

Lecture Notes in Computer Science 4219
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Diego Zamboni Christopher Kruegel (Eds.)

Recent Advances in
Intrusion Detection

9th International Symposium, RAID 2006
Hamburg, Germany, September 20-22, 2006
Proceedings

13

Volume Editors

Diego Zamboni
IBM Research GmbH
Zurich Research Laboratory
Säumerstr. 4, Postfach, 8803 Rüschlikon, Switzerland
E-mail: dza@zurich.ibm.com

Christopher Kruegel
Technical University of Vienna
Secure Systems Lab
Treitlstrasse 3, A-1040 Vienna, Austria
E-mail: chris@auto.tuwien.ac.at

Library of Congress Control Number: 2006932117

CR Subject Classification (1998): K.6.5, K.4, E.3, C.2, D.4.6

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-540-39723-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-39723-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11856214 06/3142 5 4 3 2 1 0

Preface

On behalf of the Program Committee, it is our pleasure to present the proceed-
ings of the 9th Symposium on Recent Advances in Intrusion Detection (RAID
2006), which took place in Hamburg, Germany, on September 20-22, 2006.

As every year since 1998, the symposium brought together leading researchers
and practitioners from academia, government and industry to discuss intrusion
detection research and practice. We had sessions on anomaly and specification-
based detection, network-based intrusion detection, attacks against intrusion
detection systems, IDS evaluation and malware analysis.

The RAID 2005 Program Committee received 93 paper submissions from
all over the world, including 15 papers submitted as “Big Challenge, Big Idea”
papers. All the submissions were carefully reviewed by several members of the
Program Committee and evaluated on the basis of scientific novelty, importance
to the field, and technical quality. Final selection took place at the Program
Committee meeting held on June 1st and 2nd in Zürich, Switzerland. Sixteen
papers were selected for presentation and publication in the conference pro-
ceedings, placing RAID among the most competitive conferences in the area of
computer security.

This year we announced “Big Challenge, Big Idea” as a theme. We encouraged
submissions in a separate category, looking for papers that described fundamen-
tal problems that have not yet been tackled by intrusion detection research, or
bold, risky or controversial ideas for potential research or solutions.

A successful symposium is the result of the joint effort of many people. In
particular, we would like to thank all the authors who submitted papers, whether
accepted or not. We also thank the Program Committee members and additional
reviewers for their hard work in evaluating the submissions. In addition, we want
to thank the General Chair, Dieter Gollmann, for handling the conference ar-
rangements, Robert Cunningham for publicizing the conference, James Riordan
for putting together the conference proceedings, Klaus-Peter Kossakowski for
finding sponsor support, and Jan Meier for maintaining the conference Web
site. Finally, we extend our thanks to the Northwest Security Institute (NSWI)
and Cisco Systems for their sponsorship of student scholarships.

September 2006 Diego Zamboni
Christopher Kruegel

Organization

RAID 2006 was organized by the Technical University of Hamburg-Harburg and
held in conjunction with ESORICS 2006.

Conference Chairs

General Chairs Dieter Gollmann (Technical University
Hamburg-Harburg), Andreas Günter(HiTech)

Program Chair Diego Zamboni (IBM Zurich Research
Laboratory)

Program Co-chair Christopher Kruegel (Technical University
Vienna)

Publication Chair James Riordan (IBM Zurich Research
Laboratory)

Publicity Chair Robert Cunningham (MIT Lincoln Laboratory)
Sponsorship Chair Klaus-Peter Kossakowski (PRESECURE

Consulting)

Program Committee

Magnus Almgren Chalmers University, Sweden
Michael Behringer Cisco Systems, Inc., USA
Sungdeok Cha Korea Advanced Institute of Science and

Technology, Korea
Steve J. Chapin Systems Assurance Institute, Syracuse

University, USA
Andrew Clark Queensland University of Technology, Australia
Crispin Cowan Novell, USA
Robert Cunningham MIT Lincoln Laboratory, USA
Olivier De Vel Department of Defence, Australia
Farnam Jahanian University of Michigan and Arbor Networks,

USA
Somesh Jha University of Wisconsin, Madison, USA
Klaus-Peter Kossakowski DFN-CERT, Germany
Christopher Kruegel Technical University Vienna, Austria
Kwok-Yan Lam Tsinghua University, China
Ulf Lindqvist SRI International, USA
Raffael Marty ArcSight, Inc., USA
George Mohay Queensland University of Technology, Australia
Benjamin Morin Supélec, France

VIII Organization

Program Committee (Continued)

Peng Ning North Carolina State University, USA
James Riordan IBM Zurich Research Laboratory, Switzerland
Rei Safavi-Naini University of Wollongong, Australia
Dawn Song Carnegie Mellon University, USA
Sal Stolfo Department of Computer Science, Columbia

University, USA
Toshihiro Tabata Okayama University, Japan
Kymie Tan Carnegie Mellon University, USA
Vijay Varadharajan Macquarie University, Australia
Giovanni Vigna University of California at Santa Barbara,

USA
Jianying Zhou Institute for Infocomm Research, Singapore

Steering Committee

Marc Dacier (chair) Eurecom, France
Hervé Debar France Telecom R&D, France
Deborah Frincke Pacific Northwest National Lab, USA
Ming-Yuh Huang The Boeing Company, USA
Erland Jonsson Chalmers, Sweden
Wenke Lee Georgia Institute of Technology, USA
Ludovic Mé Supélec, France
S. Felix Wu UC Davis, USA
Andreas Wespi IBM Research, Switzerland
Alfonso Valdes SRI International, USA
Giovanni Vigna UCSB, USA

Additional Reviewers

Hirotake Abe Japan Science and Technology Agency, Japan
Stig Andersson Queensland University of Technology, Australia
Mark Branagan Queensland University of Technology, Australia
Hyung Chan Kim Gwangju Institute of Science and Technology,

Korea
Malcolm Corney Queensland University of Technology, Australia
Siu-Leung Chung Open University of Hong Kong
Gabriela F. Cretu CS Department Columbia University, USA
Meng Ge Tsinghua University, China
Daniel Hedin Chalmers University of Technology and

Göteborg University, Sweden

Organization IX

Additional Reviewers (Continued)

Matt Henricksen Queensland University of Technology, Australia
Jeffrey Horton University of Wollongong, Australia
Corrado Leita Eurecom, France
Wei-Jen Li CS Department Columbia University, USA
Zhuowei Li Indiana University, USA
Liang Lu University of Wollongong, Australia
Andreas Moser Technical University Vienna
Yoshihiro Oyama University of Electro-Communications, Japan
Janak Parekh CS Department, Columbia University, USA
Van Hau Pham. Eurecom, France
Bradley Schatz Queensland University of Technology, Australia
Jinyang Shi Tsinghua University, China
Hongwei Sun Tsinghua University, China
Olivier Thonnard Eurecom, France
Uday K. Tupakula Macquarie University, Australia
Ke Wang CS Department, Columbia University, USA
Jacob Zimmermann Queensland University of Technology, Australia

Table of Contents

Recent Advances in Intrusion Detection

Anomaly Detection

A Framework for the Application of Association Rule Mining in Large
Intrusion Detection Infrastructures . 1

James J. Treinen, Ramakrishna Thurimella

Behavioral Distance Measurement Using Hidden Markov
Models . 19

Debin Gao, Michael K. Reiter, Dawn Song

Attacks

Automated Discovery of Mimicry Attacks . 41
Jonathon T. Giffin, Somesh Jha, Barton P. Miller

Allergy Attack Against Automatic Signature Generation 61
Simon P. Chung, Aloysius K. Mok

Paragraph: Thwarting Signature Learning by Training
Maliciously . 81

James Newsome, Brad Karp, Dawn Song

System Evaluation and Threat Assessment

Anomaly Detector Performance Evaluation Using a Parameterized
Environment . 106

Jeffery P. Hansen, Kymie M.C. Tan, Roy A. Maxion

Ranking Attack Graphs . 127
Vaibhav Mehta, Constantinos Bartzis, Haifeng Zhu, Edmund Clarke,
Jeannette Wing

Using Hidden Markov Models to Evaluate the Risks of Intrusions 145
André Årnes, Fredrik Valeur, Giovanni Vigna,
Richard A. Kemmerer

XII Table of Contents

Malware Collection and Analysis

The Nepenthes Platform: An Efficient Approach to Collect Malware 165
Paul Baecher, Markus Koetter, Thorsten Holz,
Maximillian Dornseif, Felix Freiling

Automatic Handling of Protocol Dependencies and Reaction to 0-Day
Attacks with ScriptGen Based Honeypots . 185

Corrado Leita, Marc Dacier, Frederic Massicotte

Fast and Evasive Attacks: Highlighting the Challenges Ahead 206
Moheeb Abu Rajab, Fabian Monrose, Andreas Terzis

Anomaly- and Specification-Based Detection

Anagram: A Content Anomaly Detector Resistant to Mimicry
Attack . 226

Ke Wang, Janak J. Parekh, Salvatore J. Stolfo

DEMEM: Distributed Evidence-Driven Message Exchange Intrusion
Detection Model for MANET . 249

Chinyang Henry Tseng, Shiau-Huey Wang, Calvin Ko, Karl Levitt

Network Intrusion Detection

Enhancing Network Intrusion Detection with Integrated Sampling
and Filtering . 272

Jose M. Gonzalez, Vern Paxson

WIND: Workload-Aware INtrusion Detection . 290
Sushant Sinha, Farnam Jahanian, Jignesh M. Patel

SafeCard: A Gigabit IPS on the Network Card . 311
Willem de Bruijn, Asia Slowinska, Kees van Reeuwijk,
Tomas Hruby, Li Xu, Herbert Bos

Author Index . 331

A Framework for the Application of Association
Rule Mining in Large Intrusion Detection

Infrastructures

James J. Treinen1 and Ramakrishna Thurimella2

1 IBM Global Services, Boulder, CO 80301, USA
jamestr@us.ibm.com

2 University of Denver, Denver, CO 80208, USA
ramki@cs.du.edu

Abstract. The high number of false positive alarms that are generated
in large intrusion detection infrastructures makes it difficult for opera-
tions staff to separate false alerts from real attacks. One means of re-
ducing this problem is the use of meta alarms, or rules, which identify
known attack patterns in alarm streams. The obvious risk with this ap-
proach is that the rule base may not be complete with respect to every
true attack profile, especially those which are new. Currently, new rules
are discovered manually, a process which is both costly and error prone.
We present a novel approach using association rule mining to shorten the
time that elapses from the appearance of a new attack profile in the data
to its definition as a rule in the production monitoring infrastructure.

Keywords: Association Rules, Data Mining, Intrusion Detection, Graph
Algorithms.

1 Introduction

Attempts to compromise networked computing resources generally consist of
multiple steps. The first of these is the reconnaissance phase, consisting of the
identification of target operating systems, port scanning, and vulnerability enu-
meration. This is followed by the exploitation of the weaknesses discovered during
the initial intelligence gathering process. A successful attack often ends with the
installation of back door channels so that the attacker can easily gain access to
the system in the future [29].

If an intrusion detection infrastructure is in use at the victim network during
this process, each action by the attacker has the potential to raise an alarm,
alerting the security staff to the presence of malicious activity in the network.
Generally speaking, intrusion detection sensors do not have the ability to ag-
gregate the alarms for the discrete activities into an end-to-end attack profile.
Given that an alarm is raised for each perceived malicious action, the typical
intrusion detection sensor can generate many thousands of alarms per day. Un-
fortunately, the vast majority of these alarms are false positives [20], and the
task of separating the real attacks from false alarms quickly becomes daunting.

D. Zamboni and C. Kruegel (Eds.): RAID 2006, LNCS 4219, pp. 1–18, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 J.J. Treinen and R. Thurimella

As noted by Lippmann, et al. in [26], the deployment of an inaccurate Intrusion
Detection Sensor (IDS) can have undesirable effects in addition to simply missing
certain types of attacks. The first of these is the potential to reduce the level
of vigilant monitoring by security operations staff, due to the false sense of
security provided by the IDS. Secondly, using operations staff to examine all of
the alarms produced in a day can make the deployment of a typical IDS system
extremely expensive in terms of support and labor costs. These issues are further
compounded in large monitoring infrastructures where the number of managed
sensors can easily reach into the thousands, generating millions of alerts per
day.

The context for our experiments is that of a large Managed Security Ser-
vice Provider (MSSP). Our experiments were conducted on a production data
set that was generated by roughly 1000 IDS sensors. The sensor technologies
used to generate the data set represented multiple vendors and versions of their
software, and were installed across 135 distinct customer networks. The alarm
logs generated by the sensors were consolidated at a Security Operations Center
(SOC) which used a third party Enterprise Security Manager (ESM) with the
ability to monitor the incoming alarm stream and match the alarms against a
predefined set of meta rules. It is these meta rules which the operations staff
use to detect intrusions across the networks they monitor. Similar to signature
based intrusion detection sensors, the ESM uses pattern matching to detect pre-
defined patterns in the incoming alarm streams. If the base alarms arriving at
the ESM consolidation point match a predefined attack rule in the monitoring
engine, a meta alarm is triggered and displayed on the operations staff’s console
for inspection.

Because new vulnerabilities are discovered every day, new alarm signatures are
continuously installed on the intrusion detection sensors. This highly dynamic
environment produces a genuine challenge in terms of keeping the rule base in
the ESM current. Our framework provides a means of reducing the amount of
labor required to keep the rules current in the ESM, while at the same time
significantly reducing the amount of time which elapses from the appearance of
a new attack profile in the data to installation of the corresponding rule in the
production monitoring environment.

The time from the appearance of new attack profiles to the time when new
rules describing them are implemented is critical. Any delay in updating the
rule base could result in potentially undetected attacks. The amount of man-
ual inspection currently required to discover new rules makes staffing to meet
these time demands very expensive. We have found that using our framework
to automate this task drastically decreases the amount of manual inspection re-
quired. This in turn has the net effect of decreasing the time from discovery to
implementation as well as decreasing the over all cost of maintenance.

The concept of association rule mining for intrusion detection was introduced
by Lee, et al. in [22], and is extended in [6,24,27]. Their approach is to use the
rules returned by the association rule algorithm to prove that causal relation-
ships exist between a user, and the type of entries that are logged in the audit

A Framework for the Application of Association Rule Mining 3

data as a result of their actions on the system. Our research has shown that in
the same manner that [22,24] were able to demonstrate the existence of causal
relationships between users and the entries logged in system audit data as a
result of their actions, it is possible to show causal relationships between an at-
tacker and the combination of alarms which are generated in intrusion detection
logs as a result of their behavior in a network. We were then able to use the
patterns which were discovered using our data mining technique to configure
new rules for the ESM system in a rapid and economical way. As a means of
demonstrating this, we include examples of attack activity which answer the
following questions:

1. What techniques did the attacker employ?
2. How were these techniques manifested as patterns in the IDS alarm logs?
3. Was our framework able to detect these patterns?
4. How did the discovered patterns result in a new rule in the ESM?

As with all data mining solutions, much up-front work must be done adjusting
the parameters for the algorithm so that optimal results are obtained. There is
no silver bullet configuration, and it is noted throughout the literature that when
using association rule mining, the features which are chosen for examination are
critical to the success of the algorithm [24,30].

The remainder of this paper is organized as follows. Related work is discussed
in Section 2. Section 3 provides an overview of the experimental environment,
a brief description of data mining terminology, and a discussion of representing
alarms as directed graphs. Section 4 defines our approach, including a novel
alarm filtering technique. Section 5 describes our results, and provides example
rules which were generated using our framework. Section 6 presents concluding
remarks.

2 Related Work

Many data mining techniques have been applied to intrusion detection. The vast
majority of the research has concentrated on mining various types of system
audit data, or raw network traffic in order to build more accurate IDS devices
[6,13,22,23,24,25,30,33,34,35].

The use of data mining has also been employed to examine alarm logs, specif-
ically using cluster analysis to classify alarms into attack and benign categories
[20,24] and to perform root cause analysis regarding the cause of false alarms in
[17,18,20,21]. The results obtained using cluster analysis can vary widely depend-
ing on which algorithm and distance measure is used. These issues are discussed
at length in [10,14,20,22,24,30,33,37].

In order to be truly effective, the use of data mining techniques must be one
step in an over all Knowledge Discovery in Databases (KDD) process. This case
is made repeatedly in the literature, e.g. [30] who use cluster analysis solely as the
initial step in their data exploration. It is reiterated in [17,18,20,21] that although

4 J.J. Treinen and R. Thurimella

the research tends to focus on the mining algorithm employed, it is only one step
in the overall KDD process. They also note that without all of these steps, data
mining runs a high risk of finding meaningless or uninteresting patterns. It is for
this reason that [37] propose their end-to-end KDD architecture. Julisch outlines
the basic KDD steps as follows in [18], as condensed from their original definition
in [9] :

1. Understand the application domain
2. Data integration and selection
3. Data mining
4. Pattern evaluation
5. Knowledge presentation

A similar outline is made in [30], who also note that once a group of domain
experts is consulted, the entire process should be automated.

3 Preliminaries

3.1 Experimental Environment

Figure 1 describes our data mining architecture. As the alarms arrive at the
SOC, they are stored temporarily in a database on the monitoring engine. From
this database we extracted the set of all alarms generated in a single day for
all networks and loaded them into a data warehouse. It is on this warehouse
that we executed the data mining algorithms with the goal of generating new
monitoring rules for installation in the ESM.

Sensor 1

Enterprise Security Management
System

Sensor 2 Sensor n

Temporary
Alarm

Storage

Analytical
Warehouse

Association Rule
Data Mining

Security Operations Analyst

Fig. 1. The Association Rules Data Mining Architecture

A Framework for the Application of Association Rule Mining 5

3.2 Data Mining Terminology

In our analysis, we employ the use of association rule mining [1]. Because the field
of data mining is very mature, rather than focusing on improving existing rule
algorithms, we make use of the functionality that is available in DB2 Intelligent
Miner for Modeling v8.2, which provides a fast algorithm for finding association
rules. The main goal of association rule mining is to locate non-obvious interrela-
tionships between members of a large data set [16]. The goal of our analysis is to
find associations between the various attack signatures and IP addresses which
constitute true attacks on the network, and capture them as rules in the ESM
rule engine so that the SOC can easily detect future instances of the attack. The
association rules algorithm generates rules in the following form, as well as some
statistics which describe their strength and quality.

[x][y] → [z]

Support = 50

Confidence = 80

This rule indicates that a relationship exists between the items x, y and z.
Specifically, the rule states that whenever x and y were present in a given group-
ing, known as a transaction, then z was present as well. The Support value states
that this specific grouping of three items represents 50 percent of the transac-
tions which were examined. The Confidence value states that 80 percent of the
time that the items x and y were found together, the item z was also found [16].

Formally, let I = {i1, i2, ..., in} be a set of items. Given a set of transactions
D, where each transaction is defined as a set of items T ⊆ I, a transaction T
contains X if X ⊆ T . An association rule is an implication X ⇒ Y , where X ⊂ I,
Y ⊂ I, and X ∩Y = ∅. The association rule X ⇒ Y holds in the transaction set
D with a Confidence c if c percent of transactions in D which contain X also
contain Y . The association rule X ⇒ Y has a Support value s in the transaction
set D if s percent of the transactions in D contain X ∪ Y [1].

In our results, the Support values are typically less than 5 percent. This is due
to the fact that thousands of signatures exist in the monitoring infrastructure,
and generally the rules which are discovered cover only a small percentage of the
total signature set for a given day.

3.3 Modeling Alarms as Directed Graphs

In order to facilitate a novel technique for filtering the number of alarms which
must be analyzed during the mining process, we generated a directed graph
which modeled the alarms to be examined. Each entry in the data warehouse
included both the source IP address and destination IP address for which the
alarm was raised. We deduced the direction of each potential attack from this
information. We then generated a directed graph G = (V, E) such that each IP
address was represented as a vertex in the graph, and each edge was represented

6 J.J. Treinen and R. Thurimella

Table 1. Typical Intrusion Detection Alarms

Network ID Source IP Destination IP Signature

Network A 10.0.0.1 10.0.0.4 Signature 1
Network A 10.0.0.2 10.0.0.4 Signature 1
Network A 10.0.0.3 10.0.0.4 Signature 2
Network A 10.0.0.5 10.0.0.7 Signature 2
Network A 10.0.0.6 10.0.0.7 Signature 2
Network A 10.0.0.7 10.0.0.8 Signature 2
Network A 10.0.0.9 10.0.0.13 Signature 3
Network A 10.0.0.10 10.0.0.13 Signature 4
Network A 10.0.0.11 10.0.0.13 Signature 5
Network A 10.0.0.12 10.0.0.13 Signature 6

by a detected alarm. The edge was drawn from the source IP address toward the
destination IP address, corresponding to the direction of the alarm.

The results are such that the IDS alarms which are shown in Table 1 are
modeled as the directed graph shown in Figure 2.

10.0.0.1

10.0.0.2

10.0.0.3

10.0.0.4

10.0.0.5

10.0.0.6

10.0.0.7 10.0.0.8

10.0.0.9 10.0.0.10

10.0.0.11

10.0.0.13

10.0.0.12

Fig. 2. Intrusion Detection Alarms as a Directed Graph With Three Connected Com-
ponents

3.4 Data Set Reduction Using the Connected-Component
Algorithm

The number of alarms produced in large intrusion detection environments can
easily be on the order of millions of rows per day. We have observed raw event

A Framework for the Application of Association Rule Mining 7

counts approaching 10 million events per day. We knew that most of these alarms
were false positives, however it was not possible to label precisely which alarms
were of genuine concern [17,18,20,21]. Because of the large volumes of data that
required analysis, it was beneficial from a performance perspective to trim away
any data that we knew to be irrelevant before starting the mining activities. In
order to facilitate this, we represented the alarm logs as directed graphs, which
allowed us to employ the use of graph algorithms to limit the scope of our inquiry.
This process was only possible if we had a priori knowledge of a signature for
which we wished to discover new rules.

When considering the problem of finding rules which exist between distinct
signature and IP address combinations, it was important to note that there
were alarms in the overall data set that could not be related to one another.
For example, while examining one set of alarms, if we knew that another set of
alarms could not be related to it, we removed the second set from consideration.

Drawing on our earlier discussion of alarm logs as directed graphs, we could
translate the set of alarms in Table 1 into the directed graph shown in Figure 2,
which displays three easily identified connected components. Limiting our mining
activity solely to alarms in the same connected component allowed us to explore
only relationships between alarms which could legitimately exist. A complication
arose in the case of slave nodes which were controlled by a master who was not
represented in the graph. We designated this scenario to be out of scope for our
experiments.

When attempting to discover rules for a specific signature, a natural question
arises as to why we did not simply limit the alarms to those which were produced
by a source IP address that also produced the signature undergoing analysis.
Reducing the data set in this manner was possible if we were interested only
in the detection of single-source attacks for a specific signature. We would then
examine the set of all alarms generated by a source IP address which triggered
the signature in question. However, trimming the data in this way would severely
limit any further analysis that we wished to perform on the set of alarms. By
carrying the other relevant alarms from the connected component, we have access
to a greater number of signatures and IP addresses for analysis. We also preserved
the ability to perform further analysis by grouping on fields other than the
source IP address if we found that a more extensive exploration of the data was
warranted.

For example, consider a multi-stage attack consisting of a reconnaissance event
which discovered a vulnerability on the target and exploited it in a way that in
turn attacked a third system. Table 2 lists alarms which would constitute such a
scenario. These alarms are shown graphically in Figure 3. The reconnaissance and
subsequent exploit occur between 10.0.0.5 and 10.0.0.7. A successful compromise
of 10.0.0.7 by 10.0.0.5 is then used to further attack 10.0.0.8.

If we had specified the reconnaissance signature as the input to the mining
process and trimmed away all IP addresses which did not trigger that signature,
we would have missed the second half of the attack. As such, limiting the alarms
that we examine only to those which occur in the same connected component

8 J.J. Treinen and R. Thurimella

Table 2. Intrusion Detection Alarms for a Multi-Stage Attack

Network ID Source IP Destination IP Signature

Network A 10.0.0.5 10.0.0.7 Reconnaissance
Network A 10.0.0.5 10.0.0.7 Exploit 1
Network A 10.0.0.7 10.0.0.8 Exploit 2
Network A 10.0.0.6 10.0.0.7 False Alarm

10.0.0.5

10.0.0.6

10.0.0.7 10.0.0.8

Reconaisance

Exploit 1

Exploit 2

Fig. 3. A Multi-Stage Attack Scenario

provided the appropriate balance of efficiency without interfering with our ability
to perform complex analysis of the relevant data. On average, we were able to
reduce the amount of data that required analysis by 30 percent. However, our
ability to reduce the amount of data we inspected was sometimes diminished
in the case of graphs which were nearly fully connected. Because this type of
graph produced one large connected component comprised of the majority of the
alarms, the amount of data which we were able to trim away prior to executing
the association rule algorithm was in some cases reduced to less than 5 percent.

4 The Approach

Our experiments were conducted on the set of alarm logs generated by network-
based intrusion detection sensors over a 24-hour period for 135 distinct pro-
duction networks. The alarms were loaded into a data warehouse specifically
engineered to facilitate efficient off-line analysis of intrusion detection alarms us-
ing association rule mining techniques. We repeated the experiments on a daily
basis for 30 days.

4.1 Generation of Signature Specific Rules

Our first set of experiments were conducted with the goal of discovering new
rules for a signature which was thought to be exhibiting suspicious behavior. We

A Framework for the Application of Association Rule Mining 9

accomplished this by first selecting the set of connected components in which
the suspected signature was present, and discarding all alarms that were not
members of these connected components. Once we had filtered the data in this
way, we then executed the association rule algorithm to see if any rules for this
signature were generated. Algorithm 1 describes this technique.

Algorithm 1. Find-Signature-Rules(G,s)
Require: G = (V, E), a directed graph of IDS Alarms, s a subject signature
1: C ←Connected-Components(G)
2: for all C′ ∈ C do
3: if s ∈ C′ then
4: copy all alarms in C′ to T
5: end if
6: end for
7: R ← Association-Rules(T)
8: Return R

Of the scenarios that we discuss, signature specific rule generation experienced
the lowest occurrence of success. One of the reasons for this was that rather than
being identified algorithmically, the signature examined was generally chosen
by a human operator who was simply curious as to whether any correlations
involving this signature were hidden in the data. The subject signature was most
often chosen for analysis based on an abnormally high volume of that signature
over a specific time period, or its appearance as a new signature where it had not
been previously detected. These scenarios might occur due to the introduction
of a previously unforeseen attack scenario into a network, or simply because of
software updates on the sensors themselves.

Over the course of our experiments, we were able to successfully generate rules
for specific signatures roughly 10 percent of the time. However, given that data
mining always requires manual evaluation and exploration of its results, we still
believe this to be an effective tool for operations staff to have at their disposal.
The skill of the user conducting the analysis had a great impact on the quality of
the results, which is consistent with the views expressed in [18,30,37]. We found
that as the user’s experience with the technique grew, their ability to choose
signatures for which rules would be generated grew as well.

Approximately half of the experiments uncovered patterns involving signa-
tures other than those which were the original subject of our exploration. In
some cases, the rules algorithm would produce more than 100 rules for a single
run. This appeared at first glance to be overwhelming, however, the rules which
exhibited very strong Confidence values floated to the top on their own merits,
and were easily identifiable.

If we were unable to safely remove significant numbers of rows from consid-
eration by filtering on connected component, the time required for the mining
algorithm to generate results grew rapidly. A side effect produced by this com-
plication was the generation of a very large number of rules by the algorithm.

10 J.J. Treinen and R. Thurimella

In some cases we observed rule counts as high as 8000 for a single network’s
data. This number of rules on its own is of limited value, as it does not solve the
problem of limiting the amount of data which must be examined manually by
operational staff. However, the vast majority of the time, the count of rules for a
single network on a single day was below 100. When a spike occurred, we found
it to be indicative of significant phenomena in the network being monitored. We
discuss these findings in a later section of this paper.

A useful means of tuning the number of rules returned by the association rule
algorithm was to adjust the minimum values for the Support and Confidence
parameters for the mining algorithm, which had the net effect of limiting the
number of rules which were produced. The obvious risk in limiting the rules to
those with a very high Support value is that any signature which generated low
volumes when compared to the volume of alarms in a single day will simply be
lost. It is for this reason that we generally left the Support value at a relatively
low setting, while enforcing a constraint of high Confidence values on the result
set. By doing this, we were able to limit the results to rules which were found
to hold the majority of the time.

4.2 Generation of Single Source Rules

Our framework generated the greatest number of high Confidence rules when
we grouped the transactions in the database by source IP address. When using
this approach it was not necessary to limit the rows we examined using the
connected components algorithm, though it was beneficial from a performance
perspective if we knew the signature for which we wished to perform the analysis,
and used this information to limit the data set before executing the association
rules algorithm. When performing single-source analysis, we also found that
setting the minimum values for the Support and Confidence parameters to 0
was useful. Intuitively, providing these low values for the Support and Confidence
parameters would produce an overwhelming number of rules. However, over the
course of our experiments we found that on average, a single source IP address
will trigger less than two signatures in any 24 hour period. Because we were
looking for correlations between signatures which were generated by a single
source, it was obvious that no rules would be generated for these IP addresses.
Because of this, 87 percent of our single-source experiments generated zero rules
for a given day’s data.

5 Efficacy of the Framework

The Confidence value given for a new rule was critical in determining how effec-
tive the rule would be in the production monitoring environment. On average,
66 percent of the rules we produced had a confidence value of 100, and rules
with a Confidence value over 80 were produced 86 percent of the time. We found
that certain types of attack activity generated very high volumes of rules with a
Confidence value of 100 percent. While these rules were not false positives, they

A Framework for the Application of Association Rule Mining 11

skewed the statistics. Disregarding them, the percentage of rules with a Confi-
dence value above 80 percent was 63 and the percentage of rules with Confidence
values of 100 was 43.

When applying our technique, we were able to detect attacks that did not
trigger meta alarms on the operational console. In one case, we were able to
detect an attack on a day where the ESM system received 1,543,997 alarms.
The detected attack was comprised of only 6 alarms, and did not result in a
meta alarm firing on the operational console. This is of great consequence as
this attack would otherwise have been lost in the noise of the 1.5 million other
alarms that flowed through the infrastructure that day. It was then possible to
code a rule describing this scenario into the ESM system so that future instances
would be detected.

5.1 Rule Examples

1. Web Server Attack:
Our first example does not indicate the reconnaissance approach which was
used to determine the list of web servers that underwent the detected attack,
as no reconnaissance signature was present in the alarm log that generated
this rule. It is possible that the technique used did not trigger an alarm, or
that the reconnaissance phase of the attack was carried out many days in
advance in an attempt to prevent detection. The alarms which were present
in the database which generated this rule are indicated in Table 3. The
IP addresses have been sanitized to prevent identification of the customer
network for which the analysis was performed.

Table 3. IDS Alarms for a Multi-Stage Web Server Attack

Network ID Source IP Destination IP Signature

Network A 24.9.61.170 192.168.2.4 AWStats configdir Command Exec
Network A 24.9.61.170 192.168.2.5 XMLRPC PHP Command Execution
Network B 24.9.61.170 192.168.2.16 AWStats configdir Command Exec
Network B 24.9.61.170 192.168.2.17 XMLRPC PHP Command Execution

...

Rule for Multi-Stage Web Server Attack
[AWStats configdir Command Exec]⇒ [XMLRPC PHP Command Execution]

Confidence = 100
Support = 3.45

12 J.J. Treinen and R. Thurimella

This rule involves two signatures generated by an attacker who was attempt-
ing to locate a vulnerability to exploit on a web server. The first stage of
the attack appeared in the alarm logs as multiple instances of the signature,
[AWStats configdir Command Exec], which fired as the attacker attempted
to execute an unauthorized command using the configdir variable of the aw-
stats.pl CGI script. The second phase of the attack appeared in the alarm
logs as the signature, [XML RPC PHP command Execution], which was
triggered as attempts were made to exploit an XMLRPC vulnerability via
SQL injection [7].
Our framework was able to detect this pattern by grouping alarms by the
source IP address, and looking for repetitive combinations. When grouped
together, these two signatures, when triggered by the same source IP ad-
dress, are indicative of an attacker who attempted multiple exploits before
either compromising the target server, or moving to another victim. Further,
because these were the only rules generated for this network on the day in
question, we can be almost certain that the activity was legitimate attack
activity and not part of an automated vulnerability scan. We observed this
same pattern on two distinct monitored networks on the same day, which
indicates further that the detected activity was a real attack.

2. Reconnaissance Attack:
This rule was generated using data from a network where an attacker was
attempting to locate vulnerable file shares to attack. A pattern was found
in the alarm logs for this customer which described a frequently occurring
pattern of two TCP-based reconnaissance signatures followed by a LANMan
share enumeration, which is a common means of locating vulnerable file
shares for future exploitation.

Rule for Reconnaissance Activity
[TCP Port Scan][TCP Probe HTTP]⇒ [LANMan share enum]

Confidence = 66.66
Support = 1.7

3. Scanning Activity:
Rules of this type frequently materialized when a network experienced a se-
ries of exploit and probing attempts. This type of brute force attack results
in a set of rules where the actual attacks span a wide range of signatures,
and are associated with a reconnaissance event in the form of a TCP port
scan. The goal of the attacker in these situations was to discover open vul-
nerabilities on a system to be exploited in future attacks. A special case
which had to be considered when searching for these types of attacks was
whether or not the scanning activity was legitimate traffic generated as part
of a policy verification procedure. This was most commonly caused by the
use of an automated scanning appliance under the control of the network
security staff as a means of ensuring that the hosts under their control had
been updated with the most recent security patches.

A Framework for the Application of Association Rule Mining 13

Rules for Scanning Activity
[RPC Race Condition Exploitation]⇒ [TCP SYN Port Sweep]

Confidence = 51
Support = 1.8

[SQL Query in HTTP Request]⇒ [TCP SYN Port Sweep]
Confidence = 43
Support = 1.7

[FTP RealPath Buffer Overflow]⇒ [TCP SYN Port Sweep]
Confidence = 100

Support = 0.2

4. Worm Related Rules:
Worms propagate by exploiting vulnerabilities to gain control of a victim
server, subsequently scanning the network for other vulnerable machines,
as to guarantee rapid and widespread infection before a patch can be im-
plemented. The following example rules define a multi-stage worm attack
which took advantage of file sharing vulnerabilities which exist in a widely
deployed operating system. The first rule correlates an overflow exploit of
an SMB vulnerability, and subsequent access. The existence of the [ICMP
L3 Retriever Ping]alert is indicative of Black/Nyxem worm activity.

Rule for Black/Nyxem Worm
[NETBIOS SMB–DS IPC unicode share access][ICMP L3retriever Ping]⇒

[NETBIOS SMB–DS Session Setup And request unicode username overflow attempt]
Confidence = 100

Support = 41

Another example of worm related patterns which we detected describes cor-
relations relevant to the SQL Slammer worm which ravaged the Internet in
2002, and is still frequently detected. This worm exploited a buffer overflow
vulnerability to execute malicious code and install itself on the victim ma-
chine, after which it scanned for other hosts to which it could propagate. Two
mature signatures exist for this worm in our monitoring environment. The
first signature describes the initial overflow attempt, followed by a propaga-
tion attempt. Our framework was able to determine that a strong correlation
exists between these two signatures. Using this information, we can then code
a new rule into the ESM which watches for this type of pattern, and raises
a meta alarm when it is detected.
While worms such as SQL Slammer are well known, we have shown that
our method can consistently detect the patterns which are generated in the
alarm stream by their propagation. Based on this, we feel that the tech-
niques presented here can be applied to detect future instances of emerging
worm traffic, independent of whether the intrusion detection sensors supply

14 J.J. Treinen and R. Thurimella

Rule for SQL Slammer Worm
[MS-SQL version overflow attempt]⇒ [MS-SQL Worm Propagation attempt]

Confidence = 100
Support = 35

worm specific signatures, or if the newly emerging worm manifests itself as
a combination of existing signatures.

5.2 Identification of High Risk Networks

As mentioned previously, we found that on average, 87 percent of our experi-
ments generated no rules for a given network over a 24-hour period. This trans-
lates to the total number of networks for which rules were produced in a single
24-hour period being 17 out of 135. Figure 4 shows a typical count of rules gen-
erated per monitored network on a logarithmic scale. In this case, 19 out of the
135 monitored networks produced rules. Of these 19 networks, 12 produced 10
or less rules for that particular day, while one network produced 117 and one
produced 2295. Graphing these counts highlights the anomalous networks, which
provides a useful tool for operational personnel to see which networks require
immediate attention.

Single Day Rule Count By Network ID

1

10

100

1000

10000

1 3 5 7 9 11 13 15 17 19

Network ID

N
u

m
b

er
 o

f
R

u
le

s

Rule Count

Fig. 4. Anomalous Network Activity as Shown by a Count of Rules Produced Per
Network for a Selected Day

5.3 Facilitation of Sensor Tuning and Root Cause Analysis

Much in the same way that Julisch describes the use of cluster analysis for the
identification of the root cause of false positive alarms in [18,20,21], we have

A Framework for the Application of Association Rule Mining 15

found that we can facilitate the determination of root causes of certain alarms
using our data mining framework.

Anomalous Network Activity

0

2000

4000

6000

8000

10000

2/
12

/2
00

6

2/
19

/2
00

6

2/
26

/2
00

6

3/
5/

20
06

3/
12

/2
00

6

Date

R
u

le
 C

o
u

n
t

Network 1

Fig. 5. Spikes Indicating Anomalous Activity For a Single Network

Figure 5 shows a 30-day trend of rule volumes broken out by day for a selected
network. The spikes represent the generation of 4854 and 7926 rules on two sepa-
rate days, respectively. When we inspected these rules, they appeared to describe
a denial of service attack on an electronic commerce site. The rules covered 47
percent of the alarms which were generated on the corresponding days, and were
comprised of a flood of Half Open SYN signatures, coupled with various other at-
tack signatures. After some investigation, it was discovered that the actual cause
of the alarms was a misconfigured IP route between a web application server and
an LDAP server. Every time that a user attempted to authenticate to the appli-
cation, the request was lost due to the IP stack’s inability to complete the TCP
handshake. The intrusion detection sensors interpreted this as a spoofed source
IP address, which resulted in a flood of the corresponding alarms to the security
operations center. By fixing this IP routing problem, the corresponding reduction
in alarms would provide increased fidelity in the alarm stream for that network as
well as increased chances that legitimate attack traffic would not be overlooked.

6 Conclusion

We have outlined a novel framework for the application of association rule mining
techniques on the millions of alarms which are received daily at large Managed
Security Service Providers. As new attack strategies emerge, our framework is
successful at discovering the associated patterns of alarms which occur as a result

16 J.J. Treinen and R. Thurimella

of the attacker’s actions in the victim network. By highlighting these patterns,
we reduce the time required for SOC personnel to implement meta rules which
ensure the detection of future instances of emerging attacks.

Our framework provides a reliable means of closing the time gap between the
appearance of new attack profiles in the alarm logs and the configuration of
rules in the ESM. We accomplished this while reducing the human-error factor,
as well as the costs associated with manually inspecting large alarm logs.

In addition to the ability to discover new rules for the ESM, we have also
shown that our framework can be used to flag suspicious network activity for
in-depth analysis by operations staff in an off-line environment. The use of our
framework can detect a variety of classes of attacks which may have been lost in
the large data volumes due to processing time constraints in the on-line moni-
toring system.

Acknowledgments

We would like to extend our gratitude to the Security Intelligence and Managed
Security Service Delivery teams at IBM for their assistance in carrying out our
experiments.

References

1. Agrawal, R., Imielinski, T., Swami, A.: Mining Association Rules Between Sets
of Items in Large Databases. Proceedings of the ACM SIGMOD Conference on
Management of Data (1993) 207-216

2. Ali, K., Manganaris, S., Srikant, R.: Partial Classification Using Association Rules.
Proceedings of the Third International Conference on Knowledge Discovery and
Data Mining (1997) 115-118

3. Apap, F., Honig, A., Hershkop, S., Eskin, E., Stolfo, S.: Detecting Malicious Soft-
ware by Monitoring Anomalous Windows Registry Accesses. Proceedings of Recent
Advances in Intrusion Detection, 5th International Symposium (2002) 36-53

4. Arcsight Corporation.: Arcsight ESM Product Brief. http://www.arcsight.com/
collateral/ArcSight ESM brochure.pdf (2005)

5. Arcsight Corporation.: Arcsight Pattern Discovery Product Brief. http://www.
arcsight.com/collateral/ArcSight Pattern Discovery.pdf (2005)

6. Barbara, D., Couto, J., Jajodia, S., Wu, N.: ADAM: A Testbed for Exploring the
Use of Data Mining in Intrusion Detection. SIGMOD Record Volume 30 Number
4 (2001) 15-24

7. Cisco Systems. Network Security Database. http://www.cisco.com/cgi-bin/front.
x/csec/idsAllList.pl (2005)

8. Debar, H., Wespi, A.: Aggregation and Correlation of Intrusion-Detection Alerts.
Proceedings of Recent Advances in Intrusion Detection, 4th International Sympo-
sium (2001) 85-103

9. Fayyad, U. Piatetsky-Shapiro, G. Smyth, P.: The KDD Process for Extracting
Useful Knowledge From Volumes of Data . Communications of the ACM (1996)
27-34

A Framework for the Application of Association Rule Mining 17

10. Guan, Y., Ghorbani, A., Belacel, N.: Y-Means : A Clustering Method for Intru-
sion Detection. Proceedings of Canadian Conference on Electrical and Computer
Engineering (2003)

11. Han, J., Cai, Y., Cercone, N.: Knowledge Discovery in Databases: An Attribute-
Oriented Approach. Proceedings of the 18th International Conference on Very
Large Data Bases (1992) 547-559

12. Han, J., Cai, Y., Cercone, N.: Data-Driven Discovery of Quantitative Rules in
Relational Databases. IEEE Transactions on Knowledge and Data Engineering,
Volume 5 (1993) 29-40

13. Honig, A., Howard, A., Eskin, E., Stolfo, S.: Adaptive Model Generation : An Ar-
chitecture for the Deployment of Data Mining-based Intrusion Detection Systems.
Applications of Data Mining in Computer Security, Barbara, D., Sushil, J., eds.
Boston : Kluwer Academic Publishers (2002) 153-194

14. Hosel, V., Walcher, S.: Clustering Techniques : A Brief Survey. http://ibb.gsf.de/
reports/2001/walcher.ps (2000)

15. IBM Corporation : DB2 Intelligent Miner for Modeling. New York (2005)
16. IBM Corporation : IBM DB2 Intelligent Miner Modeling Administration and Pro-

gramming Guide v8.2. Second Edition. New York (2004)
17. Julisch, K.: Mining Alarm Clusters to Improve Alarm Handling Efficiency. Pro-

ceedings of the 17th Annual Computer Security Applications Conference (2001)
12-21

18. Julisch, K.: Data Mining for Intrusion Detection A Critical Review. Applications
of Data Mining in Computer Security, Barbara, D., Sushil, J., eds. Boston : Kluwer
Academic Publishers (2002) 33-62

19. Julisch, K., Dacier, M.: Mining Intrusion Detection Alarms for Actionable Knowl-
edge. Proceedings of the Eighth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (2002) 366-375

20. Julisch, K. Clustering Intrusion Detection Alarms to Support Root Cause Analy-
sis. ACM Transactions on Information and System Security, Volume 6, Number 4
(2003) 443-471

21. Julisch, K. Using Root Cause Analysis to Handle Intrusion Detection Alarms. PhD
Thesis. Universität Dortmund (2003)

22. Lee, W., Stolfo, S.: Data Mining Approaches for Intrusion Detection. Proceedings
of the 7th USENIX Security Symposium (1998) 79-94

23. Lee, W., Stolfo, W., Mok, K.: Mining Audit Data to Build Intrusion Detection
Models. Proceedings of the Fourth International Conference on Knowledge Dis-
covery and Data Mining (1998) 66-72

24. Lee, W. Stolfo, S. Kui, M.: A Data Mining Framework for Building Intrusion
Detection Models. IEEE Symposium on Security and Privacy (1999) 120-132

25. Lee, W., Stolfo, S., Chan, P., Eskin, E., Fan, W., Miller, M., Hershkop, S., Zhang,
J.: Real Time Data Mining-based Intrusion Detection. Proceedings of the 2nd
DARPA Information Survivability Conference and Exposition (2001)

26. Lippmann, R., Haines, J., Fried, D., Korba, J., Das, K.: The 1999 DARPA Off-Line
Intrusion Detection Evaluation. Computer Networks, Volume 34 (2000) 579-595

27. Manganaris, S., Christensen, M., Zerkle, D., Hermiz, K.: A Data Mining Analysis
of RTID Alarms. Proceedings of Recent Advances in Intrusion Detection, Second
International Workshop (1999)

28. Mchugh, J.: Testing Intrusion Detection Systems: A Critique of the 1998 and 1999
DARPA Intrusion Detection System Evaluations as Performed by Lincoln Labora-
tory. ACM Transactions on Information and System Security, Volume 3, Number
4 (2000) 262-294

18 J.J. Treinen and R. Thurimella

29. McLure, S., Scambray, J., Kurtz, G.: Hacking Exposed Fifth Edition: Network
Security Secrets & Solutions : McGraw-Hill/Osborne (2005)

30. Nauta, K., Lieble, F.: Offline Network Intrusion Detection: Mining TCPDUMP
Data to Identify Suspicious Activity. Proceedings of the AFCEA Federal Database
Colloquium (1999)

31. Ning, P., Cui, Y., Reeves, D., Xu, D.: Techniques and Tools for Analyzing Intrusion
Alerts. ACM Transaction on Information and System Security. Volume 7, No. 2
(2004) 274-318

32. Noel, S., Wijesekera, D., Youman, C.: Modern Intrusion Detection, Data Mining,
and Degrees of Attack Guilt. Applications of Data Mining in Computer Security,
Barbara, D., Sushil, J., eds. Boston : Kluwer Academic Publishers (2002) 1-31

33. Portnoy, L., Eskin, E., Stolfo, S.: Intrusion Detection with Unlabeled Data Us-
ing Clustering. Proceedings of ACM CSS Workshop on Data Mining Applied to
Security (2001)

34. Schultz, M., Eskin, E., Zadok, E., Stolfo, S.: Data Mining Methods for Detection
of New Malicious Executables. Proceedings of IEEE Symposium on Security and
Privacy (2001)

35. Stolfo, S., Lee, W., Chan, P., Fan, W., Eskin, E.: Data Mining-based Intrusion
Detectors: An Overview of the Columbia IDS Project. SIGMOD Record, Vol. 30,
No. 4 (2001) 5-14

36. Valdes, A., Skinner, K.: Probabilistic Alert Correlation. Proceedings of Recent
Advances in Intrusion Detection, Third International Workshop (2001) 54-68

37. Yang, D., Hu, C., Chen, Y.: A Framework of Cooperating Intrusion Detection
Based on Clustering Analysis and Expert System. Proceedings of the 3rd interna-
tional conference on Information Security (2004)

Behavioral Distance Measurement Using
Hidden Markov Models

Debin Gao, Michael K. Reiter, and Dawn Song

Carnegie Mellon University
dgao@ece.cmu.edu, reiter@cmu.edu, dawnsong@cmu.edu

Abstract. The behavioral distance between two processes is a measure
of the deviation of their behaviors. Behavioral distance has been proposed
for detecting the compromise of a process, by computing its behavioral
distance from another process executed on the same input. Provided that
the two processes are diverse and so unlikely to fall prey to the same at-
tacks, an increase in behavioral distance might indicate the compromise
of one of them. In this paper we propose a new approach to behavioral
distance calculation using a new type of Hidden Markov Model. We also
empirically evaluate the intrusion detection capability of our proposal
when used to measure the distance between the system-call behaviors of
diverse web servers. Our experiments show that it detects intrusions with
substantially greater accuracy and with performance overhead compara-
ble to that of prior proposals.

Keywords: intrusion detection, anomaly detection, system call, behav-
ioral distance.

1 Introduction

A predominant form of host-based anomaly detection involves monitoring a pro-
cess to see if its behavior conforms to the program it is ostensibly executing,
e.g., see [15,35,32,28,19,14,17,13,20,16]. Deviation from the behavior prescribed
by a program is characteristic of, e.g., code-injection attacks exploiting buffer
overflow or format-string vulnerabilities, and so should be investigated. A cen-
tral research challenge is constructing the model to which the process behavior
is compared. This is especially challenging in light of mimicry attacks [31,33]
on virtually all such models, wherein an adversary injects code that executes its
attacks using behaviors that the model does not distinguish from normal.

To better combat mimicry, Gao et al. proposed comparing the behavior of a
process to the behavior of another process that is executing on the same input but
that either runs on a different operating system or runs a different program that
has similar functionality [18]. Assuming their diversity renders these processes
vulnerable only to different exploits, a successful attack on one of them should
induce a detectable increase in the “distance” between the behaviors of the two
processes. In principle, this would make mimicry substantially more difficult,
since to avoid detection, the behavior of the compromised process must be close
to the simultaneous behavior of the uncompromised one. Gao et al. proposed

D. Zamboni and C. Kruegel (Eds.): RAID 2006, LNCS 4219, pp. 19–40, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

20 D. Gao, M.K. Reiter, and D. Song

an approach based on evolutionary distance (ED) [29] to compute behavioral
distance, and measured the accuracy and performance of an implementation of
this approach when the behavior of each process is the system calls it emits.

In this paper we propose an alternative approach based on a novel Hidden
Markov Model (HMM) for computing behavioral distance. An HMM models a
doubly stochastic process; there is an underlying stochastic process that is not
observable (it is “hidden”) but that influences another that produces a sequence
of observable symbols. When applied to our problem of computing behavioral
distance, the observed symbols are process behaviors (e.g., emitted system calls),
and the hidden states correspond to aggregate tasks performed by the processes
(e.g., read from a file). Since these hidden tasks should be the same (if the pro-
cesses are running the same program on different platforms) or at least similar
(if the processes are running different programs that offer the same function-
ality, e.g., two different web servers), it should be possible to reliably correlate
the simultaneous observable behaviors of the two processes when no attack is
occurring, and to notice an increased behavioral distance when an attack suc-
ceeds on one of them. Perhaps surprisingly, our technique uses a single HMM to
model both processes simultaneously, in contrast to traditional uses of HMMs
for anomaly detection (e.g., [34,10]), where an HMM models a single process.

We detail the distance calculation and model construction algorithms for our
HMM-based anomaly detector and evaluate an implementation of it by cal-
culating behavioral distances between processes executing different web servers
(Apache1, Abyss2, and MyServer3) on different platforms (Linux and Windows).
Since a significant motivation for this work is constraining mimicry attacks, we
also provide an algorithm for estimating the best mimicry against an HMM,
and evaluate the false-alarm rate of our approach when the behavioral-distance
threshold is set to detect this estimated-best mimicry. In doing so, we show that
our approach yields better results than the ED approach of Gao et al., in many
cases offering substantial improvement in the false-alarm rate. At the same time,
the computational cost is comparable to that of the ED approach in our exper-
iments. As such, we argue that the HMM approach offers substantially superior
properties for calculating behavioral distance for anomaly detection.

An alternative strategy to building a behavioral distance measure would be
to manually construct a mapping between system calls, or sequences of system
calls, on the two platforms of interest. In some cases, such an approach might
be aided by the existence of tools such as WINE (http://www.winehq.com/),
which provides libraries that implement Windows API calls on UNIX to enable
the execution of Windows applications on UNIX platforms. For example, an
anomaly detector could pattern-match Windows system calls against patterns
induced by a call to the Windows API, and then search the Linux system calls
for a sequence that corresponds to the WINE implementation of that Windows
API call for UNIX. To our knowledge, such an approach has not been studied

1 http://httpd.apache.org
2 http://www.aprelium.com
3 http://www.myserverproject.net

Behavioral Distance Measurement Using Hidden Markov Models 21

to date, and we eschew it for several reasons. First, we strive for a more general
approach that need not be totally reengineered for each new operating system;
e.g., we would like an approach that applies with little additional effort to,
say, Windows CE and Symbian OS. Second, we want to measure the behavioral
distance between even different application codebases (e.g., between the separate
codebases of Apache for UNIX and Windows), and we do not expect this manual
approach to work well for this case. Third, constructing this mapping manually
can be a very substantial effort; e.g., WINE began in 1993 and, at the time of
this writing, claims to have UNIX implementations for only 63% of the Windows
API (see http://www.winehq.com/site/winapi stats).

Uses of behavioral distance incur the cost of executing each request multiple
times. As such, behavioral-distance-based anomaly detection can be most seam-
lessly integrated into services that already redundantly execute requests for the
purposes of detecting (e.g., [30,5,2]) or masking (e.g., [22,27,26,7,6,36,1]) Byzan-
tine faults or intrusions. These approaches ensure that clients receive only correct
responses even if a limited number of servers are compromised, by comparing
server outputs before they are conveyed to the client (“output voting”). How-
ever, a compromised server can do more than simply attempt to mislead a client,
e.g., exfiltrating data or attacking other servers, while continuing to provide the
proper output to clients. These attacks have typically not been considered in the
aforementioned intrusion-tolerant architectures, and since there is already need
for servers to be diverse (so as to not fail simultaneously, e.g., see [9,8,11]), these
architectures are ripe for the integration of behavioral-distance-based anomaly
detection to augment the protections they provide.

2 Related Work

Behavioral-distance-based anomaly detection is most closely related to the re-
cent work of Cox et al. on N -variant systems [11]. In an N -variant system,
the behaviors of multiple processes on a common input are compared to de-
tect deviations, as in the framework we consider here. The focus in N -variant
systems, however, is to construct these multiple processes through mechanical
transformation so that necessary conditions for a certain type of attack cannot
be satisfied in all processes. For example, if two processes are created to execute
the same program but with disjoint address spaces (i.e., an address valid in one
is necessarily invalid in the other), then an attack that depends on accessing an
absolute address will crash at least one of the processes. Cox et al. anticipate
the use of a monitor to detect attacks other than by output voting, though to
our knowledge they have not explored monitoring behavior at the system-call
level or via any technique as general as the approach we describe here. Another
difference is that the N -variant system usually requires a special compiler or
a binary rewriter to construct a variant, whereas our approach is a black-box
approach which does not require source code or static analysis of the binary.

Another technique proposed to make mimicry attacks more difficult utilizes
system-call arguments (e.g., [21,4]). Models for detecting anomalous system calls

22 D. Gao, M.K. Reiter, and D. Song

typically monitor the system-call numbers but not their arguments, and so a
mimicry attack can issue system calls that are consistent with the model but
for which the arguments of certain calls are modified to be “malicious”. To the
extent that system-call arguments can be accurately modeled, this can increase
the difficulty of mimicry attacks. While we do not utilize system-call arguments
in this work, it is potentially a way to augment the strength of our technique.

The key to the technique we present here is a novel HMM construction. HMMs
have been studied for decades and used in a wide variety of applications, owing to
two features: First, HMMs are very rich in mathematical structure and hence can
form the theoretical basis for a wide range of applications. Second, when applied
properly, HMMs work very well in practice for many important applications.
One of the most successful applications of HMMs is in speech recognition [25].
HMMs have also been used in intrusion detection systems, e.g., to model the
system-call behavior of a single process [34], and to model privilege flows [10].
However, these HMMs are designed to model the behavior of a single process,
as opposed to the joint behavior of two processes as we require here.

Variations of ordinary HMMs might seem to be more suited to our needs. For
example, “pair HMMs” [23] and “generalized pair HMMs” [24] have been used to
model joint distributions, specifically to predict the gene structures of two unan-
notated input DNA sequences. However, these variations of HMMs only model
two observable sequences where symbols are drawn from the same alphabet. In
our case, not only are the alphabets—i.e., the system calls on diverse platforms—
different, but the correspondences between these alphabets are not known and
are not one-to-one. As such, we have been unable to directly adapt these prior
techniques to our problem, and have devised a custom solution, instead.

3 Motivation for Our Approach

In a nutshell, the problem is to assign a distance to a pair of system call sequences

S1 = 〈s1,1, s1,2, . . . , s1,l1〉 S2 = 〈s2,1, s2,2, . . . , s2,l2〉 (1)

emitted by two processes while processing the same input. Here, each si,j denotes
the system-call number (a natural number) of the j-th system call by the i-th
process. The distance should indicate whether these sequences reflect similar
activities. Producing this distance is complicated by the fact that the processes
might be running on diverse platforms, and so the set of system calls C1 =
{s1,j}1≤j≤l1 on the first platform can be different from the set C2 = {s2,j}1≤j≤l2

on the second platform. Moreover, even a shared symbol c ∈ C1∩C2 has different
semantics on the two platforms. Of course, generally l1 �= l2.

The evolutionary distance (ED) approach [18] to computing the distance of
(1), roughly speaking, was to consider all possible ways of inserting dummy
symbols σ into them to generate an alignment

〈s′1,1, s
′
1,2, . . . , s

′
1,l′1

〉 〈s′2,1, s
′
2,2, . . . , s

′
2,l′2

〉 (2)

where l′1 ≥ l1, l′2 ≥ l2, and l′1 = l′2. The distance for alignment (2) was sim-
ply

∑
j dist(s′1,j , s

′
2,j), where dist was a table of distances between system calls

Behavioral Distance Measurement Using Hidden Markov Models 23

learned from training sequences (pairs of system call sequences output by the
processes in a benign environment). The distance for (1), then, was the distance
of the alignment with the smallest distance.

Though we have omitted numerous details of the ED approach, one limitation
is immediately apparent: it does not take adequate account of the order of system
calls in each sequence. For example, reversing the two sequences (1) yields the
same behavioral distance. Since system-call order is known to be important to
detecting intrusions (e.g., [15,28,17,16]), this is a significant limitation.

Our use of an HMM for calculating the behavioral distance of sequences (1)
addresses this limitation. We use a single HMM to model both processes, and so
a pair of system calls [s1,·, s2,·], one from each process, is an observable symbol of
the HMM. Each such observable symbol can be emitted by hidden states of the
HMM with some finite probability. Intuitively, if the system calls in an observable
symbol perform similar tasks, then the probability should be high, otherwise the
probability should be low. This probability serves the same purpose as the dist
table in the ED approach. However, in HMM-based behavioral distance, the
probability of emitting the same observable symbol is generally different for
different states, whereas in ED-based behavioral distance, a universal dist table
is used for every system call pair in the system call sequences. In this way, our
HMM model better accounts for the order of system calls.

The way in which we use our HMM is slightly different from HMM use in many
other applications. For example, in HMM-based speech recognition, the primary
algorithmic challenge is to find the most probable state sequence (what is being
said) given the observable symbol sequence (the recorded sounds). However, in
behavioral distance, we are not concerned about the tasks (the hidden states)
that gave rise to the observed system call sequences, but rather are concerned
only that they match. Therefore, the main HMM problem we need to solve is
to determine the probability with which the given system call sequences would
be generated (together) by the HMM model—we take this probability as our
measure of the behavioral distance. We show how to calculate this probability
efficiently in Section 4.

4 The Hidden Markov Model

In this section, we introduce our Hidden Markov Model and describe how it
is used for behavioral distance calculation. We begin in Section 4.1 with an
overview of the HMM. We then present our algorithm for calculating the behav-
ioral distance in Section 4.2, and describe the original construction of the HMM
in Section 4.3.

4.1 Elements of the HMM

Our HMM λ = (Q, V, A, B) consists of the following components:

– A set Q = {q0, q1, q2, . . . , qN , qN+1} of states, where q0 is a designated start
state, and qN+1 is a designated end state.

24 D. Gao, M.K. Reiter, and D. Song

– A set V = {[x, y] : x ∈ C1 ∪ {σ}, y ∈ C2 ∪ {σ}} of output symbols. Recall
that C1 and C2 are the sets of system calls4 observed on platforms 1 and 2,
respectively, and that σ denotes a designated dummy symbol.

– A set A = {ai}0≤i≤N of state transition probability distributions. Each
ai : {1, . . . , N +1} → [0, 1] satisfies

∑
j ai(j) = 1. ai(j) is the probability that

the HMM, when in state qi, will next enter qj . We will typically denote ai(j)
with ai,j . We stipulate that a0,N+1 = 0, i.e., the HMM does not transition
directly from the start state to the end state. Note that ai is undefined for
i = N + 1, i.e., there are no transitions from the end state. Similarly, ai,0 is
undefined for all i, since there are no transitions to the start state.

– A set B = {bi}1≤i≤N of symbol emission probability distributions. Each
bi : (C1 ∪ {σ}) × (C2 ∪ {σ}) → [0, 1] satisfies

∑
[x,y] bi([x, y]) = 1. bi([x, y])

is the probability of the HMM emitting [x, y] when in state qi. We require
that for all i, bi([σ, σ]) = 0. Note that neither b0 nor bN+1 is defined, i.e.,
the start and end states do not emit symbols.

As we discussed in Section 3, we will take our measure of behavioral distance
to be the probability with which the HMM λ “generates” the pair of system call
sequences of interest. This probability is computed with respect to the following
experiment, which we refer to as “executing” the HMM:

1. Initialize λ with q0 as the current state.
2. Repeat the following until qN+1 is the current state:

(a) If qi is the current state, then select a new state qj according to the
probability distribution ai and assign qj to be the new current state.

(b) After transitioning to the new state qj , if qj �= qN+1 then select an output
symbol [x, y] according to the probability distribution bj and emit it.

Specifically, we define an execution π of the HMM λ to consist of a state
sequence qi0 , qi1 , . . . , qiT , where i0 = 0 and iT = N + 1, and observable symbols
[xi1 , yi1], . . . , [xiT −1 , yiT −1]. The experiment above assigns to each execution a
probability, i.e., the probability the experiment traverses exactly that sequence
of states and emits exactly that sequence of observable symbols; we denote by
Prλ(π) the probability of execution π when executing HMM λ.

For the HMM λ we will build, there are many executions that generate the
given pair of sequences [S1, S2] as in (1). We use Exλ([S1, S2]) to denote the set
of executions of λ that generate [S1, S2]. The probability that λ generates the
sequences [S1, S2] in (1), which we denote Prλ([S1, S2]), is the probability that
λ, in the experiment above, emits pairs [xi1 , yi1], . . . , [xiT −1 , yiT −1] such that

〈xi1 , xi2 , . . . , xiT −1〉 〈yi1 , yi2 , . . . , yiT −1〉
is an alignment (as in (2)) of those sequences. Note that

Prλ([S1, S2]) =
∑

π∈Exλ([S1,S2])

Prλ(π)

4 In Section 4.4, we discuss letting C1 and C2 be sets of system call sequences, or
phrases. For simplicity of exposition, however, we describe our algorithms assuming
C1 and C2 are sets of individual system calls.

Behavioral Distance Measurement Using Hidden Markov Models 25

In addition, we define the most probable execution generating [S1, S2] to be

arg max
π∈Exλ([S1,S2])

Prλ(π)

When convenient, we will use t to denote an iteration counter, i.e., the number
of iterations of Step 2 in the experiment above that have been executed. So, for
example, when we say that λ is “in state qi after t iterations”, this means that
after t iterations have been completed in the experiment, qi is the current state.
Trivially, q0 is the state after t = 0 iterations, and if the state is qN+1 after t
iterations, then execution halts (i.e., there is no iteration t + 1).

4.2 Computing Prλ([S1, S2])

Prλ([S1, S2]) is the probability that system call sequences S1 and S2 are gener-
ated (in the sense of Section 4.1) by the HMM λ, which is used as the behavioral
distance between S1 and S2. If Prλ([S1, S2]) is greater than a threshold value,
the system call sequences will be considered as normal, otherwise an alarm is
raised indicating that an anomaly is detected. In this section we describe an
algorithm for computing Prλ([S1, S2]) efficiently, given λ, S1, and S2. Again, S1
and S2 would typically be observed from monitoring the processes. How we build
λ itself is the topic of Section 4.3.

Given an HMM λ, there are many ways it can generate S1 and S2, i.e., there
are many different executions that yield an alignment of S1 and S2. In fact, if
we assume that ai,j and bi([x, y]) are non-zero for x �= σ or y �= σ, any state
sequence of sufficient length generates an alignment of S1 and S2 with some
non-zero probability. Moreover, even for one particular state sequence, there are
many ways of generating S1 and S2 with σ inserted at different locations.

It may first seem that to calculate Prλ([S1, S2]) we need to sum the proba-
bilities of all possible executions, and the large number of executions makes the
algorithm very inefficient. However, we can use induction to find Prλ([S1, S2]),
instead. The idea is that if we know the probability of generating [S−

1 , S−
2],

where S−
1 and S−

2 are prefixes of S1 and S2, respectively, then Prλ([S1, S2]) can
be found by extending the executions that generate S−

1 and S−
2 .

To express this algorithm precisely, we introduce the following random vari-
ables in an execution of the HMM λ. Random variable Statet is the state after t
iterations. (It is undefined if the execution terminates in less than t iterations.)
Random variable Out≤t

1 is the sequence of system calls from C1 in the first com-
ponents of the emitted symbols (less σ) through t iterations. That is, if in the
(up to) t iterations, λ emits [s′1,1, s

′
2,1], . . . , [s′1,�, s

′
2,�] where � ≤ t, then Out≤t

1 is
the sequence of non-σ values in 〈s′1,1, . . . , s

′
1,�〉 (with their order preserved). Sim-

ilarly, the random variable Out≤t
2 would be the non-σ values in 〈s′2,1, . . . , s

′
2,�〉.

Now define

α(u, v, i) = Prλ

⎛
⎝∨

t≥0

(
Statet = qi ∧ Out≤t

1 = Pre(S1, u) ∧ Out≤t
2 = Pre(S2, v)

)⎞⎠

26 D. Gao, M.K. Reiter, and D. Song

where Pre(S, u) denotes the u-length prefix of S. That is, α(u, v, i) is the prob-
ability of the event that simultaneously qi is the current state, exactly the first
u system calls for process 1 have been emitted, and exactly the first v system
calls for process 2 have been emitted. Clearly α(u, v, i) is a function of S1, S2,
and λ. Here we do not specify them as long as the context is clear. We solve for
α(u, v, i) inductively, as follows.

Base cases:

α(0, 0, i) =

{
1 if i = 0
0 otherwise

α(u, v, 0) =

{
1 if u = v = 0
0 otherwise

Induction:

α(u, 0, i) =
N∑

j=0

α(u − 1, 0, j)aj,ibi([s1,u, σ]) for u > 0, i > 0

α(0, v, i) =
N∑

j=0

α(0, v − 1, j)aj,ibi([σ, s2,v]) for v > 0, i > 0

α(u, v, i) =
N∑

j=0

α(u − 1, v, j)aj,ibi([s1,u, σ]) +
N∑

j=0

α(u, v − 1, j)aj,ibi([σ, s2,v])

+
N∑

j=0

α(u − 1, v − 1, j)aj,ibi([s1,u, s2,v]) for u, v > 0, i > 0

For example, α(1, 0, i) is the probability that qi is the current state and all
that has been emitted is one system call for process 1 (s1,1) and nothing (except
σ) for process 2. Since bj([σ, σ]) = 0 for all j ∈ {1, . . . , N}, the only possibility
is that q0 transitioned directly to qi, which emitted [s1,1, σ].

As a second example, to solve for α(u, v, i) where u, v > 0, there are three
possibilities, captured in the last equation above:

– The first u − 1 and v system calls from S1 and S2, respectively, have been
output, and λ is in some state qj . (This event occurs with probability α(u −
1, v, j).) λ then transitions from qj to qi (with probability aj,i) and emits
[s1,u, σ] (with probability bi([s1,u, σ])).

– The first u and v − 1 system calls from S1 and S2, respectively, have been
output, and λ is in some state qj . (This event occurs with probability α(u, v−
1, j).) λ then transitions from qj to qi (with probability aj,i) and emits
[σ, s2,v] (with probability bi([σ, s2,v])).

– The first u − 1 and v − 1 system calls from S1 and S2, respectively, have
been output, and λ is in some state qj . (This event occurs with probability
α(u−1, v−1, j).) λ then transitions from qj to qi (with probability aj,i) and
emits [s1,u, s2,v] (with probability bi([s1,u, s2,v])).

After α(u, v, i) is solved for all values of u ∈ {0, 1, . . . , l1}, v ∈ {0, 1, . . . , l2},
and i ∈ {1, . . . , N}, where l1 and l2 are the lengths of S1 and S2, respectively,
we can calculate

Behavioral Distance Measurement Using Hidden Markov Models 27

Prλ([S1, S2]) =
N∑

i=1

α(l1, l2, i)ai,N+1

The solution above solves for Prλ([S1, S2]) from the beginning of the system
call sequences. (That is, α(u, v, i) of smaller u- and v-indices are found before
that of larger u- and v-indices.) It will also be convenient to solve for Prλ([S1, S2])
from the end of the sequences. To do that, we define

β(u, v, i) = Prλ

⎛
⎝∨

t≥0

(
Statet = qi ∧ Out>t

1 = Post(S1, u) ∧ Out>t
2 = Post(S2, v)

)⎞⎠

Here, Post(S, u) denotes the suffix of S that remains after removing the first u
elements of S. Analogous to the preceding discussion, random variable Out>t

1
is the sequence of system calls from C1 in the first components of the emitted
symbols (less σ) in iterations t + 1 onward (if any), and similarly for Out>t

2 .
So, β(u, v, i) is the probability of the event that qi is the current state after
some iterations and subsequently exactly the last l1 − u system calls of S1 are
emitted, and exactly the last l2 −v system calls of S2 are emitted. The induction
for β(u, v, i) works in a similar way, and Prλ([S1, S2]) = β(0, 0, 0).

In this algorithm, the number of steps taken to calculate Prλ([S1, S2]) is pro-
portional to l1 × l2 × N2. Therefore, the proposed algorithm is efficient as the
numbers of system calls and HMM states grow.

4.3 Building λ

In this section we describe how we build the HMM λ. We do so using training
data, that is, pairs [S1, S2] of sequences of system calls recorded from the two
processes when processing the same inputs. Of course, we assume that these
training pairs reflect only benign behavior, and that neither process is compro-
mised during the collection of the training samples. We first present an algorithm
to adjust the HMM parameters for one training example [S1, S2], and then show
how we combine the results from processing each training sample to adjust the
HMM when there are multiple training samples.

Building λ is a typical expectation-maximization problem. There is no known
way of solving for such a maximum likelihood model analytically; therefore a
refinement procedure is used. The idea is that for each training sample [S1, S2],
we find the expected values of certain variables, which can, in turn, be used to
adjust the parameters of λ to increase Prλ([S1, S2]). Here we will demonstrate
this method for updating the ai parameters of λ; a similar treatment for the bi

parameters can be found in Appendix A.
The initial instance of λ is created with a fixed number of states N and random

ai and bi distributions. To update the ai,j parameters in light of a training
sample [S1, S2], we find (for the current instance of λ) the expected number
of times λ transitions to state qi when generating [S1, S2], and the expected
number of times it transitions from qi to qj when generating [S1, S2]. To compute

28 D. Gao, M.K. Reiter, and D. Song

these expectations, we first define two conditional probabilities, γ(u, v, i) and
ξ(u, v, i, j) for i ≤ N, j ≤ N + 1, as follows:

γ(u, v, i) = Prλ

⎛
⎝
⎛
⎝∨

t≥0

Statet = qi ∧
Out≤t

1 = Pre(S1, u) ∧
Out≤t

2 = Pre(S2, v)

⎞
⎠∣∣∣∣

(
Out>0

1 = S1 ∧
Out>0

2 = S2

)⎞
⎠

ξ(u, v, i, j) = Prλ

⎛
⎝
⎛
⎝∨

t≥0

Statet = qi ∧ Statet+1 = qj ∧
Out≤t

1 = Pre(S1, u) ∧
Out≤t

2 = Pre(S2, v)

⎞
⎠∣∣∣∣

(
Out>0

1 = S1 ∧
Out>0

2 = S2

)⎞
⎠

That is, γ(u, v, i) is the probability of λ being in state qi after emitting u system
calls for process 1 and v system calls for process 2, given that the entire sequences
for process 1 and process 2 are S1 and S2, respectively. Similarly, ξ(u, v, i, j) is
the probability of being in state qi after emitting u system calls for process 1 and
v system calls for process 2, and then transitioning to state qj , given the entire
system call sequences for the processes. Each of these conditional probabilities
pertains to one particular subset of executions that generate S1 and S2. As
explained in Section 4.2, there are many executions in the HMM that are able to
generate S1 and S2; out of these executions, there are some that are in state qi

(respectively, transition from qi to qj) after emitting u system calls for process
1 and v system calls for process 2. Note that it may or may not be the case that
[s1,u, s2,v] was emitted by state qi, and that

γ(u, v, i) =
N+1∑
j=1

ξ(u, v, i, j)

We can calculate these quantities easily as follows:

γ(u, v, i) =
α(u, v, i)β(u, v, i)

Prλ([S1, S2])

ξ(u, v, i, j) =
1

Prλ([S1, S2])

⎛
⎝α(u, v, i)ai,jbj([s1,u+1, σ])β(u + 1, v, j) +

α(u, v, i)ai,jbj([σ, s2,v+1])β(u, v + 1, j) +
α(u, v, i)ai,jbj([s1,u+1, s2,v+1])β(u + 1, v + 1, j)

⎞
⎠

Let the random variable Xi be the number of times that state qi is visited
when emitting [S1, S2]. We calculate the expected value of Xi, denoted E(Xi),
as follows. Let the random variable Xu,v

i be the number of times that qi is
the current state when exactly the first u system calls of S1 and the first v
system calls of S2 have been emitted. Since qi can be visited at most once for
a fixed u and v, Xu,v

i can take on only values 0 and 1. As such, E(Xu,v
i) =∑

x∈{0,1} xPr(Xu,v
i = x) = γ(u, v, i). Then, by linearity of expectation,

E(Xi) =
l1∑

u=0

l2∑
v=0

E(Xu,v
i) =

l1∑
u=0

l2∑
v=0

γ(u, v, i)

Behavioral Distance Measurement Using Hidden Markov Models 29

where l1 and l2 are the lengths of S1 and S2, respectively. Similarly, if Xi,j is
the number of transitions from qi to qj when generating [S1, S2], then

E(Xi,j) =
l1∑

u=0

l2∑
v=0

ξ(u, v, i, j)

With these expectations calculated, we can update the ai parameters of the
HMM λ, using the Baum-Welch method [3], as follows:

ai,j ← E(Xi,j)/E(Xi)

These equations show how the ai parameters of λ can be updated to increase
the probability of generating one pair of sequences. When there are more than
one pair of sequences ([S(1)

1 , S
(1)
2], . . ., [S(M)

1 , S
(M)
2]), the above equations can

be used to calculate the relevant parameters for each pair of sequences (i.e.,
E(X(k)

i), E(X(k)
i,j)) and then the ai parameters of λ can be updated as

ai,j ←
(

M∑
k=1

wkE(X(k)
i,j)

)
/

(
M∑

k=1

wkE(X(k)
i)

)

where wk is the weight for each pair of sequences [S(k)
1 , S

(k)
2] in the training set

for the current instance of λ. There are many ways of setting wk [12]. In our
experience, different settings affect the speed of convergence, but the final result
of the HMM is almost the same. In our experiments, we choose

wk =
(
Prλ([S(k)

1 , S
(k)
2])

)− 1

l
(k)
1 +l

(k)
2

where l
(k)
1 and l

(k)
2 are the lengths of S

(k)
1 and S

(k)
2 , respectively.

The equations above show how the parameters of an HMM can be adjusted
in one refinement. We need many such refinements in order to find a good HMM
that generates the training examples with high probabilities. Although more
refinements can improve the probabilities, they may also result in overfitting.
To detect when to stop the refinement process so as not to overfit the training
samples, we use a separate validation set, which also contains pairs of system
call sequences recorded from the two processes when processing the same in-
puts. Briefly, we detect overfitting when the refinement process either decreases
Prλ([S1, S2]) for pairs [S1, S2] in the validation set or increases the false-alarm
rate on the validation set using the alarm threshold needed to detect mimicry
attacks (explained in Section 5.1).

4.4 Implementation Issues

There are several implementation issues that deserve comment. First, in all dis-
cussion so far, we have used system calls as the basic units to explain the elements

30 D. Gao, M.K. Reiter, and D. Song

of the HMM and our algorithms; i.e., an observable symbol of the HMM is a
pair of system calls, one from each process. However, it is advantageous to use
system call phrases (short sequences of system calls) as the basic unit [35,17,18].
In our experiments, we use the same phrase-extraction algorithm as in the ED
project [18]. After the system call phrases are identified, an observable symbol of
the HMM becomes a pair of system call phrases, one from each process. Other
than this, all algorithms presented in this paper remain the same.

Second, the number N of states in the HMM must be set before training
starts. (N does not change once it is set.) A small N will make the HMM not as
powerful as required to model the behavior of the processes, which will, in turn,
make mimicry attacks relatively easy. However, a large N not only degrades
the performance of the system, but may also result in overfitting the training
data. We have found success in setting N slightly larger than the length of the
longest training sequence so that some dummy symbols σ can be inserted into
the sequences, and to use the validation set to detect overfitting. So far we have
found that setting N to be 1.0 to 1.2 times the length of the longest training
sequence (in phrases) is a reasonable guideline. In our experiments described in
Section 5 using three different web servers on two different operating systems,
this guideline yielded values of N between 10 and 33.

Third, the training of the HMM is a complicated process, which may take a
long time. In our experiments, the training for a typical web server application
may take more than an hour on a desktop computer with a Pentium IV 3.0 GHz
CPU. However, training can be performed offline, and the online monitoring is
fast, as in many other applications of HMMs.

A fourth issue concerns the use of a finite set of training samples for estimating
the HMM parameters. If we look at the formulas for building the HMM in
Section 4.3, we see that certain parameters will be set to 0 if there are no or few
occurrences of a symbol in the training set. For example, if an observable symbol
does not occur often enough, then the probability of that symbol being emitted
will be 0 in some states. This should be avoided because no occurrences in the
training data might be the result only of a low, but still nonzero, probability of
that event. Therefore, in our implementation we ensure a (nonzero) minimum
value to the ai and bi parameters by adding a normalization step at the end of
each refinement process.

5 Evaluation and Discussion

As discussed in Section 4, we hypothesized that because the HMM-based ap-
proach we advocate here better accounts for the order of system calls, it should
better defend against mimicry attacks than the prior ED-based approach [18].
In this section, we evaluate an implementation of our anomaly detector using
HMM-based behavioral distance to determine whether this is, in fact, true, and
to gain insight into the computational cost of our approach.

Our evaluation system includes two computers running web servers to pro-
cess client HTTP requests. One of these computers, denoted L, runs Linux
kernel 2.6.8, and the other, denoted W, runs Windows XP Pro SP2. The web

Behavioral Distance Measurement Using Hidden Markov Models 31

server run by each computer differs from test to test, and will be discussed below.
In our tests, each of L and W was given the same sequence of requests (gener-
ated from the static test suite of WebBench 5.0,5 and each recorded the system
call sequence, denoted by SL and SW,6 respectively, of (the thread in) the web
server process that handled the request. The behavioral distance is calculated
as Prλ([SL, SW]), where λ was trained as described in Section 4.3.

5.1 Resilience Against Mimicry Attacks

Our chosen measure of the system’s resilience to mimicry attacks is the false-
alarm rate of the system when it is configured to detect the “best” mimicry
attack. Intuitively, a system that offers a low false-alarm rate while detecting
the best mimicry attack is doing a good job of discriminating “normal” behavior
from even the “best-disguised” abnormal behavior. To compare our results to
the ED-based behavioral distance project [18], we presume the same system call
sequence that the attacker is trying to execute as in the ED project, which is
simply an open followed by a write.

To measure the false-alarm rate when detecting the best mimicry, we need to
first define what we take as the “best” mimicry attack. Specifically, if we presume
that the attacker finds a vulnerability in, say, L, then it must craft an attack
request that will produce a “normal” behavioral distance between the attack
activity on L induced by its request (SL) and the normal activity on W induced
by the same request (SW). Moreover, the attack activity on L must include an
open followed by a write (i.e., the attacker’s system calls). As such, it would
be natural to define the “best” mimicry attack to be the one that yields the
most normal behavioral distance, i.e., that maximizes Prλ([SL, SW]). Because
we permit the attacker to have complete knowledge of our HMM λ, nothing is
hidden from the attacker to prevent his use of this “best” mimicry attack.

Unfortunately, we know of no efficient algorithm for finding this best mimicry
attack (an obstacle an attacker would also face), and so we have to instead
evaluate our system using an “estimated-best” mimicry attack that we can find
efficiently. Rather than maximizing Prλ([SL, SW]), this estimated-best mimicry
attack is the one produced by the most probable execution of the HMM λ that
includes the attacker’s system calls on the platform we presume he can compro-
mise. (The most probable execution does not necessarily yield the mimicry attack
that maximizes Prλ([SL, SW]), since many low-probability executions can yield a
different [S′

L, S′
W] that has a larger Prλ([S′

L, S′
W]).) An algorithm for computing

this estimated-best mimicry attack can be found in Appendix B. Another way in
which our attack is “estimated-best” is that it assumes the attacker executes its
attack within the servers’ processing of a single request (an assumption made in
the ED project [18] as well). Attacks for which the attack activity spans multiple
requests or multiple server processes/threads is an area of ongoing work.
5 VeriTest, http://www.veritest.com/benchmarks/webbench/default.asp
6 System calls on Windows are also called native API calls or kernel calls. We obtain

the Windows system call information by overwriting the KiSystemService table in
the Windows kernel using a kernel driver we developed.

32 D. Gao, M.K. Reiter, and D. Song

Once this estimated-best mimicry attack is found, we set the behavioral dis-
tance alarm threshold to be the behavioral distance resulting from this estimated-
best mimicry, and measure the false-alarm rate of the system that results. A false
alarm corresponds to a legitimate request that induces a pair of system call se-
quences with a probability of emission from λ at most the threshold. The false-
alarm rate is then calculated as the number of false alarms divided by the total
number of requests. We perform our experiments in nine different settings, defined
by the web servers that L and W are running. (The web servers are Apache 2.0.54,
Abyss X1 2.0.6 and MyServer 0.8.) Table 1 presents results using a testing mecha-
nism in which the training (to train the model), validation (to detect overfitting)
and evaluation (to evaluate) sets are distinct. They show that the HMM-based
behavioral distance has a small (and in many cases, greatly superior to ED) false-
alarm rate when detecting the estimated-best mimicry attacks.

Table 1. False-alarm rate when detecting the estimated-best mimicry attack

Server Server ED-based HMM-based
on L on W Mimicry on L Mimicry on W Mimicry on L Mimicry on W

Apache Apache 2.08 % 0.16 % 0 % 0.16 %
Abyss Abyss 0.4 % 0.32 % 0.16 % 0.08 %

MyServer MyServer 1.36 % 1.2 % 0 % 0 %
Apache Abyss 0.4 % 0.32 % 0 % 0.16 %
Abyss Apache 0.8 % 0.48 % 0.08 % 0.08 %
Apache MyServer 0 % 3.65 % 0 % 0 %

MyServer Apache 6.4 % 0.16 % 0 % 0 %
Abyss MyServer 0 % 1.91 % 0 % 1.44 %

MyServer Abyss 0.4 % 0.08 % 0.4 % 0 %

5.2 Performance Overhead

To evaluate the performance overhead of a system using our HMM-based be-
havioral distance, we run two experiments. First, we measure the time it takes
to calculate the behavioral distance, and compare that with the ED-based ap-
proach. Second, we apply the HMM-based behavioral distance on real servers
and evaluate its performance overhead.

In the first experiment, we measure the time it takes for our implementations
of the behavioral distance measurement (both the ED-based and the HMM-
based) to calculate the behavioral distance of 1200 pairs of system call sequences
on a Pentium IV 2.0GHz computer with 512MB of memory. In 10 runs of the
experiment, the HMM-based calculation takes 2.269 seconds on average, and the
ED-based calculation takes 2.422 seconds on average. As such, our HMM-based
calculation is 6.32% faster than the ED-based calculation.

In the second experiment, we augment the setup containing L and W with two
additional machines, a proxy P and a client C, and connect them in a 100 Mbps
local area network. Table 2 summarizes the properties of L, W, P, and C. The
client C submits requests to the proxy P, which forwards the requests to both
L and W for processing. Responses from L and W are sent to P, which then
sends a response to C. C uses the benchmark program WebBench 5.0 to issue

Behavioral Distance Measurement Using Hidden Markov Models 33

requests. All tests utilize the static test suite shipped with WebBench 5.0, with a
setting of 10 concurrent client threads. Each test was run for 1600 seconds with
statistics calculated at 100-second intervals. In these tests, both L and W run
the Apache web server 2.2.2.

Table 2. Configurations of computers in the performance overhead evaluation

Machine Name Operating System CPU Memory Remarks
L Linux kernel 2.6.8 Pentium IV 2.0 GHz 512 MB Replica
W Windows XP Pro SP2 Pentium IV 2.0 GHz 512 MB Replica
P Linux kernel 2.6.11 Pentium IV 3.0 GHz 1 GB Proxy
C Windows XP Pro SP2 Pentium IV 2.2 GHz 512 MB Client

We are primarily interested in the request throughput and latency as observed
by C in five tests. In the first test, each of L and W sends its response to the
client’s request to the proxy P, which performs output voting on (i.e., compares)
these responses before responding to the client. Specifically, in the first test, no
system call traces are collected on L or W, and no behavioral distance is calcu-
lated; as such, this serves as a baseline for our tests. In the second test, L and W
additionally capture the system calls made by the web server processes/threads,
and send the system call information to another machine (not P) for logging
and, potentially, offline behavioral-distance calculations. This test thus includes
the costs of collecting the system call information and sending it off the server
machines, but not the cost of calculating behavioral distances. In the third test,
the system call information is sent to proxy P (and not to other machines) for
online behavioral distance calculation. P computes the behavioral distance (in
addition to performing output voting, as in the other tests) before responding to
the client. In the fourth test, the results of each behavioral distance calculation
is cached at P so that it need not be performed again if the same system call
sequences are received from L and W in the future. In the last test, only W and
C are used to evaluate the performance of an individual server, in which neither
output voting nor behavioral distance is used. We monitor the throughput and
latency in each test. The results are shown in Figure 1.

Results from the first test, in which P does output voting only, serve as a
reference. The second test shows the performance overhead of simply capturing
and transporting the system call information off of L and W. From the results,
we can see that this overhead is very small: roughly 1% in throughput and 0.03
millisecond in latency on average. Results of the third test show the overhead
of capturing system call information and performing HMM-based behavioral
distance calculation on the critical path of responding to the client. As shown,
this cost adds substantial overhead to the request processing time. However, the
fourth test shows that this cost can be substantially reduced by caching the
behavioral distance results. It takes some time for the cache to warm up, and by
the end of the test there is less than a 20% throughput loss and 0.59 milliseconds
of additional latency on average. Comparing the results of the fourth and the
fifth tests, we also see that L and W are roughly 25% underutilized in the fourth

34 D. Gao, M.K. Reiter, and D. Song

0 500 1000 1500
Test Time (sec)

0

100

200

300

400

500

T
hr

ou
gh

pu
t (

re
qu

es
t/s

ec
)

P: output voting
L&W: serve requests
P: output voting
L&W: serve requests + send syscall sequences for logging
P: output voting + behavioral distance calculation
L&W: serve requests + send syscall sequences to P
P: output voting + behavioral distance calculation + cache results
L&W: serve requests + send syscall sequences to P
P: not involved in experiment
L: not involved in experiment
W: serve requests directly

0 500 1000 1500
Test Time (sec)

0

2

4

6

8

L
at

en
cy

 (
m

se
c)

Fig. 1. Performance Overhead of the HMM-based Behavioral Distance

experiment due to the bottleneck created at the proxy. Instantiating the proxy
with a faster machine would presumably improve this situation.

6 Conclusion

In this paper we presented a new algorithm for computing behavioral distance
between processes. Our approach addresses shortcomings in prior techniques;
in particular, it better accounts for system-call orderings while offering com-
parable performance. Empirical tests suggest that our algorithm offers strong
defense against mimicry attacks, while providing substantial improvement in
the false-alarm rate over previous proposals. We believe that this algorithm is
a significant step toward the practical use of behavioral distance as an anomaly
detection technique, particularly for fault- and intrusion-tolerant architectures
that already redundantly execute requests on multiple diverse platforms.

References

1. M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K. Reiter, and J. J. Wylie.
Fault-scalable Byzantine fault-tolerant services. In Proceedings of the 20th ACM
Symposium on Operating Systems Principles, pages 59–74, October 2005.

2. L. Alvisi, D. Malkhi, E. Pierce, and M. K. Reiter. Fault detection for Byzan-
tine quorum systems. IEEE Transactions on Parallel Distributed Systems, 12(9),
September 2001.

Behavioral Distance Measurement Using Hidden Markov Models 35

3. L. E. Baum and T. Petrie. Statistical inference for probabilistic functions of finite
state Markov chains. Ann. Math. Statist., 37:1554–1563, 1966.

4. S. Bhatkar, A. Chaturvedi, and R. Sekar. Dataflow anomaly detection. In Pro-
ceedings of the 2006 IEEE Symposium on Security and Privacy, 2006.

5. R. W. Buskens and R. P. Bianchini, Jr. Distributed on-line diagnosis in the presence
of arbitrary faults. In Proceedings of the 23rd International Symposium on Fault-
Tolerant Computing, pages 470–479, June 1993.

6. C. Cachin and J. A. Poritz. Secure intrusion-tolerant replication on the Internet.
In Proceedings of the 2002 International Conference on Dependable Systems and
Networks, 2002.

7. M. Castro and B. Liskov. Practical Byzantine fault tolerance and proactive recov-
ery. ACM Transactions on Computer Systems, 20(4), November 2002.

8. M. Castro, R. Rodrigues, and B. Liskov. BASE: Using abstraction to improve fault
tolerance. ACM Transactions on Computer Systems, 21(3), August 2003.

9. L. Chen and A. Avizienis. N-version programming: A fault-tolerance approach to
reliability of software operation. In Proceedings of the 8th International Symposium
on Fault-Tolerant Computing, pages 3–9, 1978.

10. S. Cho and S. Han. Two sophisticated techniques to improve HMM-based intrusion
detection systems. In Proceedings of the 6th International Symposium on Recent
Advances in Intrusion Detection (RAID 2003), 2003.

11. B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson, J. Knight,
A. Nguyen-Tuong, and J. Hiser. N-variant systems – A secretless framework for se-
curity through diversity. In Proceedings of the 15th USENIX Security Symposium,
August 2006.

12. R. I. A. Davis, B. C. Lovell, and T. Caelli. Improved estimation of Hidden Markov
Model parameters from multiple observation sequences. In Proceedings of the 16th
International Conference on Pattern Recognition (ICPR 2002), 2002.

13. H. H. Feng, J. T. Giffin, Y. Huang, S. Jha, W. Lee, and B. P. Miller. Formalizing
sensitivity in static analysis for intrusion detection. In Proceedings of the 2004
IEEE Symposium on Security and Privacy, 2004.

14. H. H. Feng, O. M. Kolesnikov, P. Fogla, W. Lee, and W. Gong. Anomaly detection
using call stack information. In Proceedings of the 2003 IEEE Symposium on
Security and Privacy, 2003.

15. S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff. A sense of self for Unix
processes. In Proceedings of the 1996 IEEE Symposium on Security and Privacy,
1996.

16. D. Gao, M. K. Reiter, and D. Song. Gray-box extraction of execution graph for
anomaly detection. In Proceedings of the 11th ACM Conference on Computer &
Communication Security, 2004.

17. D. Gao, M. K. Reiter, and D. Song. On gray-box program tracking for anomaly
detection. In Proceedings of the 13th USENIX Security Symposium, 2004.

18. D. Gao, M. K. Reiter, and D. Song. Behavioral distance for intrusion detection. In
Proceedings of the 8th International Symposium on Recent Advances in Intrusion
Detection (RAID 2005), 2005.

19. J. T. Giffin, S. Jha, and B. P. Miller. Detecting manipulated remote call streams.
In Proceedings of the 11th USENIX Security Symposium, 2002.

20. J. T. Giffin, S. Jha, and B. P. Miller. Efficient context-sensitive intrusion detection.
In Proceedings of Symposium on Network and Distributed System Security, 2004.

21. C. Kruegel, D. Mutz, F. Valeur, and G. Vigna. On the detection of anomalous
system call arguments. In Proceedings of the 8th European Symposium on Research
in Computer Security (ESORICS 2003), 2003.

36 D. Gao, M.K. Reiter, and D. Song

22. L. Lamport. The implementation of reliable distributed multiprocess systems.
Computer Networks, 2:95–114, 1978.

23. I. M. Meyer and R. Durbin. Comparative ab initio prediction of gene structures
using pair HMMs. Oxford University Press, 2002.

24. L. Pachter, M. Alexandersson, and S. Cawley. Applications of generalized pair
Hidden Markov Models to alignment and gene finding problems. Computational
Biology, 9(2), 2002.

25. L. R. Rabiner. A tutorial on Hidden Markov Models and selected applications in
speech recognition. In Proceedings of IEEE, February 1989.

26. M. K. Reiter. Secure agreement protocols: Reliable and atomic group multicast in
Rampart. In Proceedings of the 2nd ACM Conference on Computer and Commu-
nication Security, pages 68–80, November 1994.

27. F. B. Schneider. Implementing fault-tolerant services using the state machine
approach: A tutorial. ACM Computing Surveys, 22(4):299–319, December 1990.

28. R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni. A fast automaton-based
method for detecting anomalous program behaviors. In Proceedings of the 2001
IEEE Symposium on Security and Privacy, 2001.

29. P. H. Sellers. On the theory and computation of evolutionary distances. SIAM J.
Appl. Math., 26:787–793, 1974.

30. K. Shin and P. Ramanathan. Diagnosis of processors with Byzantine faults in a
distributed computing system. In Proceedings of the 17th International Symposium
on Fault-Tolerant Computing, pages 55–60, 1987.

31. K. Tan, J. McHugh, and K. Killourhy. Hiding intrusions: From the abnormal
to the normal and beyond. In Proceedings of the 5th International Workshop on
Information Hiding, October 2002.

32. D. Wagner and D. Dean. Intrusion detection via static analysis. In Proceedings of
the 2001 IEEE Symposium on Security and Privacy, 2001.

33. D. Wagner and P. Soto. Mimicry attacks on host-based intrusion detection systems.
In Proceedings of the 9th ACM Conference on Computer and Communications
Security, 2002.

34. C. Warrender, S. Forrest, and B. Pearlmutter. Detecting intrusions using system
calls: alternative data models. In Proceedings of the 1999 IEEE Symposium on
Security and Privacy, 1999.

35. A. Wespi, M. Dacier, and H. Debar. Intrusion detection using variable-length audit
trail patterns. In Proceedings of the 2000 Recent Advances in Intrusion Detection,
2000.

36. J. Yin, J. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin. Separating agree-
ment from execution for Byzantine fault tolerant services. In Proceedings of the
19th ACM Symposium on Operating System Principles, October 2003.

A Updating the bi Parameters of λ

The idea of updating bi parameters of λ is the same as of updating ai (see
Section 4.3). Here, we need to calculate the expected number of times λ emits
observable symbol [x, y] at qi, when generating [S1, S2]. To compute this expec-
tation, we first define a conditional probability, ζ([x, y], u, v, i), as follows:

Behavioral Distance Measurement Using Hidden Markov Models 37

ζ([x, y], u, v, i) = Prλ

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝

∨
t≥0

Statet = qi ∧
Outt1 = Seq(x) ∧
Outt2 = Seq(y) ∧
Out≤t

1 = Pre(S1, u) ∧
Out≤t

2 = Pre(S2, v)

⎞
⎟⎟⎟⎟⎠

∣∣∣∣
(

Out>0
1 = S1 ∧

Out>0
2 = S2

)
⎞
⎟⎟⎟⎟⎠

where

Seq(x) =

{
〈x〉 if x �= σ

〈〉 if x = σ

and Outt1 is the sequence of system calls from C1 in the first component of the
emitted symbol in iteration t, with either one (if the component of the emitted
symbol is not σ) or zero (if the component of the emitted symbol is σ) system
call in the sequence. Outt2 is defined similarly.

ζ([x, y], u, v, i) represents the probability of λ being in state qi after emitting u
system calls for process 1 and v system calls for process 2, and the last observable
symbol emitted by state qi is [x, y], given that the system call sequences for
process 1 and process 2 are S1 and S2, respectively. Note that

γ(u, v, i) =
∑
[x,y]

ζ([x, y], u, v, i)

We can calculate ζ([x, y], u, v, i) easily as follows:

ζ([x, y], u, v, i) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(∑N
j=0 α(u−1,v,j)aj,ibi([x,σ]))β(u,v,i)

Prλ([S1,S2])
if x = s1,u ∧ y = σ

(∑N
j=0 α(u,v−1,j)aj,ibi([σ,y]))β(u,v,i)

Prλ([S1,S2])
if x = σ ∧ y = s2,v

(∑N
j=0 α(u−1,v−1,j)aj,ibi([x,y]))β(u,v,i)

Prλ([S1,S2])
if x = s1,u ∧ y = s2,v

0 otherwise

Let the random variable Xi,[x,y] be the number of times that state qi is visited
when qi emits observable symbol [x, y], when λ generates [S1, S2]. For the same
reason as explained in Section 4.3,

E(Xi,[x,y]) =

⎧⎪⎨
⎪⎩
∑l1

u=1
∑l2

v=0 ζ([x, y], u, v, i) if x �= σ ∧ y = σ∑l1
u=0

∑l2
v=1 ζ([x, y], u, v, i) if x = σ ∧ y �= σ∑l1

u=1
∑l2

v=1 ζ([x, y], u, v, i) if x �= σ ∧ y �= σ

and the bi parameters of λ can be updated as

bi([x, y]) ←
(

M∑
k=1

wkE(X(k)
i,[x,y])

)
/

(
M∑

k=1

wkE(X(k)
i)

)

38 D. Gao, M.K. Reiter, and D. Song

B Estimating the Best Mimicry Attack

In this section we show how to estimate the best mimicry attack given an HMM
λ. Suppose that the attacker has found a vulnerability in process 2, and wants
to use that vulnerability to exploit the process. Let S2 denote the system call
sequence that constitutes the attacker’s system calls (e.g., S2 = 〈open, write〉).
Let Ŝ2 be an extended sequence of S2, i.e., Ŝ2 is obtained by inserting arbi-
trarily many system calls into S2 at any locations. When the anomaly detector
utilizes HMM-based behavioral distance, a mimicry attack is some Ŝ2 that in-
duces a large Prλ([S1, Ŝ2]), where S1 is the sequence of system calls induced
by the attack request at process 1 (not compromised). We assume that S1 is
fixed (vs. being chosen by the attacker), which is typical since for many appli-
cations an attack request against process 2 induces an error on process 1 (e.g.,
a page-not-found error). If the attacker can induce several possible sequences
at process 1, then this analysis would need to be repeated with the various
alternatives.

