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Abstract. Reiter’s default logic can not handle inconsistencies and in-
coherences and thus is not satisfactory enough in commonsense reason-
ing. In the paper we propose a new variant of default logic named FDL in
which the existence of extension is guaranteed and the trivial extension
is avoided. Moreover, Reiter’s default extensions are reserved and can be
identified from the other extensions in FDL. Technically, we develop a
paraconsistent and monotonic reasoning system based on resolution as
the underlying logic of FDL. The definition of extension is also modified
in the manner that conflicts between justifications of the used defaults
and the conclusions of the extension, which we call justification conflicts,
are permitted, so that justifications can not be denied by “subsequent”
defaults and the existence of extension is guaranteed. Then we select
the desired extensions as preferred ones according to the criteria that
justification conflicts should be minimal.

1 Introduction

Reiter’s default logic[1] is a most advocated nonmonotonic reasoning system. It
augments classical logic by defaults that differ from standard inference rules in
sanctioning inferences that rely on given as well as absent information. Knowl-
edge is represented in default logic by a default theory 〈D, W 〉 consisting of a
set of defaults D and a set of formulas W . Formulas in W are the axioms of the
default theory. A default α:β1,···,βn

γ has two types of antecedents: α is called the
prerequisite and is established if α is derivable, and for 1 ≤ i ≤ n, βi is called
a justification and is established if ¬βi can not be derived. If both conditions
hold, the default is applicable and the consequent γ is concluded. An extension
of a default theory which is a fixpoint of the belief revision operator w.r.t. the
default theory can be viewed as a belief set described by the default theory. For
clarity, we use the term default logic to refer to Reiter’s default logic and call
extension in Reiter’s default logic default extension.

Despite its simple syntax and powerful expressivity, Reiter’s default logic is
not satisfactory enough in the following two aspects. On the one hand, a default
theory has only a trivial default extension that includes every formula once the
axioms in the default theory have contradictions (see Proposition 3). That is,
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contradictions in the axioms damage the meaningful information of a default
theory. Such contradictions are called inconsistencies and are represented by
the curve labeled with 1 in Figure 1. A default theory is inconsistent if it has
inconsistencies, otherwise it is consistent.
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Fig. 1. Inconsistencies and Incoherences

On the other hand, some contradictions in a default theory cause the nonex-
istence of extension. We call such contradictions incoherences. A default theory
is incoherent if it has no default extension, otherwise it is coherent. Incoher-
ences may be categorized into three sorts shown in the following three examples
respectively.

Example 1. T = 〈D, W 〉, where D = { :B
¬A} and W = {A}. In T incoherences oc-

cur between W and the consequents of applicable defaults, which are represented
by the line labeled with 2 in Figure 1.

Example 2. T = 〈D, W 〉, where D = { :B
C , :D

¬C } and W = ∅. In T incoherences
occur in the consequents of applicable defaults, which are represented by the
curve labeled with 3 in Figure 1.

Example 3. T = 〈D, W 〉, where D = { :¬B
A } and W = {A → B}. In T inco-

herences occur between the justifications of used defaults and the consequences
of (W and the consequents of used defaults), which are represented by the line
labeled with 4 in Figure 1.

Some researchers hold the view that triviality and the nonexistence of extension
of a given default theory are not shortcomings of default logic, and sometimes
they are useful when default logic is used as a problem solver. For instance, a
planning problem may be represented by a default theory whose default exten-
sions correspond to the solutions of the problem and the incoherences of this
default theory tell us that the problem has no solution. With this viewpoint,
they have made efforts to find characterizations of default theories that have
default extensions[1, 2, 3, 4].

The above viewpoint is reasonable in some aspects but does not seem to be
sound when it turns to commonsense reasoning, since commonsense is always
inconsistent and incoherent and we expect that some meaningful conclusions
can still be reached even the knowledge is inconsistent or incoherent.
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According to the above analysis, some researchers believe that Reiter’s de-
fault logic is not fault-tolerant enough. Some of them refer to paraconsistent
logic[5, 6, 7, 8], multi-valued logic[9, 10, 11, 12] in particular, to overcome incon-
sistencies, such as Bi-default logic[13] and four-valued default logic[14]. To deal
with incoherences, some researchers modify Reiter’s definition of extension to
guarantee the existence of extension, among which are justified default logic[15],
constrained default logic[16] and cumulative default logic[17].

