an−1x

n−1 + · · ·+ a0 and h(x) = bmx
m + bm−1x

m−1 + · · ·+ b0
be two polynomials with complex coefficients, and let si(f, h, x) and pi(f, h, x)
be the principal subresultant sequence and subresultant polynomial sequence of
f(x) and h(x) respectively. We have [11]

Proposition 3. Suppose an �= 0 or bm �= 0. If s0(f, h, x)= · · ·=sk−1(f, h, x)=0
and sk(f, h, x) �= 0, then gcd(f, h) = pk(f, h, x).

Definition 4. Let f(x) = anx
n + an−1x

n−1 + · · · + a0. The following 2n× 2n
matrix in terms of the coefficients,⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

an an−1 an−2 . . . a0
0 nan (n− 1)an−1 . . . a1

an an−1 . . . a1 a0
0 nan . . . 2a2 a1

. . . . . .

. . . . . .
an an−1 an−2 . . . a0
0 nan (n− 1)an−1 . . . a1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is called the discrimination matrix of f(x), and is denoted by Discr(f). Dk

denotes the determinant of the submatrix of Discr(f), formed by the first 2k
rows and the first 2k columns, for k = 1, 2, . . . , n.

Definition 5. The n-tuple [D1, D2, . . . , Dn] is called the discriminant sequence
of f(x).

Definition 6. Let D = [D1, D2, . . . , Dn] be the discriminant sequence of a real
polynomial p(x), we call the list [sign(D1), sign(D2), . . . , sign(Dn)] the sign list
of D.

Definition 7. Let D be the discriminant sequence of p(x). The revised sign list
[e1, e2, . . . , en] of p(x) is constructed from the sign list [s1, s2, . . . , sn] of D as
follows, and is denoted by rsl(p). If [si, si+1, . . . , si+j ] is a section of the given
list, where si �= 0, si+1 = si+2 = . . . = si+j−1 = 0 and si+j �= 0, then we replace
the subsection [si+1, . . . , si+j−1] by

[−si,−si, si, si,−si,−si, si, si, . . .],

i.e., let ei+r = (−1)�(r+1)/2
si, for r = 1, 2, . . . , j − 1, where '(r + 1)/2( is the
floor function of (r+ 1)/2. Otherwise, let ek = sk, i.e., there are no changes for
other terms.



120 S. Liang and D.J. Jeffrey

Definition 8. Let [d1, d2, . . . , dt] be the discriminant sequence of a complex poly-
nomial f(x), and k is the maximal subscript such that dk �= 0. We define the
revised sign list of f(x) to be the list [1, 1, . . . , 1, 0, 0, . . . , 0] (there are k contin-
uous 1’s followed by t− k continuous 0’s) and denote it by rsl(f).

Letting h(x) = f ′(x) in proposition 3, we have

Proposition 4. If the number of the 0’s in the rsl(f) is k, then
gcd(f(x), f ′(x)) = pk(f, f ′, x).

If we only want to know the number of the distinct real roots or imaginary roots,
then the following propositions are sufficient ([9], [10]).

Proposition 5. Given a polynomial p(x) over reals, if the number of sign changes
and the number of non-vanishing members of the rsl(p) are v and s respectively,
then the number of pairs of the distinct conjugate imaginary roots of p(x) is v, and
the number of the distinct real roots is s− 2v.

By proposition 2 and proposition 4, we have [7]

Proposition 6. Let g(x) be a primitive polynomial of degree m. If the number
of non-vanishing members of the rsl(g) is r, then the number of the distinct
non-conjugate imaginary roots of g(x) is r.

If we want to know not only the number of the distinct roots of a polynomial
f(x), but also the multiplicity of every root, then we need to consider the root
classification of the “repeated part” of f(x), i.e., gcd(f(x), f ′(x)).

Definition 9. For convenience, let Δ(f) denote gcd(f(x), f ′(x)). If the number
of the 0’s in the rsl(f) is k, then by proposition 4, Δ(f) = pk(f, f ′, x). Let
Δ0(f) = f(x), Δj(f) = Δ(Δj−1(f)), for j = 1, 2, . . . . Then we call
Δ0(f), Δ1(f), Δ2(f), . . . the Δ-sequence of f(x).

Remark. Let notations be as before. Let si(f1, f2, x) be the principal subre-
sultant sequence of f1 and f2, U and V be the Δ-sequences of p(x) and g(x)
respectively. Let Ω be the set of all expressions in the discriminant sequences of
all polynomials in W . Then the CDS of f(x) is a subset of Ω ∪ {si(f1, f2, x)}.

Finally, we give two important propositions for the algorithms. The proofs are
easy.

Proposition 7. Let f(x) be a polynomial over complexes. If Δj(f) has k dis-
tinct roots with respective multiplicities n1, n2, . . . , nk, then the “repeated part”
Δj+1(f) of Δj(f) has at most k distinct roots with respective multiplicities
n1 − 1, n2 − 1 . . . , nk − 1 (if the multiplicity of a root is 0, it means the root
does not exist).

Proposition 8. Let f(x) be a polynomial over complexes. If Δj(f) has k dis-
tinct roots with respective multiplicities n1, n2, . . . , nk, and Δj−1(f) has m dis-
tinct roots, then m ≥ k, and the multiplicities of these m distinct roots are
n1 + 1, n2 + 1 . . . , nk + 1, 1, . . . , 1 (there are m− k continuous 1’s) respectively.
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2.2 All Possible Cases of Root Classification for a Parametric
Polynomial

Given a polynomial of degree n with symbolic coefficients, from the theoretical
point of view, how many possible cases of RC may it have?

The set of all possible RCs for a polynomial of degree n over reals can be
expressed as: {all possible RCs with 0 pair of conjugate imaginary roots} ∪ {all
possible RCs with 1 pair of conjugate imaginary roots} ∪ · · · ∪ {all possible RCs
with 'n/2( pairs of conjugate imaginary roots}. Therefore, the algorithm for
generating the set of all possible RCs for a polynomial of degree n over reals is

AllListsReal
Input: n ∈ N.
Output: the set of all possible RCs for a real polynomial of degree n.

L := { }
for k from 0 to 'n/2( do

– compute the set A of all partitions of n− 2k
– compute the set B of all partitions of k
– change B into C as follows. ∀ b ∈ B, apply mapping: ∀ i ∈ b, i %→ i,−i. For

example, if B = {[3], [1, 2]}, then C = {[3,−3], [1,−1, 2,−2]}
– combine the elements of A with the elements of C by distribution law to

form a set U of new lists
– L:=append(L, U)

return L

For complex polynomial f(x) of degree n, let notations be as before and let
deg(g(x), x) = k. Then the set of all possible RCs for f(x) can be expressed as:
{all possible RCs when k = 0} ∪ {all possible RCs when k = 1} ∪ · · · ∪ {all
possible RCs when k = n}.

For 0 ≤ k ≤ n, the algorithm to compute the set of all possible RCs with k
non-conjugate imaginary roots is

ListsRealImag
Input: n ∈ N, k ∈ N.
Output: the set of all possible RCs for a complex polynomial of degree n with k
non-conjugate imaginary roots.

Since the algorithm is similar to AllListsReal, we omit the details. The follow-
ing example is generated by computer.

> ListsRealImag(5, 2)
{[[3],[],[1,1]], [[1,2],[],[1,1]], [[1,1,1],[],[1,1]],
[[1],[1,-1],[1,1]], [[3],[],[2]], [[1,2],[],[2]],[[1,1,1],[],[2]],
[[1],[1,-1],[2]]}

At this point, we would like to give an explanation for Table 1. The number
of all partitions of n is p(n), the well-known partition function (see [19], for
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example). Some values of p(n) are as follows: p(1) = 1, p(2) = 2, p(3) = 3, p(4) =
5, p(5) = 7, p(10) = 42, p(100) = 190569292. Using the argument above, we can
easily get the Table 1.

2.3 Conditions for Each Case of Root Classification

Let notations be as above. Suppose b = [b1, b2, b3] is an RC for f(x). What
conditions should p(x) and g(x) satisfy? We can express this problem exactly.
In order to make the RC of p(x) to be exactly [b1, b2, []], what conditions should
they satisfy for the polynomials in the Δ-sequence of p(x)? In order to make the
RC of g(x) to be exactly [[], [], b3], what conditions should they satisfy for the
polynomials in the Δ-sequence of g(x)?

First of all, we would like to introduce some mini subalgorithms. Their im-
plementations are easy.

1. ImagLtInfo. Input: an RC for a primitive polynomial. Output: a list con-
sisting of the degree and the number of distinct non-conjugate imaginary
roots of the polynomial.

2. RealLtInfo. Input: an RC for a polynomial over reals. Output: a list con-
sisting of the degree, the number of distinct roots and the number of pairs
of distinct conjugate imaginary roots of the given polynomial.

3. GenRealRSL. Input: m,n, k ∈ N. Output: a sequence of all possible (re-
vised sign) lists of which the length, the number of non-vanishing members
and the number of sign changes are m, n and k respectively.

4. GenImagRSL. Input: m,n ∈ N. Output: a list of length m + n which
contains m continuous 1’s followed by n continuous 0’s.

5. MinusOne. Input: an RC b. Output: an RC generated from b by decreasing
the absolute values of all numbers in b by 1, and then erasing all numbers of
value 0, and keeping empty lists unchanged.

Suppose b = [b1, b2, []] is an RC of p(x), and let t = RealLtInfo(b). Then
p(x) should be a polynomial of degree t[1], with t[2] distinct roots and t[3]
pairs of distinct conjugate imaginary roots. Thus, by proposition 5, all possi-
ble rsl(p) should be rsl0 = GenRealRSL(t[1], t[2], t[3]). By definition 9, Δ1(p)
should be the subresultant polynomial of p and p′ of index t[1] − t[2], that is,
pt[1]−t[2](p, p′, x). For the following five cases, we can determine just by rsl0 that
the RC of p(x) is b = [b1, b2, []] without further computation for the revised sign
lists of other polynomials in the Δ-sequence of p(x).

1. t[1] = t[2]. Then the rsl(p) contains no 0, then there is only one polynomial
in the Δ-sequence of p(x), p(x) itself.

2. t[2] = 1. Then p(x) has only one distinct real root, so do the other polyno-
mials in the Δ-sequence of p(x) by proposition 7. Thus any revised sign list
of the polynomials in the Δ-sequence of p(x) also contains only one 1.

3. t[2] = 2 and t[3] = 1. Then p(x) has only one pair of distinct conjugate
imaginary root, so do the other polynomials in the Δ-sequence of p(x) by
proposition 7. Thus any revised sign list of the polynomials in theΔ-sequence
of p(x) also contains only two non-vanishing members: 1 and -1.
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4. t[1]− t[2] = 1. Then the “repeated part” Δ1(p) is a polynomial of degree 1,
and the revised sign list of it is [1].

5. t[2] = 2 t[3] and t[1] − t[2] = 2. Then all roots of p(x) should be conjugate
imaginary roots and the “repeated part” Δ1(p) of p(x) should be a polyno-
mial of degree 2. Then by proposition 7, Δ1(p) exactly has a pair of conjugate
imaginary roots, and the revised sign list of it should be [1,−1].

Noticing the definition of MinusOne and proposition 4, the discussion above
has actually proved the correctness of the following algorithm. The algorithm
for generating the conditions for p(x) having b = [b1, b2, []] as its RC is

RealCond0
Input: a real polynomial p(x); an RC b = [b1, b2, []]; the variable x.
Output: a sequence of mix lists consisting of polynomials in the Δ-sequence of
p(x) and their all possible revised sign lists.

t := RealLtInfo(b)
rsl := GenRealRSL(t[1], t[2], t[3])
if b meets one of the five cases

return [p, rsl]
else

return cons([p, rsl], RealCond0(Δ1(p),MinusOne(b), x))

Similarly, we can discuss the conditions for g(x) having b = [[], [], b3] as its RC.
Let t := ImagLtInfo(b). Then the three cases (1) t[1] = t[2], (2) t[2] = 1 and
(3) t[1]− t[2] = 1 correspond to the five cases in RealCond0. By propositions 4, 6,
7 and a similar discussion as in RealCond0, we can easily prove the correctness
of the following algorithm. The algorithm for generating the conditions for g(x)
having [[], [], b3] as its RC is

ImagCond0
Input: a primitive polynomial g(x); an RC b = [[], [], b3]; the variable x.
Output: a sequence of mix lists consisting of polynomials in the Δ-sequence of
g(x) and their possible revised sign lists.

t := ImagLtInfo(b)
rsl := GenImagRSL(t[2], t[1]− t[2])
if b meets one of the three cases

return [g, rsl]
else

return cons([g, rsl], ImagCond0(Δ1(g),MinusOne(b), x))

Finally, we come to the point to give the algorithm for generating the condi-
tions for f(x) having b = [b1, b2, b3] as its RC. Let notations be as above.

AllCond0
Input: a real polynomial p(x); a primitive polynomial g(x); an RC b = [b1, b2, b3];
the variable x.
Output: b and the conditions that the Δ-sequences of p(x) and g(x) should
satisfy.
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if deg(g, x) = 0
return [b1, b2, []] and RealCond0(p, [b1, b2, []], x)

else
return b, RealCond0(p, [b1, b2, []], x) and ImagCond0(g, [[], [], b3], x).

2.4 Realization of Root Classification

For a given polynomial f(x) with complex symbolic coefficients, we have given
algorithms for generating the set of its all possible RCs, together with the con-
ditions it should satisfy for each case. A question arises natually: is each case of
RC realizable?

For a real polynomial p(x), a case of RC is realizable if and only if the con-
ditions associated with the case are realizable. The latter holds if and only if
the semi-algebraic set defined by the conditions is non-empty. Similarly, for a
primitive polynomial g(x), a case of RC is realizable if and only if the algebraic
set defined by the associated conditions is non-empty. Deciding the emptiness
of a semi-algebraic set is a difficult subject and some references are available,
for example, [17] and [18]. Lemma 1.14 of [20] gives a method for deciding the
emptiness of an algebraic set over C.

Here, we choose a more direct approach to the question. We remove those
RCs that can be proved to be not realizable. If a polynomial p(x) of degree
n has a general form, that is, p(x) = xn + an−1x

n−1 + · · · + a1x + a0, where
ai(i = 0, 1, . . . , n− 1) are distinct real parameters, then it is easy to see that all
the RCs outputted by AllListsReal are realizable. On the other hand, for sparse
parametric polynomials (see the definition below), some of the RCs outputted
by AllListsReal and ListsRealImag are not realizable.

Definition 10. A parametric polynomial f(x) of degree n is sparse, if at least
one Dk(2 ≤ k ≤ n) in its discriminant sequence D contains no symbols.

Definition 11. Let notations be as before. The RSL realization of the discrim-
inant sequence D of p(x) (g(x) respectively) is a collection of all the (revised
sign) lists obtained by the following process.

If p(x) has not more than 3 parameters, first we find out a sample of D-
invariant decomposition for the parametric space by CAD ([3], [8]), then substi-
tute the sample points into D one by one. If p(x) has more than 3 parameters,
then 3 values -1, 0 and 1 are assigned to each Dk in D which contains symbols.
For g(x), 2 values 0 and 1 are assigned to each Dk in D which contains symbols.
Finally, we compute the revised sign lists using definition 7 for all the resulting
lists.

Remark. For a given real parametric polynomial p(x), the set of all possi-
ble rsl(p) should be a subset of the set U1: the RSL realization of the dis-
criminant sequence of p(x) (the two sets are the same if U1 is obtained by
CAD). Therefore, for an RC b = [b1, b2, []], let t = RealLtInfo(b), and U2 =
GenRealRSL(t[1], t[2], t[3]). If U1 ∩ U2 = φ then b is not realizable for p(x). On
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the other hand, U1∩U2 is the conditions that p(x) should satisfy if b is realizable.
Similar conclusions can be drawn for a primitive parametric polynomial g(x).

For example, for p(x) = x5 + x4 + a, where a is a real parameter, its dis-
criminant sequence is D = [1, 1, 0,−a2, 256a3 + 3125a4]. Therefore, p(x) is a
sparse parametric polynomial. We claim that b = [[1, 2, 2], [], []] is not real-
izable for p(x). By CAD, we can easily obtain the RSL realization of D. It
is U1 = {[1, 1,−1,−1, 0], [1, 1,−1,−1, 1], [1, 1, 0, 0, 0], [1, 1,−1,−1,−1]}. On the
other hand, RealLtInfo(b) = [5, 3, 0], and U2 := GenRealRSL(5, 3, 0) =
{[1, 1, 1, 0, 0]}. Because U1 ∩ U2 = φ, b is not realizable for p(x).

Based on the discussion above, we can update the algorithms in subsection
2.3 as follows.

RealCond
Input: a real polynomial p(x); an RC b = [b1, b2, []]; the variable x.
Output: the conditions that the Δ-sequence of p(x) should satisfy (if it is NULL,
then b is not realizable).

t := RealLtInfo(b)
rsl := GenRealRSL(t[1], t[2], t[3])
if p is sparse or p has not more than 3 parameters

rsl := rsl∩{the RSL realization of the discriminant sequence of p}
if rsl = φ

return NULL
else if b meets one of the five cases

return [p, rsl]
else

L := RealCond(Δ1(p),MinusOne(b), x)
if L = NULL

return NULL
else

return cons([p, rsl], L)

ImagCond
Input: a primitive polynomial g(x); an RC b = [[], [], b3]; the variable x.
Output: the conditions that the Δ-sequence of g(x) should satisfy (if it is NULL,
then b is not realizable).

t := ImagLtInfo(b)
rsl := GenImagRSL(t[2], t[1]− t[2])
if g is sparse

rsl := rsl∩{the RSL realization of the discriminant sequence of g}
if rsl = φ

return NULL
else if b meets one of the three cases

return [g, rsl]
else

L := ImagCond(Δ1(g),MinusOne(b), x)
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if L = NULL
return NULL

else
return cons([g, rsl], L)

AllCond
Input: a real polynomial p(x); a primitive polynomial g(x); an RC b = [b1, b2, b3];
the variable x.
Output: b and the conditions that the Δ-sequences of p(x) and g(x) should
satisfy (if it is NULL, then b is not realizable).

if deg(g, x) = 0
L := RealCond(p, b, x)
if L = NULL

return NULL
else

return b and L
else

L1 := RealCond(p, [b1, b2, []], x)
L2 := ImagCond(g, [[], [], b3], x)
if L1 = NULL or L2 = NULL

return NULL
else

return b, L1 and L2

2.5 The Algorithm for CRC

Based on the subalgorithms in the preceding subsections, now it is time to give
the algorithm for generating the CRC of a complex parametric polynomial.

CRC
Input: A complex parametric polynomial f(x); the variable x.
Output: the CRC of f(x).

n := deg(f, x)
if f is real

L := ListsRealImag(n, 0)
for b in L do

AllCond(f, 1 + I, b, x)
else

f1=realPart(f), f2=imagPart(f)
compute the principal subresultant sequence {sk} and
subresultant polynomial sequence {pk}, 0 ≤ k ≤ m ≤ n
for k from 0 to m do

if s0 = · · · = sk−1 = 0 and sk �= 0
p := pk

g :=pseudoQuotient(f, p)
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L := ListsRealImag(n, n− k)
for b in L do

AllCond(p, g, b, x)

The algorithm above has been made into a generic program in Maple, which
enables the CRC to be automatically generated by computer. In [7], the CRC
of a sextic polynomial over reals and the CRC of a quartic polynomial over
complexes are generated by computer automatically. Notice that there is also a
CRC for a sextic polynomial over reals in [9] and [10]. However, the one in [9] and
[10] is accomplished by artificial analysis which needs higher skills. Furthermore,
the information about the imaginary roots is not complete. In the following
section, more examples will be given.

Remark. By the discussion in subsection 2.4, we can see that for real parametric
polynomials which have general forms or which have not more than 3 parameters,
especially for those in the examples in section 3, all the RCs in the CRC are
realizable. If we use the improved CAD (see [4] and [16] for example) at the
RSL realization within RealCond, we can expect that all the RCs in the CRC
are realizable for real polynomials with more parameters instead of just 1, 2, or
3 parameters.

3 Applications of CRC to Real Quantifier Elimination

This section presents some applications of CRC method to real quantifier elimi-
nation. It concerns specific input formulas of the form ∀x[ψ], where ψ is a single
polynomial inequality. All the computations have been performed on a Pentium
IV PC with 3.2 GHz CPU and 1 GB RAM. For CRC method, we use Maple 10.
For CAD method, we use QEPCAD B [5].

For a real parametric polynomial p(x) with positive leading coefficient, the
routine of the CRC method for the specific real quantifier elimination is:

1. Compute the CRC of p(x) by computer automatically.
2. Pick out the cases of RC in the CRC which don’t have real roots (for positive

definite) and the cases of which every real root has an even multiplicity (for
positive semidefinite).

3. Interpret the conditions for each case in step 2. Denote the mapping from
the set of sign lists to the set of revised sign lists in definition 7 by Φ. Let
L be the set of revised sign lists in the conditions for some case in step 2.
Then the conditions for that case is Φ−1(L).

Example 1. Find the conditions on a, b, c such that (∀x)[x4 + ax2 + bx+ c ≥ 0].
First, we compute the CRC of p4 = x4 + ax2 + bx+ c by computer.

(*) p4:=x^4+ax^2+bx+c
(1) [[4],[],[]], iff [p4,[1,0,0,0]]
(2) [[2,2],[],[]], iff [p4,[1,1,0,0]],[p42,[1,1]]
(3) [[1,3],[],[]], iff [p4,[1,1,0,0]],[p42,[1,0]]
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(4) [[1,1,2],[],[]], iff [p4,[1,1,1,0]]
(5) [[1,1,1,1],[],[]], iff [p4,[1,1,1,1]]
(6) [[1,1],[1,-1],[]], iff

[p4,[1,1,1,-1],[1,1,-1,-1],[1,-1,-1,-1]]
(7) [[2],[1,-1],[]],iff [p4,[1,1,-1,0],[1,-1,-1,0]]
(8) [[],[2,-2],[]], iff [p4,[1,-1,0,0]]
(9) [[],[1,-1,1,-1],[]], iff

[p4,[1,-1,1,1],[1,1,-1,1],[1,-1,-1,1]]
where,
(#1) p4:=x^4+a*x^2+b*x+c, and its discriminant sequence is:
D:=[1, -a, -2*a^3+8*c*a-9*b^2, -4*b^2*a^3+16*a^4*c+144*a*c*b^2
-128*c^2*a^2-27*b^4+256*c^3]

(#2) p42:=-2*a*x^2-3*b*x-4*c, and its discriminant sequence is:
E:=[1, 9*b^2-32*c*a]

We denote the discriminant sequences of p4 and p42 by [1,−a,D3, D4] and
[1, E2] respectively. It is easy to see that (∀x)[x4 + ax2 + bx+ c ≥ 0] ⇐⇒ one of
the following cases holds: cases (1), (2), (7), (8), (9).

But case (1) holds ⇔ the rsl(p4) be [1, 0, 0, 0] ⇔ a = 0 ∧D3 = 0 ∧D4 = 0.
Case (2) holds ⇔ the rsl(p4) be [1, 1, 0, 0] and the rsl(p42) be [1,1] ⇔ a <
0 ∧ D3 = 0 ∧ D4 = 0 ∧ E2 > 0. Case (7) holds ⇔ the rsl(p4) be one of
[1, 1,−1, 0] and [1,−1,−1, 0] ⇔ D3 < 0∧D4 = 0. Cases (8) holds ⇔ the rsl(p4)
be [1,−1, 0, 0]⇔ a > 0∧D3 = 0∧D4 = 0. Case (9) holds ⇔ the rsl(p4) be one of
[1,−1, 1, 1], [1, 1,−1, 1] and [1,−1,−1, 1] ⇔ [a ≥ 0∧D4 > 0]∨ [D3 ≤ 0∧D4 > 0]

Therefore, the solution by CRC method is
(∀x)[x4 + ax2 + bx+ c ≥ 0] ⇐⇒ [D4 > 0 ∧ [a ≥ 0 ∨D3 ≤ 0] ] ∨ [D4 = 0 ∧D3 ≤
0 ∧ [D3 < 0 ∨ a ≥ 0 ∨E2 > 0] ]

On the other hand, using QEPCAD, we get the following result:
(∀x)[x4 + ax2 + bx+ c ≥ 0] ⇐⇒ F1 ≥ 0 ∧ [F2 > 0 ∨ [F3 ≥ 0 ∧ F4 ≥ 0]]
where

F1 := 256c3 − 128a2c2 + 144ab2c+ 16a4c− 27b4 − 4a3b2;
F2 := 27b2 + 8a3;
F3 := 48c2 − 16a2c+ 9ab2 + a4;
F4 := 6c− a2.

Example 1 is a benchmark QE problem. It takes 0.16 second to generate the
CRC while it takes 0.058 second by QEPCAD to get the solution. The solution
by CRC method is a little bit longer than the one by QEPCAD and the one by
Lazard [15] which has 3 atomic formulas and the one by Arnon [2] which has
4 distinct atomic formulas, but is much shorter than the one by Weispfenning
[14] which has 29 distinct atomic formulas. Furthermore, as the degree of the
polynomial increases, the advantage of CRC method is obvious when compared
with that of CAD method.

Example 2. Find the conditions on a, b, c such that (∀x)[x6 + ax2 + bx+ c ≥ 0].
The result has been given in [9]. It takes 0.47 second to generate the CRC of

the given polynomial while it takes 12.9 seconds by QEPCAD to get the solution.
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This is a sparse parametric polynomial. It has only 10 cases of RC in the CRC
while there are 23 possible cases of RC for a general real polynomial of degree
6 (see Table 1). The solution by CRC method has 4 distinct atomic formulas
while the one by QEPCAD has 5 distinct atomic formulas. The sizes of the two
solutions are about the same.

Example 3. Find the conditions on a, b, c such that (∀x)[x10 + ax2 + bx+ c > 0].
It takes 4.41 seconds to generate the CRC. This is also a sparse parametric

polynomial. It has only 10 cases of RC in the CRC while there are 118 possible
cases of RC for a general real polynomial of degree 10 (see Table 1). On the
other hand, CAD method failed when we tried to solve the problem.

The solution by CRC method is given by
(∀x)[x10 + ax2 + bx+ c > 0] ⇐⇒ [a > 0 ∧D9 = 0 ∧D10 = 0]
∨ [D9 ≥ 0 ∧D10 < 0] ∨ [a ≥ 0 ∧D10 < 0], where

D9 = 16777216a9 + 204800000a4c4 − 2073600000a3b2c3

+3149280000a2b4c2 − 1488034800ab6c+ 215233605b8;
D10 = −67108864a10c+ 16777216a9b2 − 1638400000a5c5

+16588800000a4b2c4 − 27993600000a3b4c3 + 17006112000a2b6c2

−4304672100ab8c− 10000000000c9 + 387420489b10.
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Abstract. Concerning quartics, two particular quantifier elimination
(QE) problems of historical interests and practical values are studied.
We solve the problems by the theory of complete discrimination systems
and negative root discriminant sequences for polynomials that provide a
method for real (positive/negative) and complex root classification for
polynomials. The equivalent quantifier-free formulas are obtained mainly
be hand and are simpler than those obtained automatically by previous
methods or QE tools. Also, applications of the results to program ver-
ification and determination of positivity of symmetric polynomials are
showed.

1 Introduction

The elementary theory of real closed fields is the first-order theory with atomic
formulas of the forms A = B and A > B where A and B are multivariate
polynomials with integer coefficients and an axiom system consisting of the real
closed fields axioms. The problem of quantifier elimination (QE) for real closed
fields can be expressed as: for a given standard prenex formula φ find a standard
quantifier-free formula ψ such that ψ is equivalent to φ. The problem of quantifier
elimination for real closed field is an important problem originating from math-
ematical logic with applications to many significant and difficult mathematical
problems with various backgrounds.

Many researchers contribute to QE problem. A. Tarski gave a first quantifier
elimination method for real closed fields in 1930s though his result was pub-
lished almost 20 years later [Ta51]. G. E. Collins introduced a so-called cylin-
drical algebraic decomposition (CAD) algorithm in the early 1970s [Co75] for
QE problem. Since then, the algorithm and its improved variations have be-
come one of the major tools for performing quantifier elimination. Through
these years, some new algorithms have been proposed and several important
improvements on CAD have been made to the original method. See, for exam-
ple, [ACM84b, ACM88, Br01a, Br01b, BM05, Co98, CH91, DSW98, Hong90,
Hong92] and [Hong96, Mc88, Mc98, Re92, Wei94, Wei97, Wei98]. Most of the
works including Tarski’s algorithm were collected in a book [CJ98].

� Corresponding author.

J. Calmet, T. Ida, and D. Wang (Eds.): AISC 2006, LNAI 4120, pp. 131–145, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



132 L. Yang and B. Xia

In this paper, we consider the following two QE problems:

(∀λ > 0) ( λ4 + p λ3 + q λ2 + rλ + s > 0 ) (1)

and
(∀λ ≥ 0) ( λ4 + p λ3 + q λ2 + rλ+ s ≥ 0 ), (2)

where s �= 0.
Many researchers studied the following problem of quantifier elimination (see,

for example, [AM88, CH91, La88, Wu92, Wei94]),

(∀x)(x4 + px2 + qx+ r ≥ 0).

Problems (1) and (2) are similar to this famous QE problem but have obviously
different points, that is, the variable λ has to be positive or non-negative in our
problems. The two problems attract us not only because they are related to the
above famous QE problem but also because we encounter them when study-
ing some problems concerning program termination [YZXZ05] and positivity of
symmetric polynomials of degree 4.

Let Q(λ) = λ4 + p λ3 + q λ2 + rλ+ s with s �= 01. Problem (1) is equivalent to
finding the necessary and sufficient condition such that Q(λ) does not have pos-
itive zeros and Problem (2) is equivalent to finding the necessary and sufficient
condition such that Q(λ) does not have non-negative zeros or the non-negative
zeros of Q(λ) (if any) are all of even multiplicities. Therefore, if one has an effec-
tive tool for root classification or positive-root-classification of polynomials, the
problems can be solved in this way which is different from existing algorithms
for QE.

There do exist such tools. Actually, one can deduce such a method from the
Chapters 10 and 15 of Gantmacher’s book [Ga59] in 19592. González-Vega etc.
proposed a theory on root classification of polynomials in [GLRR89] which is based
on the Sturm-Habicht sequence and the theory of subresultants. For QE problems
in the form (∀x)(f(x) > 0) or (∀x)(f(x) ≥ 0) where the degree of f(x) is a positive
even integer, González-Vega proposed a combinatorial algorithm [Gon98] based
on the work in [GLRR89]. Other applications of the theory in [GLRR89] to QE
problems in the form (∀x > 0)(f(x) > 0) and other variants in the context of
control system design were studied by Anai etc., see [AH00] for example.

The authors also have such kind of tools [YHZ96, Yang99, YX00] at hand.
The theory of complete discrimination systems for polynomials proposed in
[YHZ96] and the negative root discriminant sequences for polynomials proposed
in [Yang99, YX00] are just appropriate tools for root classification and positive-
root-classification of polynomials3. With the aid of these tools, determining the
1 If s = 0, the problems essentially degenerate to similar problems with polynomials

of degree 3 which are much easier.
2 The Russian version of the book is published in 1953.
3 The theories in [GLRR89] and [YHZ96] are both essentially based on the relations

between subresultant chains and Sturm sequences (or Sturm-Habicht sequences), i.e.,
based on the subresultant theorem. However, the main results in these two theories
are expressed in different forms.
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number of real (or complex/positive) zeros of a polynomial f is reduced to dis-
cussing the number of sign changes in a list of polynomials in the coefficients
of f (see also Section 2 of this paper for details). There are many research
works making heavy use of complete discrimination systems, see for example
[WH99, WH00, WY00].

Solutions to those two problems presented in this paper are obtained mainly
by hand with some computation by computer. Our formulas, especially for the
semi-definite case (Problem 2), are simpler than those generated automatically
by previous methods or QE tools and thus make them possible for AI applica-
tions. Hopefully, our “manual” method presented here could be turned into a
systematic algorithm later on.

The rest of the paper is organized as follows. Section 2 devotes to some basic
concepts and results concerning complete discrimination systems and negative
root discriminant sequences for polynomials. Section 3 presents our solutions to
Problems (1) and (2). Applications of our results to program termination and
determination of positivity of symmetric polynomials are showed in Section 4.

2 Preliminaries

For convenience of readers, in this section we provide preliminary definitions and
theorems (without proof) concerning complete discrimination systems and neg-
ative root discriminant sequences for polynomials. For details, please be referred
to [YHZ96, Yang99, YX00].

Definition 1. Given a polynomial with general symbolic coefficients f(x) =
a0x

n + a1x
n−1 + · · · + an, the following (2n + 1) × (2n + 1) matrix is called

the discrimination matrix of f(x) and denoted by Discr (f).⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 a1 a2 · · · an

0 na0 (n− 1)a1 · · · an−1
a0 a1 · · · an−1 an

0 na0 · · · 2an−2 an−1
· · · · · ·
· · · · · ·
a0 a1 · · · · · · an

0 na0 · · · · · · an−1
a0 a1 · · · · · · an

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Denote by dk (k = 1, 2, · · · , 2n+1) the determinant of the submatrix of Discr (f)
formed by the first k rows and the first k columns.

Definition 2. Let Dk = d2k, k = 1, · · · , n. We call [D1, · · · , Dn] the discrim-
inant sequence of f(x) and denote it by DiscrList(f, x). Furthermore, we call
[d1d2, d2d3, · · · , d2nd2n+1] the negative root discriminant sequence of f(x) and
denote it by n.r.d.(f).
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Definition 3. We call [sign(B1), sign(B2), · · · , sign(Bn)] the sign list of a given
sequence [B1, B2, · · · , Bn].

Definition 4. Given a sign list [s1, s2, · · · , sn], we construct its revised sign list
[t1, t2, · · · , tn] as follows:

– If [si, si+1, · · · , si+j ] is a section of the given list, where

si �= 0, si+1 = · · · = si+j−1 = 0, si+j �= 0,

then, we replace the subsection [si+1, · · · , si+j−1] by the first j − 1 terms of
[−si,−si, si, si, −si,−si, si, si, · · · ], i.e., let

ti+r = (−1)[(r+1)/2] · si, r = 1, 2, · · · , j − 1.

– Otherwise, let tk = sk, i.e., no changes for other terms.

For example, the revised one of the sign list [1, 0, 0, 0, 1,−1, 0, 0, 1, 0, 0] is
[1,−1,−1, 1, 1,−1, 1, 1, 1, 0, 0].

Theorem 1 ([YHZ96, Yang99]). Given a polynomial f(x) with real coeffi-
cients, f(x) = a0x

n + a1x
n−1 + · · · + an, if the number of sign changes of the

revised sign list of [D1(f), D2(f), · · · , Dn(f)] is v, then the number of distinct
pairs of conjugate imaginary roots of f(x) equals v. Furthermore, if the number
of non-vanishing members of the revised sign list is l, then the number of distinct
real roots of f(x) equals l − 2v.

Definition 5. Let M = Discr(f). Denote by Mk the submatrix formed by the
first 2k rows of M , for k = 1, · · · , n; and M(k, i) denotes the submatrix formed
by the first 2k−1 columns and the (2k+i)-th column of Mk, for k = 1, · · · , n, i =
0, · · · , n− k. Then, construct polynomials

Δk(f) =
k∑

i=0

det(M(n− k, i))xk−i,

for k = 0, 1, · · · , n − 1, where det(M) stands for the determinant of the square
matrix M . We call the n-tuple

{Δ0(f), Δ1(f), · · · , Δn−1(f)}

the multiple factor sequence of f(x).

Lemma 1. If the number of the 0’s in the revised sign list of the discrimination
sequence of f(x) is k, then Δk(f) = gcd(f(x), f ′(x)), i.e. the greatest common
divisor of f(x) and f ′(x).

Definition 6. By U denote the set of {gcd0(f), gcd1(f), · · · , gcdk(f)}, where
gcd0(f) = f, gcdi+1(f) = gcd (gcdi(f), ∂

∂x gcdi(f)) and gcdk(f) = 1, i.e., all
the greatest common divisors at different levels. Each polynomial in U has a dis-
criminant sequence, and all of the discriminant sequences are called a complete
discrimination system (CDS) of f(x).
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Theorem 2 ([Yang99]). If gcdj(f) has k real roots with multiplicities n1, n2,
..., nk and gcdj−1(f) has m distinct real roots, then gcdj−1(f) has k real roots
with multiplicities n1 + 1, n2 + 1, · · · , nk + 1 and m− k simple real roots.

And the same argument is applicable to the imaginary roots.

Example 1. Let f(x) = x18 − x16 + 2x15 − x14 − x5 + x4 + x3 − 3x2 + 3x − 1.
The sign list of the discrimination sequence of f(x) is

[1, 1,−1,−1,−1, 0, 0, 0,−1, 1, 1,−1,−1, 1,−1,−1, 0, 0].

Hence, the revised sign list is

[1, 1,−1,−1,−1, 1, 1,−1,−1, 1, 1,−1,−1, 1,−1,−1, 0, 0],

of which the number of sign changes is seven, so f(x) has seven pairs of distinct
conjugate imaginary roots. Moveover, it has two distinct real roots and two
repeated roots. Since gcd(f, f ′) = x2 − x + 1, we know that f has two distinct
real roots, one pair of conjugate imaginary roots with multiplicity 2 and six pairs
of conjugate imaginary roots with multiplicity 1.

Theorem 3 ([Yang99, YX00]). Let [d1, d2, · · · , d2n+1] be the principal minor
sequence of the discrimination matrix of the following polynomial

f(x) = a0x
n + a1x

n−1 + · · ·+ an (a0 �= 0, an �= 0).

1. Denote the number of sign changes and the number of non-vanishing mem-
bers of the revised sign list of n.r.d.(f), [d1d2, d2d3, · · · , d2nd2n+1], by v and
2l, respectively. Then, the number of distinct negative roots of f(x) equals
l − v;

2. Denote [d2, d4, ..., d2n], [d1, d3, ..., d2n+1] and [d1d2, d2d3, ..., d2nd2n+1] by L1,
L2 and L3, respectively. If we denote the numbers of non-vanishing members
and the numbers of sign changes of the revised sign lists of Li (1 ≤ i ≤ 3) by
li and vi, respectively, then l3 = l1 + l2 − 1, v3 = v1 + v2.

3. If d2m−1 = d2m+1 = 0 for some m (1 ≤ m ≤ n), then d2m = 0.

Eliminating the quantifier in the formula

(∀x > 0) (f(x) > 0) (3)

is equivalent to finding the necessary and sufficient condition for f(x) not having
positive zeros. Similarly,

(∀x ≥ 0) (f(x) ≥ 0) (4)

is equivalent to the necessary and sufficient condition such that f(x) does not
have non-negative zeros or the non-negative zeros of f(x) (if any) are all of even
multiplicities. On the other hand, Theorems 1, 2 and 3 imply that, for a given
polynomial f(x), those conditions can be obtained by discussing on the signs of
elements in the negative root discriminant sequences of f(x) and gcdi(f). Thus,
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a sketch of an algorithm for solving (3) can be described as follows which is
similar to the combinatorial algorithm in [Gon98].