For a fixed pair of system call sequences S1 and Ŝ2, let P̂rλ([S1, Ŝ2]) denote
the probability of the most probable execution of λ that generates [S1, Ŝ2]. Note
that P̂rλ([S1, Ŝ2]) < Prλ([S1, Ŝ2]), since multiple executions can yield [S1, Ŝ2]
(including that which occurs with probability P̂rλ([S1, Ŝ2])). Given S2, there are
many different possibilities for Ŝ2. Each Ŝ2 has a corresponding P̂rλ([S1, Ŝ2]).
Here we define the “best” mimicry attack, given S1, S2 and λ, as the Ŝ2 that
maximizes P̂rλ([S1, Ŝ2]), i.e., the estimated-best mimicry attack is

arg max
Ŝ2

P̂rλ([S1, Ŝ2])

To summarize, in order to find the estimated-best mimicry attack, we need
to try different possible Ŝ2 sequences, and different executions of the HMM in
generating [S1, Ŝ2] in order to find the one that results in the highest probability.
Here we propose an efficient algorithm to do this.

We first try to find the estimated-best Ŝ2, by considering ways to improve
a given mimicry attack, i.e., to modify Ŝ2 to increase P̂rλ([S1, Ŝ2]). This can
be achieved by changing the way a transition is made from any state qi to qj

when generating [S1, Ŝ2]. Since we are modifying an existing mimicry attack,
we want to make sure that the modification does not emit any system calls in
S1, otherwise the mimicry attack will fail (though the modification can emit
additional system calls for process 2).

There are basically two ways to transition from qi to qj : an execution of
the HMM makes a transition from qi to qj directly with probability ai,j ; or an
execution makes a transition from qi to qj indirectly by visiting some states in
the HMM (and emitting some observable symbols). Note that in the latter case,
the observable symbols emitted for process 1 need to be σ’s, while the symbols
emitted for process 2 can be any system calls in C2. In order to find the best
way (the one with highest probability), we define

Behavioral Distance Measurement Using Hidden Markov Models 39

âi,j(e) = max

⎛
⎜⎜⎜⎝
⎧⎪⎪⎨
⎪⎪⎩Prλ

⎛
⎜⎜⎝ ∨

t2>t1≥0

Statet1 = qi ∧
Statet2 = qj ∧
Out>t1∧<t2

1 = 〈〉 ∧
Out>t1∧<t2

2 = S

⎞
⎟⎟⎠
⎫⎪⎪⎬
⎪⎪⎭

S �=〈〉 ∧ e/∈S

∪ {ai,j}

⎞
⎟⎟⎟⎠

where 〈〉 represents an empty sequence, and S is any non-empty sequence of
system calls from (C2 \ {e}). Out>t1∧<t2

1 is the sequence of system calls from C1
in the first components of the emitted symbols (less σ) between iteration t1 + 1
and iteration t2 − 1, and similarly for Out>t1∧<t2

2 . âi,j(e) represents the highest
probability of emitting any system calls for process 2 except e, while emitting
no system call (only a sequence of σ) for process 1, when transitioning from qi

to qj . (It may not be clear now why a special system call e needs to be excluded.
We will explain this later in this section.) Note that a special case is when S is
empty, which corresponds to transitioning from qi to qj directly.

âi,j(e) can be solved efficiently by solving for all-pairs shortest paths in a
graph G = 〈V, E〉, where V consists of two nodes qin

i and qout
i for every state qi

in the HMM, and the cost c(n1, n2) for each edge (n1, n2) is defined as

c(n1, n2) =

⎧⎪⎨
⎪⎩

| log ai,j | if n1 = qout
i ∧ n2 = qin

j

| log b̂i(σ, e)| if n1 = qin
i ∧ n2 = qout

i

∞ otherwise

where

b̂i(x, e) = max
c∈(C2∪{σ}\{e})

bi([x, c])

That is, b̂i(x, e) is the highest probability of emitting x from process 1 and any
system call (including σ and excluding e) from process 2 at state qi.

With {âi,j(e)} calculated, the algorithm of finding the estimated-best mimicry
attack becomes very similar to the algorithm of finding Prλ([S1, S2]) (see Sec-
tion 4.2). The differences are

– In computing Prλ([S1, S2]) we only allow σ to be inserted into S1 and S2,
but here we allow σ and any system calls to be inserted into S2 (for S1 it
remains the same — only σ is allowed).

– In computing Prλ([S1, S2]) we consider all executions of the HMM, and sum
up the corresponding probabilities. Here we consider only one execution that
generates S1 and S2 with the highest probability.

We define δ(u, v, i) to be the probability of the most probable mimicry exe-
cution to generate exactly the first u system calls of S1, and exactly the first
v system calls of S2, when the current state is qi, among all executions. As a
technical matter, when computing δ(u, v, i) inductively, we need to take care
to ensure that the HMM executions considered in the calculation of δ(u, v, i)
do not include those that should be considered only in calculating δ(u, v′, i) for

40 D. Gao, M.K. Reiter, and D. Song

v′ > v. Intuitively, the danger is HMM executions that, in the course of emitting
arbitrary system calls before reaching the next attack system call in S2, in fact
insert attack system calls from S2 as these “arbitrary” system calls. It is for
this reason that in calculating δ(u, v, i) inductively, we need to exclude HMM
executions that output elements of S2 prematurely, hence the arguments to âi,j

and b̂i. Given this, δ(u, v, i) can be solved inductively as follows.
Base cases:

δ(0, 0, i) =

{
1 if i = 0
0 otherwise

δ(u, v, 0) =

{
1 if u = v = 0
0 otherwise

Induction:

δ(u, 0, i) = max
j∈[0,N]

({
δ(u − 1, 0, j)âj,i(s2,1)b̂i(s1,u, s2,1)

})
for u > 0,

i > 0

δ(0, v, i) = max
j∈[0,N]

({δ(0, v − 1, j)âj,i(s2,v)bi([σ, s2,v])}) for v > 0,
i > 0

δ(u, v, i) = max
j∈[0,N]

⎛
⎜⎝

{
δ(u − 1, v, j)âj,i(s2,v+1)b̂i(s1,u, s2,v+1)

}
∪

{δ(u, v − 1, j)âj,i(s2,v)bi([σ, s2,v])} ∪
{δ(u − 1, v − 1, j)âj,i(s2,v)bi([s1,u, s2,v])}

⎞
⎟⎠ for

u, v > 0,
v < l2,
i > 0

δ(u, v, i) = max
j∈[0,N]

⎛
⎜⎝

{
δ(u − 1, v, j)âj,i(⊥)b̂i(s1,u, ⊥)

}
∪

{δ(u, v − 1, j)âj,i(s2,v)bi([σ, s2,v])} ∪
{δ(u − 1, v − 1, j)âj,i(s2,v)bi([s1,u, s2,v])}

⎞
⎟⎠ for

u > 0,
v = l2,
i > 0

Then, P̂rλ([S1, Ŝ2]) of the estimated-best mimicry attack given S1, S2 and λ is

max
i∈[1,N]

({δ(l1, l2, i)âi,N+1(⊥)})

The above inductive algorithm is efficient in calculating P̂rλ([S1, Ŝ2]). More-
over, by recording the most probable Ŝ2 (i.e., prefix of the eventual, estimated-
best mimicry) for each step of the induction, we can efficiently obtain the
estimated-best mimicry attack in the sense we have described.

An interesting question is whether this algorithm can be extended to find the
“real” best mimicry attack. To do so, the corresponding δ′(u, v, i) needs to be
defined as the “highest sum of probabilities of all executions” for (u, v, i). How-
ever, in assembling the most probable mimicry as discussed above, do we record
δ′(u, v, i) for one particular Ŝ2, or δ′(u, v, i) for all possible Ŝ2’s? Unfortunately,
the latter is required, because when calculating δ′() of larger indices, we need
the results of δ′() of lower indices for different Ŝ2’s. Since for each (u, v, i) we
need to record δ′(u, v, i) for all possible Ŝ2’s, this algorithm requires exponen-
tial computation time and memory in the worst case in the length of the best
mimicry. As such, we presently settle for the “estimated-best” mimicry attack,
which showed how to compute efficiently above, and leave finding the absolute
best mimicry attack to future work.

Automated Discovery of Mimicry Attacks

Jonathon T. Giffin, Somesh Jha, and Barton P. Miller

Computer Sciences Department, University of Wisconsin
{giffin, jha, bart}@cs.wisc.edu

Abstract. Model-based anomaly detection systems restrict program execution
by a predefined model of allowed system call sequences. These systems are
useful only if they detect actual attacks. Previous research developed manually-
constructed mimicry and evasion attacks that avoided detection by hiding a ma-
licious series of system calls within a valid sequence allowed by the model. Our
work helps to automate the discovery of such attacks. We start with two mod-
els: a program model of the application’s system call behavior and a model of
security-critical operating system state. Given unsafe OS state configurations that
describe the goals of an attack, we then find system call sequences allowed as
valid execution by the program model that produce the unsafe configurations.
Our experiments show that we can automatically find attack sequences in models
of programs such as wu-ftpd and passwd that previously have only been dis-
covered manually. When undetected attacks are present, we frequently find the
sequences with less than 2 seconds of computation.

Keywords: IDS evaluation, model checking, attacks, model-based anomaly
detection.

1 Introduction

A model-based anomaly detector restricts allowed program execution by a predefined
model of acceptable behavior [6,8,12,14,19,23]. These systems compare a sequence of
system calls generated by the executing program against the model. The detector clas-
sifies any system call sequence that deviates from the model as malicious and indicative
of a program exploit. The ability of the model to detect actual attacks depends upon the
implicit assumption that attacks always appear different than valid execution.

An attack that is accepted by the model as valid will not cause an anomaly and
will not be detected (Fig. 1). Mimicry and evasion attacks avoid detection by trans-
forming an attack sequence of system calls so that it is accepted by a program model
yet still carries out the same malicious action. Previous research found examples of
mimicry attacks against high-privilege processes restricted by a model-based detec-
tor [24, 21, 22, 20]. However, the attacks were constructed manually by iterating be-
tween an attack sequence and a program model until the attack could be made to appear
normal. Although these manually-constructed attacks served as a successful proof-of-
concept, manual approaches remain unsuitable as a general attack discovery strategy.

This paper automates the discovery of mimicry attacks. Our intent is not to propose
a new detection system but rather to provide the means to evaluate an existing program
model’s ability to detect attacks. We address two primary questions:

D. Zamboni and C. Kruegel (Eds.): RAID 2006, LNCS 4219, pp. 41–60, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

42 J.T. Giffin, S. Jha, and B.P. Miller

Σ∗

Attacks

Detected attacks
Undetected attacks

L(M)

Fig. 1. If Σ is the set of system calls, then Σ∗ is the infinite set of all possible system call se-
quences. A program model M accepts a subset of system call sequences L(M) as valid program
execution. Any attack sequence accepted as valid is a missed attack.

– What attacks does a program model fail to detect?
– What attacks can we prove that a model will always detect?

Finding missed attacks reveals the weaknesses of a program model and indicates that
a model-based detector provides insufficient security for that particular program. Con-
versely, proving that a model always detects an attack establishes strong indications
that a computer system using model-based detection is secure, even when an attacker
attempts to hide an attack within legitimate execution.

An attack is any sequence of system calls that produces a malicious change to the
operating system (OS). For a given attack sequence, an attacker can produce variations
of the sequence having the same attack effect by inserting extraneous system calls into
the sequence or replacing existing system calls with alternative sequences having the
same effect. A program model that detects one sequence may allow a different, obfus-
cated sequence. The net result remains the same: the model fails to detect an attack. We
must verify that a model detects each of the attack variants.

We use a novel formalism that requires neither knowledge of particular attack se-
quences nor knowledge of particular obfuscations that try to hide those sequences from
a detector. We develop a model of an OS with respect to its security-critical state and
then characterize attacks only by their effect upon the OS. This leverages a key insight:
the commonality among the obfuscated attack sequences is that the sequences are se-
mantically equivalent with respect to their malicious effect upon the OS. Although we
manually produce the OS model and the definitions of malicious OS state, this is a one-
time effort that is reused for subsequent analyses of all models of programs executing
on that operating system.

The program model specifies what sequences of system calls are allowed to exe-
cute. By specifying how each system call transforms the OS’s state variables, we are
able to compute the set of OS configurations reachable when a program’s execution
is constrained by the model. We apply model checking [4] to prove that no reachable
configuration corresponds to the effect of an attack. If the proof fails, then some system
call sequence allowed by the model produces the malicious effect. The model checker
reports this sequence as a counter-example that caused the proof to fail, providing pre-
cisely an undetected attack as output. In terms of Fig. 1, we are finding system call
sequences contained in L(M)∩Attacks without explicitly computing the set Attacks
of malicious system call sequences.

Automated Discovery of Mimicry Attacks 43

This approach automates the previous manual effort of finding mimicry attacks. In
experiments, we show that we can automatically discover the mimicry attack against the
Stide [8] model for wu-ftpd [24] and the evasion attacks against the Stide models for
passwd, restore, and traceroute [21,20,22]. The model checking process com-
pleted in about 2 seconds or less when undetected attacks were present in the models.
When a model is sufficiently strong to detect an attack, the model checking algorithm
will report that no attack sequence could be found. This requires exhaustive search and
completed in 75 seconds or less for all attacks detected by the models of the four test
programs. Note that proofs of successful detection hold only with respect to our abstrac-
tion of the OS state. If this abstraction is erroneous or incomplete, undetected attacks
may still be present when using the model to protect a complete operating system.

Our work addresses outstanding problems in model-based anomaly detection. We
provide a method for model evaluation that exhaustively searches for sequences of sys-
tem calls allowed as valid by a program model but that induce a malicious configuration
of OS state. Although our current work evaluates the context-insensitive Stide model,
we have designed our system so that it can evaluate any program model expressible as
a context-sensitive pushdown automaton (PDA). One of our long-term goals, not yet
realized, is to compare the detection capabilities of different model designs proposed in
the literature.

In summary, this paper makes the following contributions:

– Automated discovery of mimicry attacks. We use model checking to find sequences
of system calls accepted as valid by a program model but that have malicious effects
upon the operating system. Our system produces the exact sequences of system
calls, with arguments, that comprise the undetected attacks.

– A system design where attack sequences and obfuscations need not be known. Our
system does not require that attack system call sequences be known or enumerated.
In fact, we strive for the opposite: our system will automatically find new, unknown
attack sequences accepted by a program model and will produce those sequences as
output. Likewise, we automatically find the obfuscations used by attackers to hide
attack system calls within a legitimate sequence. As a result, our approach is not
limited by a priori knowledge of attacker behavior.

Section 2 presents related work in manual attack analysis. Section 3 gives an over-
view of our system. Section 4 describes the operating system abstraction and Sect. 5
explains how a model checker uses that abstraction to find undetected attacks in a pro-
gram model. Section 6 presents the architecture of our implementation, and Sect. 7 uses
that implementation to demonstrate experimentally that we have automated the previ-
ously manual process of discovering undetected attacks.

2 Related Work

The seminal research on mimicry [24, 9] and evasion attacks [22, 21, 20] demonstrated
a critical shortcoming of model-based anomaly detection. Attackers can avoid detec-
tion by altering their attacks to appear as a program’s normal execution. These altered
attacks are sequences of system calls allowed by a program model but that still cause

44 J.T. Giffin, S. Jha, and B.P. Miller

malicious execution. Previous work constructed mimicry and evasion attacks by con-
verting some detected attack system call sequence A into an equivalent undetected se-
quence A′. If A and A′ are semantically equivalent and A′ is a sequence allowed by the
program model, then A′ is a successful, undetected attack.

Determining that a model expressed as a pushdown automaton accepts A′ is a com-
putable intersection operation provided that A′ is regular; finding a sequence A′ to
intersect is a manual, incomplete procedure with several drawbacks:

– The procedure requires known attack sequences A.
– The equivalence of two system call sequences is not well defined. For example: an

undetected attack sequence A′ may include legitimate execution behavior that is
irrelevant to the original attack sequence A. Are A and A′ equivalent?

– There is no clear operational direction to find mimicry and evasion attacks auto-
matically. Identifying two sequences as equivalent attacks was a manual procedure
based on intuition. There was no algorithmic process amenable to automation.

Our model evaluation takes a different approach that advances the state of the art. By
defining attacks only by their malicious effects upon the system, our work is not re-
stricted to known attack sequences of system calls or known attack transformations
producing evasive attacks. Attack sequences are not part of the input to our system;
in fact, our work produces the sequences as its output. We can further define two sys-
tem call sequences as equivalent with respect to the attack if they produce the same
malicious effect upon the operating system. This formalism provides the operational
direction allowing our work to automate the procedure of finding undetected attacks.

Previous attempts have been made to quantify the ability of a model to detect attacks.
Average branching factor (ABF) [23] calculates, for any finite-state machine model, the
average opportunity for an attacker to undetectably execute a malicious system call dur-
ing a program’s execution. A predefined partitioning divides the set of system calls into
“safe” calls and “potentially malicious” calls. As the runtime monitor follows paths
through the automaton in response to system calls executed by the program, it looks
ahead one transition to determine the number of potentially malicious calls that would
be allowed as the next operation. The average branching factor is then the sum of the
potentially malicious calls divided by the number of system call operations verified dur-
ing execution. An extension to average branching factor, called the average reachability
measure (ARM) [10], similarly evaluated pushdown automaton models.

Although these measurements provide a convenient numeric score enabling model
comparisons, they do not provide a clear measure of a model’s ability to actually detect
attacks. These metrics do not effectively embody an attacker’s abilities:

– An attacker may alter a program’s execution to reach a portion of the program
model that admits an attack sequence by first passing through a sequence of safe
system calls. By only looking at the first system call branching away from a benign
execution path, ABF and ARM fail to show the strength of one model over another.

– The ABF or ARM value computed depends upon the benign execution path fol-
lowed and hence upon program input. A complete evaluation of the model requires
computing the score along all possible execution paths. This is extremely challeng-
ing and itself forms an entire body of research in the program testing area.

Automated Discovery of Mimicry Attacks 45

– Attacks frequently are comprised of a sequence of system calls. The previous met-
rics look at each system call in isolation and have no way to characterize longer
attack sequences.

Consequently, these metrics provide limited insight into a model’s ability to detect at-
tacks. Our work improves the evaluation of a program model’s attack detection ability
by decoupling the evaluation from both a particular execution path and from the need
to describe malicious activity as unsafe system calls.

MOPS [3] is similar to our work in the first aspect: it statically checks a program
model to determine properties of the model. Unlike our work, however, MOPS charac-
terizes unsafe or attack behavior as regular expressions over system calls and requires
users to provide a database of malicious system call patterns. Just as commercial virus
scanners syntactically match malicious byte sequences against program code, MOPS
syntactically matches unsafe system call sequences against a program model. Likewise,
when a new malicious behavior is discovered, the database of system call patterns must
be updated. Conversely, by understanding the semantics of system calls, the system
in our paper does not require known malicious system call sequences, and it in fact
automatically discovers them for the user. Our work is not tied to known patterns of
malicious system call execution.

Model checking is a generic technique used to verify properties of state transition
systems, and it has been applied previously to computer security. Bessen et al. [2] de-
scribed how model checkers can verify safety properties [16] expressed in linear-time
temporal logic (LTL). They verified the properties over annotated control-flow graphs,
where both the graph and the annotations expressing security properties of the program
code came from some unspecified source. We analyze automatically constructed pro-
gram models, and our model checking procedure automatically derives security prop-
erties of the model as it traverses the model’s edges.

Guttman et al. used model checking to find violations of information-flow require-
ments in SELinux policies [13]. They modeled the SELinux policy enforcement engine
and the ways in which information may flow between multiple processes via a file sys-
tem. They could then verify that any information flow was mediated by a trusted process
on the system. Our work has a different goal: verification of safety properties using an
OS model where system calls alter OS state.

Ramakrishnan and Sekar [15] used model checking to find vulnerabilities in the in-
teraction of multiple processes. They abstracted the file system and specified each pro-
gram’s execution as a file system transformer. The program specifications were compli-
cated by the need to characterize interprocess communication. Our work expands the
system abstraction to include the entire operating system, shifts the checked interface
from coarse-grained process execution down to system calls, and has no need to model
communication channels between processes.

Walker et al. used formal proof techniques to verify properties of a specification
of a UNIX security kernel [25]. This work is notable because the authors rigorously
proved that the abstract specification of the kernel matched the actual implementation.
As a result, properties proved using the abstraction also hold true in the real operating
system. Due to the difficulty of producing proofs of correct specifications, little other
research actually demonstrates that abstractions are accurate. We adopt this simpler

46 J.T. Giffin, S. Jha, and B.P. Miller

approach: we produced our operating system abstraction manually and have not proved
it correct. As a result, discovered attacks or proofs of the absence of attacks hold only
with respect to the abstraction. A discovered attack can be validated by actually running
the system call sequence against a sandboxed operating system. Conversely, if we do
not find any attack, then this provides good indication that the program model is secure
even though this is not provably true in the real operating system.

3 Overview

We provide here an overview of model-based anomaly detection, including the attacker
threats addressed, context-sensitive program models, and the purpose of attack discovery.

3.1 Threat Model

Our system automatically constructs undetected attack sequences possible within a par-
ticular threat model. This threat model is simple and strong:

Let Σ be the set of system calls invoking kernel operations. If program P
is under attacker control, then P can generate any sequence of system calls
A ∈ Σ∗.

Attackers may subvert a vulnerable program’s execution at any execution point, includ-
ing the point of process initialization. Attackers can then arbitrarily alter the code and
data of the program, and can even replace the program’s entire memory image with
an image of their choosing. Alternatively, the attacker could replace the disk image
of a program with, for example, a trojan before the OS loads the program for exe-
cution. The attacker can generate any sequence of system calls and system call argu-
ments, and the operating system will execute the calls with the privilege of the original
program.

This threat model matches real-world attacks. In remote execution environments,
programs execute on remote, untrusted machines but send a sequence of remote system
calls back to a trusted machine for execution. An attacker controlling the remote host
can arbitrarily alter or replace the remote program. The attacker’s program image can
then send malicious system calls back to the trusted machine for execution [11].

Common network-based attacks against server programs have a more restrictive
threat model. Attackers can subvert execution only at points of particular program vul-
nerabilities and face greater restrictions in the attack code that they can then execute. As
a result, if our system proves that a program model detects an attack in the strong threat
model, it will also detect the attack in a more restrictive model. However, successful
attacks discovered by our system are specific to the strong threat model. Although the
program model would fail to detect the attack sequence even in the restricted threat
model, a restricted attacker may be unable to cause the program to execute that attack.
Our system currently does not make this determination and will report all attacks dis-
covered in the strong threat model.

Consider the example in Fig. 2. This is a vulnerable program that reads command
characters and filenames from user input. This input may come from the network if

Automated Discovery of Mimicry Attacks 47

void main (void) {
char input[32];
gets(input);
if (input[0] == ‘x’) {

setreuid(42, -1);
syslog(1, "Execing file");
execve(input+2, 0, 0);

} else if (input[0] == ‘e’) {
struct stat buf;
syslog(1, "Echoing file");
stat(input+2, &buf);
int fd = open(input+2, O RDONLY);
void *filedata =

mmap(0, buf.st size, PROT READ, MAP PRIVATE, fd, 0);
write(1, filedata, buf.st size);

}
}

Fig. 2. Code example. We show system calls in boldface and library calls in italics. The unsafe
call to gets allows an attacker to execute arbitrary code.

the program is launched by a network services wrapper daemon such as xinetd. The
command-code and argument input resembles the usage of programs such as ftp servers
or http servers. Suppose that the program is executed with stored but inactive privilege:
its real and effective user IDs are a low-privilege user, but the saved user ID is root. If
the input contains the command character ‘x’, then the program drops all of its saved
privilege and executes a filename given in the input. If the input contains the command
character ‘e’, then the program echoes the contents of a specified file to its output, which
may be a network stream.

In our threat model, an attacker can arbitrarily alter the execution of this program.
Perhaps the attacker exploits the vulnerable gets call; perhaps they use an attack vector
that we have not considered. The attacker can cause the program to execute any system
call, including system calls not contained in the original program code. The role of
host-based intrusion detection is to detect any such subverted program execution.

3.2 Program Model

Readers familiar with pushdown automaton (PDA) models may elect to bypass this
section, as it presents background material and standard notation previously used for
PDA-based program models.

Model-based anomaly detection restricts allowed execution to a precomputed model
of allowed behavior. A program model M is a language acceptor of system call se-
quences and is an abstract representation of the program’s expected execution behavior.
If Σ denotes the alphabet of system calls, then L(M) ⊆ Σ∗ denotes the language
accepted by M . A system call sequence in L(M) is valid; sequences outside L(M)
indicate anomalous program execution. In this paper, we implement a program model
as a non-deterministic pushdown automaton (PDA).

48 J.T. Giffin, S. Jha, and B.P. Miller

Definition 1. A pushdown automaton (PDA) is a tuple M = 〈S, Σ, Γ, δ, s0, Z0, F 〉,
where

– S is a set of states;
– Σis a set of alphabet symbols;
– Γ is a set of stack symbols;
– δ ⊆ {〈s, γ〉 σ→ 〈s′, γ′〉 | s ∈ S, γ ∈ Γ ∪ ε, σ ∈ Σ ∪ ε, s′ ∈ S, γ′ ∈ Γ ∪ ε};
– s0 ∈ S in an initial state;
– Z0 ∈ Γ ∗ is an initial stack configuration;
– F ⊆ S is a set of final states.

A PDA model has close ties to program execution. A state corresponds to a program
point in the program’s code. The initial state corresponds to the program’s entry point.
The final states correspond to program termination points, which generally follow an
exit system call. The alphabet symbols are the system calls generated by a program as
it executes. The stack symbols are return addresses specifying to where a function call
returns. The initial stack Z0 is empty, as a program begins execution with no return
addresses on its call stack.

The transition relation δ describes valid control flows within a program. Our PDA
model has three types of transitions:

– System calls: 〈s, ε〉 σ→ 〈s′, ε〉 for σ �= ε indicates that the program can generate
system call σ when transitioning from state s to state s′. The PDA stack of function
call return addresses remains unchanged.

– Function calls: 〈s, ε〉 σ→ 〈s′, γ〉 for γ �= ε indicates that the program pushes return
address γ onto the call stack when transitioning from state s to s′. Here, s corre-
sponds to a function call-site in the program and s′ corresponds to the entry point
of the call’s destination.

– Function returns: 〈s, γ〉 σ→ 〈s′, ε〉 for γ �= ε indicates that the program returns
from a function call and pops return address γ from the call stack. This transition
can be followed only when γ is the top symbol of the PDA stack. The state s
corresponds to a program point containing a function return instruction and s′ is
the program point to which control is actually returned.

Many program model designs proposed in academic literature are not presented as
pushdown automata. However, the generality of a PDA allows us to characterize those
models as PDA suitable for analysis using the techniques presented later in this paper.
The context-free languages recognized by PDA completely contain the class of regular
languages. All program models of which we are are aware accept either regular or
context-free languages, and hence can always be characterized by a PDA. This includes:

– window-based models, such as the Stide model [8] (Fig. 3a) or the digraph model
[23] (Fig. 3b);

– non-deterministic finite automata (NFA) [23, 19, 14, 12] (Fig. 3c);
– bounded-stack PDAs [11];
– deterministic PDAs, such as the VPStatic model [6];
– stack-deterministic PDAs, such as the Dyck model [6]; and
– non-deterministic PDAs [23] (Fig. 3d).

Automated Discovery of Mimicry Attacks 49

write

execve

stat

open

mmap

write

read

writesetreuid read

write

statwrite
execve

open

mmapwrite

setreuid

open

mmap

write

read

write

statwrite
execve

setreuid

read
pop A

push A

push C

write
push B

pop B pop C

execve

write

mmap

open

stat

setreuid

(a) Stide Model (b) Digraph Model (c) NFA Model (d) PDA Model

Fig. 3. Four different program models for the code of Fig. 2, each expressed as a pushdown
automaton. For simplicity, we assume that the gets function call generates the system call read
and the syslog function call generates write.

When a model accepts a regular language, we simply have Γ = ∅ and transitions in
δ are only of the form 〈s, ε〉 σ→ 〈s′, ε〉. Although the experiments in Sect. 7 consider
the Stide model, a regular language acceptor, we intentionally designed our system to
analyze pushdown automata so that it is relevant to a wide collection of program models
of varying strength.

Commensurate with our threat model, we assume that an attacker has prior knowl-
edge of the particular program model used to constrain execution of a vulnerable pro-
gram. The security of the system then relies entirely upon the ability of the program
model to detect attacks.

3.3 Finding Undetected Attacks

We have developed a model analysis system that evaluates a PDA-based program model
and finds undetected attacks. Our design has three features of note:

– It operates automatically. A user must provide an initial, one-time operating system
abstraction that can then be reused to analyze the model of any program execut-
ing on that operating system. This subsequent analysis requires no human input,
allowing the analysis to scale easily to large collections of program models.

– Attacks, which are sequences of system calls, do not need to be known. In fact, our
system provides attack sequences as output.

– System call arguments can significantly alter the semantic meaning of the calls.
When our system finds an undetected attack sequence of system calls, it addition-
ally provides the system call arguments necessary to effect the attack.

We construct an abstraction of the operating system with respect to its security-critical
state. This abstraction can be repeatedly used to find attacks in the models of programs
that execute on that operating system. Consider a simple example:

50 J.T. Giffin, S. Jha, and B.P. Miller

Example 1. Running our tool for each of the four models in Fig. 3 shows that none de-
tect all attacks that execute a shell with root privilege. The tool automatically identifies
a system call sequence, with arguments, that defeats each model:

read(0);
setreuid(0, 0);
write(0);
execve(“/bin/sh”);

The read and write calls are nops that are irrelevant to the attack. The setreuid call
alters OS state to gain root access, and the execve call executes a shell with that access.

One of our long-term goals is to use discovered undetected attacks to guide the future
design of program models and intrusion detection systems. Comparing the undetected
attack sequence with the original program code of Fig. 2 suggests a model alteration
that would eliminate this undetected attack. If the model constrains statically-known
system call argument values, then an attacker cannot undetectably use the setreuid call
to set the effective user ID to root. Although the attacker remains able to execute the
shell, that shell will not have increased privilege.

We will consider additional examples in Sect. 5.

4 Operating System Model

Given a program model M , answering the question first posed in Sect. 1, what attacks
does M fail to detect?, requires understanding of what “attack” means. Previous work
defined attacks as known, malicious sequences of system calls [24]. Directly searching
program models for these sequences unfortunately has two drawbacks:

– An attacker could transform an attack sequence detected by the program model into
a different sequence that produces the same malicious effect but is allowed by the
model. For example, meaningless nop system calls could be inserted into the attack,
and system calls such as write could be changed to other calls such as mmap. In
previous work, the onus of finding all attack variants was upon the human.

– This approach poorly handles program models that monitor both system calls and
system call arguments [23, 11]. Identifying nop system calls is not straightforward
when the allowed system call arguments are constrained by the model.

We decouple our approach from the need to know particular system call sequences
that execute attacks. Instead, we observe that regardless of the system call sequence
transformations used by an attacker, their attack will still impart the same adverse effect
upon the operating system. It is precisely this adverse effect that characterizes an attack:
it captures the malicious intent of the attacker. The actual system call sequence used
by the attacker to bring about their intent need not be known a priori, and in fact is
discovered automatically by our system.

To formalize attacks by their effect upon the operating system, we must first formal-
ize the operating system itself. Our formalization has three components:

Automated Discovery of Mimicry Attacks 51

– a set of state variables,
– a set of initial assignments to those variables, and
– a set of system call transition relations that alter the state variables.

After developing the definitions of these components, we finally define attack effects.

4.1 State Variables

A collection of state variables model security-critical internal operating system state,
such as user IDs indicating process privilege, access permissions for files in the filesys-
tem, and active file descriptors. A state variable v has a value in the finite domain
dom(v) which contains either boolean values or integer values.

Definition 2. The set of all state variables is V . The set of all assignments of values
to variables in V is S. A configuration is a boolean formula over V that characterizes
zero or more assignments.

Model checking algorithms operate over boolean variables; variables in a finite domain
are simply syntactic sugar and are represented internally as lists of boolean variables.
We additionally allow variables to be aggregated into arrays and C-style structures, both
of which our implementation automatically expands into flat lists of variables.

Consider the example of the operating system’s per-process file descriptor table. We
abstract this structure as an array of file descriptors, each of which has a subset of actual
file descriptor data that we consider relevant to security:

FILEDESCRIPTORTABLE : array [0 .. MAXFD] of FILEDESCRIPTOR

FILEDESCRIPTOR : struct of
INUSE : boolean
FORFILE : integer
CANREAD : boolean
CANWRITE : boolean
ATEOF : boolean

The INUSE field indicates whether or not this file descriptor is active. The remaining
fields have meaning only for active descriptors. FORFILE is an index into an array of
file structures, not shown here, that abstract the file system. CANREAD and CANWRITE

indicate whether the file descriptor can be used to read or write the file pointed to by
the FORFILE field. ATEOF is true when the file descriptor’s offset is at the end of the
file and allows us to distinguish between writes that overwrite data in the file and writes
that simply append data to the file.

Identifying what operating system data constitutes “security-relevant state” is cur-
rently a manual operation. Whether the subsequent model checking procedure finds an
undetected attack or reports that no attack exists, these results hold only with respect
to the chosen OS abstraction. An attack sequence is executable and can be validated
against the real operating system by actually running the attack in a sandboxed envi-
ronment and verifying that it was successful. However, when the model checker finds
no attack, there is no tangible artifact that may be verified. If relevant OS data is not
included in the abstraction, then our system may fail to discover a mimicry attack. As

52 J.T. Giffin, S. Jha, and B.P. Miller

setuid (uid t uid)
{

[uid �= −1 ∧ euid = 0 =⇒ ruid′ = uid ∧ euid′ = uid ∧ suid′ = uid] ∧ (1)
[uid �= −1 ∧ euid �= 0 ∧ (ruid = uid ∨ suid = uid) =⇒ euid′ = uid] ∧ (2)
[uid = −1 ∨ (euid �= 0 ∧ ruid �= uid ∧ suid �= uid) =⇒ true] (3)

}

Fig. 4. Specification for the setuid system call. Unprimed variables denote preconditions that
must hold before the system call, and primed variables denote postconditions that hold after the
system call. Any variable not explicitly altered by a postcondition remains unchanged.

a result, the absence of an attack in the abstract OS provides evidence but not a mathe-
matical proof that the model will detect the attack when operating in a real OS.

The initial assignments of values to OS state variables encodes the OS state config-
uration present when a process is initialized for execution. We write these assignments
as a boolean formula I over the state variables V ; any assignment satisfying I is a
valid initial state. In our work, we developed two different boolean formula for differ-
ent classes of programs. The formula I for setuid root programs set the initial effective
user ID to root; the formula for all other programs set the user ID to a low-privilege
user.

4.2 System Call Transformers

System calls transform the state variables. For each system call, we provide a relation
specifying how that call changes state based upon the previous state.

Definition 3. Let π be a system call. Recall that V is the set of all OS state variables
and S is the set of all value assignments. The set of parameter variables for π is Λπ

where Λπ ∩ V = ∅. The system call transformer for π is a relation ∆π ⊆ S × S.

In English, each system call transformer produces new assignments of values to OS
state variables based upon the previous values of the OS state. We write each trans-
formation function as a collection of preconditions and postconditions that depend on
parameter variables. Preconditions are boolean formulas over V ∪ Λπ, and postcondi-
tions are boolean formulas over V . If a precondition formula holds before the system
call executes, then the corresponding postcondition formula will hold after the system
call.

Consider the example in Fig. 4. The specification for setuid shows that the system
call has one parameter variable of type uid t, which is an integer valued type. The
boolean formula encodes three sets of preconditions and postconditions. From line (1),
if the uid argument is valid and the effective user ID before the setuid call is root, then
after the call, the real, effective, and saved user IDs are all set to the user ID specified
as the argument to setuid. Implicitly, all other OS state variables remain unchanged by
the call. Line (2) handles the case of a non-root user calling setuid. If either the real or
saved user IDs match the argument value, then the effective user ID is changed to that
value. Again, all other state is implicitly unchanged. Line (3) allows setuid to be used
as a nop transition that does not change OS state when neither the line (1) nor line (2)

Automated Discovery of Mimicry Attacks 53

preconditions hold true. We note that line (3) is redundant and can be omitted from the
setuid specification; we show it here only to emphasize the ability of setuid to be used
as a nop.

We now have all components of the operating system abstraction:

Definition 4. The operating system (OS) model is Ω = 〈V, I, ∆〉 where V is the collec-
tion of OS state variables, I is a boolean formula over V indicating the initial OS state
configuration, and ∆ = {∆1, . . . , ∆n} is the collection of system call transformers.

4.3 Attacks

An attack is a sequence of system calls that executes some malicious action against
the operating system. However, these sequences are not unique. Attackers can pro-
duce an infinite number of obfuscated attack sequences by inserting extraneous, nop
system calls into a known sequence and by changing attack system calls into other
semantically-equivalent calls. Manual specification of actual attack sequences can be
incomplete, as there may be attack obfuscations not known to the individual specifying
the attacks. We circumvent this problem by specifying the effects of attacks rather than
the sequences themselves.

Definition 5. An attack effect E is a boolean formula over V .

The formula E characterizes bad operating system configurations indicative of a suc-
cessful intrusion. It describes the attacker’s intent and the effect of the attack upon the
OS. Any system call sequence A that takes the OS from an initial, safe configuration
satisfying I to a configuration satisfying E is then an attack sequence. If A is allowed
by the program model, than A is an undetected attack.

5 Automatic Attack Discovery

The role of automatic attack discovery is to determine if any system call sequences
accepted as valid execution by a program model will induce an attack configuration E .

Let E be an attack effect. The notation �¬E expresses a safety property in linear-
time temporal logic (LTL) that means “globally, E is never true”. A program model M
will detect any attack attempting to induce the effect E if and only if M � �¬E . That
is, within the executions allowed by M interpreted in the OS model Ω, the attack goal
can never occur. The model checker attempts to prove this formula true. If the proof
succeeds, then the attack goal could not be reached given the system call sequences
allowed by the program model. If the proof fails, then the model checker has discovered
a system call sequence that induces the attack goal.

We consider several examples:

Example 2 (Expanded from Sect. 3 Example 1). First, we find attacks that execute a
root-shell undetected by the four models of Fig. 3.

If the attack succeeds, then the executing image file is /bin/sh and the effective
user ID is 0:

E : image = /bin/sh ∧ euid = 0

54 J.T. Giffin, S. Jha, and B.P. Miller

This boolean expression expresses the effect of the attack rather than any particular
sequence of system calls that produces the effect. Running our tool for each of the four
models shows that none detect the attack, as shown in Sect. 3.3.

Example 3. Next, we try to find undetected attacks that write to the system’s password
file.

If this attack succeeds, then the file /etc/passwd will have been altered:

E : file[/etc/passwd].written = true

The tool automatically finds a successful attack against the Digraph and NFA models:

read(0);
setreuid(0, 0);
write(0);
stat(0, 0);
open(“/etc/passwd”, O WRONLY | O APPEND) = 3;
mmap(0, 0, 0, 0, 0, 0);
write(3);

The attack sequence first sets the effective user ID to root, which then allows the process
to open the password file and add a new user. The read, stat, mmap, and first write
calls are all nops irrelevant to the attack.

Conversely, the tool discovers that the Stide and PDA models will always detect any
attack that tries to alter the password file. These models accept no system call sequence
that ever has write privilege to the file /etc/passwd.

Example 4. Finally, we try to find undetected attacks that add a new root-level account
to the system and execute a user-level shell, with the expectation that the attacker can
subsequently switch to high privilege via the new account.

This combines elements of Examples 2 and 3:

E : image = /bin/sh ∧ file[/etc/passwd].written = true

The system finds an attack against the Digraph model:

read(0);
setreuid(0, 0)
write(0);
stat(0, 0);
open(“/etc/passwd”, O WRONLY | O APPEND) = 3;
mmap(0, 0, 0, 0, 0, 0);
write(3);
execve(“/bin/sh”);

The system proves that the Stide, NFA, and PDA models all detect this attack regardless
of any attempts to obfuscate a system call sequence. This is evident from the models: al-
though they accept sequences that open and write to a file, they do not allow subsequent
execution of a different program.

Automated Discovery of Mimicry Attacks 55

Model
Moped

Checker
Attack Sequence

Syscall Specifications

Compiler
System

Attack Configuration

Initial Configuration

OS State Variables

PDA Program Model

Pushdown

Fig. 5. Architecture

6 Implementation

Model checking either proves that an unsafe OS configuration cannot be reached in
a program model or provides a counter-example system call trace that produces the
unsafe configuration. As we are verifying transition systems that may be pushdown au-
tomata, we are limited in implementation options to pushdown model checkers [5, 17].
Moped [18] and Bebop [1] are interchangeable tools that analyze pushdown systems.
Our implementation uses Moped simply because of its public availability.

When a context-sensitive program model is used to verify a stream of system calls
generated by an executing process, we call that model a pushdown automaton (PDA).
The system calls are the input tape and the PDA has final states that correspond to
possible program termination points. When we analyze a model to verify its ability to
detect attacks, we call the model a pushdown system.

Definition 6. A pushdown system (PDS) is a tuple Q = 〈S, Σ, Γ, δ, s0, Z0〉, where
each element of the tuple is defined as in Definition 1.

The definition of a PDS is identical to that of a PDA, with the exception that the PDS
has no final states and no input tape. A PDS is just a transition system used to analyze
properties of sequences and is not a language acceptor. Moped verifies that no sequence
of system calls in the PDS will produce an unsafe operating system configuration.

The input to Moped is a collection of variables and a PDS where each transition
in δ is tagged with a boolean formula. The formula expresses preconditions over the
variables that are required to hold before traversing the transition and postconditions
that hold after traversal. If no preconditions hold, then Moped will not traverse the
transition and will not alter the state variables. The Moped input language allows both
boolean and integer variables, although the integer variables are represented internally
as ordered lists of boolean bits.

We have written a specification compiler that will produce valid Moped input files
from a PDA program model, the OS state variables, the initial OS configuration, the
system call transformers, and the attack that we wish to prove is detected (Fig. 5). The
compiler converts the PDA to a PDS in a straightforward manner by simply removing
the designations for final states. It compiles each system call transformer into a boolean
formula expected by Moped and annotates all system call transitions in the PDS with
these formulas. If the PDS contains other transitions, such as push and pop transitions
that do not correspond to system calls, the compiler annotates the transitions with a
formula whose preconditions match any OS variable assignment and whose postcon-
ditions simply maintain that assignment. We add one new state A to the PDS and new

56 J.T. Giffin, S. Jha, and B.P. Miller

transitions to A after each system call transition. The precondition on these new transi-
tions is exactly the OS attack configuration E that we wish to prove cannot be reached
in the model. We then invoke Moped so that it proves that state A cannot be reached or
provides a counterexample trace of system calls reaching state A.

7 Experiments

We used our implementation to find undetected attacks in program models that have
appeared in academic literature. We show that our automated approach can find the
mimicry and evasion attacks that previously were discovered manually [24, 22, 20, 21].
The automated techniques allow for better scaling of the number of test cases when
compared to manual approaches.

We can automatically find mimicry and evasion attacks that previous research found
only with manual analysis. Previous work considered four test programs—wu-ftpd,
restore, traceroute, and passwd—that had known vulnerabilities allowing at-
tackers to execute a root shell. Forrest et al. [8] successfully detected known attack
instances using a model called Stide. The Stide model is a context-insensitive charac-
terization of execution learned from system call traces generated by a series of train-
ing runs. Wagner and Soto [24] and Tan et al. [22, 20, 21] demonstrated that attackers
could modify their attacks to evade detection by the Stide model. In some cases, the
undetected attacks were not semantically equivalent to the original root shell exploit,
although the attacks adversely modified system state so that the attacker can subse-
quently gain root access. For example, successful attack variants may:

– write a new root-level account to the user accounts file /etc/passwd;
– set /etc/passwd world-writable so that an ordinary user can add a new root

account; or
– set /etc/passwd owned by the attacker so that the attacker can add a new root

account.

We automatically found these undetected attacks. We used our infrastructure to ana-
lyze the Stide model for each of the four programs with respect to each of the four attack
goals. For wu-ftpd, we constructed the Stide model using the original Linux training
data of Forrest et al. [7]. We were unable to obtain either the wu-ftpd training data
used by Wagner and Soto or the Stide models that they constructed from that data. As a
result, we were able to find attacks in the wu-ftpd model constructed from Forrest’s
data that were reportedly not present in the model constructed from Wagner’s data. For
the remaining three test programs, we constructed models from training data generated
in the manner described by Tan et al. [20]. Our specification compiler combined PDA
representations of the Stide models with specifications of Linux system calls to produce
pushdown systems amenable to model checking.

Table 1 lists the size of the PDA representation of the Stide model for each program.
The OS state model included 119 bits of global state and 50 bits of temporary state
for system call argument variables. This temporary state reduces Moped’s resource de-
mands because it exists only briefly during the model checker’s execution.

Table 2 presents the ability of the Stide model to detect any attack designed to reach
a particular attack goal, as determined by Moped. A “yes” indicates that the model

Automated Discovery of Mimicry Attacks 57

Table 1. Number of states and edges in the transition systems describing the Stide model for each
of the four test programs. The boolean OS state includes 119 bits for global state variables and
50 bits of temporary state for system call argument variables.

wu-ftpd restore traceroute passwd

Edge count 2,085 1,206 623 1,058
State count 1,477 892 459 766

Table 2. Evaluation of the Stide model’s ability to detect classes of attacks. A “yes” indicates
that the Stide model will always detect the attack because the model checker was unable to find
an undetected attack. A “no” indicates that Stide is unable to protect the system from the attack
because the model checker discovered an undetected attack sequence. Writing to /etc/passwd
is normal behavior for passwd.

wu-ftpd restore traceroute passwd

Execute root shell No No Yes Yes
Write to /etc/passwd No No No —
Set /etc/passwd world-writable Yes Yes Yes No
Set /etc/passwd attacker-owned Yes Yes Yes No

will always prevent any attacker from reaching their goal, regardless of how they try to
transform or alter their attack sequence of system calls. A “no” indicates the reverse:
the model checker was able to find a system call sequence, with arguments, accepted by
the model but that induces the unsafe operating system condition. Figure 6 shows the
undetected attack against traceroute’s Stide model discovered by our system. We auto-
matically found all attacks that researchers previously found manually, one additional
attack due to differences between Forrest’s training data and Wagner’s training data for
wu-ftpd, and an additional attack against restore not found by previous manual
research.

Previous work missed this attack because manual inspection does not scale to many
programs and attacks, and hence the research did not attempt to compute results for all
attack goals in all programs. When using manual inspection, it is likewise difficult to
show that an attack is not possible: has the analyst simply not considered an attack that
would be successful? Model checking can prove that a goal is unreachable regardless
of the actual system calls used by the attacker in their attempt to reach the goal. We

close; munmap; open(“/etc/passwd”, O RDWR | O APPEND) = 3;
fcntl64; fcntl64; fstat64; mmap2; read; close; munmap; write(3);

Fig. 6. Undetected attack against the Stide model of traceroute that adds a new root-level user to
/etc/passwd. The system calls producing the attack effect are shown in boldface. Although
our system discovers arguments for the nop system calls, we omit the arguments here for con-
ciseness. We do not discover the actual string value written to /etc/passwd; a suitable string
would be “attacker::0:0::/root:/bin/sh\n”.

58 J.T. Giffin, S. Jha, and B.P. Miller

Table 3. Model checking running times, in seconds.

wu-ftpd restore traceroute passwd

Execute rootshell 0.34 0.75 2.38 2.70
Write to /etc/passwd 0.39 0.73 1.33 —
Set /etc/passwd world-writable 39.10 74.41 0.90 2.02
Set /etc/passwd attacker-owned 41.11 65.21 1.15 1.81

can show that the models of the first three test programs detect all attacks that try to
set /etc/passwd world-writable or owned by the attacker—assertions that previous
manual efforts were unable to make. Although the proofs of detection hold with respect
to the OS abstraction and may not hold in the actual OS implementation, as described
in Sect. 2, the proofs do provide a strong indication that runtime attack detection in the
real system will be effective.

Table 3 lists the model checker’s running times in seconds for each model and attack
goal. When comparing the running times with Table 2, a loose trend becomes apparent.
In cases where the model checker found an attack, the running times are very small.
When no attack was found, the model checker executed for a comparatively longer
period of time. This disparity is to be expected and reflects the behavior of the un-
derlying model checking algorithms. When a model checker finds a counter-example
that disproves a logical formula—here an attack sequence that violates an LTL safety
property—the model checker can immediately terminate its execution and report the
counter-example. However, a successful proof that the logical formula holds requires
the model checker to follow exhaustively all execution paths and early termination is
not possible.

We believe that automating the previously manual process of attack construction is
a significant achievement. We are not surprised at our ability to find undetected attacks:
attackers have significant freedom in program models that do not constrain system call
arguments. For example, the system call sequence open followed by write without
argument constraints can be misused by an attacker to alter the system’s password file.
Yet, this is a common sequence contained in nearly every non-trivial program, including
programs that execute with the root-level privilege required to alter the password file.

Our automated system provides us with the means to understand exactly where a
program model fails. From Table 2 we learn which classes of attack can be effectively
detected by a program model and which classes of attack require alternative protection
strategies. What is important is not simply that the models fail to detect some attacks,
but that we know exactly what type of attacks are missed.

8 Conclusions

Model-based intrusion detections systems are useful only when they actually detect or
prevent attacks. Finding undetected attacks manually is difficult, error-prone, unable
to scale to large numbers of program models and attacks, and unable to prove that an
attack will always be detected. We showed here that formalizing the effects of attacks

Automated Discovery of Mimicry Attacks 59

upon the operating system provides the operational means to find undetected attacks
automatically. A model checker attempts to prove that the attack effect will never hold
in the program model. By finding counter-examples that cause the proof to fail, we
find undetected attacks: system call sequences and arguments that are accepted as valid
execution and induce the malicious attack effect upon the operating system. This au-
tomation let us find undetected attacks against program models that previously were
found only with manual inspection of the models. The efficiency of the computation—
about 2 seconds computation to find undetected attacks—provides an indication that
this automated approach can easily scale to large collections of program models.

Acknowledgments. We thank the anonymous reviewers and the members of the WiSA
project at Wisconsin for their helpful comments that improved the quality of the paper.

This work was supported in part by Office of Naval Research grant N00014-01-1-
0708, NSF grant CCR-0133629, and Department of Energy grant DE-FG02-93ER25176.
Jonathon T. Giffin was partially supported by a Cisco Systems Distinguished Graduate
Fellowship. Somesh Jha was partially supported by NSF Career grant CNS-0448476. The
U.S. Government is authorized to reproduce and distribute reprints for governmental pur-
poses, notwithstanding any copyright notices affixed hereon. The views and conclusions
contained herein are those of the authors and should not be interpreted as necessarily rep-
resenting the official policies or endorsements, either expressed or implied, of the above
government agencies or the U.S. Government.

References

[1] T. Ball and S. K. Rajamani. Bebop: A symbolic model checker for boolean programs. In
7th International SPIN Workshop on Model Checking of Software, Stanford, California,
Aug./Sep. 2000.

[2] F. Besson, T. Jensen, D. L. Métayer, and T. Thorn. Model checking security properties of
control-flow graphs. Journal of Computer Security, 9:217–250, 2001.

[3] H. Chen and D. Wagner. MOPS: An infrastructure for examining security properties of
software. In 9th ACM Conference on Computer and Communications Security (CCS),
Washington, DC, Nov. 2002.

[4] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press, 2000.
[5] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms for model

checking pushdown systems. In Computer Aided Verification (CAV), Chicago, Illinois,
July 2000.

[6] H. H. Feng, J. T. Giffin, Y. Huang, S. Jha, W. Lee, and B. P. Miller. Formalizing sensitivity
in static analysis for intrusion detection. In IEEE Symposium on Security and Privacy,
Oakland, California, May 2004.

[7] S. Forrest. Data sets—synthetic FTP. http://www.cs.unm.edu/∼immsec/data/FTP/UNM/-
normal/synth/, 1998.

[8] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff. A sense of self for UNIX
processes. In IEEE Symposium on Security and Privacy, Oakland, California, May 1996.

[9] D. Gao, M. K. Reiter, and D. Song. On gray-box program tracking for anomaly detection.
In USENIX Security Symposium, San Diego, California, Aug. 2004.

[10] J. T. Giffin, D. Dagon, S. Jha, W. Lee, and B. P. Miller. Environment-sensitive intrusion
detection. In 8th International Symposium on Recent Advances in Intrusion Detection
(RAID), Seattle, Washington, Sept. 2005.

60 J.T. Giffin, S. Jha, and B.P. Miller

[11] J. T. Giffin, S. Jha, and B. P. Miller. Detecting manipulated remote call streams. In 11th
USENIX Security Symposium, San Francisco, California, Aug. 2002.

[12] R. Gopalakrishna, E. H. Spafford, and J. Vitek. Efficient intrusion detection using automa-
ton inlining. In IEEE Symposium on Security and Privacy, Oakland, California, May 2005.

[13] J. D. Guttman, A. L. Herzog, J. D. Ramsdell, and C. W. Skorupka. Verifying information
flow goals in Security-Enhanced Linux. Journal of Computer Security, 13:115–134, 2005.

[14] L.-c. Lam and T.-c. Chiueh. Automatic extraction of accurate application-specific sandbox-
ing policy. In Recent Advances in Intrusion Detection (RAID), Sophia Antipolis, French
Riveria, France, Sept. 2004.

[15] C. R. Ramakrishnan and R. Sekar. Model-based vulnerability analysis of computer systems.
In 2nd International Workshop on Verification, Model Checking and Abstract Interpreta-
tion, Pisa, Italy, Sept. 1998.

[16] F. B. Schneider. Enforceable security policies. ACM Transactions on Information and
System Security, 3(1):30–50, Feb. 2000.

[17] S. Schwoon. Model-Checking Pushdown Systems. Ph.D. dissertation, Technische Univer-
sität München, June 2002.

[18] S. Schwoon. Moped—a model-checker for pushdown systems. http://www.fmi.uni-
stuttgart.de/szs/tools/moped/, 2006.

[19] R. Sekar, M. Bendre, P. Bollineni, and D. Dhurjati. A fast automaton-based method for
detecting anomalous program behaviors. In IEEE Symposium on Security and Privacy,
Oakland, California, May 2001.

[20] K. Tan, K. S. Killourhy, and R. A. Maxion. Undermining an anomaly-based intrusion de-
tection system using common exploits. In Recent Advances in Intrusion Detection (RAID),
Zürich, Switzerland, Oct. 2002.

[21] K. Tan and R. A. Maxion. “Why 6?” Defining the operational limits of stide, an anomaly
based intrusion detector. In IEEE Symposium on Security and Privacy, Oakland, California,
May 2002.

[22] K. Tan, J. McHugh, and K. Killourhy. Hiding intrusions: From the abnormal to the nor-
mal and beyond. In 5th International Workshop on Information Hiding, Noordwijkerhout,
Netherlands, Oct. 2002.

[23] D. Wagner and D. Dean. Intrusion detection via static analysis. In IEEE Symposium on
Security and Privacy, Oakland, California, May 2001.

[24] D. Wagner and P. Soto. Mimicry attacks on host based intrusion detection systems. In
9th ACM Conference on Computer and Communications Security, Washington, DC, Nov.
2002.

[25] B. J. Walker, R. A. Kemmerer, and G. J. Popek. Specification and verification of the UCLA
Unix security kernel. Communications of the ACM, 23(2), Feb. 1980.

Allergy Attack Against Automatic Signature
Generation

Simon P. Chung and Aloysius K. Mok�

Department of Computer Sciences,
University of Texas at Austin, Austin TX 78712, USA

{phchung, mok}@cs.utexas.edu

Abstract. Research in systems that automatically generate signatures
to filter out zero-day worm instances at perimeter defense has received
a lot of attention recently. While a well known problem with these sys-
tems is that the signatures generated are usually not very useful against
polymorphic worms, we shall in this paper investigate a different, and
potentially more serious problem facing automatic signature generation
systems: attacks that manipulate the signature generation system and
turn it into an active agent for DoS attack against the protected system.
We call this new attack the “allergy attack”. This type of attack should
be anticipated and has in fact been an issue in the context of “detraining”
in machine learning. However, we have not seen a demonstration of its
practical impact in real intrusion detection/prevention systems. In this
paper, we shall demonstrate the practical impact of “allergy attacks”.

Keywords: Automatic Signature Generation, Adaptive Response, In-
trusion Prevention.

1 Introduction

With the proliferation of worms propagating at speed too fast for human inter-
vention, automatic worm containment is increasingly looked upon as a solution.
An important line of work in this area is the automatic signature generation
(ASG) systems, which generate signatures to filter worm instances at perime-
ter defense. Similar to [3,8,10], our work focuses on certain weakness common
to many ASG systems. In particular, we focused on a type of attack against
many proposed ASG systems that we call the “allergy attack”. While worm
polymorphism renders ASG systems ineffective [3,8], the allergy attack allows
attackers to easily turn the ASG systems (as well as the perimeter defense) into
their agents for inflicting harm on the protected network by manipulating the
ASG system so that traffic of their choice will be filtered at the perimeter de-
fense of the target network. A vulnerability that turns ASG systems from an
imperfect, but nonetheless harmless defense mechanism into an active threat to
the protected network, is just as damaging to the usability of ASG systems as
� The research reported here is supported partially by a grant from the Office of Naval

Research under contract number N00014-03-1-0705.

D. Zamboni and C. Kruegel (Eds.): RAID 2006, LNCS 4219, pp. 61–80, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

62 S.P. Chung and A.K. Mok

compared to the very well addressed issues of worm polymorphism. The scope of
the threat from allergy attacks is also much wider. For worm polymorphism, the
problem is mostly limited to systems that use a single contiguous byte sequence
from worm packets as signatures, and we are starting to see solutions to this
problem. However, allergy attacks are found to be possible against ASG systems
that employ other kinds of signature as well (e.g. [6]).

We note that the problem with allergy attack is similar to the “causative,
indiscriminate availability” attack mentioned in [1]. However, the work in [1]
focuses on the much higher level problem of attacking machine-learning based
security mechanisms in a theoretical setting. While the authors of [1] have pro-
posed many different means of abusing a machine-learning based system (e.g.
inducing high false positives, evading detection), our study of allergy attacks is
more specific on one particular issue, the viability of inducing high false positives
in an ASG system in practice. To demonstrate the practicality of allergy attacks,
we have experimented with one publicly available ASG system, and analyzed the
algorithms of another 8 systems 1. Our work, as presented in this paper comple-
ments the work in [1] by our experimental validation of allergy attacks. Another
subtle difference between the work in [1] and ours is that while machine learning
algorithms generate classification schemes based on a given set of features, ASG
systems generally need to identify these features before applying any machine-
learning technique. As our work and the work in [10] show, the feature extraction
mechanism is an important avenue for attacking ASG systems that’s not found
in purely machine-learning based systems.

With the exception of the study in [1], our literature survey shows that the
threat from allergy attack has received limited attention from the research com-
munity. As far as we can determine from the open literature, resilience against
allergy attack is never a design objective for any published ASG systems. Yet we
believe very strong guarantee on such resilience will be necessary if ASG systems
are to be of any practical use. Our contributions in this paper are two-folded:

1. By defining allergy attack and demonstrating the attack against a typical
ASG system (Autograph), we hope to draw attention to the threat posed by
this type of attack.

2. By presenting our insight on what caused this vulnerability, we wish to help
the design of future ASG systems to be resilient against allergy attacks. An
understanding of what facilitates exploitations of the vulnerability will also
help devising remedies for existing ASG systems.

In the next section, we will define what an allergy attack is. Then we will
present some related work in Sect. 3. Our demonstration of allergy attack against
Autograph will follow in Sect. 4. We will then describe a more sophisticated kind
1 Courtesy of Professor Wenke Lee, we came upon the paper [1] that has just been

presented on March 21-24, 2006. This paper anticipates theoretically our allergy
attack but does not provide any empirical evidence of the viability of such attacks.
We are also aware that the detraining of machine learning systems has been a serious
concern to designers of military systems.

Allergy Attack Against Automatic Signature Generation 63

of allergy attack, the type II allergy attack in Sect. 5. We believe the type II
attack allows us to defeat many simple defenses against allergy attacks. In Sect.
6, we will present our initial theory on the root of the vulnerability against allergy
attacks, and factors that ease the exploitation of the vulnerability. Finally, we
will conclude in Sect. 7.

2 Defining Allergy Attack

We start our discussions on allergy attack by defining it as follow:

An allergy attack is a denial of service (DoS) attack achieved through
inducing ASG systems into generating signatures that match normal
traffic. Thus, when the signatures generated are applied to the perimeter
defense, the target normal traffic will be blocked and result in the desired
DoS.

In this work, we focus on the allergy attack against valid requests for services
provided by the attacked network. Upon a successful attack, the signatures gen-
erated will block all instances of the target requests at the perimeter defense,
and make the corresponding service unavailable to the outside world. As will be
seen, it is also possible for the attacker to have very fine grain control over what
services to be attacked (e.g., instead of blocking access to the entire web-site,
the attacker may choose to make only particular pages unavailable).

Since all existing ASG systems work by observing traffic on the network, the
only way for the attacker to manipulate vulnerable systems is by presenting them
crafted packets. Packets crafted for an allergy attack should have the following
properties:

1. The packets will be classified by the vulnerable system as suspicious, and
will be used for signature generation.

2. The packets, when used for signature generation, will result in the desired
signatures being generated.

We note that although it might appear that the problem can be easily solved
by checking new signatures against some corpus of normal traffic, this turns
out to be a non-trivial task to be done correctly and efficiently. First of all, the
amount of memory needed for a corpus of normal traffic can be impractically
high. The time needed to compare a signature against the corpus also makes
this method infeasible. In fact, the experiments in [8] illustrates this point very
well: with a corpus containing 5 days’ worth of HTTP traffic, the signature
generation process for a relatively small suspicious pool is reported as “under
ten minutes”. Furthermore, even though many ASG systems employ ways to
eliminate false positives using normal traffic observed, most of these systems
remain vulnerable to allergy attack (as we will show in Sect. 6). This is mainly
because the mechanisms employed are designed to tackle “naturally occurring”
false positives, not those intentionally produced by the attackers. Finally, as we
will show in Sect. 5, there is a special kind of allergy attack that evades many
corpus-based countermeasures, including the one mentioned above.

64 S.P. Chung and A.K. Mok

3 Related Work

In this section, we present some mainstream approaches for building ASG sys-
tems. Further details about particular ASG systems will be given in Sect. 4 and
Sect. 6 when we illustrate how to attack those systems.

3.1 String-Matching ASG Systems

Among the proposed ASG systems, many employ simple byte sequence(s) as
signatures [4,5,7,8,11,13,14]. Incoming traffic containing the byte sequences (or
a large portion of it) will be considered malicious and dropped. The work of a
string-based ASG system can generally be divided into two parts: first, worm
packets are identified in the monitored traffic by some heuristic based approach,
then invariant byte sequences are extracted from these suspicious packets as
worm signatures.

3.2 Other ASG Systems

As many have noted [3,8], instances of polymorphic worms may not have in-
variant byte sequences long enough to be used as reliable signatures. In order
to tackle this problem, some have proposed using other properties of suspicious
packets as signatures. For example, the work in [12] used byte-frequency distri-
bution for contiguous bytes in worm packets as signature. Krugel et al in [6] try
to identify executable payload in worm packets, and extract common properties
in their control-flow graph as worm signatures. Finally, Vigilante [2] extracts pro-
tocol frame values necessary for control hijacking to identify all worms exploiting
the same vulnerability.

3.3 Allergy-Type Attack in the Literature

Even though the allergy attack has not been demonstrated in real systems in
practice, we have found several brief mentioning of this type of attack in the fol-
lowing work [4,11,14]. The most detailed documentation of this potential problem
can be found in [11]. We quote from Singh et al in [11]:

Moreover, automated containment also provokes the issue of attackers
purposely trying to trigger a worm defense - thereby causing denial-of-
service on legitimate traffic also carrying the string.

In fact, the work in [11] is the only one that has explicitly mentioned the
possibility of denial-of-service resulting from an allergy-type attack. In [4], the
problem is referred to as “attackers deliberately submit innocuous traffic to the
system”, while Yegneswaran et al used the term “intentional data pollution”
in [14]. More importantly, no practical solution has been proposed so far. The
authors of [11] suggested “comparing signatures with existing traffic corpus - to
understand the impact of filtering such traffic before we do so”, which is infea-
sible due to the amount of time and memory required. Kim et al [4] proposed

Allergy Attack Against Automatic Signature Generation 65

“vetting candidate signatures for false positives among many distributed moni-
tors”, which can be defeated if all the participating sites are attacked in parallel
(a similar approach is used in [13]. We shall present more details of these systems
as well as the corresponding allergy attack in Sect. 6). Finally, Yegneswaran et
al [14] resorts to human sanity check for the signatures, which basically defeats
the purpose of speeding up the signature generation by avoiding human inter-
vention. Furthermore, such sanity check may be infeasible when a large number
of signatures are involved, and signatures resulting from an allergy attack are
mixed with real worm signatures. Also, experience shows that real-world system
administrators will simply turn off the ASG system if a manual check is required
everytime a signature is generated.

4 Attacking Autograph: A Demonstration

In this section, we shall demonstrate the allergy attack against a real ASG sys-
tem: Autograph. Both the design of our attack against Autograph and the results
of our experiments will be presented. We use Autograph for our experiments be-
cause it is one of the very few ASG systems that we can work on. For other
ASG systems, we either don’t have access to them, or are incapable of collect-
ing a normal traffic corpus necessary for their experimentation, due to privacy
issues. Nonetheless, we find that Autograph has many properties typical in ASG
systems vulnerable to allergy attacks (e.g. semantic-free signature generation,
purely network-based “worm” detection, etc), and thus is sufficient for demon-
strating the feasibility of allergy attacks. We understand that Autograph is a
relatively old system, so we also outline the allergy attacks against some more
recent ASG systems in Sect. 6. To give some background about how Autograph
works, a brief description of Autograph is given in the Appendix.

4.1 Attacking Autograph

Our attack against Autograph is divided into two steps. In the first step, we
induce Autograph into classifying the machines we control (our “drones”) as
scanners. In the second step, we simply use the drones to connect to machines in
the protected network, and populate Autograph’s suspicious pool for the target
port with our attack packets. These packets are crafted such that the desired
signatures will be generated when they are used for signature generation. To
ease our discussion in this and the next section, we assume the target traffic
to be an HTTP request for a protected web server. We stress once again that
other types of traffic can also be targeted, and HTTP requests are chosen only
because it appears to be the most direct way to inflict loss to the attacked
organization.

Due to the simple heuristics used by Autograph, the first step can be easily
achieved by requesting connections with many random IP addresses. For some
networks, an easier and faster method is available; we can send out TCP con-
nection requests with a combination of flags that never appears in normal traffic

66 S.P. Chung and A.K. Mok

(e.g. with both SYN and URG set). Since these requests are dropped or rejected
by most networks, they will be considered failure by Autograph. Thus our drones
will be classified as scanners with very few packets sent. This latter technique is
actually employed in our experiments.

After being classified as a scanner, each drone will proceed with the second
stage where crafted attack packets are sent to the target network over successful
TCP connections. If no parts of the target request are blacklisted, we can simply
put the entire target request in our attack packets. Since the experiments in [4]
show that Autograph has very low false positives, we believe it is very unlikely for
any part of the target request to be blacklisted. In other word, our simple allergy
attack will succeed most of the time.

Nonetheless, let us consider the worst case scenario where all content blocks
from the target request are blacklisted in the training phase. This will thwart
the simple attack described above. However, this obstacle is circumventable.
An important observation is that the target request is always partitioned in its
entirety during the training phase, and this always results in the same set of
content blocks. New content blocks that are not blacklisted may be generated if
a fragmented target request is partitioned by COPP. For example, let the target
request be the byte sequence b0b1b2...bi−2bi−1bibi+1...bn, with n − i > m and
i − 1 > m. Suppose bi is the last byte of the first content block generated by
COPP. If the byte sequence bi−2bi−1bibi+1...bn is presented to COPP, a content
block starting with bi−2 will be generated. Since Autograph is not producing
blocks of less than m bytes, the block will continue at bi. More importantly,
though this new content block contains bytes from two blacklisted blocks (the
one starting from b1 and bi+1 respectively), it is a substring to neither. As a
result, the allergy attack against the target request will be successful if we use
bi−2bi−1bi...bn in our attack packets. Another point worth noting is that, the
above strategy will remain effective even if requests similar to our target are
also blacklisted. This is because these similar requests will result in mostly the
same set of content blocks being blacklisted, due to the content-based nature of
COPP.

Without knowing the configurations of the COPP (e.g. m, a, and B), we do
not know where the boundaries of content blocks lie when the target request is
partitioned in the training phase. In other word, we do not know exactly which
fragmented target request will result in content blocks that overlap two adja-
cent blocks in the original partition. Nonetheless, we can approximate the above
strategy by using random, fixed-length subsequences of the target request. With
sufficient trails, some of these subsequences will result in new, non-blacklisted
content blocks, and achieve our goal. Note that by using fixed-length subse-
quences with random starting points instead of random suffixes of the target
request, we vary the last bytes of the various suspicious flows partitioned, and
improve our chance of success. This is because COPP usually generates a con-
tent block with the last m bytes of the flow partitioned (unless the last content
block ends exactly at the end of the flow).

Allergy Attack Against Automatic Signature Generation 67

Based on the above observations, the concrete design of the second step of our
attack is as follow: we will divide our attack into different rounds, and in each
round, all drones will pick the same NUM SEQ random subsequences of length
SEQ LEN from the target request. This can be achieved by synchronizing all
drones to start the round at roughly the same time (with synchronization error
of up to a few minutes), and use the same seed for the same random number gen-
erator. Each drone will then send each chosen subsequence to the target network
over NUM REP connections destined at the target port. Each drone will start
the next round of attack t minutes after the completion of the previous round.
This is to make sure that the suspicious flows from the previous round have ex-
pired (i.e. removed from the suspicious pool). Obviously, a larger NUM SEQ will
reduce the number of rounds needed to achieve a successful attack. For our ex-
periments, we use two drones, with NUM SEQ=30, and NUM REP=50. We em-
phasize that we use such a small number of drones only to ease our experiments,
we don’t see any technical difficulties in a 10-fold or even a 100-fold increase in
the nubmer of drones. As for the value of SEQ LEN, a proper choice of SEQ LEN
will significantly improve our chance of success. However, since the best value of
SEQ LEN depends on the unknown a and m of the attacked Autograph system,
a trial-and-error process over multiple rounds is necessary. Nonetheless, our ex-
periments show that for all reasonable values of a and m, it is very likely for the
attack to succeed in just one round with SEQ LEN being 80 to 160. Finally, the
choice of t will depend on the t thresh parameter of Autograph. With the default
value of t thresh being 30 mins, we can safely assume the actual value being less
than 90 minutes, since a t thresh value higher than 90 minutes can lead to a
prohibitively large suspicious pool (a similar argument appears in [11]).

4.2 Experiments

To demonstrate the effectiveness of our attack, we have tested it against Auto-
graph for the HTTP requests to the following three webpages:

1. http://www.cs.utexas.edu
2. http://www.cs.utexas.edu/users/mok
3. http://www.cs.utexas.edu/users/mok/cs372/Fall05/projects/lab1/

index.html

We generate the target requests with internet explorer (IE). For each target
request, we pick a set of 10 seeds for generating the random subsequences in 10
different rounds of attack. The same 10 seeds are then used for the experiments
with SEQ LEN at 40, 80, 120 and 160. This allows us to compare the effectiveness
of our attack at different SEQ LEN without being affected by the randomness
in the seeds used. The effectiveness of our attack is measured by the average
number of distinct signatures generated for each of the 10 rounds under the same
SEQ LEN2. Finally, to test how the different configurations of Autograph affect
2 Even though any single signature generated will completely block out the target

request, we believe the number of signatures generated will reflect the robustness of
our attacks for different targets.

68 S.P. Chung and A.K. Mok

the effectiveness of our attacks, we repeat our experiments at different values of a
(with a=16, 32, 64, and 128) and m (with m=16, 32, and 64), which is basically
the range for a and m tested in [4]. For the other parameters of Autograph,
we simply use the default values. We choose to focus our experiments on a and
m because these two parameters have the most impact on the success of our
experiments.

A point worth noting is that our attack is specific to the web browser used. In
other word, the signatures generated will mostly filter out requests from IE only.
Other web browsers (e.g. Mozilla) are thus unaffected. Nonetheless, a determined
attacker can launch a separate attack for each popular web browser. Since the
market is mainly dominated by a few web browsers, we believe this is not a
major undertaking.

Instead of installing Autograph to monitor real traffic crossing an edge net-
work’s DMZ, we choose to perform our experiments offline by feeding Autograph
with traffic traces captured separately at the two drones used. This will expose
Autograph to exactly the attack traffic originating from the drones, as well as the
reply from the attacked network that Autograph is supposed to be protecting,
while ignoring all other traffic to/from the drones. As a result, we are presenting
to Autograph only the “slice” of traffic that is relevant to our attack. This ap-
proach greatly simplifies our work, and allows us to test the same attack traffic
under different configurations of Autograph.

A disadvantage of the above approach is that it prevents us from studying
the effect of the background noise to our attack. For background noise, we are
referring to the scanning activities that happen constantly on the internet, as
well as small-scale worm outbreaks over the world. The effect of these events
is mainly to populate the suspicious pool of Autograph with flows other than
those from our attack. Nonetheless, we believe we can easily make content blocks
from these flows an insignificant portion of the suspicious pool. By increasing
NUM REP to 200 and having 20 drones instead of 2, we can almost guarantee
that content blocks from our attack packets will be sufficiently prevalent to
be used as new signatures (each will have 4000 copies in the suspicious pool).
Furthermore, even with the higher NUM REP and increased number of drones,
we believe our attack is still entirely feasible.

Finally, to validate the claim that our attack will remain effective even if the
target requests and some related requests are blacklisted during the training
phase, we populate the blacklist with all content blocks from the three target
requests as well as the requests for the following 5 related pages:

1. http://www.cs.utexas.edu/users
2. http://www.cs.utexas.edu/users/mok/cs372
3. http://www.cs.utexas.edu/users/mok/cs372/Fall05
4. http://www.cs.utexas.edu/users/mok/cs372/Fall05/projects
5. http://www.cs.utexas.edu/users/mok/cs372/Fall05/projects/lab1

A separate blacklist is generated for each tested Autograph configuration by
using the entire request to be blacklisted (instead of its subsequences) in the

Allergy Attack Against Automatic Signature Generation 69

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

1601208040

av
er

ag
e

nu
m

be
r

of
 s

ig
na

tu
re

s

SEQ_LEN

m (minimum block size)=16

a=16
a=32
a=64

a=128
 10

 12

 14

 16

 18

 20

 22

 24

1601208040

av
er

ag
e

nu
m

be
r

of
 s

ig
na

tu
re

s

SEQ_LEN

a (average block size)=32

m=16
m=32

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24

1601208040

av
er

ag
e

nu
m

be
r

of
 s

ig
na

tu
re

s

SEQ_LEN

m (minimum block size)=32

a=32
a=64

a=128
 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

1601208040

av
er

ag
e

nu
m

be
r

of
 s

ig
na

tu
re

s

SEQ_LEN

a (average block size)=64

m=16
m=32
m=64

 6

 8

 10

 12

 14

 16

 18

 20

16012080

av
er

ag
e

nu
m

be
r

of
 s

ig
na

tu
re

s

SEQ_LEN

m (minimum block size)=64

a=64
a=128

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12

1601208040

av
er

ag
e

nu
m

be
r

of
 s

ig
na

tu
re

s

SEQ_LEN

a (average block size)=128

m=16
m=32
m=64

Fig. 1. The above figures show how the value of configuration parameters a and m
of Autograph affect the effectiveness of our allergy attack at different SEQ LEN. The
effectiveness of our attacks is measured by the average number of distinct signatures
generated in each of our 10 rounds of experiments. The column on the left shows the
result of varying a while holding m constant, where the column on the right shows the
effect of varying m while holding a constant. Note that no signatures will be generated
when SEQ LEN is smaller than m. Also note that we have only experimented on
Autograph configurations with a > m.

attack described above. Every time Autograph generates a signature for our
“attack traffic”, we add it to the blacklist. We repeat the “attack” until no more
signature is generated (i.e. all content blocks are blacklisted).

After describing the experimental setup, we will present our results on the first
target request in Fig. 1. The results for the other two targets are very similar to
those of the first one, and are therefore elided for brevity.

70 S.P. Chung and A.K. Mok

Our experiments show that the attack presented in Sect. 4.1 is very effective
for all three target requests. At all combinations of SEQ LEN, a and m where
SEQ LEN ≥ m, at least 8 out of the 10 rounds of our attack successfully in-
duced Autograph into generating one or more signatures. Thus, we are confident
that for any target request, at any reasonable configuration of Autograph, our
attack will succeed in a small number of rounds, even if content blocks from the
target requests (and some related requests) are all blacklisted.

Finally, observe that the effectiveness of our attack drops when a (the average
block size) increases. This is because with a larger a, the target request will be
represented by fewer (but longer) content blocks in the blacklist. As a result, it
is less likely for any random subsequence from the request to cross the boundary
of two adjacent blacklisted blocks and result in a successful signature genera-
tion. On the other hand, the effectiveness of our attack increases with m (the
minimum block size), and this trend is more significant for larger SEQ LENs.
This may be due to the following behavior of COPP: a separate content block
with the last m bytes of the flow will be created if the normal partitioning does
not find a content block that ends at the last byte of the suspicious flow. We
believe, the last block thus generated, as well as the first block for our ran-
dom subsequence have the best chance of being a new, non-blacklisted content
block that achieves our goal. This is because both of them don’t start after a
2-byte subsequence that matches the breakmark B. Thus, a longer m will mean
a longer last block, which in turn increases the chance for it to cross the bound-
ary of two adjacent blacklisted blocks. Furthermore, longer SEQ LEN will mean
that the content of the first and the last block are significantly different, and
improve the chance that they will produce two separate blocks that have not
been blacklisted.

5 Type II Allergy Attack

Despite the success in our experiments against Autograph, the attack presented
in Sect. 4.1 has two weaknesses. First of all, it is very likely that the signatures
generated will match many other requests. In fact, we find that many of the
signatures generated from our experiments will result in the filtering of all HTTP
requests generated by IE. While this can be an advantage to some attackers,
others may want the attack to be more specific. Furthermore, a direct allergy
attack similar to that described in Sect. 4.1 will not be effective against ASG
systems like Polygraph [8], which make use of a normal traffic corpus to avoid
generated signatures from causing excessive false positives. Even though the first
problem only occurs when some part of our target request is blacklisted (which
is a rare case), and the attempt to check generated signatures against a corpus
of normal traffic appears impractical, let us once again assume the worst case
scenario.

To overcome the above weaknesses, we will propose a more sophisticated form
of allergy attack: the attack against future traffic. We call this attack the type
II allergy attack. This attack is first described in [11] as follow:

Allergy Attack Against Automatic Signature Generation 71

However, even this approach may fall short against a sophisticated at-
tacker with prior knowledge of an unreleased document. In this scenario
an attacker might coerce Earlybird into blocking the documents release
by simulating a worm containing substrings unique only to the unre-
leased document.

From the above description, we see that with a target that is different from
the current traffic, the type II attack will be successful even if all generated
signatures are matched against a normal traffic corpus. Due to the difference
between the target traffic and the current traffic, some generated signatures will
not match with anything in the corpus. Furthermore, if the characteristics that
differentiate the current traffic and the target (i.e. the part that will be used in
the generated signatures) is not common to all future traffic, the type II attack
will also lead to a more specific DoS attack, which leaves other future traffic
mostly unaffected.

As our survey showed, the level of sophistication required for the type II at-
tack is actually not very high, since URLs on many websites evolve in an easily
predictable manner. For example, the use of the date is common for news sites
like cnn.com, while the use of ISBN numbers are common among queries to
amazon.com. The URLs for Microsoft security bulletin which provide informa-
tion about vulnerabilities related to Microsoft products contain the id number
of the vulnerability (e.g. MS05-053). All these elements can be used for the type
II allergy attack. Furthermore, the common use of web caching information in
HTTP requests and responses makes many general HTTP traffic possible targets
of the type II attack (for example, it seems possible for “poisonous” signatures
that filter requests with the “If-Modified-Since” field being any value in the next
30 days to block all pages updated in the coming month).

Finally, we emphasize that any mechanism to avoid false positive by checking
signatures against normal traffic only when they are generated (as in EarlyBird
[11] and Polygraph [8]) will be defeated by the type II attacks, since any signa-
tures from such attack will have zero false positive at the time of generation.

6 What Makes an ASG System Vulnerable and
Exploitable

In this section, we will present some insight on the allergy attack, based on our
study of different ASG systems. In particular, we will try to answer the following
questions:

1. What are the properties that make an ASG system vulnerable to allergy
attacks?

2. What are the properties that make a vulnerable ASG system easily ex-
ploitable?

To better illustrate our ideas, we will give examples of ASG systems with the
properties concerned, and show how those properties guide the design of allergy
attacks against vulnerable systems.

72 S.P. Chung and A.K. Mok

6.1 Semantic-Free Signature Generation

We believe the root of the vulnerability against allergy attacks lies at the semantic-
free signature generation process. By semantic-free, we mean signatures are gener-
ated without considering how the properties matched by the signatures contribute
to successful worm activities. In other word, the different components of a worm
(e.g protocol frame for control hijacking, filler bytes for buffer overflow, return
address used to direct control to worm payload, or the worm payload itself) are
treated the same in a semantic-free signature generation process. This property
makes it possible for the vulnerable ASG system to confuse part of the targetted
traffic as an invariant property of a “worm”, and use it as a “worm signature”,
and thus is a precondition for successful allergy attacks. Now let’s consider some
example ASG systems with this property.

Honeycomb: As one of the earliest ASG systems, Honeycomb [5] uses honey-
pots to collect worm packets, and generates signatures by finding the longest
common substring (LCS) among the collected packets. As we can see, the signa-
ture generation process makes no attempt to find out how that longest common
substring contribute to a successful attack. Attack against Honeycomb is similar
to the one presented in Sect. 4.1, but is simpler. The attacker only needs to es-
tablish connections with random IP addresses, and send the request they want to
have filtered over the connection. By repeating this a large number of times, the
attacker will eventually establish multiple connections with the honeypot, and
populate the suspicious pool with enough of his attack packets. The LCS-based
signature generation will then generate signatures based on the target request
in the attack packets.

EarlyBird: EarlyBird [11] is an ASG system designed to be efficient in both
time and space, so that it can process traffic on high-speed link in real time.
EarlyBird extracts prevalent 40-byte sequences that both originate from, and
are destined to significantly diverse IP addresses as signatures. Once again, the
signature generation ignores how the signature byte sequences affect the target
host. Thus an attack strategy similar to the above applies to EarlyBird as well.
Attack packets containing the target request alone will be sent to a large number
of addresses in the target network (30 for the default configuration in [11]). In
order for the attack to be successful, those packets should also appear to come
from a diverse set of source addresses (30 again). Since EarlyBird performs very
limited flow reassembly and no real connection is needed for a source address to
be counted, we believe the source addresses can be spoofed. Even if more accurate
flow reassemble process is employed and real connection is needed, the number
of machines that the attacker has to control still appears to be insignificant for
hackers nowadays.

In addition to understanding the role of different parts of the worm packet in
the worm’s activity, and make use of this information in signature generation,
it is also very important to confirm that the identified worm components are
“functional”. If the signature is generated using the payload of the worm, it is

Allergy Attack Against Automatic Signature Generation 73

important to make sure that the “payload” is at least executable. If the signa-
ture generation utilize the return address used in a control hijacking, then it is
necessary to check whether that address will result in the execution of worm
payload. Without these sanity checks, the more sophisticated signature gener-
ation process will only complicate the design of allergy attacks, but will not
stop them. Now let’s consider the system presented in [6] and TaintCheck [9] as
examples.

CFG-based Signature Generation: The system proposed in [6] is very sim-
ilar to EarlyBird. However, instead of using 40-byte sequences as signatures,
the system employs prevalent executable-code fragment that appears in packets
with diverse source and destination. In particular, a code fragment is considered
prevalent if its structurally equivalent variants are found in many packets (i.e.
a byte-by-byte match is not necessary). With this new type of signatures, any
packet that contains executable code with the same structure as the signature
code fragment will be dropped. Signatures thus generated will then be resilient
to certain polymorphic techniques (like register renaming and instruction sub-
stitution). However, the system in [6] does not verify that the executable code
used in the signature is indeed a worm payload. In fact, any executable code
in a suspicious packet can be used as a signature, even if it does not corre-
spond to any worm activity, or will never be executed by the attacked host at
all. As a result, it is possible to launch an allergy attack against the system
in [6] to block all packets containing executable code of the attacker’s choice.
The attack is basically the same as that against EarlyBird, the only difference
is that code fragments from the target executable are used in the attack pack-
ets. Even though this attack is ineffective against services offered by the pro-
tected network, it may be used to prevent hosts from downloading patches for
vulnerabilities (which are usually packaged as “.EXE” files), or worm removal
tools.

TaintCheck: TaintCheck [9] is a novel intrusion detection system that uses dy-
namic taint analysis to keep track of tainted data, i.e. data that originates or is
derived arithmetically from an untrusted input. An alert is generated whenever
the tainted data are used in an unsafe way, e.g. used as a jump address. Further-
more, TaintCheck can obtain the value of tainted data that is used for unsafe
operations. In an injected code attack, this will mean the value used to over-
write a function pointer or return address. In [9], Newsome et al suggest using
the most significant three bytes of this value as a signature for attacks exploiting
the same vulnerability. The evaluation in [9] shows that this preliminary signa-
ture generation scheme is very effective in detecting attacks and results in low
false positives. However, if the overwritten value is used to filter incoming traffic
without checking whether it really leads to the eventual execution of the worm
payload, the system will be vulnerable to allergy attacks. In order to block out
the target request, the attacker simply modifies a real control-hijacking attack
to overwrite the corresponding function pointer or return address with a 3-byte
sequence in the target request.

74 S.P. Chung and A.K. Mok

6.2 Imperfect Suspicious Packet Detection

Just as a buffer overflow vulnerability does not always allow a successful attack,
not every vulnerability against allergy attacks is exploitable. In this and the next
section, we will present two factors that help the exploitation of a vulnerable ASG
system.

As we see in the previous discussion, actual signature generation usually fol-
lows a detection process in which suspicious traffic are identified as the “raw
material” for signatures. If this detection process may misclassify innocuous
packets even in the absence of allergy attacks, it would appear to be easier for
the attacker to populate the suspicious pool with his crafted packets. From our
experience, ASG systems that rely on purely network-based detection are more
vulnerable to false positive than those that employ some form of host-based de-
tection. For example, Autograph, Honeycomb, EarlyBird, and the CFG-based
system in [6] all employ detection mechanisms with non-zero false positive. As
seen in our previous discussion, attacking these systems is relatively easy, all
the attacker has to do in order to get his packets into the suspicious pool is to
send out packets to/from the right addresses. On the other hand, attacks are
much more complicated against systems like TaintCheck which have zero-false
positive detection mechanisms. Actual attacks against the target systems are
necessary to “feed” the signature generation process with the crafted packets.
This is obviously more complicated and risky for the attacker. Now let’s con-
sider another example that employs a supposedly zero false-positive detection
mechanism: FLIPS.

FLIPS: FLIPS [7] is a system that generates signatures to filter HTTP requests.
It uses a network-based anomaly detection system called PAYL to identify sus-
picious packets. PAYL detects anomalous packets by using a normal profile that
describes the byte-frequency distributions for normal traffic of different length
and destination port. Any packet which shows significant deviation from the
profile will be labeled suspicious. In FLIPS, all suspicious requests are cached.
FLIPS also employs a host-based intrusion detection system called instruction
set randomization (ISR). In addition to detecting attacks with zero false positive,
the ISR also identifies the beginning of the attack payload. When ISR detects
an attack, FLIPS will copy the first 1KB of the attack payload. The memory
copied will be matched against the cached suspicious request based on a simi-
larity score computed as 2C/(S1+S2), where C is the longest common substring
(LCS) between the packet and the captured payload, S1 and S2 are the length
of the two string being compared. The request most similar to the payload will
be used as the signature of the worm. Any incoming request that is sufficiently
similar to the signature will then be dropped.

Now let us consider an attack with the first target request as in Sect. 4.2
(which is 475-byte long). The attack involves sending two attack packets at
the same time. The first packet is the one to be used as the worm signa-
ture at the end. This packet is constructed by appending to the target re-
quest a byte sequence that we call “gibberish”. The gibberish is intended to

Allergy Attack Against Automatic Signature Generation 75

make the packet suspicious to PAYL. In our attack, we will have a 100-byte
gibberish, all filled with a byte that rarely occurs in normal HTTP requests.
This should make the packet sufficiently anomalous to be cached by FLIPS.
The second packet contains a real code injection attack (e.g. the one from
Code-Red), with the content of the first packet appearing at where payload
should be placed (this makes the second packet around 1050 byte long). Once
this second packet triggers the alarm from ISR, the cache will be searched
for the suspicious request responsible. With similarity computed as described
above, the request from the shorter first packet will achieve a higher simi-
larity score of 0.73 (when compared to the 1KB “worm payload” identified
by the ISR, which contains most of the 575 bytes in the first attack packet,
and whatever follows in the memory when the attack is detected). Thus this
first request will be used as the signature, and filter all instances of the tar-
get requests in future traffic (the similarity score between the target request
and the signature is 0.90, which is much higher than the threshold used in
[7]).

As a general observation, zero false-positive detection mechanisms cannot
make an ASG system immune against allergy attacks, but it does force the at-
tacker to employ modified control hijacking techniques, which makes the attack
far more complicated. We also note that the attacker cannot directly take over
the target system with the control hijacking code used in the allergy attacks;
this is because the hijacking will be detected and stopped.

6.3 Independent Detection and Matching

Another property of ASG systems that eases the design of allergy attacks is the
use of independent properties in the detection phase and the signature generation
phase. Consequently, the properties of the suspicious packets that are used to
filter future traffic are totally different from the properties that make those
packets suspicious at the first place. Therefore traffic filtered by those signatures
may appear completely innocuous to the detection mechanism.

The above property avoids any conflict between the construction of packets
that will produce the desired signatures being generated when used for signa-
ture generation and getting those packets into the suspicious pool. This gives the
attackers a lot of freedom. Example systems with such properties include Auto-
graph, Polygraph, the CFG-based ASG system in [6], and systems that employ
honeypot for collecting worm traffic in general. Another example of ASG system
with this property is from [13].

PAYL-based ASG systems: In [13], two signature generation schemes are
proposed. The first scheme, called ingress/egress correlation uses PAYL to iden-
tify suspicious ingress and egress traffic (with a separate normal profile for each
direction). As in FLIPS, suspicious ingress packets are cached. Upon detection of
a suspicious egress packet, the ingress cache is searched for a sufficiently similar
packet destined to the same port. Similarity is measured either by string equality
or longest common substring/subsequence (LCS/LCSeq). If a matching packet

76 S.P. Chung and A.K. Mok

is found, the part of the packet that gives the match (the entire packet if string
equality is used, the longest common substring/subsequence if LCS/LCSeq is
used) will be used as the signature.

In the second scheme, anomalous payload collaboration, different sites col-
laborate to identify new worms. The participating sites will compare suspicious
ingress packets identified by their local PAYL with each other. If the suspi-
cious packets are found to be similar, those packets are used as signatures to
detect new worms. However, Wang et al are not very clear in [13] about how
the new signatures are matched against traffic in either schemes. We will assume
LCS/LCSeq as above to be used for similarity measure.

Note that while PAYL classifies packets based on byte-frequency distribution,
signatures are generated, and matched against normal traffic by a totally differ-
ent mechanism. As in our attack on FLIPS, we can make PAYL classify a packet
anomalous with a short sequence of gibberish, with the majority of the packet
made up of our target request (which will be matched against other traffic).

To attack the ingress/egress correlation mechanism, the attacker needs to
control one protected machine. If only web servers are protected (which seems
to be suggested in [13]), the attacker will need to compromise a web server in
the protected network. The attack packet used here has the same structure as
that against FLIPS: target request followed by gibberish. This attack packet is
to be sent both to and from the comprised web serve, both destined to port 80.
Both packets will be marked suspicious by PAYL (due to the gibberish), and the
consequent correlation will make the entire attack packet a new signature (if we
use a different byte for the gibberish in the egress and ingress packets, only the
target request will be used in the signature). As before, the gibberish is only a
small portion of the entire signature, and thus all future instances of the target
request will be considered very similar to the signature and filtered.

The attack against anomalous payload collaboration is similar but much sim-
pler. The same attack packet will be used. However, this time it will be sent to
different networks in the collaborative scheme. Once again, PAYL will mark the
packets as malicious, and since the same packet is seen at all collaborating sites,
it will be used as a worm signature. The new signature will then achieve the
expected DoS.

6.4 Vigilante: A Non-vulnerable ASG System

Vigilante [2] employs two zero false-positive mechanisms to detect attacks, namely
the non-executable pages and dynamic dataflow analysis. The former technique
allows injected code attack to be detected, while the latter is very similar to the
dynamic taint analysis used in TaintCheck. Upon detecting an attack, the mali-
cious input that results in the detection will be identified. The attack will then
be replayed in a sandbox environment with the control flow and data flow of the
attacked process recorded until the point where the attack is detected. A filter
is then generated by computing the precondition of the input that leads to the
recorded control and data flow in the attacked process.

Allergy Attack Against Automatic Signature Generation 77

We now consider whether Vigilante has any of the problematic properties listed
above. First of all, we note that the signature generation process in Vigilante is
semantic-based. By computing the precondition of the input that results in the
control and data flow observed in a positive detection, Vigilante is effectively iden-
tifying the protocol frame necessary for a successful attack. Furthermore, both
detection mechanisms have zero false-positive rate. Finally, for both detection
mechanisms, the detection and the signature generation process are based mostly
on the same property of the input, namely, properties that bring the protected
system to the state where the attack is detected.

From the above analysis, it appears that Vigilante should not be vulnerable
to allergy attacks. The filters generated by Vigilante indeed identify inputs that
result in dangerous state changes in the destined system and nothing else. In
general, systems that employ some host based detection mechanism are more
difficult targets for allergy attacks. First of all, host based detection usually has
a lower false positive rate than a purely network-based mechanism. Secondly, a
host based mechanism can provide better information about how different parts
of the malicious input correspond to the different components of the worm.

7 Conclusions

In this paper, we have presented the allergy attack, an attack against automatic
signature generation (ASG) systems that has been anticipated theoretically but
not demonstrated in practice. We start by defining allergy attacks as DoS at-
tacks which result in normal traffic to the protected network being dropped by
perimeter defense. This is achieved by inducing the ASG system in generating
signatures that match the target traffic. When these signatures are deployed to
the perimeter defense, the expected DoS will occur. In our discussion, we fo-
cused on the DoS against web service, which appears a most direct way to cause
damages with allergy attacks. We then demonstrate the allergy attack against a
well known ASG system: Autograph. We also analyze how similar attacks can be
successfully mounted against other implemented ASG systems. We believe the
vulnerability roots from the use of semantic-free signature generation process,
i.e., the generation of signatures without considering how the properties matched
by the signatures map to successful worm behavior. Two factors that facilitate
the exploitation of this vulnerability are the imperfections in the mechanism
used to identify suspicious packets, and the use of independent properties in the
detection phase and the signature generation phase. In our future work, we plan
to test some of the proposed attacks against actual implementations of other
analyzed ASG systems, and to study the effectiveness of defending against type
II allergy attacks with a normal traffic corpus3.

As compared to the well studied issues with polymorphic worms, we believe
the allergy attacks present a more pressing problem to practical ASG systems.

3 Parties capable of experimenting with any studied ASG systems are welcome to
collaborate with us, or verify our outlined attacks independently.

78 S.P. Chung and A.K. Mok

While polymorphic attacks will render many existing ASG systems totally use-
less, allergy attacks can turn them into real harm to the protected network.
The cost of designing and launching an allergy attack is also much smaller than
that of a effective polymorphic worm. The effect of an allergy attack can also
be more long lasting than other common DoS techniques, since the target traffic
will remain blocked until all the “poisonous” signatures are removed.

Finally, we will note that the scope of allergy attacks (or attacks with similar
flavor) is not limited to ASG systems. As our defense evolves to react to attacks
by modifying the state of the protected systems, the attackers may deliberately
trigger the defense to modify the system’s state in a way favorable to them.
Defense designed under the old assumption that the attackers always try to
evade detection may then be manipulated to serve the attackers’ purpose.

References

1. M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and J. D. Tygar. Can machine
learning be secure? In Proceedings of the ACM Symposium on InformAtion, Com-
puter and Communications Security (ASIACCS2006), Taipei, Mar 2006.

2. M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou, L. Zhang, and
P. Barham. Vigilante: End-to-end containment of internet worms. In Proceedings
of 20th ACM Symposium on Operating Systems Principles, Brighton, Oct 2005.

3. J. R. Crandall, S. F. Wu, and F. T. Chong. Experiences using minos as a tool for
capturing and analyzing novel worms for unknown vulnerabilities. In Proceedings
of GI/IEEE SIG SIDAR Conference on Detection of Intrusions and Malware and
Vulnerability Assessment (DIMVA) 2005, Vienna, July 2005.

4. H. Kim and B. Karp. Autograph: Toward automated, distributed worm signature
detection. In Proceedings of 13th USENIX Security Symposium, California, August
2004.

5. C. Kreibich and J. Crowcroft. Honeycomb - Creating Intrusion Detection Signa-
tures Using Honeypots. In Proceedings of the Second Workshop on Hot Topics in
Networks (Hotnets II), Boston, November 2003.

