
Automatic Handling of Protocol Dependencies
and Reaction to 0-Day Attacks with ScriptGen

Based Honeypots

Corrado Leita1, Marc Dacier1, and Frederic Massicotte2

1 Institut Eurecom, Sophia Antipolis, France
{leita, dacier}@eurecom.fr

2 Communications Research Centre, Ottawa, Canada
fmassico@crc.ca

Abstract. Spitzner proposed to classify honeypots into low, medium
and high interaction ones. Several instances of low interaction exist, such
as honeyd, as well as high interaction, such as GenII. Medium interaction
systems have recently received increased attention. ScriptGen and Role-
Player, for instance, are as talkative as a high interaction system while
limiting the associated risks. In this paper, we do build upon the work
we have proposed on ScriptGen to automatically create honeyd scripts
able to interact with attack tools without relying on any a-priori knowl-
edge of the protocols involved. The main contributions of this paper are
threefold. First, we propose a solution to detect and handle so-called
intra-protocol dependencies. Second, we do the same for inter-protocols
dependencies. Last but not least, we show how, by modifying our initial
refinement analysis, we can, on the fly, generate new scripts as new at-
tacks, i.e. 0-day, show up. As few as 50 samples of attacks, i.e. less than
one per platform we have currently deployed in the world, is enough to
produce a script that can then automatically enrich all these platforms.

1 Introduction

Honeypots arepowerful systems for informationgathering and learning.L.Spitzner
in [1] has defined a honeypot as “a resource whose value is being in attacked or
compromised. This means, that a honeypot is expected to get probed, attacked
and potentially exploited. Honeypots do not fix anything. They provide us with
additional, valuable information”. In [1] honeypots are classified according to the
degree an attacker can interact with the operating system.

In high interaction honeypots, the attacker interacts with real operating sys-
tems usually deployed through virtual emulators. This ensures a very reliable
source of information, but also brings some major drawbacks. High interaction
honeypots are real hosts and therefore can be compromised: the maintenance
cost and the risk involved in them is high. Also, the amount of resources re-
quired to deploy such honeypots is usually substantial.

In low interaction honeypots such as honeyd [2], the attacker interacts with sim-
ple programs that pretend to behave as a real operating system throughvery simple

D. Zamboni and C. Kruegel (Eds.): RAID 2006, LNCS 4219, pp. 185–205, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

186 C. Leita, M. Dacier, and F. Massicotte

approaches.Honeyd uses a set of scripts to implement responders to the most com-
mon services. Given a request, these scripts try to produce a response that mimics
the behavior of the emulated server. This approach has two major drawbacks. On
the one hand, the manual generation of these scripts is a tedious and sometimes
impossible task due to the unavailability of protocol specifications. On the other
hand, they are often not able to correctly handle complex protocols, limiting the
length of the conversation that the honeypot is able to carry on with the client.
Since many exploits deliver the malicious payload only after an exchange of sev-
eral packets with the server, low interaction honeypots are often not able to carry
on the conversation long enough to discriminate between different types of activi-
ties. For instance, in our experience within the Leurre.comproject [3,4,5,6,7,8], due
to the lack of emulation scripts we have been able to observe only the first request
of many interesting activities such as the spread of the Blaster worm [9]. But since
Blaster sends the exploit in the second request of its dialog on port 135, we have
never been able to observe such a payload. Therefore it becomes very difficult to
distinguish Blaster’s activity from other activities targeting the same port using
solely the payload as a discriminating factor.

The lack of emulation scripts led us to investigate the feasibility of automat-
ically generating emulators starting from samples of protocol interaction using
the ScriptGen framework [10]. We showed how it was possible to take advantage
of the statistical diversity of a large number of training samples to rebuild a par-
tial notion of semantics. This can be done in a completely protocol-independent
way: no assumption is made on the protocol behavior, nor on its semantics. Our
first results showed how ScriptGen had been able to successfully carry on a small
segment of conversation with the clients, proving the validity of the method but
also showing the need to improve emulation.

In this paper we take a big step forward, showing how it is possible to dra-
matically increase the emulation quality by coupling the seminal work presented
in [10] with a number of novel contributions. Specifically, this paper presents i)
an innovative algorithm to infer dependencies in the content of protocol mes-
sages (intra-protocol dependencies) without requiring the knowledge of protocol
semantics; ii) a new algorithm to generate relations in the interaction of multi-
ple TCP sessions (inter-protocols dependencies); iii) a proxying algorithm that
allows a ScriptGen honeypot to automatically build a training set to refine its
knowledge of the protocol reacting to the detection of new activities.

This paper is organized as follows: section 2 gives an overview on the current
state of the art in the field; section 3introduces themain concepts and contributions
of this paper; section 4 gives an in-depth description of the novel contributions to
the ScriptGen framework; section 5 shows the experimental validation performed
on the new ScriptGen emulators; section 6 concludes the paper.

2 State of the Art

The contributions of this paper put their roots in a seminal work presented in
[10]. ScriptGen is a method that aims at building protocol emulators in a com-
pletely automated and protocol-independent way. This is possible through an

Automatic Handling of Protocol Dependencies 187

algorithm detailed in [10] called region analysis. Region analysis uses bioinfor-
matics algorithms [11] as primitives to rebuild protocol semantics and to raise
the training data to a higher level of abstraction. This is done in a completely
protocol-independent fashion: no assumption is made on the protocol seman-
tics or on the protocol behavior. This allows us to build emulators for protocols
whose specification is not available or partially unknown. In [10] we validated
the approach, and we identified a number of limitations that were preventing
ScriptGen emulators from correctly carrying on complete conversations with a
client.