The above five default reasoning systems are good attempts to extract mean-
ingful information from a default theory with inconsistencies or incoherences,
but they fail to handle inconsistencies and incoherences simultaneously. More-
over, justified default logic and constrained default logic can not identify default
extensions from the other extensions and therefore they can not solve some
problems that Reiter’s default logic can, e.g. they are not suitable as problem
solvers.

In the paper we propose a default reasoning system called FDL(shorted for
Fault-tolerant Default Logic) in which every default theory has at least one
extension and the trivial extension is avoided. Thus FDL can extract mean-
ingful information from a default theory with inconsistencies and incoherences,
which indicates that it can perform better than other default reasoning sys-
tems in commonsense reasoning. Besides its fault-tolerance, we also show that
Reiter’s default extensions are reserved and can be identified from the other ex-
tensions, which makes FDL able to solve the problems that Reiter’s default logic
can.

To overcome inconsistencies, it is natural that the underlying logic of FDL
should be paraconsistent. But a paraconsistent logic is not adequate, since if
it is nonmonotonic, the existence of extension can not be ensured—using an
applicable default may make the prerequisite of a used default not derivable
and thus inapplicable. Besides, to reserve Reiter’s default extensions, the
underlying logic should coincide with classical logic as to consistent sets of
formulas. Since most existing paraconsistent logics which coincide with clas-
sical logic as to consistent sets of formulas are nonmonotonic, we need to
develop a paraconsistent and monotonic one. To guarantee the existence of
extension, we have to go further—a paraconsistent and monotonic underlying
logic can only resolve contradictions represented by 1, 2 and 3 in Figure 1.
To resolve contradictions represented by 4 in Figure 1, the definition of ex-
tension needs to be modified. In FDL, the modification is in the manner that
justifications of the used defaults should be most consistent with the conclu-
sions of the default theory, i.e. justification conflicts which are minimized are
permitted.

To sum up, our work may be divided into the following steps:

1. Develop a paraconsistent and monotonic reasoning system as the underlying
logic to handle inconsistencies.

2. Modify the definition of default extension so that FDL can tolerate incoher-
ences and the existence of extension is guaranteed.

3. Select desired extensions.
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Step 1 and 2 make FDL able to tolerate inconsistencies and incoherences, but
at the cost that some counter-intuitive extensions may appear. With Step 3, these
counter-intuitive extensions are excluded and desired ones are reserved. The
trick—first guarantee the existence, then select desired ones—is also involved in
preferred models[18, 19, 11] of multi-valued logic.

The rest of the paper is structured as follows. In Section 2 we briefly review
Reiter’s default logic. In Section 3 we introduce the paraconsistent and mono-
tonic underlying reasoning system of FDL. Our system is represented in Section
4. Some properties of FDL are also studied in this section. We compare our work
with others in Section 5 and conclude the paper in Section 6.

2 Default Logic

We start by completing our initial introduction to Reiter’s default logic.
Throughout this paper, let L be a propositional language. We use Greek and

uppercase letters to represent the formulas and the atoms in L respectively.
Each atom A and its negation ¬A are called literals which are represented by
lowercase letters. The connectives in L are defined in the canonical manner. We
write � for the provability relation in classical logic. The set of consequences of
S is defined as Cn(S) = {α ∈ L |S � α}, where S is a set of formulas in L.

A default is normal if it is of the form α:β
β . Let D be a set of defaults. By Pre(D),

Just(D) and Con(D), we denote the sets of prerequisites, justifications and con-
sequents of the defaults in D respectively. A set of defaults D and a set of formulas
W form a default theory 〈D, W 〉, which is normal if all defaults in D are normal.
For simplicity, we assume that W and D are both finite. A default theory may
induce one, multiple or even no default extensions in the following way.

Definition 1 ([1]). Let T = 〈D, W 〉 be a default theory. For any set of formulas
S, Γ (S) is the smallest set of formulas such that

1. Γ (S) = Cn(Γ (S)).
2. W ⊆ Γ (S).
3. If α:β1,···,βn

γ ∈ D, α ∈ Γ (s), and ¬β1 
∈ S, · · ·, ¬βn 
∈ S, then γ ∈ Γ (S).

A set of formulas E is a default extension of 〈D, W 〉 if Γ (E) = E.