6. C. Krugel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna. Polymorphic worm
detection using structural information of executables. In Proceedings of Eighth
International Symposium on Recent Advances in Intrusion Detection (RAID2005),
Seattle, Sept 2005.

7. M. E. Locasto, K. Wang, A. D. Keromytis, and S. J. Stolfo. Flips: Hybrid adaptive
intrusion prevention. In Proceedings of Eighth International Symposium on Recent
Advances in Intrusion Detection (RAID2005), Seattle, Sept 2005.

8. J. Newsome, B. Karp, and D. Song. Polygraph: Automatically generating signa-
tures for polymorphic worms. In Proceedings of The 2005 IEEE Symposium on
Security and Privacy, Oakland, May 2005.

9. J. Newsome and D. Song. Dynamic taint analysis for automatic detection, analysis,
and signature generation of exploits on commodity software. In Proceedings of 12th
Annual Network and Distributed System Security Symposium (NDSS 05), Feb 2005.

10. R. Perdisci, D. Dagon, W. Lee, P. Fogla, and M. Sharif. Misleading worm signa-
ture generators using deliberate noise injection. In Proceedings of The 2006 IEEE
Symposium on Security and Privacy, Oakland, May 2006.

Allergy Attack Against Automatic Signature Generation 79

11. S. Singh, C. Estan, G. Varghese, and S. Savage. Automated worm fingerprinting. In
Proceedings of 5th Symposium on Operating Systems Design and Implementation,
California, December 2004.

12. Y. Tang and S. Chen. Defending against internet worms: a signature-based ap-
proach. In Proceedings of 24th Annual Joint Conference of the IEEE Computer
and Communications Societies, Florida, July 2005.

13. K. Wang, G. Cretu, and S. J. Stolfo. Anomalous payload-based worm detection
and signature generation. In Proceedings of Eighth International Symposium on
Recent Advances in Intrusion Detection (RAID2005), Seattle, Sept 2005.

14. V. Yegneswaran, J. T. Giffin, P. Barford, and S. Jha. An architecture for generating
semantics-aware signatures. In Proceedings of 14th USENIX Security Symposium,
Maryland, Aug 2005.

A Appendix

Autograph is a string-matching system that generates worm signatures by mon-
itoring traffic crossing an edge network’s DMZ. Since the Autograph proto-
type available only handles TCP packets, we assume all traffic to be under the
TCP protocol. Signatures generated by Autograph are destination port specific,
i.e. only traffic destined to the corresponding port will be matched against a
signature.

Autograph processes traffic in two stages. In the first stage, Autograph iden-
tifies scanners by recording IP addresses that made more than s thresh unsuc-
cessful connection attempts to the protected network. A connection attempt is
considered unsuccessful if it times out without any reply received, or it got reset
before completing the TCP handshake. In addition to the IP address, Autograph
will also record the destination port targetted by all the failed connections from
a scanner. Afterwards, all the TCP packets from successful connections originat-
ing from a scanner address and destined to the recorded port will undergo flow
reassembly. The resulting suspicious flows will be recorded in a suspicious pool.
With enough flows in the pool that are destined to the same port, Autograph
will start the next stage of processing: signature generation.

In the signature generation stage, Autograph will divide the suspicious flows
into content blocks, and find the set of most prevalent blocks. The process is
greedy, and the block with highest prevalency will be picked first. Autograph
will keep adding blocks to the set until a pre-configured portion of suspicious
flows contain one or more blocks from the set. Signatures will then be generated
for each block in the set, with the entire block being the byte sequence that
will be matched against future traffic destined to the port for which signature
generation is invoked.

For dividing flows into content blocks, Autograph employs the COnetent-
based Payload Partitioning (COPP) technique. The COPP partitions suspicious
flows into non-overlapping, variable-length blocks by computing the Rabin fin-
gerprint of every 2-byte subsequence in the flow, starting from its beginning.
The 2-byte subsequence marks the end of a content block if it matches B, i.e. its
fingerprint r satisfied the equation r = B (mod a), where B is a predetermined

80 S.P. Chung and A.K. Mok

breakmark, a is a configurable parameter that controls the average block size.
Due to the content based nature of COPP, a similar set of blocks will be gener-
ated even if bytes are added to or deleted from the worm payloads. This helps
Autograph to generate signatures that filter different instances of a polymorphic
worm.

To avoid overly specific or overly general signatures, Autograph bounds the
size of content blocks generated between m bytes and M bytes (with m and M
configurable). In other word, Autograph will not end a content block at a 2-byte
subsequence that matches B if that results in a block shorter than m. Instead,
Autograph will search for the next matching 2-byte subsequence. Similarly, any
content block that reaches M bytes long will be terminated. Autograph also
avoids using content blocks in flows that originates from fewer than a config-
urable source count number of sources for signatures. This prevents generating
signatures for normal traffic from misconfigured, but benign hosts. Finally, Au-
tograph employs a blacklisting mechanism which prevents subsequences of any
blacklisted byte sequences from being used as signatures. In [4], the blacklist
is generated in a training period where all signatures generated are manually
checked for false positives. Signatures deemed to match normal traffic will be
added to the blacklist. This prevents generating signatures for normal traffic
that Autograph normally misclassifies.

Paragraph: Thwarting Signature Learning by Training
Maliciously

James Newsome1, Brad Karp2, and Dawn Song1

1 Carnegie Mellon University
2 University College London

Abstract. Defending a server against Internet worms and defending a user’s
email inbox against spam bear certain similarities. In both cases, a stream of
samples arrives, and a classifier must automatically determine whether each sam-
ple falls into a malicious target class (e.g., worm network traffic, or spam email).
A learner typically generates a classifier automatically by analyzing two labeled
training pools: one of innocuous samples, and one of samples that fall in the ma-
licious target class.

Learning techniques have previously found success in settings where the con-
tent of the labeled samples used in training is either random, or even constructed
by a helpful teacher, who aims to speed learning of an accurate classifier. In the
case of learning classifiers for worms and spam, however, an adversary controls
the content of the labeled samples to a great extent. In this paper, we describe
practical attacks against learning, in which an adversary constructs labeled sam-
ples that, when used to train a learner, prevent or severely delay generation of an
accurate classifier. We show that even a delusive adversary, whose samples are all
correctly labeled, can obstruct learning. We simulate and implement highly effec-
tive instances of these attacks against the Polygraph [15] automatic polymorphic
worm signature generation algorithms.

Keywords: automatic signature generation, machine learning, worm, spam.

1 Introduction

In a number of security applications, a learner analyzes a pool of samples that fall in
some malicious target class and a pool of innocuous samples, and must produce a clas-
sifier that can efficiently and accurately determine whether subsequent samples belong
to the target class. High-profile applications of this type include automatic generation
of worm signatures, and automatic generation of junk email (spam) classifiers.

Prior to the deployment of such a system, samples in the target class are likely to in-
clude a number of distinguishing features that the learner can find, and that the classifier
can use to successfully filter target-class samples from a stream of mixed target-class
and innocuous samples. Before the wide deployment of automatic spam classification,
spam emails often contained straightforward sales pitches. Likewise, as no automatic
worm signature generation system has yet been widely deployed, all instances of a
particular worm’s infection attempts contain nearly an identical payload. The first gen-
eration of automatic signature generation systems was highly successful against these
non-adaptive adversaries.

D. Zamboni and C. Kruegel (Eds.): RAID 2006, LNCS 4219, pp. 81–105, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

82 J. Newsome, B. Karp, and D. Song

Once such a system is widely deployed, however, an incentive exists for elusive ad-
versaries to evade the generated classifiers. We observe this phenomenon today because
of the wide-spread deployment of spam classifiers. Senders of spam employ a variety
of techniques to make a spam email look more like a legitimate email, in an attempt to
evade the spam classifier [6]. Similarly, while worm signature generation systems are
not yet widely deployed, it is widely believed that once they are, worm authors will
use well known polymorphism techniques to minimize the similarity between infection
payloads, and thus evade filtering by worm signatures.

In the case of worm signature generation we have a significant advantage: a worm
infection attempt must contain specific exploit content to cause the vulnerable software
to begin executing the code contained in the payload. Further, the vulnerability, not the
worm’s author, determines this specific exploit content. Newsome et al. [15] showed
that, for many vulnerabilities, messages that exploit a particular vulnerability must con-
tain some set of invariant byte strings, and that it is possible to generate an accurate
and efficient signature based on this set of byte strings, even if the rest of the worm’s
payload is maximally varying—that is, contains no persistent patterns.

Unfortunately, such an elusive adversary is not the worst case. In this work, we em-
phasize that these applications attempt to learn a classifier from samples that are pro-
vided by a malicious adversary. Most learning techniques used in these applications
do not target this problem setting. In particular, most machine learning algorithms are
designed and evaluated for cases where training data is provided by an indifferent entity
(e.g., nature), or even by a helpful teacher. However, in the applications under discus-
sion, training data is provided by a malicious teacher.

Perdisci et al. [18] demonstrate that it is not sufficient for the learner to tolerate ran-
dom noise (mislabeled training samples) in the training data. In particular, Perdisci et
al. describe noise-injection attacks on the Polygraph suite of automatic worm signa-
ture generation algorithms [15], through which an attacker can prevent these algo-
rithms from generating an accurate classifier. These attacks work by causing the Poly-
graph learner to use specially crafted non-worm samples as target-class-labeled (worm-
labeled) training data. This type of attack is of concern when the initial classifier that
identifies target-class samples for use in training is prone to false positives. Such an
attack can be avoided by using a sound initial classifier to ensure that non-target-class
samples cannot be mislabeled into the target-class training data. In the case of auto-
matic generation of worm signatures, host monitoring techniques such as dynamic taint
analysis [16, 4, 23, 3] can prevent such mislabeling, as they reliably detect whether the
sample actually results in software being exploited.

In this work, we show that there is an even more severe consequence to training on
data provided by a malicious teacher. We show that a delusive1 adversary can manipu-
late the training data to prevent a learner from generating an accurate classifier, even if
the training data is correctly labeled. As a concrete demonstration of this problem, we
analyze several such attacks that are highly effective against the Polygraph automatic
worm signature generation algorithms. We also illustrate the generality of this problem
by describing how these same attacks can be used against the Hamsa [9] polymorphic
worm signature generation system, and against Bayesian spam classifiers.

1 Delusive: Having the attribute of deluding, . . . , tending to delude, deceptive [17].

Paragraph: Thwarting Signature Learning by Training Maliciously 83

Our contributions are as follows:

– We define the classifier generation problem as a learning problem in an adversarial
environment.

– We describe attacks on learning classifier generators that involve careful placement
of features in the target-class training data, the innocuous training data, or both, all
toward forcing the generation of a classifier that will exhibit many false positives
and/or false negatives.

– We analyze and simulate these attacks to demonstrate their efficacy in the polymor-
phic worm signature generation context. We also implement them, to demonstrate
their practicality.

We conclude that the problem of a delusive adversary must be taken into account in
the design of classifier generation systems to be used in adversarial settings. Possible
solutions include designing learning algorithms that are robust to maliciously gener-
ated training data, training using malicious data samples not generated by a malicious
source, and performing deeper analysis of the malicious training data to determine the
semantic significance of the features being included in a classifier, rather than treating
samples as opaque “bags of bits.”

We proceed in the remainder of this paper as follows. In Section 2, we define the
classifier generation problem in detail. We next describe attacks against learning clas-
sifier generators in Sections 3 and 4. We discuss implications of these attacks, both for
worm signature generation and for spam filtering, in Section 5. After reviewing related
work in Section 6, we conclude in Section 7.

2 Problem Definition: Adversarial Learning

We now elaborate on the learning model mentioned in the previous section, as followed
by Polygraph for worm signature generation, and by Bayesian systems for spam filter
generation, with the aim of illuminating strategies an adversary may adopt in an attempt
to cause learning to fail. We begin by describing the learning model, and examining the
criteria that must be met for learning to succeed. We then consider the assumptions
the learning model makes, and why they may not always hold in practice. Finally, we
describe general strategies for forcing the assumptions the model makes to be violated.

2.1 Learning Model

Identifying worms or spam so that they may be filtered is at its heart a classification
problem: we seek a classifier that, given a sample, will label that sample as being of the
target class (e.g., a worm infection attempt, or a spam email) or as innocuous. One may
derive a classifier automatically by learning one. Overall, learning involves initially
labeling some set of samples to train a learner, which, based on their content, generates
a classifier. This process is depicted in schematic form in Figure 1.

The raw input to a learning system consists of unlabeled samples. In the case of worm
signature generation, these are individual network flow payloads observed at a network
monitoring point; in the case of Bayesian spam filter generation, they are individual

84 J. Newsome, B. Karp, and D. Song

Samples
Unlabeled

Pool

Classifier

Innocuous
Pool

Classifier
LearnerLabeled

Samples
Initial

Suspicious

Fig. 1. Schematic of a learner, which uses innocuous and suspicious training pools to generate an
accurate classifier

email messages arriving in a user’s inbox. Note that an adversary may influence the
content of these unlabeled samples to a varying extent; we return to this point later in
this section.

The unlabeled samples are first labeled by an initial classifier. Samples labeled as
being in the target class are placed in the suspicious pool. Samples labeled as not being
in the target class are placed in the innocuous pool. It may seem circular to begin the
process of deriving a classifier with a classifier already in hand. It is not. The classi-
fier used to perform the initial labeling of samples typically has some combination of
properties that makes it unattractive for general use, such as great computational cost
or inaccuracy. We consider this classifier used for the initial labeling of samples below.

Once these samples have been labeled, the learner analyzes the features found in the
samples in each pool, and produces a classifier. Machine learning allows a very broad
definition of what may constitute a feature. In this work we focus on the case where
each feature is the presence or absence of a token, or contiguous byte string, though our
results are generalizable to other types of features.

Feedback. Note that throughout this paper, we optimistically assume that the system
uses an intelligent feedback loop. For example, if the system collects 10 target-class
samples, generates a classifier, and later collects 10 new target-class samples, it gen-
erates an updated classifier using all 20 samples in its suspicious pool, rather than
generating a new classifier using only the latest 10. How to achieve this property is
application-specific, and outside the scope of this work. This property is crucially im-
portant, as otherwise the attacker can prevent the learner from ever converging to a
correct classifier.

2.2 Successful Learning

To understand how an adversary might thwart learning, we must first understand what
constitutes successful learning. Using labeled pools of samples, the learner seeks to
generate a classifier that meets several important criteria. First, the classifier should be
computationally efficient; it should be able to label samples at their full arrival rate (in
the case of worm filtering, at a high link speed). The classifier should also exhibit no
false negatives; it should correctly classify all target-class samples as such. It should
also exhibit very few or no false positives; it should not classify non-target-class sam-
ples as being in the target class.

Paragraph: Thwarting Signature Learning by Training Maliciously 85

The learner must be able to generate an accurate classifier using a reasonably small
number of labeled target-class samples. An adversary can severely undermine the use-
fulness of the system by increasing the number of labeled target-class samples necessary
to generate an accurate classifier. This is especially true in the case of automatic worm
signature generation, where a worm infects ever-more vulnerable hosts while training
data is being collected.

2.3 Limitations of Initial Classifier

Let us now return to the initial classifier used to label samples, and the properties that
make it inappropriate for general use (and thus motivate the automated derivation of
a superior classifier through learning). First, the initial classifier may be too expensive
to use on all samples. For example, systems like TaintCheck [16] and the execution
monitoring phase of Vigilante [3] identify flows that cause exploits very accurately, but
slow execution of a server significantly. In the case of spam, it is most often a user who
initially labels inbound emails as spam or non-spam. Clearly, the user is an “expensive”
classifier. In both these application domains, the aim is to use the expensive classifier
sparingly to train a learner to generate a far less expensive classifier.

In addition, the classifier used to label samples initially is often error-prone; it may
suffer from false positives and/or false negatives. For example, classifying all samples
that originate from a host whose behavior fits some coarse heuristic (e.g., originating
more than a threshold number of connections per unit time) risks flagging innocuous
samples as suspicious. A coarse heuristic that errs frequently in the opposite direction
(e.g., classifying as suspicious only those samples from source addresses previously
seen to port scan) risks flagging suspicious samples as innocuous (e.g., a hit-list worm
does not port scan, but is still in the target class).

2.4 Assumptions and Practice

Given that the initial classifier is error-prone, consider the content of the two labeled
pools it produces. Ideally, the innocuous pool contains legitimate traffic that exactly
reflects the distribution of current traffic. In reality, though, it may not. First, because
the classifier used in initial labeling of samples is imperfect, the innocuous pool might
well include target-class traffic not properly recognized by that classifier. Moreover, the
innocuous pool may contain traffic that is not target-class traffic, but not part of the
representative innocuous traffic mix; an adversary may send non-target-class traffic to
cause this sort of mislabeling. Finally, the innocuous pool may not reflect current traffic;
it may be sufficiently old that it does not contain content common in current traffic.

The suspicious pool is essentially a mirror image of the innocuous pool. Ideally, it
contains only samples of the target class. But as before, the flawed classifier may mis-
classify innocuous traffic as suspicious, resulting in innocuous traffic in the suspicious
pool. Additionally, an adversary may choose to send non-target-class traffic in such a
way as to cause that traffic (which is innocuous in content) to be classified as suspicious.

Formal proofs of desirable properties of machine learning algorithms (e.g., fast con-
vergence to an accurate classifier with few labeled samples) tend to assume that the
features present in samples are determined randomly, or in some applications, that a

86 J. Newsome, B. Karp, and D. Song

helpful teacher designs the samples’ content with the aim of speeding learning. We note
that using learning to generate classifiers for worms constitutes learning with a mali-
cious teacher; that is, the adversary is free to attempt to construct target-class samples
with the aim of thwarting learning, and to attempt to force the mislabelings described
above to occur.

2.5 Attack Taxonomy

There are a number of adversarial models to consider. In particular, there are three
potential adversary capabilities that we are interested in:

– Target feature manipulation. The adversary has some power to manipulate the
features in the target-class samples. Some features are necessary for the target-class
samples to accomplish their purpose (e.g., successfully hijack program execution in
a worm sample, or entice the reader to visit a web-site in a spam email). There are
a variety of techniques to minimize or obfuscate these necessary features, such as
worm polymorphism. A less-studied technique that we investigate is the inclusion
of additional, spurious, features in the target-class samples, whose sole purpose is
to mislead the learner.

– Suspicious pool poisoning. The adversary may attempt to fool the initial classifier,
such that non-target-class samples are put into the suspicious pool. These samples
may be specially constructed to mislead the learner.

– Innocuous pool poisoning. The adversary may attempt to place samples into the
innocuous pool. These could be target-class samples, or non-target-class samples
that nonetheless mislead the learner.

We propose two types of attack that the adversary can perform using one or more of
the above techniques:

– Red herring attacks. The adversary incorporates spurious features into the target-
class samples to cause the learner to generate a classifier that depends on those
spurious features instead of or in addition to the necessary target-class features. The
adversary can evade the resulting classifier by not including the spurious features
in subsequently generated target-class samples.

– Inseparability attacks. The adversary incorporates features found in the innocuous
pool into the target-class samples in such a way as to make it impossible for the
learner to generate a classifier that incurs both few false positives and few false
negatives.

In this work we demonstrate highly effective attacks of both types that assume only a
delusive adversary—one who provides the learner with correctly labeled training data,
but who manipulates the features in the target-class samples to mislead the learner. We
further demonstrate how an adversary with the ability to poison the suspicious pool, the
innocuous pool, or both, can more easily perform inseparability attacks.

Having sketched these strategies broadly, we now turn to describing the attacks based
on them in detail.

Paragraph: Thwarting Signature Learning by Training Maliciously 87

3 Attacks on Conjunction Learners

One way of generating a classifier is to identify a set of features that appears in every
sample of the target class. The classifier then classifies a sample as positive if and only
if it contains every such feature.

We construct two types of red herring attacks against learners of this type. We use
the Polygraph conjunction learner as a concrete example for analysis [15]. In the Poly-
graph conjunction learner, the signature is the set of features that occur in every sample
in the malicious training pool.2 In Section 5 we discuss the effectiveness of these at-
tacks against Hamsa [9], a recently proposed Polygraph-like system. We show that the
attacks described here are highly effective, even under the optimistic assumption that
the malicious training pool contains only target-class samples.

In Section 3.3, we show that even in a highly optimistic scenario, a polymorphic
worm that Polygraph could stop after only .5% of vulnerable hosts are infected can use
these attacks to improve its infection ratio to 33% of vulnerable hosts.

3.1 Attack I: Randomized Red Herring Attack

Attack Description. The learner’s goal is to generate a signature consisting only of
features found in every target-class sample. In the Randomized Red Herring attack,
the attacker includes unnecessary, or spurious, features in some target-class samples,
with the goal of tricking the learner into using those features in its signature. As a
result, target-class samples that do not include the set of spurious features that are in
the signature are able to evade the signature.

The attacker first chooses a set of α spurious features. The attacker constructs the
target-class samples such that each one contains a particular spurious feature with prob-
ability p. As a result, the target-class samples in the learner’s malicious pool will all
have some subset of the α spurious features in common, and those spurious features
will appear in the signature. The signature will then have false negatives, because many
target-class samples will not have all of those features.

Analysis. We first find how selection of α and p affect the expected false negative rate.

Theorem 1. The expected false negative rate F[s] for a signature generated from s
target-class samples, where each target-class sample has probability p of including
each of α spurious features, is F [s] = 1 − pα ps

.

Derivation. The expected number of spurious features that will be included in a signa-
ture after collecting s samples is σ = α ps. The chance of all σ of those spurious features
being present in any given target-class samples is pσ . Hence, the expected false negative
rate of the signature is y = 1 − pσ , which we rewrite as y = 1 − pα ps

.
The attacker has two parameters to choose: the number of spurious features α , and

the probability of a spurious feature occurring in a target-class sample p. The attacker

2 In Section 5, we show that the hierarchical clustering algorithm used by Polygraph to tolerate
noise does not protect against these attacks.

88 J. Newsome, B. Karp, and D. Song

will use as high an α as is practical, often limited only by the number of additional
bytes that the attacker is willing to append.

The ideal value of p is not clear by inspection. A higher p results in more spu-
rious features incorporated into the signature, but it also means that the spurious
features that do get included in the classifier are more likely to occur in other target-
class samples. We find the best value of p by finding the roots of the derivative:
dy
d p = −α pα ps+s−1(sln(p)+ 1). There are two roots. p = 0 minimizes false negatives

(it is equivalent to not performing the attack at all), and p = e− 1
s maximizes false

negatives.

Theorem 2. The value of p that maximizes the false negative rate in the Randomized
Red Herring attack is: p = e− 1

s .

The p that generates the highest false negative rate depends on the number of target-
class samples seen by the learner, s. Hence, the optimal value of p depends on the exact
goals of the attacker. For a worm author, one way to choose a value of p would be to set
a goal for the number of machines to compromise before there is an effective classifier,
and calculate the number of positive samples that the learner is likely to have gathered
by that time, based on the propagation model of his worm and the deployment of the
learner, and then set p to a value that ensures there are still a large number of false
negatives at that time.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

F
al

se
 n

eg
at

iv
e

ra
te

 y

Number of training samples s

Theory p=.900
Theory p=.995
Theory p=.999

Eval p=.900
Eval p=.995

Fig. 2. Randomized Red Herring attack. α = 400

We implemented a version of the Randomized Red Herring attack based on this
model. We took a real buffer-overflow exploit against the ATPhttpd web server [19],
filled the attack-code with random bytes to simulate polymorphic encryption and ob-
fuscation, and replaced the 800 bytes of padding with 400 unique two-byte spurious
features. Specifically, we set each two-byte token to the binary representation of its
offset with probability p, and to a random value with probability 1 − p. Note that

Paragraph: Thwarting Signature Learning by Training Maliciously 89

the number of spurious features used here is conservative. In this attack, the 800 padding
bytes were already used, because they were necessary to overflow the buffer. The at-
tacker could easily include more bytes to use as spurious features. For example, he
could include additional HTTP headers for the sole purpose of filling them with spuri-
ous features.

Figure 2 shows the predicted and actual false negative rates as the number of train-
ing samples increases, for several values of p. We used values that maximized the false
negative rate when s = 10 (p = .900), when s = 200 (p = .995), and when s = 500
(p = .999). For each data point, we generate s worm samples, and use the Polygraph
conjunction learner to generate a classifier. We then generate another 1000 worm sam-
ples to measure the false negative rate. There are two things to see in this graph. First,
our experimental results confirm our probability calculations. Second, the attack is quite
devastating. Low values of p result in very high initial false negatives, while high val-
ues of p prevent a low-false-negative signature from being generated until many worm
samples have been collected.

3.2 Attack II: Dropped Red Herring Attack

Attack description. In the Dropped Red Herring attack, the attacker again chooses a
set of α spurious features. Initially, he includes all α features in every target-class sam-
ple. As a result, the target-class samples in the learner’s malicious training pool will
all have all α spurious features, and all α spurious features will be included in the
signature.

Once the signature is in place, all the attacker needs to do to evade the signature is
to stop including one of the spurious features in subsequent target-class samples. The
signature will have a 100% false negative rate until the learner sees a target-class sample
missing the spurious feature, and deploys an updated signature that no longer requires
that feature to be present. At that point, the attacker stops including another spurious
feature. The cycle continues until the attacker has stopped including all of the spurious
features.

Attack analysis. For sake of comparison to the Randomized Red Herring attack, as-
sume that the attacker stops including a single spurious feature the instant that an up-
dated signature is deployed. Also assume that the learner deploys a new signature each
time it collects a new worm sample, since each successive sample will have one fewer
spurious feature than the last. In that case, the classifier will have 100% false negatives
until α positive samples have been collected.

Theorem 3. The false negative rate F [s] for the signature generated after s target-class
samples have been collected is

F [s] =
{

100% i f s < α
0% i f s ≥ α

With these assumptions, the Dropped Red Herring attack is compared to the Random-
ized Red Herring attack in Figure 3. When the attack is executed in this way, and there

90 J. Newsome, B. Karp, and D. Song

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

E
xp

ec
te

d
F

al
se

 n
eg

at
iv

e
ra

te
 y

Number of training samples

Randomized p=.900
Randomized p=.995
Randomized p=.999

Dropped

Fig. 3. Dropped Red Herring compared to Randomized Red Herring, α = 400

are a moderate number of spurious features, the attack can be quite devastating. The
generated signatures are useless until all α features have been eliminated from the sig-
nature.

While the Dropped Red Herring attack is far more effective than the Randomized
Red Herring attack (until the learner has dropped all α spurious features from the sig-
nature), the Randomized Red Herring attack has one important advantage: it is simpler
to implement. The Dropped Red Herring attack must interact with the signature learning
system, in that it must discover when a signature that matches the current target-class
samples has been published, so that it can drop another feature, and remain unfiltered.
There is no such requirement of the Randomized Red Herring attack. This is not to say
that the Dropped Red Herring attack is impractical; the attacker has significant room
for error. While dropping a feature prematurely will ‘waste’ a spurious feature, there is
little or no penalty for dropping a feature some time after an updated signature has been
deployed.

3.3 Attack Effectiveness

We show that even with an optimistic model of a distributed signature generation sys-
tem, and a pessimistic model of a worm, employing the Randomized Red Herring or
Dropped Red Herring attack delays the learner enough to infect a large fraction of vul-
nerable hosts before an accurate signature can be generated.

We assume that the learner is monitoring L addresses. Each time the worm scans
one of these addresses, the learner correctly identifies it as a worm, and instantaneously
updates and distributes the signature. At that point, any scan of any vulnerable host
has probability F[s] of succeeding (the false negative rate of the current signature).
There are several optimistic assumptions for the learner here, most notably that up-
dated signatures are distributed instantaneously. In reality, distributing even a single

Paragraph: Thwarting Signature Learning by Training Maliciously 91

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 0 1000 2000 3000 4000 5000 6000 7000 8000

V
ul

ne
ra

bl
e

H
os

ts
 In

fe
ct

ed

Worm samples seen by learner (s)

No defense
Dropped RH

Randomized RH (p=.999)
Randomized RH (p=.995)
Randomized RH (p=.900)

Maximally Varying Polymorphic

Fig. 4. Worm propagation. L=1000, V=1000000, α = 400

signature to all hosts in less than the time it takes to infect all vulnerable hosts is a
challenge [22].3

We assume that the worm scans addresses uniformly at random. In reality, there are
several potential strategies a worm author might use to minimize the number of sam-
ples seen by the learner. An ideally coordinated worm may scan every address exactly
once, thus minimizing the number of samples sent to any one of the learner’s addresses,
and eliminating ‘wasted’ scans to already-infected hosts. The worm could further im-
prove this approach by attempting to order the addresses by their likelihood of being
monitored by the learner, scanning the least likely first.

We model the worm by estimating the number of additional vulnerable hosts infected
in-between the learner receiving new worm samples. Note that because we assume sig-
nature updates are instantaneous, the scan rate of the worm is irrelevant. Intuitively, both
the rate of infection and the rate of the learner receiving new samples are proportional
to the scan rate, thus canceling each other out.

Theorem 4. For a worm scanning uniformly at random, where there are V vulnerable
hosts, L addresses monitored by the learner, and N total hosts, the expected number of
infected hosts I after s worm samples have been seen by the learner is:

I[s] = I[s− 1]+ (V − I[s− 1])

(
1 −

(
1 − F [s− 1]

N

)(N/L)
)

Derivation. The expected number of worm scans in-between the learner receiving a
new worm sample is 1

P(scan is seen by learner) = N
L .

3 The Dropped Red Herring attack in particular is much more devastating when taking the sig-
nature generation and distribution time into account, since the next spurious feature is not
revealed before an updated signature is distributed. Hence, a worm using α spurious features
is allowed to propagate freely for at least α times the time needed to generate and distribute a
signature.

92 J. Newsome, B. Karp, and D. Song

R
at

e

False Positive Rate
Innocuous Pool

Threshold

F%

100%
Suspicious Pool

False Negative Rate

TzfnTzfpτ

Fig. 5. Training data distribution graph, used to
set τ . τ could be set to perfectly classify train-
ing data.

R
at

e

False Positive Rate
Innocuous Pool

Threshold

F%

100% False Negative Rate
Suspicious Pool

Tzfn Tzfpτ

Fig. 6. Overlapping training data distribution
graph. No value of τ perfectly classifies train-
ing data.

I[s] = I[s−1]+(# vulnerable uninfected hosts)P(host becomes infected)
I[s] = I[s−1]+(V − I[s−1])(1−P(host does not become infected))
I[s] = I[s−1]+(V − I[s−1])(1−P(scan does not infect host)(# scans))
I[s] = I[s−1]+(V − I[s−1])(1− (1−P(scan infects host))(# scans))
I[s]= I[s−1]+(V − I[s−1])(1− (1−P(scan contacts host)P(scan not blocked))(# scans))
I[s] = I[s−1]+(V − I[s−1])(1− (1− 1

N F [s−1])(N/L))

In Figure 4, we model the case of V = one million vulnerable hosts, L = one thou-
sand learner-monitored addresses, and N = 232 total addresses. In the case where the
worm is maximally-varying polymorphic, we assume that the learner needs five sam-
ples to generate a correct signature. In that case, only 4,990 (.0499%) vulnerable hosts
are infected before the correct signature is generated, stopping further spread of the
worm. By employing the Dropped Red Herring attack, the worm author increases this
to 330,000 (33.0%). The Randomized Red Herring attack is only slightly less effective,
allowing the worm to infect 305,000 (30.5%) vulnerable hosts using p = .999.

Given that the Dropped Red Herring and Randomized Red Herring attacks allow a
worm to infect a large fraction of vulnerable hosts even under this optimistic model, it
appears that the Conjunction Learner is not a suitable signature generation algorithm
for a distributed worm signature generation system.

4 Attacks on Bayes Learners

Bayes learners are another type of learner used in several adversarial learning appli-
cations, including worm signature generation and spam filtering. We present several
practical attacks against Bayes learners, which can prevent the learner from ever gen-
erating an accurate signature, regardless of how many target-class samples it collects.
As a concrete example, we use Polygraph’s implementation of a Naive Bayes learner.
That is, a Bayes learner that assumes independence between features. Non-Naive Bayes
learners are not as commonly used, due partly to the much larger amount of training data
that they require. We believe that the attacks described here can also be applied to other

Paragraph: Thwarting Signature Learning by Training Maliciously 93

Bayes learners, possibly even non-naive ones that do not assume independence between
features.

4.1 Background on Bayes Learners

In the following discussion, we use the notation P(x|+) to mean the probability that
the feature or set of features x occurs in malicious samples, and P(x|−) to denote the
probability that it occurs in innocuous samples. This learner can be summarized as
follows:

– The learner identifies a set of tokens, σ , to use as features. σ is the set of tokens that
occur more frequently in the suspicious pool than in the innocuous pool. That is,
∀σ i ∈ σ ,P(σ i|+) > P(σ i|−). This means that the presence of some σ i in a sample
to be classified can never lower the calculated probability that it is a worm.

– Classifies a sample as positive (i.e., in the target class) whenever P(γ|+)
P(γ|−) > τ where τ

is a threshold set by the learner, and γ is the subset of σ that occurs in the particular
sample. We refer to P(γ|+)

P(γ|−) as the Bayes score, denoted score(γ)

– We assume conditional independence between features. Hence, P(γ|+)
P(γ|−) = ∏ P(γi|+)

P(γi|−)
– P(σ i|−) is estimated as the fraction of samples in the innocuous pool containing

σ i.
– P(σ i|+) is estimated as the fraction of samples in the suspicious pool containing

σ i.
– τ is chosen as the value that achieves a false positive rate of no more than F% in

the innocuous pool.

Setting the τ Threshold. The attacks we describe in this section all involve making it
difficult or impossible to choose a good matching threshold, τ . For clarity, we describe
the method for choosing τ in more detail.

After the learner has chosen the feature set σ and calculated P(σ i|+)
P(σ i|−) for each fea-

ture, it calculates the Bayes score P(σ |+)
P(σ |−) for each sample in the innocuous pool and

suspicious pool, allowing it to create the training data distribution graph in Figure 5.
The training data distribution graph shows, for every possible threshold, what the cor-
responding false positive and false negative rates would be in the innocuous and suspi-
cious training pools. Naturally, as the threshold increases, the false positive rate mono-
tonically decreases, and the false negative rate monotonically increases. Note that Fig-
ure 5 and other training data distribution graphs shown here are drawn for illustrative
purposes, and do not represent actual data.

There are several potential methods for choosing a threshold τ based on the training
data distribution graph. The method described in Polygraph [15] is to choose the value
that achieves no more than F% false positives in the innocuous pool. One alternative
considered was to set τ to Tz f p, the lowest value that achieves zero false positives in the
innocuous pool. However, in the examples studied, a few outliers in the innocuous pool
made it impossible to have zero false positives without misclassifying all of the actual
worm samples, as in Figure 6. Of course, a highly false-positive-averse user could set
F to 0, and accept the risk of false negatives.

94 J. Newsome, B. Karp, and D. Song

F%

R
at

e

False Positive Rate
Innocuous Pool

100%

Threshold τTzfp Tzfn Tzfn’ Tzfn’’

Suspicious Pool
False Negative Rate

Fig. 7. Dropped Red Herring Attack. Spurious
tokens artificially shift false negative curve to
the right. It shifts back to the left when worm
samples without the spurious tokens are added
to the suspicious pool.

R
at

e

False Positive Rate
Innocuous Pool

100%

F%

Threshold τ τ ’

Suspicious Pool
False Negative Rate

Fig. 8. Correlated Outlier attack

Another tempting method for choosing τ is to set it to Tz f n, the highest value that
achieves zero false negatives in the suspicious pool. However, we show in Section 4.2
that this would make the Bayes learner vulnerable to a red herring attack.

4.2 Dropped Red Herring and Randomized Red Herring Attacks Are Ineffective

Dropped Red Herring Attack. The method just described for choosing τ may seem
unintuitive at first. However, it was carefully designed to prevent Dropped Red Herring
attacks, as illustrated in Figure 7. Suppose that τ was set to Tz f n, the threshold just low
enough to achieve zero false negatives in the training data. This may seem more intu-
itive, since it reduces the risk of false positives as much as possible while still detecting
all positive samples in the malicious pool.

Now suppose that the attacker performs the Dropped Red Herring attack. Since the
spurious features occur in 100% of the target-class samples, they will be used in the
feature set σ . Since each target-class sample in the malicious pool now has more in-
criminating features, the Bayes score of every target-class sample in the suspicious
pool increases, causing the false negative curve to be artificially shifted to the right.4

If the learner were to set τ to T ′′
z f n (see Figure 7), then the attacker could successfully

perform the Dropped Red Herring attack. When a target-class sample includes one less
spurious feature, its Bayes score becomes less than T ′

z f n, where T ′
z f n < T ′′

z f n. Hence it
would be classified as negative. Eventually the learner would get target-class samples
without that spurious feature in its malicious pool, causing the false negative curve to
shift to the left, and the learner could update the classifier with a threshold of T ′

z f n. At
that point the attacker could stop including another feature.

However, setting τ to the value that achieves no more than F% false positives is
robust to the Dropped Red Herring attack. Assuming that the spurious features do not

4 The false positive curve may also shift towards the right. We address this in Section 4.3.

Paragraph: Thwarting Signature Learning by Training Maliciously 95

appear in the innocuous pool, the false positive curve of the training data distribution
graph is unaffected, and hence the threshold τ is unaffected.

Randomized Red Herring Attack. The Randomized Red Herring attack has little ef-
fect on the Bayes learner. The Bayes score for any given target-class sample will be
higher due to the inclusion of the spurious features. The increase will vary from sample
to sample, depending on which spurious features that sample includes. However, again
assuming that the spurious features do not appear in the innocuous pool, this has no
effect on τ . Hence, the only potential effect of this attack is to decrease false negatives.

4.3 Attack I: Correlated Outlier Attack

Unfortunately, we have found an attack that does work against the Bayes learner. The
attacker’s goal in this attack is to increase the Bayes scores of samples in the innocuous
pool, so as to cause significant overlap between the training data false positive and
false negative curves. In doing so, the attacker forces the learner to choose between
significant false positives, or 100% false negatives, independently of the exact method
chosen for setting the threshold τ .

Attack Description. The attacker can increase the Bayes score of innocuous samples
by using spurious features in the target-class samples, which also appear in some in-
nocuous samples. By including only a fraction β of the α spurious features, S, in any
one target-class sample, innocuous samples that have all α spurious features can be
made to have a higher Bayes score than the target-class samples.

The result of the attack is illustrated in Figure 8. The spurious features in the target-
class samples cause the false negative curve to shift to the right. The innocuous samples
that contain the spurious features result in a tail on the false positive curve. The tail’s
height corresponds to the fraction of samples in the innocuous pool that have the spu-
rious tokens. As the figure shows, regardless of how τ is chosen, the learner is forced
either to classify innocuous samples containing the spurious features as false positives,
or to have 100% false negatives.

The challenge for the attacker is to choose spurious features that occur in the innocu-
ous training pool (which the attacker cannot see) in the correct proportion for the attack
to work. The attacker needs to choose spurious features that occur infrequently enough
in the innocuous pool that the corresponding Bayes score P(S|+)

P(S|−) is large, but frequently
enough that a significant fraction of the samples in the innocuous pool contain all of the
spurious features; i.e. so that the forced false positive rate is significant.

Attack Analysis. We show that the attack works for a significant range of parameters.
The attacker’s a priori knowledge of the particular network protocol is likely to allow
him to choose appropriate spurious features. A simple strategy is to identify a type of
request in the protocol that occurs in a small but significant fraction of requests (e.g.
5%), and that contains a few features that are not commonly found in other requests.
These features are then used as the spurious features.

We first determine what parameters will give the innocuous samples containing the
spurious features a higher Bayes score than the target-class samples. For simplicity, we
assume that P(si|−) is the same for each spurious feature si.

96 J. Newsome, B. Karp, and D. Song

Theorem 5. Given that each target-class sample contains the feature set W and β α
spurious features si chosen uniformly at random from the set of α spurious features
S, samples containing all α spurious features in S have a higher Bayes score than the
target-class samples when:

P(si|−) < β and (β
P(si|−))

β α−α ≤ P(W |−)

The condition P(si|−) < β is necessary to ensure that P(si|−) < P(si|+). Otherwise,
the learner will not use the spurious features in the Bayes classifier.

The second condition is derived as follows:

P(S|+)
P(S|−) ≥ P(β S,W |+)

P(β S,W |−) Innocuous samples have a higher Bayes score
P(si|+)α

P(si|−)α ≥ P(si|+)βα P(W |+)
P(si|−)βα P(W |−)

Independence assumption
β α

P(si|−)α ≥ β βα (1)
P(si|−)βα P(W |−)

Substitution

(β
P(si|−))

β α−α ≤ P(W |−) Rearrangement

Note that while we have assumed independence between features here, the attack
could still apply to non-Naive Bayes learners, provided that P(S|+)

P(S|−) ≥ P(β S,W |+)
P(β S,W |−) is satis-

fied. Whether and how it can be satisfied will depend on the specific implementation of
the learner.

When these conditions are satisfied, the classifier must either classify innocuous sam-
ples containing the spurious features S as positive, or suffer 100% false negatives. Either
way can be considered a ‘win’ for the attacker. Few sites will be willing to tolerate a
significant false positive rate, and hence will choose 100% false negatives. If sites are
willing to tolerate the false positive rate, then the attacker has succeeded in performing
a denial-of-service attack. Interestingly, the attacker could choose his spurious tokens
in such a way as to perform a very targeted denial-of-service attack, causing innocuous
samples of a particular type to be filtered by the classifier.

For the threshold-choosing algorithm used by Polygraph, τ will be set to achieve
100% false negatives if P(S|−)

P(S|+) ≥ F . Otherwise it will be set to falsely classify the sam-
ples containing the spurious features S as positive.

Evaluation. The Correlated Outlier is practical for an adversary to implement, even
though he must make an educated guess to choose the set of spurious features that
occur with a suitable frequency in the innocuous pool.

There are four parameters in Theorem 5 that determine whether the attack is suc-
cessful. The attacker chooses α , how many spurious features to use, and β , the fraction
of thosespurious features to include in each target-class sample. The likelihood of suc-
cess increases with greater α . However, since he must find α spurious features that are
highly correlated in the innocuous pool, relatively low values are the most practical.

The third parameter, the frequency of the target-class features in the innocuous pool
P(W |−) is out of the attacker’s hands. High values of P(W |−) make the attack easiest.
Indeed, if P(W |−) is high, the learner is already forced to choose between false nega-
tives, and significant false positives. We show the attack is still practical for low values
of P(W |−).

Paragraph: Thwarting Signature Learning by Training Maliciously 97

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.0002 0.0004 0.0006 0.0008 0.001

M
ax

 P
(s

i|-
)

P(W|-)

α=5 β=30%
α=10 β=30%

α=100 β=30%

Fig. 9. Correlated Outlier attack evaluation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.0002 0.0004 0.0006 0.0008 0.001

M
ax

 P
(s

i|-
)

P(W|-)

N= 0% α=10 β=30%
N=10% α=10 β=30%
N=50% α=10 β=30%
N=90% α=10 β=30%

Fig. 10. Correlated Outlier attack evaluation,
with chaff

The fourth parameter, the frequency of the spurious features in the innocuous pool
P(si|−), is not directly controlled by the attacker. The attacker’s challenge is to choose
the spurious features such that P(si|−) is low enough that the attacker succeeds in get-
ting the innocuous features with all α of the spurious features S to have a higher Bayes
score than the target-class samples.

Figure 9 shows that the attack can succeed for a wide range of realistic parameters.
Each curve in the graph represents a different attacker choice of α . As P(W |−) increases,
the maximum value of P(si|−) also increases. Even for very low values of P(W |−) and
α , the attacker has a great deal of room for error in his estimation of P(si|−).

Again, any value that satisfies these constraints will force the the learner to choose
between false negatives and false positives, and the classifier will not improve as more
target-class samples are obtained. If the learner uses the Polygraph threshold-setting
algorithm, then τ will be set to achieve 100% false negatives if P(S|−)

P(S|+) ≥ F . Otherwise
it will be set to have low false negatives, but will classify the samples containing the
spurious features S as positive. The signature will not improve, and as long as it is in use,
legitimate samples containing those samples will be false positives, causing a targeted
denial of service.

4.4 Attack II: Suspicious Pool Poisoning

Up to this point we have assumed that the suspicious and innocuous pools are noise-
free. That is, the suspicious pool contains only target-class samples, and the innocuous
pool contains only innocuous samples. In some cases, however, the attacker may be
able to inject constructed samples into the suspicious pool, the innocuous pool, or both,
as described in Section 2. We first consider the case where the attacker is able to inject
chaff, specially constructed samples, into the suspicious pool.

Attack Description. The chaff can simultaneously have two effects. First, by not in-
cluding the actual target-class features W , the classifier will calculate a lower P(W |+).
The actual target-class samples in the suspicious pool will have lower Bayes scores as
a result, stretching the false negative curve of the training data distribution graph to the
left.

98 J. Newsome, B. Karp, and D. Song

Second, the classifier will calculate a higher P(si|+) for any spurious feature si in-
cluded in the chaff. This will cause innocuous samples containing those features to have
a higher Bayes score, stretching the false positive curve of the training data distribution
graph to the right, in the same manner as in the Correlated Outlier attack (Figure 8). Un-
like the target-class samples, each chaff sample can contain all of the spurious features,
since it makes no difference to the attacker whether the chaff samples are classified as
positive by the resulting Bayes classifier.

Attack Analysis. The attacker’s goal is again to force the learner to choose between
false positives and false negatives, by ensuring that the score of a sample containing
all α of the spurious features S has a higher Bayes score than a sample containing the
true target-class features W , and a fraction β of the spurious features. Assuming that
the chaff in the suspicious pool contains all α of the spurious features, the attacker can
include fewer spurious features in the actual target-class samples, or even none at all.

Theorem 6. Suppose that the fraction N of samples in the suspicious pool is chaff
containing the spurious features S. Samples containing all α spurious features have a
higher Bayes score than samples containing the actual target-class features W and the
fraction β of the α spurious features when:

P(si|−) < N +(1 − N)β and (1 − N)(N+β (1−N)
P(si|−))β α−α ≤ P(W |−)

When these conditions are satisfied, this attack becomes equivalent to the Correlated
Outlier attack. Notice that when there is no chaff (N = 0) these conditions simplify to
the conditions presented in Section 4.3.

Evaluation. We perform a similar evaluation as in Section 4.3. In this case, the attacker
uses a relatively low number of spurious features (α = 10), and each curve of the graph
represents different ratios of chaff in the suspicious pool. Figure 10 shows that the
addition of chaff to the suspicious pool greatly improves the practicality of the attack.
The resulting classifier will again either have 100% false negatives, or cause legitimate
samples with the spurious features to be blocked.

4.5 Attack III: Innocuous Pool Poisoning

We next consider the case where the attacker is able to poison the innocuous training
pool. The most obvious attack is to attempt to get samples with the target-class features
W into the innocuous pool. If the target-class samples include only the features W (no
spurious features), then it would be impossible to generate a classifier that classified the
target-class samples as positive without also classifying the samples that the attacker
injected into the innocuous pool as positive. Hence, the learner could be fooled into
believing that a low-false-positive classifier cannot be generated.

The solution to this problem proposed by Polygraph [15] for automatic worm signa-
ture generation is to use a network trace taken some time t ago, such that t is greater
than the expected time in-between the attacker discovering the vulnerability (and hence
discovering what the worm features W will be), and the vulnerability being patched on
most vulnerable machines. The time period t is somewhat predictable assuming that the

Paragraph: Thwarting Signature Learning by Training Maliciously 99

attacker does not discover the vulnerability before the makers of the vulnerable software
do. Conversely, t could be an arbitrary time period for a “zero-day” exploit. However,
we show that a patient attacker can poison the innocuous pool in a useful way before he
knows what the worm features W are.

Attack Description. The attacker can aid the Correlated Outlier attack by injecting
spurious tokens into the innocuous pool. In this case, using an old trace for the innocu-
ous pool does not help at all, since the attacker does not need to know W at the time
of poisoning the innocuous pool. That is, an attacker who does not yet have a vulner-
ability to exploit can choose a set of spurious features S, and preemptively attempt to
get samples containing S into the learner’s innocuous pool, thus increasing P(S|−). The
attacker can then use these spurious features to perform the Correlated Outlier attack,
optionally poisoning the suspicious pool as well as described in Section 4.4.

Attack Analysis. If the attacker is able to inject samples containing S into the innocuous
pool, P(S|−) will be increased. The attacker’s best strategy may be to use spurious fea-
tures that do not occur at all in normal traffic. This would allow him to more accurately
estimate the learner’s P(S|−) when designing the worm.

Aside from this additional knowledge, the attack proceeds exactly as in Section 4.4.

Evaluation. The success of the attack is determined by the same model as in Theorem 6.
The addition of the injected spurious features helps make the attack more practical by
allowing him to more accurately predict a set of spurious features that occur together
in a small fraction of the innocuous training pool. Success in the attack will again ei-
ther result in the classifier having 100% false negatives, or result in innocuous samples
containing the spurious features to be blocked.

5 Discussion

5.1 Hierarchical Clustering

Polygraph [15] implements a hierarchical clustering algorithm to enable its conjunction
and subsequence learners to work in the presence of non-worm samples in the sus-
picious training pool. Each sample starts as its own cluster, and clusters are greedily
merged together. Each cluster has a signature associated with it that is the intersection
of the features present in the samples in that cluster. The greedy merging process favors
clusters that produce low-false-positive signatures; i.e., those that have the most distin-
guishing set of features in common. When no more merges can be performed without
the resulting cluster having a high-false-positive signature, the algorithm terminates
and outputs a signature for each sufficiently large cluster. Ideally, samples of unrelated
worms are each in their own cluster, and non-worm samples are not clustered.

One might wonder whether the hierarchical clustering algorithm helps to alleviate
the Randomized Red Herring or Dropped Red Herring attacks. It does not.

First consider the Randomized Red Herring attack. Each worm sample has the set
of features that must be present, W , and some subset of a set of spurious features, S.
Keep in mind that the attacker’s goal is for the resulting signature to be too specific. If

100 J. Newsome, B. Karp, and D. Song

the hierarchical clustering algorithm puts all the worm samples into one cluster, which
is likely, the resulting signature will be exactly the same as if no clustering were used.
If it does not, the resulting signature can only be more specific, which further increases
false negatives.

For example, suppose one cluster contains spurious features s1, s2, and s3, and an-
other cluster contains spurious features s2, s3, and s4. Both clusters contain the neces-
sary worm features W . If these clusters are merged together, the resulting signature is
the conjunction

(W ∧ s2 ∧ s3)
If the clusters are not merged, then the learner will publish two signatures. Assuming

both signatures are used, this is equivalent to the single signature
(W ∧ s1 ∧ s2 ∧ s3)∨ (W ∧ s2 ∧ s3 ∧ s4)
This can be rewritten as:
(W ∧ s2 ∧ s3)∧ (s1 ∨ s4)
Obviously, this is more specific than the signature that would have resulted if the two

clusters were merged, and hence will have strictly more false negatives.
The same is true for the Dropped Red Herring attack, by similar reasoning. Again,

if all samples of the worm are merged into one cluster, the result is equivalent to if no
clustering were used. Not merging the samples into a single cluster can only make the
signature more specific, which further increases false negatives.

5.2 Attack Application to Other Polymorphic Worm Signature Generation
Systems

At this time, the only automatic polymorphic worm signature generation systems that
are based on learning are Polygraph [15] and Hamsa [9]. Throughout this paper, we
have used Polygraph’s algorithms as concrete examples. Hamsa generates conjunction
signatures, with improved performance and noise-tolerance over Polygraph. To gen-
erate a conjunction signature, Hamsa iteratively adds features found in the suspicious
pool, preferring features that occur in the most samples in the suspicious pool and result
in sufficiently low false positives in the innocuous pool.

We begin with two observations. First, the adversary can cause Hamsa to use spuri-
ous features in its signature, as long as those features occur sufficiently infrequently in
the innocuous pool, and occur at least as often in the suspicious pool as the true target-
class features. Second, the false-negative bounds proven in the Hamsa paper only apply
to the target-class samples actually found in the suspicious pool, and not necessarily to
subsequently generated samples.

Unlike Polygraph, Hamsa stops adding features to the signature once the signature
causes fewer false positives in the innocuous pool than some predetermined threshold.
As a result, Hamsa is relatively resilient to the Randomized Red Herring attack. For ex-
ample, using α = 400, p = .995, Hamsa exhibits only 5% false negatives after collecting
100 target-class samples. While this incidence is still non-trivial, it is an improvement
over Polygraph’s corresponding 70% false negatives with these parameters.

Hamsa is also less vulnerable to the Dropped Red Herring attack, but unfortunately
not completely invulnerable. First, let us assume that Hamsa’s method of breaking ties
when selecting features is not predictable by the adversary (the method does not appear

Paragraph: Thwarting Signature Learning by Training Maliciously 101

to be defined in [9]). In this case, the simplest form of the attack will not succeed, as the
adversary cannot predict which spurious features are actually used, and hence which
to drop to avoid the generated classifier. However, suppose that the attacker is able to
inject noise into the suspicious pool, and the spurious features follow some ordering of
probabilities with which they appear in a particular noise sample. This ordering then
specifies the (probable) preferential use of each spurious feature in the generated signa-
ture. That is, the most probable spurious feature will be chosen first by Hamsa, since it
will have the highest coverage in the suspicious pool, and so on. In that case, an adver-
sary who can inject n noise samples into the suspicious pool can force up to n iterations
of the learning process.

5.3 Attack Application to Spam

The correlated outlier attack described in Section 4.3 is also applicable to Bayesian
spam filters, though the specific analysis is dependent on the exact implementation.
There is already an attack seen in the wild where a spam email includes a collection
of semi-random words or phrases to deflate the calculated probability that the email
is spam [6].5 To perform the correlated outlier attack on a spam filter, the adversary
would use as spurious features words that tend to occur together in a fraction of non-
spam emails. If a classifier is trained to recognize such an email as spam, it may suffer
false positives when legitimate email containing those words is received. Conversely, if
a classifier’s threshold is biased toward not marking those legitimate mails as spam, it
may suffer from false negatives when receiving spam with the chosen features.

As in the worm case, it may be possible for a spam author to guess what words
occur in the correct frequency in the innocuous training data. It seems likely that such
an attack could succeed were it tailored to an individual user, though it would not be a
financial win for the spam author. However, the spam author might be able to tailor the
spurious features to a broader audience, for example by selecting jargon words that are
likely to occur together in the legitimate mail of a particular profession. Another tactic
would be to use words that occur in a certain kind of email that occurs at the needed
low-but-significant frequency. For example, adding words or phrases in spam emails
that one would expect to see in a job offer letter could result in very high-cost false
positives, or in the savvy user being hesitant to mark such messages as spam for that
very reason.

5.4 Recommendation for Automatic Worm Signature Generation

Current pattern extraction insufficient. Most currently proposed systems for auto-
matically generating worm signatures work by examining multiple samples of a worm
and extracting the common byte patterns. This is an attractive approach because moni-
toring points can be deployed with relative ease at network gateways and other aggre-
gation points.

5 Note that the Polygraph implementation of a Bayes classifier is not vulnerable to this attack,
because it discards features that have a higher probability of occurring in negative samples
than positive samples.

102 J. Newsome, B. Karp, and D. Song

Unfortunately, most previous approaches [8, 21, 7, 24] do not handle the case where
the worm varies its payload by encrypting its code and using a small, randomly obfus-
cated decryption routine. In this paper, we have shown that the only proposed systems
that handle this case of polymorphism [15, 9] can be defeated by a worm that simply
includes spurious features in its infection attempts.

We believe that if there is to be any hope of generating signatures automatically
by only examining the byte sequences in infection attempt payloads, a more formal
approach will be needed. Interestingly, while there has been some research in the area
of spam email classification in the scenario where an adversary reacts to the current
classifier in order to evade it [6,13], there has been little research in the machine learning
scenario where an adversary constructs positive samples in such a way as to prevent
an accurate classifier from being generated in the first place. One approach that bears
further investigation is Winnow [11, 12], a machine learning algorithm with proven
bounds on the number of mistakes made before generating an accurate classifier.

Automatic Semantic Analysis. Recent research proposes automated semantic analysis
of collected worm samples, by monitoring the execution of a vulnerable server as it
becomes compromised [3, 5, 2]. These approaches can identify which features of the
worm request caused it to exploit the monitored software, and are hence likely to be
invariant, and useful in a signature. This approach is also less susceptible to being fooled
by the worm into using spurious features in a signature, since it will ignore features that
have no effect on whether the vulnerable software actually gets exploited. The features
so identified can also be more expressive than the simple presence or absence of tokens;
e.g., they may specify the minimum length of a protocol field necessary to trigger a
buffer overflow.

While monitoring points employing semantic analysis are not as easily deployed as
those that do not, since they must run the vulnerable software, they are more likely to
produce signatures with low false positives and false negatives than those produced by
pattern extraction alone.

Given the state of current research, we believe that future research on automatic
worm signature generation should focus on provable mistake bounds for pattern-
extraction-based learners and on further analysis of and improvements to automated
semantic analysis techniques.

6 Related Work

Attacking learning algorithms. Barreno et al. independently and concurrently in-
vestigate the challenge of using machine learning algorithms in adversarial environ-
ments [1]. The authors present a high-level framework for categorizing attacks against
machine learning algorithms and potential defense strategies, and analyze the properties
of a hypothetical outlier detection algorithm. Our work is more concrete in that it specif-
ically addresses the challenge of machine learning for automatic signature generation,
and provides in-depth analysis of several practical attacks.

Perdisci et al. independently and concurrently propose attacks [18] against the learn-
ing algorithms presented in Polygraph [15]. Their work shows how an attacker able to
systematically inject noise in the suspicious pool can prevent a correct classifier from

Paragraph: Thwarting Signature Learning by Training Maliciously 103

being generated, for both conjunction and Bayes learners. Their attack against the Poly-
graph Bayes signature generation algorithm is similar to our correlated outlier attack,
though we further generalize the attack to show both how it can be performed even
without suspicious pool poisoning, and how it can be strengthened with innocuous pool
poisoning.

Pattern-extraction signature generation. Several systems have been proposed to au-
tomatically generate worm signatures from a few collected worm samples. Most of
these systems, such as Honeycomb [8], EarlyBird [21], and Autograph [7], have been
shown not to be able to handle polymorphic worms [15]. While PADS [24] has been
shown to be robust to obfuscation of the worm code, it is unclear whether it would work
against encrypted code combined with only a small obfuscated decryption routine.

Polygraph [15] demonstrates that it is possible to generate accurate signatures for
polymorphic worms, because there are some features that must be present in worm in-
fection attempts to successfully exploit the target machine. Polygraph also demonstrates
automatic signature-generation techniques that are successful against maximally-
varying polymorphic worms.

Hamsa [9] is a recently proposed automatic signature generation system, with im-
provements in performance and noise-tolerance over Polygraph. As we discuss in Sec-
tion 5, it is more resilient than Polygraph to the attacks presented here, but not entirely
resilient.

Semantic analysis. Recent research proposes performing automated semantic analysis
of collected worm samples, by monitoring the execution of a vulnerable server as it gets
compromised [3,5,2,25,10]. These approaches can identify what features of the worm
request caused it to exploit the monitored software, and are hence likely to be invariant,
and useful in a signature. This approach is also less susceptible to be fooled by the
worm into using spurious features in the signature, since it will ignore features that
have no effect on whether the vulnerable software actually gets exploited. The features
identified can also be more expressive than the simple presence or absence of tokens,
specifying such things as the minimum length of a protocol field necessary to trigger a
buffer overflow.

Execution filtering. In this paper we seek to address the problem of automatically
generating worm signatures. Other recent research proposes using semantic analysis
to generate execution filters, which specify the location of a vulnerability, and how to
detect when it is exploited by automatically emulating [20] or rewriting [14] that part
of the program.

7 Conclusion

Learning an accurate classifier from data largely controlled by an adversary is a difficult
task. In this work, we have shown that even a delusive adversary, who provides correctly
labeled but misleading training data, can prevent or severely delay the generation of an
accurate classifier. We have concretely demonstrated this concept with highly effective
attacks against recently proposed automatic worm signature generation algorithms.

When designing a system to learn in such an adversarial environment, one must take
into account that the adversary will provide the worst possible training data, in the worst

104 J. Newsome, B. Karp, and D. Song

possible order. Few machine learning algorithms provide useful guarantees when used
in such a scenario.

The problem of a delusive adversary must be taken into account in the design of ma-
licious classifier generation systems. Promising approaches include designing learning
algorithms that are robust to maliciously generated training data, training using mali-
cious data samples not generated by a malicious source, and performing deeper analysis
of the malicious training data to determine the semantic significance of features before
including them in a classifier.

References

1. Marco Barreno, Blaine Nelson, Russell Sears, Anthony D. Joseph, and J. D. Tygar. Can
machine learning be secure? In ASIA CCS, March 2006.

2. David Brumley, James Newsome, Dawn Song, Hao Wang, and Somesh Jha. Towards au-
tomatic generation of vulnerability-based signatures. In IEEE Symposium on Security and
Privacy, 2006.

3. Manuel Costa, Jon Crowcroft, Miguel Castro, and Antony Rowstron. Vigilante: End-to-end
containment of internet worms. In SOSP, 2005.

4. Jedidiah R. Crandall and Fred Chong. Minos: Architectural support for software security
through control data integrity. In International Symposium on Microarchitecture, December
2004.

5. Jedidiah R. Crandall, Zhendong Su, S. Felix Wu, and Frederic T. Chong. On deriving un-
known vulnerabilities from zero-day polymorphic and metamorphic worm exploits. In 12th
ACM Conference on Computer and Communications Security (CCS), 2005.

6. Nilesh Dalvi, Pedro Domingos, Mausam, Sumit Sanghai, and Deepak Verma. Adversarial
classification. In Tenth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD), 2004.

7. Hyang-Ah Kim and Brad Karp. Autograph: toward automated, distributed worm signature
detection. In 13th USENIX Security Symposium, August 2004.

8. Christian Kreibich and Jon Crowcroft. Honeycomb - creating intrusion detection signatures
using honeypots. In HotNets, November 2003.

9. Zhichun Li, Manan Sanghi, Yan Chen, Ming-Yang Kao, and Brian Chavez. Hamsa: fast
signature generation for zero-day polymorphic worms with provable attack resilience. In
IEEE Symposium on Security and Privacy, May 2006.

10. Zhenkai Liang and R. Sekar. Fast and automated generation of attack signatures: A basis for
building self-protecting servers. In 12th ACM Conference on Computer and Communications
Security (CCS), 2005.

11. N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear threshold
algorithm. Machine Learning, 2(285-318), 1988.

12. N. Littlestone. Redundant noisy attributes, attribute errors, and linear-threshold learning
using winnow. In Fourth Annual Workshop on Computational Learning Theory, pages 147–
156, 1991.

13. Daniel Lowd and Christopher Meek. Adversarial learning. In Eleventh ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining (KDD), 2005.

14. James Newsome, David Brumley, and Dawn Song. Vulnerability-specific execution filtering
for exploit prevention on commodity software. In 13th Symposium on Network and Dis-
tributed System Security (NDSS’06), 2006.

15. James Newsome, Brad Karp, and Dawn Song. Polygraph: Automatically generating signa-
tures for polymorphic worms. In IEEE Symposium on Security and Privacy, May 2005.

Paragraph: Thwarting Signature Learning by Training Maliciously 105

16. James Newsome and Dawn Song. Dynamic taint analysis for automatic detection, analysis,
and signature generation of exploits on commodity software. In 12th Annual Network and
Distributed System Security Symposium (NDSS), February 2005.

17. delusive (definition). In Oxford English Dictionary, Oxford University Press, 2006.
18. Roberto Perdisci, David Dagon, Wenke Lee, Prahlad Fogla, and Monirul Sharif. Misleading

worm signature generators using deliberate noise injection. In IEEE Symposium on Security
and Privacy, May 2006.

19. Yann Ramin. ATPhttpd. http://www.redshift.com/∼yramin/atp/atphttpd/.
20. Stelios Sidiroglou, Michael E. Locasto, Stephen W. Boyd, and Angelos D. Keromytis. Build-

ing a reactive immune system for software services. In USENIX Annual Technical Confer-
ence, 2005.

21. Sumeet Singh, Cristian Estan, George Varghese, and Stefan Savage. Automated worm finger-
printing. In 6th ACM/USENIX Symposium on Operating System Design and Implementation
(OSDI), December 2004.

22. S. Staniford, D. Moore, V. Paxson, and N. Weaver. The top speed of flash worms. In ACM
CCS WORM, 2004.

23. G. Edward Suh, Jaewook Lee, and Srinivas Devadas. Secure program execution via dynamic
information flow tracking. In ASPLOS, 2004.

24. Yong Tang and Shigang Chen. Defending against internet worms: A signature-based ap-
proach. In IEEE INFOCOM, March 2005.

25. Jun Xu, Peng Ning, Chongkyung Kil, Yan Zhai, and Chris Bookholt. Automatic diagnosis
and response to memory corruption vulnerabilities. In 12th Annual ACM Conference on
Computer and Communication Security (CCS), 2005.

Anomaly Detector Performance Evaluation
Using a Parameterized Environment

Jeffery P. Hansen, Kymie M.C. Tan, and Roy A. Maxion

Carnegie Mellon University, Pittsburgh, Pennsylvania / USA

Abstract. Over the years, intrusion detection has matured into a field
replete with anomaly detectors of various types. These detectors are
tasked with detecting computer-based attacks, insider threats, worms
and more. Their abundance easily prompts the question - is anomaly de-
tection improving in efficacy and reliability? Current evaluation strate-
gies may provide answers; however, they suffer from problems. For exam-
ple, they produce results that are only valid within the evaluation data
set and they provide very little by way of diagnostic information to tune
detector performance in a principled manner.

This paper studies the problem of acquiring reliable performance re-
sults for an anomaly detector. Aspects of a data environment that will
affect detector performance, such as the frequency distribution of data
elements, are identified, characterized and used to construct a synthetic
data environment to assess a frequency-based anomaly detector. In a
series of experiments that systematically maps out the detector’s per-
formance, areas of detection weaknesses are exposed, and strengths are
identified. Finally, the extensibility of the lessons learned in the synthetic
environment are observed using real-world data.

Keywords: anomaly detection, performance modeling, IDS evaluation,
tuning.

1 Introduction

The results of a search on the web under anomaly detection will attest to the
prevalence of anomaly detectors and their application toward the detection of
worms, insider threats, and computer attacks. What is interesting, however, is
not the large number of hits but rather the increasing awareness by the main-
stream community regarding the shortcomings of anomaly detection. Articles
entitled “Anomaly detection falls short” or “Anomaly detection is not the best
way to prevent virus, worm attacks” [3] and so forth, are now questioning the
efficacy of the anomaly detection approach. This highlights the issue of progress:
have we improved since Denning’s [4] seminal paper, and if so how much progress
has been made?

One of the most fundamental ways of measuring progress is to evaluate a
detector and benchmark its performance. It is particularly important that a
detector’s performance is benchmarked in a way that can be described as robust.
This means that the results of the evaluation strategy should be:

D. Zamboni and C. Kruegel (Eds.): RAID 2006, LNCS 4219, pp. 106–126, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Anomaly Detector Performance Evaluation 107

– repeatable - to allow for independent validation;
– reliable - performance results should be well characterized so as to remain

useful and valid outside the purview of the evaluation process itself; and
– informative - evaluation results should provide an understanding of the

causes underlying performance behaviors, thereby facilitating improvements.

Current anomaly-detection evaluation strategies do not satisfy these criteria.
The results from current strategies are typically not repeatable (e.g., due to
reasons such as unavailability of evaluation data sets, poorly documented eval-
uation methodologies, etc.), not reliable (an anomaly detector that performs
well in one environment will not necessarily perform well in another environ-
ment), and not informative (hit, miss and false alarm rates alone do not explain
why a detector may have performed poorly). To give an example, the perfor-
mance results reported in the literature for a particular anomaly-based intrusion
detection system were accompanied by a disclaimer stating, “It is not known
what effect different training sets would have on the results presented in this
paper [8].” In short, current evaluation strategies make it difficult to measure
progress.

One of the reasons for this is that current schemes rarely consider or measure
phenomena in the data environment that affect detector performance, such as
the characteristics of the background data or the characteristics of attack mani-
festation. If the manifestation of an attack in a data stream is not identified and
characterized, it will be difficult to know why an anomaly detector responded
weakly, for example, to the presence of that attack. If the detector’s response is
weak, causing the attack to be missed, the mere act of incrementing the “miss”
count is not sufficient to understand what caused the attack to be missed or
what is needed to mitigate the condition.

Furthermore, the results of current evaluation strategies are also used to tune
detector performance, e.g., by allowing a defender to select the detection thresh-
old associated with the most acceptable operating point on a receiver operating
characteristic (ROC) curve. However, detection thresholds and other detector
parameters influencing performance are often set based on the intuition of the
detector’s designer given a handful of test cases [1,2]. No knowledge of envi-
ronmental influences on detector performance is acquired or used to guide the
tuning process. This introduces uncertainty into the final results because if the
data environment changes, e.g., if the attacker’s behavior differs from those in
the test cases used to tune the detector, the detector may no longer be optimally
tuned for detecting the attacker. It would seem prudent to characterize the data
environment in which a detector is deployed to provide some context with which
to describe a detector’s behavior.

This paper describes an evaluation strategy aimed at producing results that
are repeatable, reliable and informative. The anomaly detector evaluated in this
study (NIDES), was chosen for its simplicity and for the wealth of information
readily available about it – to our knowledge, no other intrusion detection system
has been as well documented in the open literature as NIDES is. Not only is there
substantial information regarding the algorithm, but there are also numerous

108 J.P. Hansen, K.M.C. Tan, and R.A. Maxion

reports documenting various evaluation results for the detector. A synthetic
evaluation environment was built around this detector, to cover a wide range of
potential environmental conditions in which the detector may be deployed.

This study makes two contributions. First, the detector’s blind spots and
sensitivities to various forms of anomalies are identified. Second, diagnostic in-
formation is provided to explain why the detector performed well or poorly.
Evidence is provided, showing that these results extend to arbitrary data sets.

2 Problem, Approach, and Rationale

This paper addresses the problem of acquiring robust evaluation results for an
anomaly detector. The approach involves creating a synthetic environment in
which to assess the performance of an anomaly detector.

There are two reasons to use a synthetic environment: (1) to assure control
over the various artifacts within a data environment that will affect the detector,
and (2) to establish ground truth. The first reason acknowledges the influence
of the data environment on detector performance. Variables in the data environ-
ment such as the distribution of the background test data, the training data and
the anomalies all contribute to a detector’s response. It is possible for a given
detector to be more sensitive to certain characteristics in the data environment
than other detectors are. For example, a Markov-based detector is more sensitive
to changes in the frequencies of data elements than a sequence-based detector,
like stide [6], would be. This sensitivity can cause a Markov-based detector to
produce more false alarms than stide due to frequency fluctuations in the test
data (this phenomenon was observed and documented in [13]).

The second reason for using a synthetic environment is the determination of
ground truth. Ground truth simply means knowing the identity of every event
that an anomaly detector has to make a decision upon so that it can be deter-
mined whether the detector is accurate in its decision. Accuracy in performance
evaluations requires that ground truth be correctly established.

In intrusion detection literature, ground truth data for anomaly detector eval-
uation typically comprise training data, i.e., data collected in the absence of
attacks, and test data, i.e., data collected in the presence of attacks [5,17]. The
problem with this scheme is that there is no guarantee that the data collected
in the presence of attacks will actually contain manifestations of that attack. It
is possible that the attack does not manifest in the kind of data being collected,
e.g., cpu usage data for detecting password crackers is not logged in BSM data
(the BSM Basic Security Module is the security auditing mechanism for Sun
systems). It is therefore important to clearly establish that each event in the
evaluation data stream is or is not the result of an attack.

It should be noted that anomaly detectors directly detect anomalies, not at-
tacks [14]. Assessing an anomaly detector should therefore be focused on what
kinds of anomalies a detector detects, and how well it detects them. It makes
more sense for an anomaly detector to be assessed on the events that it directly
detects (anomalies) rather than events that it does not directly detect (attacks).

Anomaly Detector Performance Evaluation 109

For this reason, ground truth in this study is anomaly-based. This means that
the ability of the detector to detect anomalies is evaluated; therefore each event
in the assessment data is marked as either anomalous or not.

The assessment strategy proposed in this paper is demonstrated using a re-
implementation of the statistical anomaly detection component of NIDES [10],
specifically the portion for processing categorical data. The re-implemented de-
tector will be referred to as RIDES (Re-implementation of IDES) and is an
example of a frequency-based detector, i.e., a detector that employs relative fre-
quencies in its detection algorithm. The assessment will map the performance of
RIDES over a varying range of data characteristics, identify the detector’s blind
spots and finally determine the parameter values that would produce the best
performance in various environments, i.e., tune the detector.

3 Related Work

In the intrusion detection literature, the most common method of evaluating
detector performance can be summarized as follows [6,7,8,16,11,2,1]: sets of nor-
mal data, data obtained in the absence of intrusions or attacks, and intrusive
data, data obtained in the presence of attacks, are collected. The anomaly-based
intrusion detection system is trained on the normal data, and then tested on
test data that contains either intrusive data only or some mixture of normal
and intrusive data. The success of the detection algorithm is typically measured
in terms of hit, miss, and false alarm rates and charted on an ROC curve, the
ideal result being 100% hits and 0% misses and false alarms. The idea is then
to select a point where the performance of the detector is most suitable to the
defender, or to observe performance trends over a range of values and compare
those trends with trends of other detectors deployed on the same data set.

In some cases separate experiments are carried out to chart false alarm rates by
deploying the anomaly-based intrusion detection system on purely normal data,
i.e., where both training and test data consist of different sets of normal behavior
only. Since anomaly detectors are typically designed with various parameters,
e.g., a window size or a neural-network learning constant, this evaluation strategy
may be repeated over a set of parameter values.

As previously discussed, these strategies are limited in that they say nothing
about the detector’s performance on other data sets. In short, all that can be
determined from the results of such an evaluation procedure is that a set of
anomalies were detected, some or none of which were caused by the attack. This
does not say much about the performance of a detector even with regard to
detecting attacks, because it is not clear if the anomalies detected were really
caused by the attacks or by a number of other reasons, e.g., poorly chosen
training data or faulty system monitoring sensor etc.

The most well-documented evaluation scheme described for NIDES was per-
formed by SRI [1,2]. The evaluation involved human experts who modified the
detector’s configuration parameters after each of three experiments - concept,
verification and refinement. The goal was to determine the best configurations

110 J.P. Hansen, K.M.C. Tan, and R.A. Maxion

for NIDES within the context of detecting “when a computer system was used for
other than authorized applications.” Detector performance was evaluated and
improved after each of the three experiments by changing the values of detector
parameters such as the short-term half-life. At the end of the entire evaluation
it was found empirically that shorter half-lives gave better false-positive rates.
However, because these results may only be valid for the evaluation data set
used, we build on this work by evaluating NIDES in a well-characterized data
environment; hence, we can begin to understand how the detector’s intrinsic
biases can be counterbalanced when it is deployed in another data environment.

4 Description of RIDES

To demonstrate our tuning methodology with a concrete example, we have de-
veloped a detector we call RIDES, which is a re-implementation of a portion
of the statistical anomaly detection component of NIDES [10]. There are two
main components in IDES/NIDES: an expert system and a statistical anomaly
detector. The expert system uses pre-defined rules to detect known patterns of
behavior associated with intrusions, while the statistical anomaly detector is
tasked to detect novel or previously unseen attacks by looking for deviations
from known behavior. The statistical anomaly detector component in NIDES
monitors both numerical and categorical data.

RIDES focuses on anomaly detection in categorical data, and consists of four
main processes:

1. modeling the short-term and long-term behavior of the incoming stream of
categorical data;

2. updating the models to adapt to drift;
3. measuring the similarity between the two models; and
4. producing an anomaly signal when the difference between the two models

exceeds a threshold.

The following is a description of RIDES according to the four elements listed
above. The implementation is intended to be as faithful as possible to the NIDES
algorithms described in [9].

4.1 Modeling the Incoming Stream of Categorical Data

RIDES receives data in the form of a symbol stream. In the NIDES terminol-
ogy this would be called a categorical measure. A measure is the data from a
single monitored object, for example, the sequence of system calls made by an
application, or the sequence of user commands typed into an xterm window.
While NIDES supports multiple measures, we focus on the single-measure case
for simplicity.

For each measure, RIDES maintains a model of the measure’s short-term and
long-term behaviors. The short-term model reflects symbols that have arrived

Anomaly Detector Performance Evaluation 111

over the period of the last few records, while the long-term model reflects be-
havior over the past few days. RIDES models categorical data in terms of the
relative frequencies of each symbol in the alphabet of any given data set.

The short-term model is a probability distribution contained in the vector
g, reflecting the behavior in an exponential sliding window. A user-defined pa-
rameter, the short-term half-life Hst, denotes the decay rate of the exponential
sliding window. The short-term half-life is the number of records after which
a symbol’s effect on g will be reduced by one half. The relative frequencies for
the symbols contained in the vector g are subject to exponential smoothing
that is applied to the vector during the updating process described in the next
section.

The long-term model is a probability distribution contained in the vector
f , which also reflects behavior in an exponential sliding window, but over a
much longer time scale. Another user-defined parameter, the long-term-life Hlt,
denotes the decay rate of this exponential sliding window. The long-term half-life
is the number of days after which a symbol’s effect on f will be reduced by one
half. The relative frequencies for the symbols that are contained in the vector
f are subject to exponential smoothing that is applied to the vector during the
updating process described in the next section.

4.2 Updating the Models

RIDES learns new behaviors and “forgets” old behaviors by a process of updating
its short-term and long-term models. The short-term model is updated with each
symbol presented to the detector from the input data stream. The long-term
model is updated at the end of a day.

The long-term model f is updated by exponentially aging the current long-
term model by 2−1/Hlt , and then adding in a vector (1−2−1/Hlt)P where P is a
vector representing the probability distribution for symbol types observed over
the most recent day.

4.3 Measuring Similarity Between Short- and Long-Term Models

The first step in comparing the short- and long-term models is to compute a
statistic called Q. The Q statistic represents the unnormalized difference between
the short- and long-term models, and is loosely based on the chi-squared formula.
Q is computed as follows. Each time the short-term distribution vector g is
updated after receiving a new symbol, Q is calculated according to the following
equation:

Q =
N∑

i=1

(gi − fi)2

Vi
(1)

where N is the alphabet size and Vi is the approximate variance of gi. In [9],
this variance Vi is reported as being fi(1 − fi)(1 − 2−1/Hst).

112 J.P. Hansen, K.M.C. Tan, and R.A. Maxion

4.4 Producing the Anomaly Signal

After computing the Q statistic, representing the unnormalized difference be-
tween the short- and long-term models, RIDES converts Q into a normalized
difference statistic called S. This is done by building an empirical Cumulative
Distribution Function (CDF) from observed Q values. The S statistic is then
obtained by the formula:

S = min(F−1
HN (FQ(Q)), 4) (2)

where F−1
HN (x) is the inverse CDF of a half-normal distribution. Informally, the

S statistic can be thought of as the number of standard deviations from normal
behavior, where a value of 0 indicates that the short-term and long-term model
are identical, and a value of 4 is the maximum difference modeled.

NIDES also defines a top-level T 2 score that is defined as the mean of the
squares of the S scores for each “measure.” In NIDES an alarm is produced when
T 2 falls above a threshold value. However, since we limit our scope to a single
measure, RIDES produces an alarm when S falls above a detection threshold.

4.5 Special Categories

In addition to categories for regular symbols, NIDES also has two special symbol
types [9,1,2] that we include in our implementation: rare and new.

– Rare – Symbols that are very infrequent can have an excessive impact on the
Q statistic. NIDES lumps all occurrences of these infrequent symbols into
a single category called “Rare.” The point at which symbols are considered
rare enough to be classified as a “Rare” symbol is controlled by a param-
eter MAXSUMRAREPROB [1,2]. After sorting all of the symbols by their
occurrence frequency, we mark symbols as rare starting with the least fre-
quent until the total probability sums to MAXSUMRAREPROB. We use a
MAXSUMRAREPROB of 5% in RIDES. This is within the suggested range
of 1% to 10% used in [1,2].

– New – When a foreign symbol arrives, there is no probability data for it in
the long-term model. This makes it difficult to directly compare the short-
and long-term models in the presence of foreign symbols. To deal with this
case NIDES creates a “New” [9] category. This category collectively contains
the probability of seeing a foreign symbol. The “New” category probability
in the long-term model is computed from the total number of foreign symbols
seen in a day, divided by the total number of symbols for that day. In the
short-term model all foreign symbols are lumped together in the category
“New” and are treated exactly like any other category for the purposes of
computing the Q statistic.

5 Methodology

All of the experimental results shown in this paper are generated from a series of
basic experiments. A basic experiment consists of generating synthetic training

Anomaly Detector Performance Evaluation 113

and test data, and then running RIDES on this data for one fixed set of parameter
values. This is performed in the following five steps:

1. Generate three sets of training data, using a different random number seed
for each set. Three sets of data are required to allow RIDES to build both
the long-term profile and the Q-statistic histogram.

2. Run RIDES on each of the training data sets sequentially. The history file
generated by each invocation is used as the input for the next invocation.

3. Generate the test data and the ground-truth data.
4. Invoke RIDES on the test data; generate an output (alarm or no-alarm)

for each symbol encountered; compare this output to ground-truth data to
produce a result in terms of hit, miss, false alarm or correct rejection.

5. Record in a database the number of hits, misses, false alarms and correct
rejections for the parameter settings that yielded the aforementioned result.

5.1 Generation of Synthetic Data

The data generated for the experiments is in the form of a symbol stream rep-
resenting system calls as they might be collected using a tool such as strace or
some other monitor in the operating system. All generated data sets are com-
prised of a sequence of 100,000 symbols. It is assumed that the monitored stream
is representative of the composite activity on the system, and can include sys-
tem calls made by both normal and (potentially) intruder tasks. The parameters
that affect data synthesis (see Table 1) will be discussed in detail in the following
sections. It is important to note that we have focused on varying only a subset
of all the possible parameters that can be used to characterize a data set. This
is because the number of experiments needed to explore the space increases ex-
ponentially with the number of parameters varied. As a consequence, we have
concentrated on the parameters that we feel have the greatest impact on the
performance of RIDES.

Table 1. Parameters for generating data

Name Description

N Background alphabet size
σ Distribution standard deviation
λa Saturation of anomalous symbols
B Experiment block size

Data Generation. The training and test data for our experiments were gener-
ated by randomly drawing symbols from an alphabet of N = 250 symbol types.
The symbol types are numbered from 0 to 249 in the order of the most frequently
occurring symbol to the least frequently occurring symbol. An alphabet size of
250 was chosen because it is typical of the number of system calls supported in
typical Unix-like operating systems.

114 J.P. Hansen, K.M.C. Tan, and R.A. Maxion

The frequency with which a symbol occurs in a stream of data is determined
by the “half-bell shaped” distribution curve shown in Figure 1. Each point on the
curve shows the probability that a generated symbol will be of the type shown on
the x-axis. The shape of the curve is controlled by the standard deviation, which
determines how rapidly the probabilities of the symbol types will decrease as we
move from 0 to 249 on the x-axis. When the standard deviation is small, the
symbol-type probabilities will start high, rapidly decaying to near zero. When the
standard deviation is large, the symbol-type probabilities will be nearly identical
(approximately 1

N) with only a small difference in probability between the most
likely and least likely symbol types. In our experiments the standard deviation is
σ = 0.15 to mimic the behavior typically exhibited by many systems in which a
small number of system calls is frequently used, while many other calls are used
only rarely. (Note that for clarity of exposition the term “data distribution” will
be used to refer to the symbol-type distribution shown in Figure 1.)

The probability px of generating symbol-type x is defined in terms of N (the
alphabet-size, numbered from 0 to N − 1) and σ (the standard deviation) as:

px =
qx

N−1∑
i=0

qi

(3)

where qi is the unnormalized probability:

qx =
e−(x/N)2/(2σ)2

√
2πσ

(4)

The symbols generated in the sequence are independent and identically dis-
tributed (i.i.d.). The formula for unnormalized probability (4) is taken from the
probability density function (pdf) of a normal distribution. To compute the prob-
ability for each of the symbol types, we divided the unnormalized probability
by the sum of all the normalized probabilities. This is done to ensure that the
probabilities for the symbol types, px, sum to one.

The dashed vertical lines in Figure 1 indicate the specific regions, from 0
through 249, from which we draw symbols identified as common, uncommon,
rare and foreign. Common symbols occur frequently in the training and test
data, whereas foreign symbols do not appear at all in the training data (they
occur as foreign-symbol anomalies in the test data). The two seemingly similar
categories, uncommon and rare, were created in accordance with the design
of the NIDES detector. As described in [1,2], NIDES sets a threshold on the
frequencies of symbols (the parameter “MAXSUMRAREPROB”). Intuitively,
the symbols whose frequencies fall below this threshold are described as “rare.”
To evaluate the detector, we defined the class of rare symbols to represent the
kind of rare symbols that NIDES processes. Defining these rare symbols however,
brought consideration of the symbols occurring in the border region between
rare and common. These “border” symbols were not rare enough to fall into
the detector’s definition of rare, but neither did they occur frequently enough
to be called common symbols. To accommodate this situation, the “uncommon”

Anomaly Detector Performance Evaluation 115

Symbol Type
0 50 100 150 200 250 300

S
ym

bo
l T

yp
e

P
ro

ba
bi

lit
y

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%
Uncommon

Rare

Foreign

Fig. 1. Symbol-type distribution

category of symbols was created. Uncommon, rare and foreign symbols are used
as anomalies in the generation of test data. A more detailed description of these
classes can be found in the subsequent section on test-data generation.

Training-Data Generation. Training data is generated using the data distri-
bution described above. First, a sample size for the training data is selected (in
our experiments we chose the sample sizes to be 100,000). Then, a uniformly-
distributed, floating-point number from 0 to 1 is randomly selected to generate
each element of the given sample size. These numbers are used to “look up”
the appropriate symbol type in the data distribution shown in Figure 1. The
training data are therefore composed of a mixture of common, uncommon and
rare symbols, where each symbol type occurs with the frequency determined by
the data distribution.

Test-Data Generation. Test data are generated in alternating blocks of “nor-
mal” and “anomalous” data. The alternating blocks are intended to test the
ability of the detector to tolerate transitions between normal and anomalous
regions. The “normal” blocks are generated in exactly the same manner as the
training data, using the same data distribution. The parameter B specifies the
number of symbols in each of the alternating normal and anomalous blocks. The
smaller the block size B, the greater the number of transitions that will occur in
a generated data set of a constant number of symbols, in this case 100,000. In
general, we expect that a high number of transitions will have a negative impact
on performance, because detection is always harder in the transition from one
type of block to another (as it would be in any window-based detector). The
“anomalous” blocks are generated by mixing symbols from the data distribution
with specific quantities (determined by the saturation parameter, λa, defined
below) of symbols generated from one of the following three anomaly types:

– Foreign – Foreign anomalies are comprised of 10 equally-likely symbol types
that are not part of the 250 symbols in the alphabet of the data distribution.
The number 10 was chosen arbitrarily, and is not expected to have any

116 J.P. Hansen, K.M.C. Tan, and R.A. Maxion

effect on the results, because RIDES groups all foreign symbols together
without distinguishing among them. The range of foreign symbols is shown
in Figure 1 between the rightmost pair of vertical dashed lines.

– Rare – Rare anomalies include the symbol types found at the tail of the
data distribution. Rare anomalies are selected in the following way:
1. A threshold defining “rare” is first selected. This threshold is simply a

value between 0 and 1, and is referred to as the “maximum sum of rare
probabilities.” Note that this rare threshold is different from the rare
threshold “MAXSUMRAREPROB” used by the detector.

2. The symbol type with the lowest probability in the data distribution
is selected as the first rare symbol type; then the symbol type with
the next lowest probability is selected, and so forth. The probabilities
associated with these symbols are summed up over the course of this
selection process. Thus the probability of the “rarest” symbol is added
to the probability of the next “rarest” symbol and so on.

3. When the addition of a symbol causes the sum of the probabilities to
exceed the rare threshold (see item 1 immediately above) we stop adding
more symbols into the set of rare anomalies.

In Figure 1, the set of rare anomalous symbols will include symbol types
74 through 249, i.e., the range of symbols between the middle two vertical
dashed lines. 5% was selected as the value for the rare threshold, because it
corresponds to the value of the RIDES parameter “MAXSUMRAREPROB.”

– Uncommon – Uncommon anomalies are comprised of symbols with low
probabilities in the data distribution that have not been added to the rare
set. The “uncommon” set is constructed in a similar manner as the rare set.
First a threshold is set (arbitrarily chosen to be 3%); then the first uncommon
anomaly is selected - note that the first uncommon anomaly is the first
symbol that missed the cut-off for inclusion into the set of rare anomalies.
Symbols continue to be added to the set of uncommon anomalies until the
sum of their probabilities reaches the threshold of 3%. In Figure 1, the set
of uncommon anomalous symbols will include symbol types 68 through 73 -
the symbols between the leftmost two dashed vertical lines in the figure.

After we have decided which of the three anomaly types to inject, and how
many of each of them, we then need to generate an anomalous block for that
type. A parameter λa called the “saturation” is used to control the mixing of
the anomalous and normal symbols in the data.

In generating each symbol in the anomalous block, we first decide between
generating the symbol from the full data distribution (i.e., the entire curve of
Figure 1) or the region corresponding to the selected anomaly type (uncommon,
rare or foreign). We then choose a specific symbol from the selected distribution
or region. The probability of selecting the anomaly region is λa

λa+1 . The satu-
ration represents the expected number of symbols drawn from the anomalous
region for each symbol drawn from the data distribution. High saturation values
correspond to a greater concentration of symbols from the selected regions con-
taining anomalous symbols (uncommon, rare and foreign). It is expected that
when the saturation is high, anomalies will be easier to detect.

Anomaly Detector Performance Evaluation 117

Ground truth is established on a per-block basis as opposed to a per-symbol
basis. All symbols within a normal block are marked as being normal, and all
symbols within an anomalous block are marked as being anomalous. We consider
the problem of detecting which specific symbols in a stream are anomalous to be
too difficult for a detector such as RIDES. This is because RIDES and NIDES,
like most window-based detectors, generate alarms based on aggregate behavior
observed in the window rather than on single observations. Thus, we only require
the detector to determine if a symbol is part of a normal block or an anomalous
block.

5.2 Experimental Strategy

Experimental results (hits, misses and false alarms) were collected for each of
the three different types of injections: foreign symbol, rare symbol and uncom-
mon symbol. For each injection type, we measure the performance data for each
combination of parameters shown in Table 2. This is a total of 6,582,816 ex-
periments (3 anomaly types × 12 block-size values × 19 saturation values × 24
short-term half-life values × 401 threshold values). In practice, since we perform
the experiments for each of the 401 threshold levels concurrently, we can collapse
the number of experiments to 16,416 (i.e., 6,582,816 divided by 401). We assume
that MAXSUMRAREPROB is set to 5% in all of our experiments. Note that
since none of the parameters we control affects the training data, we can reuse
the same training data for all of our experiments.

Table 2. Experimental parameters and the values assigned to them in 16,416 exper-
iments: 3 anomaly types × 12 block sizes × 19 saturation points × 24 short-term
half-life points

Parameter No. Values

Anomaly Type 3 Foreign symbol, rare symbol, uncommon symbol

Block Size(B) 12 10, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000

Saturation(λa) 19
0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1,
0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5

Half-Life(Hst) 24
5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80,
85, 90, 95, 100, 125, 150, 175, 200

Threshold(T) 401 0, 0.01, 0.02, . . . , 3.98, 3.99, 4.0

5.3 Evaluation Criterion

To evaluate and tune a detector deployed in a particular environment, there must
be some criterion by which we can determine how well the detector is performing.
In this paper we use cost of detector error as a measure, by comparing detector
results against data with known ground truth. A detector that works perfectly

118 J.P. Hansen, K.M.C. Tan, and R.A. Maxion

will have a cost of zero; the higher the cost, the worse the performance (on a
given data set). Two ways in which the detector cost can be defined are:

– Conditional probability based cost (conditional cost)

CFP
NFP

NFP + NTN
+ CFN

NFN

NTP + NFN
(5)

– Absolute probability based cost (absolute cost)

CFP
NFP

NFP + NFN + NTP + NTN
+ CFN

NFN

NFP + NFN + NTP + NTN
(6)

CFP and CFN are the cost coefficients for false-positive and false-negative
errors. Also, NFP , NTP , NFN and NTN are the number of false-positives, true
positives, false negatives and true negatives in the experiment.

To illustrate the difference between conditional and absolute cost, consider an
email classifier for detecting spam. Using the conditional cost formula, the cost
computed for a detector on email received by a user would not depend on the
ratio of spam to non-spam email that the user receives. In contrast, the absolute
cost would change, depending on that ratio. The conditional cost is appropriate
when we are interested purely in the ability of the detector to distinguish spam
from non-spam, but the absolute cost is appropriate when we want to evaluate
the impact of detector tuning on a specific user. The absolute cost allows users
to tune their classifiers depending on how much spam they receive (for example,
with CFP representing the number of minutes to deal with non-spam being
treated as spam, and CFN representing the number of minutes to deal with
spam being treated as non-spam).

In this paper we will use the absolute probability based cost function, and
assume that CFP = CFN = 1. Under these conditions we would expect a cost
of zero to represent perfect performance and a cost of 0.5 to represent the cost
of a random detector. A cost greater than 0.5 would correspond to a degen-
erate detector in which inverting the output would improve performance since

NFP +NF N

NF P +NF N+NT P +NT N
> 0.5 implies that NT P +NT N

NF P +NFN +NTP +NTN
< 0.5.

6 Results and Discussion

In this section we discuss the results of our detector performance analysis ex-
periments. We performed three sets of experiments:

– Cost analysis experiments, showing the best-case detection capabilities as a
function of the environment.

– Tuning experiments, showing the best tuning of the detector as a function
of the environment.

– Validation experiments, showing a comparison of the results from the syn-
thetic data with the results from real-world data.

Anomaly Detector Performance Evaluation 119

In doing these experiments we noted two significant blind spots in RIDES. Re-
gardless of how RIDES is tuned, or of the data set on which RIDES is deployed,
RIDES cannot detect anomalies (i.e., it is equivalent to a random detector) when
(1) the anomaly saturation (λa) is low, and (2) when the block size (B) is small.
This means that if an attack manifests as, for example, a single or small number
of foreign symbols, RIDES will be completely blind to the attack. The reasons
for these blind spots will be discussed in the next section.

6.1 Cost Analysis

Figure 2 shows the detector error cost with respect to a foreign symbol injection.
The cost is plotted as a function of the block size B and the foreign symbol
saturation λa. For each point (B, λa) on the surface, the lowest cost over all
possible detector tunings (Hst, T) is shown. As expected, as the foreign symbol
saturation goes to zero, the detector performance approaches that of a random
detector (cost is 0.5). This is because at the point where λa = 0, the normal
and anomalous blocks have identical statistical characteristics and no detector
could be expected to discriminate between the two blocks. As the foreign symbol
saturation λa increases, the error cost rapidly decreases. Notice also that small
block sizes make it difficult to detect an injection.

Foreign Symbol Saturation

0
0.1

0.2
0.3

0.4
0.5

Block Size

10

200

400

600

800

1000

A
bs

ol
ut

e
C

os
t

0

0.5

Fig. 2. Cost function for foreign-symbol injections

When the block size is small, there will be many transitions between normal
and anomalous blocks. RIDES, like most frequency-based detectors, uses a win-
dow of recent observations on which to make an alarm decision. It will frequently
be the case that while the leading edge of the window is in one block (normal or
anomalous), much of the detector window will still be in the previous block of
the opposite type. In such cases, the short-term model will still be primarily in-
fluenced by the previous block, but detector output will be judged based on the

120 J.P. Hansen, K.M.C. Tan, and R.A. Maxion

ground truth of the current block. On transitions from normal blocks to anoma-
lous blocks, there will be many misses until a sufficient fraction of the detector
window has moved into the anomalous block. Conversely, on transitions from
anomalous blocks to normal blocks there will be many false alarms. The most
significant implication of this result is that frequency-based detectors can be
expected to perform poorly in environments with short and/or frequent attacks,
but more favorably when attacks are less frequent and longer in duration.

Saturation
0.00 0.10 0.20 0.30 0.40 0.50

A
bs

ol
ut

e
C

os
t

0.00

0.10

0.20

0.30

0.40

0.50

Uncommon Symbol
Rare Symbol
Foreign Symbol

Fig. 3. Comparison of detection cost by injection type

Results for rare and uncommon symbol injections were very similar to re-
sults for the foreign symbol injections discussed above, differing primarily in the
steepness of the curve. Figure 3 shows a comparison of the detection cost as a
function of saturation for the three injection types. Notice that all of the curves
have the same basic shape, with the foreign symbol injection having the fastest
improvement in detection performance (fastest decrease in cost) as the satura-
tion increases. The key feature to note is the consistent shape of these curves.
We expect the exact relative position of the three curves to be affected by the
selection of both the MAXSUMRAREPROB and the probability cutoff for the
uncommon type. This is because these constants control the numbers of symbol
types in each of these categories, and distributing an injection with a specific
saturation over fewer types will result in more instances of a symbol per type.

6.2 Detector Tuning

Given the synthetic environment we have created to assess RIDES, we find that
we can identify the lowest cost parameter setting for a particular environment
setting. This amounts to tuning the detector to find an optimal short-term half-
life (Hst) and detection threshold (T). Figures 4(a) and 4(b) show the optimal
short-term half-life and optimal detection threshold, respectively, as a function of
the block size B and the foreign-symbol saturation λa. The optimal values were
determined by trying all combinations of the short-term half-lives and thresholds
shown in Table 2, and selecting the settings that resulted in the lowest cost.

Anomaly Detector Performance Evaluation 121

Foreign Symbol Saturation

0
0.1

0.2
0.3

0.4
0.5

Block Size

10

200

400

600

800

1000

O
pt

im
al

 S
ho

rt
-T

er
m

 H
al

f-
Li

fe

5

200

(a) Optimal short-term half life.

Foreign Symbol Saturation

0
0.1

0.2
0.3

0.4
0.5

Block Size

10

200

400

600

800

1000

O
pt

im
al

 T
hr

es
ho

ld

0

4

(b) Optimal threshold.