Shortly after our initial publication, Cui et al. presented the results of a sim-
ilar approach, named RolePlayer [12], carried out in parallel to ours. These
authors have the same goals in mind but have imposed different constraints
on themselves. RolePlayer uses as input two cleaned and well-chosen scripts.
These scripts are training samples of the conversation that must be emulated.
As ScriptGen does, RolePlayer uses bioinformatics algorithms to align bytes and
delimit fields inside the protocol byte stream. RolePlayer gives semantic value
to the various fields using additional information (IP addresses, host names used
in the conversation) and a simple “cookbook” of rules to give an interpreta-
tion to the various fields. This “cookbook” is a set of heuristics deduced from
observations made on various known protocols.

The RolePlayer approach offers a very elegant solution but it is worth noting
that it is orthogonal to ScriptGen’s philosophy and shows a number of limita-
tions. First of all, the usage of only two scripts in the alignment phase requires
carefully chosen samples in order to avoid false deductions. This process can be
easily done by a human operator, but an automatic preparation of the training
set does not appear straightforward. Furthermore, it appears that the design of
well behaved samples precludes the usage of this technique for online creation
of scripts as we propose to do it in section 4.3. To accomplish the same pur-
pose, ScriptGen performs the analysis on a statistically significant number of
samples. ScriptGen exploits the statistical diversity of the samples to minimize
false deductions without requiring any sort of human intervention. As we will
show in this paper, this property is extremely interesting when implementing
automated learning of new activities. In fact, we will show in this paper how
ScriptGen is able to react to 0-day attacks, exploiting its characteristics to learn
the behavior of the new activity. It does so by building in a completely auto-
mated fashion a new training set and using it to refine its knowledge of the
protocol. For this to be possible, no human intervention must be necessary; the
process must be totally automated. ScriptGen, being completely automated and
protocol-agnostic, fulfills these requirements. As opposed to that, the additional
manual input required by RolePlayer to generate the emulators is a severe limi-
tation with respect to this objective. Also, RolePlayer takes advantage of a set
of heuristics that are deduced from the knowledge of existing protocols. Even if
these heuristics might be valid for a certain number of protocols, they restrict
the generality of the method itself by taking into consideration only the number
of well-known protocols for which these assumptions hold. Finally, RolePlayer as

188 C. Leita, M. Dacier, and F. Massicotte

Fig. 1. Simple example of semantic abstraction

described in [12] seems to be able to replay only a single script at a time. It does
not offer a structure to handle in parallel different protocol functional flows. A
ScriptGen emulator instead is able to map different activities to different paths
of the internal protocol state machine.

A completely different approach is instead followed in the context of the mw-
collect project [13,14], that has recently merged with the nepenthes project.
These tools use a set of vulnerability modules to attract bots, analyze their shell
code and use download modules to fetch the malware code from the attacking
bot. Currently, the vulnerability modules are manually handled and specific to
each known exploit, but a future integration of the ScriptGen approach with
these tools might lead to very interesting results.

3 Related Work and Novel Contributions

The work shown in this paper builds upon the work introduced in [10]. The
ScriptGen approach allows building protocol emulators in a protocol-indepen-
dent way: no assumption is made on protocol behavior, nor on its semantics.
The approach uses a set of training conversations between an attacker and a
real server to build a state machine representing the protocol language from
an application level point of view. Each state is labeled with the corresponding
server answer; each transition is labeled with client requests. When the emulator
receives a request from the client that matches the label of one of the outgoing
transitions from the current state, it moves to the corresponding future state and
uses its label to reply to the client. Since we are not assuming any knowledge of
protocol semantics, the client requests are seen as simple byte streams and they
are therefore too specific: the generated state machines would be unnecessarily
large and not able to handle any kind of variation from the data seen during
training. For this reason we introduced the region analysis algorithm, detailed
in [10]. This algorithm is able to take advantage of the statistical diversity of
the samples to identify the variable and fixed parts of the protocol stream, using

Automatic Handling of Protocol Dependencies 189

Fig. 2. The ScriptGen framework

bioinformatic algorithms. Using clustering and refinement techniques, the algo-
rithm aggregates the outgoing edges and produces as output a semantic-aware
representation of their value. The protocol stream is thus transformed in a se-
quence of mutating regions (groups of mutating bytes with no semantic value)
and fixed regions (groups of bytes whose content is considered as discriminat-
ing from a semantic point of view). Figure 1 shows an example of the semantic
abstraction introduced by region analysis: the algorithm is able to infer from
the statistical diversity of the samples part of the underlying protocol structure,
distinguishing the “LOGIN” command from the username. The LOGIN com-
mand will generate a fixed region and will be considered as discriminating in
determining the protocol functional behavior. The username instead will gen-
erate a mutating region and the content of the field will not be considered as
semantically discriminating.

We showed in [10] a preliminary validation of the method, that was able to
exchange a limited number of packets with several attacking sources. While these
first tests showed the validity of the method, they also underlined a number of
limitations and the need for additional enrichments to the initial work. This led
to the ScriptGen framework presented in this paper and represented in Figure
2. This paper introduces a set of novel algorithms aimed at circumventing the
limitations identified in [10] and demonstrates how to exploit the potentials of
this approach. These can be summarized as follows:

1. Support for intra-protocol dependencies. In many protocols, one of
the two peers involved in the conversation chooses a cookie value to be put
in the message. For instance, in NetBIOS Session Service the client chooses
a 16 bit transaction ID: for the server answer to be accepted, it must use the
same value in the corresponding protocol field.