The set of generating defaults for E w.r.t. default theory T is defined as

GD(E, T ) =
{

α : β1, · · · , βn

γ
∈ D |α ∈ E, ¬β1 
∈ E, · · · , ¬βn 
∈ E

}

Proposition 1 ([1]). If E is a default extension of default theory T = 〈D, W 〉,
then E = Cn(W ∪ Con(GD(E, T ))).

Proposition 2 ([1]). Let T = 〈D, W 〉 be a default theory. For any set of for-
mulas E, define E0 = W and for each i ≥ 0
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Ei+1 =Cn(Ei)∪
{

γ

∣∣∣∣α : β1, · · · , βn

γ
∈ D, where α ∈ Ei, ¬β1 
∈ E, · · · , ¬βn 
∈ E

}

Then E is a default extension of T iff E =
⋃∞

i=0 Ei.

Proposition 3 ([1]). Default theory T = 〈D, W 〉 has only a trivial default
extension iff W is inconsistent.

Proposition 4 ([1]). Each normal default theory has at least one default ex-
tension.

3 The Underlying Logic

Since we base the underlying logic on resolution, we have to convert formulas
into clauses. If a formula contains inconsistencies, there would be more than one
set of clauses corresponding to it and the result of resolution is different. Hence
a “normal” form of clauses is necessary.

Definition 2. Let α be a formula which is not a tautology in L and P1, · · · , Pn be
all atoms occurring in α. We say formula β = (l11∨· · ·∨l1n)∧· · ·∧(lm1∨· · ·∨lmn)
is a principal conjunctive normal form of α if

1. α is equivalent to β.
2. lij is Pj or ¬Pj for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

If α is a tautology, define the principal conjunctive normal form of α to be t.

Definition 3. Let α be a formula in L. The set of principal clauses of α is
defined as C(α) = {{l1, · · · , ln}|l1∨· · ·∨ln is a conjunct of a principal conjunctive
normal form of α}. Let S be a set of formulas in L. The set of principal clauses
of S is C(S) =

⋃
α∈S C(α).

Lemma 1. Each set of formulas has exactly one set of principal clauses.

Definition 4. A set of clauses S is resolution closed if {A} ∪ C1 ∈ S and
{¬A} ∪ C2 ∈ S imply C1 ∪ C2 ∈ S, provided that C1 ∪ C2 is not empty and A is
an atom. The smallest set that includes S and is resolution closed is called the
resolution closure of S written as RC(S).

Definition 5. A set of clauses S is appending closed if

1. {t} ∈ S.
2. If C1 ∈ S and C1 ⊆ C2, then C2 ∈ S.

The appending closure of S written as AC(S) is the smallest set that includes
S and is appending closed.

Definition 6. Let α be a formula and S be a set of formulas in L. If C(α) ⊆
AC(RC(C(S))), we say that α is monotonically derivable from S written as
S �mc α. The monotonic closure of S is defined as MC(S) = {α ∈ L|S �mc α}.
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Example 4. Assume S={A, A → B}. Then C(S)={{A}, {¬A, B}}, RC(C(S))=
{{A}, {¬A, B}, {B}}, AC(RC(C(S))) ={{t}, {A}, {¬A, B}, {B}, · · ·}. Since
C(A∧B)={{A, B}, {A, ¬B}, {¬A, B}} ⊆ AC(RC(C(S))), S �mc A∧B. It can
be verified that MC(S)=Cn(S). Now let S′ = S ∪ {¬A}. Then C(S′)={{¬A},
{A}, {¬A, B}}, RC(C(S′))={{¬A}, {A}, {¬A, B}, {B}}, AC(RC(C(S′)))=
{{t}, {¬A}, {A}, {¬A, B}, {B}, · · ·}. Therefore MC(S′)={¬A, A, A → B, B,
A ∨ B, ¬A ∨ B, A ∧ ¬A, · · ·}. It is readily to verify that MC(S) ⊆ MC(S′).
Also S′ 
�mc C for any atom C not occurring in S′, which indicates that MC is
paraconsistent.

From the above example, we notice that inconsistencies can be conquered with
MC. Moreover, MC is monotonic, as stated by the following proposition.

Proposition 5 (Monotonicity of MC). If S ⊆ S′, then MC(S) ⊆ MC(S′).

Proposition 6. If S is classically consistent, then MC(S) ≡ Cn(S).

Proposition 6 implies that, although MC is strictly weaker than Cn(since MC
is paraconsistent), they are identical as to consistent sets of formulas.