Fig. 4. Optimal short-term half-life (left) and optimal detection threshold (right) as a
function of the block size B and the foreign symbol saturation λa

Except for some noise at very low saturation values in the optimal short-term
half-life surface (Figure 4(a)), we notice that we get better convergence to an
optimal short-term half-life than to an optimal threshold as is evident from the
smoother appearance of the optimal short-term half-life surface compared to the
optimal threshold surface (Figure 4(b)). To investigate the cause of the poor
convergence of the threshold value, we generated a graph of cost as a function of
the detector tuning (Figure 5). This graph corresponds to the case in which the
block size B was 900 and the foreign-symbol saturation λa was 0.3. Two possible
explanations for the threshold convergence problem suggested by this graph are:

– Multiple minima – Notice that the minimum cost on the Hst = 15 curve
with a threshold value near 2.5, and the minimum cost the Hst = 25 curve
with a threshold value near 3.99 are nearly identical. In essence, relatively
small changes in the short-term half-life value can dramatically affect the
optimal threshold. This suggests that small random perturbations can cause
one or the other of the two threshold values to be deemed optimal. As we
run experiments varying the block size and the saturation, these random
perturbations can cause the optimal short-term half life or threshold to jump
between the two local minima, resulting in the jagged appearance of the
optimal threshold surface.

– Low sensitivity – Notice also that even on the Hst = 15 curve, the cost value
is nearly flat near the minimum point. Again this suggests that random
perturbations can cause the optimum point to jump, further contributing to
the difficulty in finding a stable optimal threshold.

122 J.P. Hansen, K.M.C. Tan, and R.A. Maxion

Threshold (T)
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

A
bs

ol
ut

e
C

os
t

0.00

0.10

0.20

0.30

0.40

0.50

0.60

Hst=5

Hst=15

Hst=25

Hst=50

Hst=100

Hst=150

Hst=200

Fig. 5. Effect of detector tuning on error cost with B = 900 and λa = 0.3

Turning our attention back to the optimal short-term half-life surface shown
in Figure 4(a), we notice that there are three basic regions on this surface based
on the foreign-symbol saturation (λa) value:

– Low foreign-symbol saturation – In this region the normal and anomalous
blocks are so similar that even when optimally tuned, detector performance
is poor (see Figure 2). In this region, the cost as a function of the short-term
half-life is essentially flat except for noise due to random variations in the
synthetic data. This results in the optimal short-term half-life being decided
by these random variations rather than by the effects of the data or detector,
resulting in the jagged peaks and valleys.

– Medium foreign-symbol saturation – In this region the optimal short-term
half-life increases as the block size increases. This is due to the trade-off
between the accuracy that results from a larger short-term half-life (and thus
larger effective sample size) and the block-boundary problem (discussed in
Section 6.1) that is exacerbated by larger short-term half-life values. As the
block size increases, the transition problem becomes less significant, and thus
a larger short-term half-life becomes more effective.

– High foreign-symbol saturation – In this region the foreign-symbol saturation
is so high that the anomalies can be easily detected even with a small sample.
Since there is no significant benefit to using a large sample (i.e., a large short-
term half-life) a smaller short-term half-life is preferred to minimize errors
due to block transitions.

6.3 Comparison with Real-World Data

To validate the significance of the synthetic-data experiments, we compared
the results of an experiment using real-world data to results using synthetic
data. The real-world data was the sendmail system-call trace data collected by
researchers at the University of New Mexico [5]. The trace data consists of a
“normal” trace file and an “intruder” trace file. We first created three 100,000-
symbol data sets, drawn from the first 300,000 symbols of the normal trace

Anomaly Detector Performance Evaluation 123

Block Size

10
200

400
600

800
1000 Short-T

erm
 Half-L

ife

0

50

100

150

200

A
bs

ol
ut

e
C

os
t

0

0.5

(a) Cost function for real-world data
(sendmail trace).

Block Size

10
200

400
600

800
1000 Short-T

erm
 Half-L

ife

0

50

100

150

200

A
bs

ol
ut

e
C

os
t

0

0.5

(b) Cost function for synthetic data with
foreign-symbol injection of λa = 0.5

Fig. 6. Comparison between real-world data (left) and synthetic data (right)

file (which contained 1,571,583 symbols); these data sets, each the same size
as those used in the synthetic data sets, were used to train the detector. We
next constructed the test data by splicing together alternating blocks of symbols
from the normal trace (starting at symbol 300,001, so as to avoid using the same
data for training and testing) and the intruder trace. We used the block-size
parameter B to vary block sizes in the same way in which we varied the block
sizes for the synthetic data. This gives us a trace based on real-world data that
is directly comparable to our synthetic-data experiments.

Figure 6(a) shows the detector error cost for the real-world data as a function
of the block size and the detector short-term half-life. The threshold is assumed
to be optimally tuned. Figure 6(b) shows the corresponding graph for synthetic
data with foreign symbol injections at a saturation of λa = 0.5. With a few
small differences, the basic shape of the two graphs is very similar. The two
most obvious differences are:

– In the experiment with real-world data, the error cost falls off almost imme-
diately as the block size increases, whereas in the synthetic-data experiment
the error cost remains constant until the block size is moderately large.

– The optimal cost for the synthetic-data experiment is lower than that for
the real-world data experiment.

While injection type (foreign, rare or uncommon) and saturation do affect the
details of the cost surface shape, the same basic features are generally preserved.
Typically, lower saturation values result in a cost surface that slopes down more
gradually from the small-blocksize/high-short-term-half-life corner, and has a

124 J.P. Hansen, K.M.C. Tan, and R.A. Maxion

larger lip on the low-short-term-half-life edge of the curve. Furthermore, other
parameters that were not studied in detail in this paper (e.g., alphabet size and
symbol-type distribution standard deviation σ), would also be expected to have
an effect. Given that changing the data characteristics can result in a variety of
similar cost curves, we believe that our sendmail trace results are well within
the scope of our expectations.

7 Conclusion

In this paper we presented an evaluation approach for an anomaly-based detec-
tor, using a parameterized family of synthetic data sets. We varied the injection
type and saturation level, as well as the block size (via injection length and time
between injections). We also validated our observed performance characteristics
on the synthetic data by comparing it with a real-world data set, noting that we
obtained similar performance curves.

We observed a relationship between the block size and the optimal short-
term half life. We showed that as the block size decreased we needed to decrease
the short-term half-life in order to maintain optimal performance. This suggests
that when placed in an environment where attacks are expected to be short or
frequent, the short-term half life should be small. Since the short-term half life
essentially sets a short-term window, we could also expect similar results for
other detectors that have a window-size parameter. An exception to this rule
is that when an intruder manifests as an obvious and easy-to-detect anomaly
(e.g., has a high saturation value), or conversely, is on the margin of the de-
tector’s discriminatory capability, larger short-term half-life values should be
used.

We have evaluated RIDES over a wide range of data environments. The lessons
learned have been consistent through all of those environments, strongly suggest-
ing that the results are extensible to other data sets. For example, since we have
observed through all of the environments that RIDES is blind to a low saturation
of anomalies, we believe that it is highly unlikely that RIDES would be able to
detect a single foreign symbol in any other environment.

We also showed that there are challenges remaining to be faced in the area of
intrusion-detector performance modeling. Interaction among the detector param-
eters can lead to multiple local optima, making it difficult to find a satisfactory
tuning in some cases. More work is needed in this area to identify additional
criteria upon which tuning decisions can be made.

Acknowledgements

The authors are grateful for helpful comments from F. Arshad, K. Killourhy,
P. Loring, and R. Roberts. The authors are also thankful to several anonymous
referees whose thoughtful remarks inspired improvements in the paper. This work
was supported by National Science Foundation grant number CNS-0430474.

Anomaly Detector Performance Evaluation 125

References

1. Anderson, Debra; Lunt, Teresa F.; Javitz, Harold; Tamaru, Ann and Valdes, Al-
fonso. “Detecting Unusual Program Behavior Using the Statistical Component of
the Next-Generation Intrusion Detection Expert System (NIDES),” Technical Re-
port SRI-CSL-95-06, Computer Science Laboratory, SRI International, May 1995.

2. Anderson, Debra; Lunt, Teresa F.; Javitz, Harold; Tamaru, Ann and Valdes, Al-
fonso. “Safeguard Final Report: Detecting Unusual Program Behavior Using the
NIDES Statistical Component,” Technical Report, Computer Science Laboratory,
SRI International, Menlo Park, California, 02 December 1993.

3. Arbel, Gil. Anomaly Detection Falls Short http://www.techworld.com/
networking/features/index.cfm?featureID=2331, TechWorld, 13 March 2006.

4. Denning, Dorothy E. An Intrusion-Detection Model, IEEE Transactions on Soft-
ware Engineering, Vol. SE-13, No. 2, pp. 222-232, February 1987.

5. Forrest, Stephanie. “Computer Immune Systems.” Data sets for sequence-based
intrusion detection: http://www.cs.unm.edu/∼immsec/systemcalls.htm. Com-
puter Science Department, University of New Mexico, Albuquerque, New Mexico.
2006.

6. Forrest, Stephanie; Hofmeyr, Steven A.; Somayaji, Anil and Longstaff, Thomas A.
“A Sense of Self for Unix Processes,” In IEEE Symposium on Security and Privacy,
pp. 120-128, 06-08 May 1996, Oakland, California. IEEE Computer Society Press,
Los Alamitos, California.

7. Ghosh, Anup K.; Schwartzbart, Aaron and Schatz, Michael. “Learning Program
Behavior Profiles for Intrusion Detection ,” In 1st USENIX Workshop on Intrusion
Detection and Network Monitoring, pp. 51-62, Santa Clara, CA, 09-12 April 1999.

8. Ghosh, Anup K.; Wanken, James and Charron, Frank. “Detecting Anomalous and
Unknown Intrusions Against Programs,” In 14th Annual Computer Security Appli-
cations Conference, pp. 259-267, Phoenix, AZ, 07-11 December 1998. Los Alamitos,
CA, IEEE Computer Society Press, 1998.

9. Javitz, Harold S. and Valdes, Alfonso. The NIDES Statistical Component: Descrip-
tion and Justification. Annual Report A010, 07 March 1994, SRI International,
Menlo Park, California.

10. Javitz, Harold S. and Valdes, Alfonso. “The SRI IDES Statistical Anomaly De-
tector,” In IEEE Symposium on Research in Security and Privacy, pp. 316-326,
Oakland, California, 20-22 May 1991. IEEE Computer Security Press, Los Alami-
tos, California.

11. Jha, Somesh; Tan, Kymie M. C. and Maxion, Roy A. “Markov Chains, Classifiers,
and Intrusion Detection,” In 14th IEEE Computer Security Foundations Workshop,
pp. 206-219, Cape Breton, Nova Scotia, Canada, 11-13 June 2001.

12. Swets, John A. and Pickett, Ronald M. Evaluation of Diagnostic Systems: Methods
from Signal Detection Theory. Academic Press, New York, 1982.

13. Tan, Kymie M. C. and Maxion, Roy A. “Determining the Operational Limits
of an Anomaly-Based Intrusion Detector.” IEEE Journal on Selected Areas in
Communications, Special Issue on Design and Analysis Techniques for Security
Assurance, Vol. 21, No. 1, pp. 96-110, January 2003.

14. Tan, Kymie M. C. and Maxion, Roy A. “The Effects of Algorithmic Diversity
on Anomaly Detector Performance,” In International Conference on Dependable
Systems & Networks (DSN-05), pages 216-225, Yokohama, Japan, 28 June - 01
July 2005. IEEE Computer Society Press, Los Alamitos, California, 2005.

126 J.P. Hansen, K.M.C. Tan, and R.A. Maxion

15. Valdes, Alfonso and Anderson, Debra. Statistical Methods for Computer Usage
Anomaly Detection Using NIDES (Next-Generation Intrusion Detection Expert
System), Third International Workshop on Rough Sets and Soft Computing (RSSC-
94), 10-12 November 1994, San Jose, California. Published by the Society for Com-
puter Simulation, San Diego, 1995, pp. 104-111.

16. Warrender, Christina; Forrest, Stephanie and Pearlmutter, Barak. “Detecting In-
trusions Using System Calls: Alternative Data Models,” In IEEE Symposium on
Security and Privacy, pp. 133-145, Oakland, California, 09-12 May 1999. IEEE
Computer Security Press, Los Alamitos, California.

17. Zissman, Marc. “1998/99 DARPA Intrusion Detection Evaluation data
sets,” MIT Lincoln Laboratory, http://www.ll.mit.edu/IST/ideval/data/
data index.html.

Ranking Attack Graphs�

Vaibhav Mehta, Constantinos Bartzis, Haifeng Zhu,
Edmund Clarke, and Jeannette Wing

Carnegie Mellon University, Pittsburgh, USA
{vaibhav, cbartzis, haifengz, emc, wing}@cs.cmu.edu

Abstract. A majority of attacks on computer systems result from a
combination of vulnerabilities exploited by an intruder to break into the
system. An Attack Graph is a general formalism used to model security
vulnerabilities of a system and all possible sequences of exploits which
an intruder can use to achieve a specific goal. Attack Graphs can be con-
structed automatically using off-the-shelf model-checking tools. However,
for real systems, the size and complexity of Attack Graphs greatly ex-
ceeds human ability to visualize, understand and analyze. Therefore, it is
useful to identify relevant portions of an Attack Graph. To achieve this,
we propose a ranking scheme for the states of an Attack Graph. Rank of
a state shows its importance based on factors like the probability of an
intruder reaching that state. Given a Ranked Attack Graph, the system
administrator can concentrate on relevant subgraphs to figure out how
to start deploying security measures. We also define a metric of security
of the system based on ranks which the system administrator can use to
compare Attack Graphs and determine the effectiveness of various de-
fense measures. We present two algorithms to rank states of an Attack
Graph based on the probability of an attacker reaching those states. The
first algorithm is similar to the PageRank algorithm used by Google to
measure importance of web pages on the World Wide Web. It is flexible
enough to model a variety of situations, efficiently computable for large
sized graphs and offers the possibility of approximations using graph
partitioning. The second algorithm ranks individual states based on the
reachability probability of an attacker in a random simulation. Finally,
we give examples of an application of ranking techniques to multi-stage
cyber attacks.

Keywords: Google PageRank, Attack Model, Attack Graph, Model
Checking, security metric.

� This research was sponsored by the Office of Naval Research under grant no. N00014-
01-1-0796, the Army Research Office under grant no. DAAD19-01-1-0485, and the
National Science Foundation under grant nos. CNS-0411152, CCF-0429120, and
0433540. The views and conclusions contained in this document are those of the
author and should not be interpreted as representing the official policies, either ex-
pressed or implied, of any sponsoring institution, the U.S. government or any other
entity.

D. Zamboni and C. Kruegel (Eds.): RAID 2006, LNCS 4219, pp. 127–144, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

128 V. Mehta et al.

1 Introduction

A large computer system builds upon multiple platforms, runs diverse software
packages and supports several modes of connectivity. Despite the best efforts
of software architects and coders, such systems inevitably contain a number of
residual faults and security vulnerabilities. Hence, it is not feasible for a system
administrator to try and remove each and every vulnerability present in these
systems. Therefore, the recent focus in security of such systems is on analyz-
ing the system globally, finding attacks which are more likely and severe, and
directing resources efficiently to increase confidence in the system.

To evaluate security of such a system, a security analyst needs to take into
account the effects of interactions of local vulnerabilities and find global vul-
nerabilities introduced by interactions. This requires an appropriate modeling
of the system. Important information such as the connectivity of elements in
the system and security related attributes of each element need to be modeled
so that analysis can be performed. Analysis of security vulnerabilities, the most
likely attack path, probability of attack at various elements in the system, an
overall security metric etc. is useful in improving the overall security and robust-
ness of the system. Various aspects which need to be considered while deciding
on an appropriate model for representation and analysis are: ease of modeling,
scalability of computation, and utility of the performed analysis.

There has been much work on modeling specific systems for vulnerability
analysis. Zhu [24] models computer virus infections using an Infection Graph,
where nodes represent hosts and an arc represents the probability of transfer of
a virus from source to target host independent of the rest of the system. Infec-
tion Graphs are used to find the most vulnerable path for virus infection on a
particular host. Ortalo et al. [19] describe a methodology for modeling known
Unix security vulnerabilities as a Privilege Graph, where a node represents the
set of privileges owned by a user and an arc represents grant of an access priv-
ilege. Dawkins and Hale [5] present a multi-stage Network Attack Model which
contains a DAG (Directed Acyclic Graph) similar to the Infection Graph in [24].
However, their model is generalized for different kinds of attacks and an XML
description is proposed. Sheyner et al. [21,9,22] present a data structure called
an Attack Graph to model the security vulnerabilities of a system and their ex-
ploitation by the attacker. An Attack Graph is a succinct representation of all
paths through a system that end in a state where an intruder has successfully
achieved his/her goal. An attack is viewed as a violation of a safety property of
the system, and off-the-shelf model checking [3] techniques are used to produce
Attack Graphs automatically.

Various techniques for quantitative security analysis are presented in
[4,10,20,17]. Dacier et al. [4] use Privilege Graphs to model the system, therefore
restricting the analysis to a specific family of attacks. Empirical and statistical
information is used to estimate the time and effort required for each type of
attack. MTTF (mean time to failure) is computed as a metric of the security
level of a system. The framework proposed in [20] requires attacker profiles and
attack templates with associated probabilities as part of the input. An ad hoc

Ranking Attack Graphs 129

algorithm is used to generate Attack Graphs. Using a modified shortest path
algorithm, the most likely attack sequences are computed. Madan et al. [17] give
a theoretical description of various methods which can be used to quantify se-
curity based attributes of an intrusion tolerant system. Security intrusion and
response of an intrusion tolerant system are modeled using a Semi-Markov Pro-
cess (SMP). Security quantification analysis is carried out to compute measures
like steady state availability, mean time to failure and probabilities of security
failure due to violations of different security attributes. However, the analysis is
based on the availability of values for various model parameters and is feasible
for small Markov Chains only. Another related approach is the one described in
[8], where Alternating Probabilistic Attack Graphs are used for analysis. How-
ever, the system designer has to provide a priori probabilities for most events in
the system.

We propose a ranking scheme for the states of an Attack Graph. Rank of
a state shows its importance based on factors such as the probability of an
intruder reaching the state. The framework we propose is summarized in Figure
1. First we obtain a formal description of the system to be analyzed, an Attack
Model, that captures all possible behaviors of the system as it interacts with
possibly malicious peers. Given a security property, we then model check the
Attack Model, thus obtaining a compact description of all executions that violate
the security property, an Attack Graph. At the same time, we apply a ranking
algorithm to the state transition graph of the Attack Model to compute the
ranks of its states. We present two ranking algorithms to rank states based
on the probability of an intruder reaching those states. The first algorithm is
similar to the PageRank algorithm [2,1,15] used by Google. The second algorithm
ranks states based on the reachability probability of an intruder in a random
simulation. As there is a direct correspondence between the states of an Attack
Model and an Attack Graph, we also get the ranks of states of the Attack Graph.
The Ranked Attack Graphs are valuable for a system administrator as they allow
him to estimate the security level of the system and provide a guide for choosing
appropriate corrective or preventive measures.

The main advantages of our approach are:

– Ease and flexibility of modeling : Finding ranks using our technique
does not necessarily require a priori probabilities for all events. If the prob-
abilities are available, then we can use them for more accurate modeling.
Even if the exact probabilities are not available, modeling the attacks ran-
domly is expected to perform as good as PageRank performs on the World
Wide Web graph. In realistic situations, an attacker very rarely has complete
information about the network and the attack mostly proceeds using a re-
peated scan-probe approach. This is similar to a websurfer navigating across
webpages on the World Wide Web by following hyperlinks. Likewise, in the
case of automated attacks by computer viruses and worms, the attacks are
random in nature [25,23].
The ranking technique we use is also very flexible, since we can model dif-
ferent knowledge levels of the attacker and his intentions by simply adding

130 V. Mehta et al.

Attack Graph
Model

Checking

Attack Model

Security
Property

Ranked
Attack Model

Bias

Analysis

Measures

Security metric

Ranked
Attack Graph

Ranking
Algorithms

+

Fig. 1. Ranking to analyze security of Attack Models

a bias in the rank computation. This is similar to personalization [7,1,15] of
PageRank. Moreover, we can combine the ranks obtained using this algo-
rithm with other criteria for ranking states such as the severity of different
failures in the system.

– Scalability : There exist efficient algorithms to compute PageRank over
graphs containing billions of webpages. Techniques based on sparse matri-
ces [6], extrapolation methods [13], adaptive methods [11], hierarchical block
rank computation [12], aggregation methods [16] are used to accelerate the
computation of PageRank. Since one of our algorithms is similar to PageR-
ank, we can also handle state transition graphs of comparable sizes.

– Applicability to a variety of situations : Attack Graphs and Attack
models are a very general formalism which can be used to model a variety
of situations and attacks. The system under attack could be anything: a
computer network under attack by hackers, a city under siege during war,
an electric grid targeted by terrorists. Moreover, Attack Graphs can be au-
tomatically generated using off-the-shelf model checking techniques. Hence,
a variety of situations can potentially be modeled and analyzed.

– Useful Analysis : A number of useful analyses can be carried out over
the Ranked Attack Graphs, which help a system administrator determine
the security level of the system and decide amongst various possible defense
measures. Ranks provide a detailed security metric which can be subse-
quently used by the system architect / administrator. Ranks of states can
be used to determine the probability and severity of security failures at var-
ious elements in the system. For realistic examples, the size and complexity
of Attack Graphs greatly exceeds the human ability to understand and an-
alyze. Ranks provide a way to determine the relevant parts of the Attack
Graph to figure out how to best deploy security measures.

In the next section, we give formal definitions of an Attack Model and an
Attack Graph. In Section 3, we explain the algorithms used to rank states of an

Ranking Attack Graphs 131

Attack Graph. In Section 4, we describe various analyses that can be performed
on the Ranked Attack Graphs. In Section 5, we give examples of applying our
ranking techniques to real-life systems and applications.

2 Attack Models and Attack Graphs

Sheyner et al. [21] introduced the concept of Attack Models and Attack Graphs
to model the security vulnerabilities of a system and their exploitation by an
attacker.

An Attack Model is a formal representation of security related attributes
of the attacker, the defender and the underlying system. Formally,

Definition 1. Let AP be a set of atomic propositions. An Attack Model is a
finite automaton M = (S, τ, s0, l), where S is a set of states, τ ⊆ S × S is the
transition relation, s0 ∈ S is the initial state, and l : S → 2AP is a labeling of
states with the set of propositions true in that state.

A state in the model is a valuation of variables describing the attacker, the
defender and the system. The transitions in the system correspond to actions
taken by an attacker which lead to a change in the overall state of the system.
The starting state of the model denotes the state of the system where no damage
has occurred and the attacker has just entered the system using an entry point.
As an example, if we consider the case of a computer network Attack Model,
a state represents the state of the intruder, the system administrator and the
network of computers. The transitions correspond to actions of the attacker such
as running a network scan, probing a computer for vulnerabilities and exploiting
vulnerabilities to get more privileges on that computer.

An Attack Graph is a subgraph of an Attack Model, which consists of all
the paths in an Attack Model where the attacker finally succeeds in achieving
his goal. Formally,

Definition 2. Let AP be a set of atomic propositions. An Attack Graph or AG
is a finite automaton G = (S, τ, s0, E, l), where S is a set of states, τ ⊆ S × S
is the transition relation, s0 ∈ S is the initial state, E ⊆ S is the set of error
states, and l : S → 2AP is a labeling of states with the set of propositions true
in that state.

Given an Attack Model, model checking techniques are used to generate Attack
Graphs automatically. The negation of the attacker’s goal is used as the cor-
rectness property during model checking. These properties are called security
properties. An example of a security property in computer networks would be
“the intruder cannot get root access on the main web server”. A model checker
is used to find out all states in the Attack Model where the security property
is not satisfied. We call these states error states, comprising set E. An Attack
Graph is a subgraph of the Attack Model which only contains paths leading to
one of the error states. [21,9,22] describe the details of the algorithm to construct
an Attack Graph, given an Attack Model and a security property.

132 V. Mehta et al.

In order to be able to find the reachability probability of various states in an
Attack Model, we associate probabilities with transitions in the model. We call
the resulting model a Probabilistic Attack Model. Formally,

Definition 3. A Probabilistic Attack Model is a 4-tuple M = (S, τ, s0, l), where
S is a set of states, τ : S × S → [0, 1] is the transition relation such that
∀s ∈ S,

∑
s′∈S τ(s, s′) = 1, s0 ∈ S is the initial state, and l : S → 2AP is a

labeling of states with the set of propositions true in that state.

3 Two Ranking Algorithms

We first describe the theory of the basic PageRank algorithm used to rank web-
pages on the World Wide Web. Then, we give a slightly modified version of
the PageRank algorithm to rank states of an Attack Graph. We also provide
an alternative algorithm for ranking states of an Attack Graph based on the
reachability probability of an attacker in a random simulation.

3.1 Using PageRank to Rank Attack Graphs

Google’s PageRank Algorithm. PageRank is the algorithm used by Google
to determine the relative importance of webpages on the World Wide Web.
PageRank is based on a model of user behaviour. It assumes there is a “random
surfer” who starts at a random webpage and keeps clicking on links, never hitting
the ‘back’ button, but eventually gets bored and starts on another random page.
The computed rank of a page is the probability of the random surfer reaching
that page. PageRank can be interpreted as a Markov Process, where the states
are pages, and the transitions are the links between pages which are all equally
probable. To capture the notion that a random surfer might get bored and restart
from another random page, a damping factor d is introduced, where 0 < d < 1.
The transition probability from a state is divided into two parts: d and 1 − d.
The d mass is divided equally among the state’s successors. Random transitions
are added from that state to all states with the residual probability of 1 − d
equally divided amongst them. If the random surfer arrives at a page with no
hyperlinks (called adangling state), he picks another page at random and restarts
from there. So, new hyperlinks are added from a dangling state to all other states
with the transition probability equally divided amongst them. In what follows,
these links are treated as ordinary links.

Consider a web graph with N pages linked to each other by hyperlinks. Let
Out(j) be the set of outlinks (hyperlinks) from page j and In(j) be the set of
pages linking to page j. After a sufficiently long period of time, the probability
πi of the surfer being at page i is given by:

πi =
1 − d

N
+ d

∑
j∈In(i)

πj

|Out(j)| (1)

Ranking Attack Graphs 133

The first term in the equation corresponds to the probability transferred to
a state from the random transitions. The second term represents the prob-
ability transferred to a state from its predecessors and dangling states. Let
R = (r1, r2, .., rN)T be the PageRank vector, where ri is the rank of page i.
The PageRank of page i is defined to be the probability πi as used in Eq. 1.
Because Eq. 1 is recursive, it must be iteratively computed until πi converges.
The PageRank values are the entries of the dominant eigenvector of the modified
and normalized adjacency matrix Z:

Z = (1 − d)
[1

N

]
N×N

+ dA, (2)

where Aij =
{ 1

|Out(j)| if there is an edge from j to i
0 otherwise

One iteration of Eq. 1 is equivalent to computing Rt+1 = ZRt. After conver-
gence, we have RF+1 = RF, or RF = ZRF, which means RF is an eigenvector
of Z.

Various issues like the complexity of computation, storage, stability, and con-
vergence of PageRank have been extensively studied [1,15] . A number of tech-
niques based on sparse matrix computations, matrix permutations, utilization
of the block structure of the WWW etc. have been developed, allowing efficient
computation of PageRank over large web graphs [6,7,11,12,13,16]. PageRank
for a 100 million webpages can be computed in a few hours on a medium size
workstation.

RankingStates of anAttackGraph. Given an AttackModelM =(S, τ, s0, L),
we first construct a Probabilistic Attack Model for the system. As described in Sec-
tion 2, a transition from a state to another represents an atomic attack or event that
leads to a change in the overall system state. We assignprobabilities to these events
so that the probability for the whole system to converge to a certain state after a
long run can be computed. Similar to the Google PageRank algorithm, we divide
each state’s probability into d and 1−d, where d is a parameter to be tuned (termed
as damping factor in PageRank). We further divide the d mass equally among the
state’s successors. This is a realistic assumption, since many known attacks use a
brute force probe-scan approach. Automated attacks, such as viruses and worms
[25,23], are often designed to behave randomly. In addition, we add a transition
from each state pointing back to the initial state with probability 1 − d, modeling
that at any time there is a chance that either the attacker will abort the current
attack and try a different way to attack the system or that the attack may be dis-
covered and the system administrator will isolate the system and recover it. This is
different from the basic PageRank algorithm where for each state, edges are added
towards all other states to model that at any time the web surfer may randomly
select any other webpage in the world from which to continue surfing. In the case of
Attack Models, it is unreasonable to assume that the attacker can move the system
to any arbitrary state by jumping into the middle of an attack.

134 V. Mehta et al.

Now the Probabilistic Attack Model is established, and we want to find out
the long term probability πj for the system to arrive at a certain state j from
the initial state. We define the rank of a state in the Probabilistic Attack Model
to be equal to the probability πj . With probability theory, πj may not always
exist, or may not be interesting (for example, maybe 0). A detailed proof is
available in the appendix to justify that for the Probabilistic Attack Model con-
structed with the above mentioned method, πj always exists. We prove that the
Probabilistic Attack Model corresponds to an ergodic Markov Chain, which is
a necessary condition for the iterative computation to converge. We compute
the ranks of all states using the method for computing PageRank described in
Section 3.1.

Now, we label the states of the Attack Graph with the ranks obtained above.
The states in an Attack Graph are a subset of the states in the Probabilistic
Attack Model. Hence, every state in the Attack Graph is labeled with the rank
of the corresponding state in the Probabilistic Attack Model. We are particularly
interested in the rank of error states in the Attack Graph. High probability (or
rank) of error states means that the system is insecure. Section 4 describes
different kinds of analyses possible using a Ranked Attack Graph.

3.2 Alternative Algorithm for Ranking Attack Graphs

Kuehlmann et al. [14] give a method to rank states in a state transition graph to
guide state space search. The rank of a particular state gives the probability of
reaching one of the target states starting from that state in a random simulation
run. The ranks are computed using a random walk based strategy. Our alterna-
tive ranking algorithm to rank states of an Attack Graph is a modification of the
algorithm given in [14]. The rank of a particular state here gives the probability
of reaching that state starting from the initial state in a random simulation run.

We give a brief description of the algorithm. Given an Attack Model M =
{S, τ, s0, l} with k states, we construct the transition probability matrix P . Let
pij denote the probability of transition from state sj to si. We define the transi-
tion probability pij as the reciprocal of the number of successors of the state sj . If
the exact transition probability is known, we use that instead. Let s = (s1, ...sk)T

be a vector where si = 1 if si is a start state, 0 otherwise. The vector r(m) rep-
resenting the reachability probabilities for all states in a random simulation run
of length up to m is given by:

r(m) =
m∑

n=0

Pns (3)

We consider a set of finite simulation runs with a given distribution of their
lengths. We assume a geometric distribution of lengths, for which the number of
simulation steps m is given by the following probability mass function:

d(m) =
1 − η

η
ηm for m > 0 and 0 < η < 1 constant (4)

Ranking Attack Graphs 135

We use a geometric distribution of simulation lengths as we believe that longer
attacks are less probable. Also, using this distribution, error states closer to
the initial state and hence, easier to be attacked, are ranked higher. Let ri

be the reachability probability of state si. The following formula computes the
reachability probability r = (r1, ..., rk)T .

r =
1 − η

η

∞∑
m=1

ηm
m∑

n=0

Pns (5)

The reachability probability ri is defined as the rank of state si in the Attack
Model. As the states of an Attack Graph are a subset of the states in an Attack
Model, we label each state of the Attack Graph with the rank of the correspond-
ing state in the Attack Model. Thus, we obtain a Ranked Attack Graph.

4 Using Ranked Attack Graphs for Security Analysis

1. Security Metric: The total rank of all error states provides a good measure
of security of the system. By the model checking terminology error state, we
mean a state whose certain user-specified security property is violated and
an undesirable situation happens in the system. If the error states have tiny
ranks such as 0.001 or 0.002 for example, it indicates that the whole system
is secure enough, thus increasing the confidence of the system users.

2. Security Improvement: A system administrator can apply different de-
fense measures with the objective of reducing the total rank of error states.
For example, a system administrator may change security policies, or add
hardware/software/human at certain components (for example a computer
host) of the system, and observe the reduction in the total rank of error
states. By these experiments, the administrator is able to improve the secu-
rity level of the system to a customized desirable level.

It would be better for a system administrator to eliminate all the highly
ranked error states. This can be achieved by making local changes to the At-
tack Graph which bring about a reduction in the rank of the highly ranked
error states. For example, the system administrator can stop a service at
a computer or add an intrusion detection component such that it removes
some of the incoming transitions of the highly ranked error states in the At-
tack Graph. This would lead to a reduction in the rank of the highly ranked
error states.

3. Derived Analysis: In addition, more analysis can be derived from the
ranks. One such example is the probability of a host being attacked. By
summing up the ranks of states in which a particular host is attacked, the
probability of this host being attacked is found. This type of analysis was
shown to be useful in some situations such as computer virus attacks [24].
By reducing the infection probability of a certain host through anti-virus
measures, it was shown that the epidemic probability can be reduced. Such
analysis is also useful to identify the weak grid in a power system targeted
by terrorists.

136 V. Mehta et al.

4. Aid in Visual Analysis: Attack Graphs suffer from a visual complex-
ity problem. For real situations, the size and complexity of Attack Graphs
greatly exceeds the human ability to understand and analyze. Ranks help in
viewing more important areas of the Attack Graph selectively. The admin-
istrator can adjust the number of states being viewed based on a cutoff on
ranks of those states. The administrator could just focus on portions of the
Attack Graph containing highly ranked error states and make local changes
to get rid of the highly ranked error states.

5 Examples/Applications

In this section, we show applications of ranking techniques to realistic systems.
In the example, we consider multi-stage cyber attacks against a network of com-
puters. We construct a Network Attack Graph for a computer network and rank
its states to analyze the network for security.

5.1 Ranking Network Attack Graphs

A Network Attack Model is constructed using security related attributes of the
attacker and the computer network. Below is a list of components from a network
used to construct a network model:

– H, a set of hosts connected to the network. Hosts are computers running
services, processing network requests and maintaining data. A host h ε H is
a tuple (id, svcs, sw, vuls) where id is a unique host identifier, svcs is a list
of services active on the host, sw is a list of other software running on the
host, and vuls is a list of host-specific vulnerable components.

– C, a connectivity relation expressing the network topology and inter-host
reachability. C is a ternary relation C ⊆ H × H × P, where P is a set of
integer port numbers. C(h1, h2, p) means that h2 is reachable from h1 on
port p.

– TR, a relation expressing trust between hosts. Trust is a binary relation TR
⊆ H × H. TR(h1, h2) means that a user on h1 can log in on h2 without
authentication.

– I, a model of the intruder. We assume the intruder does not have global
information about the network such as knowledge of all the possible attacks
on the network. The intruder is associated with a function plvl : H →
{none, user, root} which gives the level of privilege of the intruder on each
host.

– A, a set of individual actions that the intruder can perform during an attack.

A finite state Attack Model is constructed using the above information about
the computer network. A state of the model corresponds to a valuation of vari-
ables of each of the above components. The initial state corresponds to the case
in which the intruder has root privileges on his own machine and no other host.
Starting from the initial state, breadth first search is performed to find the set

Ranking Attack Graphs 137

of reachable states and construct the Network Attack Model. In a particular
state, we find the set of enabled actions for the intruder. For each action, there
is a state transition from the current state to a state which reflects the changes
according to the effects of the chosen atomic action. Thus, we obtain a Network
Attack Model from the description of the network.

Given a Network Model obtained as above and a security property, model
checking is done to obtain a Network Attack Graph. The security property is
the negation of the intruder’s goal which could be administrative access on a
critical host, access to a database, service disruption etc. Network Attack Graphs
represent a collection of possible penetration scenarios in a computer network,
each culminating in a state where the intruder has successfully achieved his
goal.We use the PageRank algorithm of Section 3.1 to produce a Ranked Network
Attack Graph.

ipa

ip1

ip2

 Attacker

Fig. 2. Computer network A

5.2 Examples of Ranked Network Attack Graphs

We show screenshots of a few examples of Network Attack Graphs. States in the
graph have been ranked according to the ranking algorithm based on PageRank.
We set the damping factor to 0.85, which is the value Google uses. For each error
state, the intensity of color is proportional to the relative rank of that state in
the Attack Graph. The security metric based on the total rank of error states is a
quantitative guide for comparing Attack Graphs. A system administrator could
fix a particular security property, make changes to his network configuration and
compare the Attack Graphs obtained using this security metric. Thus, he can
determine the relative utility of different security measures. He could also fix
the system model and observe changes in the ranks of the Attack Graph based
on varying the security property from a weak to a strong one. For example,
consider the computer network shown in Figure 2 which has interconnected
computer hosts with some services and software vulnerabilities on each host. Let
the security property used by the system administrator be “ Intruder cannot get
root access on ip2”. Figure 3(a) shows the Attack Graph of the network with
respect to the above security property. The total rank of error states in the
Attack Graph is 0.24. Now, suppose the administrator stops the sshd service

138 V. Mehta et al.

(a)

(b) (c)

Fig. 3. Comparison of Ranked Network Attack Graphs. (a) Attack Graph of the com-
puter network A (b) Attack Graph after stopping service sshd on ip2 (c) Attack Graph
with changed security property.

running on the host ip2. Figure 3(b) shows the Attack Graph corresponding to
the changed network configuration. The total rank of error states in the changed
Attack Graph is .053, which shows that the network becomes relatively more
secure. Now, suppose the administrator also changes the security property to

Ranking Attack Graphs 139

ip2

ip4

ip1 ip3

ip5

aip

Target Attacker

Fig. 4. Computer network B

“Intruder cannot get root access on ip1”. Figure 3(c) shows the Attack Graph
of the network with respect to the changed security property. The total rank of
error states in the Attack Graph is 0.31. This shows that host ip1 is more likely
to be attacked than host ip2 in the changed network configuration.

For realistic examples, the size and complexity of Attack Graphs greatly ex-
ceeds the human ability to visualize and understand [18]. Ranks provide a solu-
tion to this problem by showing the relevant regions of the Attack Graph to be
analyzed. Consider the computer network shown in Figure 4. Let the security
property used by the system administrator be “Intruder cannot get root access
on ip4”. Figure 5 shows the Attack Graph of the network with respect to the
above property. The Attack Graph is huge and hence difficult for a human to
analyze visually. Our ranking tool highlights the relevant regions of the Attack
Graph so that the system administrator can start looking to figure out the best
way of deploying security measures. Our visualization tool allows him to zoom-in
on portions of the graph with highly ranked states, e.g., the regions depicted in
Figure 5. Based on the incoming transitions of the highly ranked error states in
these two regions, the system administrator can now conclude that the attacker
reaches the highly ranked states mainly through an attack from the host ip2 to
the target host ip4 by exploiting the rsh login vulnerability. Hence, the admin-
istrator needs to put an intrusion detection component on the path between ip2
and ip4 or stop the rsh service between hosts ip2 and ip4. Note that these exam-
ples are very simple since they are used for illustration purposes only. Given the
recent advances in PageRank technology one can expect our approach to scale
to much larger systems.

We also implemented the alternative algorithm for ranking states of an At-
tack Graph based on random simulation described in Section 3.2. We compared
the ranks of states obtained using the two algorithms. Note that the modified
PageRank algorithm is parameterized by the damping factor d, and the random
simulation based ranking algorithm is parameterized by η. For all the examples
we considered, both algorithms give the same ordering of states based on their
ranks, when d = η = 0.85. However, the exact values of ranks differ slightly.
We observed that when both parameters are decreased simultaneously, the two

140 V. Mehta et al.

Fig. 5. A large unreadable Attack Graph (left) and a zoom-in of two regions of the
Attack Graph with highly ranked states (right)

Ranking Attack Graphs 141

algorithms still compute the same ordering of ranked states. It is remarkable
that two algorithms based on different intuition produce similar results.

6 Conclusions and Future Work

We have given two simple, scalable and useful methods for ranking Attack
Graphs. The ranks are a measure of importance of states in an Attack Graph.
They provide a metric of security of the system and are useful in making various
design decisions aiming at improving security of the system. Ranking helps in
overcoming the visual complexity of Attack Graphs by providing a way to view
more important areas of the Attack Graph selectively. The first algorithm is
similar to Google’s PageRank algorithm. The second algorithm computes ranks
of states based on the reachability probability of an attacker in a random sim-
ulation. Our technique does not assume any knowledge of a priori probabilities
for all events. If the probabilities are available, then we can use them for more
accurate modeling. Even if the exact probabilities are not available, modeling
the attacks randomly is expected to perform as good as PageRank performs on
the World Wide Web graph.

A direct extension of this work is to combine the ranks obtained using the
above algorithm with other criteria to rank states. Severity of damage occurring
at various error states, cost of preventing an error etc. are some other factors
which can be used to improve the ranks obtained. Another useful direction for
future work is to combine the ranks obtained with logical views of Attack Graph
to aid analysis. Noel and Jajodia [18] have given a framework for obtaining
hierarchical views of Attack Graphs. The views are obtained using automatic
aggregation on common attribute values for elements of the system or connect-
edness of the Attack Graph. Ranks over aggregated states can be used to get an
idea of the probability of attack or damage at various elements in the system.

References

1. Monica Bianchini, Marci Gori, and Franco Scarselli. Inside pagerank. In ACM
Transactions on Internet Technology, pages 92–128, 2005.

2. Sergey Brin and Larry Page. Anatomy of a large-scale hypertextual web search
engine. In Proceedings of the 7th International World Wide Web Conference, Bris-
bane, Australia, 1998.

3. E. Clarke, O. Grumberg, and D. Peled. Model checking. In MIT Press, 2000.
4. M. Dacier, Y. Deswarte, and M. Kaaniche. Quantitative assessment of operational

security: Models and tools. Technical Report 96493, LAAS, May 1996.
5. J. Dawkins and J. Hale. A systematic approach to multi-stage network attack

analysis. In Proceedings of the Second IEEE International Information Assurance
Workshop, 2004.

6. T. Haveliawala. Efficient computation of pagerank. In Stanford DB Group Tech-
nical Report, 1999.

7. T. Haveliawala, S. Kamvar, and G. Jeh. An analytical comparison of approaches
to personalizing pagerank. In Stanford University Technical Report, 2003.

142 V. Mehta et al.

8. S. Jha, O. Sheyner, and J. M. Wing. Minimization and reliability analysis of attack
graphs. In CMU CS Technical Report, Feb 2002.

9. S. Jha, O. Sheyner, and J.M. Wing. Two formal analyses of attack graphs. In
Proceedings of the 15th IEEE Computer Security Foundations Workshop, pages
49–63, Nova Scotia, Canada, June 2002.

10. Somesh Jha and Jeannette M. Wing. Survivability analysis of networked systems.
In 23rd International Conference on Software Engineering(ICSE’01), page 0307,
2001.

11. S. Kamvar, T. Haveliawala, and G. Golub. Adaptive methods for the computation
of pagerank. In Stanford University Technical Report, 2003.

12. S. Kamvar, T. Haveliawala, C. Manning, and G. Golub. Exploiting the block
structure of the web for computing pagerank. In Stanford University Technical
Report, 2003.

13. S. Kamvar, T. Haveliawala, C. Manning, and G. Golub. Extrapolation methods for
accelerating pagerank computations. In Proceedings of the Twelfth International
World Wide Web Conference, 2003.

14. A. Kuehlmann, K. L. McMilan, and R. K. Brayton. Probabilistic state space
search. In Proceedings of ACM/IEEE international conference on Computer Aided
Design, 1999.

15. Amy N. Langville and Carl D. Meyer. Deeper inside pagerank. In Internet Math-
ematics, pages 335–400, 2004.

16. Chris Pan-Chi Lee, Gene H. Golub, and Stefanos A. Zenios. A fast two-stage
algorithm for computing pagerank and its extensions. In Scientific Computation
and Computational Mathematics, 2003.

17. B. B. Madan, K. G. Popstojanova, K. Vaidyanathan, and K. S. Trivedi. A method
for modeling and quantifying the security attributes of intrusion tolerant systems.
In Dependable Systems and Networks-Performance and Dependability Symposium,
pages 167–186, 2004.

18. S. Noel and S. Jajodia. Managing attack graph complexity through visual hier-
archical aggregation. In Proceedings of the 2004 ACM workshop on Visualization
and data mining for computer security, Washington DC, USA, 2004.

19. R. Ortalo, Y. Deshwarte, and M. Kaaniche. Experimenting with quantitative eval-
uation tools for monitoring operational security. In IEEE Transactions on Software
Engineering, pages 633–650, Oct 1999.

20. C.A. Phillips and L. P. Swiler. A graph-based system for network vulnerability
analysis. In Proceedings of the DARPA Information Survivability Conference and
Exposition, pages 71–79, June 2000.

21. O. Sheyner, J.Haines S. Jha, R. Lippmann, and J.M. Wing. Automated generation
and analysis of attack graphs. In Proceedings of the IEEE Symposium on Security
and Privacy, Oakland, CA, May 2002.

22. O. Sheyner and J.M. Wing. Tools for generating and analyzing attack graphs. In
Proceedings of Workshop on Formal Methods for Components and Objects, pages
344–371, 2004.

23. S. Staniford, V. Paxson, and N. Weaver. How to own the internet in your spare
time. In Proceedings of the 11th USENIX Security symposium, 2002.

24. HF. Zhu. The methematical models of computer virus infection and methods of
prevention. In Mini-Micro Systems (Journal of China Computer Society), pages
Vol 11, No.7, 14–21, 1990.

25. Cliff C. Zou, Don Towsley, and Weibo Gong. Email virus and worm propagation
simulation. In 13th International conference on Computers Communications and
Networks, Chicago, Oct. 2004.

Ranking Attack Graphs 143

Appendix

In this section, we prove the existence of a unique probability distribution among
all the states after a long run for the Probabilistic Attack Model constructed by
us.

Theorem. A Probabilistic Attack Model constructed by us converges to a unique
stationary distribution.

Proof. The Probabilistic Attack Model can be viewed as a Markov Chain where
the probability on each edge is the transition probability. Hence, the rank of a
state is actually its limiting probability in Markov theory, which is simply defined
as the probability of reaching this state after a long time. Unfortunately, this
limiting probability may not always exist, and may not be unique for a general
state transition model. Here, we provide a proof that it exists and is also unique
for the Probabilistic Attack Model constructed by us and thus our computation
converges to the correct ranks.

To prove this, we need to prove that the Probabilistic Attack Model con-
structed by us is an ergodic Markov chain. If a Markov chain is ergodic, each
state will converge to a unique limiting probability. In this case we say that the
Markov chain has a unique stationary distribution. In order for the chain to be
ergodic, it must satisfy three properties: the chain must be irreducible, positive
recurrent and aperiodic. In an irreducible chain any state can be reached from
any other state in the graph with probability that is greater than 0. Note that
a state can return to itself through different paths, i.e., recurrence paths. The
number of steps on these recurrence paths is defined as the recurrence step (or
recurrence time). The positive recurrence property requires that for any state,
the mean recurrence step is finite. Finally, an aperiodic chain requires each state
to be aperiodic. A state is called aperiodic if the greatest common divisor of its
recurrence steps is 1. If the chain is proved to be ergodic, a well-known theorem
in the Markov theory states that the chain will converge to a unique stationary
distribution.

Recall that from any state (except the initial state), there is an edge pointing
back to the initial state. In our Probabilistic Attack Model, by definition, starting
from the initial state, any other state can be reached. On the other hand, each
edge has a probability that is greater than 0. This means that all states can
reach each other through the initial state with probability that is greater than 0.

Our Probabilistic Attack Model has a finite number of states. Since it is
irreducible, a state is always able to return to itself through the initial state
in a finite number of steps. A result in Markov theory shows that the mean
recurrence step of each state is finite. Thus, this chain is positive recurrent.

In order to prove our model is ergodic, it remains to prove the chain is aperi-
odic. We define a state to be dangling if there is no other outgoing edge from it
except for the edge that points back to the initial state. The aperiodicity proof
is divided into two cases in Figure 6.

In case 1, all the successive states j of the initial state are dangling. The
recurrence step for each state is 2, 4, 6, . . ., thus all the states are periodic and

144 V. Mehta et al.

(1)

Init
State

(2)

Init
State

a

b

j

Fig. 6. Two Cases in the Probabilistic Attack Model

the chain is periodic. Note that this case is trivial and does not appear in practice.
However, to make this chain aperiodic is easy: a self loop can be added to the
initial state, with a tiny probability ε. Thus, we simply ignore this case.

In case 2, the initial state has at least one non-dangling successor: state a
whose successor b is a dangling state. State b can be shown to have a 3-step and
5-step recurrence. The 3-step recurrence is completed by moving from state b to
the initial state and back to b through a. The 5-step recurrence happens when
the systems goes from state b to the initial state, and then back to the initial
state through a, and finally back to b. The gcd(3, 5) = 1 therefore state b is
aperiodic. Since the chain is irreducible, all states reach each other. A theorem
in Markov theory shows that these states have the same periods. Thus, all the
states are aperiodic.

Since the chain is irreducible, positive recurrent and aperiodic, it is ergodic.
Hence, it has a unique stationary distribution that can be computed through
our modified PageRank algorithm. Q.E.D.

Using Hidden Markov Models to Evaluate the
Risks of Intrusions

System Architecture and Model Validation

André Årnes1, Fredrik Valeur2, Giovanni Vigna2, and Richard A. Kemmerer2

1 Centre for Quantifiable Quality of Service in Communication Systems
Norwegian University of Science and Technology

O.S. Bragstads plass 2E, N-7491 Trondheim, Norway
andrearn@q2s.ntnu.no

http://www.q2s.ntnu.no/
2 Department of Computer Science,

University of California Santa Barbara,
Santa Barbara, CA 93106-5110, USA

{fredrik, vigna, kemm}@cs.ucsb.edu
http://www.cs.ucsb.edu/∼rsg/

Abstract. Security-oriented risk assessment tools are used to determine
the impact of certain events on the security status of a network. Most
existing approaches are generally limited to manual risk evaluations that
are not suitable for real-time use. In this paper, we introduce an approach
to network risk assessment that is novel in a number of ways. First of all,
the risk level of a network is determined as the composition of the risks
of individual hosts, providing a more precise, fine-grained model. Second,
we use Hidden Markov models to represent the likelihood of transitions
between security states. Third, we tightly integrate our risk assessment
tool with an existing framework for distributed, large-scale intrusion de-
tection, and we apply the results of the risk assessment to prioritize the
alerts produced by the intrusion detection sensors. We also evaluate our
approach on both simulated and real-world data.

Keywords: Risk assessment, Intrusion detection, Hidden Markov
modeling.

1 Introduction

The complexity of today’s networks and distributed systems makes the process of
risk management, network monitoring, and intrusion detection increasingly dif-
ficult. The amount of data produced by a distributed intrusion detection system
can be overwhelming, and prioritization and selection of appropriate responses
is generally difficult. On the other hand, risk assessment methodologies are be-
ing used to model and evaluate network and system risk. These approaches are
generally limited to manual processes, and are not suitable for real-time use.

The approach presented in this paper provides both a high-level overview of
network risk based on individual risk evaluations for each host and a quantitative

D. Zamboni and C. Kruegel (Eds.): RAID 2006, LNCS 4219, pp. 145–164, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

146 A. Årnes et al.

metric for performing alert prioritization. Alerts are prioritized according to the
risk associated with the hosts referenced in the alert. Preliminary work on the
risk-assessment method used in this paper was presented in [1], but it was not
tested as part of an intrusion detection system. The implementation presented in
this paper processes the alerts produced by a set of sensors monitoring a number
of hosts. We use training data from Lincoln Laboratory [11] and real network
traffic from the Technical University of Vienna [8] to test the performance of the
model.

The main contribution of this paper is a novel approach to network risk as-
sessment. The approach considers the risk level of a network as the composition
of the risks of individual hosts. It is probabilistic and uses Hidden Markov mod-
els (HMMs) to represent the likelihood of transitions between security states.
We tightly integrate the risk assessment tool with an existing framework for
distributed, large-scale intrusion detection, and we apply the results of the risk
analysis to prioritize the alerts generated by the intrusion detection sensors.
Finally, the approach is evaluated using both simulated and real-world data.

The remainder of this paper is structured as follows. In Section 2 we present
the theoretical model and the necessary terminology for the paper. In Section 3
we present the system architecture, and in Section 4 we discuss how the method
can be used for real-time risk assessment for two example data sets. We provide
a discussion of the method in Section 5 and an overview of related work in
Section 6. Conclusions and some open research issues are discussed in Section 7.

2 Model and Terminology

This section presents our risk-assessment model and discusses some aspects of
parameter estimation and learning.

2.1 Security State Estimation

The use of Hidden-Markov Models (HMMs) as a method for estimating the risk
of a network was proposed in [1]. An HMM enables the estimation of a hidden
state based on observations that are not necessarily accurate. An important
feature of this model is that it is able to model the probability of false positives
and false negatives associated with the observations. The method is based on
Rabiner’s work on HMMs [13].

Assume that each host h can be modeled by N different states, i.e., S =
{s1, . . . , sN}. The security state of a host changes over time, and the sequence
of states visited by a host is denoted X = x1, . . . , xT , where xt ∈ S. Each host
is monitored by a number of sensors k ∈ Kh

1 , . . . , Kh
L, where L is the number of

sensors for host h. A sensor generates observation messages from the observation
symbol set V k = {vk

1 , . . . , vk
M}, where M is the number of messages for sensor

k. The sequence of observed messages is denoted Y = y1, . . . , yT , where yt ∈ V
is the observation message received at time t. The HMM for each host consists
of a state transition probability matrix P, an observation probability matrix Q,
and an initial state distribution π. The HMM is denoted λ = (P,Q, π).

Using Hidden Markov Models to Evaluate the Risks of Intrusions 147

The hosts modeled in this paper are assumed to have four possible security
states S = {G, P, A, C}, which are defined as follows:

– Good (G): The host is not subject to any attacks.
– Probed (P): The host is subject to probing or mapping activity. This state

can lead to a reduction in availability, and it increases the probability of an
attack.

– Attacked (A): The host is being attacked by one or more parties. This state
can lead to a reduction in availability, and it increases the probability of a
compromise.

– Compromised (C): The host has been compromised. This state may result
in loss of confidentiality, integrity, and availability.

Figure 1 shows the Markov model for the security states of the hosts. The
edge from one node to another represents the fact that when a host is in the
state indicated by the source node it can transition to the state indicated by the
destination node. Note that the graph is fully connected, which indicates that it
is possible to transition from any security state to any other security state.

The state transition probability matrix P describes the probabilities of transi-
tions between the states of the model. Each entry, pij , describes the probability
that the model will transfer to state sj at time t + 1 given that it is in state si

at time t, i.e., pij = P (xt+1 = sj |xt = si), 1 ≤ i, j ≤ N .
The observation probability matrix Q describes the probabilities of receiving

different observations given that the host is in a certain state. Each entry, qn(m),
represents the probability of receiving the observation symbol vk

m at time t, given
that the host is in state sn at time t, i.e., qn(m) = P (yk

t = vk
m|xt = sn), 1 ≤ n ≤

N, 1 ≤ k ≤ K, 1 ≤ m ≤ M .

G P A C

Fig. 1. Markov model for hosts

Consider examples of a university network and a military network to see how
values are assigned to the model parameters.

Example 1. In a university network, we can assume that there are high volumes
of probing and a fair amount of attack attempts. The security level for hosts is
also varying, and a system compromise is a likely scenario for some hosts. Con-
sequently, the transitions to state P , A, and C are relatively likely. In addition,
because the traffic in university networks is heterogeneous and changing over
time, we assume that it is hard to configure and maintain accurate IDS sen-
sors. Therefore, we have to assume that there is a high number of false positives

148 A. Årnes et al.

and negatives. This is modeled by increasing the probabilities of receiving an
observation that indicates a false positive or a false negative and decreasing the
probability of receiving an accurate observation in the matrix Q. For example,
qG(4), which represents the probability of receiving an observation indicating
a compromised alert when the system is actually in the good state, has to be
increased to represent the false positive probability. P and Q can for example
be set as follows:

P =

⎛
⎜⎜⎝

pGG pGP pGA pGC

pPG pPP pPA pPC

pAG pAP pAA pAC

pCG pCP pCA pCC

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0.95 0.02 0.02 0.01
0.02 0.95 0.02 0.01
0.02 0.02 0.94 0.02
0.01 0.01 0.01 0.97

⎞
⎟⎟⎠ ,

Q =

⎛
⎜⎜⎝

qG(1) qG(2) qG(3) qG(4)
qP (1) qP (2) qP (3) qP (4)
qA(1) qA(2) qA(3) qA(4)
qC(1) qC(2) qC(3) qC(4)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0.7 0.1 0.1 0.1
0.1 0.7 0.1 0.1
0.1 0.1 0.7 0.1
0.1 0.1 0.1 0.7

⎞
⎟⎟⎠ .

In this simple example, the values in the bottom left corner of the Q matrix
represent false negatives, whereas the values in the top right represent false
positives. The diagonal represents the probability of accurate detections. Also,
in such a network, the initial state distribution π has to take into consideration
the probability that a system is already under attack or even compromised:

π = {0.65, 0.2, 0.1, 0.05}.

Example 2. In a military grade system, we can assume that the security level
is very high, and the probability of attacks is low, as the system is not known
to the public. This implies that the probability of transition to P and A should
be low, but P should still take into account the possibility of random scanning.
Due to the high level of security, the probabilities of transition to state C should
be extremely low. The observation probabilities should represent the fact that
the traffic is regulated, and that the IDSs and logging systems are configured to
be highly accurate. The initial state can be assumed to be π = {1, 0, 0, 0}. The
following are example transition and observation probability matrices:

P =

⎛
⎜⎝

0.995 0.002 0.002 0.001
0.02 0.959 0.02 0.001
0.02 0.02 0.958 0.002
0.01 0.01 0.01 0.97

⎞
⎟⎠ ,Q =

⎛
⎜⎝

0.97 0.01 0.01 0.01
0.01 0.97 0.01 0.01
0.01 0.01 0.97 0.01
0.01 0.01 0.01 0.97

⎞
⎟⎠ .

2.2 Risk Assessment

Each of the states for a host is associated with a cost vector C, indicating the
potential consequences of the state in question. The total risk Rh,t for host h at
time t is

Rh,t =
N∑

i=1

γt(i)C(i) (1)

where γt(i) is the probability that the host is in security state si at time t, N is
the number of security states, and C(i) is the cost value associated with state si.

Using Hidden Markov Models to Evaluate the Risks of Intrusions 149

Example 3. A university network usually consists of a large number of hosts,
including student laptops, workstations, web servers, student record databases,
and staff file servers. For the purpose of network management, the servers are
the most valuable assets, and a compromise of staff data or student records
could have very negative consequences. Example cost vectors could be: Claptop =
{0, 1, 2, 5}, Cworkstation = {0, 2, 5, 10}, Cwebserver = {0, 2, 5, 20}, CstudentDB =
{0, 5, 20, 50}, and Cfileserver = {0, 5, 10, 25}. If the current security state distri-
bution for the student record database is {0.8, 0.15, 0.05, 0}, then the risk for
that asset at time t is RstudentDB,t = 0.8 ∗ 0 + 0.15 ∗ 5 + 0.05 ∗ 20 = 1.75. The
same security state distribution for a student laptop would result in the risk
Rlaptop,t = 0.25.

The total risk for an entire network at time t can be expressed as

Rnw,t =
H∑

h=1

Rh,t (2)

where H is the number of hosts in the network. By using the sum of the risk
of all hosts, it is possible to see aggregate peaks of risk activity where the risk
of several hosts are simultaneously increased. A property of this definition of
network risk is that security incidents that only involve a few hosts may not
impact the total risk of a large network to a noticeable degree. Also, the risk can
only be interpreted by using knowledge of the normal risk level of the system,
as well as the maximum risk of the system. A limitation of this definition of
network risk is that it does not consider dependencies between hosts. This is not
covered in this paper, but left for further work.

The average risk for a network can be expressed as

Rnw,t =
Rnw,t

H
. (3)

As opposed to (2), the average risk for a network is a normalized value for a given
network. If a high percentage of the hosts in a network are subject to security
incidents, the average risk for the network can be expected to vary significantly
over time. Note that Rnw,t is system-dependent, as the HMMs and cost vectors
of different hosts vary.

In a traditional risk assessment context, one would expect risk to stay at the
most critical security state once that state has been reached. This paper focuses
on real-time risk assessment, and the model proposed in this paper is intended
to be used as a real-time tool for risk management. That is, we are interested in
representing the level of risk activity; therefore, the HMMs used in the examples
allow the risk to gradually decrease, even if the host in question has been assessed
to be in state C. The arrival of new alerts indicating a less critical state also
decreases the risk of a host. This is done in order to avoid a situation where
an increasing number of hosts are assessed to have the maximum risk possible.
Another possible approach is outlined in Section 5.

150 A. Årnes et al.

2.3 Alert Prioritization

Each processed alert is assigned a priority according to the risk of the involved
hosts. If a host is assessed to have a high risk, all alerts involving that host will
receive a high priority, whereas a low risk host will receive a low priority. The
alert receives a prioritization number according to the host with the highest risk
number. The priority Pa for an alert a at time t can be determined as follows

Pa = max(Rh1,t, Rh2,t), (4)

where h1 is the source IP address and h2 is the destination IP address of the
alert a.

Example 4. In a network with both high and low value hosts, the priority of an
alert is decided by the current risk of the affected host, which is in turn a function
of the cost vector and the estimated security state. An alert a1 at time t for the
student database in Example 3 would receive a priority Pa1 = 1.75, whereas an
alert a2 for the student laptop would receive priority Pa2 = 0.25. If both the
source and destination address of an alert are monitored by the risk assessment
system, the priority is assigned to be the higher of the two risk values.

2.4 Parameter Estimation and Learning

The estimation of the appropriate values for the model parameters P, Q, π, and
for the cost vector C can be determined using either training algorithms or ex-
pert knowledge, supported by an appropriate methodology. Notably, a uniform
initial distribution of the P and π parameters is adequate as a basis for train-
ing the parameters, according to [13]. The initial parameters can alternatively
be determined using a risk assessment methodology, such as [2]. These method-
ologies provide a framework for identifying threats and vulnerabilities and for
determining probabilities and consequences of risks.

Based on an HMM with initial parameters, there are several algorithms avail-
able for re-estimating the parameters (i.e., training the models). There is, how-
ever, no analytical solution to the re-estimation problem, and there is no optimal
way of estimating the model parameters based on an observation sequence as
training data [13]. A standard approach for learning HMM parameters is the
Baum-Welch method, which uses iteration to select HMM parameters to maxi-
mize the probability of an observation sequence.

3 System Architecture and Implementation

This section discusses the architecture of the real-time risk assessment system
and how it is integrated into the STAT framework. Some implementation details
are also presented.

3.1 System Architecture

The risk-assessment system receives input events from multiple intrusion detec-
tion sensors throughout the protected network. Both host-based and network-
based sensors are supported. The alerts generated by the sensors are either in

Using Hidden Markov Models to Evaluate the Risks of Intrusions 151

the IDMEF format [3] or in a format native to the sensor. Native alert formats
are converted into IDMEF alerts before further processing. Intrusion detection
alerts from the sensors are collected by the MetaSTAT collector [17,18] through
network connections. MetaSTAT then merges the different alert streams and the
aggregate stream is fed to the risk-assessment system.

The output of the system is a stream of prioritized alerts. The main advantage
of this system is that the security administrator can easily identify the most
important alerts by sorting them by the prioritization value. By handling the
important alerts first, the administrator can make more efficient use of his time.

The system is implemented as a set of modules in the STAT framework [17,18].
Figure 2 is an overview of the architecture. The system consists of three different
modules: Alert Classification, Spoof Detection, and Risk Analysis. The operation
of each of the modules is explained in detail below.

Fig. 2. Overview of the System Architecture

The classification module augments the incoming alerts with a classification
attribute. The classification assigned to a given alert is dependent on the im-
pact that the attack referenced in the alert has on the network. The system
utilizes the following classes of attacks: successful recon limited, successful user,
and successful admin.

The IDMEF standard specifies an optional classification attribute, and the
classification module uses this attribute if it is set by the intrusion detection
sensor. Unfortunately, most sensors do not provide a value for the classification
attribute. When the classification module encounters alerts with no classifica-
tion, the missing attribute is looked up in a database. The database contains
a mapping from sensor-type/alert-name tuples to the corresponding class. The
mapping database can be created manually by looking at the rules of the de-
ployed intrusion detection sensors and classifying each rule as either referring
to a successful recon limited, successful user, or successful admin attack. The
database can also be created automatically if the rules of the intrusion detection
sensors contain a CVE id, which is often the case. The CVE database can be
queried for the description of the attack and the classification can be filled in
from the description.

A problem that may occur is that some alerts do not contain the real IP of the
host that caused the IDS alert to be generated. This happens when the attacker

152 A. Årnes et al.

host spoofs the source IP of the packets that are part of the attack. A network
IDS monitoring the attack traffic sees the attack coming from the spoofed IP
and reports the spoofed IP as the attacker. The spoof detection module detects
spoofed alerts and attempts to infer the real IP of the attacker.

Spoof detection can be performed by keeping track of what IP addresses each
host is utilizing. An anti-spoofing tool, such as arpwatch, can be utilized to
create a database of what IPs are associated with each Ethernet address. When
the spoof detection module of the risk assessment system receives an alert, the
database is consulted to check if the attacker IP contained in the alert matches
the Ethernet address in the alert. Some of the problems with this approach are
that most intrusion detection alerts do not contain Ethernet addresses and that
packets with spoofed Ethernet addresses would not be detected. Another way of
performing spoof detection is to check whether the IPs referenced in the alert
are part of the protected network. If neither the attacker nor the victim is part of
the protected network, the attack must either be spoofed or an outside attacker
is attacking another outsider using the protected network. Since most networks
do not allow traffic from third parties to transit their network, the second case is
highly unlikely, and one can conclude that spoofing has taken place. Note that
this spoof detection mechanism is unable to catch instances of spoofing where
the victim of the spoofing is within the protected network.

When a spoofed alert is detected, the real IP of the attacker can be fetched
from the IP mapping database if Ethernet addresses are present in the alerts.
In the case of alerts without Ethernet addresses the real attacker cannot easily
be identified. In this case, any of the hosts in the protected network could be
the attacker. The spoof detection module handles this by forwarding the alert
to every host in the subnet where the attack was detected.

After spoof detection is performed, the alerts are processed by the risk analysis
module. The module keeps one HMM model for each of the protected hosts.
When an alert is received, the models for the hosts referenced in the alert are
looked up. For each of these hosts, the HMM model is updated with the latest
observation. Finally, the risk value for each of the affected hosts is calculated
and the alert is augmented with the maximum of these risk values before the
alert is sent to the administrator.

3.2 Implementation

The real-time risk assessment implementation is based on the algorithms in [1].
Only one observation probability matrix Q is defined for each host. For hosts
with multiple sensors (such as Mill and Pascal in Section 4.1), all sensors have
been incorporated into one Q.

The implementation is integrated into the STAT framework, as described
above. It consists of the following C++ classes: RiskObject (representing a
host), RiskSensor (representing an IDS sensor), and RiskObservation (rep-
resenting a sensor observation). The implementation receives IDMEF messages
from the framework, and processes these based on the source and destination IP
addresses, sensor identities, alert timestamps, and the alert impact values.

Using Hidden Markov Models to Evaluate the Risks of Intrusions 153

As the Hidden Markov Models are discrete time models, the risk is updated
for every second for each host, based on the available alerts relevant to each host.
A relevant alert either has the IP address of the host in question as its source or
destination IP address, or it originates from a host-based IDS on the host. If no
alert is available for a host, the system uses the default observation “no alert”
as input to the HMM computation. If more than one alert is received for a host
during the 1 sec. interval, the first alert is processed and the remaining alerts
are queued for the next intervals. For the sake of responsiveness, the maximum
queue size is set to 60 seconds for the purpose of this paper. All new alerts will
be discarded when the maximum queue size has been reached. This approach is
chosen in order to be able to handle alert bursts, such as the outbound DDoS
described in Section 4.1. Note that the problem of alert queues can be mitigated
by choosing a sufficiently short time interval for the hidden Markov models.

4 Experiments

The purpose of this section is to validate the proposed method and to demon-
strate how the system outlined in Section 3 can be used on real-life data. For the
experiments two different data sets were used: the Lincoln Laboratory 2000 data
set and traffic data from TU Vienna. The first data set contains experimental
data, whereas the second contains data from a real network. The advantage of
using the Lincoln Labs data is that it contains a truth file [11]. Therefore, the
results can be checked against these values. The TU Vienna data set validates
the feasibility of using the approach on real data.

The basic experimental approach was to determine the HMM parameters Q,
P, π, and C for the Lincoln Laboratory data and to verify that the results
produced by our method correspond to the information gleaned from the truth
file. The same parameters were then used on the real traffic data from TU Vienna
in order to validate the model’s parameters in a realistic setting. By using the
same HMM parameters for both data sets, where applicable, it is possible to
compare the results obtained from the two cases.

The outcome of the experiments are highly dependent on the HMM param-
eters and the alert classification, in addition to the alert and traffic data used.
The HMM parameters used in these examples were determined manually based
on the authors’ experience with the models. The following general guidelines
were used in determining the appropriate values for the parameters:

– The risk level for a host should be close to zero when there are no alerts.
This implies that the probability of being in state G should be close to 1
when there are no alerts.

– When state C occurs, the model should stay in this state longer than it
would for states P and A.

– In order to make the results comparable, the cost vector for all hosts are
identical. In a real setting, the cost vectors for different assets would vary
depending on their value.

154 A. Årnes et al.

Section 4.1 presents the details of the parameters used and the results of ap-
plying the method to the Lincoln Laboratory 2000 data set. Section 4.2 presents
the same for the TU Vienna data.

4.1 Lincoln Laboratory Scenario (DDoS) 1.0

The Lincoln Laboratory 2000 data set [11] is based on experimental network traf-
fic for a network of four class C subnets. The data set contains a network dump,
as well as Solaris BSM [16] system logs. This data has been processed with the
Snort network-based IDS and the USTAT host-based IDS in order to generate ID-
MEF alerts. The resulting data set contains more than three hours of intrusion
detection data for subnets 172.16.112.0/24,172.16.113.0/24,172.16.114.0/24,and
172.16.115.0/24.ThehostsMill (172.16.115.20), Pascal (172.16.112.50), andLocke
(172.16.112.10) are attacked and compromised, and they are then used to launch
a DDoS attack against an external host using spoofed IP addresses. There are two
Snort network IDS sensors (an outside sensor and a DMZ sensor), and the hosts
Mill and Pascal are equipped with instances of the USTAT host-based IDS.

Attack Phases. The data set contains an attack in five phases (see [11]). The
phases are outlined below with excerpts from the original description.
IP sweep. approximate time 09:45 to 09:52: “The adversary performs a scripted
IPsweep of multiple class C subnets on the Air Force Base. (...) The attacker
sends ICMP echo-requests in this sweep and listens for ICMP echo-replies to
determine which hosts are up.”
Sadmind ping. approximate time 10:08 to 10:18: “The hosts discovered in the
previous phase are probed to determine which hosts are running the sadmind
remote administration tool. (...) Each host is probed, by the script, using the
ping option of the sadmind exploit program.”
Break in to Mill, Pascal, and Locke. approximate time 10:33 to 10:34: “The
attacker then tries to break into the hosts found to be running the sadmind
service in the previous phase. The attack script attempts the sadmind Remote-
to-Root exploit several times against each host (...) there are 6 exploit attempts
on each potential victim host. To test whether or not a break-in was successful,
the attack script attempts to login.”
Installation of DDoS tools on Mill, Pascal, and Locke. approximate time 10:50:
“Entering this phase, the attack script has built a list of those hosts on which
it has successfully installed the hacker2 user. These are Mill, Pascal, and Locke.
For each host on this list, the script performs a telnet login, makes a directory
(...) and uses rcp to copy the server-sol binary into the new directory. This is the
mstream server software. The attacker also installs a .rhosts file for themselves.”

Outbound DDoS with spoofed source IP addresses. approximate time 11:27: “In
the final phase, the attacker manually launches the DDoS. This is performed
via a telnet login to the victim on which the master is running, and then, from
the victim, a telnet to port 6723 of the localhost. (...) The command mstream
131.84.1.31 5 causes a DDoS attack, of 5 seconds duration (...) to be launched
by all three servers simultaneously.”

Using Hidden Markov Models to Evaluate the Risks of Intrusions 155

Observation Messages. Based on the available alert data and the output
from the alert classification preprocessor, we use the following observations in
the implementation:

1. Suspicious Snort alert: All alerts that are not explicitly classified.
2. Compromise Snort alert: All alerts that are classified as “successful admin”.
3. Scan Snort alert: All alerts that are classified as “successful recon limited”.
4. Host-based alert (only available for hosts Mill and Pascal): The data set only

contains the alert types “unauth delete” and “restricted dir write”.
5. Outbound Snort alert: All Snort alerts originating from an internal host.
6. No alert: This observation is assumed whenever there are no other alerts to

be processed for a host.

The classification could be made more fine-grained, but it is kept simple in this
paper for demonstration purposes. In particular, the output of the host-based
USTAT IDS in a real setting would generate a wide range of different alert
types. In this example, however, we have made the simplification of modeling
the USTAT sensor as producing one observation type only. Similarly, we have
made the assumption that outbound Snort alerts reduce the probability of being
in the “good” state.

Model Parameters. The monitored network consists of 1016 IP addresses,
each modeled by an HMM. The transition probability matrices P, observation
probability matrices Q, initial state distribution vectors π, and the cost vectors
C are the same for each host, with the exception of the hosts Mill and Pascal,
which incorporate the possibility of receiving USTAT alerts. As an example, the
host Mill is modeled as follows:

PMill =

⎛
⎜⎜⎝

pGG pGP pGA pGC

pPG pPP pPA pPC

pAG pAP pAA pAC

pCG pCP pCA pCC

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

0.992995 0.004 0.003 0.000005
0.004 0.991995 0.004 0.000005
0.003 0.004 0.992995 0.000005

1 × 10−34 1 × 10−34 1 × 10−34 1 − 3 × 10−34

⎞
⎟⎟⎠ ,

QMill =

⎛
⎜⎜⎝

qG(1) qG(2) qG(3) qG(4) qG(5) qG(6)
qP (1) qP (2) qP (3) qP (4) qP (5) qP (6)
qA(1) qA(2) qA(3) qA(4) qA(5) qA(6)
qC(1) qC(2) qC(3) qC(4) qC(5) qC(6)

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

0.05 0.0001 0.02 0.01 0.02 0.8999
0.05 0.0001 0.25 0.01 0.02 0.6699
0.1 0.005 0.1 0.03 0.03 0.735
0.02 0.05 0.04 0.04 0.05 0.8

⎞
⎟⎟⎠ ,

πMill = (πG, πP , πA, πC) = (1, 0, 0, 0),

CMill = (cG, cP , cA, cC) = (0, 25, 50, 100).

156 A. Årnes et al.

From PMill, we can see that the probability of entering the state C is relatively
low, but that once entered, the probability of leaving this state is very low. From
QMill, we can see that the scan observation is relatively likely to occur in the P
state, that the suspicious and scan observations are relatively likely to occur in
the A state, and that the USTAT and outbound observations have a relatively
high probability in the C state. Note that once entered, the C state is likely to
last for a long time. From πMill and CMill, we can see that the initial state of the
host is G with corresponding cost 0. The maximum cost for the host is 100. Most
of the hosts do not have a host-based IDS and are modeled with the following
observation probability matrix (host Locke is given as an example):

QLocke =

⎛
⎜⎜⎝

0.05 0.0001 0.02 0 0.02 0.9099
0.05 0.0001 0.25 0 0.02 0.6799
0.1 0.005 0.1 0 0.03 0.765
0.02 0.05 0.04 0 0.05 0.84

⎞
⎟⎟⎠

For the purpose of this example all hosts, except the hosts with USTAT, have
the exact same model parameters. This is done for demonstration purposes and
in order to provide comparable results between the hosts. In a real setting, the
model parameters of the hosts would vary according to their security configura-
tions, the observation probability parameters vary according to the sensors used,
and the cost vector is determined by the value of the assets and the consequence
of the different security states.

Results. The above models were implemented and used to perform real-time
risk assessment on the Lincoln Laboratory data set. The entire data set has a
duration of 11836 sec., and a total of 36635 alerts, 84 of which are USTAT alerts.
The remaining are Snort alerts. As outlined above, the data set consists of an
attack in five phases. By inspecting the data set, we can see that the phases
correspond to the approximate time periods 1500 - 1920 sec. (the IP sweep),
2880 - 3480 sec. (the sadmind ping), 4380 - 4420 sec. (the break in to Mill,
Pascal, and Locke), 5400 sec. (the installation of DDoS tools), and 7620 sec.
(the outbound DDoS).

Figure 3 shows the total assessed risk for the Lincoln Laboratory data for
the full duration of the data set. The figure shows a sum of the risk for all
hosts in the four subnets (in total 1016 hosts). The break-ins performed against
Mill, Pascal, and Locke are clearly visible as peaks of risk activity. The sadmind
ping also introduces a peak in the data, but the IP sweep and the installation
of DDoS tools are hardly distinguishable from the remaining activity. Note that
the system seems to have a minimum risk of approximately 1200 in the long run.
This is caused by a stable security state with risk level 1.09 for the individual
hosts, given a sufficiently long interval of only “no alert” observations. The stable
security state risk for the entire network is consequently 1107. The difference can
be explained by the fact that the host 172.16.114.1 has a high amount (more than
2000) of outbound ICMP related alerts. As a router, this host should probably
have different HMM parameters then the other hosts.

Using Hidden Markov Models to Evaluate the Risks of Intrusions 157

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 2000 4000 6000 8000 10000

R
is

k
A

ct
iv

ity

Time (s)

Fig. 3. Total assessed risk for Lincoln Labs data set

Figure 4 (a), (b), and (c) show the assessed risk for the hosts Mill, Pascal, and
Locke, respectively. The hosts Mill and Pascal have host-based IDSs (USTAT) that
provide several alerts during the experiment. This can be seen in Fig. 4 (a), (b), and
(c), as the host Locke has far less activity than the other two. Phase 3 and 5 of the
attack are clearly marked with the maximum risk activity value (100) for all three
hosts. Phase 2 and 4 are also visible as peaks, whereas phase 1 is hardly discernible
from the other activity in Fig. 4 (a) and (b), and not visible at all in (c). Note that
Pascal (Fig. 4 (b)) shows more peaks than Mill (Fig. 4 (a)). This is caused by the
fact that Pascal produces 70 USTAT alerts, while Mill only produces 14.

Figure 5 (a) and (b) show the assessed total network risk and the assessed
risk for Mill at the approximate time of the compromise (4000s to 6000s). The
graphs correspond to Fig. 3 and 4 (a), but zoom in on the time period. Fig. 5
(b) shows the two peaks corresponding to phase 3 and 4 of the attack.

By counting the priority of the alerts for the entire data set, we can eval-
uate the performance of the alert prioritization mechanism. However, for the
purpose of the prioritization results, we do not consider the outbound DDoS
attack with spoofed IP addresses and the outbound alerts from the router with
IP address 172.16.114.1. The outbound DDoS attack alerts represents 93% of
the total alerts, and are all marked with the highest priority. The IP address
172.16.114.1 is discussed above. It has a high number of alerts (6% of the total
amount), and they would also all be marked as maximum priority alerts. Having
filtered out these alerts, 52.49% of the alerts are with priority below 20, 28.87%
with priority between 20 and 40, 6.49% with priority between 40 and 60, 2.35%
with priority between 60 and 80, and 9.81% with priority between 80 and 100. It
is clear that the alert prioritization is successful in that only a small percentage
of the alerts are assigned high priority values. The majority of the alerts are
marked as low priority.

We see that the risk assessment method with the current configuration and
alert classification parameters is able to assess the risk and detect several of the
security relevant incidents outlined above. In particular, we see that the model

158 A. Årnes et al.

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000
R

is
k

A
ct

iv
ity

Time (s)

(a) Assessed risk for host Mill

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000

R
is

k
A

ct
iv

ity

Time (s)

(b) Assessed risk for host Pascal

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000

R
is

k
A

ct
iv

ity

Time (s)

(c) Assessed risk for host Locke

Fig. 4. Real-time risk assessment for Lincoln Labs data set

is capable of assigning the appropriate maximum risk values to the two most
critical incidents, the compromise and the outbound DDoS attack with spoofed
IP addresses.

4.2 Real Traffic Data from the Technical University of Vienna

The second data set is based on real network traffic from the Technical University
of Vienna [8]. The data set contains a trace of nine days for a class B network.
However, in this experiment we have only included three days worth of data
from one class C network. There were no known security incidents during this
period. The IDS used in this setup is Snort with the same signature set as in the

 1200

 1300

 1400

 1500

 1600

 1700

 1800

 1900

 4000 4500 5000 5500 6000

R
is

k
A

ct
iv

ity

Time (s)

(a) Assessed network risk showing
system compromise

 0

 20

 40

 60

 80

 100

 4000 4500 5000 5500 6000

R
is

k
A

ct
iv

ity

Time (s)

(b) Assessed risk showing host Mill
compromise

Fig. 5. Lincoln Labs data set showing period of time of compromise

Using Hidden Markov Models to Evaluate the Risks of Intrusions 159

previous example. The model parameters are also the same as in the previous
example, with the exception that there are no host-based IDSs in this setup.

Results. Figure 6 shows the assessed risk for the entire network for the full
three day period. The two periods of increased risk activity are caused by an
increasing amount of outbound alerts, as seen in Fig. 7 (c). We see that the risk
seems to have a lower bound at a level about 280. This lower bound is the total
risk associated with the stable security state of the individual host HMMs. As
in 4.1, the individual stable state risk for a host is 1.09, and the total stable
state risk for the network is consequently 276.86.

Figure 7 (a), (b), (c), and (d) show the assessed risk for a duration of 3.5 hours,
corresponding to the second period of increased activity in Fig. 6. Fig. 7 (a) shows
the risk activity for the full network, indicating three peaks of increased risk and
some periodic fluctuations. Fig. 7 (b) shows the risk activity for a host with no
alert activity. Fig. 7 (c) shows the risk activity for a host with outbound alerts that
lead to several peaks of maximum risk for the host. Based on the underlying traffic
data, it has been determined that these alerts are in fact false alerts from Snort
caused by a specific user pattern. Finally, Fig. 7 (d) shows the risk activity for a
web server with periodic peaks of risk values between 20 and 40. This is caused
by probing activity directed at the web server. This activity is present during the
entire period, and is a contributing factor to the fluctuations in Fig. 6.

 0

 100

 200

 300

 400

 500

 100000 150000 200000 250000

R
is

k
A

ct
iv

ity

Time (s)

Fig. 6. Total assessed risk for class C subnet (3 days)

For this data set, 46.35% of the alerts are assigned priority below 20, 49.78%
with priority between 20 and 40, 1.29% with priority between 40 and 60, 0.08%
with priority between 60 and 80, and 2.49% with priority between 80 and 100.
As for the previous example, it is clear that the alert prioritization is successful
in that only a small percentage of the alerts are assigned high priority values.

We see that the approach is applicable to data from real network traffic.
However, this example demonstrates that the proposed model is dependent on
the accuracy of the underlying IDSs, and false positives and negatives affect

160 A. Årnes et al.

 0

 200

 400

 600

 800

 1000

 1200

 170000 172000 174000 176000 178000 180000 182000

R
is

k
A

ct
iv

ity

Time (s)

(a) Assessed risk for class C subnet
(3.5 hours)

 0

 20

 40

 60

 80

 100

 170000 172000 174000 176000 178000 180000 182000

R
is

k
A

ct
iv

ity

Time (s)

(b) Assessed risk for a host with no
alert activity (3.5 hours)

 0

 20

 40

 60

 80

 100

 170000 172000 174000 176000 178000 180000 182000

R
is

k
A

ct
iv

ity

Time (s)

(c) Assessed risk for a host with out-
bound alerts (3.5 hours)

 0

 20

 40

 60

 80

 100

 170000 172000 174000 176000 178000 180000 182000

R
is

k
A

ct
iv

ity

Time (s)

(d) Assessed risk for a web server
(3.5 hours)

Fig. 7. Real-time risk assessment for a real Class C subnet (3.5 hours)

the results of the risk assessment. In this experiment, we have reused the HMM
parameters from the Lincoln Laboratory example. This allows us to compare
the performance of the model under similar circumstances. However, this is not
an optimal approach for this data set, as the parameters should be estimated
specifically for the monitored network.

5 Discussion

The network risk assessment approach presented in this paper provides a quan-
tification of the risk level of hosts in a network. An alternative, naive approach
to this problem could involve counting alerts and assigning a value according to
the assumed impact of the alerts. A decay function could be used to facilitate
a gradual decrease in risk to avoid a non-decreasing risk situation. The method
proposed in this paper provides several advantages over the naive approach. The
primary advantage is that HMMs provide an established framework for state
estimation, modeling both the probabilities of entering certain states, as well as
the probabilities of receiving different observations in each state, effectively pro-
viding a framework for representing the false-positive and false-negative effects
of IDSs. The state modeling and transition probabilities can also be related to
traditional risk assessment methodologies. Finally, the use of learning algorithms
and parameter re-estimation can be employed to tune the system automatically.

Using Hidden Markov Models to Evaluate the Risks of Intrusions 161

G P A C

Fig. 8. A left-right HMM

Note that we model the security state of a system; we do not attempt to
model individual attacks or attackers. One limitation of the approach is that
an attacker with knowledge of the HMMs used could attempt to camouflage a
successful compromise by subsequently causing a number of less serious alerts.
Depending on the HMMs used, this could lead to a misrepresentation of the risk
level of the system.

The HMMs used in this paper are fully connected, in that every state of the
model can be reached in a single step from every other state of the model [13].
It is possible to use other types of HMMs, such as the left-right models. These
models can, for example, be used if one wants to model the compromised state
as consuming; i.e., that the probability of being in state C never decreases. Fig. 8
shows an example of a left-right HMM, which only allows transitions from left to
right; i.e., to more security critical states. If there is a steady input of alerts, the
risk of a system modeled with this HMM will tend to approach the maximum
risk for the system.

Although the experiments in this paper were run in an off-line mode, we
believe that the method is capable of handling alerts in real-time. The 3.5 hour
Lincoln Laboratory data set was processed in 2 minutes 44 seconds, while the
3 day TU Vienna data set was processed in 20 minutes 54 seconds. Even with
significantly smaller time intervals, the model would still be able to process alerts
on a single host in real-time for multiple class C networks.

6 Related Work

Research in risk assessment and risk management has traditionally focused on
the development of methods, tools, and standards for risk assessment. Two com-
monly recommended references for risk management are [14] and [15]. Method-
ologies, such as Coras [2] and Morda [5], have been developed to support the
risk assessment process. This paper complements these approaches by performing
risk assessment in real-time based on an initial estimation of model parameters
representing the probabilities of different security states. A real-time risk assess-
ment method has previously been proposed by [6]. However, that approach is
limited to risk assessment for individual hosts.

A number of different approaches that perform alert prioritization have been
proposed. In [12] Porras et al. present a model that takes into account the im-
pact of alerts on the overall mission that a network infrastructure supports. This
approach relies on a knowledge base that describes the security-relevant char-
acteristics of the protected network in order to prioritize the alerts. Other alert

162 A. Årnes et al.

prioritization systems [4,7,9] perform alert verification. These systems assign a
higher priority to alerts that are verified as true attacks, while alerts that are de-
termined to be false positives are given a low priority. Alert verification systems
operate either offline or online. Offline systems perform periodic vulnerability
scans of the protected network and store the result in a database. Alerts are
verified by checking if the vulnerabilities that the alerts refer to are present on
the attacked hosts. Online alert verification systems operate in a similar way,
but no database is kept. Instead, vulnerability scanning is performed on-demand
when alerts are received by the system [10].

7 Conclusions and Future Work

We have presented an approach to real-time network risk assessment that de-
termines the risk level of a network as the composition of the risks of individual
hosts, providing a precise and fine-grained model for risk assessment. The model
is probabilistic and uses Hidden Markov Models to represent the likelihood of
transitions between security states. We have tightly integrated the risk assess-
ment approach with the STAT framework and have used results of the risk
assessment to prioritize the IDS alerts. Finally, we have evaluated the approach
using both simulated and real-world data.

An important limitation of this approach is the need for model parameter
estimation. The parameters for our experiments were estimated manually. This
is a time-consuming task with inherent uncertainties. We plan to investigate the
use of training algorithms to estimate the model parameters

For the experiments in this paper we did not take into consideration dependen-
cies between hosts. Doing this would give a more accurate overview of network
risk and better model the consequences of security incidents relating to assets
inside a network. For example, if a host on the inside of a network is compro-
mised, this should increase the risk level of other hosts within the network as
well. We plan to include inter-host dependencies in our future experiments.

A general framework for handling multiple sensors can be implemented by
representing each of the sensors monitoring a host with an HMM. In this way,
each sensor can be assigned a separate observation probability matrix Q. The
state estimation can be performed on behalf of each of the sensors, while the
risk for a host is computed as a function of the state estimates of all the relevant
sensors. This will be implemented in the next version of the system.

We have performed experiments using real-traffic data in an off-line mode,
but we have not yet tested the system on-line with live traffic. This will be done
as part of the future work.

Acknowledgments

This research was supported by the U.S.– Norway Fulbright Foundation for
Educational Exchange, by the U.S. Army Research Office, under agreement
DAAD19-01-1-0484, and by the National Science Foundation, under grants CCR-
0238492 and CCR-0524853. The “Centre for Quantifiable Quality of Service in

Using Hidden Markov Models to Evaluate the Risks of Intrusions 163

Communication Systems, Centre of Excellence” is appointed by The Research
Council of Norway, and funded by the Research Council, NTNU and UNINETT.

References

1. André Årnes, Karin Sallhammar, Kjetil Haslum, Tønnes Brekne, Marie Elisa-
beth Gaup Moe, and Svein Johan Knapskog. Real-time risk assessment with
network sensors and intrusion detection systems. In International Conference on
Computational Intelligence and Security (CIS 2005), 2005.

2. CORAS IST-2000-25031 Web Site, 2003. http://www.nr.no/coras.
3. Hervé Debar, David A. Curry, and Benjamin S. Feinstein. Intrusion detection

message exchange format (IDMEF) – internet-draft, 2005.
4. Neil Desai. IDS correlation of VA data and IDS alerts. http://www.

securityfocus.com/infocus/1708, June 2003.
5. Shelby Evans, David Heinbuch, Elizabeth Kyule, John Piorkowski, and James Wall-

ner. Risk-based systems security engineering: Stopping attacks with intention.
IEEE Security and Privacy, 02(6):59 – 62, 2004.

6. Ashish Gehani and Gershon Kedem. Rheostat: Real-time risk management. In
Recent Advances in Intrusion Detection: 7th International Symposium, (RAID
2004), Sophia Antipolis, France, September 15-17, 2004. Proceedings, pages 296–
314. Springer, 2004.

7. Ron Gula. Correlating ids alerts with vulnerability information. Technical report,
Tenable Network Security, December 2002.

8. Cristopher Kruegel, Engin Kirda, Darren Mutz, William Robertson, and Giovanni
Vigna. Polymorphic worm detection using structural information of executables. In
Proceedings of the International Symposium on Recent Advances in Intrusion De-
tection (RAID 2005), volume 3858 of LNCS, pages 207–226, Seattle, WA, Septem-
ber 2005. Springer-Verlag.

9. Cristopher Kruegel and William Robertson. Alert verification: Determining the
success of intrusion attempts. In Proceedings of the 1st Workshop on the De-
tection of Intrusions and Malware and Vulnerability Assessment (DIMVA 2004),
Dortmund, Germany, July 2004.

10. Cristopher Kruegel, William Robertson, and Giovanni Vigna. Using alert verifica-
tion to identify successful intrusion attempts. Practice in Information Processing
and Communication (PIK 2004), 27(4):219 – 227, October – December 2004.

11. Lincoln Laboratory. Lincoln laboratory scenario (DDoS) 1.0, 2000.
http://www.ll.mit.edu/SST/ideval/data/2000/LLS DDOS 1.0.html.

12. Phillip A. Porras, Martin W. Fong, and Alfonso Valdes. A mission-impact-based
approach to infosec alarm correlation. In Proceedings of the International Sympo-
sium on the Recent Advances in Intrusion Detection (RAID 2002), pages 95–114,
Zurich, Switzerland, October 2002.

13. Lawrence R. Rabiner. A tutorial on hidden markov models and selected applica-
tions in speech recognition. Readings in speech recognition, pages 267–296, 1990.

14. Standards Australia and Standards New Zealand. AS/NZS 4360: 2004 risk man-
agement, 2004.

15. Gary Stonebumer, Alice Goguen, and Alexis Feringa. Risk management
guide for information technology systems, special publication 800-30, 2002.
http://csrc.nist.gov/publications/nistpubs/800-30/sp800-30.pdf.

164 A. Årnes et al.

16. Sun Microsystems, Inc. Installing, Administering, and Using the Basic Security
Module. 2550 Garcia Ave., Mountain View, CA 94043, December 1991.

17. Giovanni Vigna, Richard A. Kemmerer, and Per Blix. Designing a web of highly-
configurable intrusion detection sensors. In W. Lee, L. Mè, and A. Wespi, editors,
Proceedings of the 4th International Symposium on Recent Advances in Intrusion
Detection (RAID 2001), volume 2212 of LNCS, pages 69–84, Davis, CA, October
2001. Springer-Verlag.

18. Giovanni Vigna, Fredrik Valeur, and Richard Kemmerer. Designing and implement-
ing a family of intrusion detection systems. In Proceedings of European Software
Engineering Conference and ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE 2003), Helsinki, Finland, September 2003.

The Nepenthes Platform: An Efficient Approach
to Collect Malware

Paul Baecher1, Markus Koetter1, Thorsten Holz2, Maximillian Dornseif2,
and Felix Freiling2

1 Nepenthes Development Team
nepenthesdev@gmail.com
2 University of Mannheim

Laboratory for Dependable Distributed Systems
{holz, dornseif, freiling}@informatik.uni-mannheim.de

Abstract. Up to now, there is little empirically backed quantitative and
qualitative knowledge about self-replicating malware publicly available.
This hampers research in these topics because many counter-strategies
against malware, e.g., network- and host-based intrusion detection sys-
tems, need hard empirical data to take full effect.

We present the nepenthes platform, a framework for large-scale col-
lection of information on self-replicating malware in the wild. The basic
principle of nepenthes is to emulate only the vulnerable parts of a ser-
vice. This leads to an efficient and effective solution that offers many
advantages compared to other honeypot-based solutions. Furthermore,
nepenthes offers a flexible deployment solution, leading to even better
scalability. Using the nepenthes platform we and several other organiza-
tions were able to greatly broaden the empirical basis of data available
about self-replicating malware and provide thousands of samples of pre-
viously unknown malware to vendors of host-based IDS/anti-virus sys-
tems. This greatly improves the detection rate of this kind of threat.

Keywords: Honeypots, Intrusion Detection Systems, Malware.

1 Introduction

Automated Malware Collection. Software artifacts that serve malicious purposes
are usually termed as malware. Particularly menacing is malware that spreads
automatically over the network from machine to machine by exploiting known
or unknown vulnerabilities. Such malware is not only a constant threat to the
integrity of individual computers on the Internet. In the form of botnets for
example that can bring down almost any server through distributed denial of
service, the combined power of many compromised machines is a constant danger
even to uninfected sites.

We describe here an approach to collect malware. Why should this be done?
There are two main reasons, both following the motto “know your enemy”:
First of all, investigating individual pieces of malware allows better defences
against these and similar artifacts. For example, intrusion detection and anti-
virus systems can refine their list of signatures against which files and network

D. Zamboni and C. Kruegel (Eds.): RAID 2006, LNCS 4219, pp. 165–184, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

166 P. Baecher et al.

traffic are matched. In general, the better and more we know about what malware
is currently spreading in the wild, the better can our defenses be. The second
reason why we should collect malware is that, if we do it in a large scale, we
can generate statistics to learn more about attack patterns, attack trends, and
attack rates of malicious network traffic today, based on live and authentic data.

Collecting malware in the wild and analyzing it is not an easy task. In prac-
tice, much malware is collected and analyzed by detailed forensic examinations
of infected machines. The actual malware needs to be dissected from the compro-
mised machine by hand. With the increasing birth rate of new malware this can
only be done for a small proportion of system compromises. Also, sophisticated
worms and viruses spread so fast today that hand-controlled human intervention
is almost always too late. In both cases we need a very high degree of automation
to handle these issues.

Honeypot technology. The main tool to collect malware in an automated fashion
today are so-called honeypots. A honeypot is an information system resource
whose value lies in unauthorized or illicit use of that resource. The idea behind
this methodology is to lure in attackers such as automated malware and then
study them in detail. Honeypots have proven to be a very effective tool in learning
more about Internet crime like credit card fraud [10] or botnets [6]. The literature
distinguishes two general types of honeypots:

– Low-interaction honeypots offer limited services to the attacker. They em-
ulate services or operating systems and the level of interaction varies with
the implementation. The risk tends to be very low. In addition, deploying
and maintaining these honeypots tends to be easy. A popular example of this
kind of honeypots is honeyd [14]. With the help of low-interaction honeypots,
it is possible to learn more about attack patterns and attacker behavior.

– High-interaction honeypots offer the attacker a real system to interact with.
More risk is involved when deploying a high-interaction honeypot, e.g., spe-
cial provisions are done to prevent attacks against system that are not in-
volved in the setup. They are normally more complex to setup and maintain.
The most common setup for this kind of honeypots is a GenIII honeynet [3].

Low-interaction honeypots entail less risks than high-interaction ones. In ad-
dition, deploying and maintaining low-interaction honeypots tends to be easy,
at least much easier than running high-interaction honeypots, since less special
provisions have to be done to prevent attacks against the system that runs the
honeypot software. However, high-interaction honeypots still allow us to study
attackers in more detail and learn more about the actual proceeding of attack-
ers than low-interaction honeypots. The differences between low-interaction and
high-interaction honeypots manifest a tradeoff: high-interaction honeypots are
expressive, i.e., they offer full system functionality which is in general not sup-
ported by low-interaction honeypots. However, low-interaction honeypots are
much more scalable, i.e., it is much easier and less resource-intensive to deploy
them in a large-scale.