190 C. Leita, M. Dacier, and F. Massicotte

2. Support for inter-protocol dependencies. In many different cases the
state of the emulation goes further than the single TCP session. For instance,
successfully running a buffer overflow attack on a certain port might open a
remote shell on a previously closed port. If that port has been open since the
beginning, the exploit might refuse to run. Also, multiple TCP sessions may
be interleaved (such as in FTP) generating dependencies between them.

3. Proxying and automated learning. The stateful approach and the struc-
ture of the state machine itself allows an extremely precise detection of new
activities. Every time that a request is received and no outgoing edge from
the current state matches with it, an alert can be triggered. Taking advan-
tage of a proxying algorithm to carry on the conversation with the client, it
is possible to build a training set to automatically refine the existing state
machine, thus reacting in a very precise way to 0-days attacks.

4 Dependencies and Proxies

4.1 Intra-protocol Dependencies

Examining the conversation between a source and a server we can identify two
different types of dependencies. We can observe dependencies in the content
of a TCP session (intra-protocol dependencies), such as the cookie field men-
tioned before, and dependencies between different TCP sessions (inter-protocols
dependencies). This first section focuses on the former.

In order to carry on a successful conversation with the client, it is impor-
tant to correctly handle cookie fields, that is protocol fields of mutating content
whose value must recur in both client requests and server answers. Two different
situations can be identified:

1. The client sets the cookie in its request, and the value must be reused in the
server answer. In this case the emulator must be able to retrieve the value
from the incoming request and copy it, or a derived value from it (e.g. the
value incremented by 1) in the generated answer.

2. The server sets the cookie in its answer, and the client must reuse the same
value for the following requests to be accepted. From the emulator point of
view, this does not generate any issue. The server label will contain a valid
answer extracted from a training file, using a certain value for the field. The
corresponding field in the client requests will be classified as mutating. This
leads only to two approximations: the emulator will always use the same
value, and it will accept as correct any value used by the client without
discarding the wrong ones. These approximations might be exploited by a
malicious user to fingerprint a ScriptGen honeypot, but can still be consid-
ered as acceptable when dealing with attack tools.

We will further focus here on the first scenario, that is the most challenging
since it requires the emulator to identify the cookie fields and establish content
dependencies between the client requests and the following answers.

Automatic Handling of Protocol Dependencies 191

In order to identify these dependencies, it is necessary to correlate the content
of client requests with the content of the following server answers. By using many
training conversations, we are able to reliably identify dependencies by taking
advantage of statistical diversity. Using a reduced number of samples, in fact,
makes it difficult to reliably deduce this kind of relationship. For instance, the
value of a mutating field in the client request might incidentally match the
content of the data payload sent back by the server in a following message of the
conversation. Using a large amount of samples drastically reduces the probability
of false deductions.

The algorithm presented in this paper to handle content dependencies is com-
posed of two separate steps: link generation and consolidation.

During link generation, the algorithm takes into consideration each request
contained in the training set, enriched by the output of region analysis, and
correlates it with all the following server answers contained in the corresponding
training conversation. The algorithm takes into consideration all the bytes in
the request that are not covered by a significant fixed region. A significant fixed
region is defined as a region whose content always has a unique match in the
client request. Many regions are not big enough to be considered as significant
when considered alone. Having a single match inside the client request, significant
fixed regions can therefore be used as markers to define relative positions inside
the client request.

For instance, representing a fixed region as F(“content”) and a mutating re-
gion as M(), we consider the following output of the region analysis:

F(“LOGIN:”)+M()+F(“TIME:”)+M()+F(“:”)+M()

that matches, for instance, the following client request:

“LOGIN: bob TIME: 12:13”

The fixed region F(“LOGIN:”) will be considered as significant. But the fixed
region F(“:”) will have multiple matches inside the client request and will not
be used as marker.

For all those bytes that are not covered by these markers, the algorithm
correlates each byte with the server answers using a correlation function. In the
most simple case, the correlation function returns 1 if the bytes match, and
returns 0 if the bytes differ. For each encountered match, the algorithm tries to
maximize the number of consecutive correlated bytes starting from a minimum
of two. For instance, we consider these two simple training conversations:

1. R1: “Hi, my ID is 147 what time is it?”
A1: “Welcome 147, time is 14:05”

2. R1: “Hi, my ID is 134 what time is it?”
A1: “Welcome 134, time is 14:18”

In this case, region analysis will enrich the request generating two significant
fixed regions: “Hi, my ID is ” (F1) and “ what time is it?” (F2). For each

192 C. Leita, M. Dacier, and F. Massicotte

training conversation, the link generation algorithm will search for correlations
between the remaining bytes of the request and the following answers, producing
links. A link is a logical object that provides in a dynamic way the content to be
put in a certain position of the server answer. Different kinds of links might be
introduced in the future. For the time being, when a content match is found in
a server answer, the matching content is replaced with the output of a matching
link. A matching link is defined by the tuple L = (Rq, S, R, Os, Ot)

– Rq: The client request the link is referring to
– S : The starting marker
– R: The trailing marker
– Os : An offset with respect to the starting marker
– Ot : An offset with respect to the trailing marker

To better understand the meaning of these characteristics, we can refer back
to the previous example. For the first training conversation, the link generation
would define two links in the server answer: “Welcome L1, time is L2:05”. We
will have

L1 = (R1, F1, F2, 0, 0)

L2 = (R1, F1, F2, 0, −1)

Instead, for the second training conversation the resulting server answer will
be: “Welcome L3, time is 14:18”. L3 will be identified by the tuple:

L3 = (R1, F1, F2, 0, 0)

From this example it is clear that link generation parses each conversation
independently, making optimistic guesses on the dependencies. Link generation
therefore generates many guesses on the content dependencies. Some of them
(links L1and L3) might be correct, others (such as link L2) might be coincidental
matches between the request content and the payload of the answer.