Algorithm: Def-Con
Input: A polynomial f(x) with degree n and f(0) �= 0
Output: The condition on the coefficients of f(x) such that (3) holds
Step 1. Let g(x) = f(−x) and denote by [d1, ..., d2n+1] the list of principal

minors of Discr (g).
Step 2. Discuss on all the possibilities of the signs of d2i. Output those sign

lists such that l1 − 2v1 = 0 (i.e., g(x) has no real zeros by Theorem 1) where
v1 and l1 are the numbers of sign changes and non-vanishing members of the
revised sign lists.

Step 3. For each list [d2, ..., d2n] which makes g(x) have real zeros, dis-
cuss on all the possibilities of the signs of d2i+1. Output those sign lists of
[d1, d2, ..., d2n+1] such that l/2− v = 0 (i.e., g(x) has no negative zeros by Theo-
rem 3) where v and l are the numbers of sign changes and non-vanishing members
of the revised sign lists of n.r.d.(f).

Analogously, we may have an algorithm, named Semi-Def-Con, for solving
(4) which is a little bit complicated since we have to use Theorem 2 to discuss
on multiple zeros. In order to simplify the description, we suppose the first 3
steps in Semi-Def-Con are the same as those in Def-Con. So, we only need to
consider those sign lists which make g(x) have negative zeros and multiple zeros
at the same time. For this case, we replace f(x) by gcdi(f) with a suitable i,
and run the first 3 steps recursively. By Theorem 2, we can get the condition for
the negative zeros of g(x) being all of even multiplicities.

By Def-Con and Semi-Def-Con, we can solve Problems (1) and (2) automat-
ically. However, the results are much more complicated than those we shall give
in the next section.

3 Main Results

Proposition 1. Given a quartic polynomial of real coefficients,

Q(λ) = λ4 + p λ3 + q λ2 + rλ + s,

with s �= 0, then
(∀λ > 0) Q(λ) > 0

is equivalent to

s > 0 ∧ ((p ≥ 0 ∧ q ≥ 0 ∧ r ≥ 0) ∨
(d8 > 0 ∧ (d6 ≤ 0 ∨ d4 ≤ 0)) ∨
(d8 < 0 ∧ d7 ≥ 0 ∧ (p ≥ 0 ∨ d5 < 0)) ∨ (5)
(d8 < 0 ∧ d7 < 0 ∧ p > 0 ∧ d5 > 0) ∨
(d8 = 0 ∧ d6 < 0 ∧ d7 > 0 ∧ (p ≥ 0 ∨ d5 < 0)) ∨
(d8 = 0 ∧ d6 = 0 ∧ d4 < 0))
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where

d4 = −8 q + 3 p2,

d5 = 3 r p+ q p2 − 4 q2,

d6 = 14 q r p− 4 q3 + 16 s q − 3 p3 r + p2 q2 − 6 p2 s− 18 r2,
d7 = 7 r p2 s− 18 q p r2 − 3 q p3 s− q2 p2 r + 16 s2 p+ 4 r2 p3 + 12 q2 p s

+ 4 r q3 − 48 r s q + 27 r3,
d8 = p2 q2 r2 + 144 q s r2 − 192 r s2 p+ 144 q s2 p2 − 4 p2 q3 s + 18 q r3 p

− 6 p2 s r2 − 80 r p s q2 + 18 p3 r s q − 4 q3 r2 + 16 q4 s− 128 s2 q2

− 4 p3 r3 − 27 p4 s2 − 27 r4 + 256 s3.

Proof. We need to find the necessary and sufficient condition such that Q(λ)
does not have positive zeros. First of all, by Cartesian sign rule we have the
following results:

1. s > 0 must hold. Otherwise, the sequence [1, p, q, r, s] will have an odd num-
ber of sign changes which implies Q(λ) has at least one positive zero.

2. If the zeros of Q(λ) are all real, Q(λ) does not have positive zeros if and only
if s > 0 and p, q, r are all non-negative.

Therefore, in the following we always assume s > 0 and do not consider the
case when Q(λ) has four real zeros (counting multiplicity).

Let P (λ) = Q(−λ), then we discuss the condition such that P (λ) does not
have negative zeros. We compute the principal minors di (1 ≤ i ≤ 9) of Discr(P )
and consider the following two lists:

L1 = [1, d4, d6, d8] and L2 = [1, d3, d5, d7, d9]

where d3 = −p, d9 = sd8 and di (4 ≤ i ≤ 8) are showed above in the statement
of this proposition. In the following, we denote the numbers of non-vanishing
elements and sign changes of the revised sign list of Li by li and vi (i = 1, 2),
respectively.

Case I. d8 > 0.
In this case, by Theorem 1 P (λ) has either four imaginary zeros or four real

zeros. P (λ) has four imaginary zeros if and only if d6 ≤ 0 ∨ d4 ≤ 0 by Theorem
1. As stated above, we need not to consider the case when P (λ) has four real
zeros. Thus,

d8 > 0 ∧ (d6 ≤ 0 ∨ d4 ≤ 0)

must be satisfied under Case I.
Case II. d8 < 0.
In this case, L1 becomes [1, d4, d6,−1] with l1 = 4, v1 = 1 which implies by

Theorem 1 that P (λ) has two imaginary zeros and two distinct real zeros.
If d7 > 0, L2 becomes [1,−p, d5, 1,−1]. By Theorem 3, v2 should be 3 which

is equivalent to p ≥ 0 ∨ d5 ≤ 0.
If d7 = 0, L2 becomes [1,−p, d5, 0,−1]. By Theorem 3, v2 should be 3 which

is equivalent to p ≥ 0 ∨ d5 < 0.
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To combine the above two conditions, we perform pseudo-division of d7 and
d5 with respect to r and obtain that

27p3d7 = Fd5 + 12G2 (6)

where F,G are polynomials in p, q, r, s. It’s easy to see that p should be non-
negative if d7 > 0 and d5 = 0. Thus, we may combine the above two sub-cases
into

d7 ≥ 0 ∧ (p ≥ 0 ∨ d5 < 0).

If d7 < 0, L2 becomes [1,−p, d5,−1,−1]. By (6) we know that p = 0 ∧ d5 > 0
and p > 0 ∧ d5 = 0 are both impossible. Thus, v2 is 3 if and only if p > 0 ∧ d5 > 0.

In Case II, We conclude that

d8 < 0 ∧ [(d7 ≥ 0 ∧ (p ≥ 0 ∨ d5 < 0)) ∨ (d7 < 0 ∧ p > 0 ∧ d5 > 0)]

must be satisfied.
Case III. d8 = 0.
If d6 > 0, P (λ) has four real zeros (counting multiplicity) and this is the case

having been discussed already.
If d6 < 0, then l1 = 3 and v1 = 1. We need to find the condition for l2/2 = v2

by Theorem 3. Obviously, l2 must be an even integer. We consider the sign of
d7. First, d7 < 0 implies l2/2 = 2 and v2 is an odd integer and thus l2/2 = v2
can not be satisfied. Second, if d7 = 0, by Theorem 3 d5 �= 0 since d6 < 0. That
means l2 is odd which is impossible. Finally, if d7 > 0, v2 must be 2 and this is
satisfied by p ≥ 0 ∨ d5 < 0.

If d6 = 0, L1 becomes [1, d4, 0, 0]. And d4 ≥ 0 implies P (λ) has four real
zeros (counting multiplicity) and this is the case having been discussed already.
If d4 < 0, P (λ) has four imaginary zeros (counting multiplicity) and thus no
negative zeros.

In Case III, we conclude that

d8 = 0 ∧ [(d6 < 0 ∧ d7 > 0 ∧ (p ≥ 0 ∨ d5 < 0)) ∨ (d6 = 0 ∧ d4 < 0)]

must be satisfied. That completes the proof. ��

Proposition 2. Given a quartic polynomial of real coefficients,

Q(λ) = λ4 + p λ3 + q λ2 + rλ + s,

with s �= 0, then

(∀λ ≥ 0 ) Q(λ) ≥ 0

is equivalent to
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s > 0 ∧ ((p ≥ 0 ∧ q ≥ 0 ∧ r ≥ 0) ∨
(d8 > 0 ∧ (d6 ≤ 0 ∨ d4 ≤ 0)) ∨
(d8 < 0 ∧ d7 ≥ 0 ∧ (p ≥ 0 ∨ d5 < 0)) ∨ (7)
(d8 < 0 ∧ d7 < 0 ∧ p > 0 ∧ d5 > 0) ∨
(d8 = 0 ∧ d6 < 0) ∨
(d8 = 0 ∧ d6 > 0 ∧ d7 > 0 ∧ (p ≥ 0 ∨ d5 < 0)) ∨
(d8 = 0 ∧ d6 = 0 ∧ (d4 ≤ 0 ∨ E1 = 0)))

where di (4 ≤ i ≤ 8) are defined as in Proposition 1 and

E1 = 8 r − 4 p q + p3.

Proof. Because Q(0) = s �= 0, it is equivalent to consider

(∀λ > 0 ) Q(λ) ≥ 0.

And the formula holds if and only if Q(λ) has no positive zeros or each positive
zero (if any) of Q(λ) is of even multiplicity.

Since the first case that Q(λ) has no positive zeros has been discussed in
Proposition 1, we only discuss on the later case. So, we assume that s > 0 and
d8 = 0. All notations are as in Proposition 1.

Case I. d6 < 0.
L1 becomes [1, d4,−1, 0] which implies P (λ) has a pair of imaginary zeros and

one real zero with multiplicity 2. Thus, P (λ) is positive semi-definite no matter
what value λ is.

Case II. d6 > 0.
In this case, L1 becomes [1, d4, 1, 0] which implies that P (λ) has three distinct

real zeros of which one is of multiplicity 2. By Cartesian sign rule, the number
of positive real zeros (counting multiplicity) is even. Therefore, we need only to
find the condition such that Q(λ) has one distinct positive real zero (i.e., P (λ)
has one distinct negative real zero). Because l1 = 3, v1 = 0, by Theorem 3, it
must be l2/2 = v2 = 2. And this is true if and only if d7 > 0∧ (p ≥ 0∨ d5 ≤ 0).
From (6), we know that d7 > 0 ∧ p < 0 ∧ d5 = 0 is impossible. So we conclude
that, in this case, the following formula should be true.

d6 > 0 ∧ d7 > 0 ∧ (p ≥ 0 ∨ d5 < 0).

Case III. d6 = 0.
Since the case that d4 ≤ 0 has been discussed, we assume d4 > 0 which implies

that P (λ) has two distinct real zeros and no imaginary zeros. Because the case
that P (λ) has no negative zeros has been discussed as stated above, we must find
the condition such that each of the two real zeros of P (λ) is of multiplicity 2.

We can obtain the condition by discussing on the root classification of the
repeated part of P (λ) through Theorem 2. But the condition obtained is a little
bit complex than the one obtained in the following way.
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Suppose Q = (λ2 + aλ+ b)2, we get

(−p+ 2a)λ3 + (2b+ a2 − q)λ2 + (2ab− r)λ + b2 − s = 0.

So
−p+ 2a = 0, 2b+ a2 − q = 0, 2ab− r = 0, b2 − s = 0, (8)

where a, b are indeterminates. Substituting p/2 for a in the equations, we get
2b+1/4p2−q = 0,−r+pb = 0, b2−s = 0. Suppose p �= 0 and substituting b = r/p
into the equalities, we get E1 = 0 and E2 = 0 where E1 = 8r − 4pq + p3, E2 =
r2 − p2s.

If p = 0, E1 = 0 and E2 = 0, then r = 0, d4 = −8q, d6 = 4q(4s − q2). Under
the precondition that d6 = 0∧d4 > 0, we have 4s−q2 = 0 which solves equations
(8) together with p = r = 0. In a word, the equations (8) has common solutions
if and only if E1 = 0 and E2 = 0 under the precondition that d6 = 0 ∧ d4 > 0.

On the other hand, we have

p2d6 = 2d4E2 + (2rq − 3rp2 + pq2)E1.

If d6 = 0 and d4 > 0, E2 = 0 is implied by E1 = 0. Finally, we conclude in this
case that

d6 = 0 ∧ d4 > 0 ∧E1 = 0

should be true.
That ends the proof. ��

Remark 1. We have tried the two problems by our Maple program DISCOV-
ERER [YHX01, YX05] which includes an implementation of the algorithms in
Section 2 and obtained some quantifier-free formulas equivalent to those of (5)
and (7). However, the formulas are much more complicated than the ones stated
in Propositions 1 and 2. For example, the resulting formula for Problem (1) are
as follows.

s > 0 ∧ [ [d8 < 0, d7 <= 0, d6 < 0, 0 < d5, d4 <> 0, d3 < 0]∨
[d8 <= 0, 0 < d7, d6 < 0, d5 < 0]∨
[d8 <= 0, 0 < d7, d6 < 0, 0 <= d5, d4 <> 0, d3 < 0]∨
[d8 < 0, d6 < 0, 0 < d5, d4 = 0, d3 < 0]∨
[d8 < 0, 0 < d7, d6 <= 0, d5 = 0, d4 = 0, d3 <= 0]∨
[d8 < 0, d7 < 0, d6 = 0, d5 < 0, d4 = 0, d3 <= 0]∨
[d8 < 0, d7 < 0, d6 = 0, d5 = 0, d4 = 0, d3 = 0]∨
[d8 < 0, d7 < 0, d6 = 0, 0 < d5, 0 <= d4, d3 < 0]∨
[d8 < 0, d7 = 0, d6 = 0, d5 = 0, d4 = 0]∨
[d8 < 0, 0 <= d7, d6 = 0, 0 < d5, d4 = 0, d3 <> 0]∨
[d8 < 0, 0 < d7, d6 = 0, d5 < 0, 0 <= d4]∨
[d8 < 0, 0 <= d7, d6 = 0, 0 <= d5, 0 < d4, d3 < 0]∨
[d8 < 0, d7 <= 0, 0 < d6, 0 < d5, 0 < d4, d3 < 0]∨
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[d8 < 0, 0 < d7, 0 < d6, d5 < 0, 0 < d4]∨
[d8 < 0, 0 < d7, 0 < d6, 0 <= d5, 0 < d4, d3 < 0]∨
[d8 = 0, 0 < d7, d6 < 0, d5 = 0, d4 = 0, d3 <= 0]∨
[d8 = 0, 0 < d7, d6 < 0, 0 < d5, d4 = 0, d3 < 0]∨
[d8 = 0, d6 = 0, d4 < 0]∨
[d8 = 0, d7 < 0, d6 = 0, d5 <> 0, d4 = 0, d3 < 0]∨
[d8 = 0, d7 = 0, d6 = 0, d4 = 0, d3 < 0]∨
[d8 = 0, d6 = 0, d4 = 0, d3 < 0]∨
[d8 = 0, d6 = 0, 0 < d5, 0 < d4, d3 < 0]∨
[0 <= d8, d7 < 0, 0 < d6, 0 < d5, 0 < d4, d3 < 0]∨
[0 < d8, d6 <= 0]∨
[0 < d8, 0 < d6, d4 <= 0] ]

Here, d3 = −p and the other dis are defined as in Proposition 1. The above formula
contains much more clauses than formula (5). For Problem (2), the resulting for-
mula created by DISCOVERER is even more complicated because we have to add
some more clauses for the cases existing positive zeros with even multiplicities.

Remark 2. We use Cartesian sign rule in the proofs of Propositions 1 and 2. This
can be integrated into Def-Con and Semi-Def-Con to produce simpler formulas. In
fact, a naive use of Cartesian sign rule may decrease the number of clauses. Some
optimal strategy on sign discussion and result simplification can also be imple-
mented. However, some computation like pseudo-division in the proofs depends
on each concrete problem and thus is hard to be turned into an algorithm.

4 Two Examples in Application

Our first example comes from determination of termination of linear loop pro-
grams. Termination analysis plays a central role in formal verification of
programs [Cou00]. An ideal solution to the termination problem for a class of
programs is to prove the decidability of its termination problem and to establish
calculable conditions so that for any given specific program in the class, we can
compute these conditions to conclude whether the given program terminates.

The linear programs [BJT99, CH78, HPR97] are a class of programs that is
widely studied. A large number of reactive systems can be modelled precisely or ap-
proximately as the linear programs [HH95]. Unfortunately, the termination prob-
lem of linear programs is undecidable in general [Tiw04]. However, Tiwari proves
[Tiw04] the decidability of a specific class of linear loop programs of the form

P1 : while Bx > b {x := Ax+ c}

where x (b and c) is a vector of N program variables (and real numbers), A
and B are N × N and N ×M real matrices respectively, Bx > b represents a
conjunction of M linear inequalities in the program variables and x := Ax + c
represents the linear assignments to each of the variables.

Theorem 4 ([Tiw04]). The termination of nonhomogeneous linear program of
P1 is decidable.
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Denote the homogeneous case of the program P1 where b and c both are 0 by

P2 : while (Bx > 0) {x := Ax}.

Theorem 5 ([Tiw04]). If the program P2 is nonterminating, then there is a real
eigenvector v of A, corresponding to a positive real eigenvalue, such that Bv ≥ 0.

Definition 7. Assignment x := Ax of P2 is called a terminating assignment,
if matrix A has no positive eigenvalue.

Obviously, if x := Ax of P2 is a terminating assignment, then P2 terminates for
any matrix B. By the above definition, we have the following theorem as a direct
result from Proposition 1. The theorem first appeared in [YZXZ05] without proof
due to page limitation.

Theorem 6. Suppose A is a 4× 4 matrix

A =

⎡
⎢⎢⎣
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

⎤
⎥⎥⎦ ,

x := Ax is a terminating assignment if and only if the condition (5) is satisfied
where

p = −a11 − a22 − a33 − a44

q = a33a44 + a11a22 − a41a14 − a31a13 − a32a23 − a34a43 + a22a44 + a22a33

−a21a12 − a42a24 + a11a44 + a11a33

r = −a32a24a43 + a11a34a43 − a11a33a44 − a21a42a14 + a11a32a23 + a21a12a33 +
a42a24a33 + a11a42a24 − a31a12a23 + a22a34a43 − a11a22a33 + a31a13a44 −
a11a22a44 − a42a23a34 − a22a33a44 − a41a12a24 + a32a23a44 − a41a13a34 +
a41a14a33 + a21a12a44 + a41a22a14 − a31a14a43 + a31a22a13 − a21a32a13

s = −a11a22a34a43 − a21a32a14a43 − a21a42a13a34 + a11a32a24a43 +
a21a42a14a33 + a41a12a24a33 + a31a12a23a44 − a31a12a24a43 +
a11a22a33a44 − a21a12a33a44 + a21a12a34a43 − a31a22a13a44 −
a41a12a23a34 + a31a22a14a43 − a31a42a14a23 − a11a32a23a44 +
a41a22a13a34 + a11a42a23a34 − a11a42a24a33 + a41a32a14a23 +
a21a32a13a44 − a41a22a14a33 − a41a32a13a24 + a31a42a13a24

Our second example comes from the determination of positivity of symmetric
polynomials with degree 4 and arbitrary number of variables. Let R be the real

numbers, Rn
+ = {(x1, ..., xn)|xi ∈ R, xi ≥ 0}, 1k = (

k︷ ︸︸ ︷
1, ..., 1), 0k = (

k︷ ︸︸ ︷
0, ..., 0) and

H
[n]
d the set of real symmetric d-homogeneous polynomials in n variables. For

any x = (x1, ..., xn) ∈ Rn, set

v(x) = |{xi| i = 1, ..., n}| , v∗(x) = |{xi| xi �= 0, i = 1, ..., n}| .
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That is to say, v(x) is the number of distinct elements in x and v∗(x) is the
number of distinct non-zero elements in x. V. Timofte proves the following result.

Theorem 7 ([Tim03]). Suppose f(x) ∈ H
[n]
d . Then f ≥ 0 holds on Rn

+ if and
only if it holds for x ∈ {x| x ∈ Rn

+, v
∗(x) ≤ max([d

2 ], 1)}.

Set Nn = {(r, s)| r, s are positive integers with r + s ≤ n}. If d = 4, it’s easy to
see that

f(x) ≥ 0, x ∈ Rn
+

⇐⇒ f(x) ≥ 0, x ∈ Rn
+, v

∗(x) ≤ 2
⇐⇒ f(t1 · 1r, t2 · 1s, 0n−r−s) ≥ 0, ∀t1, t2 ≥ 0, ∀(r, s) ∈ Nn

⇐⇒ ta2f( t1
t2
· 1r, 1s, 0n−r−s) ≥ 0, ∀t1 ≥ 0, ∀t2 > 0, ∀(r, s) ∈ Nn

⇐⇒ f(t · 1r, 1s, 0n−r−s) ≥ 0, ∀t ≥ 0, ∀(r, s) ∈ Nn

Therefore, to determine the positivity of a polynomial in H
[n]
4 on Rn

+, it’s
sufficient to determine the positivity of a finite number of polynomials in one non-
negative variable with degree 4. The result of Proposition 2 is exactly suitable
for the determination and if n is very large, the determination will benifit from
such off-line condition as (7).
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Abstract. For a generic n-degree polynomial system which contains
n + 1 polynomials in n variables, there are two classical resultant ma-
trices, Sylvester resultant matrix and Cayley resultant matrix, lie at the
two ends of a gamut of n + 1 resultant matrices. This paper gives the
construction of the n − 1 resultant matrices which lie between the two
pure resultant matrices by the combined method of Sylvester dialytic
and Cayley quotient. Since the construction involves two steps, Cayley
quotient and Sylvester dialytic, the block structure of these mixed resul-
tant matrices are similar to that of Sylvester resultant matrix in large
scale, and the detailed submatrices are similar to Dixon resultant matrix.

Keywords: Mixed Cayley-Sylvester resultant matrix, Cayley quotient,
Sylvester dialytic, block structure.

1 Introduction

The resultant is a powerful tool in solving a set of nonlinear polynomial equations
or deriving conditions for the existence of their solutions. There are several
methods which can be used to compute resultants. Among these methods the
resultant matrix method is one of the most efficient. With matrix method most
variables in the polynomial system can be eliminated[8].

Bézout, Sylvester, Cayley and Dixon introduced the earliest matrix methods
of resultants[2, 3, 7, 13]. In Dixon’s paper, he gave three resultant expressions for
three bi-degree polynomial equations using the dialytic method of Sylvester, the
quotient method of Cayley, and a combined Sylvester-Cayley dialytic-quotient
method.

The block structure of the above three resultant matrices and their transfor-
mations are studied by Chionh et al[4], and base on those results they gave a
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fast computation algorithm to construct Dixon resultant matrix for generic bi-
degree polynomial systems[5]. This fast computation algorithm was generalized
by Zhao and Fu to generic n-degree polynomial systems[14].

Foragenericn-degreepolynomial systemwhichcontainsn+1n-variablepolyno-
mials, thegeneralizationsofpureSylvesterandCayleyresultantmatricesareknown
as the Macaulay and Dixon resultant matrices[6, 11]. These two pure resultant ma-
trices lie in the two ends of a gamut of n + 1 resultant matrices. Those resultant
matrices which lie between the two ends are the main topics of this paper.

In our construction of mixed Cayley-Sylvester resultant matrices, a new pa-
rameter m is introduced to identify different mixed Cayley-Sylvester resultant
matrices. When m = 1, the definition of mixed Cayley-Sylvester resultant ma-
trix which is given in this paper is coincide with the definition of the classical
Macaulay resultant matrix, which is the generalization of Sylvester resultant
matrix for multivariate polynomial system; and when m = n+ 1 this definition
is coincide with the definition of the classical Cayley resultant matrix.

Since the construction of mixed Cayley-Sylvester resultant matrix involves
Cayley quotient method and Sylvester dialytic method, the block structure of
mixed Cayley-Sylvester resultant matrix is similar to Sylvester resultant matrix
in large scale, and the detailed submatrix is similar to Dixon resultant matrix.

For a chosen m, the size of mixed Cayley-Sylvester resultant matrix is
(n+1)!

m

∏n
i=1 ki × (n+1)!

m

∏n
i=1 ki, and each entries is either zero or its degree in

coefficients of the original polynomial system is exactly m.
This paper is organized as following: The next section is a review of the

classical three resultant matrices presented by Dixon: the definition and com-
parison of three resultant matrices. Section 3 give the construction of generic
mixed Cayley-Sylvester resultant matrix. The block structure of mixed Cayley-
Sylvester resultant matrix is studied in section 4. In section 5, we discuss how to
apply the mixed resultant matrix for general polynomial systems. we also give
some empirical data to compare the time to construct different type of resultant
by their definition algorithm.

2 The Three Classical Resultant Matrices

A. Dixon presented three resultant formulations for three bivariate polynomials
in 1908. Here we give them again to make the paper self-contained.

Consider three unmixed polynomials in two variables:

f =
m∑

i=0

n∑
j=0

aijx
iyj , g =

m∑
i=0

n∑
j=0

bijx
iyj , h =

m∑
i=0

n∑
j=0

cijx
iyj

2.1 The Sylvester Matrix

The Sylvester matrix for multivariate polynomial system is constructed by
Sylvester dialytic method, it can be extracted from Macaulay resultant matrix
for projective case[6]. Consider the 6mn polynomials:
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xsyt · [f g h] (1)

where
s = 0, 1, . . . , 2m− 1;
t = 0, 1, . . . , n− 1.

In these polynomials, the highest degree of x, y is 3m− 1, 2n− 1 respectively, so
we get 6mn polynomials in 6mn monomials xε1yε2 .

In matrix form the above system (1) can be written as

⎡
⎢⎢⎢⎢⎢⎣

1
x
y
...

x3m−1y2n−1

⎤
⎥⎥⎥⎥⎥⎦

T

S(f, g, h)

where the coefficient matrix S(f, g, h) is the Sylvester matrix.

2.2 The Cayley Matrix

The Cayley matrix is also called as Dixon matrix, which is derived from the
Cayley quotient expression

Δ(f, g, h) =

∣∣∣∣∣∣
f(x, y) g(x, y) h(x, y)
f(x̄, y) g(x̄, y) h(x̄, y)
f(x̄, ȳ) g(x̄, ȳ) h(x̄, ȳ)

∣∣∣∣∣∣
(x − x̄)(y − ȳ)

where x̄, ȳ are new variables.
When x = x̄ the numerator is equal to zero, x − x̄ is actually a factor of

the numerator. The same conclusion can be derived for y − ȳ. So Δ(f, g, h) is a
polynomial in x, y, x̄, ȳ with the highest degree of x, y, x̄, ȳ is m−1, 2n−1, 2m−
1, n− 1 respectively, i.e.

Δ(f, g, h) =

⎡
⎢⎢⎢⎢⎢⎣

1
x
y
...

xm−1y2n−1

⎤
⎥⎥⎥⎥⎥⎦

T

C

⎡
⎢⎢⎢⎢⎢⎣

1
x̄
ȳ
...

x̄2m−1ȳn−1

⎤
⎥⎥⎥⎥⎥⎦

where the 2mn× 2mn coefficient matrix C is the Cayley matrix.

2.3 The Mixed Cayley-Sylvester Matrix

The construction of mixed Cayley-Sylvester resultant matrix combines Cayley
quotient and Sylvester dialytic method. First we consider the polynomial
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φ(f, g) =
∣∣∣∣ f(x, y) g(x, y)
f(x, ȳ) g(x, ȳ)

∣∣∣∣ /(y − ȳ)

By the property of Cayley quotient, we know φ(f, g) is a polynomial in x, y, ȳ
with the highest degree 2m,n− 1, n− 1 respectively. Gathering the coefficients
of monomials 1, ȳ, . . . , ȳn−1, we can get n polynomials in x, y.

Do the same thing for φ(g, h) and φ(h, f). Altogether we can get 3n polyno-
mials in x, y and the highest degree of x, y is 2m,n− 1.

Then we can do the dialytic step. Multiply every polynomial in the obtained
3n polynomials with the multiple set {1, x, . . . , xm−1}, we can get 3mn polyno-
mials in x, y and the highest degree of x, y is 3m− 1, n− 1 respectively. Rewrite
the system in matrix form we can get

⎡
⎢⎢⎢⎢⎢⎣

1
x
y
...

x3m−1yn−1

⎤
⎥⎥⎥⎥⎥⎦

T

M

where the coefficient matrix M is the mixed Cayley-Sylvester matrix.

2.4 The Comparison of the Three Resultant Matrices

The size of above three resultant matrices S, M and C is 6mn, 3mn and 2mn
respectively, but the entries of these three resultant matrices are either zero or
its degree in the coefficients of the original polynomial system is 1, 2 and 3
respectively.

3 The Construction of Generic Mixed Cayley-Sylvester
Resultant Matrix

In the n-variable case, we consider the following polynomial system F which
consists of n+ 1 polynomials,

F :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f0 =
∑k1

i1=0 · · ·
∑kn

in=0 c0,i1···inx
i1
1 · · ·xkn

n ,

f1 =
∑k1

i1=0 · · ·
∑kn

in=0 c1,i1···inx
i1
1 · · ·xkn

n ,
...

fn =
∑k1

i1=0 · · ·
∑kn

in=0 cn,i1···inx
i1
1 · · ·xkn

n ,

If each coefficient cj,i1···in is a distinct indeterminant, the polynomial system F
is called generic n-degree.

When the polynomial system have n variables, there are n− 1 generic mixed
Cayley-Sylvester resultant matrices. Hence we need a new variable m, 1 ≤ m ≤
n+ 1 to describe different matrices.
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3.1 Step 1: Cayley Quotient Construction

First we consider following Cayley expression Φm,∣∣∣∣∣∣∣∣
fn−m+1(x1, . . . , xn−m+1, xn−m+2, . . . , xn) · · · fn(x1, . . . , xn−m+1, xn−m+2, . . . , xn)
fn−m+1(x1, . . . , xn−m+1, xn−m+2, . . . , x̄n) · · · fn(x1, . . . , xn−m+1, xn−m+2, . . . , x̄n)

...
...

...
fn−m+1(x1, . . . , xn−m+1, x̄n−m+2, . . . , x̄n) · · · fn(x1, . . . , xn−m+1, x̄n−m+2, . . . , x̄n)

∣∣∣∣∣∣∣∣
(xn−m+2 − x̄n−m+2) · · · (xn − x̄n)

where the numerator is an m×m determinant, and in the i-th row i−1 variables
xn−i+2, . . . , xn are replaced by i − 1 new variables x̄n−i+2, . . . , x̄n. Since the
numerator is always divisible by the denominator, the Cayley expression is a
actually polynomial in

x1, x2, . . . , xn−m+1, xn−m+2, . . . , xn, x̄n−m+2, . . . , x̄n

and the degree of

x1, x2, . . . , xn−m+1, xn−m+2, . . . , xn

is
mk1, mk2, . . . , mkn−m+1, (m− 1)kn−m+2 − 1, . . . , kn − 1

respectively, and the degree of

x̄n−m+2, . . . , x̄n

is
kn−m+2 − 1, . . . , (m− 1)kn − 1

Consider the coefficients of x̄εn−m+2
n−m+2 · · · x̄εn

n , where

εn−m+2 = 0, . . . , kn−m+2 − 1
...

εn = 0, . . . , (m− 1)kn − 1

we can get (m− 1)!
∏n

i=n−m+2 ki polynomials φε such that

Φm =
kn−m+2−1∑
εn−m+2=0

· · ·
(m−1)kn−1∑

εn=0

φε(x1, x2, . . . , xn)x̄εn−m+2
n−m+2 · · · x̄εn

n (2)

3.2 Step 2: Sylvester Dialytic Construction

Multiplying these polynomials φε(x1, x2, . . . , xn) by the (n − m + 1)!∏n−m+1
i=1 ki monomials

1, x1, x2, . . . , xn−m+1, . . . . . . . . . , x
k1−1
1 · · ·x(n−m+1)kn−m+1−1

n−m+1
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we obtain (n−m+ 1)!(m− 1)!
∏n

i=1 ki polynomials

xε1
1 · · ·xεn−m+1

n−m+1φε(x1, x2, . . . , xn)

in (n+1)!
m

∏n
i=1 ki monomials xi1

1 · · ·xin
n , where

0 ≤ ε1 ≤ k1 − 1
...

0 ≤ εn−m+1 ≤ (n−m + 1)kn−m+1

Because Cayley expression Φm is constructed by m polynomials which are
selected from the original n + 1 polynomials, there are (n+1

m ) ways to choose
these polynomials (The chosen is independent with the order of polynomials, see
Lemma 1). Hence we can do the previous step (n+1

m ) times. Altogether we can
get

(n+1
m )(n−m + 1)!(m− 1)!

∏n
i=1 ki

=
(n + 1)!

(n−m+ 1)!m!
(n−m + 1)!(m− 1)!

n∏
i=1

ki

=
(n + 1)!

m

n∏
i=1

ki

polynomials.

Proposition 1. The number of monomials xi1
1 · · ·xin

n is (n+1)!
m

∏n
i=1 ki.

Proof. By step 1, φε are polynomials in variables x1, x2, . . . , xn. The highest
degree of

x1, x2, . . . , xn−m+1, xn−m+2, . . . , xn

is
mk1, mk2, . . . , mkn−m+1, (m− 1)kn−m+2 − 1, . . . , kn − 1

By multiplying monomials

1, x1, x2, . . . , xn−m+1, . . . . . . . . . , x
k1−1
1 · · ·x(n−m+1)kn−m+1−1

n−m+1

we can get the highest degree of

x1, x2, . . . , xn−m+1, xn−m+2, . . . , xn

is

(m+1)k1−1, (m+2)k2−1, . . . , (n+1)kn−m+1−1, (m−1)kn−m+2−1, . . . , kn−1

So the number of monomial xi1
1 · · ·xin

n is (n+1)!
m

∏n
i=1 ki. �

With this proposition, we can rewrite these (n+1)!
m

∏n
i=1 ki polynomials as ma-

trix form, we have a coefficient matrix which is consist by the coefficient of the
original polynomial system. The size of this coefficient matrix is (n+1)!

m

∏n
i=1 ki.

We call this coefficient matrix G generic mixed Cayley-Sylvester resultant
matrix.
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3.3 Two Pure Resultant Matrices

When m = 1, the Cayley quotient expression Φm is actually the original poly-
nomial fi. The construction of mixed Cayley-Sylvester resultant matrix only
involves Sylvester dialytic step. Hence it is the pure Sylvester resultant matrix
for multivariable system.

When m = n + 1, the Sylvester dialytic step is skipped. All we can get is
the Cayley resultant matrix(apparently, this matrix is different with the Dixon
resultant matrix in [11], but we can make these two matrices coincident by
interchanging some columns and rows).

3.4 Matrix Form Description

The previous construction can be formulated by matrix form. In the construction
of Φm, there are (n+1

m ) ways to choose m polynomials from the original n + 1
polynomials, so the number of Φm must be (n+1

m ) (The order of fi in the Φm only
impacts the final resultant by a sign, see Lemma 1 below). Let Cm

n+1 = (n+1
m )

and rewrite these Φm as Φm,1,Φm,2, . . . ,Φm,Cm
n+1

, let

ψ(x1, . . . , xn−m+1, x̄1, . . . , x̄n−m+1)

=
k1−1∑
u1=0

· · ·
(n−m+1)kn−m+1−1∑

un−m+1=0

xu1
1 · · ·xun−m+1

n−m+1 x̄
u1
1 · · · x̄un−m+1

n−m+1

By equation (2) we know

ψ(x1, . . . , xn−m+1, x̄1, . . . , x̄n−m+1) · [Φm,1 Φm,2 · · · Φm,Cm
n+1

]

= ψ ·
[ kn−m+2−1∑

εn−m+2=0

· · ·
(m−1)kn−1∑

εn=0

φε,1x̄
εn−m+2
n−m+2 · · · x̄εn

n

kn−m+2−1∑
εn−m+2=0

· · ·
(m−1)kn−1∑

εn=0

φε,2x̄
εn−m+2
n−m+2 · · · x̄εn

n

· · ·

kn−m+2−1∑
εn−m+2=0

· · ·
(m−1)kn−1∑

εn=0

φε,Cm
n+1

x̄
εn−m+2
n−m+2 · · · x̄εn

n

]

=
k1−1∑
u1=0

· · ·
(n−m+1)kn−m+1−1∑

un−m+1=0

kn−m+2−1∑
εn−m+2=0

· · ·
(m−1)kn−1∑

εn=0

xu1
1 · · ·xun−m+1

n−m+1

[
φε,1 φε,2 · · · φε,Cm

n+1

]
x̄u1

1 · · · x̄un−m+1
n−m+1 x̄

εn−m+2
n−m+2 · · · x̄εn

n (3)
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Notice that φm
ε,i are polynomials in variables x1, x2, . . . , xn, we know there exist

a matrix G such that

ψ · [Φm,1 Φm,2 · · · Φm,Cm
n+1

]

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
xn

...
xτn

n
...

xτ1
1 · · ·xτn

n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

G

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
x̄n

...
x̄εn

n
...

x̄ε1
1 · · · x̄εn

n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4)

where
τ1, τ2, . . . , τn−m+1, τn−m+2, . . . , τn

are

(m+1)k1−1, (m+2)k2−1, . . . , (n+1)kn−m+1−1, (m−1)kn−m+2−1, . . . , kn−1

respectively, and
ε1, ε2, . . . , εn−m+1, εn−m+2, . . . , εn

are

k1 − 1, 2k2 − 1, . . . , (n−m+ 1)kn−m+1 − 1, kn−m+2 − 1, . . . , (m− 1)kn − 1

respectively. The number of rows of matrix G in equation (4) is (n+1)!
m

∏n
i=1 ki,

and the number of columns of matrix G is (n − m + 1)!(m − 1)!
∏n

i=1 ki. Ac-
tually, each entry of matrix G is a 1 × Cm

n+1 submatrix. The true size of G is
(n+1)!

m

∏n
i=1 ki × (n+1)!

m

∏n
i=1 ki.

3.5 The Resultant

Here we want to prove that the determinant of the coefficient matrix G is the
resultant of original polynomial system.

Lemma 1. The order of polynomials in Cayley expression Φm only influence
the resultant by a sign, so the construction of Φm is well defined.

Proof. By the definition of Cayley expression Φm, if we choose m polynomials
{f1, f2, . . . , fm}, the order of them only affect the sign of Φm. Suppose we get
−Φm, the corresponding φj also change to −φj . After multiplying monomials
and rewrite as matrix form, the only change in resultant matrix is all entries
in a row change to its reverse. When we compute the determinant of resultant
matrix, the coefficient −1 can be extracted. So the resultant doesn’t change, or
is multiplied by −1. �

The following lemma can be derived directly from the construction,
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Lemma 2. If there are a = (a1, a2, . . . , an) ∈ Cn such that f0(a) = f1(a) =
· · · = fn(a) = 0, then detG = 0. �

Hence, detG must be the multiplier of resultant Res(F). On the other hand,
every entry of matrix G is a polynomial in coefficients of the original polyno-
mial system F , and the degree of coefficients is m. So detG is a polynomial in
coefficients of the original polynomial system of degree (n + 1)!

∏n
i=1 ki.

Lemma 3. The degree of polynomial detG in coefficients of fi is n!
∏n

i=1 ki.

Proof. The mixed Cayley-Sylvester resultant matrix is constructed with (n +
1)!

∏n
i=1 ki polynomials:

coeff(ΔS , X̄
β)Xα

where

– ΔS is a Cayley quotient with m polynomials with indices in S, |S| = m and
S ⊆ {0, . . . , n}.