The Nepenthes Platform: An Efficient Approach to Collect Malware 167

Contribution. In this paper we introduce nepenthes, a new type of honeypot that
inherits the scalability of low-interaction honeypots but at the same time offers
a high degree of expressiveness. Nepenthes is not a honeypot per se but rather
a platform to deploy honeypot modules (called vulnerability modules). This is
the key to increased expressiveness: Vulnerability modules offer a highly flexible
way to configure nepenthes into a honeypot for many different types of vulner-
abilities. In classical terms, nepenthes still realizes a low-interaction honeypot
since it emulates the vulnerable services. However, as we argue in this paper,
emulation and the knowledge about the expected attacker behavior is the key
to automation. Furthermore, the flexibility of nepenthes allows to deploy unique
features not available in high-interaction honeypots. For example, it is possible
to emulate the vulnerabilities of different operating systems and computer archi-
tectures on a single machine and during a single attack (i.e., an emulation can
mimic the generic parts of a network conversation and depending on the network
traffic decide whether it wants to be a Linux or a Win32 machine for example).
This improves the scalability. We report on experiments showing that nepenthes
is also scalable by emulating more than 16.000 different IP addresses on a sin-
gle physical machine. Furthermore, through its flexible reporting mechanisms,
nepenthes can be deployed in a hierarchical manner increasing scalability even
further. Automation is further supported through the modularity of nepenthes,
which offers the possibility to add specialized analysis and reporting modules.

With the help of the nepenthes platform, we are able to collect malware that
is currently spreading in the wild on a large-scale. Since we focus on malware
that is currently spreading, we can carry out a vulnerability assessment based on
live data. Furthermore, the collected malware samples enable us to examine the
effectiveness of current anti-virus engines. Furthermore, since we collect malware
on a large-scale, we can also detect new trends or attack patterns. We will present
more results in Section 3.

In summary, nepenthes is a unique novel combination of expressiveness, scal-
ability and flexibility in honeypot-based research.

Related work. Large-scale measurements of malicious network traffic have been
the focus of previous research. With the help of approaches like the network
telescope [11] or darknets [4] it is possible to observe large parts of the Internet
and monitor malicious activities. In contrast to nepenthes, these approaches
passively collect information about the network status and can infere further
information from it, e.g., inferring the amount of Distributed Denial-of-Service
attacks [12]. By not responding to the packets, it is not possible to learn more
about full attacks. Slightly more expressive approaches like the Internet Motion
Sensor [2] differentiate services by replying to a TCP SYN paket with TCP
SYN-ACK pakets. However, their expressiveness is also limited and only with
further extensions it is possible to also learn more about spreading malware.

honeyd [14] is a prominent example of a low-interaction honeypot. This dae-
mon creates virtual hosts on a network. It simulates the TCP/IP stack of arbi-
trary operating systems and can be configured to run arbitrary services. These
services are generally small scripts that emulate real services, and offer only

168 P. Baecher et al.

a limited expressiveness. Honeyd can simulate arbitrary network topologies in-
cluding dedicated routes and routers, and can be configured to feign latency
and packet loss. In summary, this tool can emulate complex networks by simu-
lating different hosts with any kind of services and help to learn about attacks
from a high-level point of view. In contrast to nepenthes, honeyd does not offer
as much expressiveness since the reply capabilities of honeyd are limited from
a network point of view. Nepenthes can be used as a subsystem for honeyd,
however. This extends honeyd and enables a way to combine both approaches:
nepenthes acts then as a component of honeyd and is capable of dealing with
automated downloading of malware.

The Collapsar platform [9] is a virtual-machine-based architecture for network
attack detention. It allows to host and manage several high-interaction virtual
honeypots in a local dedicated network. Malicious traffic is redirected from other
networks (decentralized honeypot presence) to this central network which hosts
all honeypots (centralized honeypot management). This enables a way to build
a honeyfarm. Note that the idea of a honeyfarm is not tied to the notion of a
high-interaction honeypot: It is also possible to deploy nepenthes as a honey-
farm system by redirecting traffic from remote locations to a central nepenthes
server.

Internet Sink (iSink) [23] is a system that passively monitors network traf-
fic and is also able to actively respond to incoming connection requests. The
design is stateless and therefore the expressiveness of the responses is limited.
Similarly, HoneyTank [19] is a system that implements stateless responders to
network probes. This allows to collect information about malicious activties to
a limited amount. Statelessness implies that the expressiveness is limited. In
contrast to these systems, nepenthes implements a finite state machine to em-
ulate vulnerabilities. This allows us to collect more detailed information about
an attack.

Closest to our work is the Potemkin virtual honeyfarm by Vrable et al. [20].
Potemkin exploits virtual machines, aggressive memory sharing, and late bind-
ing of resources to emulate more than 64,000 high-interaction honeypots using
ten physical servers. This approach is promising, but has currently several draw-
backs compared to nepenthes: Firstly, each honeypot within Potemkin has to
be a fixed system in a fixed configuration. In contrast to this, the vulnerability
modules of nepenthes allow greater flexibility. As mentioned above, nepenthes
can react for example on exploitation attempts against Windows 2000 and Win-
dows XP, even regardless of service pack. It would even be possible to emulate
on a single nepenthes honeypot vulnerabilities for different operating systems
and even different processor architectures. Secondly, the scalability of nepenthes
is at least as good as the scalability of Potemkin. Thirdly, there are currently
only preliminary results for the scalability of Potemkin. In [20], the authors give
only results for a representative 10 minutes period. Since the implementation of
Potemkin is not publicly available, we can not verify these results. In contrast
to this, nepenthes runs stable for weeks and the source code is available under
the GNU General Public License.

The Nepenthes Platform: An Efficient Approach to Collect Malware 169

Roadmap. This paper is outlined as follows: Section 2 presents the nepenthes
platform in detail and in Section 3 we show the results of our work, especially
focusing on the effectiveness of this approach. We give an overview of future
work in Section 4 and conclude the paper in Section 5.

2 The Nepenthes Platform

In this section we introduce the nepenthes platform in detail. We show how the
concept of low-interaction honeypots can be extended to effectively develop a
method to collect malware. In addition, this platform can be used to learn more
about attack patterns. Moreover, we present a technique to use this platform in
a distributed way, similar to the concepts introduced by Collapsar [9].

The main idea behind nepenthes is emulation of vulnerable services. Cur-
rently, there are two main concepts in this area: honeyd scripts simply emulate
the necessary parts of a service to fool automated tools or very low-skilled at-
tackers. This allows a large-scale deployment with thousands of low-interaction
honeypots in parallel. But this approach has some limits: with honeyd it is not
possible to emulate more complex protocols, e.g., a full emulation of FTP data
channels is not possible. In contrast to this, high-interaction GenIII honeypots
use a real system and thus do not have to emulate a service. The drawback of this
approach is the poor scalability. Deploying several thousand of these honeypots
is not possible due to limitations in maintenance and hardware requirements.
Virtual approaches like Potemkin [20] are in an early stage of development and
it is currently not clear how they will perform in real-world scenarios, although
preliminary results look very promising.

The gap between these two approaches can be filled with the help of the
nepenthes platform. It allows to deploy several thousands of honeypots in parallel
with only moderate requirements in hardware and maintenance. This platform
enables us to efficiently deploy thousands of honeypots in parallel and collect
information about malicious network traffic.

2.1 Architecture of the Nepenthes Platform

nepenthes is based upon a very flexible and modularized design. The core – the
actual daemon – handles the network interface and coordinates the actions of
the other modules. The actual work is carried out by several modules, which
register themselves in the nepenthes core. Currently, there are several different
types of modules:

– Vulnerability modules emulate the vulnerable parts of network services.
– Shellcode parsing modules analyze the payload received by one of the vulner-

ability modules. These modules analyze the received shellcode, an assembly
language program, and extract information about the propagating malware
from it.

– Fetch modules use the information extracted by the shellcode parsing mod-
ules to download the malware from a remote location.

170 P. Baecher et al.

Fig. 1. Concept behind nepenthes platform

– Submission modules take care of the downloaded malware, e.g., by saving
the binary to a hard disc, storing it in a database, or sending it to anti-virus
vendors.

– Logging modules log information about the emulation process and help in
getting an overview of patterns in the collected data.

In addition, several further components are important for the functionality
and efficiency of the nepenthes platform: shell emulation, a virtual filesystem for
each emulated shell, geolocation modules, sniffing modules to learn more about
new activity on specified ports, and asynchronous DNS resolution.

The schematic interaction between the different components is depicted in
Figure 1 and we introduce the different building blocks in the next paragraphs.

Vulnerability modules are the main factor of the nepenthes platform. They en-
able an effective mechanism to collect malware. The main idea behind these mod-
ules is the following observation: in order to get infected by autonomous spreading
malware, it is sufficient to only emulate the necessary parts of a vulnerable ser-
vice. So instead of emulating thewhole service,we only need to emulate the relevant
parts and thus are able to efficiently implement this emulation. Moreover, this con-
cepts leads to a scalable architecture and the possibility of large-scale deployment
due to only moderate requirements on processing resources and memory. Often the
emulation can be very simple: we just need to provide some minimal information at
certain offsets in the network flow during the exploitation process. This is enough
to fool the autonomous spreading malware and make it believe that it can actu-
ally exploit our honeypot. This is an example of the deception techniques used in
honeypot-based research. With the help of vulnerability modules we trigger an in-
coming exploitation attempt and eventually we receive the actual payload, which
is then passed to the next type of modules.

Shellcode parsing modules analyze the received payload and extract automat-
ically relevant information about the exploitation attempt. Currently, only one

The Nepenthes Platform: An Efficient Approach to Collect Malware 171

shellcode parsing module is capable of analyzing all shellcodes we have found
in the wild. The module works in the following way: first, it tries to decode
the shellcode. Most of the shellcodes are encrypted with an XOR encoder. An
XOR decoder is a common way to encrypt the actual shellcode in order to evade
intrusion detection systems and avoid string processing functions. Afterwards
the module decodes the code itself according to the computed key and then
applies some pattern detection, e.g., CreateProcess() or generic URL detec-
tion patterns. The results are further analyzed (e.g., to extract credentials) and
if enough information can be reconstructed to download the malware from the
remote location, this information is passed to the next kind of modules. A shell-
code module that parses shellcodes in an even more generic way by emulating a
Windows operating system environment is currently in development.

Fetch modules have the task of downloading files from the remote location.
Currently, there are seven different fetch modules. The protocols TFTP, HTTP,
FTP and csend/creceive (an IRC-based submission method) are supported. Since
some kinds of autonomous spreading malware use custom protocols for propa-
gation, there are also fetch modules to handle these custom protocols. Fetching
files from a remote location implies that the system running nepenthes contacts
other machines in the Internet. From an ethical point of view, this could be a
problem since systems not under our control are contacted. A normal computer
system that is infected by autonomous spreading malware would react in the
same way, therefore we have no concerns fetching the malware from the remote
location. However, it is possible to turn off the fetch modules. Then the system
collects information about exploitation attempts and can still be useful as some
kind of warning system.

Finally, submission modules handle successfully downloaded files. Currently
there are four different types of submission modules:

– A module that stores the file in a configurable location on the filesystem and
is also capable of changing the ownership.

– A module that submits the file to a central database to enable distributed
sensors with central logging interface.

– A module that submits the file to another nepenthes instance to enable a
hierarchical structure of nepenthes sensors.

– A module that submits the file to an antivirus vendor for further analysis.

Certain malware does not spread by downloading shellcodes, but by providing
a shell to the attacker. Therefore it is sometimes required to spawn and emulate
a Windows shell. nepenthes offers shell emulation by emulating a rudimentary
Windows shell to enable a shell interaction for the attacker. Several commands
can be interpreted and batch file execution is supported. Such a limited sim-
ulation has proven to be sufficient to trick automated attacks. Based on the
collected information from the shell session, it is then possible to also download
the corresponding malware.

A common technique to infect a host via a shell is to write commands for
downloading and executing malware into a temporary batch file and then execute

172 P. Baecher et al.

Fig. 2. Setup of distributed nepenthes platform

it. Therefore, a virtual filesystem is implemented to enable this type of attacks.
This helps in scalability since files are only created on demand, similar to copy-
on-write: when the incoming attack tries to create a file, this file is created
on demand and subsequently, the attacking process can modify and access it.
All this is done virtually, to enable a higher efficiency. Every shell session has
its own virtual filesystem, so that concurrent infection sessions using similar
exploits do not infere with each other. The temporary file is analyzed after the
attacking process has finished and based on this information, the malware is
downloaded from the Internet automatically. This mechanism is similar to cages
in Symantec’s ManTrap honeypot solution [18].

Nepenthes has several advantages compared to other solutions to automati-
cally collect malware. On the one hand, nepenthes is a very stable architecture.
A wrong offset or a broken exploit will not lead to crashes, as opposed to other
attempts in this area. On the other hand, nepenthes scales well to even a large
number of IP addresses in parallel. By hierarchical deployment, it is very easy
to cover even larger parts of the network space with only limited resources.

2.2 Flexible Deployment

Nepenthes offers a very flexible design that allows a wide array of possible setups.
The most simple setup is a local nepenthes sensor, deployed in a LAN. It collects
information about malicious, local traffic and stores the information on the local
hard disc. More advanced uses of nepenthes are possible with a distributed ap-
proach. Figure 2 illustrates a possible setup of a distributed nepenthes platform:
a local nepenthes sensor in a LAN collects information about suspicious traffic

The Nepenthes Platform: An Efficient Approach to Collect Malware 173

there. This sensor stores the collected information in a local database and also
forwards all information to another nepenthes sensor.

A second setup is a hierarchical one (depicted in the middle of Figure 2): a
distributed structure with several levels is build and each level sends the col-
lected information to the sensor at the higher level. In such a way, load can be
distributed across several sensor or information about different network ranges
can be collected in a central and efficient way.

Thirdly, traffic can be re-routed from a LAN to a remote nepenthes sensor
with the help of a VPN tunnel (depicted on the right). This approach is similar
to the network setup of the Collapsar project [9]. It enables a flexible setup for
network attack detention. Furthermore, it simplifies deployment and requires
less maintenance.

2.3 Capturing New Exploits

An important factor of a honeypot-based system is also the ability to detect
and respond to zero-day (0day) attacks, e.g., attack that exploit an unknown
vulnerability or at least a vulnerability for which no patch is available. The
nepenthes platform also has the capability to respond to this kind of threat. The
two basic blocks for this ability are the portwatch and bridging modules. These
modules can track network traffic at network ports and help in the analysis of
new exploits. By capturing the traffic with the help of the portwatch module,
we can at least learn more about any new threat since we have already a full
network capture of the first few packets. In addition, nepenthes can be extended
to really handle 0day attacks. If a new exploit targets the nepenthes platform,
it will trigger the first steps of a vulnerability module. At some point, the new
exploit will diverge from the emulation. This divergence can be detected and
then we perform a switch (hot swap) to either a real honeypot or some kind of
specialized system for dynamic taint analysis, e.g. Argos [13]. This second system
is an instance of the system nepenthes is emulating vulnerabilities for and shares
the internal state with it. This approach is similar to shadow honeypots [1].

With the help of the nepenthes platform, we can efficiently handle all known
exploits. Once something new is propagating in the wild, we switch from our
emulation to a real honeypot to capture all aspects of the new attack. From
the captured information, we are also able to respond to this new threat and
automatically extract response patterns. The mechanism behind this is rather
simple, but effective. We record the network flow and extract from this flow the
necessary information to build a full vulnerability module. The whole mechanism
could presumably also be extended to build a fully automated system to respond
to new threats. Since the honeypot has by definition no false positives, we can
assume that all traffic is malicious. For known malicious traffic, we can respond
with the correct replies. For unknown malicious code, we need to learn the correct
replies with the help of a shadow honeypot. Based on the correct replies, a
learning algorithm could be used to extract all dynamic data inside the replies
(e.g., timestamps) and a correct vulnerability module could be built on-the-fly.
These ideas are currently in development.

174 P. Baecher et al.

2.4 Limitations

We also identified several limitations of the nepenthes platform which we present
in this section. First, nepenthes is only capable of collecting malware that is au-
tonomously spreading, i.e., that propagates further by scanning for vulnerable
systems and then exploits them. This is a limitation that nepenthes has in com-
mon with most honeypot-based approaches: a web site that contains a browser
exploit which is only triggered when the web site is accessed will not be de-
tected with ordinary honeypots due to their passive nature. The way out of
this dilemma is to use client-side honeypots like HoneyMonkeys [22] or Kathy
Wang’s honeyclient [21] to detect this kind of attacks. The modular architecture
of nepenthes would enable this kind of vulnerability modules, but this is not the
aim of the nepenthes platform. The results in Section 3.2 show that nepenthes
is rather able to collect many different types of bots [7].

Secondly, malware that propagates by using a hitlist to find vulnerable systems
[17] is hard to detect with nepenthes. This is a limitation that nepenthes has in
common with all current honeypot-based systems and also other approaches in
the area of vulnerability assessment. Here, the solution of the problem would be
to become part of the hitlist. If for example the malware generates its hitlist by
querying a search engine for vulnerable systems, the trick would be to smuggle
a honeypot system in the index of the search engine. Currently it is unclear how
such an advertisement could be implemented within the nepenthes platform.

Thirdly, it is possible to remotely detect the presence of nepenthes: since a ne-
penthes instance normally emulates a large number of vulnerabilities and thus
opens many TCP ports, an attacker could become suspicious during the recon-
naissance phase. Current automated malware does not check the plausibility of
the target, but future malware could do so. To mitigate this problem, the stealth-
iness can be improved by using only the vulnerability modules which belong to a
certain configuration of a real system, e.g., only vulnerability modules which emu-
late vulnerabilities for Windows 2000 Service Pack 1. The tradeoff lies in reduced
expressiveness and leads to fewer samples collected. A similar problem with the
stealthiness appears if the results obtained by running nepenthes are published
unmodified. To mitigate such a risk, we refer to the solution outlined in [16].

Moreover, nepenthes is not exhaustive in terms of analyzing which exploits a
particular piece of malware is targeting. This limitation is due to the fact that
we respond to an incoming exploitation attempt and can just react on these
network pakets. Once we have downloaded a binary executable of the malware,
static or dynamic analysis of this binary can overcome this limitation. This is,
however, out of the scope of the current nepenthes implementation.

3 Results

Vulnerability modules are one of the most important components of the whole
nepenthes architecture since they take care of the emulation process. At the
time of this writing, there are 21 vulnerability modules in total. Table 1 gives
an overview of selected available modules, including a reference to the related
security advisory or a brief summary of its function.

The Nepenthes Platform: An Efficient Approach to Collect Malware 175

Table 1. Overview of selected emulated vulnerable services

Name Reference
vuln-asn1 ASN .1 Vulnerability Could Allow Code Execution (MS04-007)
vuln-bagle Emulation of backdoor from Bagle worm
vuln-dcom Buffer Overrun In RPC Interface (MS03-026)
vuln-iis IIS SSL Vulnerability (MS04-011 and CAN-2004-0120)
vuln-kuang2 Emulation of backdoor from Kuang2 worm
vuln-lsass LSASS vulnerability (MS04-011 and CAN-2003-0533)
vuln-msdtc Vulnerabilities in MSDTC Could Allow Remote Code Execution

(MS05-051)
vuln-msmq Vulnerability in Message Queuing Could Allow Code Execution

(MS05-017)
vuln-mssql Buffer Overruns in SQL Server 2000 Resolution Service (MS02-039)
vuln-mydoom Emulation of backdoor from myDoom/Novarg worm
vuln-optix Emulation of backdoor from Optix Pro trojan
vuln-pnp Vulnerability in Plug and Play Could Allow Remote Code Execution

(MS05-039)
vuln-sasserftpd Sasser Worm FTP Server Buffer Overflow (OSVDB ID: 6197)
vuln-ssh Logging of SSH password brute-forcing attacks
vuln-sub7 Emulation of backdoor from Sub7 trojan
vuln-wins Vulnerability in WINS Could Allow Remote Code Execution

(MS04-045)

This selection of emulated vulnerabilities has proven to be sufficient to handle
most of the autonomous spreading malware we have observed in the wild. As
we show in the remainder of this section, these modules allows us to learn more
about the propagating malware. However, if a certain packet flow cannot be han-
dled by any vulnerability module, all collected information is stored on hard disc
to facilitate later analysis. This allows us to detect changes in attack patterns,
is an indicator of new trends, and helps us to develop new modules. In case of
a 0day, i.e., an vulnerability for which no information is publicly available, this
can enable a fast analysis since the first stages of the attack have already been
captured. As outlined in Section 2.3, this can also be extended to really handle
0day attacks. A drackback of this approach is that an attacker can send random
data to a network port and nepenthes will store this data on hard disc. This
can lead to a Denial-of-Service condition if the attacker sends large amount of
bogus network traffic, however we did not experience any problems up to now.
In addition, this problem can be mitigated by implementing upper bounds on
the amount of traffic stored on hard disk.

Developing a new vulnerability modules to emulate a novel security vulnera-
bility or to capture a propagating 0day exploit is a straightforward process and
demands only little effort. On average, writing of less than 500 lines of C++ code
(including comments and blank lines) is required to implement the needed func-
tionality. This task can be carried out with some experience in a short amount
of time, sometimes only requiring a couple of minutes.

176 P. Baecher et al.

As an example, we want to present our experience with the recent Zotob worm:
in MS05-039, Microsoft announced a security vulnerability in the Plug and Play
service of Windows 2000 and Windows XP at August 09, 2005. This vulnerability
is rated critical for Windows 2000 since it allows remote code execution, resulting
in a remote system compromise. Two days later, a proof-of-concept exploit for this
vulnerabilitywas released.This exploit code contains enough information to imple-
ment a vulnerability module for nepenthes, so that malware propagating with the
help of MS05-039 can be captured with this module. Without the proof-of-concept
exploit, it would have been possible to build a vulnerability module only based on
the information provided in the security advisory by Microsoft. But this process
would be more complex since it would require the development of an attack vector,
which could then be emulated as a vulnerability module. Nevertheless, this is fea-
sible. After all, attackers also implemented a proof-of-concept exploit solely on the
basis of the information in the security bulletin.Another three days after the release
of the proof-of-concept exploit – at August 14 – a worm named Zotob started to ex-
ploit this vulnerability in the wild. So only five days after the release of the security
advisory, the first bot propagated with the help of this vulnerability. But at this
point in time, nepenthes was already capable of capturing such a worm. Similarly,
the process of emulating the vulnerability in Microsoft Distributed Transaction
Coordinator (MSDTC), published in Microsoft security bulletin MS05-051, took
only a small amount of time.

3.1 Scalability

In this section, we want to evaluate the scalability of the nepenthes platform.
With the help of several metrics we investigate, how effective our approach is,
and how many honeypot systems we can emulate with our implementation.

As noted in [20], a “key factor to determine the scalability of a honeypot
is the number of honeypots required to handle the traffic from a particular IP
address range”. To cover a /16 network, a naive approach would be to install
over 64,000 honeypots to cover the whole network range. This would of course
be a waste of resources, since only a limited amount of IP addresses receives
network traffic at any given point in time. The low-interaction honeypot honeyd
is reported to be able to simulate a whole /16 network on just a single computer.
The expressiveness of this tool is low since it only emulates the TCP/IP stack
of an arbitrary operating system. In contrast to this, nepenthes is capable of
emulating several vulnerabilities at application level.

To evaluate the scalability of nepenthes, we have used the following setup: the
testbed is a commercial off-the-shelf (COTS) system with a 2.4GHz Pentium III,
2 GB of physical memory, and 100 MB Ethernet NIC running Debian Linux 3.0
and version 2.6.12 of the Linux kernel. This system runs nepenthes 0.1.5 in
default configuration. This means that all 21 vulnerability modules are used,
resulting in a total of 29 TCP sockets on which nepenthes emulates vulnerable
services.

We tested the implementation with a varying number of emulated systems,
ranging from only 256 honeypots up to 32,000 emulated honeypots. For each

The Nepenthes Platform: An Efficient Approach to Collect Malware 177

configuration, we measured the number of established TCP connections, the
system load, and the memory consumption of nepenthes, for a time interval
of one hour. We repeated this measurement several times in different order to
cancel out statistical unsteadiness. Such an unsteadiness could for example be
caused by diurnal properties of malware epidemics [5] or bursts in the network
traffic. The average value of all measurements is then an estimation of the spe-
cific metric we are interested in. Figures 3 (a) and (b) give an overview of
our results. In each figure, the x-axis represents the number of IP addresses
assigned to nepenthes running on the testbed machine. The y-axis reprents
the number of established TCP connections (a) and the average system load
(b), respectively. We forbear from plotting the memory consumption since it
is low (less than 20 MB for even a large number of simulated IP addresses),
and nearly independent from the number of established TCP connections. In
the first figure we see that the scalability is nearly linear up to 8,192 IP ad-
dresses. This corresponds to the system load, which is below 1 (figure b). Af-
terwards, the number of established TCP connections is degreasing, which is
caused by a system load above 1, i.e., the system is fully occupied with I/O
operations.

In the following, we take a closer look at the long-time performance of the ne-
penthes platform emulating a whole /18 network, i.e., about 16,000 IP addresses.
We have this setup up and running for more then five months and it runs quite
stable. There are seldom kernel crashes, but these are caused by instabilities in
the Linux kernel handling such a large amount of IP addresses in parallel. Apart
from this, nepenthes itself is a mature system. To get an overview of the over-
all performance of this platform, we present some statistics on the performance
first. In Figure 4 (a) we see the five minute average of established TCP connec-
tions for an instance of nepenthes running on a /18 network for 30 hours. The
number of established TCP connections is on average 796, with peaks of up to
1172. The lowest values are around 600 concurrent established connections, so
the volatitlity is rather high. Our experience shows that burst of more than 1300
concurrent established TCP connections are tolerable on this system. Even more
connections could be handled with better hardware: currently, the average load
of the system is slightly above 1, i.e., the processor is never idle. For a one hour
period, we observed more than 180,000 SYN packets, which could potentially be
handled by nepenthes.

Figure 4 (b) depicts the five minute average of network throughput. Green is
the amount of incoming traffic, with an average of 308.8 kB/s and a maximum
of 369.7 kB/s. The outgoing traffic is displayed with a blue line. The average of
outgoing traffic is 86.6 kB/s, whereas the peak lies at 105.4 kB/s. So despite a
rather high volatility in concurrent TCP connections, the network throughput
is rather stable.

We now take a closer look at the long-time performance of this nepenthes
instance regarding the download of new samples collected. A five week period is
the data foundation of the following statistics. Figure 5 depicts the daily number
of download attempts and successful downloads.

178 P. Baecher et al.

(a)

(b)

Fig. 3. Number of concurrent established TCP connections (a) and system load (b) in
relation to number of IP addresses assigned to nepenthes

3.2 Statistics for Collected Malware

In this section, we analyze the malware we have collected with our honeynet
platform. Since nepenthes is optimized to collect malware in an automated way,
this is the vast amount of information we collect with the help of this tool. A
human attacker could also try to exploit our honeynet platform, but he would
presumably notice quickly that he is just attacking a low-interaction honeypot
since we only emulate the necessary parts of each vulnerable service and the
command shell only emulates the commands typically issued by malware. So
we concentrate on automated attacks and show how effective and efficient our
approach is.

With the help of the nepenthes platform, we are able to automatically collect
malware on a large-scale basis. We are running nepenthes in several different
networks and centrally store the malware we have downloaded. Figure 5 (a) and
(b) show the cumulative number of download attempts and successful downloads

The Nepenthes Platform: An Efficient Approach to Collect Malware 179

(a)

(b)

Fig. 4. Five minute average of established TCP connections (a) and network through-
put (b) for nepenthes running on a /18 network in a period of 33 hours

(a)

(b)

Fig. 5. Number of malware download attempts (a) and successful downloaded files (b)
for nepenthes running on a /18 network in a period of 33 hours

for a nepenthes platform assigned to a /18 network. Within about 33 hours, more
than 5.5 million exploitation attempts are effectively handled by this system (see
Figure 5 (a)). That means that so often the download modules are triggered to
start a download. Often these download attempts fail, e.g., because the malware
tries to download a copy of itself from a server that is meanwhile taken down.
Figure 5 (b) depicts the number of successful download, i.e., nepenthes success-
fully download a piece of malware. Within these 33 hours, about 1.5 million
binaries are downloaded. Most of these binaries are duplicates, but nepenthes
has to issue a download and is only afterwards able to decide whether the binary
is actually a new one. In this particular period, we were able to download 508
new unique binaries.

In a four month period, we have collected more than 15,500 unique binaries,
corresponding to about 1,400 MB of data. Uniqueness in this context is based on
different MD5 sums of the collected binaries. All of the files we have collected are

180 P. Baecher et al.

Table 2. Detection rates of different antivirus engines

AV engine 1 AV engine 2 AV engine 3 AV engine 4
Complete set (14,414 binaries) 85.0% 85.3% 90.2% 78.1%
Latest 24 hours (460 binaries) 82.6% 77.8% 84.1% 73.1%

Table 3. Top ten types of collected malware

Place Name according to ClamAV Number of captured samples
1 Worm.Padobot.M 1136
2 Trojan.Gobot-3 906
3 Worm.Padobot.N 698
4 Trojan.Gobot-4 639
5 Trojan.Poebot-3 540
6 Trojan.IRCBot-16 501
7 Worm.Padobot.P 497
8 Trojan.Downloader.Delf-35 442
9 Trojan.Mybot-1411 386

10 Trojan.Ghostbot.A 357

PE or MZ files, i.e., binaries targeting systems running Windows as operating
system. This is no surprise since nepenthes currently focuses on emulating only
vulnerabilities of Windows.

For the binaries we have collected, we found that about 7% of them are
broken, i.e., some part of the header- or body-structure is corrupted. Further
analysis showed that this is mainly caused by faulty propagation attempts. If
the malware for examples spreads further with the help of TFTP (Trivial File
Transfer Protocol), this transfer can be faulty since TFTP relies on the unreliable
UDP protocol. Furthermore, a download can lead to a corrupted binary if the
attacking station stops the infection process, e.g., because it is disconnected from
the Internet.

The remaining 14,414 binaries are analyzed with different antivirus (AV) en-
gines. Since we know that each binary tried to propagate further, we can assume
that each binary is malicious. Thus a perfect AV engine should detect 100% of
these samples as malicious. However, we can show that the current signature-
based AV engines are far away from being perfect. Table 2 gives an overview of
the results we obtained with four different AV engines. If we scan the whole set
of more than 14,000 binaries, we see that the results range between 80 and 90
%, thus all AV solutions are missing a significant amount of malware. If we scan
only the latest files, i.e., files that we have captured within the last 24 hours, the
statistics get even worse. Table 2 gives also an overview of the detection rate for
460 unique files that were captured within 24 hours. We see that the detection
rates are lower compared to the overall rate. Thus “fresh” malware is often not
detected since the AV vendors do not have signatures for this new threats.

Table 3 gives an overview of the top ten malware types we collected. We
obtained this results by scanning the malware samples with the free AV engine

The Nepenthes Platform: An Efficient Approach to Collect Malware 181

ClamAV. In total, we could identify 642 different types of malware. The table
shows that bots clearly dominate the samples we collect. This is mainly caused
by the large number of botnets in the wild and the aggressive spreading of the
individual bots. Interestingly is also the number of captured samples compared
to the malware name. Please remember that we classify a samples as unique with
the help of the MD5 sum. This means that 1136 different samples are detected
as Worm.Padobot.M.

4 Future Work

In this section we want to give an overview of further work in the area of ne-
penthes and large-scale honeynet deployments. An extension of the nepenthes
platform to support UDP-based exploits is straightforward. Most of these ex-
ploits are “single-shot” attempts that just send one UDP packet. Therefore it is
only necessary to capture the payload and analyze it, we do not need to emulate
any service at all. However, if the exploit requires interaction with the honey-
pot, we can use the same concept as for TCP-based exploits: we just emulate
the necessary parts and trick the exploit.

The current nepenthes platform is another building block towards an auto-
mated system to effectively stop remote control networks. Such networks are
needed by attackers to coordinate automated activity, e.g. to send commands
to a large number of compromised machines. An example of such a remote con-
trol network is a botnet, i.e., a network of compromised machines that can be
remotely controlled by an attacker. The whole process of stopping such a net-
work is depicted in Figure 6. With the help of nepenthes, we can now automate
step 1 to a high degree. Without supervision, this platform can collect malware
that currently propagates within a network. We are currently working on step
2 - an automated mechanism to extract the sensitive information of a remote
control network from a given binary. With the help of honeypots, we can au-
tomate this step to a certain degree. In addition, we explore possible ways to
use sandbox-like techniques to extract this information during runtime. Thirdly,
we can use static binary analysis, but it seems like this approach cannot be
automated easily. Step 3 in the whole process can be automated as outlined in
[6]: we impersonate as a legal victim and infiltrate the network. This allows us
to study the attacker and his techniques, collect more information about other
victims, or learn about new trends. Finally, step 4 can be automated to a limited
degree with the help of techniques such as stooping the communication channel
between victims and remote control server, or other ways to shut-down the main
server itself [8]. This step also needs some further research, but it seems viable
that this can also be automated to a high degree. The whole process would then
allow us to automatically defend against these kind of attacks in a pro-active
manner. An automated system is desirable since this kind of attacks is a growing
threat within the attacker community.

We are currently in the process of deploying a network intrusion detection
system (NIDS) based on nepenthes. In cooperation with SurfNET, we want
to explore feasible ways of using honeypots as a new kind of IDS. The goals

182 P. Baecher et al.

Fig. 6. Four steps to stop remote control networks

of this project are manifold: one the one hand, the system should enable us to
understand the types and amount of malicious traffic within a LAN. In addition,
it should stop spreading worms and other kinds of malware. The literature in
this field shows some ways how to achieve this goal with honeypots [14]. On the
other hand, the solution must be scalable and easy to manage and maintain.
Zero-maintenance of the individual sensors is desirable and a missing feature
of existing solutions. Our current experience shows that nepenthes scales well
to a couple of thousand honeypots with just one physical machine. In addition,
a hierarchical setup can be used to distribute load if an even larger setup is
needed. The nepenthes platform can also scale to high-speed networks due to
its limited amount of memory resource and only moderate amount of processing
resources needed. Furthermore, the proposed NIDS should have close to no false
positives. Up to now, we did not have any false positives with our nepenthes
setup, so this goal seems to be reachable. This is mainly due to the assumption
of honeypots: all network traffic is suspicious. False negatives of our platform
generate a log-entry and all captured information about network traffic that
could not be handled are saved. This way, all possible information to help in
avoiding false negatives is already available for analysis by a human.

Finally, an empirical analysis of the effectiveness of a distributed nepenthes
setup is desirable. Nepenthes offers the possibility of distributed deployment
as outlined in Section 2.2 and a recent study concludes that distributed worm
monitoring offers several advantages in regards to detection time [15]. Those
results are obtained with the help of captured packet traces. With the help of
nepenthes, the results could be verified on live data. Additionally, such a study
would reveal to what degree a certain piece of malware spreads locally.

5 Conclusion

In this paper we introduced the nepenthes platform. This is a new kind of
honeypot-based system that specializes in large-scale malware collection. Ne-
penthes inherits the scalability of low-interaction honeypots but at the same
time offers a high degree of expressiveness. This goal is reached by emulating
only the vulnerable parts of a service. This leads to an efficient and effective so-
lution that offers many advantages compared to other honeypot-based solutions.
The main advantage is the flexibility: an ordinary honeypot solution has to use
a fixed configuration. If an incoming exploit targets another configuration, this

The Nepenthes Platform: An Efficient Approach to Collect Malware 183

exploit will fail. In contrast to this, one instance of nepenthes can be exploited
by a wide array of exploits since nepenthes is flexible in the emulation process.
It can decide during runtime which offset is the correct one to get successfully
exploited. Several other factors like virtual filesystem and shell emulation con-
tribute further to the enhanced scalability. With only one physical machine we
are able to listen to more than 16,000 IP addresses in parallel.

We have collected millions of malware samples currently spreading in the wild.
A further examination of more than 14,000 unique and valid binaries showed that
current anti-virus engines have some limitations and fail to detect all malware
propagating in the wild. Moreover, we presented some ideas how nepenthes could
be used as the basic block of an automated system to stop botnets or as part of
a next-generation network intrusion detection system.

References

1. K. Anagnostakis, S. Sidiroglou, P. Akritidis, K. Xinidis, E. Markatos, and
A. Keromytis. Detecting Targeted Attacks Using Shadow Honeypots. In Pro-
ceedings of the 14th USENIX Security Symposium, 2005.

2. Michael Bailey, Evan Cooke, Farnam Jahanian, Jose Nazario, and David Watson.
The Internet Motion Sensor: A Distributed Blackhole Monitoring System. In Pro-
ceedings of the 12th Annual Network and Distributed System Security Symposium
(NDSS 05), 2005.

3. Edward Balas and Camilo Viecco. Towards a Third Generation Data Capture Ar-
chitecture for Honeynets. In Proceeedings of the 6th IEEE Information Assurance
Workshop, West Point, 2005. IEEE.

4. Team Cymru: The Darknet Project. Internet: http://www.cymru.com/Darknet/,
Accessed: 2006.

5. David Dagon, Cliff Zou, and Wenke Lee. Modeling Botnet Propagation Using Time
Zones. In Proceedings of the 13th Annual Network and Distributed System Security
Symposium (NDSS 06), 2006.

6. Felix Freiling, Thorsten Holz, and Georg Wicherski. Botnet Tracking: Exploring a
Root-Cause Methodology to Prevent Distributed Denial-of-Service Attacks. In 10th
European Symposium On Research In Computer Security, ESORICS05, Milano,
Italy, September 12-14, 2005, Proceedings, Lecture Notes in Computer Science.
Springer, 2005.

7. Thorsten Holz. A Short Visit to the Bot Zoo. IEEE Security & Privacy, 3(3):76–79,
2005.

8. Thorsten Holz. Spying With Bots. USENIX ;login:, 30(6):18–23, 2005.
9. Xuxian Jiang and Dongyan Xu. Collapsar: A vm-based architecture for network

attack detention center. In Proceedings of 13th USENIX Security Symposium, 2004.
10. Bill McCarty. Automated Identity Theft. IEEE Security & Privacy, 1(5):89–92,

2003.
11. David Moore, Colleen Shannon, Geoffrey M. Voelker, and Stefan Savage. Network

Telescopes. Technical Report TR-2004-04, CAIDA, 2004.
12. David Moore, Geoffrey M. Voelker, and Stefan Savage. Inferring Internet Denial-of-

Service Activity. In Proceedings of the 10th USENIX Security Symposium, August
2001.

13. Georgios Portokalidis. Argos: An Emulator for Capturing Zero-Day Attacks. In-
ternet: http://www.few.vu.nl/∼porto/argos/, Accessed: 2006.

184 P. Baecher et al.

14. Niels Provos. A Virtual Honeypot Framework. In Proceedings of 13th USENIX
Security Symposium, pages 1–14, 2004.

15. Moheeb Abu Rajab and Andreas Terzis. On the Effectiveness of Distributed Worm
Monitoring. In Proceedings of the 14th USENIX Security Symposium, 2005.

16. Yoichi Shinoda, Ko Ikai, and Motomu Itoh. Vulnerabilities of Passive Internet
Threat Monitors. In Proceedings of the 14th USENIX Security Symposium, 2005.

17. Stuart Staniford, David Moore, Vern Paxson, and Nicholas Weaver. The Top Speed
of Flash Worms. In ACM Workshop on Rapid Malcode (WORM), 2004.

18. Symantec. Mantrap. Internet: http://www.symantec.com/, Accessed: 2006.
19. Nicolas Vanderavero, Xavier Brouckaert, Olivier Bonaventure, and Baudouin Le

Charlier. The HoneyTank : a scalable approach to collect malicious Internet traffic.
In Proceedings of the International Infrastructure Survivability Workshop, 2004.

20. Michael Vrable, Justin Ma, Jay Chen, David Moore, Erik Vandekieft, Alex C. Sno-
eren, Geoffrey M. Voelker, and Stefan Savage. Scalability, Fidelity, and Contain-
ment in the Potemkin Virtual Honeyfarm. In Proceedings of the ACM Symposium
on Operating System Principles (SOSP), 2005.

21. Kathy Wang. Honeyclient. Internet: http://honeyclient.org, Accessed: 2006.
22. Yi-Min Wang, Doug Beck, Chad Verbowski, Shuo Chen, Sam King, Xuxian Jiang,

and Roussi Roussev. Automated web patrol with strider honeymonkeys: Finding
web sites that exploit browser vulnerabilities. In Proceedings of the 13th Network
and Distributed System Security Symposium (NDSS 06), 2006.

23. Vinod Yegneswaran, Paul Barford, and Dave Plonka. On the Design and Use of In-
ternet Sinks for Network Abuse Monitoring. In Proceedings of the 7th International
Symposium on Recent Advances in Intrusion Detection (RAID), 2004.

Automatic Handling of Protocol Dependencies
and Reaction to 0-Day Attacks with ScriptGen

Based Honeypots

Corrado Leita1, Marc Dacier1, and Frederic Massicotte2

1 Institut Eurecom, Sophia Antipolis, France
{leita, dacier}@eurecom.fr

2 Communications Research Centre, Ottawa, Canada
fmassico@crc.ca

Abstract. Spitzner proposed to classify honeypots into low, medium
and high interaction ones. Several instances of low interaction exist, such
as honeyd, as well as high interaction, such as GenII. Medium interaction
systems have recently received increased attention. ScriptGen and Role-
Player, for instance, are as talkative as a high interaction system while
limiting the associated risks. In this paper, we do build upon the work
we have proposed on ScriptGen to automatically create honeyd scripts
able to interact with attack tools without relying on any a-priori knowl-
edge of the protocols involved. The main contributions of this paper are
threefold. First, we propose a solution to detect and handle so-called
intra-protocol dependencies. Second, we do the same for inter-protocols
dependencies. Last but not least, we show how, by modifying our initial
refinement analysis, we can, on the fly, generate new scripts as new at-
tacks, i.e. 0-day, show up. As few as 50 samples of attacks, i.e. less than
one per platform we have currently deployed in the world, is enough to
produce a script that can then automatically enrich all these platforms.

1 Introduction

Honeypots arepowerful systems for informationgathering and learning.L.Spitzner
in [1] has defined a honeypot as “a resource whose value is being in attacked or
compromised. This means, that a honeypot is expected to get probed, attacked
and potentially exploited. Honeypots do not fix anything. They provide us with
additional, valuable information”. In [1] honeypots are classified according to the
degree an attacker can interact with the operating system.

In high interaction honeypots, the attacker interacts with real operating sys-
tems usually deployed through virtual emulators. This ensures a very reliable
source of information, but also brings some major drawbacks. High interaction
honeypots are real hosts and therefore can be compromised: the maintenance
cost and the risk involved in them is high. Also, the amount of resources re-
quired to deploy such honeypots is usually substantial.

In low interaction honeypots such as honeyd [2], the attacker interacts with sim-
ple programs that pretend to behave as a real operating system throughvery simple

D. Zamboni and C. Kruegel (Eds.): RAID 2006, LNCS 4219, pp. 185–205, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

186 C. Leita, M. Dacier, and F. Massicotte

approaches.Honeyd uses a set of scripts to implement responders to the most com-
mon services. Given a request, these scripts try to produce a response that mimics
the behavior of the emulated server. This approach has two major drawbacks. On
the one hand, the manual generation of these scripts is a tedious and sometimes
impossible task due to the unavailability of protocol specifications. On the other
hand, they are often not able to correctly handle complex protocols, limiting the
length of the conversation that the honeypot is able to carry on with the client.
Since many exploits deliver the malicious payload only after an exchange of sev-
eral packets with the server, low interaction honeypots are often not able to carry
on the conversation long enough to discriminate between different types of activi-
ties. For instance, in our experience within the Leurre.comproject [3,4,5,6,7,8], due
to the lack of emulation scripts we have been able to observe only the first request
of many interesting activities such as the spread of the Blaster worm [9]. But since
Blaster sends the exploit in the second request of its dialog on port 135, we have
never been able to observe such a payload. Therefore it becomes very difficult to
distinguish Blaster’s activity from other activities targeting the same port using
solely the payload as a discriminating factor.

The lack of emulation scripts led us to investigate the feasibility of automat-
ically generating emulators starting from samples of protocol interaction using
the ScriptGen framework [10]. We showed how it was possible to take advantage
of the statistical diversity of a large number of training samples to rebuild a par-
tial notion of semantics. This can be done in a completely protocol-independent
way: no assumption is made on the protocol behavior, nor on its semantics. Our
first results showed how ScriptGen had been able to successfully carry on a small
segment of conversation with the clients, proving the validity of the method but
also showing the need to improve emulation.

In this paper we take a big step forward, showing how it is possible to dra-
matically increase the emulation quality by coupling the seminal work presented
in [10] with a number of novel contributions. Specifically, this paper presents i)
an innovative algorithm to infer dependencies in the content of protocol mes-
sages (intra-protocol dependencies) without requiring the knowledge of protocol
semantics; ii) a new algorithm to generate relations in the interaction of multi-
ple TCP sessions (inter-protocols dependencies); iii) a proxying algorithm that
allows a ScriptGen honeypot to automatically build a training set to refine its
knowledge of the protocol reacting to the detection of new activities.

This paper is organized as follows: section 2 gives an overview on the current
state of the art in the field; section 3introduces themain concepts and contributions
of this paper; section 4 gives an in-depth description of the novel contributions to
the ScriptGen framework; section 5 shows the experimental validation performed
on the new ScriptGen emulators; section 6 concludes the paper.

2 State of the Art

The contributions of this paper put their roots in a seminal work presented in
[10]. ScriptGen is a method that aims at building protocol emulators in a com-
pletely automated and protocol-independent way. This is possible through an

Automatic Handling of Protocol Dependencies 187

algorithm detailed in [10] called region analysis. Region analysis uses bioinfor-
matics algorithms [11] as primitives to rebuild protocol semantics and to raise
the training data to a higher level of abstraction. This is done in a completely
protocol-independent fashion: no assumption is made on the protocol seman-
tics or on the protocol behavior. This allows us to build emulators for protocols
whose specification is not available or partially unknown. In [10] we validated
the approach, and we identified a number of limitations that were preventing
ScriptGen emulators from correctly carrying on complete conversations with a
client.

Shortly after our initial publication, Cui et al. presented the results of a sim-
ilar approach, named RolePlayer [12], carried out in parallel to ours. These
authors have the same goals in mind but have imposed different constraints
on themselves. RolePlayer uses as input two cleaned and well-chosen scripts.
These scripts are training samples of the conversation that must be emulated.
As ScriptGen does, RolePlayer uses bioinformatics algorithms to align bytes and
delimit fields inside the protocol byte stream. RolePlayer gives semantic value
to the various fields using additional information (IP addresses, host names used
in the conversation) and a simple “cookbook” of rules to give an interpreta-
tion to the various fields. This “cookbook” is a set of heuristics deduced from
observations made on various known protocols.

The RolePlayer approach offers a very elegant solution but it is worth noting
that it is orthogonal to ScriptGen’s philosophy and shows a number of limita-
tions. First of all, the usage of only two scripts in the alignment phase requires
carefully chosen samples in order to avoid false deductions. This process can be
easily done by a human operator, but an automatic preparation of the training
set does not appear straightforward. Furthermore, it appears that the design of
well behaved samples precludes the usage of this technique for online creation
of scripts as we propose to do it in section 4.3. To accomplish the same pur-
pose, ScriptGen performs the analysis on a statistically significant number of
samples. ScriptGen exploits the statistical diversity of the samples to minimize
false deductions without requiring any sort of human intervention. As we will
show in this paper, this property is extremely interesting when implementing
automated learning of new activities. In fact, we will show in this paper how
ScriptGen is able to react to 0-day attacks, exploiting its characteristics to learn
the behavior of the new activity. It does so by building in a completely auto-
mated fashion a new training set and using it to refine its knowledge of the
protocol. For this to be possible, no human intervention must be necessary; the
process must be totally automated. ScriptGen, being completely automated and
protocol-agnostic, fulfills these requirements. As opposed to that, the additional
manual input required by RolePlayer to generate the emulators is a severe limi-
tation with respect to this objective. Also, RolePlayer takes advantage of a set
of heuristics that are deduced from the knowledge of existing protocols. Even if
these heuristics might be valid for a certain number of protocols, they restrict
the generality of the method itself by taking into consideration only the number
of well-known protocols for which these assumptions hold. Finally, RolePlayer as

188 C. Leita, M. Dacier, and F. Massicotte

Fig. 1. Simple example of semantic abstraction

described in [12] seems to be able to replay only a single script at a time. It does
not offer a structure to handle in parallel different protocol functional flows. A
ScriptGen emulator instead is able to map different activities to different paths
of the internal protocol state machine.

A completely different approach is instead followed in the context of the mw-
collect project [13,14], that has recently merged with the nepenthes project.
These tools use a set of vulnerability modules to attract bots, analyze their shell
code and use download modules to fetch the malware code from the attacking
bot. Currently, the vulnerability modules are manually handled and specific to
each known exploit, but a future integration of the ScriptGen approach with
these tools might lead to very interesting results.

3 Related Work and Novel Contributions

The work shown in this paper builds upon the work introduced in [10]. The
ScriptGen approach allows building protocol emulators in a protocol-indepen-
dent way: no assumption is made on protocol behavior, nor on its semantics.
The approach uses a set of training conversations between an attacker and a
real server to build a state machine representing the protocol language from
an application level point of view. Each state is labeled with the corresponding
server answer; each transition is labeled with client requests. When the emulator
receives a request from the client that matches the label of one of the outgoing
transitions from the current state, it moves to the corresponding future state and
uses its label to reply to the client. Since we are not assuming any knowledge of
protocol semantics, the client requests are seen as simple byte streams and they
are therefore too specific: the generated state machines would be unnecessarily
large and not able to handle any kind of variation from the data seen during
training. For this reason we introduced the region analysis algorithm, detailed
in [10]. This algorithm is able to take advantage of the statistical diversity of
the samples to identify the variable and fixed parts of the protocol stream, using

Automatic Handling of Protocol Dependencies 189

Fig. 2. The ScriptGen framework

bioinformatic algorithms. Using clustering and refinement techniques, the algo-
rithm aggregates the outgoing edges and produces as output a semantic-aware
representation of their value. The protocol stream is thus transformed in a se-
quence of mutating regions (groups of mutating bytes with no semantic value)
and fixed regions (groups of bytes whose content is considered as discriminat-
ing from a semantic point of view). Figure 1 shows an example of the semantic
abstraction introduced by region analysis: the algorithm is able to infer from
the statistical diversity of the samples part of the underlying protocol structure,
distinguishing the “LOGIN” command from the username. The LOGIN com-
mand will generate a fixed region and will be considered as discriminating in
determining the protocol functional behavior. The username instead will gen-
erate a mutating region and the content of the field will not be considered as
semantically discriminating.

We showed in [10] a preliminary validation of the method, that was able to
exchange a limited number of packets with several attacking sources. While these
first tests showed the validity of the method, they also underlined a number of
limitations and the need for additional enrichments to the initial work. This led
to the ScriptGen framework presented in this paper and represented in Figure
2. This paper introduces a set of novel algorithms aimed at circumventing the
limitations identified in [10] and demonstrates how to exploit the potentials of
this approach. These can be summarized as follows:

1. Support for intra-protocol dependencies. In many protocols, one of
the two peers involved in the conversation chooses a cookie value to be put
in the message. For instance, in NetBIOS Session Service the client chooses
a 16 bit transaction ID: for the server answer to be accepted, it must use the
same value in the corresponding protocol field.

190 C. Leita, M. Dacier, and F. Massicotte

2. Support for inter-protocol dependencies. In many different cases the
state of the emulation goes further than the single TCP session. For instance,
successfully running a buffer overflow attack on a certain port might open a
remote shell on a previously closed port. If that port has been open since the
beginning, the exploit might refuse to run. Also, multiple TCP sessions may
be interleaved (such as in FTP) generating dependencies between them.

3. Proxying and automated learning. The stateful approach and the struc-
ture of the state machine itself allows an extremely precise detection of new
activities. Every time that a request is received and no outgoing edge from
the current state matches with it, an alert can be triggered. Taking advan-
tage of a proxying algorithm to carry on the conversation with the client, it
is possible to build a training set to automatically refine the existing state
machine, thus reacting in a very precise way to 0-days attacks.

4 Dependencies and Proxies

4.1 Intra-protocol Dependencies

Examining the conversation between a source and a server we can identify two
different types of dependencies. We can observe dependencies in the content
of a TCP session (intra-protocol dependencies), such as the cookie field men-
tioned before, and dependencies between different TCP sessions (inter-protocols
dependencies). This first section focuses on the former.

In order to carry on a successful conversation with the client, it is impor-
tant to correctly handle cookie fields, that is protocol fields of mutating content
whose value must recur in both client requests and server answers. Two different
situations can be identified:

1. The client sets the cookie in its request, and the value must be reused in the
server answer. In this case the emulator must be able to retrieve the value
from the incoming request and copy it, or a derived value from it (e.g. the
value incremented by 1) in the generated answer.

2. The server sets the cookie in its answer, and the client must reuse the same
value for the following requests to be accepted. From the emulator point of
view, this does not generate any issue. The server label will contain a valid
answer extracted from a training file, using a certain value for the field. The
corresponding field in the client requests will be classified as mutating. This
leads only to two approximations: the emulator will always use the same
value, and it will accept as correct any value used by the client without
discarding the wrong ones. These approximations might be exploited by a
malicious user to fingerprint a ScriptGen honeypot, but can still be consid-
ered as acceptable when dealing with attack tools.

We will further focus here on the first scenario, that is the most challenging
since it requires the emulator to identify the cookie fields and establish content
dependencies between the client requests and the following answers.

Automatic Handling of Protocol Dependencies 191

In order to identify these dependencies, it is necessary to correlate the content
of client requests with the content of the following server answers. By using many
training conversations, we are able to reliably identify dependencies by taking
advantage of statistical diversity. Using a reduced number of samples, in fact,
makes it difficult to reliably deduce this kind of relationship. For instance, the
value of a mutating field in the client request might incidentally match the
content of the data payload sent back by the server in a following message of the
conversation. Using a large amount of samples drastically reduces the probability
of false deductions.

The algorithm presented in this paper to handle content dependencies is com-
posed of two separate steps: link generation and consolidation.

During link generation, the algorithm takes into consideration each request
contained in the training set, enriched by the output of region analysis, and
correlates it with all the following server answers contained in the corresponding
training conversation. The algorithm takes into consideration all the bytes in
the request that are not covered by a significant fixed region. A significant fixed
region is defined as a region whose content always has a unique match in the
client request. Many regions are not big enough to be considered as significant
when considered alone. Having a single match inside the client request, significant
fixed regions can therefore be used as markers to define relative positions inside
the client request.

For instance, representing a fixed region as F(“content”) and a mutating re-
gion as M(), we consider the following output of the region analysis:

F(“LOGIN:”)+M()+F(“TIME:”)+M()+F(“:”)+M()

that matches, for instance, the following client request:

“LOGIN: bob TIME: 12:13”

The fixed region F(“LOGIN:”) will be considered as significant. But the fixed
region F(“:”) will have multiple matches inside the client request and will not
be used as marker.

For all those bytes that are not covered by these markers, the algorithm
correlates each byte with the server answers using a correlation function. In the
most simple case, the correlation function returns 1 if the bytes match, and
returns 0 if the bytes differ. For each encountered match, the algorithm tries to
maximize the number of consecutive correlated bytes starting from a minimum
of two. For instance, we consider these two simple training conversations:

1. R1: “Hi, my ID is 147 what time is it?”
A1: “Welcome 147, time is 14:05”

2. R1: “Hi, my ID is 134 what time is it?”
A1: “Welcome 134, time is 14:18”

In this case, region analysis will enrich the request generating two significant
fixed regions: “Hi, my ID is ” (F1) and “ what time is it?” (F2). For each

192 C. Leita, M. Dacier, and F. Massicotte

training conversation, the link generation algorithm will search for correlations
between the remaining bytes of the request and the following answers, producing
links. A link is a logical object that provides in a dynamic way the content to be
put in a certain position of the server answer. Different kinds of links might be
introduced in the future. For the time being, when a content match is found in
a server answer, the matching content is replaced with the output of a matching
link. A matching link is defined by the tuple L = (Rq, S, R, Os, Ot)

– Rq: The client request the link is referring to
– S : The starting marker
– R: The trailing marker
– Os : An offset with respect to the starting marker
– Ot : An offset with respect to the trailing marker

To better understand the meaning of these characteristics, we can refer back
to the previous example. For the first training conversation, the link generation
would define two links in the server answer: “Welcome L1, time is L2:05”. We
will have

L1 = (R1, F1, F2, 0, 0)

L2 = (R1, F1, F2, 0, −1)

Instead, for the second training conversation the resulting server answer will
be: “Welcome L3, time is 14:18”. L3 will be identified by the tuple:

L3 = (R1, F1, F2, 0, 0)

From this example it is clear that link generation parses each conversation
independently, making optimistic guesses on the dependencies. Link generation
therefore generates many guesses on the content dependencies. Some of them
(links L1and L3) might be correct, others (such as link L2) might be coincidental
matches between the request content and the payload of the answer.

The second step of the analysis consists of taking advantage of the statistical
variability to consolidate these guesses, filtering out the coincidental matches
and taking into consideration only the real content dependencies. This step is
therefore called consolidation.

The input to this step is a set of proposals for a certain server answer generated
by the previous link generation. The algorithm takes into consideration each byte
and compares the content of each proposal for that byte. This content can be
either a link or the value of the answer in the original training file. The most
recurring content is put in the consolidated answer, while the other ones are
discarded. All the proposals having a content for that byte differing from the
chosen one will not be taken into consideration any more for the remaining bytes.
Referring back to the previous example, the output of the consolidation phase
for answer A1 will be: “Welcome L1=3, time is 14:05”.

Figure 3 represents the consolidation behavior in a very pessimistic case. In
this case, the number of misleading links is as high as the number of proposals.

Automatic Handling of Protocol Dependencies 193

Fig. 3. Consolidation

The algorithm is such that the consolidated answer will always be equal at
least to one of the proposals. Also, increasing the number of training samples
will increase the number of proposals, therefore increasing the robustness to
misleading links. The number of valid proposals at the end of the algorithm can
be considered as the confidence level for the validity of the consolidated answer.

During emulation, the link information is used to transform the referenced
content of the requests and provide the content for the server answers. Using the
significant fixed regions as markers, and offsets to specify relative positions, it is
possible to correctly retrieve variable length values.

What has been stated herein with reference to simple equality relations can
be extended to other types of relations, such as incrementing counters, by simply
defining different types of links.

4.2 Inter-protocols Dependencies

In order to handle dependencies among, for instance, different TCP sessions, it
is necessary to re-define the notion of state in the ScriptGen model. In [10], we
bound the emulation state to a single TCP session. Each TCP connection was
associated with a different state, and any event or side-effect outside that binding
was not taken into consideration. In order to allow dependency handling among
different sessions, the definition of state must be widened. For this reason utilize
the concept of conversation: a conversation is defined as the whole amount of
data that has been exchanged between a single attacking source and the attacked
server in the training data. The attacking source is identified by its IP address
and a timestamp, in order to take into consideration dynamic IP allocation. The
same IP address, when coming back after a period of time greater than 24 hours,
will be considered as a different source. A conversation therefore consists of all

194 C. Leita, M. Dacier, and F. Massicotte

Fig. 4. Inter-protocols dependencies

the activities performed by an attacker towards the vulnerable host, and might
be composed of several TCP sessions and several exchanges of UDP messages.

Considering each conversation as the domain for the inter-protocols analysis,
we identified two different types of session dependency:

– Session interleaving: some protocols spread the interaction between the
client and the server on multiple connections to different ports. For instance
FTP separates the control connection from the data connection. Messages
seen on one session initiate activities on the other one: an FTP recv command
on the control connection will cause traffic to be generated on the data
connection.

– Exploits: when a vulnerable service is attacked by a malicious client, the
client might succeed in exploiting a buffer overflow attack on the victim over
a certain port and open a previously closed port. We will see that this kind
of dependency is extremely important: section 5 will show how the incorrect
handling of this kind of dependencies can influence the conversation with
the client.

From a practical point of view, the two dependencies are illustrated in Figure 4.
It is interesting to notice how, in both cases, a client request in a given TCP ses-
sion modifies the server state triggering events that are outside the scope of the
connection itself. In the case of session interleaving, the request triggers a server
message on a different connection; in the case of the exploit dependency, the request
opens a previously closed port. It is important to understand that these are just
two examples of external state modifications that can be caused by client requests.
Referring to the cause of the exploit, another common behavior observed in buffer
overflow attacks consists of actively fetching malware from an external location.
This specific case is extremely interesting and is subject of ongoing research.

A session interleaving dependency is triggered by the following conditions: i)
more than one session is open (e.g. A and B) ii) after a client request in session A,
and eventually an answer from the server for that session, the first encountered
packet is an answer from the server in session B. This means in fact that the
request on session A has influenced the state of session B, triggering a message
from the server.

Automatic Handling of Protocol Dependencies 195

Knowing the list of commonly open ports for the emulated server, the exploit
session dependency is triggered if the following conditions hold: i) session A is
bound to a known open port (e.g. port 139 on a Windows 2000 host) ii) session
B is targeting a closed port (e.g. port 4444 on the same Windows 2000 host) iii)
an outgoing TCP SYN/ACK is sent by the server from session B after having
received a request in session A. The TCP SYN/ACK means in fact that the
port, previously known to be closed, is now open.

Once dependencies are identified, ScriptGen emulates causality through a sim-
ple signalling method between different state machines. During this emulation,
the emulator allocates different broadcast buses for signals, one for each source,
as shown in Figure 5. When the emulator reaches a state that the dependency
analysis has identified as the trigger for a session dependency, a signal is sent on
the bus for that source. The other state machines will be notified of the signal
and will eventually react to it. With respect to session interleaving, the given
request will generate a signal that will trigger a transition on the state machine
associated with session B. The transition to the new state will therefore generate
a new server message, that will be sent back to the client emulating the correct
behavior. In the case of the exploit session dependency, the state machine asso-
ciated to the closed port will start accepting connections on that port only after
having received the signal corresponding to the client request. This will allow
the correct emulation of the expected server behavior.

4.3 Proxying and Incremental Refinement

One of the main contributions of this paper consists in being able to react to
new activities, triggering new alerts and being able to refine the existing state
machine. To do so, we refine the existing region analysis algorithm in order to
support incremental refinements. Then we introduce a novel proxying algorithm
that allows ScriptGen to rely on a real host to build its training set.

In [10] we started from a too specific state machine and then we used Re-
gion Analysis to move to a higher level of abstraction, aggregating the existing
states and generating transitions based on regions. There was no clear separa-
tion between raw data, not parsed yet because of the lack of enough samples
to generate macroclusters, and data whose semantics had already been rebuilt.
For this reason, in the new incremental algorithm that we propose, we split the
analysis into two distinct phases described in Sections 4.3 and 4.3. Section 4.3
will describe more in depth the new proxying algorithm.

Update phase. Given an existing (eventually empty) state machine, each in-
coming flow is attached to it. Starting from the root, we use the sequence of
requests in the incoming flow to traverse the existing edges of the state machine,
choosing the future state according to a matching function defined later.

While traversing the state machine, the server labels are updated on the var-
ious nodes with the eventually empty server answers found in the training con-
versation. If for a certain state no outgoing edge matches the client request, the
remaining training conversation is attached to the state’s bucket. The bucket is

196 C. Leita, M. Dacier, and F. Massicotte

Fig. 5. Signalling

simply a container for new raw data that will be used in the following phase to
perform the refinement.

The notion of bucket allows a distinction between new unprocessed data and
the already consolidated transitions, solving the issue mentioned before. Also,
the update phase is applied indifferently during the training phase and during the
emulation. The only difference between the two cases is when encountering an
unmatched request to be put in the bucket. While in the training phase the rest
of the conversation is known, during emulation since the future state is unknown
it is not possible to continue the dialog with the source. The proxying algorithm
will allow ScriptGen to rely on a real host to continue the conversation, using
the proxied conversation to build training samples to perform the refinement.

One of the most critical aspects in the update phase consists in the choice of
the matching function. At first, our choice had been to try to be as robust as
possible to new activities or to imprecise state machines generated from an in-
sufficient number of samples. So we accepted imperfect matches, that is requests
whose content did not completely match with the output of region analysis. But
this leads to two major drawbacks. First of all, tolerating imperfect matches be-
tween the incoming request and the known transitions might lead to the choice
of a wrong transition generating a completely wrong answer, corrupting the con-
versation. Also, distinguishing imperfect matches from new activities becomes
impossible. For this reason we moved to a much more conservative choice, consist-
ing of requiring an exact match of all the fixed regions, transforming the output
of the region analysis in a regular expression. If multiple transitions match the
same incoming request, the most refined one is chosen: that is, the transition

Automatic Handling of Protocol Dependencies 197

Fig. 6. Iterative refinement

having the maximum number of matching fixed bytes. This is necessary to cor-
rectly handle microclustering, in which recurring values of the mutating parts
are transformed into fixed regions. The previous policy will give preference to the
refined microcluster, having more fixed bytes, rather than the generic transition.

Refinement phase. During the refinement phase, ScriptGen inspects state
buckets in order to search for possible refinements. If a bucket is not empty,
ScriptGen runs the region analysis algorithm over the unmatched requests pres-
ent in the bucket. If the number of samples is enough to generate macroclusters
of sufficient size, one or more transitions are generated refining the existing ones.
After having generated all the possible edges, the update phase will be repeated
on the refined state machine.

Figure 6 shows an simple example of iterative refinement. For each state in
the diagram, the label corresponds to the number of training conversations in
the bucket. A training file consisting of 10 training flows is used to update an
empty state machine. Since the state machine is empty, none of the initial client
requests contained in the samples will match an existing transition. Thus all
the samples will be put in the initial bucket, as shown in figure at step 1. The
refinement phase will then pick the training samples contained in the bucket, and
apply the region analysis algorithm to the samples. Region analysis generates
a different transition for each set of sample client requests believed to have a
different semantic meaning. In this first step, a single transition is generated.
After the refinement phase, the update phase is then triggered and the training
flows are matched with the newly created transition. Since the state machine
is still incomplete, the training samples do not find a match in the following
state, and are thus stored in the corresponding bucket for the next refinement
iteration (step 2). The process repeats until the refinement phase is not able to
generate other transitions: this happens at step 4, in which the sample flows do
not contain any further interaction between the attacking source and the server

198 C. Leita, M. Dacier, and F. Massicotte

(client closes connection after having sent 3 requests to the server). The state
machine is then complete.

Proxying algorithm. The previous sections showed how, through the concept
of buckets and the separation between update and refinement phase, we are able
to handle in a uniform way the training performed with real sample conversations
and the interaction with real sources during emulation. As mentioned before,
there is still a major difference between these two cases. While during training
the whole conversation is already known, this is not true during emulation. In the
second case in fact, when receiving a request for which no matching transition
exists, we do not have a way to make the client continue its conversation with the
server. However we need the continuation of the conversation to train ScriptGen
to refine the state machine.

To acquire this information, when encountering unmatched requests we tunnel
the client conversation to another host able to handle it, such as a high inter-
action honeypot. Focusing for conciseness only on the TCP case, the proxying
algorithm works as follows:

– Every source initiates a certain number of connections with the ScriptGen
honeypot. The emulator keeps track of all of them, buffering all the received
requests.

– When receiving an unmatched request from host Hi at time tu, the emulator
triggers the proxy initialization. At time tu the source will have a certain
number of open connections CO

1...C
O

p.
– The emulator will search for an available host in its pool of servers and will

allocate it to the source. It will then initialize it, replaying all the buffered re-
quests received from host Hi before time tu. If the initialization is successful,
it will end up with p open connections between the emulator and the allo-
cated server PO

1...P
O

p. For each of them, the ScriptGen emulator will setup
an application-level association CO

i ↔ PO
i . Every message received from one

of the two ends,will be forwarded to the other end. The message content will
be stored, building the training sequence to be used in the refinement.

– Every incoming connection from the same source after the proxy initializa-
tion at time tu will directly generate an application-level association with the
allocated server, and the application level payloads will be used to update
and eventually refine the existing state machines.

– After a certain time of inactivity, the source will expire and the allocated
server will be freed. The emulator will use the retrieved conversations to run
the update and refinement phase.

This algorithm allows the emulator to promptly react in a completely automated
way to requests that the state machine is not able to parse. Through proxying,
the emulator is able to build its own training set and use this training set to
update its protocol knowledge. Assuming that the state machine represents the
whole set of known activities going on in a certain network, this algorithm offers
valuable properties. It allows us to go much further than just sending alerts for

Automatic Handling of Protocol Dependencies 199

new activities. We can automatically build a training set and use it to infer se-
mantics. This output can therefore be used to automatically generate signatures
for the newly observed activities.

5 Testing

In order to retrieve significant information about the real quality of the emula-
tion, we have run a set of experiments to evaluate ScriptGen’s behavior when
dealing with a real client.

To perform our tests, we took advantage of the flexibility of the controlled
virtual network presented in [15]. This network provides a secure environment
to run completely automated attack scenarios. Thanks to a huge database of
attack scripts and virtual machine configurations, this setup allows an extreme
flexibility and can be considered as the ideal testbed for our emulators. A dis-
cussion of the exhaustive test of ScriptGen behavior using all the available
attack scripts is left as a future work. For the scope of this paper we want
to provide an in-depth analysis of ScriptGen’s behavior in a single interesting
case.

Among all the used exploits, for the sake of conciseness we chose to focus in
this paper on a specific vulnerability exploited by a Metasploit Project1 mod-
ule. The vulnerability is the Microsoft Windows LSASS Remote Overflow [16]
(used by the Sasser worm). This vulnerability exploits a validation failure on the
LSARPC named pipe and, through a specially crafted packet, allows an attacker
to execute arbitrary code on the attacked host. In the specific implementation of
the exploit at our disposal, the attack consists of 41 requests and 40 answers on
a single TCP connection targeting port 139. This is therefore a clear example of
“long” activity whose analysis would greatly benefit from the increased verbosity
offered by ScriptGen. We chose this exploit for several reasons:

– This exploit opens a shell on port 4444 on the attacked host. Also, the
exploit checks if the port is open before starting the attack: if the port is
already open, it does not proceed further. This is a clear case in which session
dependencies are needed in order to emulate the correct behavior. If the port
is always open, the honeypot will never observe the attack on port 139 and
will instead observe only a connection attempt on port 4444. If the port is
always closed, the attack will always fail. Using dependencies, we are able
to send a signal only when the last state of the attack path is reached. The
state machine for port 4444 waits for that signal before opening the port.

– This exploit targets the NetBIOS Session Service. Its protocol semantic is
rather complex, and offers many examples of content dependencies. If the
content dependencies are not handled correctly, the client aborts the con-
nection after the second answer from the honeypot as shown in [10]. This
shows the importance of this kind of dependencies, that greatly influences
the length of the conversation.

1 http://www.metasploit.org

200 C. Leita, M. Dacier, and F. Massicotte

Table 1. Attack output

[*] Starting Bind Handler.
[*] Detected a Windows 2000 target ()
[*] Sending 32 DCE request fragments...
[*] Sending the final DCE fragment
[*] Exiting Bind Handler.

Due to the complexity of the NetBIOS Session Service protocol, this case is
representative of the upper bounds of the complexity that might be faced in
protocol emulation.

5.1 Emulation Quality

In order to assess the emulation quality of the produced emulators, we have
used our virtual network infrastructure to generate a training sample consisting
of 100 samples of the attack against a real Windows 2000 target. After every run
of the attack, the target was reverted to its initial state and the experiment was
repeated. In order to maximize variability (with special attention to timestamps)
the various runs of the attack have been spaced in time by an interval of 5
minutes. All the interaction was collected in a tcpdump file, and was then used
to automatically train ScriptGen and produce two state machines: one for TCP
port 139, the other for TCP port 4444.

Analysis of the state machine. Before analyzing the behavior of the emulator
in a network test, it might be interesting to inspect the content of the state
machine generated by ScriptGen. As expected, the state machine is a sequence
of 42 states. There is only one leaf, and therefore a single path: all the states,
except for the last one, have exactly one child. Thanks to the consolidation
algorithm, there is always a unique server answer bound to each state. Also,
ScriptGen has correctly identified session dependencies, associating a signal to
the last state of the state machine for port 139. When that state is reached, the
signal triggers a transition for port 4444, opening it.

Looking at these client requests more in depth, we can see that after an initial
session request (whose content is always the same) ScriptGen generates more com-
plex sequences of fixed and mutating regions. More specifically, we can notice that
most requests share two mutating regions of size 2 respectively at bytes 30-31 and
34-35. Looking at the protocol specification, these fields correspond to the proces-
sID and the multiplexID of the SMB header. These two fields are chosen by the
client and must be repeated in the following answers given by the server. Inspect-
ing the server answers, we can indeed note that content dependency handling has
correctly generated the correct links to handle those dependencies.

Experimental evaluation. We deployed a ScriptGen based host in our testing
virtual network, and we ran the attack script against the honeypot.

The emulator handled perfectly all the content and session dependencies,
traversing the whole path of the state machine.

Automatic Handling of Protocol Dependencies 201

Fig. 7. Test scenario

The output of the attack script is indistinguishable from the one of a successful
attack against a real host (table 1), proving the quality of the emulation.

It is important to notice that this is a complete validation of the region analysis
approach. It started from a rich training set, without any kind of additional
information, and successfully handled a conversation with same structure, but
with partially different content (different process IDs, different timestamps).

5.2 Reaction to Unknown Activities

In this section we want to experiment with ScriptGen’s capability to react to new
activities and to automatically refine existing state machines retrieving training
information through proxying. We know from the previous experimental results
that, given a sufficient number of training samples, ScriptGen is able to carry
on a complete conversation with a client. Here we want to inspect the ability of
the emulator to produce its own training set to refine the state machine, and its
ability to reliably identify new activities.

The experiments have been run in a very simple test scenario, shown in Figure
7. The attack is run against a ScriptGen honeypot, that is allowed to rely on a Win-
dows 2000 virtual machine using the proxying algorithm described in Section 4.3.

Learning. The first aspect that we want to inspect is ScriptGen’s ability to
reliably refine the state machine. Given a certain activity, initially unknown,
ScriptGen should take advantage of proxying to build its own training set and
refine the state machine. After the refinement, ScriptGen must be able to cor-
rectly handle the activity, without contacting the proxy any more.

For refinement to be reliable, the training set must be diverse enough to allow
a correct inference of its semantics. If the training set is not diverse enough,
coincidental matches of mutable values may lead to wrong deductions on their
nature. If this happens, following instances of the same activity may not match
the generated transitions. This may generate erroneous alerts for new activities
(false positives). Therefore the refinement condition, that triggers the refinement

202 C. Leita, M. Dacier, and F. Massicotte

Table 2. Experimental results

N # false alerts # critical requests
3 3 3
5 3 3
10 0 0
20 2 1
50 0 0

of the state machine when the samples are considered to be diverse enough,
becomes critical.

In this first scenario, the ScriptGen honeypot has been deployed with an
empty state machine for port 139. We used different refinement conditions, and
then ran 100 times the same activity (the same exploit used to study the em-
ulation quality). Since the different runs of the activities are spaced in time by
approximately 10 seconds, we considered as a good measure of diversity (also
from a temporal point of view) different thresholds on the number of available
training samples. When the number of samples retrieved through proxying is
equal to N, ScriptGen refines the state machine and then continues emulation.
Running the experiment in the same conditions using different values of N and
then inspecting the resulting state machines will give a measure of the sensitivity
of ScriptGen to the lack of diversity of the samples.

Table 2 shows the relevant characteristics of the generated state machines. If
the training sample is not diverse enough, ScriptGen will generate false alerts.
That is, after the first refinement of the state machine the emulator will not be
able to correctly match successive requests, interpreting them as a new activity.
The number of false alerts is therefore connected to the quality of the training
samples. We expect a decreasing number of false alerts when increasing the value
of N. After each alert ScriptGen will again use proxying to collect a training
sample, and refine the existing state machine with one or more functional paths.

It is also important to understand whether or not these unmatched requests
are observed at a critical point of the state machine: there might be a particularly
complex request for which region analysis is not able to generate a reliable transi-
tion. For this reason we count the number of nodes that triggered an unmatching
transition, which therefore corresponds to the number of critical requests in the
protocol state machine.

Figure 8 gives a visual explanation of the two concepts previously explained.
While the first case can be considered as a symptom of a general lack of variabil-
ity, the second case is probably due to a more specific problem in a given request.
Referring to Table 2, we can map the first case to low values of N (N=3,N=5)
while we can find an example of the second case for N=20.

A first striking result is the fact that in all cases, ScriptGen has been able to gen-
erate a complete state machine at the first time the refinement condition has been
triggered. But since some of the protocol variability is linked to time-dependent
fields (timestamps, and as we will see process IDs), the produced refinements in-
corporate false deductions that lead to unmatched requests after some time.

Automatic Handling of Protocol Dependencies 203

Fig. 8. Different refinement cases

When N is equal to 20 we can experience a rather strange artifact. For the
second request in the conversation, 2 false alerts are generated. Inspecting the
transitions, we can notice that the artifact is due to the last byte of the process
ID: it is considered as a fixed region. Since this value is stored following the
little-endian convention in the NetBIOS protocol, it actually corresponds to the
high part of the process identifier of the attacking client. Since process identifiers
are often assigned sequentially, and since the attacking host was not reverted to
initial conditions during the experiment, this is not surprising. It is a clear case
in which the lack of variability of the samples leads ScriptGen to make wrong
assumptions. Only with N equal to 50 we have enough variability to correctly
classify the byte as part of a mutating region. In the case N equal to 10, the
problem was not raised only by a fortunate sequence of 100 process IDs having
all the same high part.

It is important to understand that some of the lack of diversity that we en-
countered in this experiment is due to specific artifacts of the chosen scenario.
We are running every attack instance from the same host in an iterative way.
This means that the process ID in the SMB header, usually appearing as a ran-
dom field, here has incremental values. In a real attack scenario in which the
honeypot is contacted by many different hosts, the diversity of this field would
be greatly increased and so probably the number of samples required to generate
reliable refinements would decrease. However, ScriptGen has been able to cor-
rectly generate a reliable refinement of an initially empty state machine using a
training set of 50 conversations automatically generated through proxying. This
validates the ability of ScriptGen to learn new activities.

Triggering new activities. After having shown how ScriptGen is able to pro-
duce refinements to the state machine, we need to investigate its capability to
reliably detect new activities. The previous section investigated the ability to
generate reliable refinements, and therefore ScriptGen’s ability of not generat-
ing false positives. Here we want to investigate ScriptGen’s ability to reliably
detect new activities, and therefore false negatives. To do so, we deployed a new
ScriptGen honeypot, in the same configuration as shown in Figure 7, but already
instructed with the state machine generated in the previous example for a value
of N equal to 50. Then we run against this honeypot a new activity on the same
port, namely the Microsoft PnP MS05-039 Overflow [17]. We followed the same
pattern used in the previous experiment: 100 runs spaced in time choosing a

204 C. Leita, M. Dacier, and F. Massicotte

triggering threshold equal to 50. The attack followed the first path for the first
5 requests, and only at that point triggered an unmatched request. Using just
50 samples of interaction, ScriptGen has been able to correctly refine the state
machine adding a single path to the existing one. The refined state machine
correctly handled all the 50 successive runs of the attack.

This is an extremely important result. First of all, it shows how ScriptGen-
based honeypots are able to reliably identify new activities. Also, since the two
activities are identifiable only after the exchange of 5 couples of request/answer,
it validates the importance and the power of the ScriptGen approach with respect
to the current state of the art in honeypot technology.

6 Conclusion

In this paper, we have shown the feasibility of using a completely protocol-
unaware approach to build scripts to emulate the behavior of servers under
attack. As opposed to the approach considered by the authors of the RolePlayer
system, we have deliberately refused to take advantage of any heuristic to rec-
ognize important fields in the arguments received from the clients or sent by
the servers. Instead, by using several instances of the same attack, we can auto-
matically retrieve the fields which have some importance from a semantic point
of view and are important to let the conversation between the client and server
continue. More specifically, we have shown that two distinct types of dependency
are important to take into account. We have named them, respectively, intra-
protocol and inter-protocol dependencies. We have proposed new algorithms to
handle them efficiently. We have also shown that this newly created mechanism
can be further enhanced to create new scripts online as new attacks are appear-
ing by, temporarily, proxying the requests and responses between the attackers
and a real server. Experimental results obtained with our approach are very
good and demonstrate the potential inherent in the large-scale deployment of
honeynets such as our Leurre.com project [3,4,5,6,7,8]. The ScriptGen approach
would in fact allow us to collect an even richer data set than the one we have
accumulated so far.

References

1. Spitzner, L.: Honeypots: Tracking Hackers. Addison-Welsey, Boston (2002)
2. Provos, N.: A virtual honeypot framework. In: Proceedings of the 12th USENIX

Security Symposium. (2004) 1–14
3. Dacier, M., Pouget, F., Debar, H.: Attack processes found on the internet. In:

NATO Symposium IST-041/RSY-013, Toulouse, France (2004)
4. Dacier, M., Pouget, F., Debar, H.: Honeypots, a practical mean to validate ma-

licious fault assumptions. In: Proceedings of the 10th Pacific Ream Dependable
Computing Conference (PRDC04), Tahiti (2004)

5. Dacier, M., Pouget, F., Debar, H.: Honeypot-based forensics. In: Proceedings of
AusCERT Asia Pacific Information Technology Security Conference 2004, Bris-
bane, Australia (2004)

Automatic Handling of Protocol Dependencies 205

6. Dacier, M., Pouget, F., Debar, H.: Towards a better understanding of internet
threats to enhance survivability. In: Proceedings of the International Infrastructure
Survivability Workshop 2004 (IISW’04), Lisbonne, Portugal (2004)

7. Dacier, M., Pouget, F., Debar, H.: Leurre.com: On the advantages of deploying
a large scale distributed honeypot platform. In: Proceedings of the E-Crime and
Computer Conference 2005 (ECCE’05), Monaco (2005)

8. Dacier, M., Pouget, F., Debar, H.: Honeynets: foundations for the development of
early warning information systems. In Kowalik, J., Gorski, J., Sachenko, A., eds.:
Proceedings of the Cyberspace Security and Defense: Research Issues. (2005)

9. CERT: Cert advisory ca-2003-20 w32/blaster worm (2003)
10. Leita, C., Mermoud, K., Dacier, M.: Scriptgen: an automated script generation tool

for honeyd. In: Proceedings of the 21st Annual Computer Security Applications
Conference. (2005)

11. Needleman, S., Wunsch, C.: A general method applicable to the search for similar-
ities in the amino acid sequence of two proteins. J Mol Biol. 48(3):443-53 (1970)

12. Cui, W., Vern, P., Weaver, N., Katz, R.H.: Protocol-independent adaptive replay of
application dialog. In: The 13th Annual Network and Distributed System Security
Symposium (NDSS). (2006)

13. Freiling, F.C., Holz, T., Wicherski, G.: Botnet tracking: Exploring a root-cause
methodology to prevent distributed denial-of-service attacks. In: Lecture Notes in
Computer Science, Springer-Verlag GmbH (2005) 319–335

14. The Honeynet Project: Know your enemy: Tracking botnets. Know Your Enemy
Whitepapers (2005)

15. Massicotte, F., Couture, M., De Montigny-Leboeuf, A.: Using a vmware network
infrastructure to collect traffic traces for intrusion detection evaluation. In: Pro-
ceedings of the 21st Annual Computer Security Applications Conference. (2005)

16. OSVDB: Microsoft windows lsass remote overflow, http://www.osvdb.org/5248
(2006)

17. OSVDB: Microsoft pnp ms05-039 overflow, http://www.osvdb.org/18605 (2005)

Fast and Evasive Attacks:
Highlighting the Challenges Ahead

Moheeb Abu Rajab, Fabian Monrose, and Andreas Terzis

Johns Hopkins University
Baltimore MD 21218, USA

{moheeb, fabian, terzis}@cs.jhu.edu

Abstract. Passive network monitors, known as telescopes or darknets,
have been invaluable in detecting and characterizing malware outbreaks.
However, as the use of such monitors becomes commonplace, it is likely
that malware will evolve to actively detect and evade them. This paper
highlights the threat of simple, yet effective, evasive attacks that under-
mine the usefulness of passive monitors. Our results raise an alarm to the
research and operational communities to take proactive countermeasures
before we are forced to defend against similar attacks appearing in the
wild. Specifically, we show how lightweight, coordinated sampling of the
IP address space can be used to successfully detect and evade passive
network monitors. Equally troubling is the fact that in doing so attack-
ers can locate the “live” IP space clusters and divert malware scanning
solely toward active networks. We show that evasive attacks exploiting
this knowledge are also extremely fast, overtaking the entire vulnerable
population within seconds.

Keywords: Network Monitoring, Network Worms, Invasive Software,
Network Security.

1 Introduction

Passive network monitors (or so-called network telescopes [17]) have provided a
wealth of information in recent years about active scanning malware (e.g., [18,30]).
The relative ease of deploying passive monitors has made them instrumental in a
number of malware centric proposals, especially for early detection of global out-
breaks (e.g.,[36]), containment and quarantine (e.g., [15,19,22]), and forensic anal-
ysis [28,30]. However, much of this work—including our own—has only been pos-
sible because the attacks observed thus far have been rather crude in nature. Ar-
guably, the lack of sophistication in recent outbreaks has been justifiable, as thus
far, there has been little reason to do otherwise.

It is clear however, that attackers will naturally become more savvy as more
elaborate defenses are deployed. Indeed, since passive network monitors were
introduced, a number of Internet malware outbreaks have applied non-uniform
scanning to find victims and in doing so, limit the activity observed by central-
ized monitors (e.g., CAIDA’s network telescope [17]). In response, the research
community has advocated the use of distributed telescopes (e.g., [1,36]) as a

D. Zamboni and C. Kruegel (Eds.): RAID 2006, LNCS 4219, pp. 206–225, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Fast and Evasive Attacks: Highlighting the Challenges Ahead 207

way to increase detection speed by synthesizing multiple views of the infection
as seen from various vantage points [27]. Furthermore, active responders (e.g.,
honeynets) are now widely used to lure attackers, and capture the attacks’ pay-
loads to generate malware signatures [11,16] in near real-time. Unfortunately,
even the most sophisticated techniques for analyzing the data captured by net-
work monitors are vulnerable to evasive tactics that refrain from scanning these
monitors in the first place. In fact, recent evidence indicates that certain classes of
malware already avoid well-known monitors (e.g., Agobot [37]), and completely
avoid prefixes of certain agencies 1.

In this paper we demonstrate the impending threat to network monitors by
presenting a simple technique that can dynamically evade such monitors. The
outlined approach raises a number of challenges for the research community
because unlike previous techniques that use static “do-not-scan” lists, this ap-
proach can produce agile evasive malware that proceeds in an online fashion and
completely undermines the utility of passive monitors. Specifically, the proposed
technique employs lightweight sampling of the IP space to identify live prefixes,
that is, prefixes that contain live networks, and isolates empty prefixes that
are either unused or dedicated to passive monitoring. Sampling simply involves
sending a small number of probes (e.g. TCP SYN packets) to random addresses
within each target prefix. A single response from any address indicates that the
prefix contains live hosts and is therefore classified as live. Otherwise, the prefix
is identified as empty. Our results show that this technique successfully isolates
large collections of distributed monitors and discovers 96% of the vulnerable
population by probing less than 5% of the entire IP space. While the main focus
of this paper is showing that sampling effectively evades passive network moni-
tors, the proposed technique can be easily extended to evade active responders;
if not designed correctly, active responders generate distinctive behaviors that
are detectable by the same sampling mechanism.

To further illustrate this threat, we present malware infection strategies that
use knowledge assembled from offline or online sampling to divert the infection
towards live prefixes. We show that malware exploiting these strategies can in-
fect more than 95% of the vulnerable population in tens of seconds while still
successfully evading large collections of distributed passive monitors.

The rest of the paper is organized as follows. The sampling process, a core
component of the proposed evasive techniques, is described in Section 2 and
evaluated in Section 3. In Section 4 we provide examples of practical malware
spreading strategies that employ such evasive techniques. Rather than provid-
ing guidelines for attackers, our goal is to highlight the challenges that network
monitors must overcome. In that regard, in Section 5 we discuss a number of
promising directions that can address these challenges. We highlight the differ-
ences between our work and related previous proposals in Section 6 and close in
Section 7 with concluding remarks.

1 For example, we have seen botmasters educating each other to avoid
scanning prefixes listed at http://professionalsecuritytester.com/modules.
php?name=News&file=article&sid=70

208 M.A. Rajab, F. Monrose, and A. Terzis

2 Discovering the Live Population Via Sampling

Our sampling technique takes advantage of the highly clustered nature of the
allocated and live IP space [2,13] in order to efficiently detect prefixes that
contain live hosts. Specifically, we use a hierarchical sampling technique (shown
pictorially in Figure 1) that follows a depth-first search strategy that, at first,
probes addresses selected at random from each of the /8 prefixes. These probes
can take many forms, and might be a TCP SYN packet, an ICMP packet, or
an ACK packet with a popular source port (specially crafted to bypass stateless
firewalls). If at least one response is received, the corresponding /8 prefix is then
marked as live and the sampling process proceeds to send probes to the /16
prefixes within that /8. If no response is received, then the prefix is marked as
empty and no further probes are sent to that prefix. For each live /16 prefix, the
process continues in search of any live /24 prefixes.

live

emptylive

empty
/8 Prefixes Layer

/16 Prefixes Layer

/24 Prefixes Layer
empty

liveempty empty

Fig. 1. Diagram illustrating the proposed hierarchical sampling process

Since the main goal of the sampling process is to detect passive network
monitors, it is important that the process itself evades detection. Therefore, to
stay undetected, the sampling process must send as few probes as possible to
each prefix and, at the same time, detect the live and empty prefixes with high
accuracy. Additionally, the probing mechanism must be chosen in such a way
that complicates the detection of probes and makes it difficult to correlate the
probing activity itself. In this way, generating any useful signature for detecting
this activity quickly, becomes a complex task. These evasive measures can be
achieved, for example, by selecting popular target ports (e.g., port 80) that
easily “blend” the sampling probes within large volumes of innocuous traffic.

2.1 Sample Size Estimation

As stated earlier, the goal of the sampling process is to detect all live prefixes
while sending as few probes as possible. In what follows, we derive the maximum
number of samples n necessary to classify prefixes with high confidence. While
applicable to all levels of the sampling hierarchy, the discussion that follows
describes how to derive the number of samples n for the /16 prefix layer. We do
so because the address allocation at the /8 prefixes is publicly available (e.g.,

Fast and Evasive Attacks: Highlighting the Challenges Ahead 209

Table 1. Notation used throughout the paper

P (g) Distribution of live hosts at the /16 prefixes layer
p∗(g) Marginal distribution of live hosts at the /8 prefixes layer
pl,g The probability of probing a live host in group g
β Threshold probability of liveliness for a certain prefix
N The total live population size
n Maximum number of probes required to classify a prefix as live or empty
α Confidence level of the sampling classification decision
V Total number of vulnerable hosts
It Number of infected hosts at time step t
s Average scan rate (scans/time step) per infected host
p Probability of contacting an address in the live IP space

IANA [9] and ISC [10]) so one can easily preclude all unallocated /8 prefixes.
Moreover, Zeiton et. al. [38] showed (in a study that applies only to /24 prefixes)
that by exploiting common network administration practices 2 it is possible to
use n = 11 probes and still detect more than 90% of the live /24 prefixes.

Sampling Model. Let pl,g be the probability of probing a live host in prefix g.
Then given n samples, the probability α of receiving at least one response from
prefix g is:

α = 1 − (1 − pl,g)
n (1)

Our objective is to find the number of samples n necessary to contact at least
one live host within a certain prefix with probability α. Therefore, n is given by:

n =
log (1 − α)

log (1 − pl,g)
(2)

Ideally, n should be large enough to detect live /16 prefixes containing a
single live host. This, however, would require a prohibitively large number of
probes (e.g., approximately 301,000 probes for confidence α = 0.99). Fortunately,
it is unlikely that such /16 prefixes are in use today—in reality, live prefixes
contain significantly more live hosts. Therefore, from a practical standpoint, the
goal is to detect the /16 prefixes that contain the majority of live hosts and
exclude the empty or sparsely populated prefixes. With this in mind, we amend
the definition of an empty prefix to include prefixes with live host occupancy
(pl,g) below a certain threshold β. Accordingly, the maximum number of probes
necessary to detect a non-empty prefix can be calculated by replacing pl,g with
β in Equation 2.

Notice that as the threshold β increases in the denominator of Equation 2,
the number of required samples, n, decreases. On the other hand, if β is too
large, a significant number of live prefixes could be potentially misclassified as

2 Namely, probing addresses commonly assigned by network administrators (e.g.,
a.b.c.1, a.b.c.129, etc.).

210 M.A. Rajab, F. Monrose, and A. Terzis

 1e−05

 1e−04

 0.001

 0.01

 0.1

 1 10 100

P
D

F

Prefix rank

P0.99

Fig. 2. Illustrative figure showing the marginal distribution of the Internet live hosts
p∗(g) that is used to estimate P (g). The unshaded area represents the 99% of the live
population contained in densely populated prefixes, each with a fraction of the total
Internet population greater than the cutoff P0.99.

empty. Therefore, the goal is to determine a value for β such that the sampling
process detects the live prefixes that contain the majority of the live population.
In more specific terms, we define β as the threshold value of live host occupancy
(pl,g) at which the sampling process—with high probability—detects the set
of live prefixes that contain 99% of the total Internet live population. Clearly,
finding this set of live prefixes requires knowledge of the distribution of live hosts
over the /16 address prefixes. We term this distribution as P (g), which denotes
the fraction of the overall Internet live population residing in the /16 prefix g.
Assuming that P (g) is known, pl,g can then be expressed as:

pl,g =
P (g) · N

216 (3)

where N is the total number of live hosts in the Internet. The numerator in the
expression above is the expected number of live hosts in /16 prefix g, while the
denominator is the size of a /16 prefix.

As illustrated in Figure 2, 99% of the live population (the unshaded area) is
contained in the most densely populated live prefixes with P (g) greater than
a cutoff probability termed P0.99. Therefore to detect these live prefixes we set
(P (g) = P0.99) in Equation 3. Calculating pl,g in Equation 3 at the point corre-
sponding to (P (g) = P0.99) yields the minimum threshold occupancy β required
to calculate the maximum number of samples n.

Unfortunately, P0.99 cannot be directly determined since the distribution P (g)
is unknown. Indeed, if this distribution was known the entire sampling process
would be superfluous. While P (g) can be reliably estimated using a pilot Monte
Carlo study, this would require a large sample size. Instead, we consider how P (g)
can be estimated using a small learning set of live IP addresses that can be easily

Fast and Evasive Attacks: Highlighting the Challenges Ahead 211

obtained from various sources (e.g., a pilot limited-scale random probing, historic
logs, or traces of traffic arriving at unused IP space). Using this dataset, we
estimate p∗(g), the marginal distribution of P (g), defined as the distribution of
live hosts at the /8 prefix level. We derive p∗(g) by aggregating the IP addresses
from the learning set to their common /8 prefixes. Due to space constraints,
the discussion about the quality of this estimator is presented in the extended
version of this paper [26] in which we derive a theoretical error bound for this
estimator. Our results show that with a small learning dataset of only 20, 000 live
IP addresses one can estimate distribution p∗(g) with an empirical estimation
error of e = 4.3 × 10−5.

Given p∗(g), we can determine the cutoff probability P0.99. Then, using an
estimate N of the number of lives host in the Internet we find the number of live
hosts in the /8 prefix corresponding to P0.99. Assuming that hosts within that
particular /8 prefix are uniformly distributed across all of its /16 siblings 3 (i.e.,
P (g) = P0.99/256), then from Equation 3, β = P0.99·N

256 . 216 . Finally, n can now be
calculated by substituting pl,g with β in Equation 2.

3 Sampling Process Evaluation

First, we illustrate the sampling process by using two distributions of live hosts
derived from two independent datasets. The first dataset was obtained from
DShield [6] and consists of intrusion logs from over 1,600 intrusions detection
systems distributed around the globe. The second dataset was collected at a
local darknet covering a large number of /24 prefixes. Table 2 summarizes the
statistics for both datasets. From each dataset, we independently derive two
distributions: one for live hosts at the /16 level and another at the /8 level.
Although collected from two distinct sources, the distributions at the /8 level are
strikingly similar (see Figure 3) 4. The reason behind this similarity is due to the
fact that vulnerable hosts in both cases are selected from the same underlying
distribution of live hosts which confirms a similar observation recently made
in [2]. In what follows, we use these distributions as representatives of the live
host distribution over the whole Internet.

Following the process described earlier, we first estimate the marginal live
host distribution over the /8 prefixes (p∗(g)) using a small learning dataset of
live IP addresses. A uniform random sample of 20,000 source IP addresses taken
from the darknet dataset is used as the initial learning set. From p∗(g) we find
the cutoff live population density P0.99. In this case P0.99 = 0.00065. Assuming a
population of approximately 300 million live hosts [10], the estimated number of
hosts in the /8 prefix with density P0.99 is 180,000. Assuming that these hosts are
uniformly distributed among its constituent /16 prefixes, we find that β = 0.012.

3 While this is not the case in practice, this assumption does not skew our calculations
significantly since it is only applied to the sparsely populated /8 prefix with density
≤ P0.99.

4 A similar relation was observed for the /16 distributions but is not shown due to
space constraints.

212 M.A. Rajab, F. Monrose, and A. Terzis

Table 2. Summary of the data-set

DShield dataset
Data Collection Period three months (Oct. to Dec., 2004)
Total Unique sources 31,864,871
Sources attacking port 80 632,472

Darknet dataset
Data Collection Period one month (Oct., 2005)
Total Unique sources 1,153,599

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1 10 100 1000

P
D

F

Prefix Rank

darknet dataset
DShield dataset

Fig. 3. Fraction of live addresses per /8 prefix for the DShield dataset compared to
the darknet dataset

This corresponds to /16 prefixes that contain as few as (0.012 × 216 = 760) live
hosts. Finally, substituting β in Equation 2 we find that n = 400 samples. This
means that using a maximum of 400 probes per /16 prefix it is possible, with
high probability (α = 0.99), to detect the /16 prefixes that contain 99% of the
overall Internet live population.