In [20], Lehmann suggests that the reasoning relation �p in a plausibility logic
should satisfy the following conditions:

1. Inclusion: Γ �p α if α ∈ Γ .
2. Right Monotonicity: If Γ �p α, then Γ �p α ∨ β for any formula β.
3. Cautious Left Monotonicity: If Γ �p α and Γ �p β, then Γ ∪ {α} �p β.
4. Cautious cut: If Γ ∪ {α} �p β and Γ �p α, then Γ �p β.

It can be verified that �mc satisfies all of the above conditions but cautious
cut. It means that a derived formula can not be used as a lemma to infer new
formulas, i.e. cumulativity does not hold as to �mc. Therefore �mc is not a
plausibility logic in the above sense.

4 Fault-Tolerant Default Logic

4.1 Alternative Extension

To this point, we modify the definition of default extension.

Definition 7. Let T = 〈D, W 〉 be a default theory. For the sets of formulas E,
J and E′, we say that default δ = α:β1,···,βn

γ is applicable to E′ w.r.t. E and J
if

1. α ∈ E′.
2. ¬βi 
∈ E or there is a formula equivalent to ¬βi in E ∩J for each 1 ≤ i ≤ n.

For sets of formulas E and J , we say pair 〈E, J〉 is smaller than 〈E′, J ′〉 writ-
ten as 〈E, J〉 ≤ 〈E′, J ′〉 if E ⊆ E′ and J ⊆ J ′. 〈E, J〉 is consistent if E is
consistent.
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Definition 8. Let T = 〈D, W 〉 be a default theory. Γ (〈E, J〉) is the smallest
pair 〈E′, J ′〉 such that

1. W ⊆ E′
2. E′ = MC(E′)
3. If α:β1,···,βn

γ ∈ D is applicable to E′ w.r.t. E and J , then γ ∈ E′, ¬β1 ∈ J ′,
· · ·, ¬βn ∈ J ′.

A pair 〈E, J〉 is an alternative extension of T = 〈W, D〉 if 〈E, J〉 = Γ (〈E, J〉).
With the similar approach in [21], we can verify that Γ and alternative extension
are well-defined.

Theorem 1. Let T = 〈D, W 〉 be a default theory. For the sets of formulas E
and J , define E0 = MC(W ), J0 = ∅, and for i ≥ 0

Ei+1 = MC(Ei) ∪
{

γ

∣∣∣∣α : β1, · · · , βn

γ
∈ D is applicable to Ei w.r.t. E and J

}

Ji+1=Ji∪
{

¬β1, · · · , ¬βn

∣∣∣∣α : β1, · · · , βn

γ
∈D is applicable to Ei w.r.t. E and J

}

Then 〈E, J〉 is an alternative extension of T iff E =
⋃∞

i=0 Ei and J =
⋃∞

i=0 Ji.

Definition 9. The set of generating defaults for pair 〈E, J〉 w.r.t. default theory
T written as GD(E, J, T ) is

GD(E, J, T ) =
{

δ

∣∣∣∣δ =
α : β1, · · · , βn

γ
∈ D is applicable to E w.r.t. E and J

}

Theorem 2. For the sets of formulas E and J , if 〈E, J〉 is an alternative ex-
tension of default theory T = 〈D, W 〉, then E = MC(W ∪ Con(GD(E, J, T )))
and J = {¬β|β ∈ Just(GD(E, J, T ))}.

The following two examples indicate that alternative extension could tolerate all
contradictions shown in Figure 1.

Example 5. Consider default theory T = 〈D, W 〉, where D = {B:C
D } and W =

{A, ¬A, A → B}. According to Proposition 3, T has only a trivial default ex-
tension. Contrarily, since the underlying logic of FDL is paraconsistent, it has a
nontrivial alternative extension 〈MC({A, ¬A, A → B, D}), {¬C}〉.
Example 6. Consider the default theories in Example 1, 2 and 3. They have
〈MC({A, ¬A}), {¬B}〉, 〈MC({C, ¬C}), {¬B, ¬D}〉 and 〈MC({A, A → B,
B}), {¬¬B}〉 as their alternative extensions respectively.