– X̄β = x̄
βn−m+2
n−m+2 · · · x̄βn

n and

β = (0, . . . , 0), . . . , (kn−m+2 − 1, . . . , (m− 1)kn − 1)

– Xα = xα1
1 · · ·xαn−m+1

n−m+1 and

α = (0, . . . , 0), . . . , (k1 − 1, . . . , (n−m + 1)kn−m+1 − 1)

– The highest degree monomial in these polynomials is

x
(m+1)k1−1
1 · · ·x(n+1)kn−m+1−1

n−m+1 x
(m−1)kn−m+2−1
n−m · · ·xkn−1

n

Thus the relative frequency of fi, for any i = 0, . . . , n, in these polynomials is
( n

m−1 )

( n+1
m )

= m
n+1 and thus fi appears a total of n!

∏n
i=1 ki times. �

Because F = {f0, f1, . . . , fn} is generic n-degree, the supports of fi are same.
By the definition of Mixed Volume[6, 9], we know

MV (A0, . . . ,Ai−1,Ai+1, . . . ,An)
= n!Vol(A) = n!

∏n
i=1 ki

BKK Bound shows that in the resultant the degree of the coefficients of fi is
equal to the number of common roots the rest of polynomials have[1, 12]. This
implies that the degree of the coefficients of fi in the detG is exactly equal to the
degree of the coefficients of fi in Res(F). So we can get the following theorem:

Theorem 1. detG = Res(F) (up to a sign). �
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4 The Block Structure of Mixed Cayley-Sylvester
Resultant Matrix

In this section, we will study the block structure of mixed Cayley-Sylvester
resultant matrix.

Here only the block structure of m = n mixed Cayley-Sylvester resultant
matrix is given. The general case corresponding to arbitrary m can be derived
similarly.

Recall when m = n the definition of Φm is:

Φ(̂f0) =

∣∣∣∣∣∣∣∣∣∣∣

f1(x1, x2, . . . , xn−1, xn) · · · fn(x1, x2, . . . , xn−1, xn)
f1(x1, x2, . . . , xn−1, x̄n) · · · fn(x1, x2, . . . , xn−1, x̄n)
f1(x1, x2, . . . , x̄n−1, x̄n) · · · fn(x1, x2, . . . , x̄n−1, x̄n)

...
...

...
f1(x1, x̄2, . . . , x̄n−1, x̄n) · · · fn(x1, x̄2, . . . , x̄n−1, x̄n)

∣∣∣∣∣∣∣∣∣∣∣
n×n

(x2 − x̄2) · · · (xn − x̄n)
(5)

where numerator is an n× n determinant, Φ(̂fi) means deleting fi from the
original n+ 1 polynomials {f0, f1, . . . , fn}. Φ(̂f0) can be written as

Φ(̂f0) =
(n−1)!

∏n
i=2 ki∑

j=1

φj(̂f0)x̄ε2
2 · · · x̄εn

n

Let

ψ(x1, x̄1) =
k1−1∑
u=0

xu
1 x̄

u
1

Lk = [φk(f̂0) φk(f̂1) . . . φk(f̂n)]

where k = 1, 2, . . . , (n− 1)!
∏n

i=2 ki, we can get

ψ(x1, x̄1)[Φ(̂f0) Φ(̂f1) . . . Φ(̂fn)]

= ψ(x1, x̄1)[
ω∑

j=1

φj(f̂0)x̄ε2
2 · · · x̄εn

n

ω∑
j=1

φj(f̂1)x̄ε2
2 · · · x̄εn

n . . .
ω∑

j=1

φj(f̂n)x̄ε2
2 · · · x̄εn

n ]

=
k1−1∑
u=0

ω∑
j=1

[φj(f̂0) φj(f̂1) · · · φj(f̂n)]xu
1 x̄

u
1 x̄

ε2
2 · · · x̄εn

n

= [L0 · · ·Lω . . . xk1−1
1 Lω]

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
x̄n

...
x̄

(n−1)kn−1
n

...
x̄k1−1

1 · · · x̄(n−1)kn−1
n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



156 W. Sun and H. Li

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
xn

...
xkn−1

n
...

x
(n+1)k1−1
1 · · ·xkn−1

n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

G

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
x̄n

...
x̄

(n−1)kn−1
n

...
x̄k1−1

1 · · · x̄(n−1)kn−1
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)

where ω = (n− 1)!
∏n

i=2 ki.
Let Gi be the coefficient matrix of polynomials L1, L2, . . . , Lω in monomials

xi
1 · [1, xn, . . . , xkn−1

n , . . . , x
(n−1)k2−1
2 · · ·xkn−1

n ]

where i = 0, 1, . . . , nk1. This matrix is of size (n − 1)!
∏n

i=2 ki × (n + 1)(n −
1)!

∏n
i=2 ki. By the definition of Φm, we know when i > nk1, Gi = 0. By equation

(6) we know,

Proposition 2. For a generic n-degree (k1, k2, . . . , kn) polynomial system F
which contains n + 1 polynomials, its mixed Cayley-Sylvester resultant matrix
corresponding to m = n has the following structure,

G =

⎛
⎜⎜⎜⎜⎜⎜⎝

G0
...

. . .
Gnk1 G0

. . .
...

Gnk1

⎞
⎟⎟⎟⎟⎟⎟⎠

(n+1)k1×k1

where Gi is as above definition.

By this proposition, we can see that the block structure of mixed Cayley-
Sylvester resultant matrix corresponding to m = n is like the block structure
of Sylvester resultant matrix in large scale. This similarity of block structure
is generated by the Sylvester dialytic step in construction. The submatrices Gi

in G are generated by the coefficients of φk(f̂i), and φk(f̂i) are derived from
Cayley expression. Hence the entries of Gi are similar with the entries of Cayley
(Dixon) resultant matrix. This similarity is the representation of Cayley step in
construction.

By now, we know that the Cayley step in construction is to compress the
coefficients of original polynomial system into entries of submatrix Gi, and the
Sylvester dialytic step in construction is to shift these submatrices Gi in matrix
G. This is the essential effect of the two steps in the construction of Cayley-
Sylvester resultant matrix.

5 General Cases and Empirical Results

By now, we only consider the polynomial system which is generic n-degree. Be-
cause under this condition, we can ensure the number ofφε is (m−1)!

∏n
i=n−m+2 ki
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and every φε is not zero. So we can get a square matrix after the Sylvester dialytic
step.

For general polynomial system, since computing the Cayley expression Φm is
like computing a Dixon resultant matrix, we cannot get the (m−1)!

∏n
i=n−m+2 ki

polynomials φε. To ensure that the final resultant matrix will be square matrix,
we could add some zero polynomials to make the number of polynomials to be
(m−1)!

∏n
i=n−m+2 ki. The cost of this procedure is the final resultant matrix may

be degenerate. We must do the RSC (Rank Submatrix Computation) procedure
to get the projection operator[11].

The first example below consists of three parts, each part is the generic n-
degree polynomial system corresponding n = 2, 3, 4. The results are given for
comparing the construction time of each resultant matrix by their definition
algorithms.

The polynomial system given in the second example is not generic n-degree.
This example shows that the mixed Cayley-Sylvester resultant matrix can be
constructed in the non-generic n-degree case.

All the results is obtained in Maple 9, based on a notebook computer which
CPU is PIII-M/1.2GHz, and memory is 512M. The algorithms to generate the
three resultant matrices are their definition algorithms.

Example 1. Consider the generic n-degree polynomial systems. These tests is to
show the cost of time in constructing mixed Cayley-Sylvester resultant matrices.

– n = 2. Since 1 ≤ m ≤ 3 there is only mixed Cayley-Sylvester resultant
matrix corresponding to m = 2.

– n = 3. Since 1 ≤ m ≤ 4 there are two mixed Cayley-Sylvester resultant
matrix corresponding to m = 2 and 3.

– n = 4. Since 1 ≤ m ≤ 5 there are three mixed Cayley-Sylvester resultant
matrix corresponding to m = 2, 3 and 4.

Example 2. Implicitization problem of parametric curves from [10]⎧⎪⎪⎨
⎪⎪⎩
q1 = 3t(t− 1)2 + (s− 1)3 + 3s− x
q2 = 3s(s− 1)2 + t3 + 3t− y
q3 = −3s(s2 − 5s+ 5)t3 − 3(s3 + 6s2 − 9s+ 1)t2

+t(6s3 + 9s2 − 18s+ 3)− 3s(s− 1)− z

This is a mixed polynomial system. The degree of variables s, t is 3, 3 respectively,
and since 1 ≤ m ≤ 3 there is only mixed Cayley-Sylvester resultant matrix
corresponding to m = 2.

Remark 1. In example 1 (n=4), because each time of computing the mixed
Cayley-Sylvester resultant matrices corresponding m = 3 and m = 4 is more
than 1 hour, the results are omitted in table.

Comparing with the construction of Cayley resultant matrix which deals with
(n+1)× (n+1) determinant and n divisions of polynomials, the construction of
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Table 1. Empirical Data

Mixed Cayley-Sylvester Sylvester Cayley
Example Size Time Size Time Size Time
1 (n=2, m=2) 12 × 12 0.010s 24 × 24 0s 8 × 8 0.050s

(n=3, m=2) 96 × 96 1.182s 192 × 192 0.08s 48 × 48 536.942s
(n=3, m=3) 64 × 64 8.107s
(n=4, m=2) 960 × 960 208.971s 1920 × 1920 5.217s 384 × 384 >1h

2 (n=2, m=2) 27 × 27 0.010s 54 × 54 0.01s 18 × 18 0.40s

mixed Cayley-Sylvester resultant matrix only deals with m×m determinant and
m−1 divisions of polynomials. Although this step will be computed Cm

n+1 times
repeatedly in mixed Cayley-Sylvester resultant matrix, the time of generating
mixed Cayley-Sylvester resultant matrix still less than the time of generating
Cayley resultant matrix. So smaller the Cayley expression, sooner the resultant
matrix generating.
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Abstract. A new technique for finding the implicit equation of a ra-
tional curve is investigated. It is based on efficient computation of the
Bézout resultant and Lagrange interpolation. One of the main features
of our approach is that it considerably reduces the size of intermediate
expressions and results in significant speed-up in the algorithm.

1 Introduction

In computer-aided geometric design and modeling, there are two standard forms
used to represent plane curves: the parametric form and the implicit form. The
advantage of each type of representation depends on the operations one wants
to perform with the curve. Implicit equations are convenient for determining
whether a point lies on, inside, or outside a curve, while parametric equations
are suitable for generating points along a curve and useful in rendering algorithms
on computer. When one curve is given by an implicit equation, and the other
is presented by parametric equations, we can easily compute the intersection of
the given two curves. For the above reasons, the conversion between the implicit
equation and the parametric equations of a curve is very important, and it is an
old problem in algebraic geometry.

As for the implicitization problem, i.e., finding an implicit representation from
the given parametric equations of the curve, some recent algorithms can be seen
in Sederberg and Chen (1995), Busé (2001), Cox et al. (1998), Cox (2001, 2003),
Marco and Mart́ınez (2001), Wang (2004), Corless et al. (2000). The effective
algebraic methods that have been proposed and studied for the implicitization
problem belong to three classes.

The first class of methods relies on classical elimination theory (Wang, 2000).
Iterated resultants in one variable or resultants in several variables are used to
compute the implicit form. The computation of the resultant is not a trivial task
(Gelfand et al., 1994; Cox et al., 1998).

The second class of methods is based on Gröbner bases (Becker and Weispfen-
ning, 1993). In practice, this class of methods appears to be more time and
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memory consuming (Kapur and Saxena, 1995; Sturmfels, 1998). However, the-
oretically they are important methods for solving the implicitization problem,
and some algorithms whose main tool is Gröbner bases have appeared (Alonso
et al., 1995; Hoffmann, 1990).

The third class of methods is based on the theory of characteristic sets founded
by Wu (2000). Some researchers have applied the theory and related algorithms
to the implicitization problem (Gao, 1992; Li, 1989) and other problems (Shi
and Sun, 2002).

Let P(t) = (x(t), y(t)) be a proper parametrization of a plane algebraic curve
C, where

x(t) =
u(t)
w(t)

, y(t) =
v(t)
w(t)

,

and
gcd(u(t), w(t)) = gcd(v(t), w(t)) = 1,

where gcd(u(t), w(t)), gcd(v(t), w(t)) are the greatest common divisors of u(t),
w(t) and v(t), w(t) respectively. A parametrization P(t) = (x(t), y(t)) of a curve
C is said to be proper if almost every point on the curve C is generated by
exactly one value of the parameter t. It is well known that every rational curve
has a proper parametrization (Sederberg, 1986), so we can assume that the
parametrization is proper.

In this paper, we present a new technique for implicitizing plane rational
curves based on the theories of Bézout resultant and Lagrange interpolation.
The technique is efficient and novel for implicitizing rational curves and can be
extended to the case of surfaces. In Section 2, we will describe the problem of
implicitization. Our algorithm will be presented in detail in Section 3. Some
examples will be given in Section 4 to illustrate the efficiency of our method.
We will analyze the computational complexity of our algorithm and provide
comparisons in Section 5 and summarize some of the noticeable advantages of
our approach in Section 6.

2 Description of the Problem

A parametrization of a geometric object in a space of dimension n can be de-
scribed by the following set of parametric equations:

x1 =
f1(t1, . . . , tk)
g1(t1, . . . , tk)

,

...

xn =
fn(t1, . . . , tk)
gn(t1, . . . , tk)

,

(1)

where t1, . . . , tk are parameters and fi, gi are polynomials in the variables tj for
i = 1, . . . , n and j = 1, . . . , k. The case n = 2, k = 1 corresponds to plane curves,
and n = 3, k = 2 corresponds to surfaces in the space of dimension 3.
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Our aim is to find a system of polynomial equations (in xi for i = 1, . . . , n)

p1(x1, . . . , xn) = 0,
...

pm(x1, . . . , xn) = 0,

(2)

such that

p1

(
f1(t1, . . . , tk)
g1(t1, . . . , tk)

, . . . ,
fn(t1, . . . , tk)
gn(t1, . . . , tk)

)
= 0,

...

pm

(
f1(t1, . . . , tk)
g1(t1, . . . , tk)

, . . . ,
fn(t1, . . . , tk)
gn(t1, . . . , tk)

)
= 0,

and V (p1(x1, . . . , xn), . . . , pm(x1, . . . , xn)) is the smallest variety containing the
parametric geometric object described by (1). More details can be found in Cox
et al. (1996).

In the next section, we will present our approach and algorithm for solving
the implicitization problem.

3 Derivation of the Algorithm

Let (x(t), y(t)) be a proper parametrization of a plane algebraic curve, where

x(t) =
u(t)
w(t)

, y(t) =
v(t)
w(t)

,

and
gcd(u(t), w(t)) = gcd(v(t), w(t)) = 1,
n = degt(u(t)) = degt(v(t)) = degt(w).

The rational curve has no base points because of the assumption gcd(u(t), w(t))=
gcd(v(t), w(t))=1. The parametric and implicit forms are related by the follow-
ing well-known lemma (Marco and Mart́ınez, 2001).

Lemma 1. Let (x(t) = u1(t)/v1(t), y(t) = u2(t)/v2(t) be a proper rational
parametrization of the irreducible curve defined by f(x, y), and let gcd(u1(t), v1(t))
= gcd(u2(t), v2(t)) = 1. Then

max{degt(u1), degt(v1)} = degy(f),
max{degt(u2), degt(v2)} = degx(f).

Finding the polynomial f is the main task of this paper. The following theorem
is important for our technique and aim.

Theorem 1. Let f(x) be a polynomial of degree n. Then we have

f(x) =
n∑

i=0

f(ai)F (x)
(x− ai)F ′(ai)

,
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where
F (x) = (x− a0)(x− a1)(x− a2) · · · (x− an),

F ′(ai) = F ′(x)|ai , i = 0, 1, . . . , n,

and F ′(x) is the derivative of F (x) with respect to x.

Proof. Construct a new polynomial of degree ≤ n:

G(x) = f(x)−
n∑

i=0

f(ai)F (x)
(x− ai)F ′(ai)

.

We see that G(ai) = 0 for i = 0, 1, . . . , n, so the polynomial equation G(x) = 0
of degree ≤ n has n+ 1 roots. It follows that G(x) ≡ 0, which implies that

f(x) =
n∑

i=0

f(ai)F (x)
(x− ai)F ′(ai)

.

More details about Lagrange interpolation can be found in Gathen and Gerhard
(1999).

Our aim is to compute the polynomial f(x, y) ∈
∏

n,n(x, y) by means of
Bézout resultant and Lagrange interpolation using Lemma 1, where

∏
n,n(x, y)

is the space of polynomials of degree less than or equal to n in x and in y, its
dimension is (n+ 1)(n + 1), and its basis is given by

{xiyj | i = 0, . . . , n; j = 0, . . . , n}.

By Theorem 1, any polynomial f(x, y) can be described by

f(x, y) =
n∑

i=0

biF (x)
(x− ai)F ′(ai)

, (3)

where
F (x) = (x− a0)(x − a1) · · · (x− an),

and F ′(ai) = F ′(x)|ai , F
′(x) is the derivative of F (x) with respect to x, and

bi = f(ai, y), i = 0, 1, . . . , n.
The following lemma (Sederberg et al., 1997) is crucial for our algorithm

presented below.

Lemma 2. When there are no base points, R(x, y) = 0 is the implicit equation

of the rational curve x =
x(t)
w(t)

, y =
y(t)
w(t)

, where R(x, y) is the Bézout resultant

of x and y, and x(t), y(t), w(t) are polynomials of degree n in t.

We choose ai = i (i = 0, 1, . . . , n) for our algorithm, so that we can compute the
values bi by means of the following procedure, which uses the symbolic Bézout
matrix computed by Maple 8, evaluates it at each interpolation node ai = i,
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and then computes the determinant of the corresponding matrix. The following
is our algorithm (presented using Maple notations).

Algorithm
Input: p := xw(t) − u(t); q := yw(t)− v(t)
Output: bi, deri, i = 0, 1, . . . , n and F (x)
F (x) := 1;
for i from 0 to n do

F (x) := F (x)(x − i)
end do:
Be := bezout(p, q, t): dF := diff(F (x), x):
for i from 0 to n do

bi := det(subs(x = i, op(Be)):
deri := subs(x = i, dF ):

end do:

Now we have all the required bi and derivatives deri; thus the required poly-
nomial f(x, y) can be obtained from the formula (3):

f(x, y) =
n∑

i=0

biF (x)
(x− ai)deri

.

Although the computational complexity of evaluating the Sylvester matrix
is less than that of evaluating the Bézout matrix, the computation of the de-
terminant using the Sylvester matrix is much more expensive than that using
the Bézout matrix. To be precise, let us observe that the order of the Sylvester
matrix is 2n while the order of the Bézout matrix is n. Therefore, taking into
account the general form of the entries of each matrix, the number of arith-
metic operations needed for evaluating at (i, j) is bounded by 4n2 in the case of
Sylvester and by 7n2 in the case of Bézout. However, taking into account that
the cost of computing the determinant of a matrix of order n is O(n3), we see
that computing each determinant (i.e. each interpolation datum) is eight times
more expensive if we use the Sylvester matrix. So we choose the Bézout matrix
instead of the Sylvester matrix.

In the following section, some examples are presented to illustrate the effi-
ciency of our method.

4 Examples

Example 1. Consider the curve defined by

x =
t2

1 + t− t2
, y =

t2 + 1
1 + t− t2

.

Let
p = x(1 + t− t2)− t2, q = y(1 + t− t2)− (t2 + 1),
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and x = 0, 1, 2. By the Bézout resultant, we get

b0 = (−y + 1)2, b1 = y2 − 7y + 10, b2 = y2 − 12y + 29

from (3), and the implicit equation is

f = y2 − 5yx− 2y + 5x2 + 4x+ 1 = 0.

Example 2. Let the parametrization of the curve be

x =
2t4 − t3 + t2 + 2

t4 − t2 + 1
, y =

t4 + 2t3 + t

t4 − t2 + 1
.

We suppose that

p = x(t4 − t2 + 1)− (2t4 − t3 + t2 + 2), q = y(t4 − t2 + 1)− (t4 + 2t3 + t),

and x = 0, 1, 2, 3, 4. By the Bézout resultant, we have

b0 = 544− 782y + 240y2 − 3y3 + 73y4,

b1 = −95y + 17 + 181y2 − 107y3 + 73y4,

b2 = 73y4 − 211y3 + 138y2,

b3 = 271y− 47 + 111y2 − 315y3 + 73y4,

b4 = 584 + 100y2 − 419y3 + 1486y + 73y4.

From (3), we get the implicit equation

f = 544 + 1239yx+ 240y2 − 3y3 + 73y4 − 402x3 + 52x4 − 67y2x− 104y3x

+1097x2 − 680yx2 + 8y2x2 + 128yx3 − 1274x− 782y = 0.

Example 3. Suppose that the curve is defined by the parametric equations

x =
t5 + 2t4 − t3 + t2 + 2

t5 − t2 + 1
, y =

t5 + t4 + 2t3 + t

t5 − t2 + 1
.

Let

p = x(t5− t2 +1)− (t5 +2t4− t3 + t2 +2), q = y(t5− t2 +1)− (t5 + t4 +2t3 + t),

and x = 0, 1, 2, 3, 4, 5. By the Bézout resultant, we have

b0 = −710 + 1304y− 1107y2 + 69y3 + 294y4 + 343y5,

b1 = −33− 191y2 + 84y + 189y3 − 392y4 + 343y5,

b2 = 895y3 − 1078y4 + 343y5 − 291y2,

b3 = 799− 1300y− 165y2 + 2187y3 − 1764y4 + 343y5,

b4 = 5886− 6576y + 1429y2 + 4065y3 − 2450y4 + 343y5,

b5 = 23655− 18996y + 5733y2 + 6529y3 − 3136y4 + 343y5.

Similarly from (3), we get the required implicit equation

f = −710 + 1493x+ 1304y − 2470yx− 1209x2 − 1107y2 + 1838xy2 + 1557yx2

+512x3 + 69y3 − 1129x2y2 − 290yx3 − 173xy3 − 142x4 + 294y4 + 343y5

+23x5 + 293x2y3 + 207y2x3 − 686xy4 − 17yx4 = 0.
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5 Computational Complexity and Comparisons

In this section we study the computational complexity of our algorithm in terms
of arithmetic operations. In view of the algorithmic steps described in Section
3, we must compute:

(1) n + 1 derivatives of F (x) with respect to x at the points x = i for
i = 0, . . . , n, which requires O(n2) operations;

(2) det(subs(x = i, op(bezout(p, q, t))) for i = 0, . . . , n, for which O(n6) op-
erations are required totally.

It is worth noting that the main cost of the process corresponds to the gen-
eration of the interpolation data, and not to the computation of the derivatives.
For every entry of the matrix is a polynomial of degree at most 1 in y; then for
the matrix bezout(p, q, t), O(n6) operations are required when n+1 interpolation
data are computed.

The algorithm we have developed in the preceding sections for finding the im-
plicit equation of a properly parametrized curve is based on the Bézout resultant
and Lagrange interpolation. It avoids some difficulties that arise in the computa-
tion of resultants and nodes (Marco and Mart́ınez, 2001). Let P(t) = (x(t), y(t))
be a proper parametrization of a plane algebraic curve C, where

x(t) =
u(t)
w(t)

, y(t) =
v(t)
w(t)

.

According to Marco and Mart́ınez (2001), one needs to compute (n+ 1)(n + 1)
data by the Bézout resultant Be := bezout(p, q, t) in Maple 8, where

p = xw(t) − u(t), q = yw(t) − v(t).

Then one has to solve a linear system of (n+1)(n+1) equations and finally gets
all the coefficients of the implicit equation of curve C. So the procedure is much
more complicated.

Compared with the algorithm of Marco and Mart́ınez (2001), our algorithm
is much simpler and much more efficient from some aspects, because

(1) we only need to compute n+1 nodes, which is obtained by n+1 Bézout
resultants; but in Marco and Mart́ınez (2001), one has to compute (n+1)2 nodes,
which are obtained from (n+ 1)2 Bézout resultants;

(2) we do not need to solve a linear system of (n + 1)(n+ 1) equations.
Therefore, we can avoid a lot of unnecessary computations and get the re-

quired implicit equation easily by using Lagrange interpolation.
In what follows, we give an example to compare the results obtained using

our algorithm with those obtained using the Maple command resultant.
Consider the S-shaped Bézier curve properly parametrized by

(x(t), y(t)) =

∑8
0 ωi(ai, bi)

(
8
i

)
ti(1− t)i

∑8
0 ωi

(
8
i

)
ti(1− t)i

,
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where the control polygon is described by the points

(a0, b0) = (−
√

5, 1), (a1, b1) = (0,
1
2
), (a2, b2) = (

√
2, 1),

(a3, b3) = (
√

3, 2), (a4, b4) = (0,
√

5), (a5, b5) = (−
√

2,
√

5),

(a6, b6) = (−
√

3,
7
2
), (a7, b7) = (0, 4), (a8, b8) = (

√
5, 4),

and where the weights are

ω0 = 1, ω1 = 1, ω2 = 1, ω3 = 1, ω4 = 1,
ω5 = 1, ω6 = 1, ω7 = 1, ω8 = 1.

A good introduction to polynomial and rational Bézier curves can be found
in Farin (1996) and Hoschek and Lasser (1993).

When implementing our algorithm in Maple 8 on a personal computer (128
M), we observed that (for this example) our algorithm is about 41 seconds faster
and requires 22M less space than resultant. Consider another parametric plane
curve defined by

x =
t16 + t

t16 + t+ 1
, y =

t16 + t2

t16 + t+ 1
.

In Maple 8 on the above-mentioned PC, our algorithm takes only 0.032 seconds
and is 0.234 seconds faster than resultant.

The advantages of our method compared with Maple’s resultant are partly
due to the fact that we make use of the special properties of the resultant to
be computed. On one hand, we know the exact degree of the resultant in each
variable and thus we know precisely the best interpolation space. On the other
hand, the entries of the Bézout matrix are quite simple, so the evaluation of the
matrix at the nodes ai = i is not too expensive.

6 Conclusions

We have presented, in the previous sections, a novel algorithm for finding the
implicit equations of properly parametrized plane curves. This algorithm is based
on the theories of Lagrange interpolation and Bézout matrix. It avoids some of
the difficulties that arise in the computation of resultants and thus may perform
better than some of the standard algorithms.
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Abstract. Solving analytic systems using inversion can be implemented
in a variety of ways. One method is to use Lagrange inversion and varia-
tions. Here we present a different approach, based on dual vector fields.

For a function analytic in a neighborhood of the origin in the complex
plane, we associate a vector field and its dual, an operator version of
Fourier transform. The construction extends naturally to functions of
several variables.

We illustrate with various examples and present an efficient algorithm
readily implemented as a symbolic procedure in Maple while suitable as
well for numerical computations using languages such as C or Java.

1 Introduction

We introduce the operator calculus necessary to present our approach to (local)
inversion of analytic functions. It is important to note that this is different from
Lagrange inversion and is based on the flow of a vector field associated to a given
function. It appears to be theoretically appealing as well as computationally
effective.

Acting on polynomials in x, define the operators

D =
d

dx
and X = multiplication by x.

They satisfy commutation relations [D,X ] = I, where I, the identity opera-
tor, commutes with both D and X . Abstractly, the Heisenberg-Weyl algebra is
the associative algebra generated by operators {A,B,C} satisfying [A,B] = C,
[A,C] = [B,C] = 0. The standard HW algebra is the one generated by the
realization A = D, B = X , C = I. An Appell system is a system of polynomials
{yn(x)}n≥0 that is a basis for a representation of the standard HW algebra with
the following properties:

1. yn is of degree n in x;
2. Dyn = n yn−1.

In several variables, x = (x1, . . . , xN ), with multi-indices n = (n1, . . . , nN ), the
corresponding monomials are

J. Calmet, T. Ida, and D. Wang (Eds.): AISC 2006, LNAI 4120, pp. 170–180, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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xn = xn1
1 xn2

2 · · ·xnN

N .

Denote the partial derivative operators by Di =
∂

∂xi
and the corresponding

multiplication operators by Xi. Then [Dj, Xi] = δij I. An Appell system is a
system of polynomials {yn} in the variables x such that

1. the top degree term of yn is a constant multiple of xn;
2. Di yn = ni yn−ei , where ei has all components zero except for 1 in the ith

position.

G.-C. Rota [3] is well-known for his umbral calculus development of special
polynomial sequences, called basic sequences. From our perspective, these are
“canonical polynomial systems” in the sense that they provide polynomial rep-
resentations of the Heisenberg-Weyl algebra, in realizations different from the
standard one. Our idea [2, 1] is to illustrate explicitly the rôle of vector fields
and their duals, using operator calculus methods for working with the latter (in
our volumes — this viewpoint is prefigured in [3]).

The main feature of our approach is that the action of the vector field may
be readily calculated while the action of the dual vector field on exponentials is
identical to that of the vector field. Then we note that acting iteratively with
a vector field on polynomials involves the complexity of the coefficients, while
acting iteratively with the dual vector field always produces polynomials from
polynomials. So we can switch to the dual vector field for calculations.

Specifically, fix a neighborhood of 0 in C. Take an analytic function V (z)
defined there, normalized to V (0) = 0, V ′(0) = 1. Denote W (z) = 1/V ′(z) and
U(v) the inverse function, i.e., V (U(v)) = v, U(V (z)) = z. Then V (D) is defined
by power series as an operator on polynomials in x and [V (D), X ] = V ′(D)
so that [V (D), XW (D)] = I. In other words, V = V (D) and Y = XW (D)
generate a representation of the HW algebra on polynomials in x. The basis for
the representation is yn(x) = Y n1, i.e., Y is a raising operator. And V yn =
n yn−1 so that V is the corresponding lowering operator. The {yn}n≥0 form a
system of canonical polynomials or generalized Appell system. The operator of
multiplication by x is given by X = Y V ′(D) = Y U ′(V )−1, which is a recursion
operator for the system.

We identify vector fields with first-order partial differential operators. Con-
sider a variable A with corresponding partial differential operator ∂A. Given V
as above, let Ỹ be the vector field Ỹ = W (A)∂A. Then we observe the following
identities

Ỹ eAx = xW (A) eAx = xW (D) eAx

as any operator function of D acts as a multiplication operator on eAx. The
important property of these equalities is that Y and Ỹ commute, as they involve
independent variables. So we may iterate to get

exp(tỸ )eAx = exp(tY )eAx. (1)
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On the other hand, we can solve for the left-hand side of this equation using
the method of characteristics. Namely, if we solve

Ȧ = W (A) (2)

with initial condition A(0) = A, then for any smooth function f ,

etỸ f(A) = f(A(t)).

Thus
exp(tY )eAx = exA(t).

To solve equation (2), multiply both sides by V ′(A) and observe that we get

V ′(A) Ȧ =
d

dt
V (A(t)) = 1.

Integrating yields

V (A(t)) = t+ V (A) or A(t) = U(t + V (A)).

Or, writing v for t, we have

exp(vY )eAx = exU(v+V (A)). (3)

We can set A = 0 to get
exp(vY )1 = exU(v)

on the one hand while

evY 1 =
∞∑

n=0

vn

n!
yn(x).

In summary, we have the expansion of the exponential of the inverse function

exU(v) =
∞∑

n=0

vn

n!
yn(x)

or ∞∑
m=0

xm

m!
(U(v))m =

∞∑
n=0

vn

n!
yn(x). (4)

This yields an alternative approach to inversion of the function V (z) rather
than using Lagrange’s formula. We see that the coefficient of xm/m! yields the
expansion of (U(v))m. In particular, U(v) itself is given by the coefficient of x
on the right-hand side.

Specifically, we have:

Theorem 1. The coefficient of xm/m! in Y n1 is equal to Ỹ nAm
∣∣
A=0, each

giving the coefficient of vn/n! in the expansion of U(v)m.
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Proof. Expand both sides of equation (1), using v for t, in powers of x and v,
and let A = 0: ∞∑

n=0

vn

n!
Ỹ n

∞∑
m=0

xm

m!
Am

∣∣
A=0 =

∞∑
n=0

vn

n!
Y n1

and compare with equation (4).

The same idea works in several variables.
We have V(z) = (V1(z1, . . . , zN), . . . , VN (z1, . . . , zN)) analytic in a neighbor-

hood of 0 in CN . Denote the Jacobian matrix
(
∂Vi

∂zj

)
by V ′ and its inverse by

W . The variables

Yi =
N∑

k=1

xkWki(D)

commute and act as raising operators for generating the basis yn(x). Namely,
Yiyn = yn+ei . And Vi = Vi(D), D = (D1, . . . , DN) are lowering operators:
Viyn = ni yn−ei .

Denote
∑

i aibi by a·b. With variables Ai and corresponding partials ∂i, define
the vector fields

Ỹi =
∑

k

Wki(A)∂k.

For a vector field Ỹ =
∑

i Wi(A)∂i, we have the identities

Ỹ eA·x = x ·W (A) eA·x = x ·W (D) eA·x.

The method of characteristics applies as in one variable and as in equation (3)

exp(v · Y )eA·x = ex·U(v+V (A)).

Thus, we have the expansion

exp
(
x · U(v)

)
=
∑
n

vn

n!
yn(x). (5)

In particular, the kth component, Uk, of the inverse function is given by the
coefficient of xk in the above expansion.

An important feature of our approach is that to get an expansion to a given
order requires knowledge of the expansion of W just to that order. The reason
is that when iterating xW (D), at step n it is acting on a polynomial of degree
n − 1, so all terms of the expansion of W (D) of order n or higher would yield
zero acting on yn−1. This allows for streamlined computations.

For polynomial systems V, V ′ will have polynomial entries, and W will be
rational in z. Hence raising operators will be rational functions of D, linear in x.
Thus the coefficients of the expansion of the entries Wij of W would be computed
by finite-step recurrences.

Remark 1. Note that to solve V (z) = v for z near z0, with V (z0) = v0, apply
the method to V1(z) = V (z+ z0)− v0, so that V1(0) = 0. The inverse is U1(v) =
U(v + v0)− z0. Then U(v) = z0 + U1(v − v0).
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2 One-Variable Case

In this section we focus on the one-variable case. We illustrate the method with
examples, and then present an algorithm suitable for symbolic computation.

Example 1. In one variable, solving a cubic is interesting as the expansion of W
can be expressed in terms of Chebyshev polynomials.

Let V = z3/3− αz2 + z. Then V ′ = z2 − 2αz + 1. Thus

W =
1

1− 2αz + z2 =
∞∑

n=0

znUn(α),

where Un are Chebyshev polynomials of the second kind.
Specializing α provides interesting cases. For example, let α = cos(π/4), or

V = z3/3− z2/
√

2 + z. Then the coefficients in the expansion of W are periodic
with period 8 and, in fact,

W =
1 + z2 +

√
2 z

1 + z4 .

The coefficient of x in the polynomials yn yield the coefficients in the expansion
of the inverse U . Here are some polynomials starting with y0 = 1, y1 = x:

y2 = x2 + x
√

2, y3 = x3 + 3 x2
√

2 + 4 x,
y4 = x4 + 6 x3

√
2 + 22 x2 + 10 x

√
2,

y5 = x5 + 10 x4
√

2 + 70 x3 + 90 x2
√

2 + 40 x,
y6 = x6 + 15 x5

√
2 + 170 x4 + 420 x3

√
2 + 700 x2 − 140 x

√
2.

This gives to order 6:

U(v) =
(
v +

2
3
v3 +

1
3
v5 + · · ·

)
+
√

2
(

1
2
v2 +

5
12

v4 − 7
36

v6 + · · ·
)
.

This expansion will give approximate solutions to

z3/3− z2/
√

2 + z − v = 0

for v near 0.

Example 2. Inversion of the Chebyshev polynomial T3(z) = 4z3−3z can be used
as the basis for solving general cubic equations ([4]).

To get started we have, with V (z) = 4z3 − 3z,

W (z) =
−1
3

1
1− 4z2 =

−1
3

∞∑
n=0

4nz2n.

So y1 = (−1/3)x, y2 = (1/9)x2, y3 = (−1/27)(x3 + 8x), etc. We find

U(v) = −1
3
v − 4

81
v3 − 16

729
v5 − 256

19683
v7 − · · · .
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In this case, we can find the expansion analytically. To solve T3(z) = v, write

T3(cos θ) = cos(3θ) = v.

Invert to get, for integer k, θ = (1/3)(2πk ± arccosv), with arccos denoting the
principal branch. Then

z = cos((1/3)(2πk ± arccos v)).

We want a branch with v = 0 corresponding to z = 0. With arccos 0 = π/2, we
want the argument of the cosine to be π/2 + πl, for some integer l. This yields

the condition
1
3

=
2l + 1
4k ± 1

. Taking l = 0, we get k = 1, with the minus sign.

Namely,
U(v) = cos((1/3)(2π − arccos v)).

Using hypergeometric functions (see next example) and rewriting, we find the
form

U(v) = −1
3

∞∑
n=0

(
3n
n

) (
4
27

)n
v2n+1

2n+ 1
.

If we generate the polynomials yn, we can find the expansion of U(v)m to any
order.

Example 3. A similar approach is interesting for the Chebyshev polynomial
Tn(z).
F (v) = cos(λ(μ± arccos v)) satisfies the hypergeometric differential equation

(1− v2)F ′′ − v F ′ + λ2 F = 0

which can be written in the form

[(vDv)2 −D2
v]F = λ2 F

with here Dv denoting d/dv. For integer λ, this is the differential equation for the
corresponding Chebyshev polynomial. In general, these are Chebyshev functions.
As noted above, for F (0) = 0, we take μ = 2πk, and, as above, we require

λ =
2l + 1
4k ± 1

.

With F ′(0) = ±λ, we have the solution

F (v) = ±λv 2F1

⎛
⎜⎝

1 + λ
2

,
1− λ

2
3
2

∣∣∣∣∣ v2

⎞
⎟⎠ .
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2.1 Using Maple

For symbolic computation using Maple, one can use the Ore Algebra package.

1. First fix the degree of approximation. Expand W as a polynomial to that
degree.

2. Declare the Ore algebra with one variable, x, and one derivative, D.
3. Define the operator xW (D) in the algebra.
4. Iterate starting with y0 = 1 using the applyopr command.
5. Extract the coefficient of xm/m! to get the expansion of U(v)m.

3 Algorithm as a Matrix Computation

Here is a matrix approach that can be implemented numerically.
Fix the order of approximation n. Cut off the expansion

W (z) = w0 + w1z + w2w
2 + · · ·+ wkz

k + · · ·

at wnz
n.

Let the matrix

W =

⎛
⎜⎜⎜⎜⎜⎝

w1 w0 0 . . . 0
w2 w1 w0 . . . 0
...

...
...

. . .
...

wn−1 wn−2 wn−3 . . . w0
wn wn−1 wn−2 . . . w1

⎞
⎟⎟⎟⎟⎟⎠ .

Define the auxiliary diagonal matrices

P =

⎛
⎜⎜⎜⎝

1! 0 . . . 0
0 2! . . . 0
...

...
. . .

...
0 0 . . . n!

⎞
⎟⎟⎟⎠ , M =

⎛
⎜⎜⎜⎝

1 0 . . . 0
0 2 . . . 0
...

...
. . .