The second step of the analysis consists of taking advantage of the statistical
variability to consolidate these guesses, filtering out the coincidental matches
and taking into consideration only the real content dependencies. This step is
therefore called consolidation.

The input to this step is a set of proposals for a certain server answer generated
by the previous link generation. The algorithm takes into consideration each byte
and compares the content of each proposal for that byte. This content can be
either a link or the value of the answer in the original training file. The most
recurring content is put in the consolidated answer, while the other ones are
discarded. All the proposals having a content for that byte differing from the
chosen one will not be taken into consideration any more for the remaining bytes.
Referring back to the previous example, the output of the consolidation phase
for answer A1 will be: “Welcome L1=3, time is 14:05”.

Figure 3 represents the consolidation behavior in a very pessimistic case. In
this case, the number of misleading links is as high as the number of proposals.

Automatic Handling of Protocol Dependencies 193

Fig. 3. Consolidation

The algorithm is such that the consolidated answer will always be equal at
least to one of the proposals. Also, increasing the number of training samples
will increase the number of proposals, therefore increasing the robustness to
misleading links. The number of valid proposals at the end of the algorithm can
be considered as the confidence level for the validity of the consolidated answer.

During emulation, the link information is used to transform the referenced
content of the requests and provide the content for the server answers. Using the
significant fixed regions as markers, and offsets to specify relative positions, it is
possible to correctly retrieve variable length values.

What has been stated herein with reference to simple equality relations can
be extended to other types of relations, such as incrementing counters, by simply
defining different types of links.

4.2 Inter-protocols Dependencies

In order to handle dependencies among, for instance, different TCP sessions, it
is necessary to re-define the notion of state in the ScriptGen model. In [10], we
bound the emulation state to a single TCP session. Each TCP connection was
associated with a different state, and any event or side-effect outside that binding
was not taken into consideration. In order to allow dependency handling among
different sessions, the definition of state must be widened. For this reason utilize
the concept of conversation: a conversation is defined as the whole amount of
data that has been exchanged between a single attacking source and the attacked
server in the training data. The attacking source is identified by its IP address
and a timestamp, in order to take into consideration dynamic IP allocation. The
same IP address, when coming back after a period of time greater than 24 hours,
will be considered as a different source. A conversation therefore consists of all

194 C. Leita, M. Dacier, and F. Massicotte

Fig. 4. Inter-protocols dependencies

the activities performed by an attacker towards the vulnerable host, and might
be composed of several TCP sessions and several exchanges of UDP messages.

Considering each conversation as the domain for the inter-protocols analysis,
we identified two different types of session dependency:

– Session interleaving: some protocols spread the interaction between the
client and the server on multiple connections to different ports. For instance
FTP separates the control connection from the data connection. Messages
seen on one session initiate activities on the other one: an FTP recv command
on the control connection will cause traffic to be generated on the data
connection.

– Exploits: when a vulnerable service is attacked by a malicious client, the
client might succeed in exploiting a buffer overflow attack on the victim over
a certain port and open a previously closed port. We will see that this kind
of dependency is extremely important: section 5 will show how the incorrect
handling of this kind of dependencies can influence the conversation with
the client.

From a practical point of view, the two dependencies are illustrated in Figure 4.
It is interesting to notice how, in both cases, a client request in a given TCP ses-
sion modifies the server state triggering events that are outside the scope of the
connection itself. In the case of session interleaving, the request triggers a server
message on a different connection; in the case of the exploit dependency, the request
opens a previously closed port. It is important to understand that these are just
two examples of external state modifications that can be caused by client requests.
Referring to the cause of the exploit, another common behavior observed in buffer
overflow attacks consists of actively fetching malware from an external location.
This specific case is extremely interesting and is subject of ongoing research.

A session interleaving dependency is triggered by the following conditions: i)
more than one session is open (e.g. A and B) ii) after a client request in session A,
and eventually an answer from the server for that session, the first encountered
packet is an answer from the server in session B. This means in fact that the
request on session A has influenced the state of session B, triggering a message
from the server.

Automatic Handling of Protocol Dependencies 195

Knowing the list of commonly open ports for the emulated server, the exploit
session dependency is triggered if the following conditions hold: i) session A is
bound to a known open port (e.g. port 139 on a Windows 2000 host) ii) session
B is targeting a closed port (e.g. port 4444 on the same Windows 2000 host) iii)
an outgoing TCP SYN/ACK is sent by the server from session B after having
received a request in session A. The TCP SYN/ACK means in fact that the
port, previously known to be closed, is now open.

Once dependencies are identified, ScriptGen emulates causality through a sim-
ple signalling method between different state machines. During this emulation,
the emulator allocates different broadcast buses for signals, one for each source,
as shown in Figure 5. When the emulator reaches a state that the dependency
analysis has identified as the trigger for a session dependency, a signal is sent on
the bus for that source. The other state machines will be notified of the signal
and will eventually react to it. With respect to session interleaving, the given
request will generate a signal that will trigger a transition on the state machine
associated with session B. The transition to the new state will therefore generate
a new server message, that will be sent back to the client emulating the correct
behavior. In the case of the exploit session dependency, the state machine asso-
ciated to the closed port will start accepting connections on that port only after
having received the signal corresponding to the client request. This will allow
the correct emulation of the expected server behavior.

4.3 Proxying and Incremental Refinement

One of the main contributions of this paper consists in being able to react to
new activities, triggering new alerts and being able to refine the existing state
machine. To do so, we refine the existing region analysis algorithm in order to
support incremental refinements. Then we introduce a novel proxying algorithm
that allows ScriptGen to rely on a real host to build its training set.