4.2 Operational Considerations

In [22], an operational semantics is assigned to Reiter’s default logic. We can do
the similar thing to alternative extension. Let T = 〈D, W 〉 be a default theory
and Π = 〈d1, d2, · · ·〉 be a sequence of defaults from D. We denote the initial
segment of Π of length k by Πk, provided that the length of Π is at least k, and
define In(Πi) = MC(W ∪ Con(Πi)), Out(Πi) = {¬β|β ∈ Just(Πi)}.
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Definition 10. A default d = α : β1, · · · , βn/γ is applicable to a sequence Π if

1. α ∈ In(Π).
2. ¬βi 
∈ In(Π) or there is a formula equivalent to ¬βi in In(Π) ∩ Out(Π) for

each 1 ≤ i ≤ n.

Definition 11. A sequence Π = 〈d1, d2, · · ·〉 in D is a process if dk is applicable
to Πk−1 for every k ≥ 1. Process Π is closed if every d ∈ D that is applicable
to Π already occurs in Π.

Lemma 2. Each default theory has at least one closed process.

Since justifications of used defaults in a process can not be invalidated by sub-
sequent defaults, we have Lemma 3 and Theorem 3.

Lemma 3. If Π is a closed process of default theory T , then 〈In(Π), Out(Π)〉
is an alternative extension of T .

Theorem 3 (Semimonotonicity). If T = 〈D, W 〉 and T ′ = 〈D′, W 〉 are two
default theories, where D ⊆ D′, and 〈E, J〉 is an alternative extension of T , then
T ′ must have an alternative extension 〈E′, J ′〉 such that 〈E, J〉 ≤ 〈E′, J ′〉.

From Lemma 2 and 3, we immediately have

Theorem 4 (Existence of Alternative Extension). Each default theory has
at least one alternative extension.

For an alternative extension 〈E, J〉, if there is a closed process Π such that
In(Π) = E and Out(Π) = J , we say 〈E, J〉 has Π corresponding to it. Although
Definition 11 and Lemma 3 imply that each closed process corresponds to an
alternative extension, there are some alternative extensions that have no process
corresponding to them, i.e. some alternative extensions are not constructive.

Example 7. Consider default theory T = 〈D, W 〉, where D = { :A
B , :¬B

¬A } and
W = ∅. T has just two closed processes: 〈 :A

B 〉 and 〈 :¬A
¬B 〉. There is no closed

process corresponding to alternative extension 〈MC({¬A, B}), {¬A, ¬¬B}〉.

4.3 The Largest and the Minimal Alternative Extensions

Minimality does not hold as to alternative extension.

Example 8. Let D = { :A
B , :¬B

C } and W = ∅. It can be verified that default theory
T = 〈D, W 〉 has two alternative extensions: 〈E1, J1〉=〈MC({B}), {¬A}〉 and
〈E2, J2〉=〈MC({B, C}), {¬A, ¬¬B}〉. Since E1 ⊂ E2, J1 ⊂ J2, 〈E1, J1〉 <
〈E2, J2〉.

This is not occasional. As a matter of fact, we have

Theorem 5. If 〈Ek, Jk〉 are alternative extensions of default theory T for each
k = 1, 2, · · ·, then there must exist the smallest alternative extension 〈E, J〉 of T
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that is bigger than 〈Ek, Jk〉 for each k such that E =
⋃∞

i=0 Fi and J =
⋃∞

i=0 Ki,
where F0 =

⋃
k Ek, K0 =

⋃
k Jk, and for i ≥ 0

Fi+1 = MC(Fi) ∪
{

γ

∣∣∣∣α : β1, · · · , βn

γ
is applicable to Fi w.r.t. Fi and Ki

}

Ki+1= Ki∪
{

¬β1, · · · , ¬βn

∣∣∣∣α : β1, · · · , βn

γ
is applicable to Fi w.r.t. Fi and Ki

}

The above theorem indicates that all the alternative extensions of a default
theory form a complete upper semilattice w.r.t. ≤.

Corollary 1 (Existence of the Largest Alternative Extension). Each
default theory T has an alternative extension 〈E, J〉 such that for each alternative
extension 〈E′, J ′〉 of T , 〈E′, J ′〉 ≤ 〈E, J〉.

Definition 12. For an alternative extension 〈E, J〉 of default theory T , if there
is no alternative extension of T that is smaller than 〈E, J〉, then 〈E, J〉 is a
minimal alternative extension of T .

Theorem 6. If 〈E, J〉 is a minimal alternative extension of default theory T ,
then there must be a closed process Π such that E = In(Π) and J = Out(Π).

The above theorem does not hold vice versa. See the following example.