...
0 0 . . . n

⎞
⎟⎟⎟⎠ ,

Q =

⎛
⎜⎜⎜⎝

1/Γ (1) 0 . . . 0
0 1/Γ (2) . . . 0
...

...
. . .

...
0 0 . . . 1/Γ (n)

⎞
⎟⎟⎟⎠ .

Note that QP = M .
Denoting yk(x) =

∑
c
(k)
j xj , we have the recursion

[c(k+1)
1 , c

(k+1)
2 , . . . , c(k+1)

n ] = [c(k)
1 , c

(k)
2 , . . . , c(k)

n ]PWQ.

The condition U(0) = 0 gives y0 = 1. Then y1 = XW (D)y0 yields y1 = w0x.
We see that c(k)

0 = 0 for k > 0. We iterate as follows:
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1. Start with w0 times the unit vector [1, 0, . . . , 0] of length n.
2. Multiply by W .
3. Iterate, multiplying on the right by MW at each step.
4. Finally, multiply on the right by Q.

The top row will give the coefficients of the expansion of U(v) to order n.

4 Higher-Order Example

Here is a simple 2× 2 system for illustration.

V1 = z1 + z2
2/2, V2 = z2 − z1z2.

So

V ′ =
(

1 z2
−z2 1− z1

)
and W =

1
1− z1 + z2

2

(
1− z1 −z2
z2 1

)
.

The raising operators are

Y1 =
(
x1(1−D1)) + x2D2

)
(1−D1 +D2

2)
−1,

Y2 = (−x1D2 + x2) (1−D1 +D2
2)

−1.

Expanding (1−D1 +D2
2)

−1 =
∞∑

n=0
(D1 −D2

2)
n yields, with y00 = 1,

y01 = x2, y10 = x1,

y02 = x2
2 − x1, y11 = x2 + x1x2, y20 = x2

1.

Thus

exp
(
x ·U(v)

)
= 1 + x1v1 + x2v2

+ (x2 + x1x2)v1v2 + (x2
2 − x1)

v2
1

2
+ x2

1
v2
2

2
+ · · · ,

so
U1(v) = v1 − v2

1/2 + · · · , U2(v) = v2 + v1v2 + · · · .

5 Another Matrix Approach

For any given order n, the polynomials of degree n are an invariant subspace for
the operator Y up until the last step. We can formulate an alternative matrix
computation as follows. Let D̄ and X̄ denote the matrices of the operators of
differentiation and multiplication by x respectively on polynomials of degree less
than or equal to n. The space is invariant under differentiation, and we cut off
multiplication by x to be zero on xn. We get

D̄ij = i δi+1,j and X̄ij = δi−1,j
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with the first row of X̄ all zeros. We then compute the matrix X̄ times W (D̄),
where W (D̄) is computed as a matrix polynomial by substituting in W (z) up to
order n. Then Y has a matrix representation, Ȳ = X̄W (D̄), on the space and we
iterate multiplying by Ȳ acting on the unit vector e1. These give the coefficients
of the polynomials yn.

In several variables, one constructs matrices for Dj and Xi using Kronecker
products of D̄ and X̄ with the identity. For example,

D̄j = I ⊗ I ⊗ · · · ⊗ D̄ ⊗ I · · · ⊗ I

with D̄ in the jth spot. Similarly for X̄i. Then one has explicit matrix represen-
tations for the dual vector fields and the polynomials can be found accordingly.

This approach is explicit, but seems to much slower than using the built-in
Ore algebra package.

6 Worksheets
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Abstract. This paper presents a specialized method for solving dy-
namic geometric constraints involving equalities and inequalities. The
method works by decomposing the system of constraints into finitely
many explicit solution representations in terms of parameters with rad-
icals using triangular decomposition and real quantifier elimination. For
any given values of the parameters, if they verify some set of computed
relations, the values of the dependent variables may be easily computed
by direct evaluation of the corresponding explicit expressions. The effec-
tiveness of our method and its experimental implementation is illustrated
by some examples of diagram generation.

1 Introduction

Dynamic geometric constraint solving (GCS) aims at dynamically producing dia-
grams of given geometric objects satisfying given geometric constraint relations.
It has been studied extensively in the area of computer aided geometric de-
sign and modeling (see the recent survey [6] and references therein), yielding
several approaches such as graph-based, algebraic, numerical and logic-based
approaches. These approaches are developed mainly for solving geometric con-
straints that may be expressed algebraically as equalities. In this paper, we
provide an approach for solving geometric constraints involving inequalities as
well.

The main motivation for considering inequalities is that many geometric con-
straints naturally require the notion of order such as “between”, “inside,” and
“outside.” For example, we often need to deal with geometric constraints such
as external tangency of circles and internal bisection of angles. When those geo-
metric constraints are translated into algebraic ones, they naturally show up as
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inequalities. One could formulate those GCS problems using equalities only, but
then, they become extremely unnatural, involving artificial slack variables and
existential quantifiers, also resulting in enormous computational blowup, making
them impractical. One could ignore the order notion while formulating geomet-
ric constraints, but it often leads to many unexpected extraneous or degenerate
solutions, causing confusion, especially when the diagram is moving across some
critical points. It is therefore imperative to develop effective methods that di-
rectly tackle geometric constraints involving inequalities.

As mentioned above, there is little work on geometric constraints involving
inequalities as well as equalities. This may be mainly due to the well known
inherent practical difficulties of dealing with general inequality constraints. There
are methods (such as cylindrical algebraic decomposition and others) that can
handle, in principle, arbitrarily general equality/inequality constraints, but the
practical complexity is prohibitive for even moderate size of problems.

One source of computational blowup of the general methods is the need to con-
sider the interaction of arbitrary degree equalities with inequalities. However, it
is well known that many interesting and important geometric constraints involve
only low degree equalities (usually less than 5). Thus, in this paper, we restrict
ourselves and develop a specialized method for constraints involving equalities
of degree less than 5 but inequalities of arbitrary degree.

The restriction on degree of equalities allows us to compute explicit repre-
sentations of real solutions of semi-algebraic systems by radicals. The method
proceeds by first decomposing the set of equality constraints into finitely many
triangular sets. Then with respect to each triangular set together with inequality
constraints, the space of parameters is decomposed into finitely many domains
by means of real quantifier elimination, such that associated with each domain
there is a set of explicit expressions of the dependent variables in terms of the
parameters with radicals. For any given values of the parameters, if they verify
the relations of some domain, the values of the dependent variables may be easily
computed by direct evaluation of the corresponding explicit expressions.

An experimental implementation of our approach has been done in Java with
interface to the Epsilon library [12] in Maple and the QEPCAD package [1] in C.
We will illustrate the approach and its implementation with a few examples.

2 Representing Real Solutions of Semi-algebraic Systems
by Radicals

Consider the following semi-algebraic system of equations and inequalities⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

F1(x1, . . . , xn) = 0,
· · · · · ·

Fs(x1, . . . , xn) = 0,
G1(x1, . . . , xn) <> 0,

· · · · · ·
Gt(x1, . . . , xn) <> 0,

(1)
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where F1, . . . , Fs, G1, . . . , Gt are polynomials in x1, . . . , xn with rational coeffi-
cients and <> may take any of the inequality operators <, �, >, �, �=. We wish
to represent the real solutions of (1) by means of explicit formulae with radi-
cals. This is not possible in general (as it is well known from Abel/Galois theory
that the solutions of polynomial equations of degree greater than 4 in general
cannot be expressed in terms of radicals and field operations), so our objective
is to compute such representations for polynomials of low degree. Once such
representations are available, they can be efficiently instantiated repeatedly for
dynamic update of diagrams.

Let u = (u1, . . . , ud) be a subset of the variables x1, . . . , xn. Denote by
y1, . . . , yr all the other variables xi not in u. Note that u1, . . . , ud, y1, . . . , yr

is a permutation of x1, . . . , xn (so d + r = n and {u1, . . . , ud, y1, . . . , yr} =
{x1, . . . , xn}). We call u parameters (or parametric variables) and y1, . . . , yr

dependents (or dependent variables).

Definition 1. Let Γ (u) be a quantifier-free formula composed of equality and
inequality relations in the parameters u, and hj a rational expression of u with
radicals for 1 � j � r. We call

Γ (u), y1 = h1(u), y2 = h2(u), . . . , yr = hr(u) (2)

a solution representation by radicals (SRR) in u.

We want to decompose the semi-algebraic system (1) into finitely many SRRs of
the form (2) such that the set of real solutions of (1) is equal to the union of the
sets of real solutions given by the SRRs.

To compute SRRs, we first decompose the set of polynomials F1, . . . , Fs into
(irreducible) triangular sets by using the method of characteristic sets or other
methods [9, 12]. Each triangular set T may be written in the form

T = [T1(u, y1), T2(u, y1, y2), . . . , Tr(u, y1, . . . , yr)], (3)

where u, y1, . . . , yr is a permutation of x1, . . . , xn as above. Then the problem is
reduced to considering the following set of constraints for every triangular set T:

T1(u, y1) = 0, . . . , Tr(u, y1, . . . , yr) = 0, Γr(u, y1, . . . , yr), (4)

where Γr(u, y1, . . . , yr) := G1 <> 0, . . . , Gt <> 0, I1 �= 0, . . . , Ir �= 0 and where Ii

is the initial of Ti.
For any given values ū of u, one can solve the equations T1 = 0, . . . , Tr = 0

successively for y1, . . . , yr and then verify which solutions satisfy the formula Γr

in the triangular representation (4). This simple approach works theoretically
but has two drawbacks for finding real solutions. First, it is possible that real
solutions are found for y1, . . . , yk (1 � k < r) but there is no real solution for
yk+1. In this case, the computation of the real solutions for y1, . . . , yk is waste.
Second, if a found real solution of T1 = 0, . . . , Tr = 0 does not satisfy Γr, then the
computation of this solution is also waste. How to avoid or reduce such waste?
In what follows we explain how to do so by eliminating the variables yr, . . . , y1
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successively from the inequality constraints in Γr using Tr = 0, . . . , T1 = 0
respectively.

Consider first the constraints

Tr(u, y1, . . . , yr) = 0, Γr(u, y1, . . . , yr). (5)

In the next section, we will show how to decompose (5) into finitely many explicit
root representations of the form

yr = h(j)
r (u, y1, . . . , yr−1), Γ

(j)
r−1, (6)

such that Γ
(j)
r−1 does not contain the variable yr. Then we can deal with the

constraints
Tr−1(u, y1, . . . , yr−1) = 0, Γ

(j)
r−1 (7)

similarly for each j. Continuing this way, we will be able to decompose (4) into
finitely many explicit root representations

Γ
(i)
0 (u), y1 = h

(i)
1 (u), y2 = h

(i)
2 (u, y1), . . . , yr = h(i)

r (u, y1, . . . , yr−1), (8)

with each Γ
(i)
0 (u) a conjunction of disjunctions of equality and inequality rela-

tions in u and each h
(i)
j a rational expression of u, y1, . . . , yj−1 with radicals. In

other words, the space of parameters u is decomposed into finitely many domains
Di defined by Γ

(i)
0 (u), such that for any given values ū of u, if ū ∈ Di, then the

values of the dependent variables y1, . . . , yr are

ȳ1 = h
(i)
1 (ū), ȳ2 = h

(i)
2 (ū, ȳ1), . . . , ȳr = h(i)

r (ū, ȳ1, . . . , ȳr−1).

Note that a domain Di may be disconnected and two domains may be joined.
We may substitute

y1 = h
(i)
1 (u), . . . , yj = h

(i)
j (u, y1, . . . , yj−1) (9)

into h
(i)
j+1(u, y1, . . . , yj), so that (8) become SRRs. In practice, we may wish to

keep the form (8) because the substitution of (9) into h(i)
j+1 may increase the size

of the expression considerably. We call the representation (8) a weak SRR.
The method of decomposing a triangular representation of the form (4) into

SRRs uses root formulae (as long as the degree of each Ti in yi is less than 5) and
real quantifier elimination [2]. From the obtained SRRs, we can easily construct
a decomposition of (1) into SRRs as desired.

We say that a polynomial P (z) is composed of polynomials P1(z), . . . , Pk(z) if
P (z) = P1(P2(· · ·Pk(z) · · · )). The method sketched above allows us to establish
the following main result.

Theorem 1. For any semi-algebraic system (1) in x1, . . . , xn, if the polynomials
in the triangular sets obtained from all the irreducible triangular decompositions
of the involved sets of polynomial equations are composed of polynomials of degree
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less than 5 with respect to their leading variables, then one can decompose (1)
into q SRRs

Γ (i)(u(i)), y(i)
1 = h

(i)
1 (u(i)), y(i)

2 = h
(i)
2 (u(i)), . . . , y(i)

ri
= h(i)

ri
(u(i))

(1 � i � q) such that the set of real solutions of (1) is equal to

q⋃
i=1

{
(ū(i), h

(i)
1 (ū(i)), . . . , h(i)

ri
(ū(i))) | Γ (i)(ū(i))

}
,

where u(i), y
(i)
1 , . . . , y

(i)
ri is a permutation of x1, . . . , xn for each i and the union

of zero sets is carried out after permuting u(i), y
(i)
1 , . . . , y

(i)
ri back to x1, . . . , xn.

The method explained above and indicated in Theorem 1 has both theoretical
and practical interests because the explicit SRRs computed may provide an effi-
cient way for the computation of the real solutions of (1). We will demonstrate
how it can be applied effectively to solving dynamic geometric constraints in-
volving inequalities in Section 4. For dynamic animation, the computation of real
solutions has to be performed in real time and thus should be kept as inexpensive
as possible, while more expensive symbolic precomputation is acceptable.

3 Root Formulae of Univariate Equations with Inequality
Constraints

In this section, we explain how to eliminate the variable yr from the inequality
constraints in Γr(u, y1, . . . , yr−1, yr) as in (4) by using Tr(u, y1, . . . , yr−1, yr) = 0
as in (3), when the degree of Tr in yr is small. For notational convenience, we will
write x for yr, f(x) for Tr(u, y1, . . . , yr−1, yr), and Γ (x) for Γr(u, y1, . . . , yr−1, yr).

Proposition 1 (Linear Case). Let f(x) = ax + b. Then (A) is equivalent to
(B):

(A) f(x) = 0 ∧ Γ (x);

(B) x = − b

a
∧ Γ (−b/a).

Proof. Since a �= 0 is contained in Γ (x), f(x) = 0 is equivalent to x = −b/a.
The proof immediately follows. ��

Proposition 2 (Quadratic Case). Let f(x) = ax2 + bx + c. Then (A) is
equivalent to (B1) ∨ (B2):

(A) f(x) = 0 ∧ Γ (x);

(B1) x =
−b+

√
Δ

2 a
∧ Γ+;
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(B2) x =
−b−

√
Δ

2 a
∧ Γ−,

where
Γ+ := (∃x) [Γ (x) ∧ f(x) = 0 ∧ f ′(x) � 0],
Γ− := (∃x) [Γ (x) ∧ f(x) = 0 ∧ f ′(x) � 0];

Δ := b2 − 4 ac = discriminant(f).

Proof. As a �= 0 is contained in Γ (x), f(x) = 0 is equivalent to

x =
−b+

√
Δ

2 a

∨
x =

−b−
√
Δ

2 a
.

Now we make the key observation

x =
−b+

√
Δ

2 a
⇐⇒ f(x) = 0 ∧ f ′(x) � 0,

x =
−b−

√
Δ

2 a
⇐⇒ f(x) = 0 ∧ f ′(x) � 0.

The proof immediately follows. ��

Proposition 3 (Cubic Case). Let f(x) = ax3 + bx2 + cx+ d be such that its
discriminant Δ �= 0. Then (A) is equivalent to (B0) ∨ (B1) ∨ (B2) ∨ (B3):

(A) f(x) = 0 ∧ Γ (x);

(B0) x =
R3
√
δ

6 a
− 2 (3 ac− b2)

3 a
R3
√
δ

− b

3 a
∧ ΓR;

(B1) x =
I3
√
δ

6 a
− 2 (3 ac− b2)

3 a
I3
√
δ

− b

3 a
∧ Γ I;

(B2) x =
II3
√
δ

6 a
− 2 (3 ac− b2)

3 a
II3
√
δ

− b

3 a
∧ Γ II;

(B3) x =
III3
√
δ

6 a
− 2 (3 ac− b2)

3 a
III3
√
δ

− b

3 a
∧ Γ III,

where

ΓR := Δ > 0 ∧ (∃x) [Γ (x) ∧ f(x) = 0],
Γ I := Δ < 0 ∧ (∃x) [Γ (x) ∧ f(x) = 0 ∧ af ′(x) > 0 ∧ f ′′(x) > 0],
Γ II := Δ < 0 ∧ (∃x) [Γ (x) ∧ f(x) = 0 ∧ f ′(x) > 0 ∧ (f ′′(x) < 0 ∨ a < 0)],
Γ III := Δ < 0 ∧ (∃x) [Γ (x) ∧ f(x) = 0 ∧ f ′(x) < 0 ∧ (f ′′(x) < 0 ∨ a > 0)],

δ := 36 abc− 108 a2d− 8 b3 + 12
√

3
√
Δa,

Δ := 4 ac3 − b2c2 − 18 abcd+ 27 a2d2 + 4 b3d = discriminant(f).
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where
R3
√
δ denotes the real cubic root of δ and

I3
√
δ,

II3
√
δ,

III3
√
δ denote the cubic

roots of δ respectively in sectors I, II, III (see the proof for the definition of
sectors).

Proof. Let us recall the root formula of f for x:

x =
3
√
δ

6 a
− 2 (3 ac− b2)

3 a 3
√
δ

− b

3 a
, (10)

where 3
√
δ stands for the three (complex) cubic roots of δ.

There are two cases according to the sign of the discriminant Δ: Δ > 0 or
Δ < 0. First assume that Δ > 0. Then, it is well known that f = 0 has one
and only one real root for x. Thus, we see immediately that (A) is equivalent to
(B0).

From now on, assume that Δ < 0. The three roots of f = 0 for x are all real
and the key issue is to distinguish them by using inequality relations. For any
complex number w, a cubic root u+iv of w is called the principal cubic root of w
if u > 0 and arctan( v

u ) ∈ (−π
3 ,

π
3 ] (or equivalently, u > 0 and −

√
3 < v

u �
√

3).
We call the sector in the complex plane in which principal cubic roots reside
the principal sector or sector I. Sectors II and III are obtained from sector I by
rotating the region 120◦ and 240◦ anti-clockwise around the origin respectively.

We claim that 3
√
δ lies in sector I if and only if

f ′′(x) > 0 and af ′(x) > 0.

In order to prove the claim, we solve the equation (10) for 3
√
δ, obtaining

3
√
δ = 3 ax+ b+

√
Ω, (11)

3
√
δ = 3 ax+ b−

√
Ω, (12)

where
Ω = 3 (3 a2x2 + 2 abx+ 4 ac− b2).

Plunging the expression of δ into the above equalities, taking the third power
of both sides, and comparing the resulting two sides, we see that (11) holds if
3 ax2 + 2 bx + c � 0, and (12) holds otherwise. As Δ < 0, δ must be complex,
and so must 3

√
δ. Write (11) and (12) as

3
√
δ = 3 ax+ b+ i

√
−Ω, 3

√
δ = 3 ax+ b − i

√
−Ω, Ω < 0.

Then, for any x satisfying 3 ax2 + 2 bx+ c � 0, 3
√
δ lies in sector I if and only if

3 ax+ b > 0 and −
√

3 <
√
−Ω

3 ax+ b
�
√

3,

i.e.,
3 ax+ b > 0 and 3 a2x2 + 2 abx+ ac � 0.
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Similarly, for any x satisfying 3 ax2 +2 bx+ c < 0, 3
√
δ lies in sector I if and only

if

3 ax+ b > 0, and −
√

3 < −
√
−Ω

3 ax+ b
�
√

3,

i.e.,
3 ax+ b > 0 and 3 a2x2 + 2 abx+ ac > 0.

Note that Δ < 0 implies that f = 0 has no multiple root, so for any root x of
f = 0, f ′(x) = 3 ax2 + 2 bx+ c �= 0. As a �= 0, we have 3 a2x2 + 2 abx+ ac �= 0.
It follows that 3

√
δ lies in sector I if and only if

3 ax+ b > 0 and 3 a2x2 + 2 abx+ ac > 0.

Similarly we claim that 3
√
δ lies in sector II if and only if

3 ax+ b < 0 or a < 0, and 3 ax2 + 2 bx+ c > 0,

and 3
√
δ lies in sector III if and only if

3 ax+ b < 0 or a > 0, and 3 ax2 + 2 bx+ c < 0.

The proof is similar to that for sector I, and thus omitted.
From these, it is immediate that when Δ < 0, (A) is equivalent to (B1) ∨

(B2) ∨ (B3). ��

If Δ = 0, then f = 0 has a multiple root for x. In this case, squarefree
decomposition of f shows that f = 0 is equivalent to

2 a (3 ac− b2)x2 − (9 a2d− 7 abc+ 2 b3)x− 3 abd+ 4 ac2 − b2c = 0

when 3 ac− b2 �= 0, and to 3 ax+ b = 0 when 3 ac− b2 = 0. So the problem is
reduced to the quadratic or linear case.

We can also derive root formulae for quartic equations by variable transfor-
mation and from the root formulae of quadratic and cubic equations. Different
real roots may be distinguished by forming existentially quantified formulae in-
volving polynomial relations only using similar techniques. The details are quite
involved and will be described formally elsewhere. Finally, if the degree of f is
greater than 4 and f is composed of polynomials of degree less than 5, then we
can also find explicit root representations for all the polynomial equations in the
composition with inequality constraints. Therefore, the composed case may be
reduced to the quadratic, cubic, and quartic cases.

In order to use the above propositions, we need to eliminate the existential
quantifier from the formulae. This can be done by using any real quantifier
elimination procedure (such as QEPCAD [1, 2], REDLOG [13, 3], QEQUAD [5],
or SturmHabicht [4]).

In summary, the set of constraints f(x) = 0 ∧ Γ (x) may be decomposed into
explicit root representations (B), (B0), (B1), (B2), and (B3) in Propositions 1–3,
or other similar ones.
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4 Generation of Dynamic Diagrams

We are given a set O of geometric objects in a geometric space (e.g., Euclidean
plane or space) and a set C of constraints among the objects in O. The problem
of diagram generation is to decide whether the objects in O can be placed in the
space such that the constraints in C are satisfied; if so, construct, for any given
assignment of values to the parameters, a diagram that satisfies the constraints.
We may add some inequality constraints to rule out degenerate cases in which
diagrams cannot be properly constructed. For dynamic animation, parametric
values are given continuously and diagrams are constructed accordingly and their
motion may be shown on the screen.

Denote by x1, . . . , xn the coordinates of points and other geometric entities
involved in the objects of O; then the set C of constraints together with the
conditions to exclude some degenerate cases may be expressed as a semi-algebraic
system of the form (1). The GCS problem is then reduced to solving this semi-
algebraic system.

Sometimes, constraints may be specified as quantified formulae. In this case,
we may eliminate the quantifiers to obtain quantifier-free formulae using known
methods such as PCAD (partial cylindrical algebraic decomposition) [2]. So we
can assume that the GCS problem under consideration may be formulated alge-
braically in the form (1).

By the method presented in the previous two sections, we can decompose the
semi-algebraic system (1) into finitely many weak SRRs

Γ (i)(u(i)), y
(i)
1 = h

(i)
1 (u(i)),

y
(i)
2 = h

(i)
2 (u(i), y

(i)
1 ),

· · ·
y
(i)
ri = h

(i)
ri (u(i), y

(i)
1 , . . . , y

(i)
r−1),

(13)

where u(i), y
(i)
1 , . . . , y

(i)
ri is a permutation of x1, . . . , xn for each i. System (1) has

a real solution if and only if there exist an i and a set ū(i) of real values of
u(i) such that Γ (i)(ū(i)) holds true. In case there is no parameter, we will either
end up with the conclusion that (1) has no real solution, or find the radical
expressions of all the real solutions, yielding finitely many diagrams.

If there are infinitely many real values ū of u such that Γi(ūi) holds, then the
diagrams are dynamic. In this case, from each weak SRR and the identification
of parameters and dependents we can determine which points in the geometric
objects are free, semi-free, or dependent points. If the GCS problem is well for-
mulated, then all the SRRs should have the same set of parameters. We may
assume that this is the case.

To generate a dynamic diagram, we implement the weak SRRs into the draw-
ing program. For initialization, a random set ū of real values for u is chosen
so that some Γi(ūi) holds. Then the real values of u (corresponding to the free
or semi-free points) change continuously by the user, for example, using mouse
dragging. For any chosen values ū of u, the program verifies whether some Γi(ūi)
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holds. If no such Γi exists, then the values ū are not allowed and the diagram
remains unmoved. Otherwise, Γi(ūi) holds true for some i. In the case, the cor-
responding values for the dependent variables

ȳ
(i)
1 = h

(i)
1 (ū(i)), ȳ(i)

2 = h
(i)
2 (ū(i), ȳ

(i)
1 ), . . . , ȳ(i)

ri
= h(i)

ri
(ū(i), ȳ

(i)
1 , . . . , ȳ

(i)
r−1)

are computed. The diagram is then redrawn according to these values that de-
termine the new locations of the geometric objects in the diagram.

Our approach for automated generation of dynamic diagrams (in Euclidean
plane) involving inequalities constraints may be sketched as follows.

1. Assign coordinates to the points involved in the geometric objects and in-
troduce other variables if necessary, so that the geometric constraints are
expressed as a semi-algebraic system of equalities and inequalities of the
form in (1).

2. Decompose the system (1) into finitely many weak SRRs of the form (13).
3. Determine the free and semi-free points according to the identification of the

variables x1, . . . , xn into parameters and dependents.
4. Randomly choose a set of real numerical values for the parametric variables

satisfying some Γ (i) and compute the values of the dependent variables from
the corresponding weak SRR.

5. Check whether all the points are within the window range and no two of
them are too close. If not, then go back to step 4.

6. Draw the geometric objects and label the points.

The animation of the drawn diagram may be implemented by the following two
additional steps.

7. Update the value(s) of the free coordinate(s) of the free or semi-free point
being moved with mouse dragging and recompute the values of the dependent
variables from the corresponding weak SRR.

8. Redraw the geometric objects and relabel the points.

5 Examples

The approach presented in the preceding section has been implemented in Java
with interface to the Epsilon library [12] in Maple and the QEPCAD program
[1] in C for our experiments. The implementation is still very primitive, so we
do not discuss any detail here.

In what follows we use two examples to illustrate our approach and its pre-
liminary implementation.

5.1 Steiner Problem

Given an arbitrary triangleABC, draw three equilateral trianglesABC1, ACB1,
and BCA1 all outward or all inward. The well-known Steiner theorem claims
that the three lines AA1, BB1, and CC1 are concurrent. This theorem may be
proved and so may a dynamic diagram be generated automatically on computer,
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for example, by using GEOTHER [11]. However, for the publicly available version
of GEOTHER there is no way to ensure that the triangles drawn in the diagram
are outward or inward. Now by using the method described in this paper, we
can ensure that the triangles are drawn all outward.

Fig. 1. Steiner problem

Without loss of generality, let the coordinates of the points be assigned as
follows:

A(0, 0), B(1, 0), C(u1, u2), C1(x1, x2), B1(x3, x4), A1(x5, x6).

Then the geometric constraints may be expressed as the following equalities and
inequalities⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F1 = 2 x1 − 1 = 0, (|AC1| = |BC1|)
F2 = x2

2 + x2
1 − 1 = 0, (|AC1| = |AB|)

F3 = x2
4 + x2

3 − u2
2 − u2

1 = 0, (|AB1| = |AC|)
F4 = 2 u2x4 + 2 u1x3 − u2

2 − u2
1 = 0, (|AB1| = |CB1|)

F5 = x2
6 + x2

5 − 2 x5 − u2
2 − u2

1 + 2 u1 = 0, (|BA1| = |BC|)
F6 = 2 u2x6 + 2 u1x5 − 2 x5 − u2

1 − u2
2 + 1 = 0, (|BA1| = |CA1|)

G1 = u1u2x6 − u2x6 − u2
2x5 + u2

2 < 0, (BCA1 outward)
G2 = −u2 u1x4 + u2

2x3 < 0, (ACB1 outward)
G3 = u2x2 < 0. (ABC1 outward)

Assume that C is a free point, so that u1, u2 are free parameters. The set of
polynomials F1, . . . , F6 may be decomposed over Q(u1, u2) into four triangular
sets. However, three of them turn out to be inconsistent with the inequality
constraints. So we get only one triangular set [T1, . . . , T6], where

T1 = 2 x1 − 1,

T2 = 4 x2
2 − 3,

T3 = 2 x3 − 2 u2 x2 − u1,
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T4 = 2 x4 + 2 u1 x2 − u2,

T5 = 2 x5 + 2 u2 x2 − u1 − 1,
T6 = 2 x6 − 2 u1 x2 + 2 x2 − u2.

From the triangular set, we can obtain the following weak SRRs:

u2 < 0, x1 =
1
2
, x2 =

√
3

2
, x3 =

1
2
u1 + u2 x2, x4 =

1
2
u2 − u1 x2,

x5 =
1
2
u1 − u2 x2 +

1
2
, x6 =

1
2
u2 − x2 + u1 x2;

u2 > 0, x1 =
1
2
, x2 = −

√
3

2
, x3 =

1
2
u1 + u2 x2, x4 =

1
2
u2 − u1 x2,

x5 =
1
2
u1 − u2 x2 +

1
2
, x6 =

1
2
u2 − x2 + u1 x2.

With these representations, the dynamic diagram as shown in Fig. 1 can be
drawn and animated efficiently.

5.2 Apollonius Circle Problem

The Apollonius circle problem is a classical GCS problem formulated by Apol-
lonius of Perga in the third century B.C. It has been investigated in the recent
literature [7, 8]. It comes in three different versions: points, lines, or circles. The
most interesting and challenging one is about circles. It asks to construct a cir-
cle that touches three given circles (see Fig. 2). It has applications in geometric
modeling, biochemistry, and pharmacology. What is of real interest for such
applications is the case of external contact of the circles.

If the coordinates of the points are chosen as

O1(0, 0), T1(1, 0), O2(0, 1), T2(u4, x2), O3(u6, x4), T3(u5, x3), O(x1, 0),

then the constraints for the four circles to be tangent externally may be expressed
algebraically as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F1 = x1x2 − x1 + u4 = 0, (O,O2, T2 collinear)

F2 = −x2
2 + 2 u4x1 − 2 x1 − u2

4 + 1 = 0, (T1, T2 on O)

F3 = −x2
3 + 2 u5x1 − 2 x1 − u2

5 + 1 = 0, (T1, T3 on O)

F4 = −x1x4 + u5x4 + x1x3 − u6x3 = 0, (O,O3, T3 collinear)

G1 = (∃λ1) [λ1 > 0 ∧ λ1 < 1 ∧ λ1x1 = 1], (O,O1 ex-tangent)

G2 = (∃λ2) [λ2 > 0 ∧ λ2 < 1 ∧ λ2x1 = u4 (O,O2 ex-tangent)
∧ − λ2 + 1 = x2],

G3 = (∃λ3) [λ3 > 0 ∧ λ3 < 1 ∧ (1 − λ3)x4 = x3 (O,O3 ex-tangent)
∧λ3x1 + (1− λ3)u6 = u5].

We first eliminate the quantified variables λ1, λ2, λ3 to get a semi-algebraic sys-
tem and then compute an irreducible triangular decomposition of {F1, . . . , F4}
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over Q(u4, u5, u6) with respect to variable ordering x1 ≺ · · · ≺ x4. The decom-
position consists of only one triangular set [T1, . . . , T4] with

T1 = −2 u4x
3
1 + 2 x3

1 + u2
4x

2
1 − 2 u4x1 + u2

4,

T2 = x1x2 − x1 + u4,

T3 = x2
3 − 2 u5x1 + 2 x1 + u2

5 − 1,
T4 = x1x4 − u5x4 − x1x3 + u6x3.

From this triangular set and the inequality constraints six weak SRRs were

Fig. 2. Dynamic diagram for the Apollonius problem

computed by our program. We list only two of them as follows:

Δ1(u4, u5, u6), x1 = X11, x2 = X2, x3 = X3, x4 = X4;

Δ2(u4, u5, u6), x1 = X12, x2 = X2, x3 = X3, x4 = X4,

where

Δ1(u4, u5, u6) : u3
4 + 2 u2

4 + 11 u4 − 16 = 0 ∧ u5 − 1 � 0 ∧ [[2 u4u
3
5 − 2u3

5 − u2
4

u2
5 + 2 u4u5 − u2

4 = 0 ∧ 6 u4u5 − 6u5 − u2
4 > 0 ∧ u6 − u5 = 0 ] ∨

[ 3 u4u
2
5 − 3u2

5 − 2u2
4u5 + 6 u4u5 − 6u5 − 2u2

4 + 7 u4 − 3 � 0∧
3u4u

2
5 − 3u2

5 − u2
4u5 + u4 > 0 ∧ u6 − u5 > 0] ∨ [ 3 u4u

2
5 − 3u2

5−
u2

4u5 + u4 < 0 ∧ u6 − u5 < 0] ∨ [ 6 u4u5 − 6 u5 − u2
4 < 0 ∧ u6−

u5 < 0]] ∧ u4 > 0;
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Δ2(u4, u5, u6) : u3
4 + 2 u2

4 + 11 u4 − 16 < 0 ∧ u4 − 1 > 0 ∧ u5 − 1 � 0 ∧ [[6 u4u5

− 6u5 − u2
4 > 0 ∧ 3u4u

2
5 − 3u2

5 − u2
4u5 + u4 > 0 ∧ 2 u4u

3
5 − 2u3

5

− u2
4u

2
5 + 2 u4u5 − u2

4 = 0 ∧ u6 − u5 = 0] ∨ [ 3 u4u
2
5 − 3u2

5 − u2
4

u5 + u4 < 0 ∧ u6 − u5 < 0 ] ∨ [ 2 u4u
3
5 − 2u3

5 − u2
4u

2
5 + 2 u4u5−

u2
4 > 0 ∧ 3u4u

2
5 − 3u2

5 − u2
4u5 + u4 > 0 ∧ 3u4u

2
5 − 3 u2

5 − 2u2
4u5

+ 6 u4u5 − 6u5 − 2 u2
4 + 7 u4 − 3 < 0 ∧ u6 − u5 > 0] ∨ [2 u4u

3
5−

2u3
5 − u2

4u
2
5 + 2 u4u5 − u2

4 > 0 ∧ 6u4u5 − 6 u5 − u2
4 > 0 ∧ u4u

3
5−

u3
5 − u2

4u
2
5 + 3 u4u

2
5 − 3u2

5 − 2u2
4u5 + 7 u4u5 − 3u5 − 5u2

4 + 5 u4

− 1 � 0 ∧ u6 − u5 > 0] ∨ [6 u4u5 − 6u5 − u2
4 < 0 ∧ u6 − u5 < 0]

∨ [2u4u
3
5 − 2u3

5 − u2
4u

2
5 + 2u4u5 − u2

4 < 0 ∧ u6 − u5 < 0]]

and

X11 =
R3
√
δ

6 (u4 − 1)
+
u4

4 − 12 u2
4 + 12 u4

6 (u4 − 1)
R3
√
δ

+
u2

4

6 (u4 − 1)
,

X12 =
I3
√
δ

6 (u4 − 1)
+
u4

4 − 12 u2
4 + 12 u4

6 (u4 − 1)
I3
√
δ

+
u2

4

6 (u4 − 1)
,

X2 =
x1 − u4

x1
,

X3 = −
√
−2 u5x1 + 2 x1 + u2

5 − 1,

X4 =
x1x3 − u6x3

x1 − u5
;

δ = d+ 6
√

3Du4(u4 − 1),
d = u6

4 + 36 u4
4 − 90 u3

4 + 54 u2
4,

D = u6
4 + 8 u4

4 − 36 u3
4 + 43 u2

4 − 16 u4.

Figure 2 is a window snapshot that shows a dynamic diagram for the Apollonius
problem generated automatically from the above weak SRRs.

6 Summary and Discussion

In this paper we have presented an approach for dynamically solving geometric
constraints involving inequalities. It consists of two stages: preprocessing and
updating. During the preprocessing stage (which is carried out only once), we
compute, symbolically, explicit representations (radical expressions in parame-
ters) of the solutions of the semi-algebraic system representing the geometric
constraints. During the updating stage (which is carried out repeatedly), we
evaluate, numerically, the radical expressions.

Once the preprocessing has been done, the repeated updating can be carried
out reliably and efficiently since it only involves evaluating radical expressions,
yielding correct and dynamic (real-time) animation.
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As expected, the preprocessing, though carried out only once, can be very
time-consuming when the involved polynomials are of high degree with many
parameters. For example, we have applied our method to the well-known Morley
trisector theorem without success. An algebraic formulation of the problem con-
sists of 6 equations and 9 inequalities and the SRRs could not be computed within
one hour on a laptop PC. Hence, an important challenge for future work is to
improve the speed of the preprocessing stage, in particular, real quantifier elim-
ination. It is well known that general real quantifier elimination is intrinsically
difficult. However, it seems that the formulae arising in the context of geometric
constraints are not arbitrary, but have certain special structures. Therefore, one
should investigate how to utilize those structures in order to develop specialized
and thus more efficient real quantifier elimination methods.
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Abstract. The method for verification of hybrid systems by constraint
propagation based abstraction refinement that we introduced in an ear-
lier paper is based on an over-approximation of continuous reachability
information of ordinary differential equations using constraints that do
not contain differentiation symbols. The method uses an interval con-
straint propagation based solver to solve these constraints. This has the
advantage that—without complicated algorithmic changes—the method
can be improved by just changing these constraints. In this paper, we dis-
cuss various possibilities of such changes, we prove some properties about
the amount of over-approximations introduced by the new constraints,
and provide some timings that document the resulting improvement.

1 Introduction

A hybrid system is a dynamical system that involves both continuous and dis-
crete state and evolution. This can, for example, be used for modeling the be-
havior of an embedded (digital) computing device influencing its (continuous)
environment. An important task is to verify that a given hybrid system is safe,
that is, every trajectory starting from an initial state never reaches an unsafe
state.

In this paper we study constraints that can be used for modeling the contin-
uous flow in the safety verification of hybrid systems by constraint propagation
based abstraction refinement [16, 14]. Especially, we exploit the fact that the un-
derlying solver, which is based on interval constraint propagation as introduced
within the field of artificial intelligence [5, 3, 9, 13], allows the use of a rich lan-
guage of constraints that includes function symbols such as sin, cos, exp. These
symbols arise naturally as solutions of linear differential equations.

More specifically, in this paper we study two types of constraints that model
the reachability problem: one, for linear differential equations, is related to the
explicit solution of such equations; and the second, for general differential con-
straints, is based on the mean-value theorem. Both constraints are quite simple
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to derive and similar ones have been used before in the literature. However,
here we study in detail, how they behave when using interval based constraint
propagation techniques for solving them, and how this behavior reflects in our
method of verification of hybrid systems using constraint propagation based ab-
straction refinement. Our verification software HSolver [15], allows the user to
experiment with these, and additional, user-defined, constraints.