In [10] we started from a too specific state machine and then we used Re-
gion Analysis to move to a higher level of abstraction, aggregating the existing
states and generating transitions based on regions. There was no clear separa-
tion between raw data, not parsed yet because of the lack of enough samples
to generate macroclusters, and data whose semantics had already been rebuilt.
For this reason, in the new incremental algorithm that we propose, we split the
analysis into two distinct phases described in Sections 4.3 and 4.3. Section 4.3
will describe more in depth the new proxying algorithm.

Update phase. Given an existing (eventually empty) state machine, each in-
coming flow is attached to it. Starting from the root, we use the sequence of
requests in the incoming flow to traverse the existing edges of the state machine,
choosing the future state according to a matching function defined later.

While traversing the state machine, the server labels are updated on the var-
ious nodes with the eventually empty server answers found in the training con-
versation. If for a certain state no outgoing edge matches the client request, the
remaining training conversation is attached to the state’s bucket. The bucket is

196 C. Leita, M. Dacier, and F. Massicotte

Fig. 5. Signalling

simply a container for new raw data that will be used in the following phase to
perform the refinement.

The notion of bucket allows a distinction between new unprocessed data and
the already consolidated transitions, solving the issue mentioned before. Also,
the update phase is applied indifferently during the training phase and during the
emulation. The only difference between the two cases is when encountering an
unmatched request to be put in the bucket. While in the training phase the rest
of the conversation is known, during emulation since the future state is unknown
it is not possible to continue the dialog with the source. The proxying algorithm
will allow ScriptGen to rely on a real host to continue the conversation, using
the proxied conversation to build training samples to perform the refinement.

One of the most critical aspects in the update phase consists in the choice of
the matching function. At first, our choice had been to try to be as robust as
possible to new activities or to imprecise state machines generated from an in-
sufficient number of samples. So we accepted imperfect matches, that is requests
whose content did not completely match with the output of region analysis. But
this leads to two major drawbacks. First of all, tolerating imperfect matches be-
tween the incoming request and the known transitions might lead to the choice
of a wrong transition generating a completely wrong answer, corrupting the con-
versation. Also, distinguishing imperfect matches from new activities becomes
impossible. For this reason we moved to a much more conservative choice, consist-
ing of requiring an exact match of all the fixed regions, transforming the output
of the region analysis in a regular expression. If multiple transitions match the
same incoming request, the most refined one is chosen: that is, the transition

Automatic Handling of Protocol Dependencies 197

Fig. 6. Iterative refinement

having the maximum number of matching fixed bytes. This is necessary to cor-
rectly handle microclustering, in which recurring values of the mutating parts
are transformed into fixed regions. The previous policy will give preference to the
refined microcluster, having more fixed bytes, rather than the generic transition.

Refinement phase. During the refinement phase, ScriptGen inspects state
buckets in order to search for possible refinements. If a bucket is not empty,
ScriptGen runs the region analysis algorithm over the unmatched requests pres-
ent in the bucket. If the number of samples is enough to generate macroclusters
of sufficient size, one or more transitions are generated refining the existing ones.
After having generated all the possible edges, the update phase will be repeated
on the refined state machine.

Figure 6 shows an simple example of iterative refinement. For each state in
the diagram, the label corresponds to the number of training conversations in
the bucket. A training file consisting of 10 training flows is used to update an
empty state machine. Since the state machine is empty, none of the initial client
requests contained in the samples will match an existing transition. Thus all
the samples will be put in the initial bucket, as shown in figure at step 1. The
refinement phase will then pick the training samples contained in the bucket, and
apply the region analysis algorithm to the samples. Region analysis generates
a different transition for each set of sample client requests believed to have a
different semantic meaning. In this first step, a single transition is generated.
After the refinement phase, the update phase is then triggered and the training
flows are matched with the newly created transition. Since the state machine
is still incomplete, the training samples do not find a match in the following
state, and are thus stored in the corresponding bucket for the next refinement
iteration (step 2). The process repeats until the refinement phase is not able to
generate other transitions: this happens at step 4, in which the sample flows do
not contain any further interaction between the attacking source and the server

198 C. Leita, M. Dacier, and F. Massicotte

(client closes connection after having sent 3 requests to the server). The state
machine is then complete.

Proxying algorithm. The previous sections showed how, through the concept
of buckets and the separation between update and refinement phase, we are able
to handle in a uniform way the training performed with real sample conversations
and the interaction with real sources during emulation. As mentioned before,
there is still a major difference between these two cases. While during training
the whole conversation is already known, this is not true during emulation. In the
second case in fact, when receiving a request for which no matching transition
exists, we do not have a way to make the client continue its conversation with the
server. However we need the continuation of the conversation to train ScriptGen
to refine the state machine.

To acquire this information, when encountering unmatched requests we tunnel
the client conversation to another host able to handle it, such as a high inter-
action honeypot. Focusing for conciseness only on the TCP case, the proxying
algorithm works as follows:

– Every source initiates a certain number of connections with the ScriptGen
honeypot. The emulator keeps track of all of them, buffering all the received
requests.

– When receiving an unmatched request from host Hi at time tu, the emulator
triggers the proxy initialization. At time tu the source will have a certain
number of open connections CO

1...C
O

p.
– The emulator will search for an available host in its pool of servers and will

allocate it to the source. It will then initialize it, replaying all the buffered re-
quests received from host Hi before time tu. If the initialization is successful,
it will end up with p open connections between the emulator and the allo-
cated server PO

1...P
O

p. For each of them, the ScriptGen emulator will setup
an application-level association CO

i ↔ PO
i . Every message received from one

of the two ends,will be forwarded to the other end. The message content will
be stored, building the training sequence to be used in the refinement.