To validate the above result, we simulated the sampling process over a syn-
thetic population of 300 million live host, distributed according to the DShield
dataset. The simulated sampling process simply generates up to 400 random IP
addresses from each /16 prefix. If at least one IP address exists in the hypothet-
ical live host set we mark that prefix as live. Our results show that the sampling
process successfully detected live prefixes containing 98% of the live population
and isolated all empty and sparsely populated ones.

However, an attacker’s ultimate purpose is to find the vulnerable popula-
tion (i.e., the subset of the live population that is susceptible to the attack).
Therefore, a pertinent question is what percentage of the vulnerable population
is contained in the live prefixes detected by the sampling process. To answer
this question, we generated a hypothetical vulnerable population by extracting

Fast and Evasive Attacks: Highlighting the Challenges Ahead 213

all the sources from the DShield dataset that contacted port 80 and mapped
each source to its corresponding /16 prefix. Our results show that 96% of the
addresses from the vulnerable population are contained in detected live prefixes.
This result shows that the sampling process accurately detects live prefixes with-
out undue loss of the vulnerable population.

That said, the above trace-driven simulation implicitly assumes that all live
networks are reachable and so responses (or lack thereof) to the sampling probes
are indicative of network liveliness. In practice, perimeter security defenses such
as firewalls that silently drop probes, can decrease the reachability of the live
address space, negatively impacting the accuracy of the sampling process. In the
next section, we evaluate the impact of such defenses on the effectiveness of the
sampling process through a large scale IP space probing experiment.

3.1 Results from the Wild

We further explored the effectiveness of this approach by conducting a large scale
probing experiment based on the methodology presented in Section 2. The set
of /8 prefixes sampled in this experiment was selected from publicly available
information (e.g., IANA [9] and ISC [10]) and excludes all unallocated or reserved
/8 prefixes. We also excluded “sensitive” prefixes such as those used by certain
government agencies. The outcome of this selection process was a list of 69 /8
prefixes. These prefixes were then sampled using 256 nodes of the PlanetLab
distributed platform [21], each of which were assigned a set of /8 prefixes. Each
node selected a /16 prefix from its assigned set and sent a maximum of (n = 400)
SYN packets with destination port 80 to randomly generated IP addresses within
that prefix. Probes were sent at a rate of one probe every 5 seconds 5. Once the
first response was received from an IP address within the probed prefix, the prefix
was marked as live and outstanding probes to that prefix were terminated. If all
the 400 samples received no response, the prefix was marked as empty.

The best way to validate the accuracy of the sampling process is to compare
the results to the actual address space usage. Unfortunately, that information
is not readily available, and so in lieu of that we resort to a simple heuristic
to indirectly assess the quality of the sampling results. Specifically, using BGP
snapshots from RouteViews [29], we examine the reachability of the prefixes
we probed. The intuition is that prefixes that were not advertised in the BGP
snapshots are unreachable and therefore should appear as empty in the sampling
results. Consequently, if the sampling process marks a non-advertised prefix as
empty, then the sampling decision is indeed correct. Note that the converse is
not true—prefixes that have no live hosts can still be reachable. For instance,
address space monitored by a network telescope is practically empty space but
it is advertised in order to receive the “unwanted” traffic.

Figure 4 visualizes the results of the probing experiment. The x-axis shows the
probed /8 prefixes. To preserve the privacy of these networks, we anonymized
the first octet of these prefixes and present them in a random order. The y-axis
5 The choice of the target port as well as the probing rate are specific to the conditions

of our experiment. In practice, faster and more sophisticated techniques can be used.

214 M.A. Rajab, F. Monrose, and A. Terzis

Fig. 4. Summary of results from the probing experiment

shows the /16 prefix index within each /8. Each block in the map is colored ac-
cording to the sampling result of the corresponding /16 prefix. The white blocks
in the figure show the empty and unreachable (non-advertised) prefixes. Overall,
63% of the empty prefixes were not advertised in the RouteViews dataset. The
gray blocks show empty, but reachable, prefixes. These prefixes correspond to
allocated but unused space or to passive network monitors. Interestingly, the
sampling process successfully detected two large network monitors belonging to
two different research institutions, which we verified using out-of-band informa-
tion. All the detected live prefixes, shown by the black clusters on the map,
were advertised in the RouteViews dataset. Finally, notice that the detected live
prefixes within each /8 are highly clustered, which is a direct result of common
prefix allocation practices.

The sampling process sent a total number of 3.3 million probes, which is
significantly less than the 2.43 billion probes used by Bethencourt et.al. [3] 6. In-
terestingly, the number of probes required to detect a live prefix follows a heavy
tailed distribution with a mean of only 50 probes. This is due to the underly-
ing live host distribution, and shows the effectiveness of the bound derived in
Section 2.

Next, we examine the percentage of the live population that resides in the
detected live prefixes. We do so using the two datasets mentioned earlier (see
Table 2). Of all the sources that reside in the probed /8 prefixes, 86% of the
DShield sources and 88% of the darknet sources belong to live prefixes detected
by our probing experiment. This result further proves the effectiveness of the
probing process in locating the majority of the live population. Moreover, it

6 The total number of probes in [3] was actually ∼ 9 billion, but we scale it to the
69 /8 prefixes we targeted.

Fast and Evasive Attacks: Highlighting the Challenges Ahead 215

shows the minimal impact that current network perimeter defenses have in hiding
the live address space.

While the previous experiment tested the accuracy of the sampling process
at the /16 prefix level, we also examined its effectiveness at the /24 level. To
do so, we selected two /8 prefixes belonging to two different major ISPs and
applied the sampling process to detect live /16 and /24 prefixes. We found that
the sampling process was equally effective in detecting these prefixes, requiring
only 5 probes, on average, per /24 prefix.

4 Evasive Malware Attacks

Without question, the sampling mechanism presented in Section 2 can poten-
tially be abused for nefarious purposes. For example, information about the loca-
tion of live hosts could be exploited to launch targeted attacks against selected
prefixes—a behavior widely exhibited by botnets. More importantly, malware
strains that incorporate knowledge about the location of empty prefixes to guide
their scans could potentially evade detection by passive network monitors. We
demonstrate the practicality of this threat through two sample infection strate-
gies outlined in the sections that follow. Later, we turn our attention to ways in
which this threat can be mitigated.

4.1 Worm Spreading Using Off-Line Sampling Knowledge

We first consider a scenario where the attacker samples the address space prior
to launching the actual attack. The knowledge from the sampling process is
encoded and shared as a hierarchical bitmap (similar to that shown in Figure 5.a)
representing the live prefixes at each layer of the hierarchy.

1 1 11

 256 bits 256 bits

Live /16s

a. Off-line Samplimg b. Online

Completed /16sSampling Results

Live /24s

Fig. 5. Part (a) shows the information collected during offline sampling for a given /8;
the index of the bitmap represents the prefix ID. Live prefixes are encoded as “1” in
the bitmap and only live prefixes are expanded. Part (b) shows the online case where
nodes only share progress information.

The infection phase begins by targeting an initial hit-list to which the attacker
disseminates the constructed bitmap. Each infected node from the hit-list then
starts scanning the IP space uniformly, but only sends scans to IP addresses

216 M.A. Rajab, F. Monrose, and A. Terzis

Table 3. Worm Simulation Parameters

Number of Vulnerable hosts 630,000
Average scanning rate per infected host (s) 350 scans/sec
Size of initial Hit List 256
Scanning Algorithm Uniform with evasion
Monitors configuration 256 /16 (randomly deployed)
Network Delay µ = 50 ms , σ = 20 ms
Sampling Interval per /16 prefix 3 sec
Sampling Interval per /24 prefix 1 sec
Number of delegated /8 prefixes per host 1
(for the on-line case)

within live prefixes. Furthermore, each new victim receives a copy of the bitmap
along with the malware payload.
Propagation Model: This infection strategy can be modeled by extending the
worm spreading models presented in [4,27]. The worm search space in this case is
reduced from the entire 232 IP address space to the sum of the space covered by
all the detected live prefixes. Therefore, the probability of contacting a certain
host is equal to the probability (p) of contacting a host in the live space. Given
p, the expected number of infected hosts It+1 at time t + 1 is given by:

It+1 = It + (Vt − It)
[
1 − (1 − p)sIt

]
(4)

where Vt is the total number of vulnerable hosts and sIt is the total number
of scans generated by all currently infected hosts It, each scanning at a rate
of s scans/time step. Since p > 1

232 the infection speed is higher than that of
a uniform scanning worm. Moreover, since p increases as the live portion of
the address space decreases, worm speed increases proportionally to the size
of the un-scanned (empty) space. Therefore, sampling not only improves the
stealthiness of the worm but increase its spreading speed as well.

We evaluate malware spreading in this case via simulation and compare it to
a conventional uniform scanning worm outbreak. The simulation parameters we
used are shown in Table 3. Network monitors in our simulation are abstracted
as IP prefixes that record the source IP address of each connection attempt.

The sampling process is simulated first, as described in Section 3. In addition
to detecting the live prefixes that contain 96% of the target vulnerable popula-
tion, sampling classified all the 256 /16 monitor prefixes as empty after sending
only 400 probes to each monitor. In practice, this small number of scans has a
very low likelihood of triggering alarms given the sheer amount of background
“radiation” that is continuously received at network telescopes [20]. Once the
sampling process ends, we simulate the worm spreading over the detected live
prefixes. Figure 6 illustrates the infected fraction of vulnerable hosts versus time
compared to a uniform scanning worm. First, notice that since the uniform scan-
ning worm scans the entire IP space each infected host will send at least one scan
to the distributed network monitors at some point in the infection cycle. These
contacts are recorded by each network monitor generating the combined moni-

Fast and Evasive Attacks: Highlighting the Challenges Ahead 217

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

In
fe

ct
ed

 fr
ac

tio
n

of
 h

os
ts

Time (sec)

sampling w/ global knowledge
uniform (actual)

monitors view

Fig. 6. Fraction of hosts infected over time for an evasive worm compared to ordinary
uniform scanning worm with the same parameters

tors’ view also shown in Figure 6. While the 256 /16 monitors accurately track
the evolution of the uniform worm (in fact, the two lines overlap in the figure),
the worm that exploits the knowledge from sampling remains invisible. More-
over, since the sampling worm targets only live prefixes it spreads significantly
faster than its uniform counterpart.

Including the hierarchical bitmap in the worm payload results in a relatively
large footprint; nearly 568 KB based on the evaluation in Section 3. This short-
coming can be easily alleviated by applying other mechanisms to disseminate
sampling information among the infected hosts. A simple alternative is to incre-
mentally cover the address space by exchanging bitmaps that cover a single /8
prefix bitmap at a time. In the next section, we illustrate a strategy that incor-
porates the sampling process in the actual infection. Unlike the offline case, this
strategy is immune to short term changes in the address space usage. Moreover,
as we show next, the worm payload is significantly reduced in this case.

4.2 Online Worm Spreading Strategy

The online worm variant incorporates the sampling process into the actual in-
fection. As before, we assume that the attacker starts with an initial hit-list of
vulnerable hosts. Each host in the hit-list is delegated a number of /8 prefixes.
Once infected, the infectee selects a random /8 prefix from the group of del-
egated prefixes and starts sampling it using the hierarchical sampling process
to detect the live /16 and /24 prefixes. Once the first response from a live /24
prefix is received, the worm activates its scanning vector and attempts to infect
any vulnerable hosts in that /24 prefix.

To avoid re-sampling, each worm instance maintains a bitmap (see Figure 5.b)
that tracks the already sampled /16 prefixes within the delegated /8 prefixes.

218 M.A. Rajab, F. Monrose, and A. Terzis

merged bitmap

merged bitmap

backward information

merged bitmap

reinfection

new infection

n2

n3n4

n1

Fig. 7. Example of backward information sharing as a result of re-infection. Here, n1

re-infects n3 which in turn transmits its progress to n1 when both nodes merge their
bitmaps. n1 can now disseminate this updated information to subsequent infectees
(e.g., n4).

Nonetheless, this mechanism by itself cannot eliminate re-sampling across dif-
ferent worm instances. Doing so requires some form of continuous information
exchange among worm instances. However, this can be easily accomplished by
taking advantage of the inherent communication channel provided by the infec-
tion process. In particular, the worm instance can simply transfer a bitmap that
represents its current progress to each new infectee. In this way, the infectee
does not re-sample or re-scan prefixes already scanned by its infector. Addition-
ally, as Figure 7 illustrates, infected hosts can exploit the re-infection process
to continuously update their bitmaps. Notice that in this case the information
exchanged, as well as the size of the worm payload, is significantly reduced com-
pared to the offline case—now, only 256 bits are required to track the sampling
progress within an entire /8 prefix.

As before, we evaluate the online infection strategy using the simulation param-
eters from Table 3. The left line in Figure 8 represents the evolution of the worm
over time. Again, notice that the worm successfully evades detection with fewer
than 400 sources sending probes to any of the distributed monitors (out of a total
of 600,000 infected hosts). In addition, the worm’s infection speed is not severely
reduced by the overhead of the sampling process—it still reaches saturation in un-
der 500 seconds. It is also noteworthy that even without having to continuously
estimate the fraction of infected hosts (as required by Ma et.al. [16]), the worm
self-terminates its scans upon saturation after ∼1050 seconds.

Finally, one would expect that infected nodes that fail or are immunized dur-
ing the worm outbreak would result in losing the parts of the IP space delegated
to the failed nodes. However, as the right line in Figure 8 illustrates, even with a
node failure rate 7 of 2% the worm still infects all the vulnerable population. This
is because we deliberately chose a sub-optimal redundancy reduction scheme in
which certain prefixes were scanned by more than one host—a tactic that can
be easily used by attackers.

7 We define the failure rate as the percentage of infected nodes per second that simply
stop scanning either because they are treated or because they fail.

Fast and Evasive Attacks: Highlighting the Challenges Ahead 219

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

In
fe

ct
ed

 fr
ac

tio
n

of
 h

os
ts

Time (sec)

sampling worm (actual)
2% failure rate

Fig. 8. Fraction of hosts infected over time for an online sample-and-spread strategy

5 Countermeasures and Challenges

To maintain their future value, current passive malware monitoring practices
must evolve to face the threats posed by evasive attacks. In what follows, we
discuss a number of promising research directions and the pertinent challenges
that need to be addressed in order to counter this emerging threat.

Increased Network Surveillance. Given the proliferation of malware on the In-
ternet, it is fair to assume that more resources will be allocated to build early
warning systems. To better understand the ability of such distributed warn-
ing systems to detect an on-line evasive worm, we consider the case in which
a distributed monitoring system comprises a heterogeneous mix of a single /8
monitor, 256 /16 monitors, and a collection of 1024 /24 monitors. The /24 mon-
itors are deployed within heavily populated prefixes as recommended in [27],
while the rest are deployed randomly over the IP space.

Figure 9 depicts the actual onset of the worm compared to the collective
view of all monitors in the distributed system. Although the monitors’ view is
slightly enhanced compared to the results from the previous section, it is still
severely limited; the monitors only received probe traffic from 1% of the infected
population. To make things worse, these results assume an idealistic condition
where receiving a single probe from an infected host is enough for a monitor
to deduce that the host is indeed infected and instantaneously notify all other
monitors in the distributed system.

A promising protection against such evasion techniques is to use smaller moni-
tors. For example, Pouget et. al.[23] recently established a distributed monitoring
system using monitors of only three IP addresses deployed in more than 25 dif-
ferent countries. Such monitors are not easily detected by the proposed sampling
process as this would require extensive probing. However, in order to be useful

220 M.A. Rajab, F. Monrose, and A. Terzis

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 50 100 150 200 250

In
fe

ct
ed

 fr
ac

tio
n

of
 h

os
ts

Time (sec)

sampling worm (actual)
distributed monitor view

Fig. 9. Onset of an evasive worm showing the actual evolution and the collective view
of a (/8 + 256 /16 + 1024 /24) distributed monitoring system

as an early warning system, coordination among a substantial number of small
(geographically dispersed) monitors will be required [27]. Implementing such a
distributed monitoring systems in a scalable manner is non-trivial and remains
an open research direction which deserves further investigation.

Active Responders. Another avenue that can offer pragmatic value lies in the
widespread adoption of virtual active responders (e.g., [1,25,37]). Of late, ac-
tive responders have become popular for automatically generating attack signa-
tures [11,12,14,34]. If successful, these approaches would also mislead the sam-
pling process into marking the monitored space as live and subsequently scanning
it, thereby exposing the attack. That said, implementing deep-interaction active
responders (also known as honeynets) in a scalable and inconspicuous manner
is non-trivial [7,37]. Recently, Vrable et. al. [35] proposed techniques based on
aggressive multiplexing of virtual machines (VMs) to achieve scalable honeynets
that improve the state-of-the-art by up to six orders of magnitude. However, it
is well known that several malware actively detect VM-based execution environ-
ments [8] and alter the malware behavior accordingly. Therefore, limiting the
detectable effects of VM-based honeynets remains an ongoing challenge.

In the context of evasive malware attacks, an equally difficult challenge is
masking any external side effects of the monitor’s presence. For example, a vir-
tual responder can not respond to all incoming connection attempts since this
would appear suspicious from the attackers’ stand-point given the low likelihood
of observing such a dense mass of live hosts. On the other hand, selectively
responding to incoming probes is not ideal either. For one, probabilistically re-
sponding to a fraction of the incoming traffic degrades the monitor’s fidelity
and can lead to loss of “interesting” malicious flows. Moreover, even probabilis-
tic responding is not immune to well crafted sampling probes. For example, a

Fast and Evasive Attacks: Highlighting the Challenges Ahead 221

monitor responding with an ACK to a probe sent to a non-popular or unknown
destination port will be equally suspicious as not responding at all.

A promising trade-off is to have active responders intelligently mimic the sur-
rounding IP space in terms of the live host distribution and active services. Using
this persona, the monitor can decide which probes should be answered, thereby in-
creasing the difficulty of distinguish the monitored space from its immediate sur-
roundings. Again, to be useful, the probability of response must be significantly
greater than that of contacting a real vulnerable host in the operational network.
This is certainly feasible if the monitor space is substantially larger than the net-
work being protected. If not, the responder will offer little value in protecting op-
erational end-hosts. Exploring the potential of designing camouflaged responders
in this manner is an area of research that requires further investigation.

Finally, even if the above measures are implemented, the attackers will even-
tually locate monitors bound to static locations. Therefore, for these techniques
to be of long term value, they should be combined with periodic “rotation” of
the monitored address space. This can be achieved, for example, by having orga-
nizations actively rotate the operational portion of their address space used for
DHCP leases and deploy active responders within the remaining unused space.
This approach raises a number of practical challenges, but is a direction that
can have valuable impact in mitigating these threats and so warrants further
examination.

6 Related Work

The research community has only recently shown interest in techniques that detect
network monitors. Bethencourt et.al. [3] and Shinoda et.al. [31] showed how so-
called probe and response attacks can locate network monitors that issue periodic
reports of suspicious connection attempts. Although effective, these approaches
are slow and heavyweight since they require low-rate, exhaustive probing of the
address space. Furthermore, they are limited to network monitors that issue public
reports—a requirement that can be easily invalidated by eliminating or anonymiz-
ing these reports.Moreover, these probe-response techniques target predetermined
list of locations in which the reports are published (e.g., web-pages of certain repos-
itories [6]) and therefore cannot detect monitors that publish reports in public, yet
unknown or untargeted locations. On the other hand, the techniques in this paper
detect network monitors through faster, stealthy and lightweight sampling that
does not require a pre-established set of publishing locations.

Zeiton et.al. showed that it is possible to estimate the liveliness of /24 address
prefixes by selectively probing IP addresses based on common network admin-
istration practices (e.g., selecting addresses commonly used by router interfaces
such as a.b.c.1 and a.b.c.129). While the technique successfully detected live
prefixes in their study with more than 90% accuracy, it is only applicable to /24
prefixes. By contrast, the methodology we use provides an upper-bound on the
number of probes and is applicable to prefixes of any size.

Over the past few years a number of proposals have highlighted the threat
from fast worms that employ novel scanning techniques. At a high level, these

222 M.A. Rajab, F. Monrose, and A. Terzis

techniques boost worm spreading using various forms of collaboration among
worm instances. For example, Staniford et.al. [33] outline a number of collabo-
rative scanning strategies, including permutation scanning in which the worm
maps the IP space into a large permutation and diversifies the starting point
of scanners to reduce redundant scanning. While this strategy allows worms to
spread much faster, the scanning activity is still visible to network monitors
because the worm still scans the entire IP space. Flash and topological worms
can be even faster, reaching saturation in a few seconds [32]. However, although
inherently evasive, these worms assume a priori knowledge of the vulnerable
population through an already existing large hit-list.

More recently, Chen et.al. presented an alternative strategy to disseminate in-
formation about the vulnerable population distribution and divert worm scans
toward populated address groups [5]. However, as evasion was not a core ob-
jective, the proposed approach suffers various limitations from that perspec-
tive. For one, the worm initially scans the IP space uniformly at random to
find enough vulnerable hosts to derive an accurate estimate of the vulnerable
population distribution. This activity is easily detected by distributed network
monitors. Second, the vulnerable population distribution is only estimated at
the /8 prefix level. Hence, the technique can limit worm scans toward monitors
occupying entire /8 address prefixes, but the worm is still detectable by dis-
tributed collections of small monitors deployed in heavily populated prefixes (as
recommended in [27]). More problematic is the fact that in order to learn the
vulnerable population distribution, each infected host must contact a centralized
“worm-server”. Such a server is both a single point of failure and an unnecessary
bottleneck.

The coordination mechanism we propose exploits re-infections to dissemi-
nate updated knowledge about the vulnerable population across worm instances.
This idea was independently suggested by Ma et.al. for designing self-stopping
worms [16]. In that case, re-infection is used to share an estimate of the infected
population which is then used to decide when to stop scanning. Although such
worms can hide the infected population past worm saturation, they can still be
detected (and contained) during the spreading phase. In contrast, the exam-
ples we present conceals the worm activity during its spreading phase and is
inherently self-stopping.

Lastly, a number of measurement studies based on packet traces collected
from network monitors have already speculated that persistent port scanning
activities is being used to fingerprint vulnerable hosts (e.g., Pang et.al. [20],
Pouget et.al. [24]). In this paper, we show how such reconnaissance can be per-
formed in a dynamic, fast, and evasive manner.

7 Summary

The use of passive network monitors has played an important role in a myriad of
malware detection and containment studies to date. However, with the increased
use of passive monitoring techniques, it is prudent to expect that attacks will

Fast and Evasive Attacks: Highlighting the Challenges Ahead 223

soon evolve to minimize the practical benefits gained from such techniques. In
this paper, we highlight the challenges posed by evasive techniques that severely
limit the view of the infection as recorded by collections of distributed network
monitors. The techniques we present use lightweight sampling to detect passive
network monitors as well as clusters of live network prefixes. We show the ef-
fectiveness of these evasive techniques through trace-based analysis and actual
probing experiments conducted in the wild. Our experimental results verify our
assertion that with a reasonably small number of probes, it is possible to ac-
curately detect the locations of passive network monitors and to identify live
address clusters containing the majority of the vulnerable population. We sub-
stantiate the threat from these techniques by outlining the design of evasive
malware capable of evading extensive collections of network monitors, while sat-
urating the vulnerable population in a matter of seconds. We hope that our
results will stimulate the research community to develop monitoring infrastruc-
tures capable of countering these impending threats.

Acknowledgments

This work is supported in part by National Science Foundation grant SCI-
0334108. We thank DShield for graciously providing access to their IDS logs.
We also extend our gratitude to the reviewers for their insightful comments and
feedback.

References

1. Michael Bailey, Evan Cooke, Farnam Jahanian, Jose Nazario, and David Watson.
Internet motion sensor: A distributed blackhole monitoring system. In Proceedings
of the ISOC Network and Distributed System Security Symposium (NDSS), 2005.

2. Paul Barford, Rob Nowak, Rebecca Willet, and Vinod Yagneswaran. Toward a
Model for Source Address of Internet Background Radiation. In Proceedings of
Passive and Active Measurement Conference (PAM 2006), March 2006.

3. John Bethencourt, Jason Franklin, , and Mary Vernon. Mapping Internet Sen-
sors with Probe Response Attacks. In Proceedings of the 14th USENIX Security
Symposium, pages 193–212, August 2005.

4. Zesheng Chen, Lixin Gao, and Kevin Kwiat. Modeling the Spread of Active Worms.
In Proceedings of IEEE INFOCOMM, volume 3, pages 1890 – 1900, 2003.

5. Zesheng Chen and Chuanyi Ji. A Self-Learning Worm Using Importance Scanning.
In Proceedings of ACM Workshop On Rapid Malcode (WORM), November 2005.

6. The Distributed Intrusion Detection System (DShield). see http://
www.dshield.org/.

7. Xinwen Fu, Bryan Graham, Dan Cheng, Riccardo Bettati, and Wei Zhao. Camou-
flaging Virtual Honeypots. In Texas A&M University technical report #2005-7-3,
2005.

8. Thorsten Holz and Frederic Raynal. Defeating Honeypots. Online article, see
http://www.securityfocus.com/infocus/1826#ref3.

9. Internet Assigned Numbers Authority (IANA), see http://www.iana.org/.

224 M.A. Rajab, F. Monrose, and A. Terzis

10. Internet Systems Consortium (ISC), see http://www.isc.org.
11. Vinod Yegneswaran Jonathon T. Giffin Paul Barford Somesh Jha. An architecture

for generating semantic-aware signatures. In Proceedings of the 14th USENIX
Security Symposium, August 2005.

12. Hyang-Ah Kim and Brad Karp. Autograph: Toward automated, distributed worm
signature detection. In Proceedings of 13th USENIX Security Symposium, 2004.

13. Eddie Kohler, Jinyang Li, Vern Paxson, and Scott Shenker. Observed Structure of
Addresses in IP Traffic. In Proceedings of ACM SIGCOMM Internet Measurement
Workshop, November 2002.

14. Christian Kreibich and Jon Crowcroft. Honeycomb—creating intrusion detection
signatures using honeypots. In Proceedings of 2nd Workshop on Hot Topics in
Networks (Hotnets-II), 2003.

15. Tom Liston, LaBrea Tarpit Project, see http://labrea.sourceforge.net/.
16. Justin Ma, Geoffrey Voelker, and Stefan Savage. Self-stopping worms. In Pro-

ceedings of ACM Workshop On Rapid Malcode (WORM), pages 12–21, November
2005.

17. David Moore. Network Telescopes: Observing Small or Distant Security Events.
In 11th USENIX Security Symposium, Invited Talk, August 2002.

18. David Moore, Vern Paxson, Stefan Savage, Colleen Shannon, Stuart Staniford,
and Nicholas Weaver. Inside the Slammer Worm. IEEE Magazine of Security and
Privacy Magazine, pages 33–39, July 2003.

19. David Moore, Colleen Shannon, Geoffrey M. Voelker, and Stefan Savage. Internet
Quarantine: Requirements for Containing Self-Propagating Code. In Proceedings
of IEEE INFOCOM, 2003.

20. Ruoming Pang, Vinod Yegneswaran, Paul Barford, Vern Paxson, and Larry Pe-
terson. Characteristics of Internet Background Radiation. In Proceedings of ACM
IMC, October 2004.

21. Larry Peterson, Tom Anderson, and David Culler. A blueprint for introducing
disruptive technology into the internet. In First ACM Workshop on Hot Topics in
Networks (HotNets-I), October 2002.

22. Phillip Porras, Linda Briesemeister, Keith Skinner, Karl Levitt, Jeff Rowe, and
Yu-Cheng Allen Ting. A hybrid quarantine defense. In Proceedings of the Second
ACM Workshop on Rapid Malcode (WORM), November 2004.

23. Fabien Pouget, Marc Dacier, and Van Hau Pham. Lurre.com: On the Advantages
of Deploying a Large Scale Distributed Honeypot Platform. In Proceeding of the
E-Crime and Computer Conference ECCE, March 2005.

24. Fabien Pouget, Marc Dacier, Van Hau Pham, and Herve Deber. Honeynets: Foun-
dations for the development of early warning systems. In NATO Advanced Research
Workshop, 2004.

25. Neil Provos. A virtual honeypot framework. In Proceedings of the 13th USENIX
Security Symposium, August 2004.

26. Moheeb Abu Rajab, Fabian Monrose, and Andreas Terzis. Fast and Evasive At-
tacks: Highlighting the challenges ahead. In JHU Computer Science Technical
Report HiNRG-RMT-112205, November 2005.

27. Moheeb Abu Rajab, Fabian Monrose, and Andreas Terzis. On the Effectiveness
of Distributed Worm Monitoring. In Proceedings of the 14th USENIX Security
Symposium, pages 225–237, August 2005.

28. Moheeb Abu Rajab, Fabian Monrose, and Andreas Terzis. Worm Evolution Track-
ing via Timing Analysis. In Proceedings of ACM Workshop on Rapid Malware
(WORM), pages 52–59, November 2005.

Fast and Evasive Attacks: Highlighting the Challenges Ahead 225

29. David Meyer, University of Oregon RouteViews Project. http://www.
routeviews.org/.

30. Colleen Shannon and David Moore. The Spread of the Witty Worm. IEEE Security
and Privacy Magazine, 2(4):46–50, July 2004.

31. Yoichi Shinoda, Ko Ikai, and Motomu Itoh. Vulnerabilities of Passive Internet
Threat Monitors. In Proceedings of the 14th USENIX Security Symposium, pages
209–224, August 2005.

32. Stuart Staniford, David Moore, Vern Paxson, and Nick Weaver. The Top Speed of
Flash Worms. In Proceedings of the ACM Workshop on Rapid Malcode (WORM),
pages 33–42, October 2004.

33. Stuart Staniford, Vern Paxson, and Nicholas Weaver. How to 0wn the internet in
your spare time. In Proceedings of the 11th USENIX Security Symposium, August
2002.

34. George Varghese Sumeet Singh, Cristian Estan and Stefan Savage. Automated
worm fingerprinting. In Proceedings of 6th Symposium on Operating System Design
and Implmentation (OSDI), 2004.

35. Michael Vrable, Justin Ma, Jay Chen, David Moore, Erik Vandekieft, Alex C. Sno-
eren, Geoffrey M. Voelker, and Stefan Savage. Scalability, Fidelity and Contain-
ment in the Potemkin Virtual Honeyfarm. Proceedings of ACM SIGOPS Operating
System Review, 39(5):148–162, 2005.

36. Vinod Yegneswaran, Paul Barford, and Somesh Jha. Global intrusion detection in
the domino overlay system. In Proceedings of the ISOC Network and Distributed
Systems Security Symposium (NDSS), 2004.

37. Vinod Yegneswaran, Paul Barford, and David Plonka. On the Design and Use of
Internet Sinks for Network Abuse Monitoring. In Proceedings of the Symposium
on Recent Advances in Intrusion Detection (RAID), Sept. 2004.

38. Amgad Zeitoun and Sugih Jamin. Rapid Exploration of Internet Live Address
Space Using Optimal Discovery Path. In Proceedings of Globecomm, 2003.

D. Zamboni and C. Kruegel (Eds.): RAID 2006, LNCS 4219, pp. 226 – 248, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Anagram: A Content Anomaly Detector Resistant to
Mimicry Attack*

Ke Wang, Janak J. Parekh, and Salvatore J. Stolfo

Computer Science Department, Columbia University
500 West 120th Street, New York, NY, 10027

{kewang, janak, sal}@cs.columbia.edu

Abstract. In this paper, we present Anagram, a content anomaly detector that
models a mixture of high-order n-grams (n > 1) designed to detect anoma-
lous and “suspicious” network packet payloads. By using higher-order n-
grams, Anagram can detect significant anomalous byte sequences and gener-
ate robust signatures of validated malicious packet content. The Anagram
content models are implemented using highly efficient Bloom filters, reduc-
ing space requirements and enabling privacy-preserving cross-site correla-
tion. The sensor models the distinct content flow of a network or host using a
semi-supervised training regimen. Previously known exploits, extracted from
the signatures of an IDS, are likewise modeled in a Bloom filter and are used
during training as well as detection time. We demonstrate that Anagram can
identify anomalous traffic with high accuracy and low false positive rates.
Anagram’s high-order n-gram analysis technique is also resilient against
simple mimicry attacks that blend exploits with “normal” appearing byte
padding, such as the blended polymorphic attack recently demonstrated in
[1]. We discuss randomized n-gram models, which further raises the bar and
makes it more difficult for attackers to build precise packet structures to
evade Anagram even if they know the distribution of the local site content
flow. Finally, Anagram’s speed and high detection rate makes it valuable not
only as a standalone sensor, but also as a network anomaly flow classifier in
an instrumented fault-tolerant host-based environment; this enables signifi-
cant cost amortization and the possibility of a “symbiotic” feedback loop that
can improve accuracy and reduce false positive rates over time.

1 Introduction

The current generation of Network Intrusion Detection Systems (NIDS) are typi-
cally ill-suited for stealthy worms and targeted attacks. Misuse and anomaly detec-
tors that analyze packet headers and traffic flow statistics may be too slow to react
to reliably detect worms that are designed to evade detection by shaping their be-
havior to look like legitimate traffic patterns [2]. Furthermore, signature scanners
are vulnerable to zero-day exploits [3] and polymorphic worms/stealthy attacks
with obfuscated exploit code [4]. Consequently, there has been an increasing focus

* This work has been partially supported by a grant with the Army Research Office, No. DA

W911NF-04-1-0442.

 Anagram: A Content Anomaly Detector 227

on payload analysis to detect the early onset of a worm or targeted attack. Ideally,
one would hope to detect the very first packets of an attack, rather than accumulat-
ing sufficient statistics about connection flows to detect a zero-day attack.

A number of researchers (e.g., [5-8]) have focused on payload-based anomaly
detection. Approaches that have been studied include specification-based anomaly
detection [7] as well as techniques that aim to detect “code-like” byte sequences in
network payloads [6, 9]. In our work, we have focused on automated statistical
learning approaches to efficiently train content models on a site’s “normal” traffic
flow without requiring significant semantic analysis. Ideally, we seek to design a
sensor that automatically learns the characteristics of “normal” attack-free data for
any application, service, network or host. Consequently, a model learned for “nor-
mal” attack-free data may be used to identify “abnormal” or suspicious traffic that
would be subjected to further analysis to validate whether the data embodies a new
attack.

 In our previous work we proposed PAYL (short for “PAYLoad anomaly detec-
tion”) that modeled the “normal” attack-free traffic of a network site as 1-gram,
byte-value frequency distributions [10], and demonstrated an ability to effectively
detect worm behavior via ingress/egress and cross-site correlation [11]. The sensor
was designed to be language-independent, requiring no syntactic analysis of the
byte stream. Furthermore, PAYL was designed to be efficient and scalable for high-
speed networks and applicable to any network service. Various experiments dem-
onstrated that PAYL achieved a high detection rate and with low false positives for
“typical” worms and exploits available at the time.

However, most researchers1 correctly suspected that PAYL’s simplicity would
be easily blinded by mimicry attacks. Kolesnikov, Dagon and Lee [1] demonstrated
a new blended, polymorphic worm designed to evade detection by PAYL and other
frequency distribution-based anomaly detectors. This demonstration represents a
new class of “smart worms” that launch their attack by first sniffing traffic and
shaping the datagram to the statistics specific to a given site to appear normal. The
same principles may be applied to the propagation strategy as well as in, for exam-
ple, parasitic worms. Since PAYL only models 1-gram distributions, it can be
easily evaded with proper padding to avoid detection of anomalous byte sequences.
As a countermeasure, we conjecture that higher-order n-gram modeling may likely
detect these anomalous byte sequences. Unfortunately, computing a full frequency
distribution for higher order n-grams is computationally and memory-wise infeasi-
ble, and would require a prohibitively long training period even for modest gram
sizes.

In this paper we present a new sensor, Anagram, which introduces the use of
Bloom filters and a binary-based detection model. Anagram does not compute
frequency distributions of normal content flows; instead, it trains its model by stor-
ing all of the distinct n-grams observed during training in a Bloom filter without
counting the occurrences of these n-grams. Anagram also stores n-grams extracted
from known malicious packets in a second bad content Bloom filter, acquired by
extracting n-grams from openly available worm detection rules, such as the latest

1 Including ourselves; a proposal to study counter-evasion techniques led to the work re-

ported herein.

228 K. Wang, J.J. Parekh, and S.J. Stolfo

Snort rulesets [12]. At detection time, packets are scored by the sensor on the basis
of the number of unobserved n-grams the packet contains. The score is weighted by
the number of malicious n-grams it contains as well. In this paper, we demonstrate
that this semi-supervised strategy attains remarkably high detection and low false
positive rates, in some cases 100% detection with less than 0.006% false positive
rate (per packet).

The use of Bloom filters makes Anagram memory and computationally efficient
and allows for the modeling of a mixture of different sizes of n-grams extracted
from packet payloads, i.e. an Anagram model need not contain samples of a fixed
size gram. This strategy is demonstrated to exceed PAYL in both detection and
false positives rates. Furthermore, Anagram’s modeling technique is easier to train,
and allows for the estimation of when the sensor has been trained enough for de-
ployment. The Bloom filter model representation also provides the added benefit of
preserving the privacy of shared content models and alerts for cross-site correlation.

Of particular interest here is that Anagram is shown to be robust against existing
mimicry attack approaches. We demonstrate Anagram’s ability to counter the simple
mimicry attacks levied against PAYL. Furthermore, Anagram is designed to defeat
training and mimicry attacks by using randomized n-gram modeling. The approach
presented raises the bar against the enemy, making it far more difficult to design an n-
gram attack against Anagram. By randomizing the portion of packets that Anagram
extracts and models, mimicry attackers cannot easily guess how and where to pad
malicious content to avoid detection. We also describe the use of a feedback loop
between the Anagram sensor and host-based detectors, thereby updating Anagram
models over time and improving its detection performance. Thus, the combination of
model randomization and a feedback loop makes it more difficult to evade detection
by training and mimicry attacks. The contributions of this paper include:

• A new statistical, language-independent, efficient content-based anomaly
detector based upon semi-supervised training of higher-order n-gram
analysis that is shown to be resistant against existing mimicry attacks. The
sensor does not rely upon a specification or semantic analysis of the target
applications;

• Robustness against future mimicry attacks by the use of a novel, low-
overhead randomized testing strategy, making it difficult for the attacker to
guess where or how to pad content;

• Development of a run-time measure of the “stability” of a network’s content
flow, providing a reasonable estimate of when the sensor has been well
enough trained and is ready for deployment.

• A robust means of representing content-based alerts for cross-site alert shar-
ing and robust signature generation using a Bloom Filter representation of
anomalous byte sequences2;

• A new defensive strategy showing how a symbiotic relationship between
host-based sensors and a content-based sensor can adapt over time to im-
prove accuracy of modeling a site’s content flow.

2 The representation also permits patch generation systems to share anomalous data for local

patch generation across an “application community” [13, 14].

 Anagram: A Content Anomaly Detector 229

The rest of the paper is organized as follows. Section 2 details the Anagram sen-
sor and its relevant algorithms. Performance, detection rate, and false positive char-
acteristics are presented testing Anagram against real network traffic traces infected
with a collection of worms and viruses. Section 3 describes Anagram’s robustness
against the cleverly crafted blended polymorphic worm reported in [1], previews
the possibility of new customized mimicry attacks being crafted against Anagram,
and describes randomization techniques for defeating such attacks. In section 4 we
present the concept of coupling a “shadow server” with Anagram and discuss how
the combination can effectively support the techniques presented in section 3, as
well as support robust signature generation and patch generation. Section 5 dis-
cusses related work, while section 6 concludes the paper with a call for collabora-
tion among researchers at distributed sites.

2 Anagram – Modeling a Mixture of N-Grams

Anagram’s approach to network payload anomaly detection uses a mixture of
higher order n-grams (n>1) to model and test network traffic content. N-gram
analysis is a well-known technique has been used in a variety of tasks, such as
system call monitoring [15-17]. In Anagram, the n-grams are generated by sliding
windows of arbitrary lengths over a stream of bytes, which can be per network
packet, per request session, or other type of data unit.

In our previous work on network payload anomaly detection, PAYL [10, 11], we
modeled the length-conditioned 1-gram frequency distribution of packet payloads,
and tested new packets by computing the Mahalanobis distance of the test packet
against the model. This approach is effective at capturing attacks that display ab-
normal byte distributions, but it is likely to miss well-crafted attacks that focus on
simple CPU instructions and that are crafted to resemble normal byte distributions.
For instance, although a standard CodeRed II’s buffer overflow exploit uses a large
number of “N” or “X” characters and so appears as a peak in the frequency distri-
bution, [18] shows that the buffer can instead be padded with nearly any random
byte sequence without affecting the attack vector. Another example is the following
simple phpBB forum attack:

GET /modules/Forums/admin/admin_styles.php?phpbb_root_path=h
ttp://81.174.26.111/cmd.gif?&cmd=cd%20/tmp;wget%20216.15.209
.4/criman;chmod%20744%20criman;./criman;echo%20YYY;echo|..HT
TP/1.1.Host:.128.59.16.26.User-Agent:.Mozilla/4.0.(compatibl
e;.MSIE.6.0;.Windows.NT.5.1;)..

In such situations, the abnormal byte distribution model is insufficient by itself
to identify these attack vectors as abnormal data. However, invariants remain in the
packet payloads: the exploit code, the sequence of commands, or the special URL
that should not appear in the normal content flow to the target application [19, 20].
By modeling higher order n-grams, Anagram captures the order dependence of byte
sequences in the network payload, enabling it to capture more subtle attacks. The
core hypothesis is that any new, zero-day exploit will contain a portion of data that
has never before been delivered to the application. These subsequences of new,

230 K. Wang, J.J. Parekh, and S.J. Stolfo

distinct byte values will manifest as anomalous” n-grams that Anagram is designed
to efficiently and rapidly detect.3

In the following sections we will give a detailed description of Anagram, which
outperforms PAYL in the following respects:

• Accuracy in detecting anomalous payloads, even carefully crafted ‘mimicry
attacks’ with a demonstrably lower false positive rate;

• Computational efficiency in detection by the use of fast (and incremental,
linear-time) hashing in its Bloom filter implementation;

• Model space efficiency since PAYL's multiple-centroid modeling is no
longer necessary, and Bloom filters are compact;

• Fast correlation of multiple alerts while preserving privacy as collaborating
sites exchange Bloom filter representations of common anomalous payloads;

• The generation of robust signatures via cross-site correlation for early warn-
ing and detection of new zero day attacks.

In the following sections, we will describe the mechanisms in detail and present
experimental results of testing Anagram against network traces sniffed from our
local LAN.

2.1 High Order N-Gram Payload Model

While higher order n-grams contain more information about payloads, the feature
space grows exponentially as n increases. Comparing an n-gram frequency distribu-
tion against a model is infeasible since the training data is simply too sparse; the
length of a packet is too small compared to the total feature space size of a higher-
order n-gram. One TCP packet may contain only a thousand or so n-grams, while
the feature space size is 256n. Clearly, with increasing n, generating sufficient fre-
quency statistics to estimate the true empirical distribution accurately is simply not
possible in a reasonable amount of time.

In Anagram, we therefore do not model the frequency distribution of each n-
gram. Rather, we observe each distinct n-gram seen in the training data and record
each in a space efficient Bloom filter. Once the training phase terminates, each
packet is scored by measuring the number of n-grams it did not observe in the train-
ing phase. Hence, a packet is scored by the following formula, where Nnew is the
number of new n-grams not seen before and T is the total number of n-grams in the
packet: Score = Nnew / T ∈ [0,1].

At first glance, the frequency-based n-gram distribution may contain more in-
formation about packet content; one might suspect it would model data more accu-
rately and perform better at detecting anomalous data, but since the training data is
sparse, this alternative “binary-based model” performs significantly better than the
frequency-based approach given the same amount of training data.

3 Note that some attacks may not include byte sequences that are “code-like”, and hence

testing content for such code-like data subsequences is not guaranteed to cover all attack
cases. The language independence of anomalous n-grams may be broadly applicable to
these and other attacks.

 Anagram: A Content Anomaly Detector 231

We analyzed the network traffic for the Columbia Computer Science website
and, as expected, a small portion of the n-grams appear frequently while there is a
long “tail” of n-grams that appear very infrequently. This can be seen in Table 1,
which displays the percentage of the n-grams by their frequency counts for 90
hours of CS web traffic. Since a significant number of n-grams have a small fre-
quency count, and the number of n-grams in a packet is very small relative to the
whole feature space, the frequency-distribution model incurs relatively high false
positives. Thus, the binary-based model (simply recording the distinct n-grams seen
during training) provides a reasonable estimate of how “normal” a packet may be.
This is a rather surprising observation; as we will demonstrate, it works very well in
practice. The conjecture is that true attacks will be delivered in packets that contain
many more n-grams not observed in training than “normal” packets used to train
the model. After all, a true zero-day attack must deliver data to a server application
that has never been processed by that application before. Hence, the data exercising
the vulnerability is very likely to be an n-gram of some size never before observed.
By modeling a mixture of n-grams, we increase the likelihood of observing these
anomalous grams.

To validate this conjecture, we compare the ROC curves of the frequency-based
approach and the binary-based approach for the same datasets (representing equiva-
lent training times) as displayed in figure 1. We collected the web traffic of two CS
departmental web servers, www and www1; the former serves the department web-
page, while the latter serves personal web pages. Traffic was collected for two
different time periods: a period of sniffed traffic from the year 2004 and another
dataset sniffed in 2006. The 2004 datasets4 (www-04 and www1-04) contain 160
hours of traffic; the 2006 datasets (www-06 and www1-06) contain about 560 hours.
We tested for the detection of several real worms and viruses: CodeRed, CodeRed II,
WebDAV, Mirela, a php forum attack, and a worm that exploits the IIS Windows media
service, the nsiislog.dll buffer overflow vulnerability (MS03-022). These worm samples
were collected from real traffic as they appeared in the wild, from both our own dataset
and from a third-party.

For the first experiment, we used 90 hours of www1-06 for training and 72 hours
for testing. (Similar experiments on the other datasets display similar results, and
we skip them here for brevity.) To make it easier for the reader to see the plots, the
curves are plotted for the cases where the false positive rate is less than 0.03%.
Both the detection rate and false positive rate are calculated based on packets with
payloads; non-payload (e.g., control) packets were ignored. Notice that the detec-
tion rate in figure 1 is based on per packet, instead of per attack. Some attacks have
multiple packets; while fragmentation can result in a few packets appearing normal,
we can still guarantee reliable attack detection over the entire set of packets. For
example, for the IIS5 WebDAV attack, 5-grams detect 24 out of 25 packets as
being anomalous. The only missed packet is the first packet, which contains the
buffer overflow string “SEARCH /AAA……AA”; this is not the key exploit part of
the attack. For further comparison, we list minimum false positive rates when de-
tecting all attack attempts (where an attack is detected if at least 80% of the packets
are classified as anomalous) for both binary-based and frequency-based models in
table 2.

4 The 2004 dataset was used to train and test PAYL as reported in [11], and is used here

for comparative evaluation.

232 K. Wang, J.J. Parekh, and S.J. Stolfo

Table 1. The percentage of the observed
unique n-grams for different frequencies of
occurrence for 90 hours of training traffic

freq
count

3-grams 5-grams 7-grams

>=5 58.05% 39.13% 32.53%
2 to 4 22.17% 28.22% 28.48%

1 19.78% 32.65% 38.99%

0 0.01 0.02 0.03
70

75

80

85

90

95

100

False Positive Rate (%)

D
et

ec
tio

n
R

at
e

(%
)

of
 a

ll
pa

ck
et

s

Freq-based, 5-gram
Binary-based, 5-gram
Freq-based, 3-gram
Binary-based, 3-gram

Fig. 1. ROC curves comparing the frequency-
based and binary-based n-gram approach

Table 2. The false positive rate (%) of the two approaches using different n-grams when
achieving 100% detection rate, www1-06 train/test dataset

 3-gram 4-gram 5-gram 6-gram 7-gram 8-gram
Freq-based 30.40205 0.18559 0.08858 0.13427 0.30792 0.41477

Binary-based 0.02109 0.01406 0.00634 0.00703 0.00914 0.00914

The binary-based approach yields significantly better results than the frequency-
based approach. When a 100% detection rate is achieved for the packet traces ana-
lyzed, the false positive rate of the binary-based approach is at least one order of
magnitude less than the frequency-based approach. The relatively high false posi-
tive rate of the frequency-based approach suggests much more training is needed to
capture accurate statistical information to be competitive. In addition, the extremely
high false positive rate of the 3-gram frequency-based approach is due to the fact
that the 3-grams of the php attack all appear frequently enough to make it hard to
distinguish them from normal content packets. On the other hand, the binary-based
approach used in Anagram results in far better performance. The 0.01% false posi-
tives average to about 1 alert per hour for www1 and about 0.6 alerts per hour for
www. The result also shows that 5-grams and 6-grams give the best result, and
we’ve found this to be true for others as well.

As previously stated, Anagram may easily model a mixture of different n-grams
simply by storing these in the same Bloom filter. However, for larger n-grams addi-
tional training may be required; as we shall describe shortly, our modeling ap-
proach allows us to estimate when the sensor has been sufficiently trained.

2.2 Model Size and Bloom Filters

As previously stated, one significant issue when modeling with higher order n-
grams is memory overhead. By leveraging the binary-based approach, we can use
more memory-efficient set-based data structures to represent the set of observed n-
grams. In particular, the Bloom filter (BF) [21] is a convenient tool to represent the
binary model. Instead of using n bytes to represent the n-gram, or even 4 bytes for a

 Anagram: A Content Anomaly Detector 233

32-bit hash of the n-gram, the Bloom filter can represent a set entry with just a few
bits, reducing memory requirements by an order of magnitude or more.

A Bloom filter is essentially a bit array of m bits, where any individual bit i is set if
the hash of an input value, mod m, is i. As with a hash table, a Bloom filter acts as a
convenient one-way data structure that can contain many items, but generally is or-
ders-of-magnitude smaller. Operations on a Bloom filter are O(1), keeping computa-
tional overhead low. A Bloom filter contains no false negatives, but may contain false
positives if collisions occur; the false positive rate can be optimized by changing the
size of the bit array and by using multiple hash functions (and requiring all of them to
be set for an item to be verified as present in the Bloom filter; in the rare case where
one hash function collides between two elements, it’s highly unlikely a second or a
third would also simultaneously collide). By using universal hash functions [22], we
can minimize the probability of multiple collisions for n-grams in one packet (assum-
ing each n-gram is statistically independent); the Bloom filter is therefore safe to use
and does not negatively affect detection accuracy.

2.2.1 Memory Overhead
While Bloom filters are comparatively small even when inserting a large number
of entries, choosing the optimal size of a Bloom filter is nontrivial, since Ana-
gram is not aware of a site’s distribution (and the number of unique n-grams)
before building its model. Additionally, a Bloom filter’s size cannot be dynami-
cally resized, as the hash values cannot be recomputed without the original under-
lying training data.5

A large Bloom filter will waste memory, but small Bloom filters saturate more
quickly, yielding higher false positive rates. It is worth pointing out that “large” is
relative; a 24-bit Bloom filter is capable of holding 224/nh elements, where nh repre-
sents the number of hash functions used, in only 2MB of memory, e.g., each n-
gram inserted uses about 2.7 bits when 3 hash functions are used. Additionally, we
can use traditional compression methods (e.g., LZW) for storing a sparse Bloom
filter, which significantly reduces storage and transport costs. As discussed later in
this paper, our experiments anecdotally suggest this Bloom filter is large enough for
at least 5-grams, assuming a mostly textual distribution.

The presence of binary data does significantly increase Bloom filter requirements;
if allocating extra initial memory is undesirable, a “layered” approach can be em-
ployed, where new Bloom filters are created on demand as previous Bloom filters
saturate, with a small constant-time overhead. It should be evident that Bloom filters
can be trivially merged via bitwise ORing and compared via bitwise ANDing.

2.3 Learning Issues

The huge feature space of higher order n-grams makes estimating the frequency
distribution infeasible. In the case of representing distinct n-grams, we pose the
following questions: how long do we need to train before deploying the sensor in
detection mode? Further, how well can Anagram handle noisy training data since
the model is binary-based?

5 While the training data can be kept, we do not consider this practical for actual deploy-

ment, especially if techniques like incremental and run-time training are used.

234 K. Wang, J.J. Parekh, and S.J. Stolfo

2.3.1 When Is the Model Well Trained?
Since there are many distinct n-grams, many of which may take days or weeks to
see, when can we say the model is well trained and ready to use? We first check the
likelihood of seeing a new n-gram with additional training. Figure 2 shows the
percentage of the new distinct n-grams out of every 10,000 content packets when
we train for up to 500 hours of traffic data. The key observation is that during the
initial training period, one should expect to see many distinct n-grams. Over time,
however, fewer distinct “never before seen” n-grams should be observed. Hence,
for a given value of n, a particular site should exhibit some rate of observing “new”
distinct n-grams within its “normal” content flow. By estimating this rate, we can
estimate how well the Anagram model has been trained. When the likelihood of
seeing new n-grams in normal traffic is stable and low, the model is stable; we can
then use the rate to help detect the attacks, as they should contain a higher percent-
age of unseen n-grams. Figure 3 plots the false positive rates of different models,
varying in n-gram size and length of training time, when tested on the 72 hours of
traffic immediately following the training data.

0 50 100 150 200 250 300 350 400 450
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Per 10000 content packets

Li
ke

lih
oo

d
of

 s
ee

in
g

ne
w

 n
-g

ra
m

s 3-grams
5-grams
7-grams

Fig. 2. The likelihood of seeing new n-grams
as training time increases

0 1 2 3 4 5 6 7
0

0.005

0.01

0.015

0.02

0.025

0.03

Training Dataset Length (in days)F
al

se
 P

os
iti

ve
 R

at
e

(%
)

w
he

n
10

0%
 D

et
ec

tio
n

R
at

e

3-grams
5-grams
7-grams

Fig. 3. False positive rate (with 100% detec-
tion rate) as training time increases

From these plots, we can see that as the training time increases, the false positive

rate generally goes down as the model is more complete. After some point, e.g. 4
days’ in figure 3, there is no further significant gain, and the FP rate is sufficiently
low. Higher order n-grams need a longer training time to build a good model, so 7-
grams display a worse result than 5-grams given the same amount of training.
While the 3-gram model is likely more complete with the same amount of training,
it scores significantly worse: 3-gram false positives do not stem from inadequate
training, but rather because 3-grams are not long enough to distinguish malicious
byte sequences from normal ones.6

In theory, Anagram should always improve with further training – if we can
guarantee a clean training dataset, which is crucial for the binary-based approach.

6 We hypothesize, though, that as the number of new 3-grams converges very rapidly, that

the rate of detection of unique 3-grams during testing may be a good sign of an attack. In
general, anomalous content may be measurable as a function of the size of the gram de-
tected that was not seen during training.

 Anagram: A Content Anomaly Detector 235

However, obtaining clean training data is not an easy task in practice. During our
experiments, increased training eventually crosses a threshold where the false posi-
tive rate starts increasing, even if the training traffic has been filtered for all known
attacks. The binary-based approach has significant advantages in speed and mem-
ory, but it’s not tolerant of noisy training, and manual cleanup is infeasible for large
amounts of training data. We therefore introduce semi-supervised training in the
next section to help Anagram be more robust against noisy data.

2.3.2 Semi-supervised Learning
The binary-based approach is simple and memory efficient, but too sensitive to
noisy training data. One form of supervised training is quite simple. We utilize the
signature content of Snort rules obtained from [12] and (a collection of about 500)
virus samples to precompute a known “bad content model”. We build a bad content
Bloom filter containing the n-grams that appear in the two collections, using all
possible n that we may eventually train on (e.g., n=2~9 in our experiments). This
model can be incrementally updated when new signatures have been released.

It’s important to note, however, that signatures and viruses often contain some
normal n-grams, e.g., the ‘GET’ keyword for HTTP exploits. To remove these
normal n-grams, we can maintain a small, known-clean dataset used to exclude
normal traffic when generating the bad content BF. This helps to exclude, as a
minimum, the most common normal n-grams from the bad content model.

In one experiment, we used 24 hours of clean traffic to filter out normal n-grams
from the bad content BF. Figure 4 shows the distribution of normal packets and
attack packets that match against the bad content model. The X axis represents the
“matching score”, the percentage of the n-grams of a packet that match the bad
content model, while the Y axis shows the percentage of packets whose matching
score falls within that score range. The difference between normal and attack pack-
ets is obvious; where the normal traffic barely matches any of the bad content
model, attack packets have a much higher percentage, so that we can reliably apply
the model for accurate detection. The resulting bad content BF contains approxi-
mately 46,000 Snort n-grams and 30 million virus n-grams (for n=2…9).

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bad Content Model Matching Score

P
er

ce
nt

ag
e

of
 t

he
 p

ac
ke

ts

Normal Content Packets

0 20 40 60 80 100

0

0.05

0.1

0.15

0.2

0.25

Bad Content Model Matching Score

P
er

ce
nt

ag
e

of
 t

he
 p

ac
ke

ts

Attack Packets

Fig. 4. Distribution of bad content scores for normal packets (left) and attack packets (right)

The “bad content model” is used during both training and detection. During
training, the incoming data stream is first filtered through Snort to ensure it is
free of known, old attacks. Packets are then compared against the bad content

236 K. Wang, J.J. Parekh, and S.J. Stolfo

model; any n-gram that matches the bad content model is dropped. The whole
packet is also dropped if it matches too many n-grams from the bad content
model – as new attacks often reuse old exploit code – to avoid modeling new
malicious n-grams. In our experiment, we established a 5% bad n-gram threshold
before ignoring a training packet. While this is rather strict, ignoring a packet
during training time is harmless as long as relatively few packets are dropped, as
figure 4 shows.

During detection, if a never-before-seen n-gram also appears in the bad content
model, its detection score is further weighted by a factor t over other malicious n-
grams; in our experiment, we set t to 5. This enables us to further separate mali-
cious packets from normal ones in order to achieve higher detection accuracy. To
show the improvement we gain by using the bad content model, figure 5 compares
the false positive rate before and after using it for different n-gram sizes on two
datasets. The false positive rates are significantly reduced with the help of this bad
content model.

2 3 4 5 6 7 8 9
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Value n of n-gramsF
al

se
 P

os
tit

iv
e

R
at

e
(%

)
w

he
n

10
0%

 D
et

ec
tio

n
R

at
e

dataset www1-06, normal
dataset www1-06, supervised
dataset www-06, normal
dataset www-06, supervised

Fig. 5. The false positive rate (with 100% detection rate) for different n-grams, under both
normal and semi-supervised training

2.4 Signature Generation and Privacy-Preserving Cross-Site Collaboration

One other substantial advantage of Anagram is its ability to generate robust signa-
tures. When a suspicious packet is detected, the corresponding malicious n-grams
are identified in the packet for free. These n-grams are good target for further
analysis and signature generation. It’s also particularly important to note that the
order of the distinct anomalous n-grams is irrelevant, since it’s just a set of n-
grams. An attempt to avoid detection by an attacker by reordering their attack vec-
tor code will therefore fail.

Revisiting the php attack presented before, we show here the signatures gener-
ated by flattening out the detected malicious n-grams according to their positions,
using 3-grams, 5-grams and 7-grams, respectively. To present the nonprintable
characters in the following signatures, we use “.” as in tcpdump. An asterisk
(“*”) represents a “don’t-care” wildcard, similar to a Kleene star match in a regu-
lar expression.

 Anagram: A Content Anomaly Detector 237

GET /modules/Forums/admin/admin_styles.phpadmin_styles.php?p
hpbb_root_path=http://81.174.26.111/cmd.gif?&cmd=cd%20/tmp;w
get%20216.15.209.4/criman;chmod%20744%20criman;./criman;echo
%20YYY;echo|..HTTP/1.1.Host:.128.59.16.26.User-Agent:.Mozill
a/4.0.(compatible;.MSIE.6.0;.Windows.NT.5.1;)..

N=3:
*?ph*bb_*//8*p;wg*n;c*n;./c*n;ec*0YYY;echo|H*26.U*1;).*

N=5:
*ums/ad*in/admin_sty*.phpadmin_sty*hp?phpbb_root_path=http:/
/81.174.26.111/cmd*cmd=cd%20/tmp;wget%20216*09.4/criman;chmo
d%20744%20criman;./criman;echo%20YYY;echo| HTT*6.26.Use*5.1;
)..*
N=7:
*dules/Forums/admin/admin_styles.phpadmin_styles.php?phpbb_r
oot_path=http://81.174.26.111/cmd.gi*?&cmd=cd%20/tmp;wget%20
216.15.209.4/criman;chmod%20744%20criman;./criman;echo%20YYY
;echo| HTTP/*59.16.26.User-*T 5.1;)..*

All of these signatures are quite accurate: no normal packet matches more than

5% of the malicious n-gram signatures of the attack. Generally, low order n-grams
produces less optimal signatures, since relatively few n-grams will be detected as
malicious and they are not long enough to capture useful information. 7-grams
produce the best signature; in theory, the longer the n-gram the better the generated
signature, higher training and false positive costs notwithstanding.

Besides the benefits of accurate signature generation, Anagram’s models enable
cross-site privacy-preserving information sharing by using Bloom Filters. In our
previous PAYL work [11], we discussed the idea of cross-site collaboration and its
use for zero-day worm detection and signature generation, followed by several
approaches for alert information sharing. However, PAYL’s correlation techniques
traded accuracy for privacy.

Instead, Anagram can share Bloom Filters with no loss of accuracy. Suspect pay-
loads are identified by the sensor, and the particular anomalous n-grams (of any size)
are stored in a Bloom Filter.7 The use of one-way hashes, combined with the large
number of possible n-grams, makes reverse-engineering or brute forcing infeasible.
By checking the n-grams of local alerts against the remote alert Bloom Filters, it’s
easy to tell how similar the alerts are to each other, and identify the common mali-
cious n-grams that can be used to construct a candidate attack signature.

This is a substantial improvement over the previous approaches reported by sev-
eral researchers whereby most common tokens, longest common substrings, and/or
longest common subsequences are computed in order to identify common sub-
strings between two or more suspect payloads. These computations intend to com-
pute string signatures common across multiple instances of a polymorphic worm
attack. Anagram essentially "pre-computes" common string subsequences via the
common anomalous n-grams stored in the Bloom Filter, irrespective of the order of
appearance of any of these anomalous strings, and thereby speeds up correlation.

7 The number of anomalous n-grams must also be transmitted, as it is used in the threshold

logic to identify anomalous packets.

238 K. Wang, J.J. Parekh, and S.J. Stolfo

Due to a lack of space, we refer the reader to [23] for further details on the me-
chanics and effectiveness of our correlation approaches.

3 Randomized Models to Thwart Mimicry Attacks

3.1 Anagram Against Mimicry Attack

As mentioned earlier, mimicry attacks are perhaps the most significant threat to any
anomaly detector, such as [1], which details a polymorphic mimicry worm targeting
PAYL. This smart worm learns a site’s normal traffic pattern by sniffing then
blends the exploit packet with characters to simulate the normal byte frequency
distribution to successfully evade PAYL’s 1-gram models. Since this mimicry
attack pads without considering the sequence of bytes, Anagram can easily detect
any variants of the crafted attacks8.

We adapted this worm to launch a mimicry attack against Anagram. Instead of
padding the packet to simulate the byte frequency, we padded attack packets with
normal strings; in this case, long URLs of the target website which should be, by
definition, composed of normal n-grams. Although the anomaly scores are greatly
reduced by this padding, the remaining portions of the crafted attack packets still
have enough abnormal n-grams to be detected by Anagram. Besides the “sled”,
which provides the opportunity for crafted padding, the attack packet still requires a
byte sequence for the polymorphic decryptor, the encrypted exploit, encoded at-
tacks, and the embedded mapping table. Since the amount of space in each packet
is limited, the mimicked worm content containing the exploit vector is purposely
spread over a long series of fragmented packets. Thus, the worm is fragmented so
that each packet on its own does not appear suspicious. This strategy is described
in the aforementioned paper and is akin to a multi-partite attack strategy where the
protocol processor assembles all of the distributed pieces necessary for the com-
plete attack.

Using the blended polymorph worm engine, we generated different variants of
the worm. The following table shows the maximum padding length of each version.
Each cell in the top row contains a tuple (x, y), representing a variant sequence of y
packets of x bytes each. The second row represents the maximum number of bytes
that can be used for padding in each packet. It’s obvious that there is a substantial
chunk of packet that needs to be reserved for the exploit, where we conjecture ma-
licious higher order n-grams will appear to encode the encrypted exploit code or the
decryptor code.

Table 3. The padding length for a packet of different varieties of the mimicry attack

Version 418, 10 418, 100 730, 10 730, 100 1460, 10 1460, 100
Padding length 125 149 437 461 1167 1191

We tested Anagram over these modified mimicry attacks where the padding con-

tained normal, non-malicious n-grams, and all of the attacks were successfully

8 We are very grateful to Wenke Lee and his colleagues for providing the polymorph engine

for use in our research.

 Anagram: A Content Anomaly Detector 239

detected. This is the case since the crafted attack packets still require at least 15%-
20% of the n-grams for code, which were detected as malicious. The false positive
rates grows, however, as the packet length gets longer. The worst case for the
(1460, 100) experiment yields a false positive rate around 0.1%. The semi-
supervised learning strategy employed in Anagram using a model of “malicious n-
grams” doesn’t help here since this mimicry worm uses encryption and data encod-
ing to obfuscate its content. We also tested Anagram against polymorphic worms
generated by the CLET engine [24]. However, since CLET encrypts the content
and is not designed to mimic high order n-grams, it’s very easy for Anagram to
detect them.9

This experiment demonstrates that Anagram raises the bar for attackers making
mimicry attacks harder since now the attackers have the task of carefully crafting
the entire packet to exhibit a normal content distribution. Further effort is required
by mimicry attacks to encode the attack vectors or code in a proper way that ap-
pears as normal high order n-grams. Without knowing exactly which value of n, the
size of the modeled grams, they should plan for, the problem becomes even harder.
We take this uncertainty and extend it in the next section for a more thorough strat-
egy to thwart mimicry attacks.

3.2 Randomization

The general idea of payload-based mimicry attack is simply to evade detection by
crafting small pieces of exploit code with a large amount of “normal” padding data
to make the whole packet look normal. But as we’ve seen in the example above, no
matter what techniques are used for padding, there has to be some non-padded
“exposed” sections of data to decode the exploit of the target vulnerability. The
attacker has to determine where to pad with normal data, and where to hide the
exploit code. Without knowing exactly what portions of the packet are tested by the
detector, the task is complicated, and possibly reduced to guessing, even if the
attacker knew what padding would be considered normal.

We performed experiments using randomized modeling for PAYL, where we
computed multiple models based on different secret partitions of the data stream.
Although the strategy successfully thwarted mimicry attack, it substantially in-
creased the overhead of the sensor. A future report will detail those experiments.

Here, we propose an alternative general strategy to thwart mimicry attacks via
Randomized Testing that does not incur any substantial overhead. Instead of testing
and scoring the whole packet payload, we randomly partition packets into several
(possibly interleaved) substrings or subsequences S1,S2,…,SN, and test each of them
separately against the same single normal BF model and the single bad content
model. Since the partition is randomly chosen by each sensor instance and kept
secret, we assume the attackers cannot gain this information before they compro-
mise the machine. The attackers could only succeed if they can craft an attack vec-
tor ensuring that the data is normal with respect to any randomly selected portion of
a packet; this makes the attacker’s tasks much harder than before. This technique
can be generally applied to any content anomaly detector.

9 We invite the security community to work with us in continuing the development and

detection of mimicry attack-enabled worms.

240 K. Wang, J.J. Parekh, and S.J. Stolfo

To demonstrate the effectiveness of this counter-evasion tactic, we developed a
simple randomization framework for Anagram. We generate a random binary mask
with some length l (say, 100 bytes), and repeatedly apply this mask to the contents
of each packet to generate test partitions. The mask corresponds to subsequences of
contiguous bytes in the packet tested against the model; each is scored separately.
The sequence of bytes appearing at locations where the mask had bits set to 1 are
tested separately from those byte sequences where the mask had zero bits, ran-
domly separating it into two non-overlapping parts. The packet anomaly score is
adapted from section 2.1 to maximize the score over all partitions, i.e.

()ii TNScore
new

/max= , where
newiN and Ti are the number of new and total n-

grams in partition i, respectively. This can easily be extended to overlapping re-
gions of the packet, and more than just two randomly chosen portions.

There are several issues to consider. First, we want to optimize binary mask gen-
eration. While the mask can be a purely random binary string, we may then lose
information about sequences of bytes. Since Anagram models n-grams, it’s not
surprising that this strategy performs poorly. Instead, we randomize the mask using
a “chunked” strategy, i.e. any string of contiguous 0’s or 1’s in the mask must be at
least X bits long (corresponding to X contiguous bytes in a partition), enabling us to
preserve most of the n-gram information for testing. In our experiments, empirical
testing yielded 10 bits as a good candidate size; automatically determining the op-
timal value is an interesting open question for future research.

Another observation is that the length of the randomly chosen partitions is best
balanced, i.e. a similar number of 1’s and 0’s. Such balancing avoids the extreme
cases of too short payload snippets which lack sufficient statistical information. The
false positive rate is usually much higher when the partitions have extremely unbal-
anced lengths; for example, a partition where one fragment is 10% of the total
length and the other is 90% produces a poor false positive rate.

For the results in figure 6, we use this “chunk-based binary mask strategy” and
guarantee that one partition of the packet datagram is at most double the size of the
other one. Again, we measure the false positive rate when we achieve 100% detec-
tion rate for our test traces. For each size n-gram, we repeated the experiment 10
times to show the average (the middle plot) and standard deviation (the vertical
bars), both for the unsupervised learning (left plot) and semi-supervised learning
(right plot) using the malicious n-gram content model. The experiment was per-
formed on dataset www1-06, trained for 90 hours and tested on the following 72
hours of traffic.

On average, the randomized models produce comparable false positive rates to
the non-randomized approach, especially when using semi-supervised learning. The
lower order n-grams are more sensitive to partitioning, so they exhibit a high stan-
dard deviation, while higher order n-gram models are relatively stable. Further
research needs to be done to determine a good partitioning approach that can reduce
the deviation while keeping the essential randomization strategy intact. We believe
randomization is the correct direction, and a valuable step toward complicating the
task for the mimicry attacker.

 Anagram: A Content Anomaly Detector 241

Fig. 6. The average false positive rate and standard deviation with 100% detection rate for
randomized testing, with normal training (left) and semi-supervised training (right)

3.3 Threshold Reduction and “Extreme” Padding

In the experiments we reported above, we noticed that the randomized models’
false positive rates, while comparable on average, exhibit a higher variance than the
case where models are not randomized. Consider an extreme mimicry attack: sup-
pose an attacker crafts packets with only one instruction per packet, and pads the
rest with normal data. If a 100% detection rate is desirable, lowering the score
threshold to some minimum nonzero value might be the only way to achieve this
goal. Unsurprisingly, this approach corresponds to a direct increase in the false
positive rate, which may vary between 10% to 25% of all packets, depending on the
n-gram sizes chosen and the amount of training of the model.

Such a false positive rate may be viewed as impractical, rendering the sensor
useless. We believe this is wrong. The false positive rate is not always the right
metric – especially if Anagram is used in conjunction with other sensors. For ex-
ample, Anagram may be used to shunt traffic to a host-based, heavily instrumented
shadow server used as a detector; in other words, we do not generate Anagram
alarms to drop traffic or otherwise mitigate against (possibly false) attacks, but
rather we may validate whether traffic is indeed an attack by making use of a host-
based sensor system. If we can shunt, say 25% of the traffic for inspection by an
(expensive) host-based system, while leaving the remaining normal traffic unabated
to be processed by the operational servers, the proposed host-based shadow servers
can amortize their overhead costs far more economically. Thus, the false positive
rate is not as important as the true positive rate, and false positives do not cause
harm. We describe this approach in greater detail in section 4.

4 Adaptive Learning

4.1 Training Attacks Versus Mimicry Attacks

We distinguish between training attacks and mimicry attacks: A mimicry attack is
the willful attempt to craft and shape an attack vector to look normal with respect to

242 K. Wang, J.J. Parekh, and S.J. Stolfo

a model computed by an anomaly detector. The attacker would need to know the
modeling algorithm used by the sensor and the normal data it was trained on. The
polymorphic blended attack engine discussed in Section 3 assumes to know both by
sniffing an environment’s normal data (an open question is whether the normal data
of one site produces sufficiently similar models to other sites that are targeted by a
mimicry attack). Alternatively, a training attack is one whereby the attacker sends a
stream of data incrementally or continuously distant from the normal data at a tar-
get site in order to influence the anomaly detector to model data consistent with the
attack vector. Attack packets would appear normal since they were modeled. This
type of attack would succeed if the attacker were lucky enough to send the stream
of data while the anomaly detector was in training mode. Furthermore, the attacker
would presume that the stream of “malicious training data” would go unnoticed by
the sensor while it was training.

We presented the concept of randomization in order to thwart mimicry attack.
Even if the attacker knew the normal data distribution, the attacker would not know
the actual model used by the sensor. However, we have not addressed training
attacks. [25] explores this problem and suggests several theoretical defenses. For
example, Anagram’s semi-supervised learning mechanism can help protect the
model if learning attacks recycle old exploit code. However, if the learning attack
does not contain any known bad n-grams, Anagram cannot detect it by itself. We
conjecture that the coupling of the training sensor with an “oracle” that informs the
sensor of whether or not the data it is modeling is truly normal can thwart such
training attacks. For example, if the attacker sends packets that do not exploit a
server vulnerability, but produces an error response, this should be noticed by the
sensor in training mode; we discuss this further in the next section. Such feedback-
based learning does not address all cases, e.g., a learning attack embedded into a
HTTP POST payload, which would generate a legitimate server response. Ran-
domization may also be valuable for learning attacks; we leave the exploration of
such defense mechanisms for future research.

4.2 Feedback-Based Learning and Filtering Using Instrumented Shadow
Servers

Host-based fault detection and patch generation techniques (such as Stack-
Guard/MemGuard [26], STEM [27], DYBOC [28], and many others) hold signifi-
cant promise in improving worm and attack detection, but at the cost of significant
computational overhead on the host. The performance hit on a server could render
such technologies of limited operational value. For instance, STEM [27] imposes a
200% overhead for an entirely-instrumented application. DYBOC [28] is more
proactive and designed to be deployed on production servers to provide faster re-
sponse, but still imposes at least a 20% overhead on practical web servers. If one
can find a means of reducing the cost of this overhead, the technology will have a
far greater value to a larger market.

We envision an architecture consisting of both production servers and an in-
strumented shadow server, with the latter executing both valid and malicious re-
quests securely but with significant overhead. A network anomaly flow classifier is
placed in front of these pools and shunts traffic based on the anomaly content in
incoming requests.

 Anagram: A Content Anomaly Detector 243

In order for the flow classifier to be appropriate for this architecture, we need to
ensure that no malicious requests are sent to the production pool, as those machines
may be potentially vulnerable to zero-day attacks. It is acceptable if a small frac-
tion of the traffic deemed as false positives are shunted to the shadow server, be-
cause this server will indeed serve the requests, but with a greater latency. Nothing
has been lost, but only some amount of response time for a minority portion of the
traffic flow. In other words, an anomaly detector that wants to act as this classifier
should have a 100% true positive detection rate and a reasonably low false positive
rate. We can characterize the latency in such an architecture as
l'= l × 1− fp()()+ l × os × fp(), where l is the standard latency of a service, os is the

shadow server overhead, and fp is the false positive rate. If we want to target a
maximum latency increase l'−l of 1%, given a 20% overhead in using the shadow
server, the false positive rate can be as high as approximately 10%. As we de-
scribed in section 3.3, we believe this order-of-magnitude is achievable, along with
a 100% detection rate, by setting the threshold to some low . This places network
content flow anomaly detectors in a completely new light. Zero false positive rates
are simply not the right objective. Furthermore, a symbiotic relationship may
emerge over time. False positives validated by the shadow server serve as training
data to improve the accuracy of the anomaly detector. In time, the false positive
rate would be decrease and less traffic would be served by the shadow server; we
discuss this in the next section.

4.2.1 Adaptive Model Training of Anagram with Shadow Servers
Anagram’s detection model assumes no noise in the model, and uses semi-
supervised training (section 2.3.2) to ensure clean training traffic. This approach
can be enhanced with a hybrid shadow server architecture:

1. Use the shadow server as a training supervisor. This entails an initial passive
Anagram deployment, and a “slow training mechanism” whereby the shadow
server is initially sent all requests, and only requests generating a normal re-
sponse are then sent to Anagram for training. After a sufficient amount of
training has been done, Anagram can then be put into an active deployment.

2. Use a short training time, and use the shadow server as a false positive feed-
back mechanism. In this scenario, Anagram only trains on a small fraction of
traffic assumed to be good and is then immediately deployed. While the false
positive rate will be higher, Anagram can watch for normal responses from
the shadow server and can then include the appropriate n-grams of the origi-
nal request in its model of “normal traffic”. This can incrementally reduce the
false positive rate as the system continues processing requests.

Of course, a hybrid approach can also be employed; for example, Anagram
could be deployed with no model, process 100% as false positives, and use feed-
back as an incremental learning architecture. We performed some early experi-
ments with feedback learning using the PAYL sensor in [29], and Anagram has
recently been used as a sensor in [30]. We intend to continue integration experi-
ments using Anagram, and will report our results in a future paper.

244 K. Wang, J.J. Parekh, and S.J. Stolfo

5 Related Work

In addition to the works cited in the introduction, we further discuss research in
anomaly detection, signature generation, polymorphic worms, and mimicry and
learning attacks.

5.1 Anomaly Detectors and Signature Generators

Early intrusion anomaly sensors focused system calls. Forrest [16]’s "foreign se-
quences of system calls" in a binary-based anomaly detector is quite similar to the
modeling implemented in Anagram. Tan and Maxion [17] shows why Forrest's work
produced optimal results when the size of the token window was fixed at 6 (essen-
tially a 6-gram). In Anagram, no fixed sized window is needed; one may model a
mixture of n-grams. Forrest’s grams were sequences of tokens each representing a
unique system function, whereas Anagram models n-grams of byte values.

Many researchers have considered the use of packet flows and/or content analysis
for anomaly detection. Honeycomb [31] is a host-based IDS that automatically cre-
ates signatures by applying longest common substring (LCS) on malicious traffic
captured by a honeypot targeting dark space. Computed substrings are used as candi-
date worm signatures. Similarly, EarlyBird [32] uses Rabin fingerprints to find the
most frequent substrings for signatures. Unlike Honeycomb (and PAYL), Anagram
computes distinct n-grams from packets and compares the n-gram set against those in
its model; this is a linear-time operation, unlike polynomial-time LCS.

Polygraph [19] extends the work done in Autograph [33]; both are signature
generators that assume traffic is separated into two flow pools, one with suspicious
scanning traffic and a one with non-suspicious traffic. Instead of assuming signa-
tures are contiguous, like Autograph, Polygraph allows a signature composed mul-
tiple noncontiguous substrings (tokens), particularly to accommodate polymorphic
worms. Tokens may be generated as a set (of which all must be present), as an
ordered sequence, or as a probabilistic set (Bayes signature). Like Polygraph, Ana-
gram is capable of identifying multiple “tokens”. However, Anagram’s design also
does not assume an external flow classifier, being one itself. A more general dis-
cussion of related work in the area of anomaly detection can be found in [10].

Shield [34] provides vulnerability signatures instead of string-oriented content
signatures, and blocks attacks that exploit that vulnerability. A “shield” is manually
specified for a vulnerability identified in some network available code; the time lag
to specify, test and deploy shields from the moment the vulnerability is identified
favors the worm writer, not the defenders. COVERS [35] analyzes attack-triggered
memory errors in C/C++ programs and develops structural memory signatures; this
is a primarily host-specific approach, while Anagram focuses on network traffic.

SigFree [9] uses a different approach, focusing on generic code detection; as its
name implies, it does not rely on signatures, preferring to disassemble instruction
sequences and identify, using data flow anomaly detection, if requests contain suf-
ficient code to merit them as being suspicious. Anagram does not explicitly differ-
entiate between code and data, although it is often able to do so based on training.
Additionally, Anagram monitors content flows, not just requests, and can apply to a
broader variety of protocols.

 Anagram: A Content Anomaly Detector 245

5.2 Polymorphic Worms, Mimicry and Learning Attacks

Early work on polymorphic worms focused on making it more difficult for COTS
signature scanner detection; they can be easily detected by an anomaly detector as
they contain significantly different byte distributions than non-malicious code.
Polymorphic worms with vulnerability-exploiting shellcode, e.g., ADMmutate [36]
and CLET [24], do support exploit vectors and are primarily designed to fool signa-
ture-based IDSes. CLET does feature a form of padding, which they call cramming,
to defeat simple anomaly detectors. However, cram bytes are derived from a static
source, i.e. instructions in a file included with the CLET distribution; while this
may be customized to approach a general mimicry attack, it must be done by hand.

The notion of a mimicry attack on an anomaly detection system was first intro-
duced in 2001 by Wagner and Dean [37], but initial efforts to generate mimicry
attacks, including [38] and [39], focused on system-call anomaly detection. With
the advent of effective network payload-based anomaly detection techniques, re-
searchers have begun building “smart worms” that employ a combination of poly-
morphism and mimicry attack mechanisms. Kolesnikov, Dagon and Lee [1] built a
worm specifically designed to target network anomaly detection approaches, in-
cluding PAYL. They use a number of techniques, including polymorphic decryp-
tion, normal traffic profiling and blending, and splitting to effectively defeat PAYL
and several other IDSes.

Defeating learning attacks is also current research; [25] discusses the problem
for anomaly detectors from a theoretical perspective, categorizes different types of
learning attacks (e.g., causative vs. exploratory, etc.) and speculates as to several
possible solutions. Anagram implements some of these techniques, and its use of
randomization, hiding key parameters of the model secret from the attacker, may be
extensible to learning. Our ongoing work includes exploring several other strate-
gies, including the randomization of n-gram sizes, and various strategies to test
whether an attacker is polluting learning traffic at given points in time.

6 Conclusion

Anagram is an anomaly detector based upon n-gram analysis using a binary-based
modeling technique. The use of randomization makes the sensor resistant to mim-
icry attack. Anagram’s models use Bloom filters for compactness and performance.
Our tests suggest Anagram has less than a .01% false positive rate along with a
100% detection rate for a variety of worms and viruses detected in traces of our
local network traffic. Anagram’s use of Bloom filters also enables effective pri-
vacy-preserving cross-site correlation and signature generation.

Anagram detects existing mimicry attacks, including those targeted at our previ-
ous anomaly detection sensor, PAYL, and we speculate that Anagram will be ro-
bust to future attacks as well. We also discuss approaches to effectively learn Ana-
gram models, including the use of a bad content Bloom filter and instrumented
shadow servers. For the latter case, we believe Anagram can act as an effective
network anomaly flow classifier to mitigate host instrumentation overhead and
make these tools effective for practical deployment.

246 K. Wang, J.J. Parekh, and S.J. Stolfo

There are a number of interesting venues for future research. We intend to build
an integrated instrumented shadow server architecture utilizing Anagram to collect
statistics on performance and modeling accuracy. Another open area of research is
to make binary-based modeling more robust against learning attacks. We would
also like to compare Anagram’s performance to other proposed content-based
anomaly sensors.10 Finally, we intend a practical deployment of a multiple-site
correlation effort and gauge Anagram’s performance in helping to identify broad
zero-day worms or targeted attacks while maintaining full privacy.

Acknowledgements

We would like to thank Gabriela Cretu, Wei-Jen Li, Michael Locasto, Angelos
Stavrou, and Angelos Keromytis for their suggestions and advice during our col-
laboration, and Panagiotis Manolios and Peter Dillinger for their suggestions in
Bloom filter design.

References

1. Kolesnikov, O., D. Dagon, and W. Lee, Advanced Polymorphic Worms: Evading IDS
by Blending in with Normal Traffic, in USENIX Security Symposium. 2006: Vancouver,
BC, Canada.

2. Moore, D., et al. Internet Quarantine: Requirements for Containing Self-Propagating
Code. in INFOCOM. 2003.

3. Staniford-Chen, S., V. Paxson, and N. Weaver. How to 0wn the Internet in Your Spare
Time. in USENIX Security. 2002.

4. Christodorescu, M. and S. Jha. Static Analysis of Executables to Detect Malicious Pat-
terns. in USENIX Security Symposium. 2003. Washington, D.C.

5. Vargiya, R. and P. Chan. Boundary Detection in Tokenizing Network Application Pay-
load for Anomaly Detection. in ICDM Workshop on Data Mining for Computer Security
(DMSEC). 2003. Melbourne, FL.

6. Kruegel, C., et al. Polymorphic Worm Detection Using Structural Information of Execu-
tables. in Symposium on Recent Advances in Intrusion Detection. 2005. Seattle, WA.

7. Sekar, R., et al. Specification-based Anomaly Detection: A New Approach for Detecting
Network Intrusions. in ACM Conference on Computer and Communications Security.
2002. Washington, D.C.

8. Kruegel, C., T. Toth, and E. Kirda. Service Specific Anomaly Detection for Network In-
trusion Detection. in Symposium on Applied Computing (SAC). 2002. Madrid, Spain.

9. Wang, X., et al. SigFree: A Signature-free Buffer Overflow Attack Blocker. in USENIX
Security. 2006. Boston, MA.

10. Wang, K. and S.J. Stolfo. Anomalous Payload-based Network Intrusion Detection. in
Symposium on Recent Advances in Intrusion Detection. 2004. Sophia Antipolis, France.

11. Wang, K., G. Cretu, and S.J. Stolfo. Anomalous Payload-based Worm Detection and
Signature Generation. in Symposium on Recent Advances in Intrusion Detection. 2005.
Seattle, WA.

10 At the time of writing this paper, no other sensors have been made available to us from

other researchers. We would be delighted to collaborate with other research groups to per-
form these comparative evaluations.

 Anagram: A Content Anomaly Detector 247

12. SourceFire Inc. Snort rulesets. 2006 [cited 2006 April 4]; Available from:
http://www.snort.org/pub-bin/downloads.cgi.

13. Locasto, M.E., S. Sidiroglou, and A.D. Keromytis. Application Communities: Using
Monoculture for Dependability. in HotDep. 2005.

14. Locasto, M.E., S. Sidiroglou, and A.D. Keromytis. Software Self-Healing Using Col-
laborative Application Communities. in Internet Society (ISOC) Symposium on Network
and Distributed Systems Security. 2006. San Diego, CA.

15. Marceau, C. Characterizing the Behavior of a Program Using Multiple-Length N-
grams. in New Security Paradigms Workshop. 2000. Cork, Ireland.

16. Forrest, S., et al. A Sense of Self for Unix Processes. in IEEE Symposium on Security
and Privacy. 1996.

17. Tan, K.M.C. and R.A. Maxion. Why 6? Defining the Operational Limits of stide, an
Anomaly-Based Intrusion Detector. in IEEE Symposium on Security and Privacy. 2002.
Berkeley, CA.

18. Crandall, J.R., et al. On Deriving Unknown Vulnerabilities from Zero-Day Polymorphic
and Metamorphic Worm Exploits. in ACM Conference on Computer and Communica-
tions Security. 2005. Alexandria, VA.

19. Newsome, J., B. Karp, and D. Song. Polygraph: Automatically Generating Signatures
for Polymorphic Worms. in IEEE Security and Privacy. 2005. Oakland, CA.

20. Singh, S., et al. Automated Worm Fingerprinting. in 6th Symposium on Operating Sys-
tems Design and Implementation (OSDI '04). 2004. San Francisco, CA.

21. Bloom, B.H., Space/time trade-offs in Hash Coding with Allowable Errors. Communi-
cations of the ACM, 1970. 13(7): p. 422-426.

22. Naor, M. and M. Yung. Universal One-Way Hash Functions and their Cryptographic
Applications. in ACM Symposium on Theory of Computing. 1989. Seattle, WA.

23. Parekh, J.J., K. Wang, and S.J. Stolfo. Privacy-Preserving Payload-Based Correlation
for Accurate Malicious Traffic Detection. in Large-Scale Attack Detection, Workshop at
SIGCOMM. 2006. Pisa, Italy.

24. Detristan, T., et al. Polymorphic Shellcode Engine Using Spectrum Analysis. Phrack
2003 [cited 2006 March 28]; Available from: http://www.phrack.org/
show.php?p=61&a=9.

25. Barreno, M., et al. Can Machine Learning Be Secure? in ASIACCS. 2006.
26. Cowan, C., et al. StackGuard: Automatic Adaptive Detection and Prevention of Buffer-

Overflow Attacks. in USENIX Security Symposium. 1998. San Antonio, TX.
27. Sidiroglou, S., et al. Building a Reactive Immune System for Software Services. in

USENIX. 2005. Anaheim, CA.
28. Sidiroglou, S., G. Giovanidis, and A.D. Keromytis. A Dynamic Mechanism for Recover-

ing from Buffer Overflow Attacks. in 8th Information Security Conference. 2005. Singa-
pore.

29. Locasto, M.E., et al. FLIPS: Hybrid Adaptive Intrusion Prevention. in Symposium on
Recent Advances in Intrusion Detection. 2005. Seattle, WA.

30. Locasto, M.E., M. Burnside, and A.D. Keromytis, Bloodhound: Searching Out Mali-
cious Input in Network Flows for Automatic Repair Validation. 2006, Columbia Univer-
sity Department of Computer Science: New York, NY.

31. Kreibich, C. and J. Crowcroft. Honeycomb - Creating Intrusion Detection Signatures
Using Honeypots. in ACM Workshop on Hot Topics in Networks. 2003. Boston, MA.

32. Singh, S., et al. The EarlyBird System for Real-Time Detection of Unknown Worms. in
ACM Workshop on Hot Topics in Networks. 2003. Boston, MA.

248 K. Wang, J.J. Parekh, and S.J. Stolfo

33. Kim, H.-A. and B. Karp. Autograph: Toward Automated, Distributed Worm Signature
Detection. in USENIX Security Symposium. 2004. San Diego, CA.

34. Wang, H.J., et al. Shield: Vulnerability-Driven Network Filters for Preventing Known
Vulnerability Exploits. in ACM SIGCOMM. 2004.

35. Liang, Z. and R. Sekar. Fast and Automated Generation of Attack Signatures: A Basis
for Building Self-Protecing Servers. in ACM Conference on Computer and Communica-
tions Security. 2005. Alexandria, VA.

36. K2. ADMmutate. 2001 [cited 2006 March 29]; Available from: http://www.
ktwo.ca/security.html.

37. Wagner, D. and D. Dean. Intrusion Detection via Static Analysis. in IEEE Security and
Privacy. 2001. Oakland, CA.

38. Wagner, D. and P. Soto. Mimicry Attacks on Host-Based Intrusion Detection Systems.
in ACM CCS. 2002.

39. Tan, K.M.C., K.S. Killourhy, and R.A. Maxion. Undermining an Anomaly-Based Intru-
sion Detection System Using Common Exploits. in Symposium on Recent Advances in
Intrusion Detection. 2002. Zurich, Switzerland.

D. Zamboni and C. Kruegel (Eds.): RAID 2006, LNCS 4219, pp. 249 – 271, 2006.
© Springer-Verlag Berlin Heidelberg 2006

DEMEM: Distributed Evidence-Driven Message
Exchange Intrusion Detection Model for MANET

Chinyang Henry Tseng1, Shiau-Huey Wang1, Calvin Ko2, and Karl Levitt1

1 Computer Security Laboratory, University of California, Davis
{ctseng, angelaw, knlevitt}@ucdavis.edu

��Sparta Inc., Sunnyvale, CA 94085�
calvin.ko@sparta.com

Abstract. A Mobile Ad Hoc Network (MANET) is a distributed commun-
ication platform for mobile wireless nodes. Because of the lack of a centralized
monitoring point, intrusion detection systems (IDS) for MANET are usually
developed using a distributed architecture where detectors are deployed at each
node to cooperatively detect attacks. However, most of these distributed IDS
simply assume that each detector exchanges complete information with their
peers instead of establishing an efficient message exchanging protocol among
detectors. We propose a Distributed Evidence-driven Message Exchanging
intrusion detection Model (DEMEM) for MANET that allows the distributed
detector to cooperatively detect routing attacks with minimal communication
overhead. The framework allows detectors to exchange evidences only when
necessary. Under a few practical assumptions, we implement DEMEM to detect
routing attacks the Optimal Link State Routing (OLSR) protocol. The example
scenarios and performance metrics in the experiment demonstrate that DEMEM
can detect routing attacks with low message overhead and delay, no false
negatives, and very low false positives under various mobility conditions with
message lost. Our ongoing works include implementing DEMEM in AODV,
DSR and TBRPF, and a reputation-based cooperative intrusion response model.

Keywords: DEMEM, IDS, MANET, OLSR, AODV, DSR, TBRPF, TESLA,
evidence, attack method, constraint, MPR, MPR selector, Hello message, TC
message, forwarder, ID message, ID Manager, ID-Evidence, ID-Forward, ID-
Request.

1 Introduction

A mobile ad hoc network (MANET) consists of mobile nodes that cooperatively
communicate with each other without a pre-established infrastructure. In a MANET
[16, 17, 18], mobile nodes act as routers to forward packets; they also exchange
routing messages with each other to establish their routing tables.

In general, a MANET is a trust-all-peers design, assuming that each node provides
correct routing information and acts as a router to cooperatively forward packets. By
exploiting these assumptions, a malicious node can easily corrupt the routing ability
of the network by sending incorrect routing messages [14, 19]. An attacker can send
incorrect routing messages either by initiating corrupt packets or by modifying

250 C.H. Tseng et al.

forwarded packets. Although cryptographic schemes can protect a forwarded packet
from being modified, it can not prevent a node from initiating a packet with forged
contents. Therefore, other mechanisms must be developed to complement
cryptographic approaches.

Intrusion Detection (ID) is a viable approach to this problem, but current intrusion
detection solutions in wired network cannot be directly applied to MANET because of
new challenges in MANET, such as fully distributed audit data, limited bandwidth,
numerous unknown attacks, and insufficient local information for detectors. Recently,
researchers have developed distributed Intrusion Detection Systems (IDS) for
detecting insider attacks in MANET [6,7,8,9,10,11,14,21]. However, none of these
IDS has a practical message exchange mechanism to supply sufficient data for their
IDS. The exchange of information between distributed detectors tends to have a high
overhead, while MANET has limited resources.

Our work has two major contributions for intrusion detection in MANET. First, we
propose a practical and effective message exchange model: Distributed Evidence-
driven Message Exchanging intrusion detection Model (DEMEM) for MANET.
DEMEM overcomes the challenge of distributed detectors in MANET without
sufficient data to detect routing attacks. Instead of adopting costly promiscuous
monitoring, detectors in DEMEM simply intercept routing messages and validate
these routing messages for detecting routing attacks. Also, DEMEM segregates the
duties of security agents and routing services to avoid modifying the routing
protocols. The efficient evidence-driven message exchange mechanism provides
sufficient evidence in order to perform scalable distributed intrusion detection at each
node.

Second, we implement DEMEM in a proactive routing protocol in MANET,
Optimal Link State Routing (OLSR)[16] with four practical assumptions, and three
new proposed ID messages specifically for OLSR. DEMEM in OLSR uses detection
constraints in our previous detection model proposed in RAID 2005[14]. The
detection model shows that by validating consistency among related routing messages
according to detection constraints, detectors can precisely detect both known and
unknown insider routing attacks in OLSR. We observe that if detectors within two
hops can exchange their routing information, they will have sufficient evidence for
constraints of intrusion detection. So we propose three ID messages for DEMEM in
OLSR to resolve critical assumptions of previous detection models and provide
essential ID message exchange service. ID-Evidence guarantees each detector has
sufficient evidence for detection constraints; ID-Forward triggers the selected
forwarders sending ID-Evidence while the detector observes new evidence in order to
minimize message overhead, and ID-Request handles message loss. Thus, DEMEM
not only performs practical, scalable, and accurate intrusion detection in OLSR but
also tolerates message loss with low message overhead. In addition, DEMEM is
capable of being applied to other routing protocols in MANET, such as the other
famous proactive protocol, Topology Dissemination Based on Reverse-Path
Forwarding(TBRPF)[24], and two popular re-active protocols, Ad Hoc On Demand
Distance Vector (AODV)[18] and Dynamic Source Routing(DSR)[17] with different
ID messages tailored for different protocols specifically.

The remainder of this paper is organized as follows. Section 2 compares current
IDS and cryptographic works with DEMEM. Section 3 discusses threats in MANET

 DEMEM: Distributed Evidence-Driven Message Exchange Intrusion Detection 251

and the challenges of developing IDS for MANET, especially the lack of an efficient
message exchange framework among detectors. Section 4 presents the design of our
proposed message exchange framework, DEMEM. Section 5 implements DEMEM in
OLSR, a proactive protocol in MANET, Section 6 we demonstrate how DEMEM
detect OLSR routing attacks by an example scenario and experiment results of
DEMEM in OLSR from the simulation. In section 7, we discuss ongoing works and
conclude in section 8.

2 Related Works

Intrusion detection systems on wired network-based have generally employed two
models: signature-based and anomaly-based approaches. A signature-based IDS[4,5]
monitors activities on the networks and compares them with known attacks. However,
a shortcoming of this approach is that new unknown threats cannot be detected. An
anomaly-based IDS [6,8,9,10,21] monitors the network traffic and compares it with
normal behavior patterns statistically. The issue is that anomaly-based approaches
yield high false positives for a wired network. If we apply these statistical approaches
to MANET, the false positive problem will be worse because of the unpredictable
topology changes due to node mobility in MANETs. Various IDSs for wired networks
have one characteristic in common: they have a centralized point that can aggregate
all of the traffic for analysis. This centralized IDS structure is not feasible for a fully
distributed MANET. To resolve this lack of central authority, hierarchy IDS are
proposed [6,7]. However, these hierarchy structures are only conceptual models that
have not been realized yet because the foreseen cost is too high. Thus, we propose
DEMEM as a practical and effective intrusion prevention approach with low message
overhead for MANET.