Regarding additional related work, the approach by Hickey and Wittenberg [7]
puts the level of modelling even higher, by employing a constraint logic program-
ming language [8] that directly can deal with differential equations. Internally it
solves constraints by transforming them into polynomial constraints using Tay-
lor expansion, and then solves these using a similar solver as ours. The approach
does not provide a comparison of different formulations of these constraints, and
does not employ abstraction refinement to concentrate on refining the solution
which is relevant for a given safety verification problem.

Tiwari [19] derives simple polynomial constraints from linear differential equa-
tions by manually doing an over-approximating quantifier elimination on a sim-
ilar constraint as one of the constraints employed here. In contrast to that, since
our solver can handle function symbols such as sin, cos, and exp, we can directly
work on the original constraint, and—using an abstraction refinement scheme—
approximate it arbitrarily closely.

Anai and Weispfenning [1] provide a classification of the cases when the time
variable can be symbolically eliminated from the solution of linear differential
equations (which may contain transcendental function symbols).

Similar constraints as employed here, which are based on the mean-value
theorem or Taylor expansion, are ubiquitous in the integration of ODE’s.

The content of the paper is as follows: In Section 2 we review our method of
verification using abstraction refinement; in Section 3 we discuss constraints for
modeling reachability of differential equations; in Section 4 we discuss how we
solve these constraints; in Section 5 we compare the constraints theoretically; in
Section 6 we study empirically, how the constraints behave within our method;
and in Section 7 we conclude the paper.

2 Constraint Propagation Based Abstraction Refinement

In this section, we review our previous approach [16, 14] for verifying safety using
constraint propagation based abstraction refinement. We fix a variable s ranging
over a finite set of discrete modes {s1, . . . , sn} and variables x1, . . . , xk ranging
over closed real intervals I1, . . . , Ik. We denote by Φ the resulting state space
{s1, . . . , sn}× I1×· · ·× Ik. In addition, for denoting the derivatives of x1, . . . , xk

we assume variables ẋ1, . . . , ẋk, ranging over R each,and for denoting the targets
of jumps, variables s′, x′1, . . . , x

′
k ranging over {s1, . . . , sn} and I1, . . . , Ik, corre-

spondingly. In the following we will use boldface to denote vectors of variables.
For describing hybrid systems, we use a flow constraint Flow(s,x, ẋ), a jump

constraint Jump(s,x, s′,x′), an initial constraint Init(s,x) and an unsafety con-
straint UnSafe(s,x). Now, assuming a given hybrid system H = (Flow, Jump,
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Init, Unsafe), our safety verification problem is to verify that H is safe, that
is, there is no piecewise continuous trajectory of H that starts from an initial
state (i.e., a state satisfying the constraint Init(s,x) and reaches an unsafe state
(i.e., a state satisfying the constraint UnSafe(s,x)). Here the continuous parts
of the trajectory are required to fulfill the flow constraint Flow(s,x, ẋ), and the
discontinuous jumps are required to fulfill Jump(s,x, s′,x′), where (s,x) refers
to the state before the jump and (s′,x′) refers to the state directly after the
jump. For formal definitions refer to our previous publication [16].

Our approach decomposes the state spaceΦ using hyper-rectangles (boxes) into
finitely many mode/box pairs and then computes a finite over-approximation of
the hybrid systems (an abstraction). In detail, for each pair of boxes, it sets an ab-
stract transition, only if it cannot prove the absence of trajectories between them;
also, it marks boxes as initial (unsafe), if it cannot prove the absence of an initial
(unsafe) element in the box. If the resulting finite abstraction is safe, the hybrid
system is also safe, since the abstraction over-approximates the hybrid system. If
it is not safe, we refine the abstraction by splitting boxes into pieces and recom-
puting the affected information in the abstraction.

Moreover, we have a mechanism for removing unreachable elements from
boxes. For this observe that a point in a box B is reachable only if it is reachable
either from the initial set via a flow in B, from a jump via a flow in B, or from
a neighboring box via a flow in B. So we formulate constraints corresponding to
each of these conditions and then remove points from boxes that do not fulfill
at least one of these constraints.

The approach can be used with any constraint describing that y can be reach-
able from x via a flow in B and mode s, for example, the one introduced in our
previous publication and the new ones that will be introduced in the latter sec-
tions. We denote the used constraint by ReachableB(s,x,y).

Thus the above three possibilities of reachability allow us to formulate the
following theorem:

Theorem 1. For a set of abstract states B such that all boxes corresponding to
the same mode are non-overlapping, a pair (s′, B′) ∈ B and a point z ∈ B′, if
(s′, z) is reachable, then

initflowB′(s′, z) ∨
∨

(s,B)∈B
jumpflowB,B′(s, s′, z)

∨
∨

(s,B)∈B,s=s′,B �=B′
boundaryflowB,B′(s′, z)

where initf lowB′(s′, z), jumpflowB,B′(s, s′, z) and boundaryflowB,B′(s′, z)
denote the following three constraints, respectively:

– ∃y ∈ B′ [Init(s′,y) ∧ ReachableB′(s′,y, z)],
– ∃x ∈ B∃x′ ∈ B′ [Jump(s,x, s′,x′) ∧ ReachableB′(s′,x′, z)],
– ∃x ∈ B∩B′[[∀faces F of B[x ∈ F ⇒ outFs′,B,B′(x)]

]
∧ ReachableB′(s′,x, z)

]
.

Here, outFs′,B,B′(x) is one of the following constraints:
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– ∃ẋj [Flow(s′,x, (ẋ1, . . . , ẋk)) ∧ ẋj ≤ 0], if F is the j-th lower face of B, and
– ∃ẋj [Flow(s′,x, (ẋ1, . . . , ẋk)) ∧ ẋj ≥ 0], if F is the j-th upper face of B.

We denote the main constraint (i.e., the disjunction) by reachableB′(s′, z). If we
can prove that a certain point does not fulfill this constraint, we know that it
is not reachable. In Section 4 we describe pruning algorithm that takes such a
constraint and an abstract state (s′, B′), and returns a sub-box of B′ that still
contains all the solutions of the constraint in B′.

Since the constraint reachableB′(s′, z) depends on all current abstract states,
a change of B′ might allow further pruning of other abstract states. So we can
repeat pruning until a fixpoint is reached. This terminates since we use floating
point computation here and there are only finitely many floating point numbers.

We remove the initial mark of an abstract state (s′, B′) if we can disprove
initf lowB′(s′, z) in Theorem 1, and we remove the unsafe mark of an abstract
state (s′, B′) if we can disprove ∃x ∈ B′ UnSafe(s′,x). Moreover, we remove a
transition from (s,B) to (s′, B′) if we can disprove both boundaryflowB,B′(s′, z)
and jumpflowB,B′(s, s′, z) from Theorem 1. It is easy to show that the resulting
system is an abstraction of the original hybrid system.

3 Constraints for Reachability

Assume that the flow constraint contains a differential equation of the form
ẋ = Ax, where A ∈ Q

k×k. Differential equations of the form ẋ = Ax + B can
be reduced to that form by shifting the equilibrium, provided that the equation
Ax +B = 0 has solutions. Given an initial set Init, we have the exact solution
x(t) = eAtx0, where x0 ∈ Init and eAt is defined by

∑∞
k=0

tk

k!A
k. Thus, if x is

reachable, then the constraint ∃t ∈ R≥0∃x0 ∈ Rk[x0 ∈ Init ∧ x = eAtx0] holds.
Since the matrix A appears in an exponent, it is difficult to directly solve

this constraint. We use another constraint introduced by Tiwari [19], that over-
approximates the reach set, that can be easily computed from the matrix A, and
that does not contain matrix exponentiation. For this we re-express the real and
complex eigenvalues of AT (the transpose of A) using the following two sets:

Λ1 =
{
λ ∈ R | ∃c ∈ Rk

[
c �= 0 ∧AT c = λc

]}
;

Λ2 =
{
(a, b) ∈ R× R>0 | ∃c ∈ Rk

[
c �= 0 ∧ ((AT )2 − 2aAT + (a2 + b2)I)c = 0

]}
.

For every λ ∈ Λ1, let c(1, λ) be an orthonormal basis of {c : AT c = λc}; for every
(a, b) ∈ Λ2, let c(2, (a, b)) be an orthonormal basis of {c : ((AT )2− 2aAT +(a2 +
b2)I)c = 0}. Then we can describe an over-approximation of the set of reachable
states as follows.

Lemma 1. For a differential equation ẋ = Ax and a box B ⊆ Rk, if there
is a trajectory in B from a point x = (x1, . . . , xk)T ∈ B to a point y =
(y1, . . . , yk)T ∈ B on which ẋ = Ax holds, then

∃t ∈ R≥0[eigen∗
A,B(t,x,y)], (1)
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where eigen∗
A,B(t,x,y) denotes[ ∧

λ∈Λ1

[ ∧
c∈c(1,λ)

cT y = cT xeλt
]]
∧
[ ∧

(a,b)∈Λ2

∃ẋ ∈ Rk

[
ẋ = Ax ∧

∧
c∈c(2,(a,b))

cT y = eatcT

(
x cos(bt) +

ẋ− xa

b
sin(bt)

)]]

This expression is a formula in the first-order predicate language over the real
numbers—it does not contain higher-order expressions such as derivatives (ẋ
does not denote the derivative of x but simply a new variable). However, the
corresponding restriction to the first-order theory of the reals is still undecidable,
since we have to deal with function symbols like sin. However, there are over-
approximating constraint solvers, that can be used (see Section 4).

We denote the above Constraint 1 by eigenA,B(x,y). Note that if A has k
different real eigenvalues and B = Rk, then this constraint describes the exact
solution of the differential equation.

Now we will describe a constraint describing the reachability not only for
linear differential equations, but for much more general descriptions of contin-
uous evolution. We assume that the continuous dynamics is defined by a dif-
ferential constraint D(x, ẋ) (or short, D) which can be an arbitrary first-order
formula in the theory of the reals over the tuples of variables x and ẋ. This
includes explicit and implicit differential equations and inequalities, and even
differential-algebraic equations and inequalities.

Earlier [16] we used a constraint flowD,B(x,y) describing the reachability in
boxes as follows:

Lemma 2. For a differential constraint D(x, ẋ) and a box B ⊆ IRk, if there
is a trajectory in B from a point x = (x1, . . . , xk)T ∈ B to a point y =
(y1, . . . , yk)T ∈ B such that for every point u on the trajectory and its derivative
u̇, the pair (u, u̇) satisfies D(x, ẋ), then∧

1≤m<n≤k

∃a1, . . . , ak, ȧ1, . . . , ȧk[(a1, . . . , ak) ∈ B∧

D((a1, . . . , ak), (ȧ1, . . . , ȧk)) ∧ ȧn · (ym − xm) = ȧm · (yn − xn)]

Observe that whenever a given pair of points (x,y) fulfills the above constraint
flowD,B(x,y)—indicating that there is a possible flow from x to y— then also
the flipped pair (y,x) fulfills the constraint. That is, the constraint does not
distinguish time flowing forward, and time flowing backward. In order to avoid
this loss of information we use the mean value theorem to formulate the following
constraint:

Lemma 3. For a differential constraint D(x, ẋ) and a box B ⊆ IRk, if there
is a trajectory in B from a point x = (x1, . . . , xk)T ∈ B to a point y =
(y1, . . . , yk)T ∈ B such that for every point u on the trajectory and its derivative
u̇, the pair (u, u̇) satisfies D(x, ẋ), then
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∃t ∈ R≥0[flow∗
D,B(t,x,y)], (2)

where flow∗
D,B(t,x,y) denotes

∧
1≤i≤k

∃a1, . . . , ak, ȧ1, . . . , ȧk[(a1, . . . , ak) ∈ B

∧D((a1, . . . , ak), (ȧ1, . . . , ȧk)) ∧ yi = xi + ȧi · t]

We denote the above Constraint 2 by flow′
D,B(x,y). Although both the con-

straint flowD,B(x,y) and the constraint flow′
D,B(x,y) are quite simple, it is

not at all clear, whether flow′
D,B(x,y) really allows to derive tighter reach set

information than flowD,B(x,y).

4 Solving the Constraints

We solve the constraints using our constraint solver RSolver [12], which imple-
ments interval constraint propagation techniques [5, 3, 9, 13]. These techniques
can, for a given constraint and intervals for all its variables, contract these in-
tervals to smaller ones, without losing any solutions. We illustrate the idea on
an example: Given the constraint x2 − 1 ≤ 0, and the interval [−2, 2] for x, the
method first decomposes this constraint into a conjunction of so-called primitive
constraints, arriving at x2 = t0∧t0−1 = t1∧t1 ≤ 0. Here t0 and t1 are new, aux-
iliary variables. Then it takes the interval [−∞,+∞] for all auxiliary variables
and tries to contract all intervals wrt. the primitive constraints: using x2 = t0
we can contract the interval [−∞,∞] for t0 to [0, 4], using t0 − 1 = t1 contract
[−∞,∞] for t1 to [−1, 3], using t1 ≤ 0 contract [−1, 3] for t1 to [−1, 0], using
t0 − 1 = t1 contract [0, 4] for t0 to [0, 1], and using x2 = t0, contract [−2, 2] for
x to [−1, 1]. This process continues until a fixpoint is reached, which will always
happen eventually, due to the finiteness of floating point numbers. We call the
resulting algorithm a pruning function and, given a constraint φ and a box B,
we denote the result of applying this function to φ and B by Prune(φ,B). In
computer implementations the resulting intervals will enclose the solution sets
of the primitive constraints up to rounding to the next floating point number.
For the theoretical analysis in this paper we will ignore this rounding, and as-
sume that these intervals are the tightest possible enclosures using real-number
endpoints.

Definition 1. Given a constraint φ, pruning is optimal for φ iff for all boxes
B, Prune(φ,B) is the smallest box containing all solutions of φ in B.

Although the pruning function will contract optimally for primitive constraints,
this will in general not be the case for more complex constraints. However,
due to a classical result of interval arithmetic, we have (ignoring floating-point
rounding):

Property 1. For every constraint φ, that contains every variable just once, prun-
ing is optimal.
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There are special techniques for handling disjunctions and quantifiers [13]. More-
over, there are various optimizations and extensions of the techniques discussed
above. Most of them spend additional time to deal with the problem that prun-
ing is in general not optimal if some variables occur more than once. Since our
constraints usually only have few occurrences of the same variables, and since
in our abstraction refinement approach (see Section 2) we will do thousands of
prunings, it does not seem promising to use such optimizations here.

5 Theoretical Evaluation of the Constraints

In this section we will do a theoretical comparison of the constraints flowD,B

(x,y), flow′
D,B(x,y) and eigenA,B(x,y). Moreover, based on the gained insight,

we will introduce a new constraint that combines their advantages.
We start with comparing flow′

D,B(x,y) with flowD,B(x,y). Let us first dis-
cuss the size of the produced constraints. For k dimensions, flowD,B(x,y) has
k(k−1)/2 conjuncts, whereas flow′

D,B(x,y) has just k. So, for dimensions larger
than 2, flow′

D,B(x,y) is smaller, and its size increases only linearly instead of
quadratically. Hence pruning will take less time on flow′

D,B(x,y), especially for
high dimensions.

Let us now compare the effectiveness of the two constraints. For the one-
dimensional case, flowD,B(x,y) reduces to a conjunction with zero conjuncts,
that is, to a constraint that is trivially true. So in that case, flow′

D,B(x,y)
is definitely better. For higher dimensions, the relationship between the two
constraints is more complicated. Therefore, we will first study the relationship
between flowD,B(x,y) and flow′

D,B(x,y) themselves, and then between the
result of applying the pruning function to them.

Here we will use the following notation: Given two constraints φS,B(x,y) and
ψS,B(x,y), where S is a differential constraint D or a matrix A, and B is a box,
we will write φS,B + ψS,B (φS,B ≡ ψS,B) iff for all S and all B, the solution set
of φS,B in B × B is a subset of (equal to) the solution set of ψS,B in B × B.
Analogously, we will write φS,B +P ψS,B (φS,B ≡P ψS,B) iff for all S, all B
and all B0, where B0 is a sub-box of B, Prune(φS,B(x,y), B0 × B) is a subset
of (equal to) Prune(ψS,B(x,y), B0 ×B). Note that here we restrict B0 to be a
subset of B because we use the constraints always in such a context.

There is no clearcut relationship between flowD,B(x,y) and flow′
D,B(x,y):

Property 2. Neither flowD,B + flow′
D,B nor flow′

D,B + flowD,B.

Proof. For showing the first part, we use a differential constraint ẋ1 = 0∧ ẋ2 = 0
and a box B = [0, 2]× [0, 2]. Obviously, ((1, 1), (2, 2)) ∈ {(x,y) : flowD,B(x,y)},
but ((1, 1), (2, 2)) /∈ {(x,y) : flow′

D,B(x,y)}. The reason lies in the fact that
the derivatives are zero for this example, and in such a case, the equality in
flowD,B(x,y) reduces to the trivial equality 0 = 0 that is true for all x,y.

For showing the second part, we use a differential constraint ẋ1 = x1 + x2 +
1 ∧ ẋ2 = x1 + x2 + 1 and a box B = [0, 2] × [0, 2]. Obviously, ((0, 0), (1, 1

5 )) ∈
{(x,y) : flow′

D,B(x,y)}, but ((0, 0), (1, 1
5 )) /∈ {(x,y) : flowD,B(x,y)}. This is
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because we need ȧm and ȧn to be derivatives of am and an at the same point
in flowD,B(x,y), but in flow′

D,B(x,y), ȧi, can be the derivative of a different
point for every i. ��

However, in our method, instead of computing exact solutions to these con-
straints, we only use over-approximations computed by the pruning function,
and a tighter constraint does not necessarily give rise to a tighter pruning result.

So let us compare these over-approximations. We want to discuss the relation
between Prune(flowD,B(x,y), B0 ×B) and Prune(flow′

D,B(x,y), B0 ×B).

Theorem 2. flow′
D,B +P flowD,B.

Proof. Given a set of variables V and a box B for which each component cor-
responds to a certain variable, we denote by πV (B) the projection of B to the
components corresponding to the variables in V .

We transform the constraints into a conjunction without existential quantifiers
as follows: Rename the variables a1, . . . , ak and ȧ1, . . . , ȧk to a different tuple of
variables in each branch, and then drop all corresponding existential quantifiers.
As a result, in addition to x and y, flow′

D,B has 2k2 + 1 free variables and
flowD,B has k2(k − 1) free variables. Obviously, we have to prove

πx,y(Prune(flow′
D,B(x,y), B0 ×B × R≥0 × R2k2

)) ⊆

πx,y(Prune(flowD,B(x,y), B0 ×B × Rk2(k−1))).

Let φ′
B

.=
∧

1≤i≤k yi = xi+ȧit, and φB
.=
∧

1≤m<n≤k ȧn(ym−xm) = ȧm(yn−xn).
Let Ȧ be an arbitrary, but fixed, k-dimensional box. Let P ′

s be the exact solution
set of φ′

B in B0 ×B × R≥0 × Ȧ and P ′ = Prune(φ′
B, B0 ×B × R≥0 × Ȧ). Also,

let Ps be the exact solution set of φB in B0 ×B × Ȧ and P = Prune(φB, B0 ×
B × Ȧ). Since (a1, . . . , ak) ∈ B ∧D((a1, . . . , ak), (ȧ1, . . . , ȧk)) is shared by both
flow′

D,B(x,y) and flowD,B(x,y), it suffices to prove that πx,y(P ′) ⊆ πx,y(P ).
We will proceed by first proving that πx,y(P ′

s) ⊆ πx,y(Ps) and then lifting this
to πx,y(P ′) ⊆ πx,y(P ).

So let (x,y) ∈ πx,y(P ′
s) be arbitrary, but fixed. We will prove that (x,y) is

also in πx,y(Ps). Since (x,y) is in the projection of P ′
s we know that there are

(t, ȧ1, . . . , ȧk) such that (x,y, t, ȧ1, . . . , ȧk) satisfies the constraint φ′
B. Choose a

t∗, ȧ∗1, . . . , ȧ∗k with that property.
For proving that (x,y) ∈ πx,y(Ps), it suffices to prove that (x,y, ȧ∗1, . . . , ȧ

∗
k)

satisfies
∧

1≤m<n≤k ȧ
∗
n(ym − xm) = ȧ∗m(yn − xn). Letting m,n be arbitrary, but

fixed, such that 1 ≤ m < n ≤ k, we prove that (x,y, ȧ∗1, . . . , ȧ
∗
k) is in the solution

set of the corresponding conjunct. Here we have three cases:

– ȧ∗m �= 0, ȧ∗n �= 0: Then ym−xm

ȧ∗
m

= t∗ and yn−xn

ȧ∗
n

= t∗, so ym−xm

ȧ∗
m

= yn−xn

ȧ∗
n

, and
hence ȧ∗n(ym − xm) = ȧ∗m(yn − xn)

– ȧ∗m = 0: then xm = ym, and both sides of the equality ȧ∗n(ym − xm) =
ȧ∗m(yn − xn) are zero,

– ȧ∗n = 0, analogous to previous case.
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Hence πx,y(P ′
s) ⊆ πx,y(Ps). For lifting this to the projected results of pruning,

we first observe that each conjunct of φ′
B contains each variable just once. So,

due to Property 1, pruning is optimal for each conjunct. Due to the fact that the
conjuncts only share a single variable t also pruning of φ′

B is optimal [3], and since
projection commutes with the smallest-box relation, πx,y(P ′) is the smallest
box containing πx,y(P ′

s). Moreover, since projection commutes with the subset
relation, not only Ps ⊆ P , but also πx,y(Ps) ⊆ πx,y(P ), and by transitivity
πx,y(P ′

s) ⊆ πx,y(P ). Now, the following property implies the theorem: If B is
the smallest box containing a set S and S ⊆ S′, then for every box B′ with
S′ ⊆ B′, B ⊆ B′. ��

So, we can prune at least as tightly using flow′
D,B(x,y) as using flowD,B(x,y).

In fact, we can prune strictly tighter!

Property 3. Not flow′
D,B ≡P flowD,B.

Proof. Take a differential constraint ẋ1 = 1∧ ẋ2 = 1 and a box B = [0, 2]× [0, 2].
Let B0 = {(1, 1)}, then Prune(flow′

D,B(x,y), B0 ×B) = B0 × [1, 2]× [1, 2] and
Prune(flowD,B(x,y), B0 ×B) = B0 ×B. ��

To sum up, the theoretical evaluation shows that although none of the two
constraints always has a smaller solution set than the other, flow′

D,B(x,y) has
a definite advantage in size and in pruning power. Hence we only use the latter
from now on.

Next, we will compare flow′
ẋ=Ax,B(x,y) (or short: flow′

A,B(x,y)) with the
constraint eigenA,B(x,y) for linear differential equations ẋ = Ax.

If A has k different real eigenvalues and B = Rk, eigenA,B(x,y) describes
the exact solutions of the differential equations. But, flow′

A,B(x,y) employs
the first-order Taylor expansion to over-approximate the exact solutions. Thus,
eigenA,B + flow′

A,B? No! Only in cases where all trajectories leave the box, and
do not enter it again. Otherwise, eigenA,B(x,y) also includes the part of the
trajectory that enters the box again, but flow′

A,B(x,y) does not necessarily.
Now we compare the two constraints wrt. pruning. For linear differential equa-

tions, pruning is optimal for flow′
A,B. This follows from an analysis of the proof

of Theorem 2, and the fact that the differential equation constrains each deriva-
tive ẋ using a constraint ẋ = Ax, where each equation of this constraint contains
only one component of ẋ, and contains each component of x only once. How-
ever, this is in general not the case for eigenA,B due to multiple occurrences of
variables.

There is no clearcut relationship between Prune(flow′
A,B(x,y), B0×B) and

Prune(eigenA,B(x,y), B0 ×B):

Property 4. Neither flow′
A,B +P eigenA,B nor eigenA,B +P flow′

A,B.

Proof. This can be directly proven using only one example with a differential
equation (ẋ1, ẋ2) = (−x1 − x2, x1 − x2) and a box B = [0, 4] × [0, 4]. If we set
B0 = [2.5, 3] × [0, 0], then Prune(flow′

A,B, B0 × B) = B0 × [0, 3] × [0, 4] and
Prune(eigenA,B, B0 ×B) = B0 × [0, 3.5]× [0, 3]. ��
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Moreover, there are even some cases, where pruning flow′
A,B returns a strict

subset of pruning eigenA,B and vice versa: The former happens for a differ-
ential equation (ẋ1, ẋ2) = (x1 − x2, x1 + x2) and a box B = [0, 2] × [0, 4]. If
we set B0 = [2, 2] × [2, 4], then Prune(flow′

A,B, B0 × B) = B0 × [0, 2] × [2, 4]
and Prune(eigenA,B, B0 × B) = B0 × B. This is because the left-hand side of
eigenA,B, cT y, evaluates to zero on some element in B. Hence every solution of
cT (x cos(bt) + ẋ−xa

b sin(bt)) = 0 fulfills the constraint. There is such a solution,
and since sin and cos are periodic, the solution set is not bounded for t, and
interval [0,+∞] for t will not be pruned. Since a is positive, the interval derived
for the term eat will also stay unbounded, and no intervals will be pruned. But,
t ∈ [0, 1] in flow′

A,B, which does provide some pruning.
The latter happens for a differential equation (ẋ1, ẋ2) = (x1, x2) and a box

B = [0, 2]× [0, 2]. If we set B0 = {(0, 0)}, Prune(flow′
A,B, B0×B) = B0×B and

Prune(eigenA,B, B0 × B) = B0 × B0. This is because eigenA,B here describes
the exact solution starting from the initial point. But, since ẋ1 and ẋ2 can be
zero, pruning flow′

A,B results in t ∈ [0,∞]. Thus, also the intervals for y1 and
y2 cannot be pruned.

Since there is no clearcut relationship between Prune(flow′
A,B, B0 ×B) and

Prune(eigenA,B, B0 × B), we strengthen both constraints by combining them.
Thus, by sharing the same time variable we allow timing information to be
propagated between them as follows:

Lemma 4. For a linear differential equation ẋ = Ax and a box B, if there
is a trajectory in B from a point x = (x1, . . . , xk)T ∈ B to a point y =
(y1, . . . , yk)T ∈ B on which ẋ = Ax holds, then

∃t ∈ R≥0[flow∗
A,B(t,x,y) ∧ eigen∗

A,B(t,x,y)] (3)

We denote the above new Constraint 3 by combA,B(x,y). Clearly, this constraint
implies flow′

A,B(x,y), and also implies eigenA,B(x,y). That is, combA,B +
flow′

A,B and combA,B + eigenA,B. Moreover, we have:

Theorem 3. combA,B +P flow′
A,B and combA,B +P eigenA,B.

So, the combination constraint is at least as good as flow′
A,B(x,y) and eigenA,B

(x,y). But, in fact, it is better!

Property 5. Neither combA,B ≡P flow′
A,B nor combA,B ≡P eigenA,B.

Proof. This can be seen on an example with a differential equation (ẋ1, ẋ2) =
(−x1 − x2, x1 − x2) and a box B = [0, 4]× [0, 4]. If we set B0 = [2.5, 3]× [0, 0],
then Prune(flow′

A,B, B0×B) = B0× [0, 3]× [0, 4], Prune(eigenA,B, B0×B) =
B0 × [0, 3.5]× [0, 3] and Prune(combA,B, B0 ×B) = B0 × [0, 3]× [0, 3]. ��

However, the combination constraint is bigger than both flow′
A,B(x,y) and

eigenB(x,y). Thus, pruning will take more time on it.
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6 Empirical Evaluation

In this section we evaluate the constraints empirically by using them in the ver-
ification method introduced in Section 2. That is, we replace all occurrences
of ReachableB(s,x,y) introduced in Theorem 1 by flowD,B (or, flowA,B),
flow′

D,B (or, flow′
A,B), eigenA,B and combA,B, respectively. We illustrate the

behavior of our implementation on a few benchmark problems. Note that in the
literature on the verification of hybrid systems the habit prevails to test new
methods only on 2-3, or even less examples. We do not follow this tradition and
do more extensive benchmarking. We will publish the corresponding HSolver
input files on its web-page [15].

Note that we use the following splitting strategy here: In each mode, we
choose the box with the biggest side-length, and then bisect each choice along
the variable along which the box has not been split the longest time (i.e., we use a
round-robin strategy to choose the variable). The computations were performed
on a Pentium IV, 2.60GHz with 1 GB RAM, and they were canceled when
computation did not terminate before 5 hours of computation time.

We used the following benchmark problems for comparing flowD,B and
flow′

D,B with computation results shown in Table 1:

Example 1
Flow: (ẋ1, ẋ2) = (−x1 − x2, x1 − x2), empty jump relation
Init: 2.5 ≤ x1 ≤ 3 ∧ x2 = 0, Unsafe: x1 > 3 ∨ x2 > 3
The state space: [0, 4]× [0, 4]

Example 2
Flow: (ẋ1, ẋ2) = (x1 − x2, x1 + x2), empty jump relation
Init: 2.5 ≤ x1 ≤ 3 ∧ x2 = 0, Unsafe: x1 ≤ 2
The state space: [0, 4]× [0, 4]

Example 3. The flow constraints are constructed by setting all the parameters
in the two tanks problem [18] to 1.

Flow:
(
s = 1 →

(
ẋ1
ẋ2

)
=
( 1−√

x1√
x1−√

x2

))
∧
(
s = 2 →

(
ẋ1
ẋ2

)
=
( 1−√

x1−x2+1√
x1−x2+1−√

x2

))
Jump: (s = 1 ∧ 0.99 ≤ x2 ≤ 1) → (s′ = 2 ∧ x′1 = x1 ∧ x′2 = 1)
Init: s = 1 ∧ (x1 − 5.5)2 + (x2 − 0.25)2 ≤ 0.0625
Unsafe:

(
s = 1 ∧ (x1 − 4.25)2 + (x2 − 0.25)2 < 0.0625

)
The state space: (1, [4, 6]× [0, 1]) ∪ (2, [4, 6]× [1, 2])

Example 4. This is a predator-prey example.
Flow:

(
s = 1 →

(
ẋ1
ẋ2

)
=
(−x1+x1x2

x2−x1x2

))
∧
(
s = 2 →

(
ẋ1
ẋ2

)
=
(−x1+x1x2

x2−x1x2

))
Jump:

(
(s = 1 ∧ 0.875 ≤ x2 ≤ 0.9) → (s′ = 2 ∧ (x′1 − 1.2)2 + (x′2 − 1.8)2 ≤ 0.01

)
∨
(
(s = 2∧1.1 ≤ x2 ≤ 1.125)→ (s′ = 1∧(x′1−0.7)2+(x′2−0.7)2 ≤ 0.01)

)
Init: s = 1 ∧ (x1 − 0.8)2 + (x2 − 0.2)2 ≤ 0.01
Unsafe:

(
s = 1 ∧ x1 > 0.8 ∧ x2 > 0.8 ∧ x1 <= 0.9 ∧ x2 ≤ 0.9

)
State space: (1, [0.1, 0.9]× [0.1, 0.9]) ∪ (2, [1.1, 1.9]× [1.1, 1.9])
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Example 5. This is a simple example with a clock variable.
Flow: (ẋ, ẏ, ṫ) = (−5.5y + y2, 6x− x2, 1), empty jump relation
Init: 4 ≤ x ≤ 4.5 ∧ y = 1 ∧ t = 0
Unsafe: (1 ≤ x < 2 ∧ 2 < y < 3 ∧ 2 ≤ t ≤ 4)
The state space: [1, 5]× [1, 5]× [0, 4]

Example 6. A three-dimensional and nonlinear example about a simple con-
troller that steers a car along a straight road [4]. The three continuous variables
are the position x, the heading angle γ and the internal timer c. Since we can-
not prove the safety property described in the original paper, in this paper the
unsafe space is reset to be x ≤ −4.

Example 7. A linear collision avoidance example from a part of the car convoi
control from a paper by A. Puri and P. Varaiya [11]. Let gap, vr, vl and ar

respectively represent the distance between the two cars (di−1−di in the original
paper), the velocity of the rear car (ḋi), the velocity of the leading car (ḋi−1) and
the acceleration of the rear car (d̈i). By using these variables and restricting vl

by −2 ≤ v̇l ≤ −0.5 we transformed the original higher-order differential equation
into a four-dimensional differential (in)equation of order one.

We set the state space to [0, 4] × [0, 2] × [0, 2] × [−2,−0.5], and we want to
verify that gap > 0 when starting from gap = 1, vr = 2, vl = 2 and ar = −0.5.

Example 8. A four-dimensional and nonlinear example about a mixing-tank-
system from a paper by O. Stursberg, S. Kowalewski and S. Engell [17]. In
the original paper, the system is simplified to a two-dimensional system. In
this paper, we keep the differential equations (V̇1, V̇2) = (0.008, 0.015) in the
flow constraint, where V1 and V2 are two inlet streams. Then, initially, V1(0) =
1, V2(0) = 1, and (h(0), c(0)) ∈ [1.32, 1.5]× [1.2, 1.32], where h is liquid height
and c is concentration. We want to verify that the state {(V1, V2, h, c) : h ∈
[1.1, 1.3] ∧ c ∈ [1.68, 1.80]} is unreachable.

Example 9. A two-dimensional and nonlinear example about a tunnel-diode
oscillator circuit [6]. It models the voltage drop V and the current I. The original
problem was to prove that all trajectories eventually reach a certain set and
stay there. We transformed it to a reachability problem, using the state space
[−0.1, 0.6]× [−0.002, 0.002] and the unsafety constraint V < −0.04∨V > 0.54∨
I < −0.0015∨ I > 0.00175.

Example 10. A linear, three-dimensional model of a mutant of V. fischeri [2].
Let x1, x2 and x3 respectively represent the protein LuxI, the autoinducer Ai
and the complex Co described in the original paper. The model has two modes
with dynamics in the form ẋ = Ax + bi, i = 1, 2, where x = (x1, x2, x3)T and

A =

⎛
⎝−1/3600 0 0

7.5e− 5 −(1/36000 + 7.5e− 9) 1.5e− 9
0 0.005 −1/3600− 0.01

⎞
⎠

and b1 = (0.00375, 0, 0)T and b2 = (3.75375, 0, 0)T .
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We set the state space to be [0, 30000]× [0, 60000]× [0, 30000] and the switches
occur when the plane x3 = 1000 is reachable and x2 ∈ [1000, 45000]. We want
to verify that x1 ≥ 27500∨ x2 ≥ 50000∨ x3 ≥ 25000 cannot be reachable when
starting from [17500, 20000]× [40000, 45000]× [5000, 7500] in mode 1.

Table 1. Computation results for f lowD,B and f low′
D,B

Example f lowD,B f low′
D,B

CPU Splitting Pruning CPU Splitting Pruning
time steps number time steps number

1 0.041s 6 79 0.020s 2 30
2 0.34s 71 1572 0.38s 58 1203
3 0.18s 11 397 0.24s 11 397
4 0.57s 43 2250 0.66s 42 1884
5 2.59s 93 3552 1.69s 81 2929
6 0.35s 1 88 0.14s 0 41
7 187.96s 369 69158 105.55s 367 68675
8 7.68s 54 3138 43.95s 294 39281
9 13.209s 165 12215 3.653s 57 4655
10 1876s 1889 366681 686s 1417 270078

The results show that the new constraint improves the number of pruning
steps for all examples except for Example 8, which we will discuss below. As
expected, this also decreases the run-time of the method except for 2-dimensional
examples, where flow′

D,B has more conjuncts than flowD,B.
We analyzed the anomaly in the behavior on Example 8 in more detail. Af-

ter applying the pruning algorithm for the first time to reachableB′(s′, z), using
flow′

D,B we can prune the box [0, 2] × [0, 2] × [0.5, 1.5] × [1.2, 1.8] to a new box
[1, 1.53333333333]×[1, 2]×[1.22034017148, 1.5]×[1.2, 1.8];but, after we apply the
pruning algorithm to reachableB′(s′, z) using flowD,B, we can only prune the box
[0, 2]× [0, 2]× [0.5, 1.5]× [1.2, 1.8] to a new box [0.466666666667, 1.53333333333]×
[0, 2] × [1.22034017148, 1.5]× [1.2, 1.8]. So, in fact, the new method is better at
the beginning! However, it seems that this improvement at the beginning turns
out to be bad luck later since our method is very sensitive to splitting heuristics,
and the improved pruning results in different choices of boxes for splitting during
the algorithm. This suggests that a detailed study of splitting heuristics, will be
able to significantly improve the method further.

In addition to the linear examples from above (Examples 1, 2 and 10), we
used the following benchmarks for comparing flow′

A,B, eigenA,B and combA,B

with results shown in Table 2:

Example 11. A linear, three-dimensional example.
Flow: (ẋ1, ẋ2, ẋ3) = (0.80x2+0.6x3−1.8, 0.8x1+0.7x3−15.2, 0.6x1+0.7x2−1.8);
Empty jump relation; Init: 19 ≤ x1 ≤ 20 ∧ 19 ≤ x2 ≤ 20 ∧ 19 ≤ x3 ≤ 20;
Unsafe: x1 ≤ 21 ∧ x2 ≤ 20 ∧ x3 ≥ 22.5;
The state space: [15, 24]× [15, 24]× [15, 24].
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Table 2. Computation results for f low′
A,B , eigenA,B and combA,B

Example f low′
A,B eigenA,B combA,B

CPU Splitting Pruning CPU Splitting Pruning CPU Splitting Pruning
time steps number time steps number time steps number

1 0.020s 2 30 unknown 0.038s 0 3
2 0.38s 58 1203 unknown 5.362s 58 1203
10 686s 1417 270078 12534s 3279 560082 122s 235 46540
11 unknown unknown 0.319s 5 61
12 unknown 0.465s 0 3 0.756s 0 3

Example 12. A linear collision avoidance example similar to Example 7.
We restrict vl by v̇l = 0, and reset the state space to be [0, 10]× [0, 30]× [0, 30]×
[−2, 5] and the initial set to be −0.8522vr − 0.1478vl − 0.3177ar + gap > 10.

The results show that the combination decreases the size of the abstraction
and the number of calls to the constraint solver. However, as expected, this will
for some cases increase the run-time of the method, due to the bigger size of
this constraint. This phenomenon is reflected by Examples 1, 2 and 12. But,
for hard (and thus realistic) problems (e.g., Example 10), the improvement due
to the first phenomenon will always dominate: in such cases the time spent on
constraint solving will always be dominated by computations on the abstraction,
and hence it is essential to keep the abstraction small.

For some cases, the safety property cannot be verified using eigenA,B in our
method. For Examples 1 and 2 this can be explained using an observation already
discussed in Section 5: the eigenvalues are complex with non-zero imaginary
parts, and in such a case, since t occurs several times in the term cT (x cos(bt)+
(ẋ−ax)

b sin(bt)), we will get an over-approximating interval for this term.
On Examples 10 and 11 it can be seen nicely that the combined constraint

can be stronger than either flow′
A,B or eigenA,B in isolation.

Note that we did not use Examples 11 and 12 in Table 1 because their safety
properties cannot be verified using either flowA,B or flow′

A,B.