Example 9. Consider default theory T = 〈D, W 〉, where D = { :A
B , :C

¬A} and W =
∅. Sequence 〈 :A

B , :C
¬A 〉 is a closed process of T . Therefore 〈E, J〉=〈MC({¬A, B}),

{¬A, ¬C}〉 is an alternative extension. However, it is not a minimal alternative
extension(alternative extension 〈MC({¬A}), {¬C}〉 is smaller than 〈E, J〉).

4.4 Preferred Extension

In Example 8, we note that some alternative extensions are counter-intuitive. In
this subsection, we exclude those counter-intuitive ones according to the criteria
that the justification conflicts should be minimal.

Definition 13. Let T be a default theory. An alternative extension 〈E′, J ′〉 of
T is called a preferred extension if E′ ∩ J ′ is minimal in {E ∩ J |〈E, J〉 is an
alternative extension of T }.

Example 10. Let T =〈D, W 〉 be a default theory, where D={ :A
B , :¬B

¬A , B:C
C , ¬A:B

B }
andW=∅.T has three alternative extensions: 〈E1, J1〉=〈MC({B, C}), {¬A, ¬C}〉,
〈E2, J2〉=〈MC({¬A, B, C}), {¬B, ¬¬B, ¬C}〉 and 〈E3, J3〉=〈MC({¬A, B, C}),
{¬A, ¬¬B, ¬C}〉. Since E1∩J1 = ∅, E2∩J2 = {¬¬B} and E3∩J3 = {¬A, ¬¬B},
〈E1, J1〉 is a preferred extension of T , while the other two are not.

Example 11. Let T = 〈D, W 〉 be a default theory, where D = { :A
¬A} and W = ∅.

T has only one alternative extension 〈MC({¬A}), {¬A}〉 which is also the only
preferred extension of T .
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Theorem 7 (Existence of Preferred Extension). Each default theory has
at least one preferred extension.

Theorem 8. Each preferred extension is a minimal alternative extension.

The above theorem does not hold vice versa, as shown by the following example.

Example 12. Let D = { :A
B , B:C

¬A , :¬B
¬A∧¬C } and W = ∅. Default theory T = 〈D, W 〉

has 〈E1, J1〉 = 〈MC({¬A, B}), {¬A, ¬C}〉, 〈E2, J2〉 = 〈MC({¬A, ¬C}), {¬¬B}〉
and 〈E3, J3〉 = 〈MC({¬A, B, ¬C}), {¬A, ¬¬B, ¬C}〉 as its alternative exten-
sions, where 〈E1, J1〉 and 〈E2, J2〉 are minimal alternative extensions, but
〈E1, J1〉 is not a preferred extension, whereas 〈E2, J2〉 is.

Corollary 2 (Minimality of Preferred Extension). If 〈E, J〉 and 〈E′, J ′〉
are both preferred extensions of default theory T and 〈E, J〉 ≤ 〈E′, J ′〉, then
E = E′ and J = J ′.

Theorem 9. E is a consistent default extension of default theory T iff T has a
consistent preferred extension 〈E, J〉 such that E ∩ J = ∅.

Semimonotonicity does not hold as to preferred extension(see the following ex-
ample). Therefore semimonotonicity implies the existence of extension, but not
vice versa.

Example 13. Let W = ∅ and D = { :A
B , :¬B

¬A }, D′ = { :A
B , :¬B

¬A , B:¬A
¬A }. Default

theory 〈D, W 〉 has two preferred extensions: 〈E1, J1〉 = 〈MC({B}), {¬A}〉
and 〈E2, J2〉 = 〈MC({¬A}), {¬¬B}〉, while 〈D′, W 〉 has only one preferred
extension: 〈E, J〉 = 〈MC({¬A}), {¬¬B}〉. Although D ⊆ D′, 〈D′, W 〉 has no
preferred extension bigger than 〈E1, J1〉.

Definition 14. If 〈E, J〉 and 〈E′, J ′〉 are preferred extensions of default theory
T such that E ∩ J = E′ ∩ J ′ and {α|α ∧ ¬α ∈ E} ⊂ {α|α ∧ ¬α ∈ E′}, we say
〈E, J〉 is more consistent than 〈E′, J ′〉. If T has no preferred extension more
consistent than 〈E, J〉, 〈E, J〉 is a most consistent preferred extension of T .

Theorem 10 (Existence of Most Consistent Preferred Extension).
Each default theory has at least one most consistent preferred extension.