– Every incoming connection from the same source after the proxy initializa-
tion at time tu will directly generate an application-level association with the
allocated server, and the application level payloads will be used to update
and eventually refine the existing state machines.

– After a certain time of inactivity, the source will expire and the allocated
server will be freed. The emulator will use the retrieved conversations to run
the update and refinement phase.

This algorithm allows the emulator to promptly react in a completely automated
way to requests that the state machine is not able to parse. Through proxying,
the emulator is able to build its own training set and use this training set to
update its protocol knowledge. Assuming that the state machine represents the
whole set of known activities going on in a certain network, this algorithm offers
valuable properties. It allows us to go much further than just sending alerts for

Automatic Handling of Protocol Dependencies 199

new activities. We can automatically build a training set and use it to infer se-
mantics. This output can therefore be used to automatically generate signatures
for the newly observed activities.

5 Testing

In order to retrieve significant information about the real quality of the emula-
tion, we have run a set of experiments to evaluate ScriptGen’s behavior when
dealing with a real client.

To perform our tests, we took advantage of the flexibility of the controlled
virtual network presented in [15]. This network provides a secure environment
to run completely automated attack scenarios. Thanks to a huge database of
attack scripts and virtual machine configurations, this setup allows an extreme
flexibility and can be considered as the ideal testbed for our emulators. A dis-
cussion of the exhaustive test of ScriptGen behavior using all the available
attack scripts is left as a future work. For the scope of this paper we want
to provide an in-depth analysis of ScriptGen’s behavior in a single interesting
case.

Among all the used exploits, for the sake of conciseness we chose to focus in
this paper on a specific vulnerability exploited by a Metasploit Project1 mod-
ule. The vulnerability is the Microsoft Windows LSASS Remote Overflow [16]
(used by the Sasser worm). This vulnerability exploits a validation failure on the
LSARPC named pipe and, through a specially crafted packet, allows an attacker
to execute arbitrary code on the attacked host. In the specific implementation of
the exploit at our disposal, the attack consists of 41 requests and 40 answers on
a single TCP connection targeting port 139. This is therefore a clear example of
“long” activity whose analysis would greatly benefit from the increased verbosity
offered by ScriptGen. We chose this exploit for several reasons:

– This exploit opens a shell on port 4444 on the attacked host. Also, the
exploit checks if the port is open before starting the attack: if the port is
already open, it does not proceed further. This is a clear case in which session
dependencies are needed in order to emulate the correct behavior. If the port
is always open, the honeypot will never observe the attack on port 139 and
will instead observe only a connection attempt on port 4444. If the port is
always closed, the attack will always fail. Using dependencies, we are able
to send a signal only when the last state of the attack path is reached. The
state machine for port 4444 waits for that signal before opening the port.

– This exploit targets the NetBIOS Session Service. Its protocol semantic is
rather complex, and offers many examples of content dependencies. If the
content dependencies are not handled correctly, the client aborts the con-
nection after the second answer from the honeypot as shown in [10]. This
shows the importance of this kind of dependencies, that greatly influences
the length of the conversation.

1 http://www.metasploit.org

http://www.metasploit.org

200 C. Leita, M. Dacier, and F. Massicotte

Table 1. Attack output

[*] Starting Bind Handler.
[*] Detected a Windows 2000 target ()
[*] Sending 32 DCE request fragments...
[*] Sending the final DCE fragment
[*] Exiting Bind Handler.

Due to the complexity of the NetBIOS Session Service protocol, this case is
representative of the upper bounds of the complexity that might be faced in
protocol emulation.

5.1 Emulation Quality

In order to assess the emulation quality of the produced emulators, we have
used our virtual network infrastructure to generate a training sample consisting
of 100 samples of the attack against a real Windows 2000 target. After every run
of the attack, the target was reverted to its initial state and the experiment was
repeated. In order to maximize variability (with special attention to timestamps)
the various runs of the attack have been spaced in time by an interval of 5
minutes. All the interaction was collected in a tcpdump file, and was then used
to automatically train ScriptGen and produce two state machines: one for TCP
port 139, the other for TCP port 4444.

Analysis of the state machine. Before analyzing the behavior of the emulator
in a network test, it might be interesting to inspect the content of the state
machine generated by ScriptGen. As expected, the state machine is a sequence
of 42 states. There is only one leaf, and therefore a single path: all the states,
except for the last one, have exactly one child. Thanks to the consolidation
algorithm, there is always a unique server answer bound to each state. Also,
ScriptGen has correctly identified session dependencies, associating a signal to
the last state of the state machine for port 139. When that state is reached, the
signal triggers a transition for port 4444, opening it.

Looking at these client requests more in depth, we can see that after an initial
session request (whose content is always the same) ScriptGen generates more com-
plex sequences of fixed and mutating regions. More specifically, we can notice that
most requests share two mutating regions of size 2 respectively at bytes 30-31 and
34-35. Looking at the protocol specification, these fields correspond to the proces-
sID and the multiplexID of the SMB header. These two fields are chosen by the
client and must be repeated in the following answers given by the server. Inspect-
ing the server answers, we can indeed note that content dependency handling has
correctly generated the correct links to handle those dependencies.

Experimental evaluation. We deployed a ScriptGen based host in our testing
virtual network, and we ran the attack script against the honeypot.

The emulator handled perfectly all the content and session dependencies,
traversing the whole path of the state machine.

Automatic Handling of Protocol Dependencies 201

Fig. 7. Test scenario

The output of the attack script is indistinguishable from the one of a successful
attack against a real host (table 1), proving the quality of the emulation.