7 Conclusion

We have provided a detailed study of two types of constraints in the verification
of hybrid systems. The overall approach, to formulate reach set computation
as a constraint solving problem, and to apply an efficiently over-approximating
constraint solver to it, can be extended to various new types of constraints.
Specifically we will study the use of higher order Taylor approximations instead
of the constraint based on the mean value theorem. Our software is publically
available [15], and includes an interface that allows the incorporation of and
experimentation with new, user-defined constraints. Based on the gained experi-
ence and user feedback, we will optimize the constraint solver especially for the
most useful ones.
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Abstract. In this paper we propose a constructive algorithm using con-
straint propagation to generate 4-critical graph units (4-CGUs) which
have only one triangle as subgraph. Based on these units we construct
4-critical graphs using Hajós’ join construction. By choosing Grotztsch
graph as the initial graph and carefully selecting the edge to be joined, we
make sure that the generated graphs are 4-critical and triangle-free. Ex-
periments show that these graphs are exceptionally hard for backtracking
algorithms adopting Brélaz’s heuristics. We also give some preliminary
analysis on the source of hardness.

1 Introduction

Given an undirected graph G = (V,E) with V the set of vertices and E the set of
edges, let |V | = m and |E| = n. A proper coloring of G is an assignment of colors
to vertices such that each vertex receives one color and no two vertices connected
by an edge receive the same color. A k-coloring of G is a proper coloring that
uses k colors. The smallest number of colors needed to color a graph G is its
chromatic number, which is denoted by χ(G).

Graph coloring problem (GCP) is of great importance in both theory and
applications and has been studied intensively in computer science and artificial
intelligence (AI). It arises in many applications such as scheduling, timetabling,
computer register allocation, electronic bandwidth allocation. However, find-
ing the chromatic number of a given graph is very hard, and even determining
whether a given graph can be colored with 3 colors (3-colorability) is a standard
NP-Complete problem [1], thus being not efficiently solvable by current meth-
ods. Despite this, the practical importance of the problem makes it necessary to
design algorithms with reasonable computational time to solve instances arising
in real-world applications. A lot of work has been done [2, 3, 4] and many pow-
erful techniques have been proposed [5, 6, 7, 8]. On the other hand, in order to
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compare and evaluate the performance of different graph coloring algorithms,
good benchmarks are needed and thus studied by many researchers.

Providing test instances as benchmarks for AI programs never lacks of inter-
est [9]. Good test instances provide a common reference for people involved in
developing and testing new search algorithms. What’s more, good benchmarks
especially those generated systematically make it possible to take a closer look
at the instances and scrutinize their structures, and may give hints for the design
of more appropriate algorithms.

Of course, for the sake of better discrimination of different algorithms, among
all the test instances, hard ones are preferred. Many researchers discuss the
source of hardness of some NP-Complete problems [10, 11]. The mechanism that
makes colorability very hard is also studied. Possible candidates of order param-
eters proposed include the 3-path [9], the minimum unsolvable subproblems [12],
frozen development [13], etc. Some methods that generate hard real instances
are also presented. However, some of them are based on generate-and-test ap-
proaches [9], while others use handmade graph units [14], so most of them are
either non-deterministic or not repeatable. In this paper we first propose a con-
structive algorithm that generates small 4-critical graph units (4-CGUs), then,
similar to [14] we use a recursive self-embedding operation on these 4-CGUs to
generate big instances. However, our small 4-CGUs are generated systematically
with the guidance of constraint propagation, not by trial-and-error, so it gives
chances to investigate the inner structures of the units and have a good under-
standing of the source of hardness of the big graphs. And absolutely contrary
to [9] which favors graphs having as many triangles as possible, the resulting
graphs generated by us are completely triangle-free. Experiments show that our
generated graphs are very hard to solve for backtracking algorithms adopting
Brélaz’s heuristics [5] such as Trick1.

The outline of the paper is as follows. In the next section we give some nota-
tions on constraint propagation and propose an algorithm that creates 4-CGUs.
In section 3, we introduce the Hajós’ join construction and generate big 4-critical
graphs with it. Experimental details and analysis are listed in section 4. Com-
parisons with related work are given in section 5 and in section 6 we conclude
the paper.

2 Constraint Propagation and 4-CGUs Generation

As mentioned above, what we generated are 3-colorability instances. However,
4-critical graphs have the property that they are 3-colorable if any vertex/edge
is removed (we denote them as vertex-critical graphs and edge-critical graphs
respectively), so we first generate a 4-critical graph and when a 3-colorable graph
is needed we simply remove some vertex/edge. The graphs that we consider and
generate in this article are edge-critical.

For the sake of completeness, we recall some basic notations and definitions
of the constraint satisfaction problems (CSPs) [15].
1 http://mat.gsia.cmu.edu/COLOR/color.html



Using Hajós’ Construction to Generate Hard Graph 213

A CSP consists of a set of n variables X1, X2, . . . , Xn and a set of n domains
D1, D2, . . . , Dn where each Di defines the set of values that the variable Xi may
assume. A solution of a CSP is an assignment of a value to each variable which
satisfies a given set of constraints. A binary CSP is one in which all constraints
involve only pairs of variables. A binary constraint between Xi, Xj is a subset
of the Cartesian product Di × Dj. A binary CSP can be associated with a
constraint graph in which vertices represent variables and edges connect pairs of
constrained variables.

Definition 1. A constraint graph is Arc Consistent iff for each of its arcs
< i, j > and for any value ai ∈ Di, there is a value aj ∈ Dj that satisfies the
binary constraint between i and j.

GCP is to assign colors to vertices of a graph with constraints over its edges,
so the constraint graph can be obtained directly and easily. In fact, there is a
one-to-one mapping between a graph to be colored and its constraint graph,
in which vertices correspond to variables and colors to be assigned to a vertex
correspond to the domain of the corresponding variable. So many papers on
constraint processing take graph coloring problems as examples, and constraint
satisfaction thus promotes the research on graph coloring. Our work is carried
out with the guidance of constraint satisfaction. Now we propose our algorithm
CGU(4,n) which constructs 4-CGU with n vertices (n ≥ 9).

Algorithm 1. CGU(4,n)

Step 1 Let n = 3 ∗ m + r where both m and r are non-negative integers, and
r < 3.

Step 2 Construct a triangle �ABC and a circle with 3 ∗ (m− 1) vertices denoted
as a1, b1, c1, a2, b2, c2, . . . , am−1, bm−1, cm−1 successively.

Step 3 Connect A with all ai (i=1, 2, . . . , m-1);
connect B with all bi (i=1, 2, . . . , m-1);
connect C with all ci (i=1, 2, . . . , m-1).

Step 4 (a) If r=0 then choose two vertices ak, al from ai (i=1, 2, . . . , m-1),
connect ak and al;

(b) if r=1 then choose a vertex ak from ai (i=1, 2, . . . , m-1), a vertex bl

from bi (i=1, 2, . . . , m-1) and a vertex cm from ci (i=1, 2, . . . , m-1),
introduce a new vertex O, connect O with ak, O with bl, O with cm;

(c) if r=2 then choose two vertices ak1 , ak2 from ai (i=1, 2, . . . , m-1),
choose two vertices bl1 , bl2 from bi (i=1, 2, . . . , m-1), introduce two
new vertices O1, O2, connect O1 with ak1 , O1 with bl1 , O2 with ak2 ,
O2 with bl2 , O1 with O2;

Step 5 Stop.

Note that each graph generated by the algorithm CGU(4,n) has a triangle in
it. So the chromatic number is at least 3. In fact we have the following theorems:

Theorem 1. The graphs constructed by CGU(4,n) are 4-chromatic.
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Proof. For the sake of convenience, without loss of generality we generate a small
graph and take it as an example (Fig. 1).
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Fig. 1. Part of the graph after the
triangle is colored
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Fig. 2. Part of the constraint
graph on the circle

We prove it by contradiction. Assume that it is 3-colorable. As depicted in
Fig. 1, because there is a triangle ,ABC in the graph, the three vertices A, B, C
of the triangle can be colored by 3 colors denoted as color 1, 2, 3. Then by con-
straint propagation we get that the vertices on the circle that are connected with
vertex A can only be colored by color 2 or color 3. Similarly, the vertices on the
circle that are connected with vertex B (C) can only be colored by color 3 or
color 1 (color 1 or color 2). Thus we get a circle with candidate colors in every
vertex (Fig. 1). Because the edges on the circle can also denote constraints, we
apply arc consistency test on each edge and get part of the constraint graph
shown in Fig. 22. Furthermore,we notice that each of the candidate colors of the
vertices in Fig. 2 has one edge pointing to one of its two neighbors and two edges
pointing to the other neighbor, so once the color of one vertex is fixed, one of its
neighbors’ color is fixed at the same time. For instance, if we set color 3 to vertex
a1, then vertex b1 can only be colored with color 1. In the same way vertex c1
can only be colored with color 2, and the rest may be deduced by analogy. It is
the same when vertex a1 chooses color 2. Thus no matter what color a1 chooses,
once its color is fixed, the colors of all the other vertices are also fixed. Mean-
while it is interesting that all the vertices connected with the same vertex of the
triangle have the the same color but vertices connected with different vertices of
the triangle have different colors. For instance, all ai (i=1, 2, . . . , m-1) have the
same color but bi (i=1,2, . . . ,m-1) and ci (i=1,2, . . . ,m-1) enjoy different colors.

Next we discuss the construction in Step 4 (Fig. 3, Fig. 4, Fig. 5). (a) If r=0
then one edge between ak and al is constructed. But from the discussion above
we know that ak and al should have the same color, so it makes a contradiction.
However, one more color assigned to ak or al (but not both) is enough to solve
the contradiction. (b) If r=1 then because O is connected with ak, bl and cm

2 For the sake of readability, we do not depict the complete constraint network of the
vertices on the circle. In fact there are many edges between the vertex a1 and each
of its non-neighbor vertices, but we neglect such edges for simplicity.
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which have mutually different colors, O can’t be colored by any of the three
colors. So a fourth color is needed to color O. (c) If r=2 then because O1 is
connected with ak1 and bl1 , it can’t have the same color as ak1 or bl1 , thus it
has to choose the color assigned to ci (i=1, 2, . . . , m-1). It is the same for O2.
But O1 and O2 are also connected, so they can’t get the same color at the same
time. It contradicts again and one more color is needed.

To sum up, the graphs constructed by CGU(4,n) are not 3-colorable but 4
colors are adequate to color them, so they are 4-chromatic. ��

Theorem 2. The graphs constructed by CGU(4,n) are 4-critical.

Proof. Now that it has been proved in Theorem 1 that graphs constructed by
CGU(4,n) are 4-chromatic, we only need to prove that the graphs are 3-colorable
if an arbitrary edge is removed, according to the definition of critical graph.

From the analysis above we know that there indeed exists a coloring scheme
using 4 colors in which only one vertex (i.e., O in Fig. 4) is colored with the
fourth color. Our proof begins with such a scheme. Once an edge is removed
from the graph, we prove that by changing the original 4 coloring scheme step
by step we can get a new coloring scheme which uses only 3 colors, that is to
say, the newly introduced color (the fourth color) can be replaced by one of the
original 3 colors because of the removal of one edge.

First we study the edges generated in Step 4 of the algorithm CGU(4,n) (the
dashed edges in Fig. 3, Fig. 4 and Fig. 5). Because all these edges are adjacent
to the vertex colored by the fourth color3, once such an edge is removed, the
end vertices of that edge can share the same color. So the fourth color is not
indispensable any more.

Next we consider the edges forming the circle and the edges between the
triangle and the circle. From Fig. 3, Fig. 4 and Fig. 5 we find that the dashed
edges divide the region inside the circle into two or more subregions, each of
3 In the case of r=2, only one of O1 and O2 has to be colored by the fourth color,

so if O1 is colored by the fourth color it seems that the judgment does not hold for
the edges that are adjacent to O2 but not adjacent to O1. But since the color of O1

and the color of O2 can be exchanged, it does not affect the following discussion and
conclusions.
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which is circumscribed by a closed subcircle (e.g., (a1, b1, c1, O, a1) of Fig. 4).
Each edge of the original circle is on one of these subcircles and each subcircle
contains the vertex that is colored by the fourth color4. If one of the edges on
the circle is removed (e.g., edge (b2, c2) of Fig. 4), the constraint over (b2, c2)
does not exist any more, so vertex b2 and c2 can have the same color. Right
now b2 has color 3 and c2 has color 1, but we can’t assign b2’s color 3 to c2
because c2 is connected with the triangle vertex C whose color is also 3, so we
have no other choice but to assign c2’s color 1 to b2. Then we propagate the color
assignment along the subcircle successively, starting from b2’s color and ending
up when we get to O. In this sample, we assign b2’s former color 3 to a2, assign
a2’s former color 2 to c1, assign c1’s former color 1 to O and at last O’s former
color 4 is discarded. So far the graph has been colored by 3 colors without any
color collisions. In case that the removed edge is one of the edges between the
triangle and the circle (i.e., edge (B,b2)), similarly, we can assign B’s color 2 to
b2. But one of b2’s neighbors a2 on the circle also has color 2 at present, so we
first color a2 with b2’s former color 3 and then propagate the color assignment
as we described above, in the direction from b2 to a2 along the subcircle. Thus
the graph is colored by 3 colors properly.

At last we turn to the edges that form the triangle. If one of the triangle
edges (e.g., (A, B)) is removed, the endpoints (A and B) of the edge can share
the same color. Since all the ai-form and bj-form vertices receive the same color
constraint from triangle vertices, it follows that they are equivalent in fact. Thus
each ai-form vertex can change colors with its bj-form neighbor, vice versa. As
for the vertex that is colored by the fourth color (i.e., O′), it has at least one
ai-form or bj-form neighbor. Next we first discard color 4 and color O′ with the
color of its ai-form or bj-form neighbor (i.e., bk). Then a conflict arises because
the two vertices O′ and bk are connected by an edge but have the same color.
In order to overcome the conflict, we first exchange colors between bk and its
ai-form neighbor on the circle (i.e., ak). If this leads to a new conflict between
bk (ak) and B (A), we need only let B (A) have the same color as A (B). Take
Fig. 5 for example, first we change the color of O2 from 4 to 3, after that we
exchange colors between a2 and b2. This leads to a new conflict between b2 and
B, so we assign A’s color 1 to B, then we get a proper 3-coloring of the graph.

After checking all the cases, we reach the conclusion that the generated graph
is 3-colorable no matter which edge is removed. Thus Theorem 2 is proved. ��

3 Hajós’ Join Construction and Hard Triangle-Free
Graph Generation

As mentioned in the introduction, starting with small 4-CGUs, we use Hajós’
construction to build big critical graphs. So we introduce Hajós’ join construction
first [16].

Definition 2 (The Hajós’ construction). Let G and H be two graphs. Let
uu′ be an edge in G and vv′ be an edge in H. The resulting graph G,H is
4 The case of r=2 has been discussed above.
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obtained by identifying u and v, deleting the edges uu′ and vv′, and adding an
edge u′v′.

a b

u u′

Fig. 6. Graph G

c d

v v′

Fig. 7. Graph H

c d

v′vu u′
a

b

Fig. 8. Graph G�H

Theorem 3 (Hajós). If both G and H are k-critical graphs (k > 3), then G,H
is a k-critical graph.

Now we can use Hajós’ construction iteratively to construct big critical graphs
without altering their chromatic number. Details are listed below:

procedure HardGraph(k)
begin

G := Ginit;
for i := 1 to k do

choose a random number l (l ≥ 9);
H :=CGU(4,l);
G := Hajos(G, H);

od;
end
procedure Hajos(G, H)
begin

choose an edge uu′ from G and remove it;
choose an edge vv′ from H and remove it;
add edge u′v′;
merge u with v;

end

According to Hajós’ construction, in order to generate 4-critical graphs the
graph Ginit used in HardGraph(k) must also be 4-critical. [14] finds 7 MUGs
(minimal unsolvable graphs, which are also small 4-critical graphs) by trial-and-
error and chooses one of them as the initial graph Ginit. Some MUGs contain
more than one triangles, so the resulting instances may contain many triangles.
But by choosing ak1 not adjacent to bl1 and ak2 not adjacent to bl2 in CGU(4,n),
we easily make sure that each of the 4-CGUs generated by our algorithm has only
one triangle. In Hajos(G, H) we choose one of the three edges of the triangle in
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H as the joining edge vv′, then the remaining part of H is triangle free. Since
Hajos(G, H) doesn’t introduce any new triangles into the generated graph, if
we choose a triangle-free graph as the initial graph Ginit we can make sure that
all our generated graphs are triangle-free. So we use the triangle-free Grotztsch
graph as the initial graph (Fig. 9).

Fig. 9. Grotztsch graph

The size of maximum clique is usually used as a rough lower bound of the
chromatic number. Some researchers speculate that the greater the distance
between the chromatic number and the lower bound is, the harder the graph
is for algorithms that color graphs by detecting lower bound first [17]. Because
the maximum clique in triangle-free graphs is of size 2, while the size of that in
non-triangle-free graphs is at least 3, we guess that our triangle-free graphs may
be harder and our experimental results support our speculation to some extent.
We will describe them in the next section in detail.

4 Experiments and Discussion

After the description of the algorithms in section 2 and section 3, we devote this
section to some implementation details.

4.1 Generating Better 4-CGUs

In Step 4 of algorithm CGU(4,n), some vertices on the circle such as ak and
bl have to be chosen. However, there are many choices for these vertices so we
have to decide the relative better ones. Of course we prefer choosing vertices
that make the generated 4-CGUs harder to solve. We compare two versions of
implementation. In CGU1(4,n) all the chosen vertices are distributed relatively
densely on the circle while in CGU2(4,n) they are distributed as uniformly
as possible. We believe that more subproblems lead to more backtracks when
the graph is colored by Trick. So we record the number of subproblems when
applying Trick to color a graph, which is listed in Table 1. All the experiments
were carried out on a P4 2.66GHz Dell computer with 512M memory.
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Table 1. Comparison between two kinds of CGU(4,n)s on subproblem numbers

n 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
CGU1(4,n) 12 13 16 13 16 21 16 19 27 19 22 33 22 25 39 25 28
CGU2(4,n) 12 13 16 16 19 22 19 22 28 25 28 34 28 34 39 34 37

From the table, we notice that there is notmuch difference betweenCGU1(4,n)
and CGU2(4,n) when r=2 (n = 11, 14, 17, 20, 23, . . .). However, in other cases,
no matter what value n is assigned to, CGU2(4,n) performs much better than
CGU1(4,n). We also generated some graphs using CGU1(4,n) andCGU2(4,n)
respectively. Experimental results show that averagely graphs using CGU2(4,n)
are harder to color and all the hardest ones among all the generated graphs are
those using CGU2(4,n). The superiority of CGU2(4,n) is evident so we adopt
the CGU2(4,n) version in our experiment.

4.2 Making Structure More Regular

From algorithm CGU(4,n) we find that all the vertices except the ones on the
triangle have lower variance of degrees. However, the degrees of the triangle ver-
tices increase quickly as n increases. In [9] the author finds that more regular
instances, with more uniform structures, tend to be much harder. We also gener-
ated two kinds of graphs. One kind uses CGU(4,n)s with n ranging from 9 to 15
and the other kind uses CGU(4,n)s with n ranging from 16 to 22. Experiments
show that the latter ones are not so hard as the former ones. As a matter of fact
some of the latter graphs are not hard at all although they have more vertices.
It seems that regularity5 is an important factor in the hardness of graphs.

On the other hand, when we use Hajós’ construction, the degree of vertex v
also increases because of merging u with v. So in order to prevent the degree of
v from increasing too much, when choosing the edge vv′ we deliberately choose
the vertex with degree 3 as v. We also compare such generated graphs with
the ones generated by selecting v randomly, denoted by asterisk ∗ and plus +
respectively. Figure 10 depicts the average search cost comparison for each n and
Fig. 11 depicts the maximal search cost comparison. From the comparison results
we find that restricting vertices’ degrees to lower variance indeed makes instances
harder. It seems that regular instances induce uniformity in the structure of the
search space, making the search algorithm confused by the equally promising
choices [9]. So in the following experiments we use CGU(4,n)s with n ranging
from 9 to 15 and deliberately choose a vertex with degree 3 as v, as we did above.

4.3 Generating Hard Triangle-Free Graphs

With CGU(4,n)s (n ranges from 9 to 15) and Grotztsch graph we generate
triangle-free graphs using HardGraph(k) where k ranges from 5 to 12. For each

5 A graph is regular if all its vertices have the same degree.
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Fig. 10. Comparison on average search
cost
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Fig. 11. Comparison on maximal search
cost

value of k, 200 instances are generated. These instances are tested by Trick and
the results are given in Fig. 12 in which search cost is evaluated by the number
of subproblems. Figure 12 reveals a linear relationship between the vertical axis
and the horizontal axis. However, note that the vertical axis of Fig. 12 represents
common logarithm of the number of subproblems, so it is easy to understand
that the search cost exhibits exponential growth.
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Fig. 12. Experimental results of the triangle-free instances

We also generate instances from [14] and compare them with our triangle-
free instances. Figure 13 depicts the average search cost comparison for each n
and Fig. 14 depicts the maximal search cost comparison. Here, the asterisk ∗
corresponds to our data while the plus + corresponds to data of [14]. Figure 13
reveals that when n is small, instances of [14] seem superior, but when n grows
bigger and bigger our triangle-free instances turn out to be superior. The same
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Fig. 13. Comparisons on average search
cost
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Fig. 14. Comparisons on maximal search
cost

result can be obtained from Fig. 14 except that it is not so evident as in Fig. 13.
We speculate that the tendency may go on, but it is hard to verify it by further
experiment. On one hand, for the sake of statistical accuracy, for each vertex
number n we need the sample space as big as possible, on the other hand, when
n grows bigger and bigger, each sample needs so much time that the total time
cost is too much. However, current results have already shown that our triangle-
free instances are at least as hard as and maybe harder than those of [14].

We also compare our instances with those of [14] by running other graph
coloring algorithms. Next we give our experimental results with Smallk [13],
a sophisticated backtracking coloring program specialized for graphs of small
chromatic number.
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Fig. 15. Comparisons with Smallk on
average time
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Fig. 16. Comparisons with Smallk on
maximal time

From Fig. 15 and Fig. 16 we find that although both kinds of instances exhibit
exponential growth, our triangle-free ones seem to be a little harder in general.
It is known that Smallk is good at exploiting structural weakness (e.g., frozen
pairs in [13]). Maybe our instances just hide such weakness because they are
triangle-free.
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In summary, our experiments show that our construction is efficient in produc-
ing very hard instances whose computational costs seem to be of an exponential
order of the vertex number.

4.4 Analysis and Discussion

Decomposition and composition are widely used in graph coloring except that
decomposition usually deals with complicated graphs by dividing them into
small components and analyzing the small components while composition usually
builds complicated graphs from small components. Experiments in [14] and here
show that the Hajós’ construction is an effective composition method to gener-
ate hard 3-colorability instances. We also notice that, in [14], because the graph
components MUGs were found totally by trial-and-error, the authors don’t have
a good knowledge of the components’ structural features, so that they can not
explain the reason of the resulting graphs’ hardness. However our component 4-
CGUs are generated systematically with the guidance of constraint propagation,
so by scrutinizing their inner structures, we can give some useful information in
understanding the reason.

In our construction each 4-CGU is a component and it is iteratively embedded
into the resulting instance. From the proof of Theorem 1 we know that for the
vertices on the circle (Fig. 2) once one of the vertices is colored the other ver-
tices’ colors are fixed at the same time. That is to say, only one choice remains
for each of the other vertices. This conclusion can be obtained by constraint
propagation as described in this paper, but for many algorithms adopting back-
tracking heuristics they can’t foresee the full future, so it is inevitable to make
wrong decisions. What’s more, wrong decision can occur in every 4-CGU . Notice
that our instances are generated by iteratively embedding 4-CGUs which can
also be viewed as the multiplying of 4-CGUs. So, even if there is one backtrack
in each 4-CGU , there will be an exponential number of backtracks altogether in
the resulting graphs. For this reason backtracking algorithms will spend expo-
nential time detouring and backtracking before they find the right coloring. So
it seems exceptionally hard for them to handle our instances.

5 Related Work

A lot of work has already been done on providing benchmarks for general GCP,
but our work focuses on graph 3-colorability.

Related work on generating hard graph 3-colorability instances includes [14]
and [9]. [14] also uses Hajós’ construction. But, in order to generate very hard
instances, one must have lots of small 4-CGUs at hand first6. [14] finds 7 such
units by trial-and-error, which shows to some extent the difficulty of finding
4-CGUs by hand and the necessity of generating them systematically. So, in
6 What’s more, among all 4-CGUs the ones including no near-4-clique (4-clique with

an edge removed) as subgraphs are preferred, because such graphs hide a structural
weakness that heuristics would be able to exploit (e.g., frozen pairs in [13]).
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this paper, we present a constructive algorithm to find 4-CGUs systematically.
What’s more, because our 4-CGUs are generated automatically with the guid-
ance of constraint propagation, it provides a possibility to investigate the inner
structures of the graphs and find some useful rules why they can produce hard
graphs. Based on constraint propagation we give some explanations in Section
4, which may help recognize the reason of the hardness and give some hints for
researchers working on new coloring heuristics. While in [14] the authors don’t
have a good knowledge of the reason of the hardness since even their MUGs are
found by trial-and-error.

[9] uses a generate-and-test method to produce 3-colorability instances. The
author takes a random graph with fixed vertex number and edge number as an
input, then removes an old edge and adds a new edge to the graph iteratively,
hoping to minimize the number of 3-paths (denoted by an alternate succession
of vertices and edges x1e1x2e2x3e3x4, x1 �= x4). It is easy to find that [9] favors
graphs that have as many triangles as possible. Although it avoids 4-clique during
construction, it does not avoid near-4-clique which appears to be a structural
weakness. However, our generated instances do not have such weakness because
we make sure that they are all triangle-free by using Grotztsch graph as initial
graph and selecting special edges to join. Experiments show that our instances
seem to be even harder when tested with sophisticated algorithms such as Smallk.

Although our instances are of small chromatic numbers, they can also be used
as general GCP benchmarks. As far as we know, there are already such bench-
marks in the DIMACS 2002 Challenge7 (i.e., mug88 1, mug88 25, mug100 1,
mug100 25 are such ones provided by the second author of [14]). We also no-
tice that among the benchmarks in the DIMACS 2002 Challenge, there is a
special kind of graphs named Myciel graphs which are based on the Mycielski
transformation. Although the chromatic numbers of these graphs range from 4
to 5, 6 and even more, their maximum clique numbers remain 2. Because they
are triangle-free, these graphs are difficult to solve. As for chromatic number 3,
however, as far as we know, it seems that there are few benchmarks with the
same property. But our generated instances (with an edge removed) just have
the property. What’s more, there are only a fixed number of Myciel graphs for
each chromatic number, but many instances can be generated using our method.

6 Conclusions and Future Work

In this paper, a constructive algorithm that generates 4-CGUs systematically
is presented. With these 4-CGUs we generate 4-critical and triangle-free graphs
using Hajós’ construction. Experiments show that our instances are exception-
ally hard for backtracking algorithms adopting Brélaz’s heuristics. Because our
instances are triangle-free which hides some structural weakness, compared with
similarly generated instances, they seem to be harder when experimented with
sophisticated backtracking algorithms.

7 http://mat.gsia.cmu.edu/COLOR02/
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As benchmarks, hard instances are good but we believe that hard instances
with known inner structures are better, because they can give some hints for
researchers working on new coloring heuristics. Our triangle-free instances just
have the property. Since our 4-CGUs are generated systematically with the guid-
ance of constraint propagation, we have a good knowledge of their inner struc-
tures, which makes it possible for us to give some explanations on the hardness
of the resulting 4-critical graphs. We think that one of our contributions is that
we present such a constructive algorithm to produce 4-CGUs systematically. We
plan to find more methods to produce 4-CGUs with more sophisticated struc-
tures, so as to get more knowledge of the inner structures of the generated hard
graphs and develop heuristics to solve them.
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Abstract. In program analysis and verification, there are some constraints that
have to be processed repeatedly. A possible way to speed up the processing is to
find some relations among these constraints first. This paper studies the problem
of finding Boolean relations among a set of linear numerical constraints. The
relations can be represented by rules. It is believed that we can not generate all
the rules in polynomial-time. A search based algorithm with some heuristics to
speed up the search process is proposed. All the techniques are implemented
in a tool called MALL which can generate the rules automatically. Experimental
results with various examples show that our method can generate enough rules in
acceptable time. Our method can also handle other types of constraints if proper
numeric solvers are available.

1 Introduction

Constraints play an important role in various applications, and constraint solving has
been an important research topic in Artificial Intelligence. A useful technique for con-
straint solving is to add some redundant constraints so as to improve the algorithms’
efficiency [1, 2]. However, there is not much work on the systematic discovery of such
constraints.

When we study constraint solving techniques, it is usually helpful if we take the
form of constraints into account. This often depends on the application domain. One
domain that is quite interesting to us is program analysis and verification. To analyse
a program and generate test data for it, we may analyze the program’s paths. For each
path, we can derive a set of constraints whose solutions represent input data which force
the program to be executed along that path [3]. Such a path-oriented method is often
used in software testing, and it may also be used in infinite loop detection [4].

Generally speaking, the constraints encountered in program analysis and testing can
be represented as Boolean combinations of arithmetic constraints [3, 5]. Here each con-
straint is a Boolean combination of primitive constraints, and a primitive constraint is a
relational expression like 2x + 3y < 4. In other words, a constraint is a Boolean for-
mula, but each variable in the formula may stand for a relational expression. To solve
such constraints, we developed a solver called BoNuS which combines Boolean satis-
fiability checking with linear programming.
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In program analysis, we often need to solve many sets of constraints. They may
contain some common primitive constraints. So if we can find some logic relationship
(i.e. rules) between the primitive constraints (especially those occurring frequently) and
add them as lemmas, the search space can be reduced.

Formal verification is also an important way to maintain program quality. Model
checking is an effective verification method. But traditionally it is based on the proposi-
tional temporal logic. To scale it up to more real programs, one may use abstractio[6, 7].
It is based on the observation that the specifications of systems that include data paths
usually involve fairly simple relationships among the data values in the system. A map-
ping between the actual data values in the system and a small set of abstract data values
are given according to these relationships. In fact, since the abstract values are not al-
ways independent, these abstractions can be regarded as some rules deduced from the
predicates. Therefore we need to find out some logic relations of the predicates before
using abstraction.

In this paper, we try to employ a linear programming solver called lp solve [8] to
find all the logic relations among a set of linear arithmetic constraints automatically. We
implemented a tool and used it to analyze how the attributes of a constraint set affect the
number of rules. Since most of our techniques do not rely on any special characteristics
of linear constraints, our method can be generalized to other types of constraints such
as non-linear constraints if a proper solver is provided.

This paper is organized as follows. The next section will briefly introduce the prob-
lem of finding rules from numerical constraints and analyze its complexity. Then section
3 will present the main idea of our algorithm and some improving techniques. Experi-
mental results and some analysis are given in Section 4. Then our approach is compared
with some related works in Section 5, and some directions of future research are sug-
gested in the last section.

2 The Problem and Its Complexity

2.1 Linear Arithmetic Constraints

In this paper, a numerical constraint is a Linear Constraint in the following form:

a1x1 + . . . + anxn �� b

where ai is a coefficient, xi is a variable, and ��∈ {=, <, >,≤,≥, �=} is a relational
operator. A conjuncion of linear constraints

ϕ :

⎡
⎢⎣ a11x1 + · · · + a1nxn �� b1 ∧

... · · ·
...

...
...

am1x1 + · · · + amnxn �� bm

⎤
⎥⎦

can be written concisely in matrix form as Ax��b where the bold x and b are
n-dimensional and m-dimensional vectors, respectively.

Example 1. Here is an example of a set of numerical constraints.
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C1 = (2x + y >= 4);
C2 = (x == y);
C3 = (x > 1).

We can use a Linear Programming (LP) package like lp solve [8] to process lin-
ear constraints. In a linear programming problem, there can be a set of equations and
standard inequalities (whose relational operators are ≥ and ≤). LP has been studied by
many people and it can be solved by efficient algorithms [9].

Since most Linear Programming packages do not support the strict inequalities ��∈
{�=, <, >} (that are the negations of standard equations and inequalities respectively),
we translate them into the standard form in the following way.

1. The expressions Exp1 < Exp2 and Exp1 > Exp2 can be replaced by Exp1+δ ≤
Exp2 and Exp1 ≥ δ+Exp2 respectively, where δ is a very small positive number.

2. We use two expressions A1 = (Exp1 < Exp2) and A2 = (Exp1 > Exp2) to
translate A = (Exp1 �= Exp2). This strict inequality will be replaced by A =
A1 ∨ A2. But LP solvers do not support the disjunction of constraints. So in the
worst case, we may have to call lp solve 2n times if there are n such strict
inequalities.

2.2 Constraints-Relation-Finding Problem

For the constraints in Example 1, we can easily find out that the following relation
holds:

C1 ∧C2 → C3.

But if the number of constraints grows, the relations among the constraints can be quite
complex and we need a method to obtain these rules automatically.

We can formalize the relations or rules as A → B where A and B are numerical
constraints or their Boolean combinations. Note that

A → B is tautology ⇔ A ∧ ¬B is contradiction

and we can transform A ∧ ¬B into disjunctive normal form (DNF) such that each
conjunctive clause is unsatisfiable. (A conjunctive clause is the conjunction of literals.
It will be simply called a clause in this paper, unless stated otherwise.) So we only need
to find out unsatisfiable clauses in the following form:

C1 ∧ C2 . . . ∧ Cm

where m is the length of this clause. The literals C1, C2, ...Cm represent the original
numeric constraints or their negation.

It is natural to think of a clause as a set of literals. A clause that is a subset of
another is called its subclause. For any clause φ, each constraint Ci may have one of
the following 3 statuses: Ci ∈ φ; ¬Ci ∈ φ; neither. So the set of conjunctive clauses
is the power set 3C where C is the original constraint set. Our goal is to find out an
unsatisfiable subset of this power set.

We define the Constraints-Relation-Finding (CRF) problem as follows:
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Definition 1 (CRF). Given a set of constraints C = {Ci}, enumerate all unsatisfiable
clauses Cj1 ∧ Cj2 . . . ∧ Cjm where for all k, 1 ≤ k ≤ m, Cjk

∈ C or ¬Cjk
∈ C.

It is well known that integer linear programming (recognizing the satisfiable instances)
is NP-complete, so it is trivial that the converse, recognizing the set of unsatisfiable in-
stances, is coNP-complete. So if we restrict the constraints to integer linear constraints,
the subproblem is coNP-complete.

The minimal unsatisfiable sub-formula (MUS) is the following problem: Given a
Boolean formula in conjunctive normal form with at most three occurrences of each
variable, is it true that it is unsatisfiable, yet removing any clause renders it satisfiable?
MUS is known to be DP-complete [10]. The subproblem of deciding if a sub-formula
Cj1 ∧Cj2 . . .∧Cjm is unsatisfiable is also coNP-complete since it’s the complementary
problem of 3-SAT. If we solve the CRF problem for {Ci}, we solve the MUS problem
for it: we only need to pick up the shortest sub-formula Cj1 ∧Cj2 . . .∧Cjm that is un-
satisfiable. So the complexity of the CRF problem is at least the same as a DP-complete
problem.

If we can solve the CRF problem by calling the constraint solver polynomial times,
we can reduce the CRF problem to a coNP-complete problem in polynomial-time. But
“DP contains a host of natural problems, whose membership in NP ∪ coNP is in
serious doubt” [11]. So we believe that we can not solve the CRF problem by calling
the constraint solver polynomial times. Otherwise, DP-complete problems would be as
easy as coNP-complete problems.

From the above analysis, we believe that we can not solve the CRF problem by
calling the constraint solver polynomial times. Therefore it is unlikely for us to have an
efficient algorithm which can always generate all the logic relations for a constraint set.

3 The Rule Finding Algorithm

We can make use of linear programming solvers to decide if a clause is unsatisfiable.
Due to the exponential size of the power set, we need to use some heuristics to speed
up the whole process. The purpose of these heuristics is to reduce the number of times
the linear programming solver is invoked.

3.1 The Basic Algorithm

First we give some notations. We use C to denote the set of numeric constraints and the
size of C is denoted by NC. Let C = {c[1], . . . , c[NC]}. We use two sets S and U to
represent the sets of clauses that are satisfiable and unsatisfiable, respectively. Si and
Ui are the sets of satisfiable and unsatisfiable clauses found in loop i.

We use a dynamic programming method to enumerate all the formulae and construct
the sets U and S. At first the set S has only one item TRUE that can be regarded as
a clause of length 0, and U is empty. For each element of C, add it (and its negation,
respectively) to S and call lp solve to solve the new set of constraints. Then we
add the unsatisfiable formulae to U and the others to S. The algorithm is complete and
will terminate after we have processed all the elements of C. The algorithm can be
represented by a function in Fig 1.
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void FindRule(){
for(i = 1; i ≤ NC; i++){

for each clause s ∈ S {
w1 = s ∧ c[i], w2 = s ∧ ¬c[i];

if (w1 is unsatisfiable) add w1 to Ui and w2 to Si;

else {
add w1 to Si;

if (w2 is satisfiable) add it to Si;

else add w2 to Ui.

}
}
S = S ∪ Si, U = U ∪ Ui;

}
}

Fig. 1. The main algorithm

3.2 Correctness of the Algorithm

First we prove

Lemma 1. The set S collects all the satisfiable clauses.

Proof. Assume we have a satisfiable conjunctive clause

conj = Cj1 ∧ Cj2 . . . ∧ Cjm where j1 < j2 < . . . < jm

and conj �∈ S, we can easily know Cj1 , Cj2 , . . .Cjm are all satisfiable.
Since TRUE ∈ S, then the formula Cj1 = (TRUE ∧ Cj1 ) ∈ S. So conj has at

least one subclause in S.
Suppose we have two satisfiable subclauses of conj:

conjk = Cj1 ∧Cj2 . . . ∧ Cjk
and conjk+1 = Cj1 ∧ Cj2 . . . ∧ Cjk

∧Cjk+1

where 1 ≤ k < m, conjk ∈ S and conjk+1 �∈ S. But according to our algorithm, the
satisfiable conjk+1 will be judged at the loop i = jk+1 and must be added to S. So any
satisfiable clause conj will be added to set S. ��

We say a rule is redundant if it has an unsatisfiable subclause. Now we prove our algo-
rithm collects all the rules except some redundant ones.

Theorem 1. Any unsatisfiable clauses will be included in the set U or it has an unsat-
isfiable subclause in the set U .

Proof. For each unsatisfiable clause

conj = Cj1 ∧ Cj2 . . . ∧Cjm where j1 < j2 < . . . < jm,

if it has no unsatisfiable sub-formulae, its subclause conjm−1 must belong to S and
conj should be added to U at the loop i = jm. So the set U will collect all the unsatis-
fiable clauses except for some redundant ones. ��
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3.3 A Processing Example

We use Example 1 to show the search process. The clauses added to the two sets U or
S at each step of the main loop are given in Table 1. We apply our search algorithm to
Example 1 and quickly find that C1 ∧ C2 → C3 is the only rule.