From Theorem 9, we have

Corollary 3. E is a default extension of consistent and coherent default theory
T iff there is a set of formulas J such that 〈E, J〉 is a most consistent preferred
extension of T and E ∩ J = ∅.

To this point, we have discussed a set of extensions, the inclusion relations among
which are shown in Figure 2. The figure also indicates that to compute all the
preferred extensions and most consistent preferred extensions, it suffices to con-
sider only closed processes which are constructive.
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Alternative Extens ion

Closed Proc ess

Minim al Alternative Extens ion

Preferred Extens ion

Defau lt Exten s io n

Most Cons is tent

Preferred Extens ion

Fig. 2. Inclusion Relations

Theorem 11. If T = 〈D, W 〉 is a normal default theory where W is consistent,
then E is a default extension of T iff T has a closed process Π such that In(Π) =
E and In(Π) ∩ Out(Π) = ∅.

The above theorem implies that as to a consistent normal default theory, closed
processes, minimal alternative extensions, preferred extensions, most consistent
preferred extensions and default extensions are identical. Theorem 9 and Corol-
lary 3 imply that as to a consistent and coherent default theory, default exten-
sions are identical with consistent preferred extensions as well as most consistent
preferred extensions.

5 Related Work

The main idea of the paper is inspired by Reiter’s seminal paper[1], some variants
of it[15, 17, 16] and Linke et al’s work on default logic[4]. The formal definition
of default extension is more delicate than could have been expected. This is due
to the context-sensitive nature of justifications. In fact, a default’s justifications
can be refuted only when all default consequents contributing to a default ex-
tension are known. This is why the non-refutability of a justification is verified
w.r.t. the final default extension. In such an approach, default extensions are
not constructive and one is obliged to inspect the entire set of defaults to decide
whether a default can be applied.

Reiter[1], Lukaszewicz[15] and Linke[4] have tried to reduce this kind of global
checks to local ones to make extensions constructive. In normal default logic,
defaults are restricted to be normal so that local checks are adequate. Linke et al
replace such global checks by the strictly necessary ones. In justified default logic,
a default is applicable only if its prerequisite is derivable and its justifications
and consequent are consistent with used defaults. Therefore global checks are
unnecessary in justified default logic.

By avoiding this kind of global checks, normal default logic and justified
default logic are seminormal and the existence of extension is guaranteed. But
since the underlying logic of the two are not paraconsistent, the trivial extension
can not be avoided.

Taking no account of the existence of extension, bi-default logic[13] adopts
the approach of signed system[8]. It translates a default theory into two related
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default theories which are both consistent. The two related default theories com-
prise a bi-default theory. By dividing the inconsistencies into two parts, bi-default
logic overcomes triviality. Compared with bi-default logic, the approach taken
by Yue et al[14] seems to be more natural. They define four-valued models for an
arbitrary default theory. Since four-valued logic is paraconsistent, all four-valued
models are nontrivial. Similar to bi-default logic, a transformation is introduced
to translate the original default theory to a consistent signed one. What is inter-
esting is, it is proved that four-valued models of the original default theory can
be gained by computing the default extensions of the translated default theory.
Unfortunately, the relationship between four-valued models and extension is not
clear.

The paper is an attempt to resolving inconsistencies and incoherences simul-
taneously. Thus it needs to go further than the above default logics. In FDL,
we also try to avoid global checks: the condition of justification establishing is
weaker than in justified default logic and the original default logic, which makes
“subsequent” defaults would never invalidate used defaults. Moreover, since the
syntax is not modified and default extensions are reserved, FDL retains the
simplicity and powerful expressivity of Reiter’s default logic.

6 Conclusion

Our main contribution in the paper is, based on a paraconsistent and monotonic
reasoning system, we generalize Reiter’s default logic, i.e., each default theory has
at least one extension in FDL and Reiter’s default logic coincides with FDL(when
most consistent preferred extension is used) as to a consistent and coherent
default theory.

Although FDL has some nice properties, the computation of alternative ex-
tensions and preferred extensions is under discussion. Besides, the relationship
between FDL and other default reasoning systems is not so clear, and more
research will be devoted to it.

Not only do inconsistencies and incoherences occur in default logic, but also
they exist in other reasoning systems, in which logic programming is a case in
point. In the future work, we will apply the idea of FDL to other reasoning
systems.
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