Several proposals [1,2,3] use cryptographic techniques to secure the integrity of
routing messages in MANET. These secure protocols have three drawbacks. First,
although key cryptography can protect the integrity of forwarded packets, it cannot
prevent a node from initiating a new message with incorrect information. Second,
these secure protocols require heavy computation and key distribution involved in
public key cryptography. These computation and distribution overheads are too
expensive for MANET as mobile nodes usually have limited power and bandwidth.
Finally, these cryptographic schemes are still vulnerable to malicious insiders who
possess the keys to communicate in the network.

Numerous IDSs proposed for various aspects of MANET threats are introduced as
follows. In [8,9], they use statistics-based and credit-based approaches to address
packet dropping problems in MANET, respectively. A general cooperative IDS
architecture for MANET was first proposed in [10] by Zhang and Lee. A cooperative
specification-based IDS for AODV routing protocols is discussed in [11]. [12] talks
about a secure link state routing for MANET by attaching certified keys to the link
state updates flooded within a specified zone. A secure OLSR protocol [13] is
developed to prevent replay attacks by using a timestamp to verify the freshness of a
message. The advantage of DEMEM is that DEMEM only intercepts routing
messages between the routing layer and the IP layer instead of modifying the routing
protocol. Therefore, DEMEM is capable of supporting other MANET routing
protocols as well by specifying different rules for the specific target protocol.

252 C.H. Tseng et al.

3 Threats and Challenges of Intrusion Detection in MANET

3.1 Threats in MANET

Several studies have been done on the vulnerabilities of MANET protocols [14,15,19].
There are two kinds of packets transmitted in MANET: routing packets, which are
used for maintaining routes, and data packets, which are the actual data
communicated between source and destination. In general, MANET has many
intrinsic properties that make it more vulnerable to attacks than wired networks. First
of all, every node in MANET functions as a router that is responsible for routing and
packet delivery. If a node is compromised and exploits the cooperative nature among
mobile nodes, the whole network will result in disasters, including incorrect routing
topology and delivery failures. Second, all nodes in MANET share public channels in
which attackers can easily target any victim node without passing through physical
protection lines at gateways. Third, topology in MANET is dynamic and
unpredictable due to mobility. Finally, MANET is a fully distributed environment that
lacks an authorized central point to validate message correctness. Because of the last
two vulnerabilities, a malicious node can send incorrect routing information to its
surrounding nodes to cause routing failures without being noticed by others. In
designing protocols, assuming that every node will send correct messages and that
every node is cooperative to forward correct messages makes MANET susceptible to
attacks. It is obvious that a corrupt node can easily exploit these assumptions to break
the cooperation of all nodes.

3.2 Attack Model

Routing and data delivery are two fundamental services in MANET. Attackers can
easily disrupt routing topology by manipulating routing packets to cause delivery
failures of data packets. According to fundamental characteristics of attack packets,
we analyze these attacks in three categories:

1. Forge initiated routing packets. Attackers can disrupt routing tables by
initiating forged routing packets that are then broadcast to networks. The contents of
the initiated routing packets are usually the fundamental bases (for example, 1-hop
neighbor information) to build up routing topology. Unfortunately, forge routing data
in the initiated packets will propagate through flooding and thus lead to routing
failures due to corrupted routing topology. It is challenging to detect initiated routing
packets with forge data because these forge packets follow the specification of routing
protocols and thus have no difference from good packets. Cryptographic techniques
that are used to authenticate the originators cannot detect initiated packets with forge
contents because the attacker is the originator who signed the forge packets with legal
keys. This type of attack uses atomic attack methods and can be manipulated by an
attacker to launch much more powerful compound attacks. DEMEM provides IDS
capabilities to detect this type of attack precisely.
2. Forge forwarded routing packets as well as node identity. Attackers can also
disrupt the integrity of forwarded routing packets by modifying the contents of
packets passing through it. The attacker can also pretend that he has received some
packet from others and then initiate a non-existing forwarded packet. Detection of this
category of attacks is relatively easy, since the contents of forwarded packets must
remain the same; cryptographic techniques can be used to protect the integrity of the

 DEMEM: Distributed Evidence-Driven Message Exchange Intrusion Detection 253

forwarded packets as well as the node identity of all routing packets. Many secured
routing protocols and cryptographic techniques have been developed to prevent this
type of attack. However, most of them utilize RSA related algorithms, which require
high computation and may cause denial of service attacks. Timed Efficient Stream
Loss-tolerant Authentication (TESLA) [22] is built on a one-way key chain technique
using a symmetric key, which requires much less computation. DEMEM assumes that
TESLA authenticates the content of forwarded routing packets and node identity to
prevent this type of attack. This is also our ongoing work discussed in 7.1.
3. Drop forwarded packets. A selfish node may drop packets routing through it.
Unlike the previous two types of attacks, which may cause routing disaster by a single
attacker, this kind of attack is relatively simple and less severe. If a selfish node drops
a broadcast routing packet, the dropped packet may reach every node because of the
flooding nature. Besides, a data packet drop can be detected if the sender does not
receive an acknowledgement from the recipient in a reasonable time period. Several
reputation-based works have been proposed to prevent a node from dropping packets
intentionally [8][9].

3.3 Challenges vs. Requirements of IDS in MANET

Because of unique MANET features and limitations, developing IDS for MANET has
many difficult challenges that differ from those in wired networks. First, nodes in
MANET are expected to be honest routers that work cooperatively. A malicious node
may take advantage of this characteristic to launch various routing attacks. These
attacks, shown in the attack model, can be new attacks in MANET and are difficult to
be detected. A new intrusion detection mechanism must be developed in order to
detect these new attacks.

Second, since MANET is a fully distributed environment without a centralized
point, IDS cannot detect these routing attacks if each distributed detector does not
have monitoring information from others. Therefore, IDS needs a practical and
scalable architecture to gather sufficient evidence in order to detect the attacks
effectively.

Third, because of mobility, the network topology in MANET is highly dynamic,
and the changes are unpredictable. Detectors must have sufficient, up-to-date
evidence in real time to detect the attacks with low false positives and negatives. In
addition, wireless links between mobile nodes in MANET are much more unreliable
than those in a wired network, so the detection mechanism must be capable of
tolerating message loss in order to have sufficient data in time and to maintain
detection accuracy.

Furthermore, mobile nodes in MANET usually have limited bandwidth and
computation power. MANET is very sensitive to message overhead generated by IDS.
High computation mechanisms, such as the public key system, may cause denial of
service attacks and are not suitable in MANET. For performance consideration, the
detectors are required to generate low message and computation overhead.

Finally, nodes in MANET do not have trust management between them, such that
attacks may propagate and paralyze the network quickly. Detectors should
automatically terminate the attacks and recover the routing topology in real time in
order to minimize the attack damage in time. To design a practical and effective IDS,
we conclude the essential requirements for satisfying these unique challenges in
MANET(see Fig 1).

254 C.H. Tseng et al.

Challenge Requirement

New routing attacks Capable of precisely detecting new attacks

Fully distributed environment Practical and scalable detection architecture

Dynamic and unpredictable topology Sufficient, up-to-date evidence for detection

Unreliable wireless link Tolerant of message loss

Limited bandwidth and computation power Low message and computation overhead

No trust management Automatic real time routing recovery

Fig. 1. Challenges vs. Requirements of IDS in MANET

4 Distributed Evidence-Driven Message Exchange Intrusion
Detection Model

DEMEM is a solid, scalable, and low message exchange overhead intrusion detection
model for MANET. DEMEM is proposed to overcome the challenges mentioned in
3.3 through the following three main features: distributed architecture, intrusion
detection layer, and evidence-driven message exchange technique.

4.1 Distributed IDS Architecture

DEMEM is developed to adapt to the distributed and cooperative nature of MANET.
In DEMEM, each node acts as a detector to monitor its 1-hop neighbors by validating
routing messages that it receives for intrusion detection purposes. In other words,
while a node sends a routing message, all of its neighbors validate the correctness of
this message. As seen in Fig. 2, node A acts as a detector to monitor nodes B, C, and
S while nodes B, C, and S are also detectors of monitor node A’s activities. In
addition to monitoring activities between 1-hop neighbors, 2-hop neighbors may have
to exchange their observed information by tailored Intrusion Detection (ID) Messages
to gather enough evidence for detection purposes. Obviously, different MANET
routing protocols require different ID messages and exchange these ID messages
differently. This approach eliminates complicated topology maintenance and
expensive unreliable promiscuous monitoring required by hierarchical cooperative
intrusion detection [10].

4.2 Intrusion Detection Layer

Many works have been done on secured routing protocols in MANET [1,2,3,13] by
modifying protocols. However, it takes a long time for these modified protocols to
become mature in order to be accepted as standards by authorized organizations, such
as IETF. Therefore, we propose an Intrusion Detection (ID) Layer concept that does
not depend on any changes of protocols but achieves security goals. As seen in Fig. 2,
the detector acts as an Intrusion Detection layer between the routing protocol and the
IP layer within a node. The detector intercepts all incoming and outgoing routing
messages from the IP layer and to the IP layer. Although DEMEM have new
proposed ID messages, the ID layer handles these ID messages so that the routing
layer is unaware of their existence. Therefore, DEMEM does not require changing
routing protocols but achieves the same protection as other secured protocols.

 DEMEM: Distributed Evidence-Driven Message Exchange Intrusion Detection 255

ID Message
for local
neighbors

Outgoing
Message

ID Message

Routing

Authentication

Intrusion Detection

IP

Incoming
Message

C

B

A

S

Detectors
validate routing
messages from
neighbors

Detector acts as
ID layer
processing
ingoing &
outgoing
routing
messages

Fig. 2. Distributed detectors and Intrusion Detection layer in DEMEM

In addition, DEMEM also integrates cryptographic techniques (such as
TESLA[22]) residing in the authentication layer between the IP layer and the ID
layer. The authentication layer has two major tasks. First, the layer signs the sender’s
address in outgoing messages. If the node is the message originator and the message
will be forwarded by its neighbors, then the layer signs the whole message to protect
message integrity. Second, while receiving incoming messages (including ID
messages) from neighbors, the authentication layer authenticates the sender’s address.
If the sender is not the originator, the layer authenticates the whole message to ensure
message integrity. Thus, the authentication layer protects the integrity of forwarded
messages and prevents impersonation.

4.3 Evidence-Driven Message Exchange

A main contribution of DEMEM is that it adds ID messages to assist intrusion
detection. Sending ID messages effectively and efficiently among detectors is very
critical, because message overhead introduced by ID messages must be low in a
resource-limited MANET. In order to minimize ID message overhead, we propose an
evidence-driven approach that has better performance than the periodic-update
approach.

Evidence is the critical message content of the protecting protocol to validate the
correctness of protocol messages. For example, in OLSR, evidence is the 1-hop
neighbor, Multi-Point Relay (MPR) and MPR selector. In AODV, evidence is the
sequence number and hop count. New Evidence means any update between the
current and the old evidence observed by a detector. For example, assume that node
A’s 1-hop neighbor list is {B, C} at time t1. At time t2, node A’s neighbor list
becomes {B, C, D} so that node A’s new evidence at time t2 is D. In conclusion,
sending New Evidence guarantees each detector’s Evidence is up-to-date. In
DEMEM, detectors send ID messages only when they observe or require new
Evidence.

256 C.H. Tseng et al.

Fig. 3. DEMEM Finite State Machine (FSM) within a detector

Fig. 3 illustrates how this event-driven message exchange task works with the
detection task. DEMEM consists of the five components, called ID Managers, that
are present at every node. In the beginning, the Monitor manager intercepts
incoming and outgoing routing messages and handles ID messages. The Evidence
manager records Evidence in the routing and ID messages. While the Evidence
manager observes New Evidence from outgoing routing messages, the Forwarding
manager sends ID messages to trigger or to deliver this observed New Evidence to
nodes who require it. After receiving an incoming routing message, the Evidence
manager will pass this incoming message and the related Evidence to the Validation
manager to validate the message’s correctness by the security policies. Once the
Validation manager detects violations of security policies, the Response manager
analyzes the violations and performs proper attack recovery. Finally, the task goes
back to the Monitor manager for the next message.

We have implemented DEMEM in OLSR as demonstrated in sections 5 and 6.
Discussion on applying DEMEM to two popular reactive protocols, AODV and DSR,
and to another famous proactive protocol, TBRPF, is presented in section 7.

5 DEMEM in OLSR

5.1 Routing Attack Methods in OLSR

OLSR is a link-state, proactive routing protocol in MANET. OLSR utilizes periodical
Hello and Topology Control (TC) messages to establish a complete network topology
among nodes and reduces message flooding overhead with MPRs, a minimum subset
of 1-hop neighbors connecting all 2-hop neighbors. OLSR provides a robust and
complete routing topology as well as tolerates message loss caused by mobility and
noise such that OLSR has more complete and reliable routing data than others (such
as reactive protocols) in MANET.

In OLSR, the computation of routing tables depends on three critical fields in Hello
and TC messages: 1-hop neighbors and MPRs in Hello message as well as MPR
selectors in TC messages. A node can send three types of basic OLSR messages:
Hello, initiated TC, and forward TC messages. Thus, an attacker has four attack
methods against OLSR routing:

Validation
Manager

Monitor
Manager

Response
Manager

Validate
MsgID Msg

New
Evidence

Violation
Detected

Evidence
Manager

Forwarding
Manager

Routing Msg

Attack
Recovery

Send ID
Msg

No
Alarm

 DEMEM: Distributed Evidence-Driven Message Exchange Intrusion Detection 257

1. Forging 1-hop neighbors in an initiated Hello;
2. Forging MPRs in an initiated Hello;
3. Forging MPR selectors in an initiated TC; and
4. Forging MPR selectors in a forwarded TC.

The first three attack methods belong to the first type of attack model described in
3.2, and the fourth one belongs to the second type of attack model. These attack
methods can be used to add or to delete links in OLSR topology. A single attacker can
utilize these attack methods to launch various novel and sophisticated routing attacks
against OLSR severely, such as man-in-the-middle attacks and denial of service
attacks.

In section 5.3, we demonstrate how to apply DEMEM in OLSR to precisely detect
and recover attacks using the first three attack methods. The example scenario in 6.1
illustrates an example attack and detecting mechanism in detail. The ongoing work in
7.1 can prevent attacks using the last attack method.

5.2 Specification-Based Intrusion Detection

In MANET, nodes sharing partial topology information and overlapped topology
information of their routing packets must be consistent. Although it is difficult to
detect attacks launched by forging initiated routing packets, contents of these forged
packets will not be consistent with genuine routing packets that have overlapped
routing information. Therefore, the detector can detect these forged packets by
validating consistency among related routing messages. The specification-based
intrusion detection model [14] describes four constraints (see Fig. 4) to validate the
correctness of Hello and TC messages in OLSR.

First constraint (C1) Neighbors in Hello messages must be reciprocal

Second constraint (C2) MPRs must reach all 2-hop neighbors

Third constraint (C3) MPR selectors must match corresponding MPRs

Fourth constraint (C4) Fidelity of forwarded TC messages must be maintained

Fig. 4. Four detection constraints in the specification-based intrusion detection model

[14] shows that this model can detect attacks using the four attack methods in 5.1
against OLSR. However, the model in [14] assumes that detectors can collect
sufficient routing-related information in real time to validate consistency among
related routing packets using the four constraints. DEMEM helps [14] resolve this
assumption with a practical message exchange technique. In 5.3, we show how to
apply DEMEM in OLSR with three tailored ID messages for OLSR.

5.3 Implementing DEMEM in OLSR

To make the intrusion detection in OLSR [14] practical and effective, three Intrusion
Detection (ID) messages are tailored for OLSR: ID-Evidence, ID-Forward, and ID-

258 C.H. Tseng et al.

Request messages. We also present the mechanisms handling three ID messages,
especially within the Evidence Manager and the Forwarding Manager. Four practical
assumptions make DEMEM realizable in OLSR.

Fig. 5. Three ID Messages of DEMEM Implementation in OLSR

ID Message. ID-Evidence is designed for each pair of 2-hop-away detectors to
exchange their evidence (1-hop neighbors, and MPRs) as the data supply to the
Validation Manager. ID-Forward is designed for a detector to request its selected
neighbors, called forwarders, to broadcast its ID-Evidence message. An ID-Forward
message is sent only when the detector observes new evidence (new 1-hop
neighbors, MPR, or 2-hop neighbors) in its outgoing Hello message. ID-Request is
designed to tolerate message loss of ID-Evidence that will cause false positives and
negatives due to insufficient detection evidence supplied to the Validation Manager.
We present the detailed design of these three ID messages in section 5.4, 5.5, and
5.6 respectively.

DEMEM FSM for OLSR. In OLSR, the Evidence Manager handles Hello, TC and
ID-Evidence messages and records three types of evidence in these messages. The
Forwarding Manager sends three types of ID messages in three conditions,
respectively. The Validation Manager validates incoming Hello and TC messages
based on the three constraints and related evidence from the Evidence Manager. If the
Validation Manager detects message inconsistencies that violate these constraints and
the lasting time of inconsistencies exceeds the alarm thresholds of the constraints, the
Response Manager will perform proper attack recovery.

Evidence Manager. Evidence in OLSR is 1-hop neighbors and MPRs of a node. The
Evidence Manger gathers evidence from three groups (nodes, 1-hop neighbors, and
2-hop neighbors) from three types of messages (incoming Hello, outgoing Hello,
and incoming ID-Evidence message). These groups of evidence are the essential
routing information for the Validation Manager to validate incoming Hello and TC
messages.

Forwarding Manager. Three conditions trigger the Forwarding Manager to send
messages. First, if the Validation Manager does not have sufficient evidence from an
expected ID-Evidence message, it assumes that the message is lost. The Validation
Manager then triggers the Forwarding manager to broadcast an ID-Request message
to request the lost ID-Evidence message. Second, while the Evidence Manager
observes new evidence in an outgoing Hello message, the Forwarding Manager
broadcasts an ID-Forward message. Third, if the Forwarding Manager receives an
ID-Forward or ID-Request message and observes that it is a forwarder selected by its
neighbors, then it broadcasts an ID-Evidence message for the requesting node.

B A S
ID-Forward _ID-Evidence

ID-Request

 DEMEM: Distributed Evidence-Driven Message Exchange Intrusion Detection 259

Update Ev
of 1-hop

Update Ev
of 2-hop

Validation
Manager

Send ID-
Request

Monitor
Manger Response

Manager

Validate
Hello & TC

Update Ev
of Self

Send ID-
Evidence ID-Forward

ID-Request

ID-Evidence

Send ID-
Forward

Long
Evidence
Absence

New
Evidence

Outgoing
Hello & TC

Violation
Detected

Evidence
Manger

Forwarding
Manger

Ingoing
Hello & TC

Attack
Recovery

Fig. 6. DEMEM Implementation FSM within a detector

Four Practical Assumptions Based on Existing Works:

1. Each node has one network interface, and OLSR is the routing protocol. Multiple
Interface Declaration (MID) and Host and Network Association (HNA) messages
are not used here.

2. The content of forwarded routing messages and node identity of all routing and
ID messages are authenticated by a cryptographic technique. Thus, Constraint 4
in 5.2 used to detect attack method 4 in 5.1 is covered here. Because of lower
computation requirements than public key techniques, DEMEM assumes that
TESLA has been integrated as an authentication layer. We discuss this
integration work in detail in 7.1.

3. No intentionally packet dropping. Several reputable works [8][9] have been
developed for detecting normal unicast data packet drop attacks as well as for
broadcasting routing messages. We assume that detectors have been utilized to
detect intentionally packet dropping. DEMEM can also tolerate normal packet
loss or drop.

4. No colluding attackers. Colluding attacks can create virtual links to perform
worm-hole attacks. Several works [25] address this type of attack. Also, added
virtual links do not affect the existence of other normal routing links, so DEMEM
does not cover this issue.

5.4 ID-Evidence Message

DEMEM utilizes ID-Evidence message in OLSR to provide the Validation Manager
with sufficient, up-to-date evidence. While the Validation Manager uses three
constraints to validate OLSR messages coming from its 1-hop neighbors, it may also
require evidence from its 2-hop neighbors. Thus, ID-Evidence message is designed
for 2-hop neighbors to exchange their evidence with each other for their Validation
Manager. Fig. 7 describes this procedure: the ID-Evidence message provides
sufficient evidence for the Validation Manager to use first constraint (C1) to validate
Hello messages coming from neighboring nodes.

260 C.H. Tseng et al.

Example of supporting C1. ID-Evidence message consists of 1-hop neighbors and
MPRs, which are essential inputs for three constraints in message validation. In Fig.
7, S’s detector uses C1 to validate the 1-hop neighbor list contained in a Hello
message sent from node A. Node A’s 1-hop neighbor list is {S, B}. According to C1,
the 1-hop neighbor lists in S’s and B’s Hello messages must both include A. Clearly,
S’s detector contains S’s Hello message by intercepting S’s outgoing Hello message.
Thus, S’s detector requires B’s Hello message from B.

Fig. 7. Example of validating neighbor’s Hello message (C1)

B’s detector broadcasts an ID-Forward message (see 5.5 for details) to request A to
broadcast B’s ID-Evidence message. While A receives B’s ID-Forward indicating that
A is the selected forwarder, A generates B’s ID-Evidence message and broadcasts B’s
ID-Evidence message. Lastly, S receives B’s expected ID-Evidence message
containing A as B’s 1-hop neighbor and finishes validating A’s Hello message by C1.

Supporting C2. Similarly, B’s ID-Evidence satisfies the requirements of message
validation by C2 and C3. While S validates MPRs contained in A’s Hello messages
by C2, A’s 2-hop neighbor set, computed from A’s MPRs, must equal the union set of
A’s 1-hop neighbors. There are three different categories of A’s 1-hop neighbors in
S’s point of view: S itself, S’s 1-hop neighbors, and S’s 2-hop neighbors. In order to
have sufficient data, the detector residing on S requires 1-hop neighbor lists of nodes
in all of these three categories. S’s detector has 1-hop neighbor lists of the following
categories: S’s detector has S’s 1-hop neighbor list; from incoming Hello messages
of S’s 1-hop neighbors, S’s detector has 1-hop neighbor lists; and S’s 2-hop
neighbors, such as B, provide their 1-hop neighbor lists by ID-Evidence to allow S
complete validation of C2.

Supporting C3. Since S’s detector can receive A’s TC message containing B as a
MPR selector and also knows B’s MPRs from B’s ID-Evidence, S’s detector can use
C3 to determine if the relationship between A and B is reciprocal. Thus, with ID-
Evidence messages, the Validation Manger of each detector has sufficient evidence to
validate incoming Hello and TC messages according to the constraints in 5.2.

5.5 ID-Forward Message

Reducing message overhead. ID-Forward messages are used to trigger the selected
forwarder to forward ID-Evidence messages. To reduce message overhead, the
detector sends ID-Forward messages to trigger the forwarder instead of sending ID-
Evidence messages ,because an ID-Evidence message is usually much larger than an
ID-Forward message: an ID-Evidence message contains 1-hop neighbors’ and MPRs’
addresses but an ID-Forward message only contains forwarders’ addresses. In order to

Hello(S) ={A}Hello (A) ={S,B}

B A S

ID-Evidence
(B) = {A} ID-Forward

Hello (B) ={A}

 DEMEM: Distributed Evidence-Driven Message Exchange Intrusion Detection 261

protect the integrity of forwarded ID-Evidence messages, the sender of the ID-
Forwarder signs an expected ID-Evidence message by TESLA (see 7.1 for detail) to
allow the receivers to authenticate the ID-Evidence message.

Conditions triggering ID-Forward messages to be sent. While the detector
intercepts a new outgoing Hello message from OLSR routing layer, the detector
searches one of the following new evidence: New MPRs, New Neighbors, or New 2-
hop Neighbors. New evidence includes 2-hop neighbors because evidence is
exchanged between 2-hop neighbors. In other words, if a detector observes a new 2-
hop neighbor, that new 2-hop neighbor should require that detector’s evidence.
Similarly, if the detector observes a new MPR or 1-hop neighbor, the detector also
sends an ID-Forward message to transmit its updated evidence to its 2-hop neighbors.
An ID-Forward message is sent after a random jitter time (<0.5 sec) to avoid colliding
with other broadcasting messages. This evidence-driven mechanism produces much
less message overhead than periodical mechanisms.

Determining Forwarders. Forwarders are the minimum set of detector’s MPRs that
connect all 2-hop neighbors requiring the ID-Evidence message. To determine the
forwarders, a detector first computes 2-hop neighbors requiring detector’s updated
evidence, which can be new 2-hop neighbors or neighbors of new MPRs and new
neighbors. Then the detector determines the set of the forwarders, which is the
minimum set of detector’s MPRs connecting all of these 2-hop neighbors.

Forwarding ID-Evidence Message. As the forwarder receives the ID-Forward
message, it will generate the ID-Evidence message. Because the forwarder and the
ID-Forwarder’s sender are neighbors, the forwarder must receive the sender’s Hello
message and buffer the latest message in 2 seconds in order to generate an ID-
Evidence message for the sender. Then the forwarder waits for a random jitter time
(<0.5 sec) and broadcasts the ID-Evidence message. Thus, all 2-hop neighbors of the
ID-Forward’s sender can have up-to-date evidence in time.

5.6 Tolerate Message Lost

802.11 is the most common MAC protocol in wireless networks. In 802.11, broadcast
messages lead to more message collisions than unicast messages, because broadcast
messages lack additional CTS. Since all routing and ID messages are broadcast
messages, DEMEM has to tolerate message loss, especially for broadcast message
collisions.

1. Tolerate Hello message loss. If the buffered Hello message expires due to
message loss, the forwarder waits for the next newest Hello message to ensure that the
message is up-to-date and that ID-Evidence can be generated correctly.
2. Tolerate ID-Forward message lost. The sender of the ID-Forward message waits
for its expected ID-Evidence message to be sent from the forwarders. If the sender
does not hear it while it has a new outgoing Hello message, the sender will resend the
ID-Forward message again. This mechanism also ensures that the forwarder sends ID-
Evidence successfully and correctly.
3. ID-Request Message: Tolerate ID-Evidence message lost. The detector may not
receive ID-Evidence messages in time while an ID-Evidence message gets lost by

262 C.H. Tseng et al.

some expected receivers but is received by the ID-Evidence’s owner. In this situation,
the ID-Evidence message’s owner will not send ID-Forward again; expected receivers
have to broadcast ID-Request messages to request that the forwarder broadcast the
lost ID-Evidence message again.

When a detector does not receive the expected ID-Evidence message in 4 seconds,
the detector assumes that the required message is lost. After a random jitter time, the
detector broadcasts an ID-Request message to request that the forwarder resend the
expected ID-Evidence message. In ID-Request message, the owner of ID-Evidence is
called the destination, and the forwarder is one of the MPRs of the destination. An ID-
Request message may consist of several sets of the forwarder and the destination to
aggregate requests.

Also, while the detector detects a message inconsistency lasting over 4 seconds by
C1 or C3, the inconsistency may occur due to ID-Evidence message lost. So the
detector broadcasts ID-Request message to request the ID-Evidence message. These
additional ID-Request messages can reduce false positives and delay detection .

Similar to ID-Forward, the forwarder who receives the ID-Request message
broadcasts an ID-Evidence message for the requestor, the sender of the ID-Request.
In case of message loss, the requestor will resend the ID-Request again if the
requestor does not hear the expected ID-Evidence message while receiving a new
outgoing Hello message. In summary, ID-Request messages help detectors to prevent
potential false positives due to ID-Evidence message loss.

5.7 Thwarting Forged OLSR Messages Attacks

Temporary Inconsistency. While the detector detects message inconsistency by
detection constraints, the inconsistency may occur due to normal node mobility
behavior. This kind of inconsistency is called Temporary Inconsistency (TI). It occurs
when a node encounters a lost link or new symmetric link as the node moves. The
node uses its Hello message to announce the changes of link status periodically.

A node reports a lost link by its two-second periodical Hello message while the
node does not hear from a symmetric neighbor in 6 seconds. Also, a node announces a
new symmetric neighbor by its two-second periodical Hello message. Clearly, when a
new or lost link occurs, the neighbors of a changing link must temporarily declare
inconsistent neighbor information in their Hello messages. Thus, temporary
inconsistencies occur.

Alarm Thresholds and Detection Latency. Since a detector detects attacks by
detecting messages inconsistencies of its neighbors through the three constraints, the
detectors must tolerate T.I. due to normal mobility behavior. Otherwise, T.I. will
result in significant unnecessary false positives. Thus, while a detector detect a
message inconsistency, the detector assumes it is a T.I. unless the lasting time of
inconsistency exceeds the alarm threshold.

For the three constraints, a detector has to define the proper alarm thresholds,
which are also the maximum T.I. lasting times. Message loss is the major factor for
enlarged ID-Evidence message waiting time. Also, ID-Evidence message waiting
time and lost link expire time are the two major factors for large T.I. lasting time. The
alarm thresholds must consider these factors. The threshold is 16 seconds in C1 and
15 seconds in C3 in the experiment.

 DEMEM: Distributed Evidence-Driven Message Exchange Intrusion Detection 263

For C2, the Validation Manager waits for the related ID-Evidence message to
calculate the 2-hop neighbor list of the validated neighbor. C2’s alarm threshold is 0
because ID-Evidence message waiting time has counted T.I. lasting time. Thus,
detection latency of C2 results from ID-Evidence message waiting time, and detection
latency of C1 and C3 results from lasting T.I. time.

Automatic Attack Recovery. When a detector detects an abnormal message
inconsistency, the detector remarks the link involving the inconsistency as a forge
link. Tthe detector removes the forged link in its evidence record and corrects the
forged message before passing the message to the OLSR layer. Because OLSR
messages are broadcast messages, all of the neighbors of malicious node receive the
forged message. They should detect and correct the forge message at about the same
time, except in cases of serious message loss or collisions. Then, the neighbors will
broadcast the correct messages to overwrite old forged messages that are sent during
the temporary inconsistency lasting time. Thus, the messages correct the routing
tables corrupted by the forged message and recover the attack. In 7.2, we will discuss
how to deal with the attacker furthermore.

6 Simulation

GloMoSim is a clean, effective, and scalable experimental simulation platform
designed for MANET that supports 802.11 and the Ground Reflection (Two-Ray)
Model. This radio model has both a direct path and a ground reflected propagation
path between transmitter and receiver. The radio range is about 377 meters calculated
with the following parameters[20]— antenna height 150cm, transmission power
15dBm, antenna gain 0, sensitivity -91 dBm, receiving threshold -81 dBm. Nodes are
randomly placed in the equally divided cells in the field. Total simulation time is 600
seconds.

First, we will demonstrate how DEMEM detects OLSR routing attacks through an
example scenario, a stable topology consisting of 10 nodes in a 1km x 1km region.
Second, we will evaluate DEMEM in OLSR in both stable and mobile topologies
through performance metrics: ID Message overhead, Detection accuracy, and
Detection latency. In mobile topology, the metrics show that DEMEM in OLSR has
low message overhead, low false positives, no false negatives, low detection latency
under message loss situations, and high degree mobility. In stable topology, the
results are even better: the message overhead and detection latency is much less, and
there is no false positive or negative.

6.1 Example Scenario

Fig. 8 shows an example scenario with a stable 10 node OLSR topology and a
continuous bi-directional TCP traffic between node 8 and 3. In the beginning, the
route between 8 and 3 is 8<->4<->5<->2<->3. First, we demonstrate an example of
the Man-In-the-Middle attack. Second, we illustrate how detectors residing at the
neighbors of attackers detect the attack.

264 C.H. Tseng et al.

Example Man-In-the-Middle Attack. The attacker, node 6, is going to hijack the
route, changing it to 8<->9<->6<->7<->3. To launch the attack, the attacker
utilizes attack methods 1 and 3 in 5.1 to create the virtual links. Then, the attacker
can use the virtual links to lure nodes 8 and 3 to change the route as the attacker
expects.

The attacker uses attack method 1: forge its neighbor list in its Hello message.
Node 6 adds node 3 and 8 in its 1-hop neighbor list and broadcasts its Hello
message with this new forged neighbor list. Also, the attacker uses attack method 3:
forge its MPR selector set in its TC messages. Node 6 adds node 3 and 8 in its MPR
selector set, and broadcasts its TC messages with this new forged new MPR selector
set. By the forged Hello and TC message, the attacker creates the virtual links, 6->8
and 6->3.

Fig. 8. Example attack scenario

The attacker uses the virtual link 6->3 to lure node 8 and 9 to change the route to
be 8<-> 9<->6<->7<->3 instead of 8<->4<->5<->2<->3. While node 8 receives the
forged TC message of node 6, node 8 believes that node 6 is the last hop to node 3.
Then node 8 computes the new route, 8->9->6->3 and chooses the new route (3 hop)
instead of the original one (4 hops). So node 8 sends the packets to node 9 toward 3.
Note that node 8 does not receive the forged Hello message from node 6; node 8 does
not choose node 6 as the next hop toward node 3.

Also, node 9 knows that node 3 is the neighbor of node 6 from the new forged
Hello message. Then node 9 believes node 6 is the best next hop to node 3 and sends
the packets from node 8 to node 6. Thus, the attacker successfully attracts the packets
from node 8 toward 3, sending it to the attacker itself and using node 7 to finish the
new route.

Similarly, the attacker uses the virtual link 6-8 to lure node 3 and 7 to change the
route to 3->7->6->9->8 instead of 3->2->5->4->8. Therefore, the attacker successful
changes the bi-directional route, and the attack is complete. Note that the forged
messages are almost normal OLSR messages except for the forged content. Since the
originator of the messages forges its neighbor information, only the related neighbors
can be aware of the forged messages.

7

5

1

6

2

8

0

4

3

9
TC (6) = {1,5,7,9,3,8}

Hello (6) = {1,5,7,9,3,8}

 DEMEM: Distributed Evidence-Driven Message Exchange Intrusion Detection 265

Detecting the attack. While the neighbors of node 6, node 1,5,7,9, receive the
forged messages, the detectors residing on the neighbors can detect the forged
messages from the attacker, node 6. For node 9, because they have the neighbor list
of node 8 from the Hello message directly, node 9 knows that node 8 does not agree
that node 6 is node 8’s neighbor. So node 6 should not claim node 8 as its neighbor
because the neighboring record will expire in 6 seconds. Thus, the detector at node
9 determines that node 6’s Hello message violates C1 against node 8. In its Hello
message, 8 does not claim node 6 as its MPR, and thus node 6’s TC message
violates C3 against node 8.

However, node 9 does not have the Hello message of node 3. Node 9 sends an ID-
Request to ask node 6 to send an ID-Evidence message of node 3 because node 6 is
the only node can reach node 3 from node 9 according to the Hello message of node
6. Although node 6 can have ID-Evidence message of node 3 from node 7, node 6
cannot forge the message by adding itself into the 1-hop neighbor list and MPR set of
the message because of authentication protection. So node 9 cannot have ID-
Evidence message having node 6 in the 1-hop neighbor list MPR set of the message.
Thus, node 9 determines that node 6’s Hello and TC message violates C1 and C3
against node 3.

Similarly, the detectors of node 1,5,7 detect that node 6’s Hello and TC messages
violate C1 and C3 against nodes 3 and 8. So the detectors of node 1,5,7,9 correct their
evidence tables and the forged messages before their OLSR layers can process them.
Since the OLSR layers of the attacker’s neighbors have the correct messages, the
OLSR layers have correct topology and routing tables to send the new correct OLSR
messages. For example, node 9 does not count node 6 as the neighbor of node 3 and
sends the correct TC message of node 6, which does not contains nodes 3 or 8. After
node 8 receives the corrected TC message from node 9, node 8 does not counts node 6
as last hop to node 3 and chooses the original route, 8-4-5-2-3. Thus, the hijacked
route becomes the original route and is recovered.

6.2 Performance Evaluation

Because mobility results are the major factors of message loss and lost links, which
significantly affect the three performance metrics, it is challenging to have good
results in mobile topologies, especially with high degree mobility. We will discuss
performance metrics in mobile topologies and the better results in stable topologies.
Since background end to end traffic has little impact on performance, we will not
discuss it here.

A. Mobile Topology. Mobile nodes follow the Random Waypoint Mobility Model
with random speed up to 20 m/s (45 mile/hr) with no pause time. Network topologies
consist of four types of topologies: (1) 10 nodes in 1km x 1km, (2) 50 nodes in 1.5km
x 1.5km, (3) 100 nodes in 2km x 2km, (4)150 nodes in 2.5km x 2.5km. For each type
of topology, the simulation has run 50 times: five different kinds of node allocations
and 10 different set of mobility degrees: 0, 30, 60, 120, 300 seconds pause time, and
0-10, 1-20 m/s node speed.

266 C.H. Tseng et al.

Fig. 9. Message Overhead vs. Scalability Fig. 10. Message Overhead vs. Mobility

Fig. 11. Max and Ave lasting T.I. time Fig. 12. ID-Evidence Message waiting time

1. Message Overhead. ID-Evidence message is the main source of message
overhead. The ratio of message overhead for ID-Evidence, ID-Forward, ID-Request
message in average is 85%, 12.5%, 2.5% in size and 58%, 39%, 3% in frequency.

Message overhead formula is:
In general, message overhead is between 2 and 30%. Fig. 9 shows that message

overhead decreases as the number of nodes increases. The main reason is the
frequency of ID-Evidence messages, which is the majority of messaged overhead,
does not increase as much as Hello and TC messages while number of nodes
increases. Thus, DEMEM is more scalable than OLSR because of its local message
exchanging behavior.

If mobility degree decreases, it may impact overhead ratio. Fig. 10 shows the
impact of node speed for the message overhead in a 10 nodes topology. When
maximum node speed decreases by half, then the overhead also decreases by half.
However, if pause time increases by 30, 60, 120, or 300 seconds, then the overhead
decreases only slightly. Thus, increased node speed may cause more topology
changes, resulting in more message overhead to confront these changes.
2. Detection Accuracy. Considering T.I., when the detector first detects message
inconsistencies for C1 and C3, about half of these inconsistencies will still occur in
the next messages; these are called “lasting T.I.”. Note that C2 does not generate T.I.
(see 5.7). If the lasting T.I. time is longer than the alarm thresholds, it becomes a false

TCHello

Request-ID Forward-ID Evidence-ID

+
++

 DEMEM: Distributed Evidence-Driven Message Exchange Intrusion Detection 267

positive. Fig. 11 shows the average and maximum T.I. for C1 and C3. The alert
threshold is 16 seconds in C1 and 15 seconds in C3. At most, 3 false positives for C1
occur in a 150 node topology with the highest mobility degree (max 20 m/s node
speed and 0 pause time). 150 nodes generate about 6000 Hello messages so that the
false positive rate is at most 0.05% and 0.01% in average. If we raise the threshold to
be 20 seconds for C1, the false positive rate can be almost 0. Thus, some 150 node
topologies may have few false positives in C1, while the others have no false positive
in C1 and C3.
3. Detection Latency. Fig. 12 shows the average and maximum time of ID-Evidence
Message waiting time. The maximum is about 13 seconds, less than the alert
thresholds of C1 and C3. In general, the waiting time is less than lasting T.I. time of
C1 and C3, so detection latency of C2 is less than that of C1 and C3. Detection
latency in C2 is 6 in average, and if C1 and C3 is fixed to alarm thresholds, 16 and 15
seconds.

The results shown in Fig. 11 and 12 are produced with the highest mobility (max
20 m/s with no pause time). Topologies with a lower number of nodes or mobility
degree (half node speed or higher pause time) have slightly less T.I. average lasting
time, but they have fewer chances to encounter larger maximum T.I. lasting time;
thus, they can have lower alarm thresholds for C1 and C3 (as low as 10 seconds). In
addition, they also have lower ID-Evidence message waiting time. Therefore,
topologies with less nodes or lower mobility have lower detection latency.

B. Stable Topology. If nodes in a MANET do not move, the MANET is called a
Mesh network. DEMEM in OLSR has much better results in a Mesh network.
Message overhead ranges from 0.5% (150 node) to 3% (10 node). Message overhead
decreases as the number of nodes increases, because the number of forwarded TC
messages grows much more than the number of ID messages. Because most T.I.
occurs during the initial network set-up, simulation with longer simulation time has
less message overhead.

For detection accuracy, C1’s T.I. is at most 4 seconds; C3 T.I., 5 seconds. The
alarm thresholds in C1and C3 can be reduced to 6 seconds. Thus, there is no false
positive or negative. ID-Evidence Message waiting time, which is also the detection
latency for C2, is at most 4 seconds and 2 seconds on average. Detection latency in
C1 and C3 is their reduced alarm threshold, 6 seconds. Thus, DEMEM in OLSR has
great performance in stable topologies.

7 Ongoing Work

7.1 DEMEM in AODV and DSR with TESLA

Reactive protocols (such as AODV and DSR) usually produce less routing messages
to establish routes than proactive protocols (such as OLSR), which use periodical
routing messages. Also, routing messages of reactive protocols usually have a smaller
message size and provide less routing information than those of proactive protocols.
So an IDS in reactive protocols may generate relatively higher message overhead than
that in proactive protocols. In addition, in reactive protocols, the receiver of a
broadcast routing message cannot know the complete set of nodes who actually

268 C.H. Tseng et al.

receive the same message. Thus, the receiver can neither know the exactly 1-hop
neighbor list of the message sender nor the set of nodes becoming the neighbors of the
sender due to receiving the sent message. Therefore, it is challenging for a node to
trace the routing impact of a received routing message in order to validate the other
related received routing messages, especially RREP messages generated by
intermediate nodes.

We first plan to adapt the “Previous Node” approach [11] as evidence for DEMEM
in reactive protocols to overcome the new challenges. For example, “Evidence” in
AODV is the set of Sequence Number and Hop Count of a routing message. When a
node receives a RREQ message, the node buffers the sequence number and hop count
in the message with the sender’s address as an “Evidence certificate.” As the node
forwards this RREQ message, the node should provide the certificate along with the
message to show that the node did not forge the message.

Second, we plan to use TESLA to authenticate the certificate. We will develop a
hop count authentication algorithm and some ID messages to manage TESLA keys.
We will choose AODV first because AODV is the most popular reactive protocol,
and we may also implement DEMEM in DSR with the same approach. Then, we will
evaluate this new work by the four performance metrics in 6.2.

In addition, this work can also authenticate the forwarded message, such as the
forwarded TC messages in OLSR. If an attacker uses attack method 4 in 5.1 to forge
the content in a forwarded TC message, the receiver can authenticate the message
signed to detect the attack. Thus, this work can also resolve the second assumption in
5.2 and the attack method 4 in 5.1.

7.2 Reputation-Base Cooperative Intrusion Response Model

In DEMEM, each node determines attacks and raises alerts on its own. In this
ongoing work, we plan to develop a cooperative intrusion response model [23] to
establish the trust management among the nodes. We will develop a reputation-based
algorithm to trace the security constraint violation history to calculate the credits of
neighbors. While a node detects a new violation, the node can perform a proper and
advanced intrusion response according to the credit of the neighbor causing the new
violation.

We also plan to develop a voting mechanism to justify intrusion alerts. While a
node raises an alert against a malicious neighbor of the node, the other neighbors of
the malicious node may also raise the same alert, especially if the malicious node has
broadcasted a forged routing message. Note that most routing messages are broadcast
messages. The voting mechanism can reduce the potentially false positives and forged
alerts since all the neighbors of the malicious node should have the same alert. This
work can be a perfect complement for the work in this paper. We plan to integrate this
new response model with DEMEM as a new complete intrusion detection and
response framework for MANET. Since the response model and several packets
dropping attack detection works are reputation-based, we plan to develop our packet
dropping attack detection to handle this attack better in the response model and to
resolve the third assumption in 5.2.

 DEMEM: Distributed Evidence-Driven Message Exchange Intrusion Detection 269

7.3 DEMEM in TBRPF

TBRPF and OLSR are both famous proactive routing protocols in MANET. TBRPF
uses the “Source Tree” to calculate the routing table. Nodes in TBRPF exchange their
partial source trees to establish and update their complete source tree. First, we plan to
extract the critical values as evidence in DEMEM. Second, we will develop detection
constraints to validate the TBRPF routing message. Third, we will develop an ID
message to exchange the required new evidence for the constraints for message
validation. Because TBRPF is close to OLSR in nature, the structure of DEMEM in
TBPRF should be close to that in OLSR. In addition, TBRPF does not have flooding
messages so the detectors do not require authenticating the flooding messages like
OLSR. Thus, performance of DEMEM in TBRPF can be similar to that in OLSR.

8 Conclusion

First, DEMEM is a scalable and effective model because of its local message
exchange and its local intrusion detection mechanism that does not modify the
original protocol. DEMEM has ID messages and five ID managers to provide
sufficient evidence and to perform intrusion detection with low message overhead
based on evidence-driven approach. These unique features overcome the special
challenging requirements for intrusion detection in MANET. Second, DEMEM
implementation in OLSR successfully detects OLSR routing attacks by three new
purpose ID messages: ID-Evidence, ID-Forward, and ID-Request. The example
scenario traces the procedure of detecting an OLSR attack in detail. The four
performance metrics of the experiment demonstrate that DEMEM can detect OLSR
attacks with low message overhead, low detection delay, very low false positives, and
no false negatives under message loss and mobility conditions. The metrics show
much better results in a no-mobility situation. Lastly, we have discussed several
ongoing works: how to implement DEMEM in other protocols, such as AODV, DSR,
TBRPF, and a sophisticated reputation-based intrusion response model to improve
DEMEM furthermore.

References

1. K. Sanzgiri, B. Dahill, B. N. Levine, C. Shields and E. Belding-Royer, “A Secure Routing
Protocol for Ad Hoc Networks”, In Proceedings of IEEE ICNP, 2002.

2. M. Zapata and N. Asokan, “Securing Ad hoc Routing Protocols”, 2002.
3. S. Yi, P. Naldurg, and R. Kravets, “Security-aware routing protocol for wireless ad hoc

networks," in Proceedings of ACM MobiHoc 2001, Oct 2001.
4. K. Ilgun, R. Kemmerer, and P. Porras , “State Transition Analysis: A Rule-based Intrusion

Detection Approach”, IEEE Transactions of Software Engineering, 2(13):181-199, March
1995.

5. U. Lindqvist and P. Porras, “Detecting Computer and Network Misuse Through the
Production-Based Expert System Toolset (P-BEST)”, In Proceedings of the 1999
Symposium on Security and Privacy, May 1999.

6. Yi-an Huang and Wenke Lee. “A Cooperative Intrusion Detection System for Ad Hoc
Networks.” In Proceedings of the ACM Workshop on Security in Ad Hoc and Sensor
Networks (SASN’03), October 2003.

270 C.H. Tseng et al.

7. Daniel Sterne, et. al, “A General Cooperative Intrusion Detection Architecture for
MANETs,” In Proceedings of the 3rd IEEE International Information Assurance
Workshop, 2005.

8. Farooq Anjum and Rajesh R. Talpade, “LiPad: Lightweight Packet Drop Detection for Ad
Hoc Networks,” In Proceedings of the 2004 IEEE 60th Vehicular Technology Conference,
Los Angeles, September 2004.

9. Y. Rebahi, V. Mujica, C. Simons, D. Sisalem, “SAFE: Securing pAcket Forwarding in ad
hoc nEtworks”, 5th Workshop on Applications and Services in Wireless Networks,
June/July 2005, Paris, France

10. Y. Zhang and W. Lee, “Intrusion Detection in Wireless Ad Hoc Networks,” In
Proceedings of The Sixth International Conference on Mobile Computing and Networking
(MobiCom 2000), Boston, MA, August 2000.

11. Chin-Yang Tseng, Poornima Balasubramanyam, Calvin Ko, Rattapon Limprasittiporn,
Jeff Rowe, and Karl Levitt, “A Specification-Based Intrusion Detection System For
AODV,” In Proceedings of the ACM Workshop on Security in Ad Hoc and Sensor
Networks (SASN’03), October 2003.

12. Panagiotis Papadimitratos and Zygmunt J. Haas, “Secure Link State Routing for Mobile
Ad Hoc Networks,” In Proceedings of the IEEE Workshop on Security and Assurance in
Ad Hoc Networks, Orlando, Florida, 2003.

13. C. Adjih, T. Clausen, P. Jacquet, A. Laouiti, P. Mühlethaler, and D. Raffo, “Securing the
OLSR Protocol”, Med-Hoc-Net 2003, Mahdia, Tunisia, June 25-27, 2003

14. Chinyang Henry Tseng, Tao Song, Poornima Balasubramanyam, Calvin Ko, Karl Levitt,
“A Specification-based Intrusion Detection Model for OLSR”, Proceeding of the 8th
International Symposium, RAID 2005, Recent Advances in Intrusion Detection, Seattle,
WA, September 7-9, 2005

15. Mohapatra Prasant, Krishnamurthy Srikanth, “Ad Hoc Networks: Technologies and
Protocols”.

16. T. Clausen and P. Jacquet, “Optimized Link State Routing Protocol.”, IETF RFC 3626
17. David Johnson, David Maltz, “Dynamic Source Routing in Ad Hoc Wireless

Networks”, Mobile Computing, 1996
18. Charles E. Perkins, Elizabeth M. Belding-Royer, and Samir Das. "Ad Hoc On Demand

Distance Vector (AODV) Routing." IETF RFC 3561
19. Kimaya Sanzgiri, Bridget Dahill, Daniel LaFlamme, Brian Neil Levine, Clay Shields, and

Elizabeth Belding-Royer, “A Secure Routing Protocol for Ad Hoc Networks”, Journal of
Selected Areas of Communications (JSAC) Special Issue on Ad hoc Networks. March
2005

20. Jorge Nuevo, “A Comprehensible GloMoSim Tutorial”, March 2004
21. Yi-an Huang, Wenke Lee, “Attack Analysis and Detection for Ad Hoc Routing Protocols”,

RAID 2004
22. Perrig, R. Canetti, D. Tygar and D. Song, “The TESLA broadcast authentication protocol,”

In Cryptobytes (RSA Laboratories, Summer/Fall 2002), 5(2):2-13, 2002.
23. Shiau-Huey Wang, Chinyang Tseng, Calvin Ko, Karl Levitt, “A General Automatic

Response Model for MANET”, Proceeding of First IEEE International Workshop on Next
Generation Wireless Networks 2005 (IEEE WoNGeN '05)”

24. R. Ogier, F. Templin, M. Lewis, “Topology Broadcast based on Reverse-Path
Forwarding”, IETF RFC 3684

25. Y.C. Hu, A. Perrig, D.B. Johnson, “Packet Leashes: A Defense against Wormhole Attacks
in Wireless Ad Hoc Networks”, Proceedings of INFOCOM, 2003

 DEMEM: Distributed Evidence-Driven Message Exchange Intrusion Detection 271

Appendix A: ID Message Formats

Originator Address

Type Number of
MPRs

Number of
Rest Neighbors

MPR address(es)

Rest Neighbor address(es)

Fig. A.1. ID-Evidence Message Format

Originator Address

Type Number of
Forwarders

Reserve

Forwarder address(es)

Fig. A.2. ID-Forward Message Format

Originator Address

Type Number of
Forwarding sets

Reserve

Forwarder address

Destination address

…(another set)

Fig. A.3. ID-Request Message Format

Enhancing Network Intrusion Detection
with Integrated Sampling and Filtering

Jose M. Gonzalez and Vern Paxson

International Computer Science Institute
Berkeley, California, USA

chema@icsi.berkeley.edu, vern@icir.org, vern@ee.lbl.gov

Abstract. The structure of many standalone network intrusion detection systems
(NIDSs) centers around a chain of analysis that begins with packets captured by
a packet filter, where the filter describes the protocols (TCP/UDP port numbers)
and sometimes hosts or subnets to include or exclude from the analysis. In this
work we argue for augmenting such analysis with an additional, separately fil-
tered stream of packets. This “Secondary Path” supplements the “Main Path” by
integrating sampling and richer forms of filtering into a NIDS’s analysis.

We discuss an implementation of a secondary path for the Bro intrusion detec-
tion system and enhancements we developed to the Berkeley Packet Filter to work
in concert with the secondary path. Such an additional packet stream provides
benefits in terms of both efficiency and ease of expression, which we illustrate
by applying it to three forms of NIDS analysis: tracking very large individual
connections, finding “heavy hitter” traffic streams, and implementing backdoor
detectors (developed in previous work) with particular ease.

1 Introduction

The structure of many standalone network intrusion detection systems (NIDSs) centers
around a chain of analysis that begins with packets captured by a packet filter [21,18].
The filter reduces the volume of the stream of packets to analyze by specifying which
protocols (TCP/UDP port numbers) and sometimes hosts or subnets to include or ex-
clude from the analysis. Such filtering can prove vital for operating a NIDS effectively
in a high-volume environment [5].

In addition, modern NIDS do not analyze isolated packets but instead perform in-
spection at different layers (network/transport/application), which requires maintaining
large quantities of state in order to reassemble packet streams into byte streams and then
parse these into the corresponding Application Data Units (ADUs). A NIDS may there-
fore need to store an indefinite amount of per-connection data for an indefinite amount
of time, including both ADU contents and also network- and transport-layer contents
for resilience to evasions based on stack or topology ambiguities [19,18].

In this work we propose augmenting a NIDS’s analysis with an additional, sepa-
rately filtered stream of packets. This “Secondary Path” supplements the “Main Path”
by integrating sampling and richer forms of filtering into a NIDS’s analysis. We argue
that while many forms of NIDS analysis require the traditional deep-and-stateful pro-
cessing path, for other forms of analysis we can trade off isolated packet processing in

D. Zamboni and C. Kruegel (Eds.): RAID 2006, LNCS 4219, pp. 272–289, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Enhancing Network Intrusion Detection 273

exchange for significant efficiency gains. The Secondary Path complements a NIDS’s
main analysis by providing a lightweight, stateless, packet-capture processing path.

The power of Secondary Path processing depends critically on the power of the filter-
ing mechanism that drives it. To this end, we develop two enhancements to the popular
Berkeley Packet Filter (BPF; [16]) that allow analyzers to “cherry-pick” the packets
they are interested in. We can use the first enhancement, introducing randomness as a
first-class object in BPF, for in-kernel random sampling of packets, connections, hosts,
host pairs, or such. The second enhancement provides richer in-kernel filter control
mechanisms, including a lightweight form of persistent state. We do so by adding to
BPF fixed-size associative tables plus a set of hash functions to index them.

After presenting these enhancements, we then present three examples of additional
analysis enabled by the Secondary Path: tracking large connections, identifying “heavy
hitter” flows, and incorporating backdoor detection algorithms developed in previous
work. While we can easily implement each of these by themselves in a standalone fash-
ion, the Secondary Path allows us to unify their expression using a single mechanism,
one that also incorporates the analysis they provide into the broader context of a NIDS’s
full analysis.

Section 2 introduces related work. In Section 3 we discuss our enhancements to
BPF and in Section 4 our implementation of a Secondary Path for the Bro intrusion
detection system [18]. Section 5 presents the example applications mentioned above,
and Section 6 concludes.

2 Related Work

The field of network intrusion detection has an extensive literature. In particular, nu-
merous signature-based, packet-oriented approaches such as provided by Snort [21] are
based in essence upon various forms of packet filtering. Here, we confine ourselves to
the subset closely related to the notion of incorporating additional packet processing
into a NIDS, or extending packet filters for enhanced performance.

Earlier work has discussed the central role which packet filters can play in high-
performance network intrusion detection [18,21]. More recent work has also explored
precompiling a set of filters that a NIDS can then switch among depending on its work-
load [15,5] or upon detecting floods. To our knowledge, however, supplementing a
NIDS’s primary filter with an additional, quite different filter, has not been previously
explored in the literature.

Related to our packet filter extensions, MPF [25] explored adding state to BPF [16]
in order to process IP fragments. xPF added persistent memory to BPF in the form of
an additional memory bank that BPF filters can switch to and from [12]. This work
also removed BPF’s prohibition of backward jumps, with an intent to enabling packet
filters to perform in-kernel analysis (such as computing connection round-trip times) as
opposed to simply filtering. xPF’s persistent state is similar in spirit to what we have
added to BPF, though implemented at a lower level of abstraction, which can provide
greater flexibility but at a cost of requiring many more BPF instruction executions,
and permitting arbitrary looping in BPF programs. mmdump introduces a method to
construct dynamic filters in order efficiently to support capture of multimedia sessions

274 J.M. Gonzalez and V. Paxson

for which some of the connections use dynamic ports [24]. Finally, some firewall packet
filters (Linux Netfilter, BSD pf) offer similar functionality to that of the packet filter
extensions, namely randomness and some state control.

The example applications described in Section 5 have roots in previous work. The
problem of detecting large connections is similar in spirit to previous work on “sample
and hold” [9], though our approach exploits the transport sequencing structure of TCP
rather than enhancing random sampling. (We note that we can combine our random-
number and associative table enhancements to BPF to implement sample-and-hold.)
Our “heavy hitters” detector, which aims to capture the quantitative importance of dif-
ferent granularities of traffic, was inspired by Autofocus, a tool that automatically char-
acterizes network traffic based on address/port/protocol five-tuples [8]. Finally, we take
our backdoor detectors from [26]. We use them as examples of the ease-of-expression
that the Secondary Path can provide.

3 New Packet Filter Mechanisms

In this section we introduce two extensions to BPF that bolster the expressive power of
the Secondary Path while minimizing the performance overhead of the additions. For
details and more discussion, including performance experiments, see [11].

3.1 Random Number Generation

When dealing with large volumes of network traffic, we can often derive significant
benefit while minimizing the processing cost by employing sampling. Generally, this
is done on either a per-packet or per-connection basis. BPF does not provide access
to pseudo-random numbers, so applications have had to rely on proxies for random-
ness in terms of network header fields with some semblance of entropy across packets
(checksum and IP fragment identifier fields) or connections (ephemeral ports). These
sometimes provide acceptable approximations to random sampling, but can also suffer
from significant irregularities due to lack of entropy or aliasing; see [11] for an analysis.

To address these problems, we added pseudo-random number generation to BPF.
We do so by providing a new instruction that returns a pseudo-random number in a
user-provided range. We also provide high-level access to these numbers via a new
“random” keyword for tcpdump’s expression syntax. The semantics of the new term
are straightforward: “random(x)” yields a random number between 0 and x − 1, so, for
example, the expression “random(3) = 0” returns true with probability 1 in 3.

Our implementation provides two different PRNGs, a fast-but-not-strong Linear
Congruential Generator [17], and a slower-but-stronger random number generator based
on RC4 [22]. We also permit the user to seed the PRNG directly to enforce deterministic
behavior, useful for debugging purposes.

The main implementation difficulties relate to BPF’s optimizer, which considers it-
self free to arbitrarily reorder terms. Doing so can change the expression semantics
when using “random”. This problem also arises when using persistent state (see next
section), as an insert may affect a later retrieve. Moreover, BPF is keen to collapse
two equivalent subexpressions with no dependencies, which would cause two calls to
“random” with the same value of x to produce the same result. We avoid these problems

Enhancing Network Intrusion Detection 275

by modifying the optimizer to forbid reordering around “random” terms or hash table
accesses, and by marking all “random” instructions differently so none are viewed as
equivalent [11].

3.2 Persistent State

The second modification to BPF consists of the introduction of persistent state, i.e., a
mechanism for storing and recovering information across packets. Our implementation
does so by providing multiple fixed-size associative arrays, which can be indexed using
a subset of packet header fields as hash keys, or, more generally, any values we can
compute using BPF expressions. For each associative array, the user can specify the key
length, value (yield) length, and table size. Access is via functions to insert, retrieve, and
delete entries.

Associative arrays permit efficient, dynamic, fine-grained control of the filter pro-
gram. For example, we can configure an associative array to keep one bit per connec-
tion to indicate whether to filter packets from the connection in or out (essentially a
Bloom filter [1]). Testing this for the presence of a given packet’s connection is O(1)
(efficiency), and adding or deleting elements in the table requires only an insert or a
delete operation (dynamic access).

A key issue, however, is sizing the arrays. We need to limit the size of each array lest
they grow to consume too much kernel memory; particularly problematic if an attacker
can cause the filter to continually add new entries. One possibility would be to allow
dynamic expansion of arrays up to a given point, using incremental resizing as discussed
in [5] to avoid processing spikes within the kernel as we expand an array.

This introduces considerable implementation complexity, however, so currently we
keep the arrays fixed-size. Doing so exacerbates a different problem, however: when
inserting a new entry, a collision in the hash table may require eviction of an existing
tuple without the BPF program explicitly requesting it, violating the consistency of the
state used by the program. We diminish this effect by providing pseudo-random hash
functions (to resist adversaries) and by introducing set-associativity in the tables, as
described below. However, these do not provide a complete solution, so for now we
must restrict ourselves to those applications for which we can tolerate such evictions.

Associative tables require hash functions to index them, and different applications
call for different tradeoffs in the properties of these functions. Our implementation pro-
vides three function types: (a) LCG [17], a simple, fast function, but prone to worst-
case behavior with either degenerated workloads or algorithm complexity attacks [3];
(b) MD5, slow but with cryptographic strength [20]; and (c) UHASH, a universal hash
function that provides less strong guarantees than cryptographic hash functions, but
runs much faster [2].

In addition, the user can specify for each table its set-associativity, i.e., how many
different keys reside at each hash location in the table. The higher the set-associativity,
the fewer forced evictions, but also the more processing required per lookup.

We provide two types of access to the associative arrays: from within BPF programs,
which lets us maintain filtering decisions across packets (such as for random sampling
on a per-connection basis, in order to remember which connections we previously se-
lected), and directly from user-level (via ioctl, though the implementation of this is not

276 J.M. Gonzalez and V. Paxson

complete yet). This latter allows us to flexibly and quickly tailor packet capture in re-
sponse to changing conditions. For example, we can use a filter that consults a table
indexed by connection 5-tuples (addresses, ports, transport protocol) to capture packets
corresponding to specific connections of interest, and might update this dynamically
when our user-level analysis parses an FTP control channel to find the dynamic port
negotiated for a pending FTP data connection.

User-level control also facilitates downloading very large tables; for example, a list
of 1000s of botnet addresses for which we wish to capture traffic involving any of
them. This application is infeasible using unmodified BPF. Even if the in-line BPF code
to check so many addresses fit within the space allowed for BPF programs, the O(N)
processing for BPF to scan such a list would be prohibitive. Similarly, for unmodified
BPF, if an application needs to make any change to its filter (e.g., add a new connection
or delete an existing one), it must create the new filter from scratch, write the tcpdump
expression, compile and optimize it, and then send it to the kernel for the latter to check
and install.

Here is an example1 of a tcpdump filter that checks whether the connection asso-
ciated with a given packet is in table #2 (using the LCG hash function), and, if not
and the packet represents an initial SYN (no ACK), randomly samples the packet with
probability 1% by adding it in that case to the table (with a yield value of 1):

(lookup(2, hash_lcg(ip[12:4], ip[16:4], tcp[0:2], tcp[2:2]))) or
(lookup(2, hash_lcg(ip[16:4], ip[12:4], tcp[2:2], tcp[0:2]))) or
((tcp[13] & 0x12 = 0x2) and

(random(100) = 1) and
(insert(2, hash_lcg(ip[12:4], ip[16:4], tcp[0:2], tcp[2:2]), 1)))

Note that this code is imperfect: if the sender retransmits the initial SYN, we will
generate a fresh random number, increasing the probability that we sample the connec-
tion. We could avoid this problem by always inserting connections into the table and
using different yield values to indicate whether or not to subsequently sample packets
belonging to the connection. The code will always be imperfect, however, since the
“insert” might cause eviction of a previous connection due to a collision. In general, we
cannot use our associative tables for bullet-proof analysis, but only for often-correct-is-
good-enough analysis (with which our example applications below conform).

4 Introducing a Secondary Path for Packet Processing

The structure of a stateful NIDS typically consists of (a) capturing traffic from one
or several packet-capture devices, (b) checking network- and transport-layer headers,
(c) reassembling application-layer contents (ADUs), and (d) dispatching the contents
to an application-specific analyzer. We call this mechanism the “Main Path.” The conn-
ection-oriented nature of the Main Path permits hiding the details of header verification
and reassembly from the application-layer analyzers.

1 The expression begins with two “lookup”’s to test both directions of the connection for pres-
ence in the table. Clearly, it would be useful to introduce some tcpdump idioms for some of
the common constructions.

Enhancing Network Intrusion Detection 277

The main drawback of designing for full, application-oriented analysis is that the
traffic processed by the Main Path must correspond to full connections. This limits
substantially the use of input-volume control techniques (sampling or filtering)—which
may be highly desirable for performance reasons—to those that we can express on a
per-connection basis (such as filtering on elements of the connection 5-tuple).

While we view full-payload analysis as a must for sound, deep, stateful analysis,
for some forms of analysis we can obtain complementary information much more effi-
ciently by the analysis of isolated packets. In our architecture, we obtain this informa-
tion in a fashion independent from the Main Path, and use it to supplement or disam-
biguate the analysis produced by the latter.

The “Secondary Path” provides an alternate channel for acquiring packets. It works
by capturing packets from one or several packet-capture devices in addition to those
used by the Main Path, and dispatching the packets to corresponding analyzers without
any previous analysis.

It is very important to note that the Secondary Path is an alternate channel: it provides
a stateful NIDS with a means to obtain information about the monitored traffic whose
generation using the Main Path is either inefficient or ambiguous. It does not aim to
substitute for the Main Path, but to complement it.

Our main contribution regards not the analysis by a NIDS of isolated (e.g., sampled)
packets, but rather the integration of the results from such analysis with a NIDS’s reg-
ular, full-payload analysis. In our case, this integration is facilitated by the flexible and
powerful state capabilities of Bro. We use the Secondary Path to distill information that
when solely employing Primary Path processing would be expensive (due to volume)
or difficult to obtain (due to the Primary Path’s initial filtering not capturing the neces-
sary information). For example, we can use the Secondary Path to spot flooding sources
or victims via random sampling, which can then inform load-shedding decisions made
by the Primary Path [5]. For a number of types of analysis, Secondary Path processing
can be quite cheap because we can perform it at a much lower rate than Primary Path
processing, such as illustrated in the example applications discussed in § 5.

It is important to stress that the information distilled from the Secondary Path is
typically limited to identifying subsets of traffic that are either large enough to ensure
they can be detected by sampling, or distinctive enough to ensure they can be spotted
using static filtering. The Secondary Path is therefore not a tool to detect specific attacks
(unless their signature is distinctive enough as to permit detection by packet filtering),
but a means for gathering additional information or context.

One significant feature of the Secondary Path is its simplicity. It serves analyzers
isolated packets instead of full connections. Because it does not carry out reassembly,
its can operate in a stateless fashion, unless the analyzer itself chooses to maintain state.
However, an important, negative consequence of this stateless operation is that analysis
through the Secondary Path is often susceptible to evasion due to the inability to detect
or resolve traffic ambiguities [19,18]. Similarly, Secondary Path analyzers must exercise
care when using transport- or application-layer contents, as these may be only partially
present, or arrive out of order or even duplicated.

Table 1 summarizes the main differences between the Main Path and the Secondary
Path.

278 J.M. Gonzalez and V. Paxson

Table 1. List of Differences between the Main and Secondary Paths

Main Path Secondary Path
Processing performed L3, L4 analysis none
Objects provided L7 ADUs L3 packets
L4 reassemble yes no
Memory stateful stateless
Filtering flexibility port-, address-oriented rich when coupled with stateful

BPF (see § 3.2)
Sampling connection-oriented only rich when coupled with randomness

in BPF (see § 3.1)

4.1 Filtering

A major benefit of the Secondary Path is its potential efficiency, with its key application
being to tasks for which only a low volume of traffic will match the filters it employs.
Such filters can be in terms of network- and/or transport-layer headers, which are readily
supported by packet capture mechanisms such as BPF. Note however that transport-
layer based filtering is less reliable, as TCP headers can be divided across multiple IP
packets. On the other hand, in the absence of adversary evasion, such fragmentation is
generally rare [23].

The filter can also include application-layer contents. While BPF limits filtering to
matching bytes at essentially fixed positions, modern application-layer protocols some-
times use headers with distinctive contents in specific locations [26]. For example,
HTTP request headers start with one of seven different method strings (“GET”, “POST”,
etc.), and HTTP response headers start always with the string “HTTP/” [10]. We could
thus filter on the first 5 bytes of TCP payload being “HTTP/” to capture with high
probability exactly one packet per HTTP transaction, since HTTP entity headers are
typically sent in a different packet than the previous entity body. Such an analyzer can
also access HTTP responses seen using non-standard ports.

Due to the fixed-location limitation of packet filtering, and the stateless condition of
the Secondary Path, application-layer contents provide less leverage than network- or
transport-layer contents, and more vulnerability to attacker manipulation. For example,
if an attacker wants to avoid detection of an HTTP connection, they can split the first
5 bytes across two TCP packets; if they want burden a NIDS trying to detect HTTP
traffic, they can cheaply forge faked packets with those 5 bytes at the beginning.

4.2 Sampling

A particularly handy form of of filtering in terms of thinning the volume of traffic the
NIDS must process for some types of analysis concerns sampling. Using our extensions
to BPF presented in the previous section, we can do this on (for example) either a per-
packet or per-connection basis. When deciding which to use, it is important to bear in
mind that packet-based sampling generates a completely unstructured traffic stream, but
for which many properties remain related to those of the original stream [6,7].

An example of the utility that sampling can provide is in efficiently detecting “heavy
hitters,” i.e., connections, hosts, protocols, or host pairs that account for large subsets

Enhancing Network Intrusion Detection 279

of all the traffic, or that have peculiarly large properties (such as very high fan-out).
Given unbiased sampling (which our BPF “random” operator provides, unlike previous
approaches based on masking out header bits), a heavy hitter in the full traffic stream is
very likely also a heavy hitter in a sampled traffic stream. We explore this further as an
example application in Section 5.2.

4.3 Operation

The operation of the Secondary Path is fairly simple: analyzers provide a packet filter
expression that defines the traffic subset for which they wish to perform isolated packet
analysis. The Secondary Path creates a filter resulting from the union of all the analyzer
filters (Secondary Filter), and opens a packet filter device with it. When a packet matches
the common filter, the Secondary Path runs each particular analyzer filter against the
packet, demultiplexing the packet to all analyzers whose filters match the packet.

One subtlety arises, however, due to the fact that during Secondary Path operation
we actually run each analyzer filter twice (first as a part of the full Secondary Filter,
second to see whether the analyzer’s particular filter matched). This “re-filtering” does
not present problems for stock BPF filters, since they are idempotent—running a filter
F over a set of packets already filtered by F does not cause the rejection of any packet.
However, when using our BPF extensions for randomness and maintaining state, filters
are no longer idempotent.

This generally will not present a problem for filters that maintain state, since two
copies of the state exist, one in the kernel used for the initial filtering (i.e., the matching
of the entire Secondary Filter), and the other at user-level used for the demultiplexing.
The latter will be brought into sync with the former when we rerun the filter.

However, the random operator remains problematic. Our current implementation
maintains a separate packet filter device for each filter that uses “random”, so that we
do not require re-filtering to demultiplex what the filter captures. A drawback of doing
so is that the BPF optimizer can no longer factor out common elements of filters that
use “random”, which may significantly degrade performance if we have multiple such
filters. A second drawback is that the OS often limits the number of packet filter devices
available.

An alternate approach would be to modify BPF to track which elements of a filter
have been matched and to return this set when a packet is accepted. Designed correctly,
this would allow optimization across all packet filters (including the one used by the
Main Path), but is a significant undertaking given that the notion of “element of a filter”
becomes blurred as BPF’s optimizer rearranges and collapses terms within a filter.

4.4 Implementation

We have implemented the Secondary Path in Bro, a stateful, event-oriented NIDS [18].
Bro’s analyzers are structured around a Main Path such as we have outlined in this paper.
We added a new script-accessible table, secondary_filters, which is indexed by
a packet filter (expressed as a string) and yields a Bro event handler for packets the filter
matches.

We open the interface(s) being monitored twice, once for the Main Path and once
for the Secondary Path. The Secondary Filter is the OR’ed juxtaposition of all the filter

280 J.M. Gonzalez and V. Paxson

redef secondary_filters += { ["tcp[13] & 7 != 0"] = SFR_flag_event };

event SFR_flag_event(filter: string, pkt: pkt_hdr)
{
Perform analysis on the packet header fields given in "pkt" here.
}

Fig. 1. Secondary Path Use Example

indices specified for secondary_filters. Figure 1 shows an example Bro script.
It uses the secondary filter to invoke the SFR_flag_event event handler for every
packet matching the expression “tcp[13] & 7= 0!”, i.e., any TCP packet with any of the
SYN, FIN, or RST flags set. pkt_hdr is a Bro record type representing the network-
and transport-layer headers of a packet.

This particular filter can be used to track connection start and stop times, and hence
duration, participating hosts, ports, and (using differences in sequence numbers) bytes
transferred in each direction. The few lines shown are all that is required to then further
analyze these packets using Bro’s domain-specific scripting language.

4.5 Performance

In this section we briefly assess the performance of our Secondary Path implementa-
tion.2 Our goal is to compare the cost within a NIDS implementation of the infrastruc-
ture required to implement the Secondary Path (dispatching plus internal piping) versus
the cost of the packet filter processing. To do so, we use the Secondary Filter to trigger
a null event handler, i.e., an event that does not carry out any work and returns as soon
as it is invoked.

The processing cost depends not only on the number of packets that raise the Sec-
ondary Path event, but also on the number of packets than do not raise the Secondary
Path event but still must be read by the kernel and eventually discarded by the Secondary
Filter.

Figure 2 shows the corresponding performance for different volumes of traffic and
different capture ratios (proportion of packets that match the filter). Note that both axes
are logarithmic.

The thick line represents the cost of rejecting all packets with the Secondary Filter.
We call this cost “fixed”, as it is independent of the number of packets accepted by the
Secondary Filter. It is the sum of two effects, namely (a) the fixed cost of running Bro,
and (b) the cost of accessing all the packets in the stream and running the Secondary
Filter over them. It is clear that the first effect is more important for small traces (the flat
part to the left of the 10K packet mark), while the second effect dominates with large
traces.

The dashed and dotted lines show the additional cost of empty event handlers when
a given ratio of the packets match the filter. Not surprisingly, we see that this variable

2 Unless otherwise noted, all experiments described in this paper were carried out using an idle
single-processor Intel Xeon (Pentium) CPU running at 3.4 GHz, with 512 KB cache and 2 GB
of total memory, under FreeBSD 4.10. All times reported are the sum of user and system times
as reported by the OS. We ran each experiment 100 times, finding the standard deviation in
timings negligible compared to the average times.

Enhancing Network Intrusion Detection 281

fixed, per-trace cost
variable cost (capture 1:1 packets)

variable cost (capture 1:10 packets)
variable cost (capture 1:100 packets)

variable cost (capture 1:1000 packets)

tim
e

(s
ec

)

100

10

1

0.1

0.01

0.001
trace packets

100 1 k 10 k 100 k 1 M 10 M

Fig. 2. Performance of the Secondary Path with an Empty Event

cost is proportional to the ratio of packets matching the filter: the variable cost of sam-
pling, say, 1 in 10 packets is about 10 times larger than the variable cost of sampling
1 in 100 packets. We also see that the fixed cost of running the Secondary Path is sim-
ilar to the variable cost of capturing 1 in 100 packets. This means that provided the
analysis performed on captured secondary packets is not too expensive, whether the
detector’s filter matches say 1 in 1,000 packets, or 1 in 10,000 packets, does not affect
the Secondary Path overhead. When the ratio approaches 1 in 100 packets, however, the
Secondary Path cost starts becoming appreciable.

5 Applications

In this section we present three examples of analyzers we implemented that take advan-
tage of the Secondary Path: disambiguating the size of large TCP connections (§ 5.1),
finding dominant traffic elements (§ 5.2), and easily integrating into Bro previous work
on detecting backdoors (§ 5.3; [26]). The first of these provides only a modest enhance-
ment to the NIDS’s analysis, but illustrates the use of a fairly non-traditional style of
filter. The second provides a more substantive analysis capability that a NIDS has dif-
ficulty achieving efficiently using traditional main-path filtering. The third shows how
the Secondary Path opens up NIDS analysis to forms of detection that we can readily
express using some sort of packet-level signature.

Unless otherwise stated, we assess these using a trace (named tcp-1) of all TCP
traffic sent for a 2-hour period during a weekday working hour at the Gbps Internet
access link of the Lawrence Berkeley National Laboratory (LBNL). The trace consists
of 127 M packets, 1.2 M connections, and 113 GB of data (averaging 126 Mbps and
892 bytes/packet).

282 J.M. Gonzalez and V. Paxson

5.1 Large Connection Detection

A cheap mechanism often used to calculate the amount of traffic in a stateful (TCP) con-
nection consists of computing the difference between the sequence numbers at the begin-
ning and at the end of a connection. While this often works well, it can fail for (a) connec-
tions that do not terminate during the observation period, or for which the NIDS misses
their establishment, (b) very large (greater than 4 GB) connections that wrap around the
TCP sequence number (note that TCP’s operation allows this), or (c) broken TCP stacks
that emit incorrect sequence numbers, especially within RST segments.

As we develop in this section, we can correct for these deficiencies using a secondary
filter. In doing so, the aim is to augment the main path’s analysis by providing a more
reliable source of connection length, which also illustrates how the Secondary Path can
work in conjunction with, and complement, existing functionality.

Implementation. Our large-connection detector works by filtering for several thin,
equidistant, randomly-located stripes in the sequence number space. A truly large flow
will pass through these stripes in an orderly fashion, perhaps several times. The detector
tracks all packets that pass through any of the stripes, counting the number of times a
packet from a given flow passes through consecutive regions (K).

Figure 3 shows an example. The 4 horizontal stripes (sA, sB , sC , and sD) represent
the parts of the TCP sequence number space where the detector “listens” for packets.
As the TCP sequence number range is 4 GB long, each stripe is separated 1 GB from
the next one.

The thick diagonal lines depict the time and TCP sequence number of the packets
of a given TCP connection. The dotted, vertical lines represent events in the Secondary
Path. Note that we could use a different number of lines, and lines with different width
(see below). If the detector sees a connection passing through 2 consecutive stripes
(K = 1), it knows that the connection has likely accounted for at least 1 GB.

We locate the first stripe randomly to prevent an adversary from predicting the sec-
tions of monitored sequence space, which would enable them to overwhelm the detector
by sending a large volume of packets that fall in the stripes. The remaining stripes then
come at fixed increments from the first, dividing the sequence space into equidistant
zones.

Our detector always returns two estimates, a lower and an upper limit. If a connec-
tion has been seen in two consecutive stripes, the estimated size may be as large as the
distance between 4 consecutive stripes, or as small as the distance between 2 consecu-
tive stripes. In the previous example, we know that the connection has accounted for at
least 1 GB and at most 3 GB of traffic.

We then use these estimates to annotate the connection record that Bro’s main con-
nection analyzer constructs and logs. This allows us to readily integrate the extra infor-
mation provided by the detector into Bro’s mainstream analysis.

One issue that arises in implementing the detector is constructing the tcpdump ex-
pression, given that we want to parameterize it in both the number of stripes and the
width of the stripes. See [11] for details on doing so, and the current Bro distribution
(from bro-ids.org) for code in the file policy/large-conns.bro. Note that the number of
stripes does not affect the complexity of the tcpdump filter, just the computation of the
bitmask used in the filter to detect a sequence number the falls within some stripe.

Enhancing Network Intrusion Detection 283

4 GB

sA

sB

sC

sD

0
time

seq number

Fig. 3. Large Connection Detector Example

A final problem that arises concerns connections for which the sampled packets do
not progress sequentially through the stripes, but either skip a stripe or revisit a previous
stripe. These “incoherencies” can arise due to network reordering or packet capture
drops. Due to limited space, we defer discussion of dealing with them to [11].

Evaluation. We ran the Large Connection Detector on the tcp-1 trace, varying the num-
ber S of stripes. We used a fixed stripe-size of 2 KB; stripe size only plays a significant
role in the presence of packet filter drops (see [11] for analysis), but for this trace there
were very few drops.

Figure 4 shows for the largest connection in the trace (3.5 GB application-layer pay-
load), its real size, the upper and lower estimations reported by the detector, and the
average of the last two (the average estimation), as we vary S. The lower line shows
the running time of the large connection detector. (Rerunning the experiment with wide
stripes, up to 16 KB, reported very similar results.) All experiments ran with the Main
Path disabled, but we separately measured its time (with no application-layer analysis
enabled) to be 890 sec. Thus, the running time is basically constant up to S = 8192
stripes, and a fraction of the Main Path time. Finally, we verified that as we increase
the number of stripes, our precision nominally increases, but at a certain point it actu-
ally degrades because of the presence of incoherences (non-sequential stripes); again,
see [11] for discussion.

5.2 Heavy Hitters

The goal of the “heavy hitters” (HH) detector is to discover heavy traffic macroflows
using a low-bandwidth, pseudo-random sampling filter on the Secondary Path, where
we define a macroflow as a set of packets that share some subset of the 5-tuple fields

284 J.M. Gonzalez and V. Paxson

co
nn

ec
ti

on
si

ze
(L

7
by

te
s)

02 GB

2.5 GB

3 GB

3.5 GB

4 GB

4.5 GB

number of stripes
4 16 64 256 1024 4096 16384 65536

ru
nt

im
e

(s
ec

)

200

400

600

800

1000

1200

upper estimation
real size

average estimation
lower estimation

running time (stripe: 2 KB)

Fig. 4. Detector Estimation for a Large Connection

(IP source and destination addresses, transport-layer source and destination ports, and
transport protocol). This definition includes the high-volume connections (sharing all
5 fields), but also other cases such as a host undergoing a flood (all packets sharing
the same IP destination address field) or a busy server (all packets sharing a common
IP address and port value). The inspiration behind assessing along different levels of
granularity comes from the AutoFocus tool of Estan et al [8].

As indicated above, macroflows can indicate security problems (inbound or out-
bound floods), or simply inform the operator of facets of the “health” of the network
in terms of the traffic it carries. However, if a NIDS uses filtering on its Main Path
to reduce its processing load, it likely has little visibility into the elements compris-
ing significant macroflows, since the whole point of the Main Path filtering is to avoid
capturing the traffic of large macroflows in order to reduce the processing loads on the
NIDS. Hence the Secondary Path opens up a new form of analysis difficult for a NIDS
to otherwise efficiently achieve.

The HH detector starts accounting for a traffic stream using the most specific gran-
uarity, i.e., each sampled packet’s full 5-tuple, and then widens the granularity to a set
of other, more generic, categories. For example, a host scanning a network may not
have any large connection, but the aggregate of its connection attempts aggregated to
just source address will show significant activity.

Note that HH differs from the large connection detector discussed in Section 5.1 in
that it finds large macroflows even if none of the individual connections comprising the
macroflow is particularly large. It also can detect macroflows comprised of non-TCP
traffic, such as UDP or ICMP.

Operation. HH works by clustering each pseudo-random sample of the traffic it ob-
tains at several granularities, maintaining counts for each corresponding macroflow.
Whenever a macroflow exceeds a user-defined threshold (e.g., number of packets, con-

Enhancing Network Intrusion Detection 285

Table 2. Tables Used by the Heavy Hitters Detector

table name specificity description

saspdadp 4 connection (traditional 5-tuple definition)
saspda__ 3 traffic between a host and a host-port pair
sa__da__ 2 traffic between two hosts
sasp____ 2 traffic to or from a host-port pair
sa____dp 2 traffic between a host and a remote port
sa______ 1 traffic to or from a host
__sp____ 1 traffic to or from a port

Table 3. Example Report From Heavy Hitters Detector

Time Macroflow Description Pkts Bytes Event Flags

1130965527 164.254.132.227:* <-> *:* 986 K 823 MB large src internal
1130969123 *:* <-> 164.254.133.198:80/tcp 1.07 M 654 MB large dst internal
1130990210 *:* <-> 164.254.133.194:* 1.12 M 357 MB large dst internal
1130992153 54.75.124.72:19150/tcp <-> 164.254.133.146:* 977 K 79 MB large flow
1130999627 164.254.132.247:80/tcp <-> *:* 1.02 M 781 MB large src internal

164.254.132.227:* <-> *:* 1.90 M 1.47 GB large src internal
164.254.133.198:80/tcp <-> *:* 1.84 M 1.22 GB large src internal
164.254.132.247:80/tcp <-> *:* 1.21 M 968 MB large src internal
71.213.72.252:80/tcp <-> 164.254.133.56:* 498 K 522 MB large flow
:80/tcp <-> 164.254.132.88: 459 K 479 MB large dst internal
: <-> 164.254.133.194:* 1.35 M 427 MB large dst internal

nections, or bytes), HH generates a Bro event reporting this fact and removes the cor-
responding traffic from the coarser-grained table entries. Note that more specific tables
generally use lower thresholds than more generic ones.

Table 2 shows the tables maintained by HH. The specificity field orders the tables from
more specific (higher numbers) to more general. The mnemonics sa stands for “source
address,” dp for “destination port,” etc. We use Bro’s state management capabilities to
automatically remove table entries after a period of inactivity (no read or write).

Output. Table 3 shows an example of a report generated by HH (with anonymized
network addresses). The first 5 lines were produced in real-time at the given timestamp.
The remaining lines are produced upon termination The flags field states whether the
reported host belongs to the list of hosts belonging to the internal network being mon-
itored (a user-configurable parameter); it is omitted for macroflows whose granularity
includes both an internal and an external host.

Finally, we note that we can extend this sort of analysis using additional macroflow
attributes, such as packet symmetry [14] or the ratio of control segments to data seg-
ments. Due to limited space, we defer discussion of these to [11].

5.3 Backdoor Detection

Another example of analysis enabled by the Secondary Path is our implementation of
previous work on using packet filters to efficiently detect backdoors [26]. That work

286 J.M. Gonzalez and V. Paxson

Table 4. Performance of Generic Backdoor Detector, Main Path vs. Secondary Path

Approach Run Time

Main Path, no analyzers 890 sec
Main Path-based generic backdoor analyzer +406 sec
Main Path, SP-based generic backdoor analyzer +289 sec
SP-based generic backdoor analyzer, no Main Path 284 sec

defines a backdoor as an application not running on its standard, well-known port, and
proposes two different mechanisms to detect these.

The first mechanism consists of looking for indications of interactive traffic by ana-
lyzing the timing characteristics of small (less than 20 bytes of payload) packets. This
approach comes from the intuition that interactive connections will manifest by the
presence of short keystrokes (large proportion of small packets) caused by human re-
sponses (frequent delays between consecutive small packets).

The second mechanism consists of extracting signatures of particular protocols
(SSH, FTP, Gnutella, etc.) and looking for instances of these on ports other than the
protocol’s usual one.

We implemented both approaches in Bro using our Secondary Path mechanism. Do-
ing so is quite simple, and provides an operational capability of considerable value for
integrating into Bro’s mainstream analysis.

Keystroke-based Backdoor Detection. Bro already includes an implementation of
the “generic algorithm” for detecting interactive backdoors. In creating an implemen-
tation based on the Secondary Path, our goals were increased ease-of-expression and
performance.

See [11] for details regarding our implementation. We verified its correctness by
comparing its results with that of the original detector. As our evaluation trace, tcp-
1, had almost no backdoor-like interactive traffic (just some AOL Instant Messenger),
we checked how well each detector performed for discovering the trace’s well-known
interactive connections, namely SSH traffic. (The site no longer allows Telnet or Rlogin
traffic over the Internet.) We did so by removing 22/tcp from the list of well-known ports
where the detector does not carry any processing. We also had to adjust the original
algorithm’s notion of “small” packet upwards from 20 bytes to 50 bytes due to how
SSH pads packets with small payloads.

We measured four different configurations on the tcp-1 trace, as shown in Table 4.
The extra time incurred by the original detector is 406 seconds, while the extra time
incurred by the SP-based version is 289 seconds.

Signature-Based Backdoor Detection. We also implemented the signature-based
backdoor detectors developed in [26], except we discarded the Rlogin and Telnet ones
because we have found from subsequent experience (running the detectors 24x7 for
several years at LBNL) they are too broad. For example, in tcp-1, 50 K packets match
the Rlogin signature, and 92 match the Telnet one.

Again, we gain both ease-of-implementation and performance by using the Sec-
ondary Path. Regarding the former, Figure 5 shows full code for a Secondary Path
implementation to detect SSH backdoors.

Enhancing Network Intrusion Detection 287

Table 5. Performance of Signature-Based Backdoor Detector

Approach time

Main Path, no analyzers 890 sec
Main Path-based backdoor analyzer +769 sec
Main Path, Secondary Path-based backdoor analyzer +174 sec
Secondary Path-based backdoor analyzer only 327 sec

The following gobbledygook comes from Zhang’s paper:
const ssh_sig_filter = "
tcp[(tcp[12]>>2):4] = 0x5353482D and
(tcp[((tcp[12]>>2)+4):2] = 0x312e or tcp[((tcp[12]>>2)+4):2] = 0x322e)";

Don’t report backdoors seen on these ports.
const ignore_ssh_backdoor_ports = { 22/tcp, 2222/tcp } &redef;

event backdoor_ssh_sig(filter: string, pkt: pkt_hdr)
{
Discard traffic using well-known ports.
if (["ssh-sig", pkttcpsport] in ignore_ssh_backdoor_ports ||

["ssh-sig", pkttcpdport] in ignore_ssh_backdoor_ports)
return;

print fmt("%s SSH backdoor seen, %s:%s -> %s:%s", network_time(),
pktipsrc, pkttcpsport, pktipdst, pkttcpdport);

}

Associate the event handler with the filter.
redef secondary_filters += { [ssh_sig_filter] = backdoor_ssh_sig };

Fig. 5. SSH Backdoor Detector Example

Regarding the latter, we ran four experiments using the tcp-1 trace, for which Table 5
shows the corresponding performance. The extra cost caused by the original, Bro-event-
based backdoor detector implementation is 769 sec. In comparison, the Secondary Path
implementation (which is basically several pieces of the form depicted in Figure 5) adds
only 174 sec. The final row shows that the analyzer by itself requires more time than
just the 174 sec, since it must also read the entire (very large) traffic stream into user
memory prior to filtering it, which for the third row has already been done by the Main
Path.

We might also consider coupling this detector with BPF state tables (Section 3.2)
to activate the Main Path when a backdoor uses a protocol that the NIDS knows how
to analyze. For example, if the analyzer detects an SSH connection on a non-standard
port, it could add a new entry to a BPF table that captures packets for particular connec-
tions, and label the traffic accordingly so that the Main Path knows it must use its SSH
analyzer to process traffic from that connection. A significant challenge with doing so,
however, is the race condition in changing the filter’s operation, and the NIDS’s appli-
cation analyzer missing the beginning of the connection. Concurrent work by Dreger et
al pursues this functionality using a different approach [4].

288 J.M. Gonzalez and V. Paxson

Finally, we have explored extending this approach further to implement the P2P
Traffic Profiling scheme proposed by Karagiannis et al [13]. See [11] for discussion.

6 Conclusions

We have described the Secondary Path, an alternate packet-capture channel for sup-
plementing the analysis performed by a network intrusion detection system. The Sec-
ondary Path supports analyzers oriented towards analyzing individual, isolated packets,
rather than stateful, connection-oriented analysis.

The power of the Secondary Path depends critically on the richness of packet capture
that we can use it to express. To this end, we presented enhancements to the standard
BPF packet-capture framework [16] to support random sampling, and retention of state
between packets (similar in spirit to that of xPF [12]) and in response to user-level
control.

Our implementation within the Bro intrusion detection system exhibits good perfor-
mance, with a rule-of-thumb being that the Secondary Path does not significantly impair
Bro’s overall performance provided that we keep the volume of traffic captured with it
below 1% of the total traffic stream.

We illustrated the additional power that Secondary Path processing provides with
three examples: disambiguating the size of large TCP connections, finding dominant
traffic elements (“heavy hitters”), and integrating into Bro previous work on detecting
backdoors [26]. While none of these by itself constitutes a “killer application,” the va-
riety of types of analysis they aid in addressing bodes well for the additional flexibility
that we gain using Secondary Path processing.

Acknowledgments

This work was made possible by the U.S. National Science Foundation grant STI-
0334088, for which we are grateful.

References

1. B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Communications
of the ACM, 13(7):422–426, 1970.

2. J.L. Carter and M.N Wegman. Universal classes of hash functions. In Journal of Computer
and Systems Sciences, volume 18, Apr 1979.

3. S. Crosby and D. Wallach. Denial of service via algorithmic complexity attacks. In Proceed-
ings of the 12th USENIX Security Symposium, pages 29–44, Aug 2003.

4. H. Dreger, A. Feldmann, M. Mai, V. Paxson, and R. Sommer. Dynamic application-layer
protocol analysis for network intrusion detection. Technical report, in submission, 2006.

5. H. Dreger, A. Feldmann, V. Paxson, and R. Sommer. Operational experiences with high-
volume network intrusion detection. In Proceedings of CCS, 2004.

6. N. Duffield, C. Lund, and M. Thorup. Properties and prediction of flow statistics from sam-
pled packet streams. In Proceedings of the 2nd ACM SIGCOMM Workshop on Internet
Measurement, pages 159–171. ACM Press, 2002.

Enhancing Network Intrusion Detection 289

7. N. Duffield, C. Lund, and M. Thorup. Estimating flow distributions from sampled flow statis-
tics. In Proceedings of the 2003 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, pages 325–336. ACM Press, 2003.

8. C. Estan, S. Savage, and G. Varghese. Automatically inferring patterns of resource consump-
tion in network traffic. In Proceedings of the 2003 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, pages 137–148. ACM Press,
2003.

9. C. Estan and G. Varghese. New directions in traffic measurement and accounting. In Pro-
ceedings of the 2002 Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications, pages 323–336. ACM Press, 2002.

10. R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee. RFC
2616: Hypertext transfer protocol – HTTP/1.1, June 1999. Status: INFORMATIONAL.

11. J.M. Gonzalez. Efficient Filtering Support for High-Speed Network Intrusion Detection. PhD
thesis, University of California, Berkeley, 2005.

12. S. Ioannidis, K. Anagnostakis, J. Ioannidis, and A. Keromytis. xpf: packet filtering for
lowcost network monitoring. In Proceedings of the IEEE Workshop on High-Performance
Switching and Routing (HPSR), pages 121–126, 2002.

13. T. Karagiannis, A. Broido, M. Faloutsos, and K.C. Claffy. Transport layer identification of
p2p traffic. In IMC ’04: Proceedings of the 4th ACM SIGCOMM conference on Internet
measurement, pages 121–134, 2004.

14. C. Kreibich, A. Warfield, J. Crowcroft, S. Hand, and I. Pratt. Using packet symmetry to
curtail malicious traffic. In Proceedings of the Fourth Workshop on Hot Topics in Networks
(HotNets-IV) (to appear). ACM SIGCOMM, 2005.

15. W. Lee, J.B.D. Cabrera, A. Thomas, N. Balwalli, S. Saluja, and Y. Zhang. Performance
adaptation in real-time intrusion detection systems. In RAID, pages 252–273, 2002.

16. S. McCanne and V. Jacobson. The BSD packet filter: A new architecture for user-level packet
capture. In USENIX Winter, pages 259–270, 1993.

17. S. K. Park and K. W. Miller. Random number generators: good ones are hard to find. Com-
munications of the ACM, 31(10):1192–1201, 1988.

18. V. Paxson. Bro: A system for detecting network intruders in real-time. Proceedings of the
7th USENIX Security Symposium, 1998.

19. T. H. Ptacek and T. N. Newsham. Insertion, evasion, and denial of service: Eluding network
intrusion detection. Technical report, Secure Networks, Inc., Calgary, Alberta, Canada, 1998.

20. R. Rivest. RFC 1321: The MD5 message-digest algorithm, April 1992. Status: INFORMA-
TIONAL.

21. M. Roesch. Snort: Lightweight intrusion detection for networks. In Proceedings of the 13th
USENIX Conference on System Administration, pages 229–238. USENIX Association, 1999.

22. B. Schneier. Applied Cryptography: Protocols, Algorithms, and Source Code in C. John
Wiley & Sons, Inc., New York, NY, USA, 1995.

23. C. Shannon, D. Moore, and K. C. Claffy. Beyond folklore: Observations on fragmented
traffic. IEEE/ACM Transactions on Networking, 10(6):709–720, 2002.

24. J. van der Merwe, R. Caceres, Y. Chu, and C. Sreenan. mmdump: a tool for monitoring
internet multimedia traffic. In SIGCOMM Computer Communications Review, volume 30,
pages 48–59, 2000.

25. M. Yuhara, B. N. Bershad, C. Maeda, and J. E. B. Moss. Efficient packet demultiplexing for
multiple endpoints and large messages. In USENIX Winter, pages 153–165, 1994.

26. Y. Zhang and V. Paxson. Detecting backdoors. In Proceedings of the 9th USENIX Security
Symposium, pages 157–170, August 2000.

WIND: Workload-Aware INtrusion Detection

Sushant Sinha, Farnam Jahanian, and Jignesh M. Patel

Electrical Engineering and Computer Science,
University of Michigan,
Ann Arbor, MI-48109

{sushant, farnam, jignesh}@umich.edu

Abstract. Intrusion detection and prevention systems have become es-
sential to the protection of critical networks across the Internet. Widely
deployed IDS and IPS systems are based around a database of known ma-
licious signatures. This database is growing quickly while at the same time
the signatures are getting more complex. These trends place additional
performance requirements on the rule-matching engine inside IDSs and
IPSs, which check each signature against an incoming packet. Existing
approaches to signature evaluation apply statically-defined optimizations
that do not take into account the network in which the IDS or IPS is de-
ployed or the characteristics of the signature database. We argue that for
higher performance, IDS and IPS systems should adapt according to the
workload, which includes the set of input signatures and the network traffic
characteristics. To demonstrate this idea, we have developed an adaptive
algorithm that systematically profiles attack signatures and network traf-
fic to generate a high performance and memory-efficient packet inspection
strategy. We have implemented our idea by building two distinct compo-
nents over Snort: a profiler that analyzes the input rules and the observed
network traffic to produce a packet inspection strategy, and an evaluation
engine that pre-processes rules according to the strategy and evaluates
incoming packets to determine the set of applicable signatures. We have
conducted an extensive evaluation of our workload-aware Snort implemen-
tation on a collection of publicly available datasets and on live traffic from
a border router at a large university network. Our evaluation shows that
the workload-aware implementation outperforms Snort in the number of
packets processed per second by a factor of up to 1.6x for all Snort rules
and 2.7x for web-based rules with reduction in memory requirements. Sim-
ilar comparison with Bro shows that the workload-aware implementation
outperforms Bro by more than six times in most cases.