Table 1. The clauses added to U or S in each loop

The i’th loop Clauses added to U Clauses added to S

1 - C1, ¬C1
2 - C2, ¬C2, C1 ∧ C2, C1 ∧ ¬C2, ¬C1 ∧ C2,¬C1 ∧ ¬C2

C3, ¬C3, C1 ∧ C3, C1 ∧ ¬C3, ¬C1 ∧ C3, ¬C1 ∧ ¬C3,
C2 ∧ C3, C2 ∧ ¬C3, ¬C2 ∧ C3, ¬C2 ∧ ¬C3,

3 C1 ∧ C2 ∧ ¬C3 C1 ∧ C2 ∧ C3, C1 ∧ ¬C2 ∧ C3, C1 ∧ ¬C2 ∧ ¬C3
¬C1 ∧ ¬C2 ∧ C3, ¬C1 ∧ ¬C2 ∧ ¬C3,
¬C1 ∧ ¬C2 ∧ C3, ¬C1 ∧ ¬C2 ∧ ¬C3

In the worst case, if the constraint set has no rules (or we can say this instance is
very difficult), we have to check all the elements of the power set 3C . That is to say, we
have to solve 3NC conjunctive clauses. Therefore the time complexity of this algorithm
is exponential. To make the time cost of this algorithm acceptable, we developed some
heuristics listed below to speed it up. The main idea of these techniques is to use other
simple preprocessing methods instead of solving the clause to decide its satisfiability.

3.4 Subclause Strategy

Our algorithm has ruled out some redundant formulae which have subclauses in set U ,
but not all the redundant formulae. For example, if we find C1 ∧ C3 is unsatisfiable,
then the formula C1 ∧ C2 ∧ C3 is obviously unsatisfiable. But it is still possible for
the basic algorithm to check the formula. We should devise some technique to avoid
checking all the redundant formulae during the search.

Our Subclause Strategy is based on the following observation: If A is a subclause of
B and A is unsatisfiable, then B is unsatisfiable.

So our algorithm can be improved in the following way. We first sort the sets S and U
by ascending order of clause length, then check if one of the clauses in U is a subclause
of the current clause. For the clauses w1 and w2, since s has no subclauses in U , we
only need to check whether w1 and w2 have subclauses in Ui.

3.5 Resolution Principle

Suppose we have two propositional logic expressions: C1 ∨ p and C2 ∨ ¬p, where p is
a propositional variable. Then we can obtain a new expression C1 ∨ C2 that does not
involve the variable p, while preserving satisfiability. That’s the Resolution Principle of
the propositional logic.

We will modify this deduction rule to form a pruning strategy.
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Theorem 2. Let A and B be two clauses. If we can express A and B as A = A′ ∧
p and B = B′ ∧ ¬p where p is a logic variable, let D = A′ ∧B′. Assume A is unsatis-
fiable, then we have the following conclusions:

I B is unsatisfiable implies D is unsatisfiable;
II D is satisfiable implies B is satisfiable.

This heursitic can be used to decide some clauses’ satisfiablity. It can also be used
to construct some satisfiable or unsatisfiable clauses. And if a rule is found, a series of
rules will be soon generated and that will significantly prune the rest of the search space
and speed up the whole process.

3.6 Related Numerical Constraints

The previous two strategies make use of the processed unsatisfiable formulae. In ad-
dition, some characteristics of arithmetic expressions can help us to check a clause’s
satisfiability quickly.

We say two clauses A and B are related if they have common numeric variables.
For example, the three constraints of Example 1 are all related, while the following two
constraints:

Cxy = (x == y); Cz = (z > 0);

are not related. Their numeric variable sets {x, y} and {z} do not have any common
element. The constraint Cxy ∧ Cz is obviously satisfiable since Cxy and Cz are both
satisfiable.

We summarize this simple principle here:

Theorem 3. If a clause A can be divided into the conjunction of some satisfiable sub-
clauses A = A1 ∧ . . . ∧ Ak, and any Ai and Aj (i �= j) are not related, then A is
satisfiable.

The premises of this strategy can be easily checked in our processing. Firstly, if the sub-
clause stractegy is applied, then obviously all the subclauses are satisfiable. Secondly,
a conjunction can be represented as a graph 〈V, E〉, where the V represents the set of
numerical constraints. Two vertices have an edge if they are related. So the problem
deciding if a conjunction can be divided is transformed to check the connectivity of an
undirected graph, which can be done in polynomial time.

This heuristic is effective when dealing with the sets that each numeric constraints
of them have few variables such that two numerical constraints have a considerable
probability to be not related.

3.7 Linear Independency of Coefficient Vectors

In our search, we need to process some clauses with the same numeric constraints. For
example, in Table 1, in the second loop, C1∧C2, C1∧ ¬C2, ¬C1∧C2, ¬C1∧ ¬C2
have the same constraints C1 and C2. These clauses have the same coefficient matrix
A. For the clause Ax��b, if there exists b′��b such that Ax = b′ is satisfiable, then the
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clause is also satisfiable. A set of vectors aj (1 ≤ j ≤ m) is linear dependent if there
exist m factors λj (1 ≤ j ≤ m), not all of which are zero, such that

∑
1≤j≤m

λjaj = 0.

We have the following lemma:

Lemma 2. For a clause Ax �� b, if the m coefficient vectors ai (1 ≤ i ≤ m) are linear
independent, then the clause is satisfiable.

This lemma only need to consider the coefficient matrix, so all the clauses involving the
same constraints are satisfiable if the coefficient vectors are linear independent.

However, the constraints of linear dependency can not easily be solved since the
solver lp solve does not work well at the strict inequality λj �= 0, so we strengthen
our previous lemma to the following strategy:

Theorem 4. For w1 and w2 of the main algorithm in Figure 1, if the coefficient vector
ac of c[i] can not be linearly represented by the coefficient vectors of s, then w1 and w2
are satisfiable.

Proof. Let aj (1 ≤ j ≤ m) denote the coefficient vectors of s, Ai = [a1, . . . ,am]T be
the coefficient matrix of s and bs be the constant vector. If aj (1 ≤ j ≤ m) are linear
independent, then ac and aj (1 ≤ j ≤ m) are linear independent, thus w1 and w2 are
satisfiable according to Lemma 2.

If aj (1 ≤ j ≤ m) are linear dependent, since c[i] and s are satisfiable, so we have a
constant vector b′s �� bs, r(Ai) = r([Ai, b

′
s]). Here r(A) means the rank of matrix A.

Consider the constraints [
ac

Ai

]
x =

[
b′c
b′

s

]
where b′c is an arbitrary numeric value. Since ac cannot be linearly represented by aj

(1 ≤ j ≤ m), we have

r

([
ac

Ai

])
= r(Ai) + 1 = r([Ai, b

′
s]) + 1 = r

([
ac b′c
Ai b′

s

])

that implies the constraint acx = b′c ∧ Aix = b′s is satisfiable and thus w1 = s ∧ c[i],
w2 = s ∧ ¬c[i] are all satisfiable.

The strategy needs to call the solver once to judge the linear representation. This strat-
egy aims at finding the satisfiable clauses and therefore it is efficient for the constraint
sets for which only a few rules can be found. It will save at most 2m − 1 callings of the
solver where m is the length of clauses. Please refer to Table 3 for the computational
results of this strategy.

3.8 Clause Length Restriction

The heuristics introduced before are used for complete search. That is to say, they do
not remove the useful rules. These techniques do not decrease the time complexity
of the whole search. Here we introduce an approximate technique that can reduce the
processing time efficiently.
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Theoretically, the maximum length of rules is NC, which is the size of the numerical
constraint set. In practice, we do not need to combine arbitrary number of numeric
constraints. Firstly, most solvers are more efficient in dealing with short constraints.
Secondly, we can see from the experiments 4.3 that the lengths of most clauses are
in the domain [1, NV + 1], where NV is the number of numerical variables. So we
need not waste time in finding long formulas. We define UL as the upper bound on
the formula’s length. The clauses with length greater than UL will be abandoned. And
the time complexity will be reduced to

(
NC
UL

)
= O(NCUL). In practice, we can get

a quicker process by choosing a small value for the parameter UL. For the empirical
values of UL, please refer to Section 4.3.

4 Experimental Results

We developed a tool called MALL (MAchine Learning for Linear constraints) in the
C programming language with all the presented techniques implemented. It invokes
lp solve to decide the satisfiability of clauses. Our tool can generate all the rules of
a small constraint set without redundant rules quickly.

We have studied many examples including some random constraint sets. We mainly
care about the number of solutions and the solving times. Some experimental results
are listed here. We use a PC P4 3.2GHz CPU, 1 GB memory with Gentoo Linux, and
the timings are measured in seconds.

4.1 A Real Instance

This strong correlative example comes from [5]. These constraints are collected from
a real Middle routine to find the middle value of 3 values. For simplicity, we do not
restrict the variables to be integers.

bool ba = (b < a); bool ac = (a < c);
bool ca = (c < a); bool ab = (a < b);
bool bc = (b < c); bool cb = (c < b);
bool a_b = (a == b); bool b_c = (b == c);
bool c_a = (c == a); bool m_a = (m == a);
bool m_b = (m == b); bool m_c = (m == c);
bool n_a = (n == a); bool n_b = (n == b);
bool n_c = (n == c); bool n_m = (n == m);

There are 16 constraints with 5 numerical variables. We tried our tool on this instance
with different UL (upper bound of the formula length. See section 3.8). The results are
summarized in Table 2. The result of UL = 16 reports all the useful logic relations
among these constraints.

To check whether an implementation of Middle routine violates the specification,
we can employ BoNuS to solve the following Boolean combinations of the numerical
constraints:
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Table 2. Different UL

UL 2 3 4 5 6 7 16
Number of solutions 9 92 260 557 869 887 887
Time used 0.01 0.11 0.43 2.11 11.55 37.95 184.71
Memory used(M) 1.11 1.56 3.60 12.47 38.11 91.36 444.23
Times to call lp solve 135 548 892 1174 1244 1279 1282

% Specification
imp(and(ba, ac), m_a); imp(and(ca, ab), m_a);
imp(and(ab, bc), m_b); imp(and(cb, ba), m_b);
imp(and(ac, cb), m_c); imp(and(bc, ca), m_c);
imp(b_c, m_a); imp(c_a, m_b); imp(a_b, m_c);

% Implementation
imp(or(and(ab, bc), and(cb, ba)), n_b);
imp(or(and(ac, cb), and(bc, ca)), n_c);
imp(and(not(or(and(ab, bc), and(cb, ba))), not(or(and(ac, cb),
and(bc, ca)))), n_a);

% Violation of the specification
not(n_m);

Here imp(x,y) denotes that x implies y, and a line starting with “%” is a comment.
We apply BoNuS to this problem and BoNuS reports a solution in 0.084 second. If we
add the rules with UL = 3 to the input of BoNuS, BoNuS will report a solution in
0.008 second. But if we add the rules with UL = 5 to BoNuS input, the solving time
will be 0.012 second. In fact, for this type of mixed constraint satisfaction problem,
some very short lemmas (rules) are enough. Too many long rules will decrease the
efficiency because the solver has to spend more time on the logic constraints. If these
16 numerical constraints are checked repeatedly in program analysis, the 0.11 second
of preprocessing is worthwhile.

To access the clauses (mainly the elements of S, U and some other clauses) quickly
during the search, we use an index tree to record the processed clauses. This tree oc-
cupies too much memory if the clause is too long (please refer to Table 2 for memory
used). That limits the scalability of the tool.

Our tool reports the rules quickly for some small UL value. But the space and
time cost increases notably if UL is increased. On the other hand, the times to call
lp solve do not increase so remarkably as the memory cost increases. This is not
possible if no heuristic is used.

Also we can see from this instance that UL = 6 is enough. In fact, we have exper-
imented with some other small instances derived from real programs. The results are
satisfactory. We can get more than 95% rules with proper UL in a few minutes if the
number of constraints is not more than 16.

4.2 The Efficiency of Strategies

We also use the example of Section 4.1 with different UL to test the efficiency of four
strategies: SC (Subclause Strategy), RP (Resolution Principle), RN (Related Numerical
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Constraints) and LC (Linear Independency of Coefficient Vectors). Each time we re-
move a strategy and at last we remove all the strategies. Since we should check SC
before RN, RN should be removed if SC is removed. We list the processing time and
the number of rules found in Table 3. Note that some redundant rules are found if the
SC strategy is removed.

Table 3. Efficiency of Strategies

Strategies Removed None SC+RN RN RP LC ALL

UL = 3 0.11 / 92 0.18 / 172 0.14 / 92 0.19 / 92 0.22 / 92 0.85 / 172
UL = 4 0.43 / 260 1.23 / 1571 0.49 / 260 1.35 / 260 0.61 / 260 5.97 / 1571
UL = 5 2.11 / 557 16.78 / 11107 2.16 / 557 8.91 / 557 2.20 / 557 34.48 / 11107

4.3 Effects of Various Parameters

In general, the smaller the rule set is, the more difficult the CRF problem is. Finding
rules from a difficult set of constraints may waste much time and the rules may provide
little useful information to the following constraint processing.

To study the characteristics of the CRF problem, we use some random instances.
Here are some parameters to describe a set of linear constraints:

NC The number of numerical constraints.
NV The number of numerical variables.
ANV The ratio of average number of variables of each constraint to NV . It can be

defined as ANV =
∑

NVi

NV ∗NC where NVi is the number of numerical variables of
the i’th constraint.

NE The ratio of the number of equations and strict inequalities (whose relational op-
erator is “ �=”) to NC.

Obviously, with the increasing of NC, we will get more rules, but at the same time,
the space and time cost will increase remarkably. In the following part we generate
some random instances with different parameters to study how the latter 3 parameters
influence the difficulty of the problem. Each random constraint is non-trivial (i.e. each
numerical constraint and its negation are satisfiable). For each set of parameter values,
the result is the average value of 100 runs.

Number of Numerical Variables. We use some 10-sized random sets (i.e., NC = 10)
to study the influence of NV on the distribution of the conjunctive clause length. The
results are given in Table 4.

From the results, we can conclude that, if NV < NC, most formulae have length
NV + 1. Too small or too large NV will not cause many rules. We get the maximum
number of rules near the point NV = 4. Our other experiments of small sized constraint
set also indicate that we will get the maximum number of rules near the median of NC.
These phenomena are mainly caused by two reasons:
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Table 4. The Effect of the Number of Variables

Length of Clause 2 3 4 5 6 7 8 9 10 Total

NV = 2 10.75 53.46 0.00 64.21
NV = 4 1.86 3.76 8.36 117.79 0.00 131.77
NV = 6 0.62 0.70 1.15 1.07 4.29 70.5 0.00 78.33
NV = 8 0.26 0.20 0.18 0.29 0.49 0.29 0.62 6.49 0.00 8.82
NV = 10 0.12 0.07 0.06 0.11 0.06 0.11 0.06 0.00 0.00 0.59

1. The NV defines the dimensions of the variables’ domain, which is a Euclidean
space. According to linear programming, a set of standard inequalities have solution
if we can get a solution along the edges of boundary. That is to say, the solvers just
check the solutions of boundary constraints (which are a set of equations derived
from the original inequalities just by replacing the relational operators with “=”).
According to linear algebra, NV +1 linear equations of NV dimensions are linear
dependent. That is why so many rules have length NV + 1.

2. Generally speaking, a small NV implies that these constraints are located in a
“small” (low dimension) space and have more opportunities to be related. But on
the other hand, because the number of numerical variables is small, many of these
relations are redundant. Therefore, we may get a maximum number of rules in the
middle of [1, NC].

So from the results, we can get the experimental value of UL = NV + 1, and we
have no need to find rules whose length is more than that.

Number of Equations. The constraints of equations usually come from the assign-
ments of program. Here we use some instances with 10 constraints to test its effects on
the difficulty of the problem. In these tests, the UL value is set as NV + 2 to get the
most rules, and the results are listed in Table 5.

Table 5. The Effect of Equations

NE 0.2 0.4 0.6 0.8
Number of Rules 58.83 58.23 55.97 58.26
Times calling lp solve 4303.88 4471.27 4911.94 5573.89
Time used 1.26 1.33 1.45 1.65

From the result, we see that the parameter NE has no significant effect on the prob-
lem’s difficulty. In practice, a strict inequality is translated into two inequalities, and it
will cost more time.

Average Number of Numerical Variables. The parameter ANV affects the size of
rules. Here we also use some random constraint set sized 10 to test it. The value NE is
set as 0.33. The results are summarized in Table 6.
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Table 6. The Effect of ANV

ANV 0.2 0.4 0.6 0.8
Number of rules 14.73 44.12 80.09 98.31
Times calling lp solve 698.20 4453.92 6200.64 6481.27
Time used 0.22 1.25 1.83 1.99

From the result, we get that the number of rules increases as ANV increases. Mean-
while, the time cost is also increased. The main reason is that the constraints with high
ANV tend to be related.

5 Related Work

There are many research work about analysis of numerical constraints. Constraint Logic
Programming systems (e.g. CLP(R)[12]) can find solutions if constraints are satisfiable
or detect unsatisfiability of constraints. This type of systems focus on checking the sat-
isfiability of mixed types of constraints. Different from our constraint solving method,
these works treat equations and inequalities differently. Also on the analysis of linear con-
straints from programs, the paper [13] presents a method for generating linear invariants
for transition systems. Compared with our work, this type of works focus on inducing
invariants (which are some numerical expressions) from all the constraints, while we try
to find all the logic rules that each may fit for only a small subset of the constraints. Our
work, if properly modified, can be used as preprocessing in these systems.

The Inductive Logic Programming (ILP) [14] is a research area formed at the inter-
section of Machine Learning and Logic Programming. ILP systems have been applied
to various learning problem domains. ILP systems develop predicate descriptions from
examples and background knowledge. The examples, background knowledge and final
descriptions are all described as logic programs. The theory of ILP is based on proof
theory and model theory for the first order predicate calculus. In many occasions, the
ILP background knowledge can be described as a series of numerical constraints. If we
can find the relations between these constraints, we can remove much redundancy and
reduce the time of induction or searching.

Conflict-driven Lemma Learning [15] has been proved quite successful in improving
SAT algorithms. This type of techniques recognize and record the causes of conflicts,
preempt the occurrence of similar conflicts later on the search. When solving complex
constraints, recognizing the cause of conflicts is difficult due to the numeric constraints.
So we use a pre-learning approach as described in this article instead of dynamic anal-
ysis. Also in solving a constraint problem, sometimes we need to add redundant con-
straints which can lead to new simplifications. For example, the paper [2] examined the
impact of redundant domain constraints on the effectiveness of a real-time scheduling
algorithm. But the forms of redundant constraints are restricted.

Similar to our CRF problem, the problem MUS (finding minimal unsatisfiable sub-
formula) is used in the solution of SAT and other problems. Some approximate search
algorithms for MUS have been developed. For example, the paper [16] discussed an
adaptive search method to find the MUS of an unsatisfiable CNF instance.
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6 Conclusion

In this paper we study the problem of finding rules from a set of linear constraints
and give its theoretic complexity. We present a search method to solve this problem
efficiently and developed a tool to generate the rules automatically. Since we can not
get all the rules in polynomial-time, we propose a number of strategies to speed it up.
Most of these strategies are independent of the constraint type, therefore, our method is
general and can be used on other kind of constraints if there are proper solvers.

We also study the difficulty of the problem using some randomly generated in-
stances. We find that some parameters of the instances affect the number of rules no-
tably. We obtain some empirical values to increase the performance of our tool.

Future works are needed to improve the proposed method. Firstly, the algorithm
introduced in this paper still has some trouble in processing large scale constraint sets.
This deficiency may be resolved by some approximate techniques such as dividing the
original constraint set into several small subsets:

S = S1 ∪ S2 . . . ∪ Sk

and processing each subset separately. Secondly, we can try other type of constraints.
Each constraint can be non-linear, a Boolean combination of numerical constraints or
some other kind of mixed constraint. At last, we still need some efficient heuristics to
improve the processing speed.
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Abstract. We present a search engine for mathematical formulae. The
MathWebSearch system harvests the web for content representations
(currently MathML and OpenMath) of formulae and indexes them with
substitution tree indexing, a technique originally developed for access-
ing intermediate results in automated theorem provers. For querying, we
present a generic language extension approach that allows constructing
queries by minimally annotating existing representations. First experi-
ments show that this architecture results in a scalable application.

1 Introduction

As the world of information technology grows, being able to quickly search data
of interest becomes one of the most important tasks in any kind of environment,
be it academic or not. This paper addresses the problem of searching mathe-
matical formulae from a semantic point of view, i.e. to search for mathematical
formulae not via their presentation but their structure and meaning.

1.1 Semantic Search for Mathematical Formulae

Generally, searching for mathematical formulae is a non-trivial problem — es-
pecially if we want to be able to search occurrences of the query term as sub-
formulae:

1. Mathematical notation is context-dependent . For instance, binomial coeffi-
cients can come in a variety of notations depending on the context:

(
n
k

)
,

nCk, Cn
k , and Ck

n all mean the same thing:1 n!
k!(n−k)! . In a formula search we

would like to retrieve all forms irrespective of the notations.
2. Identical presentations can stand for multiple distinct mathematical objects,

e.g. an integral expression of the form
∫

f(x)dx can mean a Riemann Inte-
gral, a Lebesgue Integral, or any other of the 10 to 15 known anti-derivative
operators. We would like to be able to restrict the search to the particular
integral type we are interested in at the moment.

1 The third notation is the French standard, whereas the last one is the Russian one
(see [KK06] for a discussion of social context in mathematics). This poses a very
difficult problem for searching, since these two look the same, but mean different
things.
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3. Certain variations of notations are widely considered irrelevant , for instance∫
f(x)dx means the same as

∫
f(y)dy (modulo α-equivalence), so we would

like to find both, even if we only query for one of them.

To solve this formula search problem, we concentrate on content representations
of mathematical formulae (which solves the first two problems; see Section 1.3),
since they are presentation-independent and disambiguate mathematical no-
tions. Furthermore, we adapt term indexing techniques known from automatic
theorem provers to obtain the necessary efficiency and expressivity in query pro-
cessing (see Section 1.2) and to build in common equalities like α-equivalence.

Concretely, we present the web application MathWebSearch that is simi-
lar to a standard search engine like Google, except that it can retrieve content
representations of mathematical formulae not just raw text. The system is re-
leased under the Gnu General Public License [FSF91] (see [Mat06] for details).
A running prototype is available for testing at http://search.mathweb.org.

1.2 State of the Art in Math Search

There seem to be two general approaches to searching mathematical formulae.
One generates string representations of mathematical formulae and uses con-
ventional information retrieval methods, and the other leverages the structure
inherent in content representations.

The first approach is utilized for the Digital Library of Mathematical Func-
tions [MY03] and ActiveMath system [LM06]: mathematical formulae are con-
verted to text and indexed. The search string is similar to LATEX commands and
is converted to string before performing the search. This allows searching for
normal text as well as mathematical content simultaneously but it cannot pro-
vide powerful mathematical search — for example searching for something like
a2 + c = 2a, where a must be the same expression both times, cannot be per-
formed. An analogous idea to this would be to rely on an Xml-based XQuery
search engine. Both these methods have the important advantage that they rely
on already existing technologies but they do not fully provide a mathematical
formulae oriented search method.

The second approach is taken by the MBase system [KF01], which applies
the pattern matching of the underlying programming language to search for
OMDoc-encoded [Koh06] mathematical documents in the knowledge base. The
search engine for the Helm project indexes structural meta-data gleaned from
Content MathML representations for efficient retrieval [AS04]. The idea is that
this metadata approximates the formula structure and can serve as a filter for
very large term data bases. However, since the full structure of the formulae is
lost, semantic equivalences like α-equivalence cannot be taken into account.

Another system that takes this second approach is described in [TSP06]. It
uses term indexing for interfacing with Computer Algebra Systems while deter-
mining applicable algorithms in an automatically carried proof. This is closely
related to what we present in this paper, the main difference being that we pro-
vide search for any formula in a predefined index, while in [TSP06] a predefined
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set of formulae characterizing an algorithm is automatically searched for in a
changing index.

1.3 Content Representation for Mathematical Formulae

The two best-known open markup formats for representing mathematical formu-
lae for the Web are MathML [ABC+03] and OpenMath [BCC+04]2 MathML
offers two sub-languages: Presentation MathML for marking up the two-
dimensional, visual appearance of mathematical formulae, and ContentMathML
as a markup infrastructure for the functional structure of mathematical formu-
lae. In Content MathML, the formula

∫ a

0 sin(x)dx would be represented as the
following expression:

Listing 1.1. Content Representation of an Integral

<apply><int/><bvar><ci>x</ci></bvar>
<lowlimit><cn>0</cn></lowlimit><uplimit><cn>a</cn></uplimit>
<apply><sin/><ci>x</ci></apply>

</apply>

The outer apply tags characterize this as as an application of an integral to the
sin function, where x is the bound variable. The format differentiates numbers
(cn) from identifiers (ci) and objects with a meaning fixed by the specification
(represented by about 80 MathML token elements like int, or plus). The
OpenMath format follows a similar approach, but replaces the fixed set of
token elements for known concepts by an open-ended set of concepts that are
defined in “content dictionaries”: Xml documents that specify their meaning in
machine-readable form (see [BCC+04, Koh06] for details).

As content markup for mathematical formulae is rather tedious to read for
humans, it is mainly used as a source to generate Presentation MathML rep-
resentations. Therefore content representations are often hidden in repositories,
only their presentations are available on the web. In these cases, the content
representations have to be harvested from the repositories themselves. For in-
stance, we harvest the Connexions corpus, which is available under a Creative
Commons License [Cre] for MathWebSearch. As we will see, this poses some
problems in associating presentation (for the human reader) with the content rep-
resentation. Other repositories include the ActiveMath repository [MBG+03],
or the MBase system [KF01].

Fortunately, MathML provides the possibility of “parallel markup”, i.e. rep-
resentations where content and presentation are combined in one tree3 (see
http://functions.wolfram.com for a widely known web-site that uses parallel
markup).

2 There are various other formats that are proprietary or based on specific mathemati-
cal software packages like Wolfram Research’s Mathematica [Wol02]. We currently
support them if there is a converter to OpenMath or MathML.

3 Modern presentation mechanisms will generate parallel markup, since that e.g. allows
copy-and-paste into mathematical software systems [HRW02].
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1.4 A Running Example: The Power of a Signal

A standard use case4 for MathWebSearch is that of an engineer trying to
solve a mathematical problem such as finding the power of a given signal s(t).
Of course our engineer is well-versed in signal processing and remembers that a
signal’s power has something to do with integrating its square, but has forgotten
the details of how to compute the necessary integrals. He will therefore call up
MathWebSearch to search for something that looks like

∫ ?
? s2(t)dt (for the

concrete syntax of the query see Listing 1.3 in Section 3). MathWebSearch
finds a document about Parseval’s Theorem, more specifically 1

T

∫ T

0 s2(t)dt =
Σ∞

k=−∞|ck|2 where ck are the Fourier coefficients of the signal. In short, our
engineer found the exact formula he was looking for (he had missed the factor
in front and the integration limits) and a theorem he may be able to use. So
he would use MathWebSearch again to find out how to compute the Fourier
transform of the concrete signal s(t), eventually solving the problem completely.

2 Indexing Mathematical Formulae

For indexing mathematical formulae on the web, we will interpret them as first-
order terms (see Subsection 4.1 for details). This allows us to use a technique

Fig. 1. An Index with Five Terms

from automated reason-
ing called term index-
ing [Gra96]. This is the
process by which a set of
terms is stored in a spe-
cial purpose data struc-
ture (the index, nor-
mally stored in memory)
where common parts of
the terms are potentially
shared, so as to minimize
access time and stor-
age. The indexing tech-
nique we work with is a
form of tree-based index-
ing called substitution-
tree indexing. A substi-
tution tree, as the name
suggests, is simply a tree
where substitutions are the nodes. A term is constructed by successively ap-
plying substitutions along a path in the tree, the leaves represent the terms
4 We use this simple example mainly for expository purposes here. Other applications

include the retrieval of equations that allow to transform a formula, of Lemmata to
simplify a proof goal, or to find mathematical theories that can be re-used in a given
context (see [Nor06a] for a discussion of the latter).
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stored in the index. Internal nodes of the tree are generic terms and represent
similarities between terms.

The main advantage of substitution tree indexing is that we only store substi-
tutions, not the actual terms, and this leads to a small memory footprint. Figure 1
shows a typical index for the terms h(f(z, a, z)), x, g(f(z, y, a)), g(f(7, z, a)), and
g(f(7, z, f)). For clarity we present not only the substitutions in the node, but the
term produced up to that node as well (between square brackets). The variables
@integer are used to denote placeholder variables for parts that differ between
terms. All placeholder variables are substituted before a leaf is reached.

Adding data to an existing index is simple and fast, querying the data struc-
ture is reduced to performing a walk down the tree. In contrast to automated
reasoning our application does not need tree merging. Therefore we use substitu-
tions only when building the index. Index building is done based on Algorithm 1.
Once the index is built, we keep the actual term instead of the substitution at
each node, so we do not have to recompute it with every search. Structure shar-
ing methods conserve memory and make this tractable. To each of the indexed
terms, some data is attached — an identifier that relates the term to its exact
location. The identifier, location and other relevant data are stored in a database
external to the search engine. We use XPointer [GMMW03] references to specify
term locations (see Subsection 4.3 for more details).

Unfortunately, substitution tree indexing does not support subterm search in
an elegant fashion, so when adding a term to the index, we add all its subterms as
well. This simple trick works well: the increase in index size remains manageable
(see Section 4.4) and it greatly simplifies the implementation. The rather small
increase is caused by the fact that many of the subterms are shared among larger
terms and they are only added once.

3 A Query Language for Content Mathematics

When designing a query language for mathematical formulae, we have to sat-
isfy a couple of conflicting constraints. The language should be content-oriented
and familiar, but it should not be specialized to a given content representation
format. Our approach to this problem is to use a simple, generic extension mech-
anism for Xml-based representation formats (referred to as base format) rather
than a genuine query language itself.

The extension mechanism is represented by 4 tags and 4 attributes. The ex-
tension tags are mq:query, mq:and, mq:or, mq:not. The mq:query tag is used if
one or more of the other extension tags are to be used and encloses the whole
search expression. The tags mq:and, mq:or, mq:not may be nested and can con-
tain tags from the base XML format, which may carry extension attributes (will
be explained later). The mq:and, mq:or, mq:not tags are logical operators and
may carry the mq:target attribute (the default value is term; only one other
value allowed: document) which specifies the scope of the logical operator. Scope
term is used to find formulae that contain the query terms as subformulae, while
scope document does not restrict the occurrences of query terms.
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There are 3 other attributes that may be used for any of the base format
tags: mq:generic, mq:anyorder and mq:anycount. The first is used to specify
that a term matches any subterm in the index; we call it a generic term. Note
that generic terms with the same mq:generic value must be matched against
identical target subterms. The mq:anyorder is used to specify that the order of
the children can be disregarded. The mq:anycount attribute defines any number
of occurrences of a certain base tag (if that base tag is known to be allowed
multiple times). This is useful e.g. to define a variable number of bound variables
(bvar MathML).

Listing 1.2 shows a (somewhat contrived but illustrative) example query that
searches for documents that contain at least one mathematical formula matching
each of the math tags in the query. The first math tag will match any applica-
tion of function f to three arguments, where at least two of the arguments are
the same. The second math tag will match any formula containing at least two
consecutive applications of the same function to some argument.

Listing 1.2. Example MathMLQ Query

<mq:query xmlns:mq=”http://mathweb.org/MathQuery”>
<mq:and mq:target=”document”>

<math xmlns=”http://www.w3.org/1998/Math/MathML”>
<apply><ci mq:anyorder=”yes”>f</ci>

<ci mq:generic=”same”/>
<ci mq:generic=”same”/>
<ci mq:generic=”other”/>

</apply>
</math>
<math xmlns=”http://www.w3.org/1998/Math/MathML”>

<apply><ci mq:generic=”fun”/>
<apply><ci mq:generic=”fun”/><ci mq:generic=”rest”/></apply>

</apply>
</math>

</mq:and>
</mq:query>

Given the above, the MathMLQ query of our running example has the form
presented in Listing 1.3. Note that we do not know the integration limits or
whether the formula is complete or not. Expressing this in MathMLQ5

Listing 1.3. Query for Signal Power

<math xmlns=”http://www.w3.org/1998/Math/MathML”
xmlns:mq=”http://mathweb.org/MathQuery”>

<apply><int/>
<domainofapplication mq:generic=”domain”/>
<bvar> <ci mq:generic=”time”/> </bvar>
<apply><power/>

<apply><ci mq:generic=”fun”></ci><ci mq:generic=”time”/></apply>
<cn>2</cn>

</apply>
</apply>

</math>

5 This is equivalent to the string representation #int(bvarset(bvar(@time)),
@domain,power(@fun(@time),nr(2))).
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4 The MathWebSearch Application

We have built a web search engine around the indexing technique explained
above. Like commercial systems, MathWebSearch consists of three system
components: a set of web crawlers6 that periodically scan the Web, identify, and
download suitable web content, a search server encapsulates the index, and a
web server that communicates the results to the user. To ensure scalability, we
have the system architecture in Figure 2, where individual search servers are
replicated via a search meta-server that acts as a front-end.

Fig. 2. The Architecture of the MathWebSearch Application

4.1 Input Processing

MathWebSearch can process any Xml-based content mathematics. Currently,
the system supports MathML and OpenMath (and Mathematica notebooks
via the system’s MathML converter). We will discuss input processing for the
first here.

1) Mathematical
expression:
f(x) = y

3) Term repre-
sentation:
eq(f(x), y)

2) Content MathML:
<apply><eq/>

<apply>
<ci>f</ci>
<ci>x</ci>

</apply>
<ci>y</ci>

</apply>

Given an Xml document, we
create an index term for each
of its math (this is the case for
MathML) elements. Consider the
example on the right: We have
the standard mathematical nota-
tion of an equation (1), its Content
MathML representation (2), and
the term we extract for indexing (3). As previously stated, any mathematical
construct can be represented in a similar fashion.

When we process the Content MathML formulae, we roughly create a term
for every apply element tag, taking the first child of apply as the function and
the rest of the children as arguments. Of course, cases like vectors or matrices
6 At the moment, we are employing an OAI-based [OAI02] crawler for repositories like

Connexions and a standard web-crawler for finding other MathML repositories.
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have to be treated specially. In some cases — e.g. for integrals — the same
content can be encoded in multiple ways. Here, a simple standardization of both
the indexed formulae and the queries leads to an improved recall of the search: for
instance we can find an integral specified with lowlimit and uplimit tags (see
Listing 1.1) using a query integral specified with the interval element7, since we
standardize argument order and integration domain representation for integrals.

Fig. 3. Searching for Signal Power

Search modulo α-rena-
ming becomes available via
a very simple input pro-
cessing trick: during in-
put processing, we add a
mq:generic attribute to ev-
ery bound variable (but
with distinct strings for
different variables). There-
fore in our running ex-
ample the query variable
t (@time in Listing 1.3)
in the query

∫ ?
? s2(t)dt is

made generic, therefore the
query would also find the
variant 1

T

∫ T

0 s2(x)dx =
Σ∞

k=−∞|ck|2: as t is generic it
could principally match any
term in the index, but given
the MathML constraints on
the occurrences of bound
variables, it will in reality
only match variables (thus directly implementing α-equivalence).

Presentation MathML in itself does not offer much semantic information, so
it is not particularly well suited for our purposes. However, most of the available
MathML on the World Wide Web is Presentation MathML. For this reason,
we index it as well. The little semantic information we are offered, like when a
number (mn), operator (mo) or identifier (mi) are defined, we use for recovering
simple mathematical expressions which we then index as if the equivalent Con-
tent MathML were found. This offers the advantage that when using a mixed
index (both Presentation and Content MathML) we have increased chances of
finding a result.

4.2 Term Indexing

As the term retrieval algorithm for substitution trees is standard, we will concen-
trate on term insertion and memory management here. In a nutshell: we insert

7 string representation: #int(bvarset(bvar(id(x))), intervalclosed(lowlimit
(nr(0)), uplimit(nr(a))),sin(id(x))).
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a term in the first suitable place found. This will not yield minimal tree sizes,
but (based on the experiments carried out in [Gra96]) the reduction in number
of internal nodes is not significant and the extra computation time is large.

Algorithm 1. INSERT TERM(node, term)
found = true

2: while found do
found = false

4: for all sons of node do
if COMPLETE MATCH(son.term, term) then

6: node = son, found = true
break

8: end if
end for

10: end while
match = PARTIAL MATCH(node.term, term)

12: for all sons of node do
if PARTIAL MATCH(son.term, term) > match then

14: return INSERT WITH SEPARATION(node, son, term)
end if

16: end for
return INSERT AT(node, term)

Concretely, an initial empty index contains a single node with the empty
substitution. The term produced by that node is always the generic term @0.
When a new term is to be inserted, we always try to insert from the root, using
the algorithm Insert Term, where

1. COMPLETE MATCH checks if the second argument is an instance of the
first argument. It uses a simple rule: a term is only an instance of itself and
of any placeholder variable.

2. PARTIAL MATCH returns an integer that represents the number of equal
subterms.

3. INSERT AT adds a new leaf to node with a substitution from node.term
to term unless that substitution is empty.

4. INSERT WITH SEPARATION creates a son of node named n with a
substitution to the shared parts of son.term and term; it then adds proper
substitutions to son.term and term from n.term as sons of n.

4.3 Result Reporting

For a search engine for mathematical formulae we need to augment the set of
result items (usually page title, description, and page link) reported to the user
for each hit. As typical pages contain multiple formulae, we need to report the
exact occurrence of the hit in the page. We do this by supplying an XPointer
reference where possible. Concretely, we group all occurrences into one page item
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Fig. 4. Results for the Search in Fig. 3

Fig. 5. Detailed Search Results

that can be expanded on
demand and within this
we order the groups by
number of contained ref-
erences. See Figure 4 for
an example.

For any given result,
a detailed view is avail-
able. This view shows
the exact term that was
matched and the used
substitution (a mapping
from the query vari-
ables specified by the
mq:generic attributes to
certain subterms) to
match that specific term.
A more serious problem
comes from the fact that
— as mentioned above
— content representa-
tions are often the source
from which presentations
are generated. If Math-
WebSearch can find
out the correspondence
between content and pre-
sentation documents, it
will report both to the
user. For instance for
Connexions we present
two links as results: one
is the source link , a
link to the document
we actually index, and
the default link , a link
to the more aestheti-
cally pleasing presenta-
tion document.

4.4 Case Studies
and Results

We have tested our implementation on the content repository of the Connex-
ions Project, available via the OAI protocol [OAI02]. This gives us a set of over
3,400 articles with mathematical expressions to work on. The number of terms
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represented in these documents is approximately 53,000 (77,000 including sub-
terms). The average term depth is 3.6 and the maximal one is 14. Typical query
execution times on this index are in the range of milliseconds. The search in our
running example takes 23 ms for instance. There are, however, complex searches
(e.g. using the mq:anyorder attribute) that internally call the searching routine
multiple times and take up to 200 ms but for realistic examples execution time
is below 50 ms. We also built an index of the 87,000 Content MathML formu-
lae from http://functions.wolfram.com. Here, term depths are much larger
(average term depth 8.9, maximally 53) resulting in a much larger index: 1.6
million formulae; total number of nodes in the index is 2.9 million, resulting in
a memory footprint of 770MB. First experiments indicate that search times are
largely unchanged by the increase in index size (for reasonably simple searches).