It is important to notice that this is a complete validation of the region analysis
approach. It started from a rich training set, without any kind of additional
information, and successfully handled a conversation with same structure, but
with partially different content (different process IDs, different timestamps).

5.2 Reaction to Unknown Activities

In this section we want to experiment with ScriptGen’s capability to react to new
activities and to automatically refine existing state machines retrieving training
information through proxying. We know from the previous experimental results
that, given a sufficient number of training samples, ScriptGen is able to carry
on a complete conversation with a client. Here we want to inspect the ability of
the emulator to produce its own training set to refine the state machine, and its
ability to reliably identify new activities.

The experiments have been run in a very simple test scenario, shown in Figure
7. The attack is run against a ScriptGen honeypot, that is allowed to rely on a Win-
dows 2000 virtual machine using the proxying algorithm described in Section 4.3.

Learning. The first aspect that we want to inspect is ScriptGen’s ability to
reliably refine the state machine. Given a certain activity, initially unknown,
ScriptGen should take advantage of proxying to build its own training set and
refine the state machine. After the refinement, ScriptGen must be able to cor-
rectly handle the activity, without contacting the proxy any more.

For refinement to be reliable, the training set must be diverse enough to allow
a correct inference of its semantics. If the training set is not diverse enough,
coincidental matches of mutable values may lead to wrong deductions on their
nature. If this happens, following instances of the same activity may not match
the generated transitions. This may generate erroneous alerts for new activities
(false positives). Therefore the refinement condition, that triggers the refinement

202 C. Leita, M. Dacier, and F. Massicotte

Table 2. Experimental results

N # false alerts # critical requests
3 3 3
5 3 3
10 0 0
20 2 1
50 0 0

of the state machine when the samples are considered to be diverse enough,
becomes critical.

In this first scenario, the ScriptGen honeypot has been deployed with an
empty state machine for port 139. We used different refinement conditions, and
then ran 100 times the same activity (the same exploit used to study the em-
ulation quality). Since the different runs of the activities are spaced in time by
approximately 10 seconds, we considered as a good measure of diversity (also
from a temporal point of view) different thresholds on the number of available
training samples. When the number of samples retrieved through proxying is
equal to N, ScriptGen refines the state machine and then continues emulation.
Running the experiment in the same conditions using different values of N and
then inspecting the resulting state machines will give a measure of the sensitivity
of ScriptGen to the lack of diversity of the samples.

Table 2 shows the relevant characteristics of the generated state machines. If
the training sample is not diverse enough, ScriptGen will generate false alerts.
That is, after the first refinement of the state machine the emulator will not be
able to correctly match successive requests, interpreting them as a new activity.
The number of false alerts is therefore connected to the quality of the training
samples. We expect a decreasing number of false alerts when increasing the value
of N. After each alert ScriptGen will again use proxying to collect a training
sample, and refine the existing state machine with one or more functional paths.

It is also important to understand whether or not these unmatched requests
are observed at a critical point of the state machine: there might be a particularly
complex request for which region analysis is not able to generate a reliable transi-
tion. For this reason we count the number of nodes that triggered an unmatching
transition, which therefore corresponds to the number of critical requests in the
protocol state machine.

Figure 8 gives a visual explanation of the two concepts previously explained.
While the first case can be considered as a symptom of a general lack of variabil-
ity, the second case is probably due to a more specific problem in a given request.
Referring to Table 2, we can map the first case to low values of N (N=3,N=5)
while we can find an example of the second case for N=20.

A first striking result is the fact that in all cases, ScriptGen has been able to gen-
erate a complete state machine at the first time the refinement condition has been
triggered. But since some of the protocol variability is linked to time-dependent
fields (timestamps, and as we will see process IDs), the produced refinements in-
corporate false deductions that lead to unmatched requests after some time.

Automatic Handling of Protocol Dependencies 203

Fig. 8. Different refinement cases

When N is equal to 20 we can experience a rather strange artifact. For the
second request in the conversation, 2 false alerts are generated. Inspecting the
transitions, we can notice that the artifact is due to the last byte of the process
ID: it is considered as a fixed region. Since this value is stored following the
little-endian convention in the NetBIOS protocol, it actually corresponds to the
high part of the process identifier of the attacking client. Since process identifiers
are often assigned sequentially, and since the attacking host was not reverted to
initial conditions during the experiment, this is not surprising. It is a clear case
in which the lack of variability of the samples leads ScriptGen to make wrong
assumptions. Only with N equal to 50 we have enough variability to correctly
classify the byte as part of a mutating region. In the case N equal to 10, the
problem was not raised only by a fortunate sequence of 100 process IDs having
all the same high part.

It is important to understand that some of the lack of diversity that we en-
countered in this experiment is due to specific artifacts of the chosen scenario.
We are running every attack instance from the same host in an iterative way.
This means that the process ID in the SMB header, usually appearing as a ran-
dom field, here has incremental values. In a real attack scenario in which the
honeypot is contacted by many different hosts, the diversity of this field would
be greatly increased and so probably the number of samples required to generate
reliable refinements would decrease. However, ScriptGen has been able to cor-
rectly generate a reliable refinement of an initially empty state machine using a
training set of 50 conversations automatically generated through proxying. This
validates the ability of ScriptGen to learn new activities.