Keywords: Intrusion detection and prevention, deep packet inspection,
workload aware, adaptive algorithm.

1 Introduction
New critical software vulnerabilities are a common occurrence today. Symantec
documented 1,896 new software vulnerabilities from July 1, 2005 to December
31, 2005, over 40% more than in 2004 [1]. Of these, 97% were considered moder-
ately or highly severe, and 79% were considered easy to exploit. To address this
rapid increase in vulnerabilities, organizations around the world are turning to

D. Zamboni and C. Kruegel (Eds.): RAID 2006, LNCS 4219, pp. 290–310, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

WIND: Workload-Aware INtrusion Detection 291

Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS) to
detect and prevent attacks against networked devices.

The core component of popular IDSs, like Snort [2], is a deep packet inspec-
tion engine that checks incoming packets against a database of known signatures
(also called rules). The performance of this signature-matching system is criti-
cal to the scalability of IDS and IPS systems, including packet per second rate.
The dominant factor in determining the performance of this signature matching
engine, whether implemented in software or hardware, is the number and com-
plexity of the signatures that must be tested against incoming packets. However,
both the number and complexity of rules appears to be increasing. For example,
the recent Windows Meta-File (WMF) exploit [3] required inspecting and decod-
ing more than 300 bytes into the HTTP payload which could quickly overwhelm
the CPU of the IDS or IPS, causing massive packet drops [4].

As a result, there has been significant effort in developing methods for efficient
deep packet inspection. Current IDSs like Snort and Bro attempt to evaluate as
few rules as possible in a highly parallel way. For example, Snort pre-processes
rules to separate them by TCP ports, and then parallelizes the evaluation based
on port. However, these groupings can be inefficient because all of the rules in
a given group do not apply to incoming packets. Moreover, separating rules by
multiple protocol fields in a naive way does not solve the problem because of the
additional memory overhead associated with managing groups.

In this paper, we argue that IDS and IPS should dynamically adapt the par-
allelization and separation of rules based on the observed traffic on the network
and the input rules database. That is, all IDS and IPS workloads are not the
same, and systems should adapt to the environment in which they are placed
to effectively trade-off memory requirements for run-time rule evaluation. To
demonstrate this idea, we have developed an adaptive algorithm that system-
atically profiles the traffic and the input rules to determine a high performance
and memory efficient packet inspection strategy that matches the workload. To
effectively use memory for high performance, the rules are separated into groups
by values of protocol fields and then these rule groups are chosen to be main-
tained in memory following a simple idea of “the rule groups that have a large
number of rules and match the network traffic only a few times should be sepa-
rated from others.” This idea follows our observation that if rules with value v
for a protocol field are grouped separately from others, then for any packet that
does not have value v for the protocol field, we can quickly reject all those rules,
and if only a few packets have that value, then those rules will be rejected most
of the time. Therefore, our workload-aware scheme aims to determine a small
number of effective groups for a given workload.

Our algorithm determines which rule groups are maintained in the memory
by choosing protocol fields and values recursively. It first determines the protocol
field that is most effective in rejecting the rules, and then separates those groups
with values of the chosen protocol field that reject at least a threshold number
of rules. After forming groups for each of these values, the algorithm recursively
splits the groups by other protocol fields, producing smaller groups. In this way,

292 S. Sinha, F. Jahanian, and J.M. Patel

we generate a hierarchy of protocol fields and values for which groups are main-
tained. By lowering the threshold, memory can be traded-off for performance.
Using this systematic approach for computing a protocol evaluation structure,
we automatically adapt an IDS for a given workload.

In this paper we develop a prototype Snort implementation based on our
workload-aware framework, which we call Wind. The implementation has two
main components. The first component profiles the workload (i.e., the input rules
and the observed network traffic) to generate the hierarchical evaluation tree.
The second component takes the evaluation tree, pre-processes the rules, and
matches incoming packet to the rules organized in the tree.

We evaluate our prototype workload-aware Snort implementation on the wid-
ely recognized DARPA intrusion detection datasets, and on live traffic from a
border router at a large live academic network. We find that our workload-
aware algorithm improves the performance of Snort up to 1.6 times on all Snort
rules and up to 2.7 times for web-based rules. Surprisingly, we also find that
the algorithm reduces memory consumption by 10 − 20%. We also compare the
workload-aware algorithm with Bro, and find it outperforms Bro by more than
six times on most workloads.

To summarize, the main contributions of this paper are:

– We propose a method for improving the performance of IDS and IPS systems
by adapting to the input rules and the observed network traffic.

– To demonstrate our idea, we constructed a workload-aware Snort prototype
called Wind that consists of two components: a component that profiles both
the input rules and the observed network traffic to produce an evaluation
strategy, and a second component that pre-process the rules according to
the evaluation strategy, and then matches incoming packets.

– We evaluate our prototype on publicly-available datasets and on live traffic
from a border router. Our evaluation shows that Wind outperforms Snort
up to 1.6 times and Bro by six times with less memory requirements.

The rest of the paper is organized as follows: Section 2 presents background
and related work. Section 3 presents the design of Wind, and Section 4 presents
empirical results comparing Wind with existing IDSs. Section 5 discusses tech-
niques for dynamically adapting Wind to changing workloads. We finally con-
clude with directions for future work in Section 6.

2 Background and Related Work

The interaction between high-volume traffic, number of rules, and the complex-
ity of rules has created problems for Intrusion Detection Systems that examine
individual flows. Dreger et. al. [5] present practical problems when Intrusion De-
tection Systems are deployed in high-speed networks. They show that current
systems, like Bro [6] and Snort [2], quickly overload CPU and exhaust the mem-
ory when deployed in high-volume networks. This causes IDS to drop excessive

WIND: Workload-Aware INtrusion Detection 293

number of packets, some of which may be attack incidents. Therefore, they pro-
pose some optimizations to reduce memory consumption and CPU usage which
are orthogonal to the Wind approach.

Lee et. al. [7] find that it is difficult to apply all possible rules on an incoming
packet. Therefore, they evaluated the cost-benefit for the application of various
rules and determined the best set of rules that can be applied without dropping
packets. However, they trade-off accuracy for achieving high bandwidth. Kruegel
and Valeur [8] propose to slice traffic across a number of intrusion detection (ID)
sensors. The design of their traffic slicer ensures that an ID sensor configured to
apply certain rules on a packet does not miss any attack packet.

Sekar et. al. [9] developed a high-performance IDS with language support
that helps users easily write intrusion specifications. To specify attack signatures
within a payload, they used regular expressions. This specification is different
from Snort in which attack signatures contain exact substrings, in addition to
regular expressions, to be matched with a payload. Using regular expressions is
a more generic approach than using substrings to specify an attack signature.
However, regular expressions are more expensive to evaluate than exact substring
matches. (The complexity of checking a regular expression of size m over a
payload of size n is O(mn) [10] and it is more expensive than checking for exact
substring within a payload, which has a time complexity of O(n) [10]). Aho-
Corasick [10] matches a set of substrings over a payload in O(n). Alternative
schemes like Wu-Manber [11] speed up matching by processing the common
case quickly. The multi-pattern optimizations to speed up an Intrusion Detection
System are complementary to our approach, as we speed up an IDS by reducing
the expected number of patterns to be checked with a packet.

Versions of Snort prior to 2.0 evaluated rules one by one on a packet. This
required multiple passes of a packet and the complexity of intrusion detection
grew with the number of rules. To eliminate redundant checking of protocol
fields, rules that have the same values for a protocol field can be pre-processed
and aggregated together. Then, a check on the protocol field value would equiv-
alently check a number of rules. By clustering rules in this way and arranging
the protocol fields by their entropy in a decision tree, Kruegel and Toth [12], and
Egorov and Savchuk [13] independently demonstrated that Snort (version 1.8.7)
performance can be improved up to three times. However, these papers only
examined the input rules to determine the rule evaluation order. In contrast, we
analyze the traffic, as well as the rules, to determine the rule evaluation order.
Secondly, they use entropy as an ordering metric, whereas we use a more intu-
itive metric for selecting as few rules as possible. Lastly, a naive arrangement
of protocol fields would drastically increase memory usage, and these papers
have not considered the memory costs associated with their approaches. Wind
improves performance and at the same time reduces the memory usage of an
intrusion detection and prevention system.

Snort 2.0 [14] uses a method in which rules are partitioned by TCP ports, and
a packet’s destination and source port determines the sets of applicable rules.
Then, the content specified by these applicable rules are checked in one pass

294 S. Sinha, F. Jahanian, and J.M. Patel

of the payload, using either the Aho-Corasick or the Wu-Manber algorithm, for
multiple substring search. If a substring specified in some attack rule matches
with the packet, then that rule is evaluated alone. We found that the parallel
evaluation significantly sped up Snort. Snort now takes 2-3 microseconds per
packet, when compared to earlier findings of 20-25 [13] microseconds per packet
for Snort versions prior to 2.0 1. This optimization significantly improved Snort
performance. Nevertheless, we further speed up a multi-rule Snort on many
workloads. This is achieved by partitioning the rules in an optimized evaluation
structure.

Recently, specialized hardware [15,16] for intrusion detection in high-volume
networks has been developed. However, hardware-based solutions are complex
to modify (e.g., to change the detection algorithm). Nevertheless, the techniques
presented here will further enhance performance of these systems.

Our work is also related, and inspired, by database multi-query optimization
methods that have long been of interest to the database community (see [17, 18,
19, 20]) for a partial list of related work). However, rather than finding common
subexpressions amongst multiple SQL queries against a static database instance,
the problem that we tackle requires designing a hierarchical data structure to
group network rules based on common subexpressions, and using this data struc-
ture in a data streaming environment.

3 Designing a Workload-Aware IDS

In this section, we first show that checking a protocol field can reject a large
number of rules, and the number of rejected rules varies significantly with the
protocol field. Then, we take this observation a step further and construct an
evaluation strategy that decomposes the set of rules recursively by protocol fields
and constructs a hierarchical evaluation tree. However, a naive strategy that
separates rules by all values of a protocol field will use too much memory. To
address this issue, we present a mathematical model that addresses the trade-off
between memory occupied by a group of rules and the improvement in run-
time packet processing. Finally, we present a novel algorithm and a concrete
implementation to capture statistical properties of the traffic and the rule set to
determine a high-performance and memory-efficient packet inspection strategy.

3.1 Separating Rules by Protocol Fields

An IDS has to match a large number of rules with each incoming packet. Snort
2.1.3 [2] is distributed with a set of 2, 059 attack rules. A rule may contain specific
values for protocol fields and a string matching predicate over the rest of the packet.
For example, a Snort rule that detects the Nimda exploit is shown below:

alert tcp EXTERNAL NET any -> HOME NET 139 (msg:‘‘NETBIOS nimda
.nws’’; content:‘‘|00|.|00|N|00|W|00|S";)

1 Difference in computing systems and rules not taken into account for rough discussion.

WIND: Workload-Aware INtrusion Detection 295

This rule matches a packet if the value of transport protocol field is TCP, the
value in the source address field matches the external network, the destination
address field contains an address in the home network, the value of destination
TCP port field is 139, and if the payload contains the string ‘‘|00|.|00|N|00|
W|00|S".

 0 200 400 600 800 1000 1200 1400 1600

CheckDstPort
CheckDstIp

CheckFromClient
CheckSrcPort

IcmpTypeCheck
CheckFromServer

CheckSrcIp
IcmpCodeCheck
CheckTcpFlags

IcmpIdCheck
CheckDsizeGT
CheckDsizeEq

IpIdCheckEq
IcmpSeqCheck

CheckTcpSeqEq
CheckTcpAckEq
TcpWinCheckEq

CheckFragBits
CheckIpOptions

CheckTtleq
CheckTtlGT

CheckDsizeLT

avg. num. of rules rejected

Fig. 1. Average number of rules (out of 2, 059) rejected by checking different protocol
fields for the DARPA dataset (99-test-w4-thu)

Asimple approach for evaluatingmultiple rules onan incoming packet is to check
each rule, one-by-one. However, this solution involves multiple passes over each
packet and is too costly to be deployed in a high-speed network. Therefore, the
evaluation of the rules should be parallelized as much as possible and evaluated in
only a few passes over the packet. To evaluate a protocol field in the packet only
once, we need to pre-process rules and separate them by the values of the protocol
field. Then, by checking the value of just one protocol field, the applicable rules can
be selected. The advantage of separating rules by the protocol field values is that a
large number of rules can be rejected in a single check. In Snort, the rules are pre-
processed and grouped by destination port and source port. The TCP ports of an
incoming packet are checked to determine the set of rules that must be considered
further, and all other rules are immediately rejected. The expected number of rules
that will be rejected by checking a protocol field of an incoming packet depends
on two factors: the traffic characteristics and the rule characteristics. Consider an
input rule set with a large number of rules that check if the destination port is
80. Assuming that the rules are grouped together by the destination port, for a
packet not destined to port 80, a large number of port-80 rules will be rejected

296 S. Sinha, F. Jahanian, and J.M. Patel

immediately. If only a few packets are destined to port 80, then a large number of
rules will be rejected most of the time.

Figure 1 shows the number of rules that can be rejected immediately for an
incoming packet when rules are grouped by different protocol fields. For this
figure, we used the 2, 059 rules that came with Snort 2.1.3 distribution and
the traffic is from the Thursday on the fourth week of 99 DARPA dataset (99-
test-w4-thu). Figure 2 shows a similar graph, using the same set of rules on
a border router in a large academic network. The graphs show that checking
the destination port rejects the maximum number of rules, which is followed
by destination IP address and then by the check that determines whether the
packet is from a client. The source IP address is fourth in the list for the border
router traffic and seventh in the DARPA dataset. After this, most other protocol
fields reject a small number of rules. Therefore, the graphs show that the rule
set and the traffic mix cause varying number of rules to be rejected by different
protocol fields.

 0 200 400 600 800 1000 1200 1400 1600 1800

CheckDstPort
CheckDstIp

CheckFromClient
CheckSrcIp

CheckSrcPort
IcmpTypeCheck

CheckFromServer
IcmpCodeCheck
CheckTcpFlags

IcmpIdCheck
CheckDsizeEq
CheckDsizeGT

IpIdCheckEq
CheckFragBits
IcmpSeqCheck

CheckTcpSeqEq
CheckTcpAckEq
CheckIpOptions

CheckDsizeLT
CheckTtleq

IpSameCheck
TcpWinCheckEq

CheckTtlGT

avg. num. of rules rejected

Fig. 2. Average number of rules (out of 2, 059) rejected by checking different protocol
fields for data from the border router of a large academic network

Now, checking whether a payload contains a particular string is a costly op-
eration, but checking the value of a protocol field is cheap. So, it is prefer-
able to check protocol fields to reduce the number of applicable rules. To use
multiple protocol fields for reducing the applicable rules, the rules have to be
pre-processed in a hierarchical structure in which each internal node checks a
protocol field and then divides the rules by the values of the protocol field. Fi-
nally, the leaf node is associated with a set of rules and a corresponding data
structure for evaluating multiple patterns specified in the rules. We are agnostic

WIND: Workload-Aware INtrusion Detection 297

IP
From

Client

From
Client

........8053252321

Home
Net Ext

Net

Generic

Rules at the leaf

client
check

destination
port

destination
IP

client
check

source

Fig. 3. An example evaluation tree that checks protocol fields to determine the set of
rules for matching an incoming packet

to the multi-pattern search algorithm and the only objective of this hierarchi-
cal evaluation is to reduce the number of applicable rules, so that a packet is
matched with as few rules as possible.

Figure 3 shows an example of an evaluation tree in which protocol fields are
hierarchically evaluated to determine the set of applicable rules. It first checks
for destination port. If the destination port matches a value for which the set
of rules is maintained then those groups of rules are further analyzed, or else
the generic set of rules is picked. If the destination port is 21, the connection
table is checked to determine if the packet came from the client who initiated
the connection, and the corresponding rules are picked. If the destination port
is 80, then the destination IP address of the packet is checked. Then, depending
on whether the packet is destined to the Home Network or not, the correct set
of rules are picked to further evaluate on the packet. However, maintaining a
naive hierarchical index structure, in which every specific value of a protocol
field is separated, consumes a significant amount of memory for the following
two reasons:

1. Groups require memory: Multiple patterns from a set of rules have to be
searched in a payload in only one pass of the payload. Therefore, additional
data structures are maintained for fast multi-pattern matching. This struc-
ture can be a hash table as in the case of the Wu-Manber [11] algorithm,
or a state table as in the case of the Aho-Corasick [10] algorithm. These
structures consume a significant amount of memory.

2. Rules are duplicated across groups: If groups are formed by composing
two protocol fields hierarchically, then the number of distinct groups may
increase significantly. For example, assume that the rules are first divided by
destination port, and then each group so formed is further divided by source

298 S. Sinha, F. Jahanian, and J.M. Patel

port. A rule that is specific in source port but matches any destination
port has to be included in all groups with a particular destination port. If
the groups that are separated by destination port are further divided by
source port, then separate source port groups would be created within all
the destination port groups. For a set of rules with n source port groups and
m destination port groups, the worst number of groups formed, when rules
are hierarchically arranged by the two protocol fields, is n × m.

To investigate the memory consumed when rules are grouped hierarchically
by different protocol fields, we instrumented Snort to construct this structure
for a given list of protocol fields. We then measured the memory consumed for
different combinations of protocol fields. Figure 4 shows the memory consumed
when different protocol fields are hierarchically arranged, and a separate bin is
maintained for every specific value in a protocol field (trace data was 99-w4-thu
from DARPA dataset and the 2059 rules of Snort-2.1.3 distribution). This shows
that the memory consumed by the combination of destination port and client
check is 50% more than just the destination port. The memory required for the
combination of destination port and destination IP address is two times, and for
the combinations of destination port, destination IP address and client check, the
memory consumed is three times than only using the base destination port. From
the graph, the increase in memory is evident when the rules are hierarchically
grouped by destination port and source port. Therefore, constructing such a
hierarchy immediately raises two important questions:

 0 100 200 300 400 500 600

destination_port

actual_snort

destination_port+from_client

destination_port+destination_ip

destination_port+destination_ip+from_client

destination_port+source_port

memory usage (MB)

Fig. 4. Memory usage when rules are hierarchically arranged by protocol fields in the
specified order using the DARPA dataset (99-w4-thu)

WIND: Workload-Aware INtrusion Detection 299

1. What is the order in which the protocol fields are evaluated in the hierarchy?
2. What are the values of a protocol field for which groups are maintained?

In what follows, we first present a mathematical description of this problem,
analyzing the cost and benefit of different orders of protocol fields and the field
values for which the rules are maintained. We then argue that these questions
can be answered by capturing properties of the workload, namely the traffic-mix
characteristics and the input rule set characteristics.

3.2 Formal Description

In this section, we formulate the problem of determining the order of evaluation
and the values of protocol fields for which the groups are maintained. As argued
earlier, the cost in maintaining a separate group is mostly the memory consumed
by the group. Intuitively, the benefit obtained by maintaining a group of rules
can be measured by how many rules this group separates from the rule set
and how frequently this group is rejected for an incoming packet. We begin by
formalizing the problem.

Consider n protocol fields F1, F2, . . . , Fn. Let vi
1, v

i
2, . . . , v

i
mi

be mi specific
values of the protocol field Fi present in various rules in the rule set. Let P =
(Fr1 = vr1

j1
) ∧ (Fr2 = vr2

j2
) ∧ . . . ∧ (Fri = vri

ji
) be the predicate for a group

that is picked only when the packet matches specific values for i protocol fields,
and f(P) denote the probability that the protocol fields for an incoming packet
matches the predicate P , i.e., vr1

j1
for protocol field Fr1 , vr2

j2
for protocol field Fr2 ,

. . . , vri

ji
for protocol field Fri . f(P) actually captures statistics on the network

traffic. The probability that an incoming packet does not have the values for
protocol fields as the predicate P is 1 − f(P). Let the benefit of rejecting rule R
be measured by improvement of bR in run time. Then, every time a packet does
not have the values for protocol fields as P , benefit of

∑
R=rule with value P bR is

obtained by maintaining a separate group of rules with values P . Therefore, the
overall benefit of creating a group with specific values for protocol fields present
in the predicate P includes traffic characteristics in f(P) and rule properties in
the rule set as:

(1 − f(P)) ×
∑

R=rule with value P
bR (1)

Assume that c(P) is the memory cost of creating a group for a set of rules that
satisfies the predicate P . Then, the problem of an effective hierarchical structure
is to determine the set of groups such that they maximize the benefit measured
by improvement in run time for a given total cost, measured by the total amount
of memory that is available. Formally, the objective is to determine m and m
distinct predicates P1, P2, . . . ,Pm that maximizes

m∑
i=1

[(1 − f(Pi)) ×
∑

R=rule with value Pi

bR] (2)

300 S. Sinha, F. Jahanian, and J.M. Patel

with the cost constraint
m∑

i=1

c(Pi) ≤ maximum memory (3)

3.3 Our Approach

In this section, we design an algorithm that captures the properties of input rules
and traffic characteristics to produce an effective set of rule groups, separated
by values of protocol fields. These groups are then arranged in a hierarchical
evaluation structure, which determines the order in which protocol fields are
evaluated on an incoming packet. We begin with some assumptions that simplify
the above mathematical model for a realistic treatment and then present our
algorithm.

Assumptions. It is not easy to precisely determine the cost of creating a data
structure for matching multiple patterns and the absolute benefit achieved by
rejecting a rule. For some exact substring-match algorithms (like Aho-Corasick),
the memory space occupied by the data structure may not grow linearly with
the number of patterns. For hash-based algorithms, the memory consumed is
independent of the number of patterns. This makes estimating cost for a multi-
pattern-matching algorithm difficult. At the same time, for most algorithms that
perform multi-pattern matching, it is hard to estimate the benefit of excluding a
single pattern. Therefore, we will make two simplifying assumptions that allows
us to easily compute the cost and benefit:

1. The cost of creating a multi-pattern data structure for any group of patterns
is constant. This assumption is valid for hash-based matching algorithms,
like Wu-Manber, that allocate fixed hash space. However, this assumption
is incorrect for the Aho-Corasick algorithm in which the required space may
increase with the increase in the number of patterns.

2. The benefit of rejecting any rule is a one-unit improvement in run time (i.e.,
bR = 1) except for rules that have content of maximum length one. The rules
that have content length one significantly degrade multi-pattern matching
and should be separated if possible. Therefore, rules with a content length
of one are assigned a large benefit (mathematically infinity). It is possible
that other patterns may adversely impact the performance in multi-pattern
search, but we choose to ignore such interactions for simplicity.

It is important to note that our assumptions help us to easily estimate the cost
and benefit of creating a group, and more accurate estimates will only improve
our scheme.

The Algorithm. Instead of specifying a fixed memory cost and then maxi-
mizing the benefit, we specify the trade-off between the cost and the benefit.
We say that any specific value of a protocol field that rejects at least a mini-
mum THRESHOLD number of rules should be assigned a separate group and

WIND: Workload-Aware INtrusion Detection 301

hence, memory space. This specification allows us to more easily tune real-time
performance.

The mathematical model allows us to compare two groups with specific values
for a number of protocol fields. The problem is then to determine a set of groups
in which each group rejects at least a THRESHOLD number of rules and the
set maximizes the overall benefit. However, this may require generating all pos-
sible sets, which is computationally infeasible. Therefore, we do not attempt to
produce an optimal set of groups, but instead to discover possible groups heuris-
tically. The main intuition behind our algorithm is to place all rules in a bin
and iteratively split that bin by the protocol field that produces the maximum
benefit, and at each split separate values of the chosen protocol field that reject
at least a THRESHOLD number of rules on average.

We now explain our algorithm in detail. First, all rules are placed in a bin.
Then, a few packets are read from the network and protocol fields in each rule are
evaluated. Then, the benefit obtained by a value in a protocol field is computed
using the benefit Equation 1. For value vi

j of the protocol field Fi, f(P) reduces
to f(Fi = vi

j) and
∑

R=rule with value P bR reduces to SFi=vi
j

where SP indicates
the number of rules with protocol field values specified by the predicate P . This
simplification is possible because bR is one. The overall benefit of a protocol
field is the sum of benefit of all values, and the protocol field is chosen that
produces maximum benefit. Then groups are formed for each specific value in
the protocol field that rejects at least THRESHOLD number of rules, or has
a rule with content length one. Then, we partition the bin into those specific
values and recursively compute other protocol fields for each of these bins. We
stop splitting a bin if none of the protocol fields can reject at least THRESHOLD
number of rules.

When we partition a bin into specific values, we replicate a rule that may
match multiple of these specific values in all those bins. For example, if the rules
are divided by destination port, then a rule that matches ‘any’ destination
port is included in all of those bins. This ensures that when a set of rules with
a specific value for a protocol field are picked, other applicable rules are also
matched with the packet. This is essential for correctness. Generally a rule with
value vj for a protocol field is included in a rule set with specific value vi if
vj ∩ vi �= 0. If there is an order in which the values are checked during run-time,
then a rule vj is included in vi only if it appears before it, and if it satisfies the
previous property.

Packets rejected by a protocol field may correlate with packets rejected by
another protocol field, and so computing protocol fields independently may give
misleading information. For example, a source port and a source IP address
may reject exactly the same packets, in which case we do not gain anything by
checking both of them. Our recursive splitting of a bin removes this problem of
correlated values. This is because for a bin, we evaluate the benefit of remain-
ing protocol fields only on those packets that match the values specified in the
bin. For example, to split a bin containing port-80 rules, we only evaluate the

302 S. Sinha, F. Jahanian, and J.M. Patel

remaining protocol fields on packets that have port 80. This ensures that the
remaining protocol fields reject only the rules that were not rejected by port 80.

By choosing the protocol field that produces maximum benefit for each bin,
we get an order in which the protocol field is checked for a packet. By choosing
values that produce benefit above a threshold, we get the values that determines
which groups should be maintained.

Implementation. We implemented two distinct components to develop a work-
load-aware Intrusion Detection System. The first component profiles the work-
load (i.e., the input rules and the live traffic) to generate the evaluation tree.
The second component takes the evaluation tree, pre-processes the rules, and
matches any incoming packet on the tree. These components are general enough
to be applied to any IDS. We implemented our algorithm that generates an eval-
uation tree for a given workload over Snort 2.1.3. We chose Snort as it already
provides an interface to read the rules into proper data structures. It also pro-
vides an interface to read the incoming traffic and check for different protocol
fields.

As a second component, we modified Snort 2.1.3 to take the bin profiles and
construct a hierarchical evaluation plan. Snort 2.0 [14] introduced an interface for
parallel evaluation of rules on a packet. Our hierarchical evaluation tree provides
the set of applicable rules for a packet according to its values for different protocol
fields. We pre-computed the data structure required for parallel matching for
each of these groups. For every packet, we used our evaluation tree to determine
the set of applicable rules and allowed Snort to perform the evaluation. We
implemented three protocol fields by which the hierarchical structure can be
constructed, namely: destination port, source port, destination IP address, and
whether the packet is from the client. Since rules contain a large number of
distinct protocol fields and we want to immediately detect the applicable rules,
we implemented a check for destination port using an array of 65,536 pointers.
Source port and destination IP address was checked by looking for possible match
in a linked list. We did this because only a few destination IP addresses/source
ports have to be checked, and because maintaining a pointer for each specific
value consumes significant memory. For client checks the rules were divided into
two parts: those that required to check if the packet is coming from client, and
the rest were others. Every time a bin was split, we ensured that a rule was
included in all new bins whose specific value can match the value in the rule.
This ensured the correctness of our approach. We also validated our system by
matching the number of alerts that our system raises, when compared to the
number of alerts raised by unmodified Snort on a large number of datasets.

4 Evaluation

In this section, we evaluate Wind on a number of publicly-available datasets and
on traffic from a border router at a large academic network. On these datasets, we
compared real-time performance of Wind with existing IDSs using two important
metrics: the number of packets processed per second and the amount of memory

WIND: Workload-Aware INtrusion Detection 303

consumed. To measure the number of packets processed per second, we compiled
our system and the unmodified Snort with gprof [21] options and then evaluated
the dataset with each one of them. Then we generated the call graph, using
gprof, and examined the overall time taken in the Detect function, which is
the starting point of rule application in Snort. Finally, using the time spent
in Detect and the number of times it was called, we computed the number of
packets processed per second. To compute the memory used, we measured the
maximum virtual memory consumed during the process execution by polling
each second the process status and capturing the virtual memory size of the
process. We now describe the datasets and the computing systems that we used
for our experiments.

4.1 Datasets and Computing Systems

We evaluated the performance of our system on a number of publicly-available
datasets and on traffic from a large academic network. For publicly available
datasets, we used traces that DARPA and MIT Lincoln Laboratory have used
for testing and evaluating IDSs. We used two-week testing traces from 1998 [22],
and two-week testing traces from 1999 [23]. This gave us 20 different datasets
with home network 172.16.0.0/12. For evaluating the system on real-world, live
traffic, we chose a gateway router to a large academic network with address
141.212.0.0/16. This router copies traffic from all ports to a span port, which
can be connected to a separate machine for analyzing the traffic.

For DARPA dataset experiments, we used a dual 3.06 GHz Intel Xeon machine
with 2 GB of main memory. The machine was running FreeBSD 6.1 with SMP
enabled. We connected the span port of the gateway router to a machine with
dual 3.0 GHz Intel Xeon processors and 2GB of main memory. The machine was
running FreeBSD 5.4 with SMP enabled. The results that follow are the averages
over 5 runs and with the THRESHOLD value set to 5.

4.2 Processing Time and Memory Usage

We compared Wind with Snort 2.1.3 for all rules included with the distribution.
There were 2, 059 different rules, and both Wind and Snort were run using default
configuration. Figure 5 shows the amount by which we improved the number of
packets processed per second by Snort. For most datasets, we find that our
system processes up to 1.6 times as many packets as Snort. We also compared
the memory used by our system with that of Snort. Figure 6 shows the memory
saved by our system when compared to Snort. We find that our system uses
about 10-20% less memory when compared to the unmodified Snort. In other
words, we perform up to 1.6 times better in processing time and save 10-20% of
the memory.

Wind and Snort were run on the border router for analyzing a million packets
at a few discrete times in the week. Figure 7 shows the amount by which Wind
improved the number of packets processed per second by Snort. It shows that
the improvement factor on this dataset varied from 1.35 to 1.65. During the
runs, Wind consumed 10-15% less memory than Snort.

304 S. Sinha, F. Jahanian, and J.M. Patel

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

98-test-w1-mon
98-test-w1-tue

98-test-w1-wed
98-test-w1-thu

98-test-w1-fri
98-test-w2-mon
98-test-w2-tue

98-test-w2-wed
98-test-w2-thu

98-test-w2-fri
99-test-w4-mon
99-test-w4-tue

99-test-w4-wed
99-test-w4-thu

99-test-w4-fri
99-test-w5-mon
99-test-w5-tue

99-test-w5-wed
99-test-w5-thu

99-test-w5-fri

Factor improvement in number of packets processed per second

Fig. 5. Factor improvement, in terms of number of packets processed per second, when
compared to Snort for the 1998 and 1999 DARPA testing datasets

 0 5 10 15 20

98-test-w1-mon
98-test-w1-tue

98-test-w1-wed
98-test-w1-thu

98-test-w1-fri
98-test-w2-mon
98-test-w2-tue

98-test-w2-wed
98-test-w2-thu

98-test-w2-fri
99-test-w4-mon
99-test-w4-tue

99-test-w4-wed
99-test-w4-thu

99-test-w4-fri
99-test-w5-mon
99-test-w5-tue

99-test-w5-wed
99-test-w5-thu

99-test-w5-fri

percentage of memory saved

Fig. 6. Percentage of memory saved for each of the 1998 and 1999 DARPA datasets,
when compared to Snort

WIND: Workload-Aware INtrusion Detection 305

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

Sat-evening-04/02

Sun-evening-04/02

Mon-afternoon-04/03

Mon-evening-04/03

Tue-afternoon-04/04

Tue-evening-04/04

Factor improvement in number of packets processed per second

Fig. 7. Factor improvement in number of
packets processed per second, when com-
pared to Snort, on data from a border
router in an academic network

 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

Sat-evening-04/02

Sun-evening-04/02

Mon-afternoon-04/03

Mon-evening-04/03

Tue-afternoon-04/04

Tue-evening-04/04

Factor improvement in number of packets processed per second

Fig. 8. Factor improvement in number of
packets processed per second, when com-
pared to Snort, for web-based rules. These
experiments were on traffic from a border
router at an academic network.

 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

98-test-w1-mon
98-test-w1-tue

98-test-w1-wed
98-test-w1-thu

98-test-w1-fri
98-test-w2-mon
98-test-w2-tue

98-test-w2-wed
98-test-w2-thu

98-test-w2-fri
99-test-w4-mon
99-test-w4-tue

99-test-w4-wed
99-test-w4-thu

99-test-w4-fri
99-test-w5-mon
99-test-w5-tue

99-test-w5-wed
99-test-w5-thu

99-test-w5-fri

Factor improvement in number of packets processed per second

Fig. 9. Factor improvement in number of packets processed per second by Wind when
compared to Snort for web-based rules. The datasets include the 1998 and 1999 DARPA
intrusion detection datasets.

4.3 Application-Specific Rules

Until now, all our experiments were conducted by enabling all rules that came
with the Snort distribution. However, in many networks, only application-specific
rules can be used. For example, in many enterprise networks, the only open

306 S. Sinha, F. Jahanian, and J.M. Patel

access through the firewall is web traffic. Since web traffic forms the dominant
application allowed in many networks, we compared our system with Snort for
web-based rules 2. Figure 8 shows the magnitude by which our system improves
Snort, in the terms of number of packets processed per second, for traffic at
the border router. We found that for web-based rules, our system improves
performance by more than two times when compared to Snort. Figure 9 shows
a similar graph for the DARPA datasets. We observed that Wind outperforms
Snort by a factor of up to 2.7 times. In this case, we saved 2-7% of the memory
when compared to Snort.

4.4 Variation with Threshold

In order to investigate how the threshold affects the performance of our system,
we evaluated the DARPA dataset, 98-test-w1-mon, for different values of the
threshold. Figure 10 shows the performance variation of our system with the
increasing threshold. As expected, the performance of the system decreases with
increasing cost assigned by threshold. However, we find that the changes are
more pronounced only for lower threshold values. We find that the memory saved
by our system increases with increasing threshold values, significantly only for
lower threshold values. Therefore, we find that increasing the threshold reduces
performance, but saves more memory, and this difference is more pronounced
for lower threshold values.

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 1.55

 1.6

 1.65

 0 50 100 150 200 250F
ac

to
r

im
p

ro
ve

m
en

t
in

 n
u

m
b

er
 o

f
p

ac
ke

ts
 p

er
 s

ec
.

Threshold (minimum number of rules to be rejected)

Fig. 10. The change in number of packets
processed with the threshold for minimum
number of rules to be rejected, when com-
pared to Snort (dataset: 98-test-w1-mon)

 16

 18

 20

 22

 24

 26

 28

 30

 0 50 100 150 200 250

p
er

ce
n

ta
g

e
o

f
m

em
o

ry
 s

av
ed

Threshold (minimum number of rules to be rejected)

Fig. 11. Variation in memory saving with
the threshold for minimum number of
rules to be rejected, when compared to
Snort (dataset: 98-test-w1-mon)

4.5 Comparison with Bro

We also compared Wind with another IDS Bro [6]. We first converted Snort
signatures using a tool already provided by Bro [24]. However, only 1, 935 signa-
tures were converted and regular expressions in the rules were ignored. We then
2 Web-cgi, web-coldfusion, web-iis, web-frontpage, web-misc, web-client, web-php, and

web-attack rules with Snort 2.1.3.

WIND: Workload-Aware INtrusion Detection 307

 2 3 4 5 6 7 8 9 10 11 12

98-test-w1-mon
98-test-w1-tue

98-test-w1-wed
98-test-w1-thu

98-test-w1-fri
98-test-w2-mon
98-test-w2-tue

98-test-w2-wed
98-test-w2-thu

98-test-w2-fri
99-test-w4-mon
99-test-w4-tue

99-test-w4-wed
99-test-w4-thu

99-test-w4-fri
99-test-w5-mon
99-test-w5-tue

99-test-w5-wed
99-test-w5-thu

99-test-w5-fri

Factor improvement in number of packets processed per second

S
nort over B

ro
W

ind over B
ro

Fig. 12. Factor improvement when comparing Bro with Snort and Wind for the number
of packets processed per second (dataset: 99-test-w1-wed)

compared Bro 0.9 with Wind and Snort for various DARPA workloads. As shown
in Fig. 12, Snort is faster than Bro by 2 to 8 times, and Wind is 3 to 11 times
faster than Bro. This result is partly because Bro uses regular expression for sig-
nature specification rather than Snort, which uses exact substrings for signature
matching. Bro uses a finite automata to match regular expressions [24], whereas
Snort uses the Wu-Manber algorithm for matching sets of exact substrings.

5 Dynamically Adapting to Changing Workload

The Wind system that we have described so far analyzes observed network traffic
and input rules to speed up the checking of network packets in an IDS in a
memory-efficient way. However, traffic characteristics can change over time, or
the rule set can change as new vulnerabilities are announced. Therefore, we need
to adapt our evaluation structure dynamically without restarting the system.

To adapt to changing traffic characteristics, we plan to collect traffic statistics
in the intrusion detection system itself, and reorganize the evaluation structure
when necessary. It would be too intrusive and costly to update statistics for each
packet. Therefore, one could update statistics for a small sample of incoming
packets. Then, we can use these statistics to determine the utility of specific
groups in the structure, and determine the benefit that rules in the generic group
would provide if they are separated from other rules in the generic group. We
can then remove specific groups whose utility decreases over time and make new
groups for rules in the generic group that provide increased benefit. However,
to ensure the correct application of rules, these changes may require updating

308 S. Sinha, F. Jahanian, and J.M. Patel

a portion of the evaluation tree atomically, thereby disrupting the incoming
traffic. Therefore, one could develop algorithms that use the updated statistics
to dynamically detect a significant change in traffic and trigger reconfiguration
of the structure when the benefits far outweigh the disruption.

Vulnerabilities are announced on a daily basis. Sometime a number of vul-
nerabilities for a single application are announced in a batch, demanding a set
of rules to be updated with the intrusion detection and prevention system. One
naive solution is to add the set of rules to the existing evaluation structure,
and then let the reconfiguration module decide over time if there is a need to
create additional groups. However, this strategy may affect the performance sig-
nificantly if a large set of rule is added to the generic group. This performance
degradation would continue till new groups are created. Therefore, one could
add rules whose values match with already existing groups directly to those spe-
cific groups. If a large number of rules still remain to be added to the generic
group, then we can use our algorithm described in this paper to determine the
groups that should be separated. Then, additional groups can be created within
the existing structure and the new rules added into those groups.

6 Conclusions and Directions for Future Work

In this paper, we have argued that an intrusion detection and prevention system
should adapt to the observed network traffic and the input rules, to provide opti-
mized performance. We have developed an adaptive algorithm that captures rules
and traffic characteristics to produce a memory-efficient evaluation structure that
matches the workload. We have implemented two distinct components over Snort
to construct a workload-aware intrusion detection system. The first component
systematically profiles the input rules and the observed traffic to generate a
memory-efficient packet evaluation structure. The second component takes this
structure, pre-processes the rules, and matches any incoming packet. Finally, we
have conducted an extensive evaluation of our system on a collection of publicly-
available datasets and on live traffic from a border router at a large academic net-
work. We found that workload-aware intrusion detection outperforms Snort by up
to 1.6 times for all Snort rules andup to 2.7 times forweb-based rules, and consumes
10-20% of less memory. A Snort implementation of Wind outperforms existing in-
trusion detection system Bro by six times on most of the workloads.

In future, we believe application decoding will be more common in intrusion
detection and prevention systems [24]. As part of future work, we plan on evalu-
ating our workload-aware framework on such systems. We also plan on evaluating
Wind with more context-aware signatures, and porting it to other available IDSs
and IPSs. Finally, we also plan on developing a dynamically-adaptive IDS, and
deploying it in real networks.

Acknowledgments

This work was supported in part by the Department of Homeland Security
(DHS) under contract number NBCHC040146, and by corporate gifts from Intel

WIND: Workload-Aware INtrusion Detection 309

Corporation. We thank Evan Cooke and Michael Bailey for providing valuable
feedback on the draft and anonymous reviewers for critical and useful comments.

References

1. Symantec: Symantec Internet threat report: Trends for July ’05 - December ’05.
http://www.symantec.com/enterprise/threatreport/index.jsp (March, 2006)

2. Roesch, M.: Snort: Lightweight intrusion detection for networks. In: Proceedings
of Usenix Lisa Conference. (November, 2001)

3. Microsoft: Vulnerability in graphics rendering engine could allow re-
mote code execution. http://www.microsoft.com/technet/security/bulletin/
ms06-001.mspx (January, 2006)

4. Knobbe, F.: WMF exploit. http://www.securityfocus.com/archive/119/
420727/30/60/threaded (December, 2005)

5. Dreger, H., Feldmann, A., Paxson, V., Sommer, R.: Operational experiences with
high-volume network intrusion detection. In: CCS ’04: Proceedings of the 11th
ACM conference on Computer and communications security. (2004) 2–11

6. Paxson, V.: Bro: A System for Detecting Network Intruders in Real-Time. Com-
puter Networks 31(23-24) (1999) 2435–2463

7. Lee, W., Cabrera, J.B.D., Thomas, A., Balwalli, N., Saluja, S., Zhang, Y.: Per-
formance adaptation in real-time intrusion detection systems. In: Proceedings of
Recent Advances in Intrusion Detection (RAID). (2002) 252–273

8. Kruegel, C., Valeur, F., Vigna, G., Kemmerer, R.: Stateful intrusion detection for
high-speed networks. In: Proceedings of the 2002 IEEE Symposium on Security
and Privacy, Washington, DC, USA, IEEE Computer Society (2002) 285–

9. Sekar, R., Guang, Y., Verma, S., Shanbhag, T.: A high-performance network in-
trusion detection system. In: ACM Conference on Computer and Communications
Security. (1999) 8–17

10. Gusfield, D.: Algorithms on strings, trees, and sequences: Computer Science and
Computational Biology. Cambridge University Press (1997)

11. Wu, S., Manber, U.: A fast algorithm for multi-pattern searching. Technical report,
Department of Computer Science, University of Arizona (1993)

12. Kruegel, C., Toth, T.: Automatic rule clustering for improved signature-based
intrusion detection. Technical report, Distributed systems group: Technical Univ.
Vienna, Austria (2002)

13. Egorov, S., Savchuk, G.: SNORTRAN: An optimizing compiler for snort rules.
Technical report, Fidelis Security Systems (2002)

14. Norton, M., Roelker, D.: SNORT 2.0: Hi-performance multi-rule inspection engine.
Technical report, Sourcefire Inc. (2002)

15. Schuehler, D., Lockwood, J.: A modular system for FPGA-based TCP flow pro-
cessing in high-speed networks. In: 14th International Conference on Field Pro-
grammable Logic and Applications (FPL), Antwerp, Belgium (2004) 301–310

16. Cho, Y.H., Mangione, W.H.: Programmable hardware for deep packet filtering on
a large signature set. http://citeseer.ist.psu.edu/699471.html (2004)

17. Finkelstein, S.: Common expression analysis in database applications. In: Pro-
ceedings of the 1982 ACM SIGMOD international conference on Management of
data, New York, NY, USA (1982) 235–245

18. Sellis, T.K.: Multiple-query optimization. ACM Trans. Database Syst. 13(1) (1988)
23–52

310 S. Sinha, F. Jahanian, and J.M. Patel

19. Sellis, T., Ghosh, S.: On the multiple-query optimization problem. IEEE Transac-
tions on Knowledge and Data Engineering 2(2) (1990) 262–266

20. Park, J., Segev, A.: Using common subexpressions to optimize multiple queries. In:
Proceedings of the Fourth International Conference on Data Engineering, Wash-
ington, DC, USA, IEEE Computer Society (1988) 311–319

21. Graham, S., Kessler, P., McKusick, M.: gprof: A call graph execution profiler. In:
Proceedings of the SIGPLAN ’82 Symposium on Compiler Construction. (June,
1982) 120–126

22. Lippmann, R.P., Fried, D.J., Graf, I., Haines, J.W., Kendall, .K.R., McClung, D.,
Weber, D., Webster, S.E., Wyschogrod, D.., Cunningham, R.K., Zissman, M.A.:
Evaluating intrusion detection systems: The 1998 DARPA off-line intrusion detec-
tion evaluation. In: Proceedings of the 2000 DARPA Information Survivability
Conference and Exposition (DISCEX). (2000) 12–26

23. Lippmann, R.P., Haines, J.: Analysis and results of the 1999 DARPA off-line
intrusion detection evaluation. In: Proceedings of Recent Advances in Intrusion
Detection (RAID), Springer Verlag (2000) 162–182

24. Sommer, R., Paxson, V.: Enhancing byte-level network intrusion detection signa-
tures with context. In: Proceedings of the 10th ACM Conference on Computer and
Communication Security (CCS-03), New York (2003) 262–271

SafeCard: A Gigabit IPS on the Network Card

Willem de Bruijn1, Asia Slowinska1, Kees van Reeuwijk1, Tomas Hruby1,
Li Xu2, and Herbert Bos1

1 Vrije Universiteit Amsterdam
2 Universiteit van Amsterdam

Abstract. Current intrusion detection systems have a narrow scope.
They target flow aggregates, reconstructed TCP streams, individual
packets or application-level data fields, but no existing solution is ca-
pable of handling all of the above. Moreover, most systems that per-
form payload inspection on entire TCP streams are unable to handle
gigabit link rates. We argue that network-based intrusion detection sys-
tems should consider all levels of abstraction in communication (packets,
streams, layer-7 data units, and aggregates) if they are to handle giga-
bit link rates in the face of complex application-level attacks such as
those that use evasion techniques or polymorphism. For this purpose,
we developed a framework for network-based intrusion prevention at the
network edge that is able to cope with all levels of abstraction and can
be easily extended with new techniques. We validate our approach by
making available a practical system, SafeCard , capable of reconstructing
and scanning TCP streams at gigabit rates while preventing polymorphic
buffer-overflow attacks, using (up to) layer-7 checks. Such performance
makes it applicable in-line as an intrusion prevention system. SafeCard
merges multiple solutions, some new and some known. We made specific
contributions in the implementation of deep-packet inspection at high
speeds and in detecting and filtering polymorphic buffer overflows.

1 Introduction

Network intruders are increasingly capable of circumventing traditional Intru-
sion Detection Systems (IDS). Evasion and insertion techniques blind the IDS
by spoofing the datastream, while polymorphism cloaks malicious code to slip
past the filter engine [1,2]. Besides hiding the attack, however, attackers employ
another weapon to thwart network defence systems: raw speed [3]. Less sophis-
ticated attacks travelling over Gigabit links may be as difficult to stop as more
complex attacks spreading more slowly. This leads to an interesting dilemma.
On the one hand, systems that handle evasion and polymorphism are either too
slow for in-line deployment (and are often host-based) or not sufficiently accu-
rate (e.g. [4]). On the other hand, fast in-line solutions are not able to detect and
stop sophisticated attacks (e.g., [5]). Our goal is to build a network card that
can be deployed in the datastream as an Intrusion Prevention System (IPS) at
the edge of the network and that handles many forms of attack at Gigabit rates.

D. Zamboni and C. Kruegel (Eds.): RAID 2006, LNCS 4219, pp. 311–330, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

312 W. de Bruijn et al.

Like [6], we advocate distributed firewalls. Briefly, centralised firewalls do not
protect against attacks from inside an organisation, and are less able to analyse
in detail complete TCP streams at link rate and to exploit knowledge about
specific configurations of end-hosts. Host-based solutions are problematic also,
because they depend on correct configuration of users’ PCs, which has proved
elusive in the past.

As a result, we prefer network administrators to have full control and security
measures to be physically removed from users. A network device (such as a
switch, or a router) close to the users’ machines is the sweet spot for positioning
the IPS system. The firewall could even reside in the network card of an end-
host [7]. However, physically removing safety measures from the user’s machine
has the advantage that they cannot be tampered with, which from a security
viewpoint may be preferred by administrators.

Unlike much existing work on distributed firewalls, the focus of our work is on
enforcing security policies on all levels of the protocol stack, rather than spec-
ification of policies, distribution of rules, etc., for which we intend to build on
existing solutions like [6]. SafeCard provides a single IPS solution that consid-
ers many levels of abstraction in communication: packets, streams, higher-level
protocol units, and aggregates (e.g., flow statistics). We selected state-of-the-art
methods for the most challenging abstractions (streams and application data
units) and demonstrate for the first time the feasibility of a full IPS on a net-
work card containing advanced detection methods for all levels of abstraction
in digital communication. To support in-depth analysis in higher-level protocol
layers and still achieve performance at Gigabit rates, we target specialised hard-
ware as might be found in common router line cards. In particular, we aim for
a truly low-level implementation on network processors. For the same reason as
in [7] we evaluated the system on a slightly outdated processor to make it price
competitive1.

Besides combining many levels of abstraction in our IPS, we also make contri-
butions to individual components. In particular, we developed a high-performance
pattern matching language, Ruler, that offers functionality similar to that of Snort
but is amenable to implementation on low-level hardware. In addition, we de-
veloped a protocol-specific detector, Prospector . Finally, we developed fast, zero-
copy TCP reassembly that proves crucial for performance.

We offer a full network IPS implemented as a pipeline on a single network
card. Each stage in the pipeline drops traffic that it perceives as malicious. Thus,
the compound system works as a sieve, applying orthogonal detection vectors
to maximise detection rate. In stage 1, we filter packets based on header fields
(e.g., protocol, ports). Stage 2 is responsible for reconstructing and sanitising
TCP streams. In stage 3, we match the streams against Snort-like patterns us-
ing Ruler. Unmatched traffic is inspected further in stage 4 by Prospector , an
innovative protocol-specific detection method capable of stopping polymorphic
buffer overflow attacks. This method is superior to pattern-matching for the de-
tection of exploits in known protocols. Against other types of malicious traffic,

1 In terms of manufacturing costs, not necessarily in current retail prices.

SafeCard: A Gigabit IPS on the Network Card 313

such as trojans, it is ineffective, however. The two methods therefore complement
each other: an indication of the strength of our sieve-based approach. Stage 5
further expands this idea by taking into account behavioural aspects of traffic.
It generates alerts when it encounters anomalies in flow aggregates (e.g., un-
usual amounts of traffic) and subsequently drops the streams. Stage 6, at last,
transmits the traffic if it is considered clean.

The conservative prevention strategy that we adopted may also drop benign
traffic due to false positives. We take the position that occasional dropped con-
nections outweigh the cost of even a single intrusion. That said, we have taken
care to minimise false positives in the individual filtering steps.

The remainder of this paper is structured as follows: we begin with examining
the shortcomings of existing IDSs in Section 2, after which we discuss our novel
features individually in Section 3. The implementation of the complete system is
described in Section 4 and subsequently put to the test in Section 5. We discuss
limitations of our system in Section 6. Conclusions are drawn in Section 7.

2 Related Work

In this paper we address the issue of deploying a practical IPS capable of scan-
ning traffic at line rate. For some of our previous work on signature generation
we refer to [8]. Current solutions for stopping intrusions often focus on two layers
of defence, namely (network) intrusion detection and host-based intrusion pre-
vention (exemplified by such approaches as Snort [9] and [10, 11, 12, 13], respec-
tively). We argue that both of them are lacking and propose a third approach:
application-aware network intrusion prevention.

Most network IDSs (nIDS) search for malicious code in network packets, but,
apart from simple firewalls, they are often not suitable as in-line IPS and prove
vulnerable to insertion and evasion. Even though some systems, like Snort, have
the required functionality for in-line deployment, this is hardly ever used on fast
links since both TCP stream reassembly and pattern matching are prohibitively
expensive. In previous work, CardGuard [7], we achieved 100s Mbit Ethernet
performance when scanning payloads for simple strings after TCP reassembly
on an IXP1200 network processor. Others, like EarlyBird [5] were specifically de-
signed to allow in-line deployment on high-speed links as IDS solutions, but still
do not lend themselves for prevention, because of the high ratio of false positives.

Work at Georgia Tech uses IXP1200s for TCP stream reconstruction in an
IDS for an individual host [14], using both an IXP1200 and a completely separate
FPGA board. Like [7], it limits itself to simple signature matching and achieves
similar performance. Like SafeCard these systems do not exhibit the ‘fail-open’
flaw [1], because the IDS/IPS is the forwarding engine.

The inadequacy of pattern matching techniques as applied by Snort was also
demonstrated by the recent WMF exploit, for which the pattern was so costly
to inspect that IDS administrators were initially forced to let it pass or setup a
completely separate configuration2. While later attempts yielded fairly reliable
2 Source: http://isc.sans.org/diary.php?storyid=992

314 W. de Bruijn et al.

(although not 100% accurate) signatures that could be handled by Snort, the
issue is symptomatic of a flaw in Snort-like approaches for certain attacks. In
essence, they are too costly when they must handle huge or complex signatures
that can be applied to any traffic stream. As a result, nIDSs often limit them-
selves to per-packet processing, which renders them useless for detecting appli-
cation level (layer 7) attacks. Note that we do not dismiss Snort-like pattern
matching out of hand. It can be used for all sorts of malware (spyware, trojans)
that do not use protocol exploits to enter the system. Also, many Snort-like rules
exist and we can use these rules to filter out a plethora of known attacks. This
saves us from having to develop and check protocol-specific signatures for each
of these attacks. As a result, a snort-like pattern matcher is one of the pillars
that underlie the SafeCard architecture.

Pattern matching engines are also weak in the face of polymorphism. In re-
sponse, detection techniques were developed that look at aggregate information,
e.g., triggering alerts when an unusual number of outgoing connections to unique
IP addresses is detected [15] or looking at anomalies in webtraffic [16]. Doing
so probably incurs too many false positives to be used for IPS by itself. On the
other hand, it may detect suspect behaviour that would otherwise go unnoticed.

Host-based intrusion prevention blocks attacks based on local information.
Many different measures fall in this category, including address space and in-
struction set randomisation (ASR and ISR [11,12]), non-executable memory [10,
17,18], systrace [19], language approaches [20,21], anti-virus software, host fire-
walls, and many others. Note that simple measures (like non-executable memory)
are easy to circumvent [22,23] and may break normal code (e.g., Linux depends
on executable stacks for trampolines and signals). An advantage of host-based
protection is that knowledge about the configuration can be exploited. We need
to install specific filters only for the software running on the host which in turn
makes signature generation easier. Also, all traffic that is classified as harmful
to the local configuration can be safely dropped without worrying about hurt-
ing related applications (e.g., a request that hurts IIS, but not Apache can be
dropped on the edge if we use IIS).

Most firewalls are restricted in their cycle budget and limit themselves to
flow-based detection (e.g., port-filtering). This is a crude measure at best that
fails to detect many types of malicious data, such as malformed requests sent to
a vulnerable webserver, or all sorts of services deliberately implemented on top
of port 80 to bypass firewall rules. Like nIDS, most anti-virus software is good
at scanning for known patterns, but often less so at recognising polymorphic
attacks.

Host-based filters may check protocol fields up to layer 7. Recent work has
explored the use of protocol-specific approaches in detection of buffer overflow at-
tacks [24]. In this approach the address that causes an alert is traced to a specific
protocol field by the signature generator which then determines the maximum
size M for the protocol field. We believe this is a promising approach and we
show how we improved the method to be more accurate. Other approaches look

SafeCard: A Gigabit IPS on the Network Card 315

at executable code in traffic [25]. We did not opt for this method because it
seems less reliable if fields are encoded (e.g., URL encoding).

Perhaps the greatest challenge in host-based protection is the need for user
cooperation. If users are slow to update, unwilling to pay for anti-virus software,
or if they disable firewalls, host-based protection breaks down. The past has
shown that security policies that hinge on proactive users who secure and update
their systems in a timely fashion are problematic.

In summary, the problems we face are twofold: existing solutions both do not
handle many attacks and are already too slow to be able to scale to Gigabit rates.
To deal with both issues and move from weak intrusion detection to stronger
intrusion prevention we present SafeCard , a practical filter engine that (1) is
fast enough to be placed in-line as an Intrusion Prevention System (IPS), (2)
can handle polymorphism through smarter matching, (3) offers (up to) layer-
7 detection of intrusions through stream reconstruction and application-level
signatures and (4) coalesces the flow-based and payload-based approaches to
increase each other’s effectiveness. When connected to Argos [8], a signature
generating honeypot, it can even stop (some) zero-day exploits.

Kerschbaum [26] uses in-kernel sensors to place an IDS in the datapath. An
important difference with SafeCard is that sensors require a reconfiguration of
kernel code and are therefore more OS-specific. Paxson’s Bro [27] is another
well-known IDS. Bro focuses on event handling and policy implementation. It
relies on other libraries (e.g., libpcap) for its datapath and thus suffers from
their performance problems.

3 Architecture

SafeCard must process at network, transport, and application protocol levels,
as well as handle aggregates. For this reason we designed it as a compound,
pipelined IPS built from independent functions elements (FEs). Each FE takes
as input a stream of data and generates as output a stream of classification
results. As side-effect it may also generate derived data streams. For example,
an IP-header filter takes as input a stream of IP packets, and generates a binary
output stream of per-packet pass or drop instructions. More complex is the TCP
translation FE, which takes as input a stream of TCP segments and generates
a set of continuous streams of application data, while using the classification
result for signalling to which stream data belongs.

The FEs are interconnected in a directed acyclic graph (DAG), such that an
FEs classification results plus one or more data streams serve as input to an-
other. Each FE can have multiple such IO ports. The architecture that is used
to place, connect, instantiate and run FEs is known as Streamline, a complete
overhaul of its predecessor, the fairly fast packet filter (FFPF [28]). Stream-
line extends FFPF in many ways, for instance by adding stream reassembly,
distributed processing, packet mangling and forwarding.

Before continuing with implementational details we discuss the FEs that form
the stages in the pipeline. SafeCard combines 4 stages of defence: header-based

316 W. de Bruijn et al.

Fig. 1. Functional architecture of the intrusion prevention system

filtering, payload inspection, flow-based statistical processing and application
level protocol reconstruction. Supporting these methods are 3 additional stages:
packet receive, packet transmit, and TCP stream reassembly. The full 7-stage
pipeline is shown in Figure 1. FEs forward traffic from left to right, but each FE
can drop what it perceives as malicious data. Only safe traffic reaches the last
stage, where it is transmitted to its destination. The Prospector stage can only
be applied to a a limited set of protocols (currently only HTTP) and is therefore
bypassed by other traffic.

The first practical stage, header-based filtering, is implemented using FPL-
3 [29]. Its functionality is run-of-the-mill and roughly equivalent to pcap. We
will not discuss it further. The other FEs are explained in the order in which
they are encountered by incoming packets.

3.1 Zero-Copy TCP Stream Reassembly

Recreating a continuous stream of data from packets is expensive because in the
common case it incurs a copy of the full payload. TCP is especially difficult to
reconstruct, as it allows data to overlap and has many variants. These features
have been frequently misused to evade IDSs. We have developed a version of
TCP reassembly that is both efficient and secure. We reassemble in-place, i.e. in
zero-copy fashion, and take a conservative view of traffic by dropping overlapping
data.

In terms of performance, we win by reducing memory-access costs. In the
common case, when packets do not overlap and arrive in-order, our method
removes the cost of copying payload completely. Instead, we incur a cost for
bookkeeping of the start and length of each TCP segment. Due to the (growing)
inequality between memory and CPU speed this cost is substantially smaller.

Our TCP reassembly design is based on the insight that consumers of TCP
streams do not need access to the streams continuously. They only need to receive
blocks in consecutive order. Applications generally use the Socket read(..) call
for this. We have slightly modified this call to return a pointer to a block, whereas
it normally receives one from the caller. We exploit this change to implement
zero-copy transfer as follows. First, we never supply more data than fits in a single
TCP segment. read(..) is allowed to return a smaller block than was requested.
Second, instead of allocating a transfer buffer and copying data into it we return
a pointer directly into the original segment. The transport architecture used
to support this is not standard. Packets are stored in one large circular packet
buffer. TCP streams have private circular pointer buffers, which store references

SafeCard: A Gigabit IPS on the Network Card 317

to the start and end of TCP segments. References are valid only as long as the
pointed-to elements in the shared packet buffer exist.

Our method is not just fast, but also secure, because it drops potentially harm-
ful TCP streams. IPSs are inherently more capable in dealing with malformed
TCP options than IDSs: because they work in-line they can operate as a proxy,
reassembling a stream of data as they see fit, checking it, and then re-encoding
the cleansed data in a new TCP stream. Full re-encoding scrubs [30, 2] payload
from abused transport protocol features and thus protects the hosts, but is very
expensive, and incurs multiple checksum computations. The cheap alternative
that we use, dropping malicious streams, will equally deal with malformed pay-
loads, but at much lower cost. In essence, we perform a first protocol scrub of
the traffic [2]. Later on we will see that higher-layer protocols are scrubbed as
well.

In relation to security, TCP segment overlap is worth mentioning individu-
ally because it has frequently been abused. Meant to circumvent IDS detection,
overlap is powerless against in-line scrubbing. Overlapping traffic may be indica-
tive of broader malicious intent, especially when the overlapping segments differ
in content. For this reason its appearance should be notified to the flow-based
filtering unit, as well. Flow-based detection is discussed further in Section 3.4.

Another security issue concerns out-of-order packet arrival. Received data
must be buffered in a reconstruction window until missing data arrives, dramat-
ically increasing memory footprint on links with large bandwidth-delay products.
Arrival of many out-of-order segments can lead to memory exhaustion, a situa-
tion that is potentially exploitable.

One solution is to check payloads per-packet and then pass them on imme-
diately. Feasibility of immediate processing depends on whether filtering algo-
rithms can checkpoint and move around in the datastream. Special care must
be taken not to let an exploit slip through because the signature is larger than
the minimal malicious payload and happens to span two packets.

Even when immediate processing is not possible SafeCard is not subvertible
through memory exhaustion. Since all packets are kept in a single circular buffer
there is no memory allocation in the datapath at all. This advantage is offset
by the increased chance of packet drop due to a full buffer. Overwriting a single
packet may invalidate an entire (benign) TCP stream if used with in-place re-
assembly. Therefore we have to keep buffers large enough to deal with incidental
delays.

3.2 Payload Inspection

Static string matching (as for example provided by hardware CAMs and our own
CardGuard [7]) is too limited for detecting most intrusion attempts. Pattern
matching in SafeCard is therefore implemented using superior regular expres-
sion matching. Our engine, ruler, is innovative in that it matches packets against
the whole set of regular expressions in parallel, which allows it to sustain high
traffic rates. Matched substrings can be accepted or rejected entirely, or rewrit-
ten to an altered output packet. Rewriting is of use in address translation or

318 W. de Bruijn et al.

anonymisation, but here we are interested only in Ruler’s high-speed selection
mechanism.

Regular expression matching has been used in IDSs before, but only in special
cases. Traditionally, the cost of matching scales linearly with the number of signa-
tures. Because there are thousands of known signatures, scanning at high-speed
is infeasible. Instead, string-matching algorithms whose runtime complexity re-
mains constant regardless of patternset-size have to be used in the common case.
Ruler can completely replace string-matching because it is a generalisation of and
therefore provably as efficient as Aho-Corasick (AC), a popular constant-time
pattern-matching algorithm that is employed for instance in Snort.

Ruler’s internal design is based on a Deterministic Finite Automaton (DFA).
This allows it to merge many patterns—or more precisely their DFA state
machines—into a single state machine. Each state in the Ruler DFA encodes
a character in a pattern. Patterns that share prefixes will reuse subpaths in the
DFA and thus do not impose additional burden apart from their unique tails.
One caveat is that states themselves become more costly to compute when the
number of outgoing connections grows, because internal control-flow is that of a
switch statement. Ruler reverts to an AC automaton when run with only static
strings, but it can be extended, for instance with (unbounded) repetitions.

Compiling regular expressions like those in Ruler is a well-studied prob-
lem3 [32]. The standard approach is to first generate a Non-deterministic Fi-
nite Automaton (NFA) from the regular expressions. This NFA contains state
transitions for all matching possibilities of all regular expressions in the filter.
The NFA is then converted to its DFA form using the subset algorithm. This
algorithm traces execution paths through the NFA, and lists the sets of NFA
states that can be reached for each known NFA state set and each possible input
character. Each distinct NFA state set is a distinct state in the DFA.

To the DFA we apply general optimisations: (i) we merge overlapping parts of
the patterns as much as possible, (ii) we eliminate unreachable patterns and ma-
chine states, (iii) we stop the state machine as soon as a verdict can be reached,
and (iv) we use a standard state minimisation algorithm [33] to construct a DFA
with the smallest number of states.

The Ruler DFA is further optimised for traffic processing. Network packets
often contain fixed-length stretches of bytes that need not be inspected at all,
such as header fields. Instead of having the state machine go through the mo-
tions for these bytes, we support ‘jump’ states that skip past them. Also, we
have provisions for content-dependent field lengths, such as IP headers, whose
length is defined in the header itself. Continuous streams place further demands
on the matching engine. An engine must be able to handle multiple streams
concurrently, each of a-priori unknown length. Ruler is capable of checkpointing
its state so that it can switch between streams at will. When data arrives for a
stream it will resume exactly where it left off.

3 In fact, things are not this simple. Ruler also supports packet rewriting, which re-
quires tagging of positions in the regex for which we need a generalisation of the
DFA construction algorithm [31]. This is beyond the scope of this paper.

SafeCard: A Gigabit IPS on the Network Card 319

A second performance benefit stems from the method of Ruler’s execution.
Instead of running in an interpreter, Ruler code is compiled straight to assembly.
Back-ends exist for network stream processors, kernel modules and application
code. Even Verilog (for FPGAs) can be produced, although this is currently in
its infancy. When used within Streamline, Ruler automatons can be compiled,
shipped and instantiated at runtime on the supported hardware with minimal
intervention.

With the help of our snort2ruler compiler most Snort signatures can be
automatically incorporated in the Ruler DFA, but Ruler also has its own high-
level input language. This supports protocol-specific constructs such as TCP
options and variable-sized fields to aid signature generation. Let us illustrate
the language with an example: scanning for the Slammer worm. Slammer is
a 376 byte payload encapsulated in a UDP packet destined for port 1434. To
find Slammer-based intrusion attempts in a packet stream, we would use the
following filter:

include "layouts.rli"
filter slammer [accept_reject]

IPv4_Ethernet_header
IPv4_header with [protocol=17]
UDPv4_header with [dest=1434,length=376]
4 1 1 1 1 1 * "." "D"|"d" "L"|"l" "L"|"l" * => accept;

We require that packets start with Ethernet, IPv4 and UDP headers. The layout
of these headers is defined in the include file layouts.rli, which is not shown
here. We then scan the payload of such packets for the signature "04 01 01 01
01 01.*[.][Dd][Ll][Ll]". In SafeCard the packet is dropped when a match
is made.

3.3 Protocol-Specific Detection of Polymorphic Attacks

Scanning streams for known signatures using regular expressions catches a large
class of known and immutable attacks. However, future worms are expected to
be increasingly polymorphic. While exploits are less likely to exhibit advanced
polymorphism than payloads, simple variations will be used. Snort-like pattern
matching is not suitable for stopping such attacks. Rather, we use protocol-
specific detection methods requiring up to layer 7 messages.

Like the Covers approach [24], we protect hosts from buffer overflow attacks
by tracing the address that causes the control flow diversion to a specific (higher-
level) protocol field and capturing characteristics (such as the length of the field)
that are subsequently used as an attack signature. Briefly, Covers uses ASR to
detect an attack, and any exploit that attempts to divert the control flow will,
with high probability, crash the process with a memory fault. If so, it queries the
OS to find the address Mt that caused the crash (see also Figure 2). Next, it will
look for the address A and some bytes in its vicinity in the (logged) traffic trace,
thus approximating location Nt. Using knowledge about the protocol governing

320 W. de Bruijn et al.

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

tN
2L

L1

Mt

Mt

tN

A A A

this address will
overwrite target

repeat address
to handle different
offsets

network trace

vulnerable

target

buffer

memory

Legend

A

 = address of target
target

 = address to store in target
 = offset in network trace of
 the bytes that overwrite
 the target

 = target address / return

(full protocol field)

Fig. 2. Memory and network traces of a simple buffer overflow attack

the interaction, Covers subsequently determines the protocol field that caused
an overflow. Next, it uses the length of this protocol field as a signature, as all
messages of the same protocol with this length will lead to the same overflow,
regardless of the contents. By focusing on properties like field length, the signa-
tures are independent of the actual content of the exploit and hence resilient to
polymorphism.

In SafeCard , we developed the Prospector , a protocol-specific detector that
builds on the same principles, but differs from Covers in important aspects. First,
we moved the filter out of the host and into an Intel IXP2400 network processor.
By moving the filter away from the host to the first router or switch connected to
the end-user’s PC, administrators keep tight control over the security software.
At the same time, not moving it all the way to a centralised firewall permits the
network device to exploit application specific knowledge. For instance, we keep
track of which applications (and which versions) are running on the servers con-
nected to each port. Whether the applications are discovered automatically (e.g.,
by port scanning) or administered explicitly is beyond the scope of this paper.

Second, rather than the crude and somewhat error-prone address space ran-
domisation, we use a more reliable method based on taint analysis for detecting
intrusions [34]. The Argos IDS used for SafeCard is an efficient and reliable em-
ulator that tags and tracks network data and triggers alerts whenever the use of
such data violates security policies (e.g., when it is used as a jump target). Argos
is not part of our high-speed datapath. It is a signature generating honeypot that
listens to background traffic on a separate machine. Whenever it observes an in-
trusion attempt it generates a signature. Prospector then uses these signatures

SafeCard: A Gigabit IPS on the Network Card 321

for filtering on high-speed links. We will not repeat the full explanation of Argos
here (interested readers are referred to [8]), but we do note that Argos is more
reliable in finding the address that causes the control diversion than ASR. After
all, with ASR there is a non-negligible chance that the attack does not cause
a memory fault immediately, but crashes after executing a few random instruc-
tions. In that case, the address would be bogus. Moreover, by keeping track of
the origin in the traffic trace of tainted data, as provided by the next release
of Argos, the correlation with network data will be very accurate. Even if the
probability of not producing an address with ASR is small, in our experience
the odds of making the wrong guess as to the origins Nt of the address A that
exactly overflows Mt in the network trace is much greater [8]. Worse, if protocol
fields are encoded in the network trace (e.g., URL encoding), scanning traces for
occurrences of the target will fail altogether. In contrast, tracking the origins of
tainted data handles these cases well.

Third, sophisticated overflows are caused by more than one field. An example
is chunking and multiple host headers in HTTP, where multiple chunks or head-
ers end up in the same buffer. While Covers is unable to figure out that it should
watch the total length of all chunks/headers together, rather than a single field,
Prospector handles such cases correctly. The importance of this improvement is
demonstrated for instance by attacks like the Apache-Knacker exploit [35] which
consists of a GET request with multiple host headers that end up in the same
buffer. Such attacks frequently lead to false positives in Covers, but are correctly
identified by Prospector .

Fourth, we do not necessarily consider the whole field. The work described
in [24] always uses up to L1, the length of the entire protocol field containing
the jump target, even though the jump target is often not found at the end
of the protocol field. It seems the authors use statistics of legitimate messages
received in the past to help estimate the maximum length that the field may
have. Doing so may cause false negatives, e.g., if the jump target is followed by a
variable number of bytes in the same protocol field. A signature generated for a
long version of the protocol field is unable to find attacks with shorter protocol
fields, even if they contain the same exploit. Such behaviour is quite common,
especially if part of the payload is stored in the same vulnerable buffer. Instead,
our Prospector uses L2, the exact distance between the start of the protocol field
and Nt. We speculate that the reason for taking the whole field is that Covers
is unable to accurately pinpoint Nt, as jump targets are often repeated in the
exploit in order to handle minor differences in offset (as indicated by multiple
occurrences of A in Figure 2).

Fifth, the way multiple signatures are used in [24] is not specified. We have an
efficient tree-like structure for dealing with large numbers of signatures. Briefly,
every signature consists of a sequence of value fields and critical fields. A value
field specifies that a field in the protocol should have this specific value. For
instance, in the HTTP protocol a value field may specify that the method should
be GET for this signature to match. Critical fields, on the other hand, should
collectively satisfy some condition. For instance, in the current implementation

322 W. de Bruijn et al.

the critical fields should collectively have a length that is less than L2. The
signatures are organised in memory like a tree, so that common prefixes are
checked only once. Because our signature recognition is stateful, the Prospector
is able to check whether a TCP segment matches a signature efficiently (i.e.,
without having to traverse the whole tree each time a segment comes in).

Sixth, Prospector has an option to scan for and reject malformed protocol mes-
sages. Since we have protocol-specific knowledge, it was easy to extend Prospector
to also check whether the application-level interaction conforms to the protocol.
In other words, we scrub higher-layer protocols in this FE.

The Prospector module in SafeCard allows us to scan for a large class of
polymorphic buffer overflows at application-level. Both stack and heap overflows
are already handled in the current version. However, given an accurate location
of Nt, one may detect format string attacks in a similar way. We are currently
extending the Prospector with such a format string handler. The details are
beyond the scope of this paper as the mechanism is not yet thoroughly evaluated.
Prospector is at the moment further limited by its support for only a single
protocol: HTTP. We will add support for more protocols as well.

3.4 Flow-Based Behavioural Detection

Flow-based detection complements payload-scanning and (header-based) proto-
col reconstruction as the three detection vectors are orthogonal. We have already
seen one method of flow-based detection: arrival of overlapping segments. An-
other group of methods detects unexpected variations in incoming or outgoing
connections (e.g., number per time-unit, address-space entropy, or length), for
example HP’s VirusThrottle technology [15], or [16].

As a demonstrator, SafeCard incorporates a filter that is similar to VirusThrot-
tle, but works on incoming traffic. The filter limits per-service traffic spikes to
protect servers against flash mobs. The algorithm is admittedly naive, and serves
mostly as a placeholder. Irrespective of the algorithm(s) used, statistical process-
ing is based on Streamline’s support for datastream correlation: multiple classi-
fication streams enter a single aggregation function that forward data only once,
when a threshold is reached. The runtime-constructed data path combined with
the cost-effectiveness of flow-based detection, encourages further experimentation
with these methods.

4 Implementation

We have implemented the discussed architecture on a programmable NIC, the
Radisys ENP2611 board built around the Intel IXP2400 network processor
(NPU). The IXP2400 is controlled by a 600 MHz general purpose processor, the
XScale. This processor is not nearly fast enough for line-rate data inspection.
The NPU therefore also embeds 8 specialised stream processors on the same
die that run without any OS whatsoever. These so called micro-engines each
support up to 8 hardware threads, with zero-cycle (i.e., free) context switching.

SafeCard: A Gigabit IPS on the Network Card 323

Fig. 3. Implementation of SafeCard on an Intel IXP2400 NPU

We have moved most processing to these resources. One micro-engine is used
by the receiver and header-based filter, one by the transmitter, and one by the
TCP reassembler. The remaining 5 are available to Ruler. The other FEs have
not been ported yet and must run on the on-board control processor.

Figure 3 shows the functional architecture from Figure 1 again, but now over-
laid over the hardware resources. Data enters the NPU on two one-Gigabit ports
and leaves on the third. All processing is on the network card, there is no in-
tervention from the connected host beyond loading and starting the IPS. It is
therefore easy to see that this device can run independent of a host-processor as
well. Intel’s IXDP2850 board is such a stand-alone network processor, to which
SafeCard has also been ported. Alternatively, the current setup could easily be
changed to forward data over the peripheral bus to the local host. We have dis-
cussed our experiences with designing high-performance programmable NICs for
this mode of operation elsewhere [36].

Dataplane operations must be cheap if we are to scale to high datarates.
In theory, a non-superscalar 600 MHz processor with single-cycle instruction
costs would be able to scan traffic at close to 5 Gigabit per second. However,
instructions are factors more costly, and more importantly memory-access costs
are generally two orders of magnitude slower. We rely on a few heuristics to be
able to scale to multi-Gigabit rates regardless of these obstacles.

First, we use zero-copy transport where efficient. In SafeCard the only copy
incurred is from the Gigabit ports to the memory and back once thanks to the
zero-copy TCP reassembly FE.

Second, we minimise synchronisation, including locking. Most synchronisation
is through per-stream circular buffers. Polling on these buffers is essentially free
in dedicated processors like the micro-engines. For processing on the XScale we
have a dual polling/interrupt based mechanism. Micro-engines raise an interrupt
for each newly processed piece of data, but the CPU masks these interrupts
while it processes its backlog, in NAPI style. The dual scheme ensures both
timely operation under low load as well as graceful degradation under strain (as
opposed to thrashing due to livelock).

An embedded device like the IXP network processor adds its own complexity
to the general architecture. The board contains 5 different layers of memory,

324 W. de Bruijn et al.

with each layer trading off increased capacity at the expense of throughput.
Communication can take place through interrupts, shared registers or shared
memory. The top entry IXP2850 even comes with 2 hardware cryptography units
and content-addressable memory. The need to take into account such hardware
details is inherent to embedded design, where implementational choices (e.g., to
use the cryptographic units) greatly influence overall performance.

As memory access is the bottleneck in high-volume traffic processing, the
memory hierarchy features should be optimally exploited. In SafeCard we opti-
mise placement of structures based on access frequency and structure size. The
packet buffer is placed in the largest (64MB), but slowest memory, DRAM. Be-
cause their smaller size permits this, pointer buffers are placed in faster 8MB
SRAM.

TCP stream metadata sits in the even faster, but far more scarce 16 KByte
scratch memory. Communication occurs through two datastructures: a hardware-
accelerated FIFO queue that holds per-segment work orders and a hashtable that
keeps per-stream metadata. For each segment the TCP reassembly unit places
a work order in the queue, where it is fetched by Ruler. Ruler then looks up the
correct stream in the hashtable and restore its DFA to the checkpointed state.
The two fastest types of memory, 2.5KB per-micro-engine RAM and their 4KB
instruction stores, are reserved for function-specific uses.

Ruler makes use of two methods to reduce memory-accessing costs. First, non-
preemptive multi-threading enables threads to hand off control while waiting for
I/O. Second, asynchronous I/O allows individual threads to interleave processing
and I/O operations. As the computation versus I/O ratio changes, so does the
number of concurrent threads needed to hide memory latency. For computation-
bound applications such as Ruler, threading is not necessary at all.

Resource allocation also encompasses layering the pipeline across the dis-
tributed processors. As said, the IXP micro-engines each support up to 8 hard-
ware threads. Having more threads (e.g., one per TCP flow) introduces
software scheduling overhead. The opposite, a centralised event-handling mecha-
nism, adds parallelisation overhead and then reverts to a master-work threading
model. The optimal solution is therefore to create a thread-pool of functions
of the same size as the hardware resources 4. A threadpool of interchangeable
worker threads can only be applied when workers can attach to and detach
from a stream at will, i.e. checkpoint their state, as Ruler can. The size of the
pool can be scaled by incorporating more or fewer micro-engines. For example
the IXP28xx has 7 more micro-engines that the Ruler pool can use without
changes.

High-volume traffic must be processed on the micro-engines. However, because
these processors are scarce and hard to program, some processing will usually
take place on the slower XScale. We have implemented Prospector and flow-
based detection on the XScale embedded in Streamline. If data is not matched
on the XScale it is sent back to the fast path on the micro-engines by writing
an entry in the transmission unit’s pointer buffer.

4 This mechanism is also known as I/O Completion Ports.

SafeCard: A Gigabit IPS on the Network Card 325

The volume of traffic that is handled by the XScale must be considerably
smaller than the Gigabit traffic handled in the fast path. As Prospector cur-
rently checks HTTP request headers only, and flow-based methods do not touch
payload either, volume is indeed small.

5 Evaluation

As SafeCard is a compound system each function can prove to be the bottleneck.
Some operations are obviously more expensive than others, such as pattern-
matching, but this heuristic is of limited value when functions are implemented
on different hardware resources. Indeed, as we discussed before, the Ruler en-
gine can be scaled across multiple fast micro-engines, while flow-detection must
compete with Prospector for cycles on the XScale.

For this reason, to evaluate SafeCard and all its constituent parts, we con-
duct experiments that both measure the performance of individual FEs (micro-
benchmarks) as well as the overall throughput (a macro-benchmark).

5.1 Micro-benchmarks

We can get an indication of the per-stage pro- Table 1. Single threaded cycle
counts of individual FEs

Description PDU Byte
Reception 313 1.5
TCP reassembly 1178 0
Ruler 628 26
Transmission 740 2

cessing overhead by running the micro-engines
in single-thread mode and measuring the cycle
count in isolation. Table 5.1 shows the cost in
cycles per protocol data unit (PDU, e.g., IP
packet, TCP segment) with minimal payload
and the additional cost per byte of payload for
each hardware accelerated FE. Figure 4 shows
on the left the maximal sustained rate of the
FEs as obtained from these numbers. At 600MHz, we can see that all FEs can
process common-case traffic at a Gigabit except Ruler. A single Ruler instance
can process only 170 Mbit. The 5 combined engines thus top at 850Mbit, which
we’ve plotted in the figure as 5x Ruler. Merging Reception and Transmission
would give us the additional engine we need for full Gigabit processing.

TCP reassembly. A single threaded cycle count presents a lower-bound on the
per-segment overhead as it omits memory contention costs. Nevertheless, for
TCP its performance represents the worst-case scenario for overall throughput,
because a single thread spends much of its time waiting for memory. Since multi-
threading enables latency hiding throughput will improve dramatically.

Independent of maximal obtainable throughput is the question how indirect
stream reassembly measures up to regular copy-based reassembly. For this rea-
son we have compared them head-to-head. As we have no copy-based method
available on the micro-engines we ran this comparison in a host based Streamline
function. The two functions share the majority of code, only differing in their ac-
tual data bookkeeping methods. Figure 4(right) shows that indirect reassembly

326 W. de Bruijn et al.

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 0 200 400 600 800 1000 1200 1400 1600

pa
ck

et
s

pe
r

se
co

nd

IP packetsize

TCP reassembly performance

copy
zero-copy

 0

 1

 2

 3

 4

 5

 6

 0 200 400 600 800 1000 1200 1400 1600

G
ig

ab
its

 p
er

 s
ec

on
d

IP packetsize

Maximal sustained throughput

Rx
TCP

Ruler
5x Ruler

Tx

Fig. 4. Theoretical sustained throughput & TCP Reassembly performance

easily outperforms copy-based reassembly. Only for the smallest packets can the
computational overhead be seen.

Ruler. The third row in Table 5.1 shows the overhead in cycles of Ruler . As
expected, costs scale linearly with the amount of data; the cost per PDU is
negligible. The function is computation-bound: fetching 64 bytes from memory
costs some 120 cycles, but processing these costs an order of magnitude more.
For this reason multi-threading is turned off.

Prospector. We have to benchmark Prospector on the XScale, because it is not
yet ported to the micro-engines. Figure 5(left) compares throughput of Prospec-
tor to that of a payload-scanning function (we used Aho-Corasick). We show
two versions of Prospector : the basic algorithm that needs to touch all header
data, and an optimised version that skips past unimportant data (called Pro+).
The latter relies on HTTP requests being TCP segment-aligned. This is not in
any specification, but we expect it is always the case in practise.

Each method processes 4 requests. These are from left to right in the figure:
a benign HTTP GET request that is easily classified, a malicious GET request
that must be scanned completely, and two POST requests of differing lengths.
In the malicious GET case all bytes have to be touched. Since AC is faster here
than both versions of Prospector we can see that under equal memory-strain we
suffer additional computational overhead.

However, all three other examples show that if you do not have to touch
all bytes —the common case— protocol-deconstruction is more efficient than
scanning. Looking at the right-most figure, the longest POST request, we can
see that the gap quickly grows as the payload grows. The benign GET learns
us additionally that skipping remaining headers when a classification has been
made can result in a dramatic (here 2-fold) increase in worst-case performance.
Note that none of these example requests carry a message body. This would also
be skipped by Prospector , of course. Even without message bodies, performance
is continuously above 18,000 requests per second, making the function viable for
in-line protection of many common services.

SafeCard: A Gigabit IPS on the Network Card 327

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1 2 3 4 5 6

M
bp

s

micro-engines

throughput

 0

 10000

 20000

 30000

 40000

 50000

 60000

re
qu

es
ts

 p
er

 s
ec

on
d

 0

 10000

 20000

 30000

 40000

 50000

 60000

re
qu

es
ts

 p
er

 s
ec

on
d

 0

 10000

 20000

 30000

 40000

 50000

 60000

re
qu

es
ts

 p
er

 s
ec

on
d

 0

 10000

 20000

 30000

 40000

 50000

 60000

re
qu

es
ts

 p
er

 s
ec

on
d

 0

 10000

 20000

 30000

 40000

 50000

 60000

re
qu

es
ts

 p
er

 s
ec

on
d

aho-corasick
prospector

prospector+

Fig. 5. Prospector throughput & Macro benchmark

5.2 Macro Benchmark

Our final experiment evaluates the pipeline in hardware. We do not include re-
sults for the FEs on the XScale again, because their throughput is not measurable
in bitrate and we have already computed an upper bound. For this test we con-
nected our board to a mirror image of communication between three computers.
By using mirroring we were able to test peak throughput without interfering with
the active TCP control flow. The traffic was generated using ab, a benchmarking
tool for Apache. When ran against two servers at the same time our maximally
obtainable rate was 940Mbits. The results are shown in Figure 5(right).

From the Figure we can see that with 6 micro-engines we can process all
traffic. To free up the 6th micro-engine we had to remove the transmission unit
temporarily. The presented numbers are worst-case estimations as a result of
crude dropped traffic statistics. Actual performance could be up to 20% higher.

6 Discussion

Limitations. The presented solution is an amalgam of solutions. While fairly pow-
erful as a whole, we are aware of improvements that could be made to its parts. For
starters, while Ruler accepts most Snort rules through our snort2ruler compiler,
there is a subset of expressions that we cannot handle yet. In Prospector , we do not
currently block format string attacks, although this is possible in principle. We are
currently implementing this feature and expect to have it available soon. Also, the
flow-based IDS (stage 5) is currently rather naive and should be improved.

Finally, while we have tried to implement a powerful set of network-based
intrusion prevention methods, we have clearly not exhausted the options. For
instance, as we operate close to the end-hosts with application-awareness, we are
still considering filters such as those generated by Vigilante [13]. We opted for
protocol-aware filtering because Vigilante does not handle polymorphism well.

Hardware Acceleration. An obvious way of increasing network throughput is to
switch to expensive specialised hardware. Although implemented on an embedded
device, SafeCard is expressly not meant to explore that option. The IXP2400 is 5

328 W. de Bruijn et al.

years old and no longer supported by Intel. It was expensive, but mostly because
of its low volume sales. The trend toward multi-core CPUs at the network edge
could bring a cheap equivalent, if memory latency-hiding is also provided for.

To illustrate our point more clearly, we compare performance to that of the
IXDP2850, a dual processor variant with 32 micro-engines in total, that runs
at 1.4GHz. Cycle-for-cycle this device can process more than 9 times as much
traffic. As the bottleneck in our pipeline is computationally bound and inher-
ently scalable, this will directly translate into better SafeCard performance. We
decided not to show those results, however, because installing IXDP2850s at the
network edge is not viable in the near future.

7 Conclusion

In this paper, we have described SafeCard , a full intrusion prevention system
(IPS) on an embedded network processor. SafeCard is unique in that it includes
detection techniques at all levels of abstraction in communication: packets, re-
assembled TCP streams, application protocol units, and flow aggregates. More-
over, SafeCard is capable of handling close to a Gigabit per second of TCP
traffic, making it a viable option for the edge of the network. The IPS is im-
plemented as a pipeline on a single Intel IXP2400 network processor embedded
on a network card. Its task is to enforce security policies on incoming traffic by
means of in-depth analysis in the last hop toward the host. The system first
receives traffic in a circular buffer and applies simple header-field filtering to
determine which data needs further inspections. TCP streams that are classified
as suspect are reassembled with an efficient in-place algorithm and fed into a
per-stream pattern matching engine, similar to Snort. For all streams that are
not blocked by the pattern matching engine SafeCard checks whether higher-
level protocol-specific rules exist and if so, checks them against these also. A
final detection technique works on flow aggregates (e.g., statistics and number
of incoming connections). Our future work looks at combining alerts generated
by multiple stages when each individual stage is subject to false positives.

Acknowledgements

We would like to thank Lennert Buytenhek for his invaluable help during devel-
opment of the IXP2400 code and installation of the testbed. This research was
made possible by grants from the EU Lobster and Noah projects.

References

1. Ptacek, T.H., Newsham, T.N.: Insertion, evasion, and denial of service: Eluding
network intrusion detection. Technical report, Secure Networks Inc. (1998)

2. Handley, M., Paxson, V., Kreibich, C.: Network intrusion detection: Evasion, traffic
normalization, and end-to-end protocol semantics. In: USENIX-Sec’2001, Wash-
ington, D.C., USA (2001)

SafeCard: A Gigabit IPS on the Network Card 329

3. Stuart Staniford, V.P., Weaver, N.: How to 0wn the internet in your spare time.
In: Proc. of the 11th USENIX Security Symposium. (2002)

4. James Newsome, B.K., Song, D.: Polygraph: Automatically generating signatures
for polymorphic worms. In: Proc. of the IEEE Symposium on Security and Privacy.
(2005)

5. S. Singh, C. Estan, G. Varghese and S. Savage: Automated worm fingerprinting.
In: In Proc. of the 6th USENIX Symposium on Operating Systems Design and
Implementation (OSDI). (2004) 45–60

6. Ioannidis, S., Keromytis, A.D., Bellovin, S.M., Smith, J.M.: Implementing a dis-
tributed firewall. In: CCS ’00: Proceedings of the 7th ACM conference on Computer
and communications security, ACM Press (2000) 190–199

7. Bos, H., Huang, K.: Towards software-based signature detection for intrusion pre-
vention on the network card. In: Proc of the 8th International Symposium on
Recent Advances in Intrusion Detection (RAID). (2005)

8. Portokalidis, G., Slowinska, A., Bos, H.: Argos: an emulator for fingerprinting zero-
day attacks. In: Proc. ACM SIGOPS EUROSYS’2006, Leuven, Belgium (2006)

9. Roesch, M.: Snort - lightweight intrusion detection for networks. In: Proc. of LISA
’99: 13th Systems Administration Conference. (1999)

10. C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier, P. Wagle
and Q. Zhang: StackGuard: Automatic adaptive detection and prevention of buffer-
overflow attacks. In: Proc. of the 7th USENIX Security Symposium. (1998)

11. S. Bhatkar, D.C. Du Varney and R. Sekar: Address obfuscation: an efficient ap-
proach to combat a broad range of memory error exploits. In: In Proc. of the 12th
USENIX Security Symposium. (2003) 105–120

12. E. G. Barrantes, D.H. Ackley, S. Forrest, T. S. Palmer, D. Stefanovix and D.D.
Zovi: Randomized instruction set emulation to disrupt code injection attacks. In:
In Proc. of the 10th ACM Conference on Computer and Communications Security
(CCS). (2003) 281–289

13. M. Costa, J. Crowcroft, M. Castro, A Rowstron, L. Zhou, L. Zhang and P. Barham:
Vigilante: End-to-end containment of internet worms. In: In Proc. of the 20th ACM
Symposium on Operating Systems Principles (SOSP), Brighton, UK (2005)

14. Clark, C., Lee, W., Schimmel, D., Contis, D., Koné, M., Thomas, A.: A hardware
platform for network intrusion detection and prevention. In: Third Workshop on
Network Processors and Applications, Madrid, Spain (2004)

15. Williamson, M.M.: Throttling Viruses: Restricting Propagation to Defeat Mali-
cious Mobile Code. In: Proc. of ACSAC Security Conference, Las Vegas, Nevada
(2002)

16. Robertson, W., Vigna, G., Kruegel, C., Kemmerer, R.: Using generalization and
characterization techniques in the anomaly-based detection of web attacks. In:
NDSS’05. (2005)

17. C. Cowan, S. Beattie, J. Johansen and P. Wagle: PointGuard: Protecting pointers
from buffer overflow vulnerabilities. In: In Proc. of the 12th USENIX Security
Symposium. (2003) 91–104

18. C. Cowan, M. Barringer, S. Beattie and G. Kroah-Hartman: FormatGuard: Auto-
matic protection from printf format string vulnerabilities. In: In Proc. of the 10th
Usenix Security Symposium. (2001)

19. Provos, N.: Improving host security with system call policies. In: In Proc. of the
12th USENIX Security Symposium. (2003)

20. U. Shankar, K. Talwar, J. S. Foster, and D. Wagner: Detecting format string
vulnerabilities with type qualifiers. In: In Proc. of the 10th USENIX Security
Symposium. (2001) 201–216

330 W. de Bruijn et al.

21. G. C. Necula, S. McPeak, and W. Weimer: CCured: Type-safe retrofitting of legacy
code. In: In Proc. of the Principles of Programming Languages (PoPL). (2002)

22. bulba and Kil3r: Bypassing Stackguard and Stackshield. Phrack Magazine 10
(2000)

23. gera, riq: Advances in format string exploitation. Phrack Magazine 11 (2002)
24. Liang, Z., Sekar, R.: Fast and automated generation of attack signatures: A basis

for building self-protecting servers. In: Proc. ACM CCS, Alexandria, VA, USA
(2005) 213–223

25. Kruegel, C., Kirda, E., Mutz, D., Robertson, W., Vigna, G.: Polymorphic worm
detection using structural information of executables. In: Proc. of RAID’05, Seattle,
USA (2005)

26. Kerschbaum, F., Spafford, E.H., Zamboni, D.: Using embedded sensors for detect-
ing network attack. Technical report, Purdue University (2000)

27. Paxson, V.: Bro: A system for detecting network intruders in real-time. Computer
Networks 31(23-24) (1999) 2435–2463

28. Bos, H., de Bruijn, W., Cristea, M., Nguyen, T., Portokalidis, G.: FFPF: Fairly
Fast Packet Filters. In: Proceedings of OSDI’04, San Francisco, CA (2004)

29. Cristea, M., de Bruijn, W., Bos, H.: Fpl-3: towards language support for distributed
packet processing. In: Proceedings of IFIP Networking, published as LNCS Volume
3462 / 2005, ISBN: 3-540-25809-4, Waterloo, Ontario, Canada (2005) p.743–755

30. Malan, R., Watson, D., Jahanian, F., Howell, P.: Transport and application pro-
tocol scrubbing. In: Infocom’2000, Tel-Aviv, Israel (2000)

31. Laurikari, V.: NFAs with tagged transitions, their conversion to deterministic
automata and application to regular expressions. In: SPIRE. (2000) 181–187

32. Aho, A.V., Ullman, J.D.: Foundations of Computer Science. Computer Science
Press (1992)

33. Gill, A.: Introduction to the Theory of Finite-state Machines. McGraw-Hill (1962)
34. Newsome, J., Song, D.: Dynamic taint analysis for automatic detection, analysis,

and signature generation of exploits on commodity software. In: Proc. of the 12th
Annual Network and Distributed System Security Symposium (NDSS). (2005)

35. SecurityFocus: Can-2003-0245 apache apr-psprintf memory corruption vulnerabil-
ity. http://www.securityfocus. com/bid/7723/discussion/ (2003,)

36. Nguyen, T., Cristea, M., de Bruijn, W., Box, H.: Scalable network monitors for
high-speed links: a bottom-up approach. In: Proceedings of IPOM’04. (2004)

Author Index

Årnes, André 145

Baecher, Paul 165
Bartzis, Constantinos 127
Bos, Herbert 311

Chung, Simon P. 61
Clarke, Edmund 127

Dacier, Marc 185
de Bruijn, Willem 311
Dornseif, Maximillian 165

Freiling, Felix 165

Gao, Debin 19
Giffin, Jonathon T. 41
Gonzalez, Jose M. 272

Hansen, Jeffery P. 106
Holz, Thorsten 165
Hruby, Tomas 311

Jahanian, Farnam 290
Jha, Somesh 41

Karp, Brad 81
Kemmerer, Richard A. 145
Ko, Calvin 249
Koetter, Markus 165

Leita, Corrado 185
Levitt, Karl 249

Massicotte, Frederic 185
Maxion, Roy A. 106

Mehta, Vaibhav 127
Miller, Barton P. 41
Mok, Aloysius K. 61
Monrose, Fabian 206

Newsome, James 81

Parekh, Janak J. 226
Patel, Jignesh M. 290
Paxson, Vern 272

Rajab, Moheeb Abu 206
Reiter, Michael K. 19

Sinha, Sushant 290
Slowinska, Asia 311
Song, Dawn 19, 81
Stolfo, Salvatore J. 226

Tan, Kymie M.C. 106
Terzis, Andreas 206
Thurimella, Ramakrishna 1
Treinen, James J. 1
Tseng, Chinyang Henry 249

Valeur, Fredrik 145
van Reeuwijk, Kees 311
Vigna, Giovanni 145

Wang, Ke 226
Wang, Shiau-Huey 249
Wing, Jeannette 127

Xu, Li 311

Zhu, Haifeng 127

	Frontmatter
	Recent Advances in Intrusion Detection
	Anomaly Detection
	A Framework for the Application of Association Rule Mining in Large Intrusion Detection Infrastructures
	Behavioral Distance Measurement Using Hidden Markov Models

	Attacks
	Automated Discovery of Mimicry Attacks
	Allergy Attack Against Automatic Signature Generation
	Paragraph: Thwarting Signature Learning by Training Maliciously

	System Evaluation and Threat Assessment
	Anomaly Detector Performance Evaluation Using a Parameterized Environment
	Ranking Attack Graphs
	Using Hidden Markov Models to Evaluate the Risks of Intrusions

	Malware Collection and Analysis
	The Nepenthes Platform: An Efficient Approach to Collect Malware
	Automatic Handling of Protocol Dependencies and Reaction to 0-Day Attacks with ScriptGen Based Honeypots
	Fast and Evasive Attacks: Highlighting the Challenges Ahead

	Anomaly- and Specification-Based Detection
	Anagram: A Content Anomaly Detector Resistant to Mimicry Attack
	DEMEM: Distributed Evidence-Driven Message Exchange Intrusion Detection Model for MANET

	Network Intrusion Detection
	Enhancing Network Intrusion Detection with Integrated Sampling and Filtering
	WIND: Workload-Aware INtrusion Detection
	SafeCard: A Gigabit IPS on the Network Card

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