5 Conclusions and Future Work

We have presented a search engine for mathematical formulae on the Internet. In
contrast to other approaches, MathWebSearch uses the full content structure
of formulae, and is easily extensible to other content formats. A first proto-
type is available for testing at http://search.mathweb.org. We will continue
developing MathWebSearch into a production system.

A current weakness of the system is that it can only search for formulae that
match the query terms up to α-equivalence. Many applications would benefit
from similarity-based searches or stronger equalities. For instance, our search
in Listing 1.3 might be used to find a useful identity for

∫ 0
∞ f(x) · g(x)dx, if

we know that s(x) · s(x) = s2(x). MathWebSearch can be extended to a
E-Retrieval engine (see [Nor06b]) without compromising efficiency by simply
E-standardizing index and query terms.

We plan to index more content, particularly more OpenMath. In the long
run, it would be interesting to interface MathWebSearch with a regular web
search engine and create a powerful, specialized, full-feature application. This
would resolve the main disadvantage our implementation has – it cannot search
for simple text. Finally we would like to allow specification of content queries us-
ing more largely known formats, like LATEX: strings like \frac{1}{x^2} or 1/x^2
could be processed as well. This would make MathWebSearch accessible for
a larger group of users.

References

[ABC+03] Ron Ausbrooks, Stephen Buswell, David Carlisle, et al. Mathemati-
cal Markup Language (MathML) version 2.0 (second edition). W3C
recommendation, World Wide Web Consortium, 2003. Available at
http://www.w3.org/TR/MathML2.

[AS04] Andrea Asperti and Matteo Selmi. Efficient retrieval of mathematical
statements. In Andrea Asperti, Grzegorz Bancerek, and Andrej Trybulec,
editors, Mathematical Knowledge Management, MKM’04, number 3119
in LNCS, pages 1–4. Springer Verlag, 2004.



252 M. Kohlhase and I. Sucan

[BCC+04] Stephen Buswell, Olga Caprotti, David P. Carlisle, Michael C. De-
war, Marc Gaetano, and Michael Kohlhase. The Open Math stan-
dard, version 2.0. Technical report, The Open Math Society, 2004.
http://www.openmath.org/standard/om20 .

[Cre] Creative Commons. Web page at http://creativecommons.org.
[FSF91] Free Software Foundation FSF. Gnu general public license. Software

License available at http://www.gnu.org/copyleft/gpl.html, 1991.
[GMMW03] Paul Grosso, Eve Maler, Jonathan Marsh, and Norman Walsh. Xpointer

framework. W3c recommendation, World Wide Web Constortium W3C,
25 March 2003.

[Gra96] Peter Graf. Term Indexing. Number 1053 in LNCS. Springer Verlag,
1996.

[HRW02] Sandy Huerter, Igor Rodionov, and Stephen Watt. Content-faithful
transformations for mathml. In Second International Conference on
MathML and Technologies for Math on the Web, Chicago, USA, 2002.
http://www.mathmlconference.org/2002/presentations/huerter/ .

[ICW06] Tetsuo Ida, Jacques Calmet, and Dongming Wang, editors. Proceedings
of Artificial Intelligence and Symbolic Computation, AISC’2006, number
4120 in LNAI. Springer Verlag, 2006.

[KF01] Michael Kohlhase and Andreas Franke. MBase: Representing knowledge
and context for the integration of mathematical software systems. Jour-
nal of Symbolic Computation; Special Issue on the Integration of Com-
puter algebra and Deduction Systems, 32(4):365–402, September 2001.

[KK06] Andrea Kohlhase and Michael Kohlhase. Communities of practice in
MKM: An extensional model. In Jon Borwein and William M. Farmer,
editors, Mathematical Knowledge Management, MKM’06, number 4108
in LNAI. Springer Verlag, 2006.

[Koh06] Michael Kohlhase. OMDoc An open markup format for mathematical
documents (Version 1.2). Number 4180 in LNAI. Springer Verlag, 2006.
in press http://www.mathweb.org/omdoc/pubs/omdoc1.2.pdf.

[LM06] Paul Libbrecht and Erica Melis. Methods for access and retrieval of
mathematical content in ActiveMath. In N. Takayama and A. Igle-
sias, editors, Proceedings of ICMS-2006, number 4151 in LNAI. Springer
Verlag, 2006. forthcoming.

[Mat06] Math web search. Web page at http://kwarc.eecs.iu-bremen.de/
projects/mws/, seen July 2006.
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Abstract. We describe a method for managing large expressions in
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matrices with non-polynomial entries is studied. Gaussian Elimination
is used. Results on the complexity of the approach together with bench-
mark calculations are given.

Keywords: Hierarchical Representation, Veiling Strategy, Signature,
Zero Test, Large Expression Management, Symbolic LU Decomposition,
Time Complexity.

1 Introduction

One of the attractions of Maple is that it allows users to tackle large problems.
However, when users undertake large-scale calculations, they often find that
expression swell can limit the size of the problems they can solve [31]. Typically,
users might meet two types of expression swell: one type we can call inherent
expression swell, and the other intermediate expression swell.

A number of strategies have been proposed for coping with the large expres-
sions generated during symbolic computation. We list a number of them here,
but lack of space precludes an extensive discussion.

– Avoid the calculation. This strategy delays computation of a quantity whose
symbolic expression is large until numerical data is given. For example, if
the determinant of a matrix is needed in a computation, one uses an inert
function until the point at which the elements of the matrix can be evaluated
numerically, and then jumps to a numerical evaluation.

– Use signatures. See, for example, [5]. Signatures are one of the ideas used in
this paper.

– Use black-box calculations. This is a strength of the Linbox project [7].
– Approximate representations. This is the growing area of symbolic-numeric

computation.
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– Use hierarchical representations. These are studied in this paper, and the
term will be abbreviated to HR.

Each of the above methods is successful for a different class of problems. This
paper addresses a class of problems in which large expressions are built up from
identifiable sub-expressions, and which as a result are suitable applications for
hierarchical representations (HR). Hierarchical representations per se are not
new in computer algebra. Similar ideas have appeared in the literature under a
variety of names. Examples are as follows:

– Maple DAGs. Expressions in Maple are represented as DAGs with sub-
expressions being reused and hence stored only once. For example, [13] uses
this data structure to compute the determinant of polynomial matrices.

– Straight-line programs. The Dagwood [9] system computes with straight-
line programs.

– Common subexpression identification. The Maple command codegen[opti-
mize] searches a large expression for common subexpressions. (Also available
as an option to commands in CodeGeneration) [16]

– Computation sequences and Maple’s CompSeq. An early example is given
by Zippel in 1993 [11]. The function CompSeq in Maple is a placeholder for
representing a computation sequence.

– Large Expression Management (LEM). This term was introduced in [10],
and is the name of a Maple package.

The goal of this work is the combination of HR with signatures. We do this by
modifying the LargeExpressions package in Maple and then applying it to a
case study. The case study comes from Dynaflex [8], a system which computes
the equations of motion for a mechanical device created from rigid or flexible
bodies. It uses Maple for its computations and requires the factoring of matri-
ces whose elements are multivariate polynomials or non-polynomial functions. In
this paper, therefore, we consider the factoring of matrices with elements that are
multivariate polynomials and exponential polynomials. We could have consid-
ered any application where the algorithm at hand only requires zero-recognition
on the elements (as well as basic “arithmetic” operations); if obtaining other
information, like degree or structural “shape” is absolutely necessary, this would
need new ideas on top of the ones we present here.

2 Hierarchical Representation

The first point to establish is the need for a modified HR implementation. We
begin by giving our definition of HR for this paper, with the purpose of dis-
tinguishing our implementation from similar definitions, such as straight-line
programs.

Definition 1. An exponential polynomial p over a domain K and a set of in-
dependent variables {x1, ..., xm} is a polynomial p ∈ K[x1, ..., xm, y1, ..., ym] with
yk = exk , k = 1..m.
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Definition 2. A hierarchical representation (HR) over a domain K and a set
of independent variables {x1, ..., xm} is an ordered list [S1, S2, ..., Sl] of symbols,
together with an associated list [D1, D2, ..., Dl] of definitions of the symbols. For
each Si with i ≥ 1, there is a definition Di of the form Si = f(σ1, σ2, ..., σk)
where f ∈ K[σ1, ..., σk], and each σj is either a symbol in [S1, S2, ..., Si−1] or an
exponential polynomial in the independent variables.

Hierarchical representation is a more general idea than the (algebraic) straight-
line program defined in [14] and used in [12, 9, 23, 27]. A given expression can have
different HR, i.e. different lists of definitions [D1, D2, ...]. The strategy used to as-
sign the symbols during the generation of expressions will be something that can
be varied by the implementation. The reason for inquiring an ordered list is to
exclude implicit definitions. Details on how to build HR are in the section 4.

Remark 1. An important part of the creation of HRs is the order in which
assignments happen. For instance to use codegen[optimize], an expression
is completely generated first. Clearly, some expressions will be too large to be
generated explicitly, in which case codegen[optimize] would have nothing to
work with.

Remark 2. There are many types of computational procedures which naturally
generate HR. One example is Gaussian elimination, which we study here. An-
other is the calculation described in [10]. Other computations that are known to
generate large expressions, for example Gröbner basis calculations, do not have
a obvious hierarchy, although [13] hints at one.

Remark 3. One can understand HRs as a compromise between full computa-
tions and no computations. Enough of the computation is performed to give a
correct result, but not so much that a closed-form can be output. It is a compro-
mise between immediately returning a placeholder and never returning a giant
result.

The key issue is control over expression simplification; this includes the identifi-
cation of a zero expression. In an ordinary computer algebra system, the usual
way this proceeds is by normalizing expressions, a step which frequently destroys
the HR and causes the appearance of additional expression swell. For example,
most systems will normalize1 the expression

(2781 + 8565x− 4704x2)23(1407 + 1300x− 1067x2)19 − α
(1809 + 9051x + 9312x2)19(2163− 2162x + 539x2)19 ∗ (27 + 96x)4(103− 49x)4

by expanding it. The same strategy would be used by the system whether α = +1
or α = −1. However, in one case the result is zero, while in the other it is just a
large expression, which now fills memory.

Consequently, the main purpose of creating user-controlled HR is to control
normalization and to integrate more different (often more efficient) zero-testing

1 Normalization is often confused with simplification, but [29] argues otherwise.
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strategies into a computation in a convenient way. As well as creating a HR, one
must give equal importance to the prevention of its destruction.

The original LargeExpressions package in Maple was created as a result
of the investigations in [10]. The authors had external mathematical reasons for
knowing that their expressions were nonzero, and hence no provision was made
for more efficient testing. In the current implementation, we intend to apply the
resulting code more widely, with the consequent need to test efficiently for zero.
This we do by incorporating signature testing.

The basic action is the creation of a label for a sub-expression. The command
for this was given the name Veil in the original LargeExpressions package,
and so this will be used as the general verb here. Once an expression has been
veiled, the system treats it as an inert object unless the user or the program
issues an unveiling command, which reveals the expression associated with the
label.

3 Signatures

The idea of using signatures is similar to the probabilistic identity testing of
Zippel-Schwartz theorems [2, 1], and to the basis of testeq in Maple by Gonnet
[3, 4], also studied in [5, 6]. The original polynomial results of Zippel-Schwartz
were extended to other functions in [3, 4, 15].

Since we need to apply our method to matrices containing exponential poly-
nomials, we first define a signature function that is appropriate for this class of
functions.

Definition 3. Given an expression e, an exponential polynomial, the signature
s(e) with characteristic prime p is defined in the following steps.

– If e is a variable, then its signature equals a random value of Z/pZ.
– If e = e1 + e2 then s(e) = s(e1) + s(e2) mod p.
– If e = e1 ∗ e2 then s(e) = s(e1) ∗ s(e2) mod p.
– If e = en

1 , where n is a positive integer, then s(e) = s(e1)n mod p.
– If e = ax is an exponential function ax, where a could be the base of natural

logarithms or any (non-zero) number less than p, then s(e) = rt mod p,
where r is a primitive root of p, and t = x mod φ(p). Here φ(p) is Euler’s
totient function.

Note that unlike [3], we explicitly do not treat towers of exponentials, but only
simple exponentials, which is frequently sufficient in applications.

Proposition 1. For all non-zero y ∈ Z/pZ, there exists a unique x ∈ Z/φ(p)Z,
s.t. s(ax) = y.

Proof: By the definition of a signature s(ax), r = s(a) is a primitive root modulo
p. By the definition of a primitive root of a prime [26], the multiplicative order
of r modulo p is equal to φ(p) = p− 1. So the powers ri, i = 1..p− 1 range over
all elements of Z/pZ− {0}. �
For the following theorems, we suppose that all random choices are made under
the uniform probability distribution.
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Theorem 1. (Zippel-Schwartz theorem) Given F ∈ Z[x1, ..., xn], F mod p �= 0,
and deg(F ) ≤ d, the probability Pr{s(F ) = 0|F �= 0} ≤ d

p .

A proof can be found in [2, 1].

Theorem 2. Let F ∈ Z[y], y = ax, where a could be the base of the natural
logarithms or any (non-zero) number less than p, F mod p �= 0, deg(F ) = d,
the probability Pr{s(F ) = 0|F �= 0} ≤ d

p−1 .

Proof: The polynomial F ∈ Z[y] has at most d roots in Z/pZ. For z ∈ Z/pZ

such that F (z) = 0, Proposition 1 gives that there exists unique uz ∈ Z/φ(p)Z,
s.t. s(auz ) = z. Thus the number of values x such that s(F (ax)) = 0 is at most
d. Because the total number of choices for nonzero y is p − 1, the probability
Pr{s(F ) = 0|F �= 0} ≤ d

p−1 . �

Theorem 3. Let F ∈ Z[x, y], y = ax, where a could be the base of natural
logarithms or any non-zero integer less than p, F mod p �= 0, and deg(F ) = d,
the probability Pr{s(F ) = 0|F �= 0} ≤ d

p−1 .

Proof: The polynomial F ∈ Z[x, y] has at most dp roots in Z/pZ. For (xi, yi)
such that F (xi, yi) = 0, based on Proposition 1, there exists unique xu, s.t.
s(axu)=yi. If xu =xi, then the solution (xi, yi) is the one to make s(F (xi, a

xi)) =
0. Therefore the number of roots for x, such that s(F (x, ax)) = 0 is at most dp.

As the total number of (independent) choices for (x, y) is p(p− 1), the prob-
ability Pr{s(F ) = 0|F �= 0} ≤ d.p

p(p−1) = d
p−1 . �

Signatures can be used to test if an expression is zero, as testeq does. However,
testeq always starts fresh for each new zero-test. This is a source of inefficiency
when the signature is part of a continuing computation, and will be seen in later
benchmarks which use testeq.

The signature of the expression is computed before veiling an expression in
HR. This value then becomes the signature of the veiling symbol. When that
symbol itself appears in an expression to be veiled, the signature of the symbol
is used in the calculation of the new signature. In particular, it is not necessary
to unveil any symbol in order to compute its signature.

Other important references on this topic are [22, 21, 24]. Applications of this
basic test is the determination of singularity and rank of a matrix [25] shows
two applications of this basic technique: determining whether a matrix (of poly-
nomials) is singular, and determining the rank of a polynomial matrix.

4 An Implementation of HR with Signatures

The simplest method for tracking HRs is to maintain an association list between
an expression and its (new) label. This is easily implemented via (hash) tables;
one table associates a “current” number to a symbol (used as an indexed name
to generate fresh labels), and another table which associates to each indexed
name to the underlying (unveiled) expression. The indexed names play the role
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of the ordered list of symbols in definition 2. The main routine is Veil[K](A).
Here K is the symbol and A is the expression to be veiled. This routine stores
the expression A in the slot associated to K[c] where c is the “current” number,
increments c and returns the new symbol. For interactive use, a wrapper function
subsVeil can be used.
> subsVeil:=(e,A)->algsubs(e=Veil[op(procname)](e),A);
> A:= (x+y)^{10} + e^{x+y} + (x^2+1)^5 - 1:
> B:= subsVeil[K](x^2+1,A):
> C:= subsVeil[K](x+y, B);

k10
2 + ek2 + k5

1 − 1

Notice that there is no longer a danger of expanding the expression (x2 +1)5−1
in a misguided attempt to simplify it. In order to retrieve the original expression,
one uses Unveil.
> Unveil[K](C) ;

(x + y)10 + ex+y + (x2 + 1)5 − 1

At present, the expressions corresponding to K are stored in the memory space
of the implementation module2. After a computation is completed and the in-
termediate results are no longer needed. The memory occupied by K can be
cleared using the command forgetVeil(K).

The signature must be remembered between calls to Veil, as commented
above. The signature could be attached more directly to K, or kept in a separate
array specified by the user. The above implementation seemed to provide the
best information hiding. Until we see, with more experience of case studies, which
method is best, we have for the present implementation used the Maple facility
option remember internally for handling some of the tables, for convenience
and efficiency. Thus after a call to the routine SIG, the signature of any veiled
expression is stored in an internal remember table and not re-computed.

The use of Veil to generate HRs together with the calculation of signatures
will be called Large Expression Management (LEM). In fact it is just expression
management, because the Veil tool can be used even on expressions which are
not large, for the convenience they give to understanding algebraic structure.

5 LU Factoring with LEM

A well-known method for solving matrix equations is LU factoring, in which a
matrix A is factored such that PA = LU , where L and U are triangular matrices
and P is a permutation matrix; see [18] for further details. The Maple com-
mand LUDecomposition uses large amounts of memory and is very slow for even
moderately sized matrices of polynomials. The large expression trees generated

2 In other words, it is a stateful module, à la Parnas, which is also rather like a
singleton class in OO.
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internally are part of the reason for this slowdown, but equally significant is the
time taken to check for zero. For example,

> M :=Matrix(10,10,symbol=m);
> LinearAlgebra[LUDecomposition](M);

This LU factoring will not terminate. If the environment variable Normalizer
is changed from its default of normal to the identity function, i.e. Normalizer:=
x− > x, then the LU factoring can complete. This is why Large Expression
Management requires both HR and signatures for its zero-test.

We modified the standard code for LU decomposition to include veiling and
signature calculations. At the same time, we generalized the options for selecting
pivots and added an option to specify a veiling strategy. One can see [30] for even
more design points, and a general design strategy, for this class of algorithms.

Our LU factoring algorithm in high-level pseudo-code:

Get maximum_column, maximum_row for matrix A
For current_column from 1 to maximum_column
for current_row from current_column to maximum_row
Check element for zero.
Test element for being ‘‘best’’ pivot
Veil pivot [invoke Veiling strategy]
move pivot to diagonal, recording interchanges.
row-reduce matrix A with veiling strategy
store multipliers in L

end do:
end do:

return permutation_matrix, L, reduced matrix A

The function has been programmed with the following calling sequence.

LULEM(A, K, p, Pivoting, Veiling, Zerotesting)
Parameters

A - square matrix
K - unassigned name to use as a label
p - prime
Pivoting - decide a pivot for a column
Veiling - decide to veil an expression or not
Zerotesting - decide if the expression is zero.

5.1 Pivoting Strategy

The current Maple LUDecomposition function selects one of two pivoting
strategies on behalf of the user, based on data type. Thus, at present, we have
> LUDecomposition(<<12345,1>|<1,1>>);[

1 0
0 1

]
,

[
1 0

1/12345 1

]
,

[
12345 1

0 12344/12345

]
even though
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[
0 1
1 0

]
,

[
1 0

12345 1

]
,

[
1 1
0 −12344

]
is more attractive. If the matrix contains floating-point entries, partial pivoting
is used.
> LUDecomposition(<<1,12345.>|<1,1>>);[

0 1
1 0

]
,

[
1. 0.

(8.1)10−5 1.

]
,

[
12345. 1

0 0.99992

]
Since we wished to experiment with different pivoting strategies, we made

it an option. Rather than make up names, such as ‘partial pivoting’ or ‘non-
zero pivoting’, to describe strategies, we allow the user to supply a function
which takes 2 arguments. The function returns true if the second argument
is a preferred pivot to the first argument. For example, the preferred pivoting
strategy for the example above (choose the smallest pivot) can be specified by the
function (p1,p2)->evalb(abs(p2)<abs(p1)). In a symbolic and veiling context
there are a number of conceivable strategies which one might wish to try. These
can be based on operation count, size of expression or number of indeterminants.
However, the definition of LU factors only allows pivoting on one column, so no
form of full pivoting is offered.

5.2 Veiling Strategy

In the same spirit of experimentation, we have used a function to specify a veiling
strategy. This function takes one argument and returns true if the expression
should be veiled. The current LargeExpressions package, for example, follows
a strategy of ignoring integers. Thus an integer, however large, cannot be veiled
at present. Similarly, integer content is extracted from expressions before veiling.
Rather than make these decisions in advance, we leave them to the declaration
of a veiling-strategy function.

Of particular interest is the ‘granularity’ of the HR, namely whether one
veils every pairwise operation, or whether one waits until an expression of a
pre-determined size is allowed to accumulate. In the former case, the HR would
look similar to a straight-line program as defined in [14]. For our experiments, we
have based our strategies on the Maple length command, as being a convenient
measure of expression complexity.

5.3 Zero Test Strategy

We need to do zero tests to find pivots. This can also help us simplify our
expressions, if needed. During the LU factoring, we use signatures to perform
this test quickly (more precisely, in random polynomial time). It is important to
note that for LU factoring, we only need to find a provably non-zero pivot, so
that a false positive (an entry which seems to be zero but in fact is not) rarely
leads to a problem. And, in that case, we can always resort to a full zero-test.
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We use the signatures computed along with the hierarchical representations to
do the zero test for the expressions in HR. But a user could choose any Maple
commands, like Normalizer, testeq, simplify or evalb, to do the zero test.
Which one is best depends on the application at hand.

6 Time Complexity Analysis for LU with Veiling and
Signatures

Since our case study compares current LU factoring and LU factoring with
expression management, it is important to have some measure of the time com-
plexity of each procedure. We therefore start with the time complexity of con-
ventional Gaussian elimination (see [19, 20, 17] for early work). Although some
cases of the following theorems are “well known”, there seem to be no convenient
published statement of them.

Here we consider the time complexity measure is the number of bit operations,
which can be rigorously defined as the number of steps of a Turing or register
machine or the number of gates of a Boolean circuit implementing the algo-
rithm. [28] Throughout, we make the simplifying assumption that entries grow
linearly, in both degree and in coefficient size. This is actually optimistic, as
growth is usually worse than this if we apply the classical Gaussian elimination
algorithm.

Theorem 4. For an n by n matrix A = [ai,j ], with ai,j ∈ Z[x1, . . . , xm], the
time complexity of LU factoring for A is at least Ω(n2m+5) for naive arithmetic.

Proof: Let dr > maxi,j deg(ai,j , xr). Then d1d2 × . . .× dm bounds the number
of non-zero terms of the polynomials ai,j . Let l bound the length of the largest
integer coefficient in the ai,j . Suppose the degree of the polynomials ai,j in xr

and the size of their integer coefficients are growing linearly with each step of
the LU factorization, i.e., at step k, deg(ai,j , xr) < k dr and the largest integer
coefficient is bounded by lk. When we do LU factoring, at the k’th step, we have
(n − k)2 entries to manipulate. For each new entry from step k − 1 to step k,
we need to do at least one multiplication, one subtraction and one division. The
cost will be at least Ω((k d1 k d2 . . . k dm l k)2) for naive arithmetic.

The total cost for the LU factoring will be at least
∑n−1

k=1 (n− k)2×Ω((kd1 ×
kd2 × ...× kdm × kl)2) = Ω(d2

1d
2
2...d

2
ml2n2m+5) (for naive arithmetic). �

With respect to the time complexity for LU factoring with veiling and signa-
tures, we separate the time complexity analysis for LU factoring into two parts.
Lemma 1 shows the time complexity for LU with veiling but without signature.
Lemma 2 gives the time complexity for LU with signatures. The total cost will
be the complexity for LU with veiling and signatures in Theorem 5.

This first lemma is valid for the following veiling strategy: we veil any expres-
sion with an integer coefficient of length larger than c1, or whose degree in xi

is larger than c2, where c1, c2 are positive constants. The cost for veiling an ex-
pression is O(1). Then the length of each coefficient will be less than c = c1 ∗ cm

2
and the degree in xi will be less than c2.
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Lemma 1. For an n by n matrix A = [ai,j ] the time complexity of LU factoring
with large expression management (and the above veiling strategy) is O(n3).

Proof: Let ai,j ∈ Z[x1, ..., xm], dr > maxi,j deg(ai,j , xr), and the length of
the integer coefficients of ai,j be at most l. At each step there are at most
two multiplications, one division and one subtraction. The cost of each step
will be less than 4 × O((c1.c

m
2 )2) + O(1) for naive arithmetic. At each step

k, one performs arithmetic on (n − k)2 matrix elements, for a total cost of∑n−1
k=0 (n− k)2 ×O((c1 cm

2 )2) = O(n3). �
Remark 4. To prevent the cost from growing exponentially with the number of
variables, the above computation clearly shows that it is best to choose c2 = 1.

Lemma 2. Let A = [ai,j ] be an n by n matrix where ai,j ∈ Z[x1, ..., xm]. Let d >
maxi,j,r deg(ai,j , xr) and let l bound the length of the largest integer coefficient
of the entries of the matrix. Let T > ldm. So T bounds the size of matrix entries.
Let p be the prime being used to compute signatures.

Then the time complexity for computing all signatures modulo p in the LU
factorization is O((Tn2 + n3)(log p)2).

Proof: The cost of dividing an integer coefficient of ai,j of length l by p is O(l)
arithmetic operations modulo p and there are less than dm terms in ai,j . Assum-
ing nested horner form is used, the polynomial ai,j can be evaluated modulo p
in less than dm multiplications and dm additions modulo p. Thus cT bounds the
number of arithmetic operations modulo p needed to compute the signature of
each input matrix entry for some positive integer c.

After the initial computation of signatures for the entries of A, we need at
most four operations in Z/pZ for computing the other entries’ signatures at
step k of the factorization. This costs O((log p)2) for naive integer arithmetic.
We compute all the signatures for the entries at each step, to greatly simplify
zero-testing. So the total cost for computing signatures for the LU factoring is
bounded by[

cTn2 +
n−1∑
k=1

4(n− k)2
]
×O((log p)2) = O((Tn2 +n3)(log p)2). �

Theorem 5. Let A = [ai,j ] be an n by n matrix where ai,j ∈ Z[x1, ..., xm] and
let p be the prime used for signature arithmetic. Let d > maxi,j,r deg(ai,j , xr) and
l bound the length of the largest integer coefficient of the entries of the matrix.
Let T > ldm. So T bounds the size of matrix entries. The time complexity of LU
factoring with the above veiling strategy and modulo p signature computation is
O((Tn2 + n3)(log p)2).

Proof: Immediate from the above two lemmas. �
From Theorem 4 and Theorem 5, we can see the more the variables and the bigger
the size of the matrix, the bigger the difference between the algorithms which
are with and without veiling and signatures. These results agree completely with
our empirical results.
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7 Empirical Results

We present some timing results. For the benchmarks described below, we use
strategies based on Maple’s length command. As these strategies are heuristics,
any reasonable measure of the complexity of an entry is sufficient. The pivoting
strategy searches for the element with the largest length. The veiling strategy
depends on the type of matrix. For integer matrices, we veil all integers whose
length is greater than 1000, while for polynomial matrices, the treshold is length
30. These constants reflect the underlying constants involved in the arithmetic
for such objects.

For all benchmarks, three variations are compared: our own LU factoring
algorithm with veiling and signatures, Maple’s default LinearAlgebra:-
LUDecomposition, and a version of LinearAlgebra:-LUDecomposition where
Normalizer has been set to be the identity function and Testzero has been set to
a version of testeq. We first had to “patch” Maple’s implementation of
LUDecomposition to use Testzero instead of an explicit call to Normalizer(foo)
<> 0, and then had to further “patch” testeq to avoid a silly coding mistake that
made the code extremely inefficient for large expressions3. All tests were first run
with a time limit of 300 seconds. Then the first test that timed out at 300 sec-
onds was re-run with a time limit of 1000 seconds, to see if that was sufficient
for completion. Further tests in that column were attempted. Furthermore, the
sizes of matrices used varies according to the results, to try and focus attention
to the sizes where we could gather some meaningful results in (parts of) the three
columns. All results are obtained using the TTY version of Maple10, running
on an 1.8Ghz Intel P4 with 512Megs of memory running Windows XP SP2, and
with garbage collection “frequency” set to 20 million bytes used, all results are for
dense matrices. In each table, we report the times in seconds, and for the LEM
column, the number in parentheses indicates how many4 distinct labels (ie total
number of veiled expressions) were needed by the computation, as an indication
of memory requirements.

The reason for including the MapleFix column is to really separate out the
effect of arithmetic and signature-based zero-testing from the effects of Large
Expression Management; MapleFix measures the effect of not doing polynomial
arithmetic and using signatures for zero-recognition, and is thus expected to be
a middle ground between the other two extremes.

Table 1 shows the result for random matrices over the integers. Only for
fairly large matrices (between 90x90 and 100x100) does the cost of arithmetic,
due to coefficient growth, become so large that the overhead of veiling becomes
worthwhile, as the LEM column shows. Since integer arithmetic is automatic in
Maple, it is not surprising that the MapleFix column shows times that are the
same as the Maple column. Here the veiling strategy really matters: for integers
of length 500, veiling introduces so much overhead that for 110x110 matrices,

3 Both of these deficiencies were reported to Maplesoft and will hopefully be fixed in
later versions of Maple.

4 and we use a postfix K or M to mean 103 and 106 as appropriate.
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Table 1. Timings for LU factoring of random integer matrices generated by
RandomMatrix(n,n,generator=−1012 ..1012). The entries are explained in the text.

Size 10 20 30 40 50 60 70 80 90 100 110
LEM .03 .2 .8 2.3 6.1 12.5 17.8 27.6 42.4 56.4 75.4

(0) (0) (0) (0) (148) (902) (2788) (5948) (12779) (22396) (36739)
Maplefix .07 .2 .7 2.2 5.2 10.7 19.4 33.8 54.0 83.8 124.7
Maple .04 .2 .7 2.2 5.2 10.5 19.2 32.6 52.8 85.8 123

Table 2. Timings for LU factoring of random matrices with univariate entries of de-
gree 5, generated by RandomMatrix(n,n,generator=(() -> randpoly(x))). The en-
tries are explained in the text.

Size 5 10 15 20 25 30 35 40 45 50
LEM .12 .06 .18 .44 .87 1.9 3.0 4.5 7.8 9.1

(26) (237) (872) (2182) (4417) (7827) (12K) (19K) (28K) (39K)
MapleFix .06 .07 .16 .30 .56 1.87 332 >1000 – –

Maple .53 1.5 9.3 39.2 110.4 269.8 431 845 >1000 –

Table 3. Timings for LU factoring of random matrices with trivariate entries, low
degree, 8 terms RandomMatrix(n,n,generator=(() -> randpoly([x,y,z], terms =
8))). The entries are explained in the text.

Size 5 10 15 20 25 30 35 40 45 50
LEM .05 .09 .23 .49 .99 1.7 2.8 4.2 6.0 8.8

(26) (237) (872) (2182) (4417) (7827) (12K) (19K) (28K) (39K)
MapleFix .06 .09 .20 .39 .75 3.2 949 >1000 – –

Maple 35.3 >1000 – – – – – – – –

Table 4. Timings for LU factoring of fully symbolic matrix: Matrix(n,n,symbol=m).
The entries are explained in the text.

Size 5 10 15 20 25 30 35
LEM .047 .078 .20 .51 .88 1.7 2.95

(22) (218) (858) (2163) (4393) (7798) (12K)
MapleFix .03 .08 .14 .30 .58 3.8 >1000

Maple 1.56 >1000 – – – – –

Table 5. Timings for LU factoring of random matrix with entries over Z[x, 3x]:
RandomMatrix(n,n,generator=(()->eval(randpoly([x,y],terms=8),y=3x))). The
entries are explained in the text.

Size 5 10 15 20 25 30 35
LEM .031 .094 .22 .50 .99 1.7 2.8

(26) (237) (872) (2182) (4417) (7827) (12K)
MapleFix xx xx xx xx xx xx xx

Maple 0.99 117 >1000 – – – –
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this overhead is still larger than pure arithmetic. For length 2000, no veiling at
all occurs.

Table 2 shows the result for random univariate matrices, where the initial
polynomials have degree 5 and small integer coefficients. The effect of LEM here
is immediately apparent. What is not shown is that MapleFix uses very little
memory (both allocated and “used”), while the Maple column involves a huge
amount of memory “used”, at all sizes, so that computation time was swamped
by garbage collection time. Another item to notice is that while the times in
the Maple column grow steadily, the ones in the MapleFix column are at first
consistent with the LEM column, and then experience a massive explosion. Very
careful profiling5 was necessary to unearth the reason for this, and it seems to be
somewhat subtle: for both LEM and MapleFix, very small DAGs are created, but
for LEM we have full control of these, while for MapleFix, the DAGs are small but
the underlying expression tree is enormous. All of Maple’s operations on matrix
elements first involve the element being normalized by the kernel (via the user-
inaccessible simpl function), and then evaluated. While normalization follows
the DAG, evaluation in a side-effecting language must follow the expression
tree, and thus is extremely expensive. Along with the fact that no information
is kept between calls to testeq, causes the time to explode for MapleFix for
35x35 (and larger) matrices. Since the veiling strategy used for the last 4 tables
is the same, it is not very suprising that the number of veilings is essentially the
same. The reason that the all-symbolic is a little lower is because we start with
entries of degree 1 and coefficient size 1, and thus these entries do not get veiled
immediately. However, one can observe a clear cubic growth in the number of
veilings, as expected.

Table 3 shows the result for random trivariate matrices, where the initial
polynomials have 8 terms and small integer coefficients. The results here clearly
show the effect that multi-variate polynomial arithmetic has on the results. Table
4 shows the results for a matrix with all entries symbolic, further accentuating
the results in the trivariate case. Again, MapleFix takes moderate amounts of
memory (but a lot of CPU time at larger sizes), while Maple takes huge amounts,
causing a lot of swapping and trashing already for 10x10 matrices.

Table 5 shows results for matrices with entries over Z[x, 3x]. Overall the be-
haviour is quite similar to bivariate polynomials, however the xx in the MapleFix
entry indicate a weakness in Maple’s testeq routine, where valid inputs (ac-
cording to the theory in [3]) return FAIL instead. Our signature implementation
can handle such an input domain without difficulty.

While we would have liked to present memory results as well, this was much
more problematic, as Mapledoes not really provide adequate facilities to achieve
this. One could look at bytes used, but this merely reflects the memory asked
of the system, the vast majority of which is garbage and immediately reclaimed.
This does measure the amount of overall memory churn, but does not give an
indication of final memory use nor of the true live set. bytes alloc on the other

5 Here we used a combination of procedure-level profiling via CodeTools[Profiling]
and global profiling via kernelopts(profile=true).
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hand measure the actual amount of system memory allocated. Unfortunately,
this number very quickly settles to something a little larger than gcfreq, in
other words the amount of memory required to trigger another round of garbage
collection, for all the tests reported here. This reflects the huge amount of mem-
ory used in these computations, but does not reflect the final amount of memory
necessary to store the end result. Neither can we rely on Maple’s length com-
mand to give an accurate representation of the memory needed for a result be-
cause, for some unfathomable reason, length returns the expression tree length
rather than the DAG length! Thus, for matrices whose results are un-normalized
polynomials, we have no easy way to measure their actual size. As a proxy, we
can find out the total number of variables introduced by the veiling process.
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13. Giusti M., Hägele K., Lecerf G., Marchand J. and Salvy B. The projective Noether

Maple package: computing the dimension of a projective variety. J. Symbolic Com-
putation, 30(3): 291–307, 2000.



268 W. Zhou et al.

14. Kaltofen E. Computing with polynomials given by straight-line programs I: greatest
common divisors. Proceedings of ACM on Theory of computing, 131–142, 1985.

15. Monagan M.B. and Gonnet G.H. Signature Functions for Algebraic Numbers. IS-
SAC, 291–296, 1994.

16. Monagan M.B. and Monagan G. A toolbox for program manipulation and efficient
code generation with an application to a problem in computer vision. ISSAC, 257–
264, 1997.

17. Sasaki T. and Murao H. Efficient Gaussian elimination method for symbolic de-
terminants and linear systems (Extended Abstract). ISSAC, 155–159, 1981.

18. W. Keith Nicholson. Linear Algebra with Applications, Fourth Edition. McGraw-
Hill Ryerson, 2003.

19. Bareiss E.H. Sylvester’s Identity and Multistep Integer-Preserving Gaussian Elim-
ination. Mathematics of Computation, 22(103): 565-578, 1968.

20. Bareiss E.H. Computational Solutions of Matrix Problems Over an Integral Do-
main. J. Inst. Maths Applics, 10, 68-104, 1972.

21. Heintz J. and Schnorr C.P. Testing polynomials which are easy to compute (Ex-
tended Abstract). Proceedings of ACM on Theory of computing, 262–272, 1980.

22. Martin W.A. Determining the equivalence of algebraic expressions by hash coding.
Proceedings of ACM on symbolic and algebraic manipulation, 305–310, 1971.

23. Ibarra O.H. and Leininger B.S. On the Simplification and Equivalence Problems
for Straight-Line Programs. J. ACM, 30(3): 641–656, 1983.

24. Ibarra O.H. and Moran S. Probabilistic Algorithms for Deciding Equivalence of
Straight-Line Programs. J. ACM, 30(1): 217–228, 1983.

25. Ibarra O.H., Moran S. and Rosier L.E. Probabilistic Algorithms and Straight-Line
Programs for Some Rank Decision Problems. Infor. Proc. Lett., 12(5): 227–232,
1981.

26. Shoup V. A Computational Introduction to Number Theory and Algebra. Cam-
bridge University Press, 2005.

27. Kaltofen E. On computing determinants of matrices without divisions. ISSAC,
342–349, 1992.

28. Gathen J. von zur and Gerhard J. Modern computer algebra Cambridge : Cam-
bridge University Press, 1999.

29. Carette J. Understanding Expression Simplification. ISSAC, 72–79, 2004.
30. Carette J. and Kiselyov O. Multi-stage Programming with Functors and Monads:

Eliminating Abstraction Overhead from Generic Code. Generative Programming
and Component Engineering, 256–274, 2005.

31. S. Steinberg, P. Roach Symbolic manipulation and computational fluid dynamics.
Journal of Computational Physics, 57, pp 251-284, 1985.



Author Index

Calmet, Jacques 94
Carette, Jacques 254
Cohen, Arjeh M. 1

Djelloul, Khalil 53

Feinsilver, Philip 170

Hironaka, Heisuke 2
Hong, Hoon 181

Igarashi, Shigeru 25
Ikeda, Yasuwo 25

Jacquemard, Florent 68
Jeffrey, David J. 116, 254

Kohlhase, Michael 241

Li, Hongbo 146
Li, Liyun 181
Li, Wei 3
Li, Yong-Bin 82
Liang, Songxin 116
Liang, Tielin 181
Liu, Sheng 211

McCune, William 18
Minzlaff, Moritz 94
Mitsuhashi, Ichiro 68

Mizutani, Tetsuya 25
Monagan, Michael B. 254

Normann, Immanuel 40

Oyamaguch, Michio 68

Ratschan, Stefan 196

Schott, René 170
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