Triggering new activities. After having shown how ScriptGen is able to pro-
duce refinements to the state machine, we need to investigate its capability to
reliably detect new activities. The previous section investigated the ability to
generate reliable refinements, and therefore ScriptGen’s ability of not generat-
ing false positives. Here we want to investigate ScriptGen’s ability to reliably
detect new activities, and therefore false negatives. To do so, we deployed a new
ScriptGen honeypot, in the same configuration as shown in Figure 7, but already
instructed with the state machine generated in the previous example for a value
of N equal to 50. Then we run against this honeypot a new activity on the same
port, namely the Microsoft PnP MS05-039 Overflow [17]. We followed the same
pattern used in the previous experiment: 100 runs spaced in time choosing a

204 C. Leita, M. Dacier, and F. Massicotte

triggering threshold equal to 50. The attack followed the first path for the first
5 requests, and only at that point triggered an unmatched request. Using just
50 samples of interaction, ScriptGen has been able to correctly refine the state
machine adding a single path to the existing one. The refined state machine
correctly handled all the 50 successive runs of the attack.

This is an extremely important result. First of all, it shows how ScriptGen-
based honeypots are able to reliably identify new activities. Also, since the two
activities are identifiable only after the exchange of 5 couples of request/answer,
it validates the importance and the power of the ScriptGen approach with respect
to the current state of the art in honeypot technology.

6 Conclusion

In this paper, we have shown the feasibility of using a completely protocol-
unaware approach to build scripts to emulate the behavior of servers under
attack. As opposed to the approach considered by the authors of the RolePlayer
system, we have deliberately refused to take advantage of any heuristic to rec-
ognize important fields in the arguments received from the clients or sent by
the servers. Instead, by using several instances of the same attack, we can auto-
matically retrieve the fields which have some importance from a semantic point
of view and are important to let the conversation between the client and server
continue. More specifically, we have shown that two distinct types of dependency
are important to take into account. We have named them, respectively, intra-
protocol and inter-protocol dependencies. We have proposed new algorithms to
handle them efficiently. We have also shown that this newly created mechanism
can be further enhanced to create new scripts online as new attacks are appear-
ing by, temporarily, proxying the requests and responses between the attackers
and a real server. Experimental results obtained with our approach are very
good and demonstrate the potential inherent in the large-scale deployment of
honeynets such as our Leurre.com project [3,4,5,6,7,8]. The ScriptGen approach
would in fact allow us to collect an even richer data set than the one we have
accumulated so far.

References

1. Spitzner, L.: Honeypots: Tracking Hackers. Addison-Welsey, Boston (2002)
2. Provos, N.: A virtual honeypot framework. In: Proceedings of the 12th USENIX

Security Symposium. (2004) 1–14
3. Dacier, M., Pouget, F., Debar, H.: Attack processes found on the internet. In:

NATO Symposium IST-041/RSY-013, Toulouse, France (2004)
4. Dacier, M., Pouget, F., Debar, H.: Honeypots, a practical mean to validate ma-

licious fault assumptions. In: Proceedings of the 10th Pacific Ream Dependable
Computing Conference (PRDC04), Tahiti (2004)

5. Dacier, M., Pouget, F., Debar, H.: Honeypot-based forensics. In: Proceedings of
AusCERT Asia Pacific Information Technology Security Conference 2004, Bris-
bane, Australia (2004)

Automatic Handling of Protocol Dependencies 205

6. Dacier, M., Pouget, F., Debar, H.: Towards a better understanding of internet
threats to enhance survivability. In: Proceedings of the International Infrastructure
Survivability Workshop 2004 (IISW’04), Lisbonne, Portugal (2004)

7. Dacier, M., Pouget, F., Debar, H.: Leurre.com: On the advantages of deploying
a large scale distributed honeypot platform. In: Proceedings of the E-Crime and
Computer Conference 2005 (ECCE’05), Monaco (2005)

8. Dacier, M., Pouget, F., Debar, H.: Honeynets: foundations for the development of
early warning information systems. In Kowalik, J., Gorski, J., Sachenko, A., eds.:
Proceedings of the Cyberspace Security and Defense: Research Issues. (2005)

9. CERT: Cert advisory ca-2003-20 w32/blaster worm (2003)
10. Leita, C., Mermoud, K., Dacier, M.: Scriptgen: an automated script generation tool

for honeyd. In: Proceedings of the 21st Annual Computer Security Applications
Conference. (2005)

11. Needleman, S., Wunsch, C.: A general method applicable to the search for similar-
ities in the amino acid sequence of two proteins. J Mol Biol. 48(3):443-53 (1970)

12. Cui, W., Vern, P., Weaver, N., Katz, R.H.: Protocol-independent adaptive replay of
application dialog. In: The 13th Annual Network and Distributed System Security
Symposium (NDSS). (2006)

13. Freiling, F.C., Holz, T., Wicherski, G.: Botnet tracking: Exploring a root-cause
methodology to prevent distributed denial-of-service attacks. In: Lecture Notes in
Computer Science, Springer-Verlag GmbH (2005) 319–335

14. The Honeynet Project: Know your enemy: Tracking botnets. Know Your Enemy
Whitepapers (2005)

15. Massicotte, F., Couture, M., De Montigny-Leboeuf, A.: Using a vmware network
infrastructure to collect traffic traces for intrusion detection evaluation. In: Pro-
ceedings of the 21st Annual Computer Security Applications Conference. (2005)

16. OSVDB: Microsoft windows lsass remote overflow, http://www.osvdb.org/5248
(2006)

17. OSVDB: Microsoft pnp ms05-039 overflow, http://www.osvdb.org/18605 (2005)

	Introduction
	State of the Art
	Related Work and Novel Contributions
	Dependencies and Proxies
	Intra-protocol Dependencies
	Inter-protocols Dependencies
	Proxying and Incremental Refinement

	Testing
	Emulation Quality
	Reaction to Unknown Activities

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

